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ABSTRACT
Previous work in leakage current reduction for digital circuits can
be divided into two main categories: static design-time selection of
slow, low-leakage transistors for non-critical paths and dynamic de-
activation of fast leaky transistors on critical paths. Leakage power
is dominated by critical paths, and hence dynamic deactivation of
fast transistors could potentially yield large savings. We introduce
methodologies for comparing fine-grain dynamic deactivation tech-
niques that include the effects of deactivation energy and startup
latencies, as well as long-term leakage current. Existing dynamic
leakage reduction techniques, although they have low leakage cur-
rent also have large deactivation energies and significant startup
latencies. The large deactivation energies require long idle times
to amortize their overhead, and large startup latencies impact per-
formance, limiting the applicability of these techniques within an
active microprocessor. We introduce new circuit techniques that
have a low deactivation energy when transitioning a circuit block
into a low leakage state from which it can be woken quickly. We
show how these techniques can be applied at a fine grain within an
active microprocessor, and how microarchitectural scheduling poli-
cies can improve their performance. The first technique deactivates
SRAM read paths within I-cache memories saving over 40% of idle
circuit leakage energy and over 20% of total I-cache energy when
using a 70 nm process. The second technique dynamically deacti-
vates idle registers reducing idle circuit leakage energy by 41.1%
and up to 12.4% of total regfile energy. The third technique dy-
namically deactivates read ports within a multiported register file.
Independent of the second technique, read port deactivation saves
up to 98.5% of idle circuit leakage energy and 47.8% of total en-
ergy.

1. INTRODUCTION
Energy dissipation has emerged as the primary design constraint

for all microprocessors, from those used in portable devices to
those used in high-performance servers and mainframes. Until re-
cently, the primary source of energy dissipation in digital CMOS
circuits has been the dynamic charging and discharging of load
capacitances. The continuing reduction in feature size reduces
capacitance and the accompanying reductions in supply voltage
help to further reduce the dynamic switching energy per opera-
tion. To maintain performance scaling, threshold voltages must
also be scaled down along with supply voltage. But lowering
the threshold voltage increases static leakage current exponentially,�

This work was partly funded by DARPA PAC/C award F30602-
00-2-0562 and by NSF CAREER award CCR-0093354.

and within a few process generations it is predicted energy dissipa-
tion from static leakage current could be comparable to dynamic
switching energy [1, 4]. The trend towards ever more complex mi-
croprocessors further exacerbates the situation, as large numbers
of transistors are added for relatively small improvements in per-
formance. These additional transistors may dissipate considerable
leakage power even when not actively switching.

A number of techniques have been proposed to combat this in-
crease in leakage power. We divide these approaches into two cat-
egories depending on whether they focus on the static design-time
selection of slow transistors, or the dynamic run-time deactivation
of fast transistors. Techniques that trade increased circuit delay
for reduced leakage current include: conventional transistor siz-
ing, lower Vdd [10, 14], stacked gates [18, 32, 26], longer chan-
nels [8], higher threshold voltages [24, 11, 23, 28, 30], and thicker�����

; we collectively refer to these as statically-selected slow tran-
sistors (SSSTs). Techniques for dynamic run-time deactivation of
fast transistors include body biasing [17, 21, 22, 7, 5], sleep tran-
sistors [17, 19, 28, 27, 20], and sleep vectors [32, 26]; we col-
lectively refer to these as dynamically-deactivated fast transistors
(DDFTs). SSSTs and DDFTs are complementary leakage reduc-
tion techniques where SSSTs reduce leakage on non-critical paths
and DDFTs reduce leakage on critical paths, and both can be si-
multaneously applied to yield larger overall savings.

Although many leakage-reduction techniques are implemented
at the circuit or device level, architects have considerable scope
to influence processor leakage power [3]. One approach is to in-
crease the use of SSSTs by finding additional parallelism, so that
a given throughput can be achieved with a larger parallel array of
units built with slower, less-leaky transistors, rather than with a
smaller number of lower-latency units built with faster but leaky
transistors. Unfortunately, available parallelism is limited in single-
threaded general-purpose applications, and much of the complexity
of modern microprocessors is due to the difficulties of finding such
parallelism. Moreover, if any additional parallelism is found, this
could instead have been used to attain the same throughput at a re-
duced clock rate and supply voltage, saving both active and leakage
power.

Alternatively, architects can focus on finding opportunities to ex-
ploit DDFTs, whereby fast, leaky circuits are deactivated when
not required. This approach can potentially maintain the lowest
latency for applications with little parallelism, while reducing leak-
age power to acceptable levels. The challenges in this approach are
that most existing circuit techniques for DDFTs are only effective
at reducing leakage energy if a circuit block will be inactive for a
long time. This limits the scope for applying DDFTs within an ac-
tive processor, where some blocks may only be inactive for a small
number of cycles.



In this paper, we introduce a new methodology for comparing
DDFT techniques and show how some existing techniques require
long idle times to be effective at reducing energy because of the
large energy overhead of transitioning into a low-leakage state. We
then present new circuit-level techniques for caches and register
files that have very low energy overhead to transition into a low-
leakage state thereby enabling even short idle times to translate into
energy savings. We use predicted process parameters from 180 nm
to 70 nm technology generations to estimate energy savings that
can be achieved by applying these techniques to an out-of-order
superscalar microprocessor architecture.

For caches, we deactivate the access ports on unused cache sub-
banks to save bitline leakage energy. For the instruction cache, we
save 40% of leakage energy, or 20% of total energy, with only a 3%
performance penalty. For register files, we exploit idleness in two
spatial dimensions: we deactivate individual dead registers, and we
also deactivate unused access ports. The physical registers inside
a superscalar microprocessor are dead from the time they enter the
free list until the time they are written with a value. Register file
access ports are unused when fewer than the maximum number of
instructions begin execution on a given cycle. For the register file in
70 nm technology, we save up to 90% of leakage energy, or around
20% of total register file energy, with no loss in performance and
minimal area overhead.

This paper is organized as follows. Section 2 reviews previous
work in statically-selected slow transistor techniques. Section 3
describes previous work in dynamically-deactivated fast transis-
tor techniques. Section 4 introduces metrics for comparing DDFT
techniques. Section 5 describes how we estimated the process pa-
rameters for future process technologies. Section 6 describes the
DDFT technique we use on caches. Section 7 describes the DDFT
techniques we use on multiport regfiles. Section 8 details how we
evaluated our DDFT techniques and discusses the results. Section
9 looks at related work in leakage reduction and modeling. Sec-
tion 10 concludes the paper.

2. STATICALLY-SELECTED SLOW
TRANSISTOR TECHNIQUES

The usual application of SSSTs is to replace fast transistors with
slow transistors on non-critical paths. This has been common de-
sign practice for many decades, where traditional transistor sizing
reduces transistor gate width on non-critical paths to save switch-
ing power and to reduce parasitic load on critical nodes. Leakage
is proportional to gate width, and so these narrower transistors also
have lower leakage. Traditional design methods also use slower,
more complex gate topologies on non-critical paths to reduce area.
These more complex gates have deeper transistor stacks, which as
a side effect also reduce leakage.

As power dissipation from leakage current increases, further
techniques are being considered to reduce leakage current on non-
critical paths. Leakage decreases superlinearly with gate length
and a small increase in transistor length away from minimum can
give a significant reduction in leakage current with a small impact
on delay. Accordingly, the designers of the StrongARM-1 slightly
lengthened cache and pad transistors to reduce leakage in standby
mode, yielding a five-fold reduction in leakage with only a small
performance penalty [8]. This approach was also used in the Alpha
21164 processor to control the effects of leakage on dynamic gates
[15]. Lengthening transistor gates to control leakage has the dis-
advantage that active power can increase because of the increased
gate capacitance.

Although it is desirable to scale threshold voltage along with sup-

ply voltage to maintain performance scaling, thresholds need only
be lowered on critical path transistors. At the expense of addi-
tional mask processing steps, it is possible to manufacture transis-
tors with several different threshold voltages on the same die. By
using slower, high-threshold transistors on non-critical paths it is
possible to reduce leakage current without impacting performance.
It has been shown that the leakage of random static logic can be
reduced by more than 50% [11] in this way. Even though most
transistors are non-critical, the achievable leakage reduction is lim-
ited, because the non-critical transistors have already been reduced
in width and stacked into complex gates and hence have low leak-
age.

3. DYNAMICALLY-DEACTIVATED FAST
TRANSISTOR TECHNIQUES

After application of SSST techniques to non-critical path tran-
sistors, leakage is even more highly concentrated in the critical
path transistors. One example is a recent embedded PowerPC 750,
which employs three threshold voltages: high, standard, and low.
The low threshold transistors account for only 5% of the total tran-
sistor width, but around 50% of the total leakage [16]. Several
techniques have been developed to reduce leakage current from
transistors on the critical path. Unlike SSST techniques, where
non-critical path transistors are made permanently slower to reduce
leakage, these techniques attempt to dynamically switch critical
path transistors between fast, leaky, active operation and inactive
low-leakage states. We refer to this general category of techniques
as dynamically deactivated fast transistors (DDFTs).

One DDFT technique that has become popular in low-power pro-
cessors for portable devices is the application of a dynamically
varying body bias to modulate transistor threshold voltages [17,
19, 28, 27, 20]. Reverse body biasing, by setting the p-well voltage
higher than Vdd and the n-well voltage lower than GND, increases�
	

because of the body effect, thereby reducing leakage current.
This technique requires twin or triple well processes and therefore
increases manufacturing costs. A variation on the body biasing ap-
proach is to fabricate high-

� 	
transistors, but then to actively for-

ward bias the wells during normal operation to lower
��	

[12]. In
the idle state, the forward bias is removed returning the transistors
to their natural high-

��	
state. Other advantages of this technique

are that it has less threshold variation than using low-
��	

devices
directly, and hence can allow higher speed operation for a given
leakage current specification [12]. Because of the large capacitance
and distributed resistance of the wells, charging or discharging the
well has a relatively high time constant and dissipates considerable
energy. These schemes are mainly used to reduce leakage when
the processor enters a sleep state, where the processor is expected
to be idle for at least 0.1–100 � s [9, 21, 14] allowing the latency
and energy costs of transitioning into the low leakage state to be
amortized over the long sleep time.

An alternative DDFT approach is power gating [17, 19, 28, 27,
20]. Power supply to circuits can be cut off from Vdd (or GND) by
inserting a high

� 	
sleep transistor between Vdd and virtual Vdd

(or GND and virtual GND). When switched off, the sleep transistor
adds an extra high-

�
	
transistor in series with the logic transistors,

which dramatically reduces leakage current. Some of the disadvan-
tages of sleep transistors are that they add additional impedance in
the power supply network which reduces circuit speed, they require
additional area and routing resources for the virtual power supply
nets, and they may consume considerable deactivation energy to
switch between active and inactive states. By sizing the sleep tran-
sistor [28], boosting the gate voltage for the sleep transistor [27],



or forward-biasing the sleep transistor [20], the delay penalty can
be reduced in exchange for greater sleep leakage currents and in-
creased deactivation energy.

Another interesting DDFT technique exploits the fact that the
leakage current of a block depends on the input pattern and internal
state [32, 26]. If a combination of input patterns and internal state
can be found which minimizes the leakage current, then this sleep
vector can be applied to place the circuit into a low-leakage state.
The sleep vector can be applied by forcing internal latches into a
known state, and by forcing inputs to the correct polarity. However,
it is sometimes difficult to find the optimal sleep vector and also the
application of the sleep vector can cause spurious toggling in the
circuits, which results in significant deactivation energy.

All DDFT circuits require a policy to decide when to switch to
a low-leakage mode. Most current applications in microprocessors
use a very simple policy, implemented by the operating system,
whereby the entire processor is deactivated when it enters a sleep
mode. This is a very coarse-grain policy that cannot reduce active
mode leakage power.

A few researchers have proposed more fine-grained deactivation
techniques that place portions of the processor into low-leakage
states during active operation. The dynamically-resized instruction
cache [13] uses a virtual-GND power gate to supply power to just
enough RAM subbanks to hold the active working set of the cur-
rent application. An adaptive hardware algorithm is used to deter-
mine an adequate cache capacity by monitoring miss rates as the
active partition size is varied. Cache decay [29] dynamically pre-
dicts which cache blocks are unlikely to be accessed in the near
future, marks them invalid, then powers them down using a power
gate. Both of these techniques have long deactivation times of thou-
sands of cycles.

For more general application of DDFT techniques within an ac-
tive microprocessor, it is necessary to have circuit techniques that
make it worthwhile to deactivate a circuit block for short periods of
time, and microarchitectural mechanisms that can detect, or force,
a block into an idle state. The main contribution of this paper is to
consider the use of DDFT techniques applied over a much shorter
time scale than in previous work. In the next section we present
a methodology for comparing DDFT techniques that factors in the
energy costs of transitioning into a low-leakage state. In the fol-
lowing sections, we present circuit-level DDFT techniques that can
profitably reduce leakage energy over short idle times and show
how these can be used within a superscalar microprocessor.

4. COMPARING DDFT TECHNIQUES
The goal of applying a fine-grain DDFT technique is to reduce

total processor energy. When attempting to deactivate a block for a
short period of time, the performance and energy impacts of enter-
ing and leaving the low-leakage state must be considered. Figure 1
introduces the different parameters we use to compare DDFT tech-
niques.

The left-hand side of Figure 1 shows the evolution of leakage
current over time on entering the deactivated state. Once deacti-
vated, a block requires some time to reach the lowest leakage state
depending on the time constants of internal nodes. For example, a
substrate biasing scheme will require time to bias the wells, and a
virtual-GND scheme requires time for leakage currents to charge
up the virtual-GND node. During the transition time, leakage cur-
rent is substantially higher than in the steady-state.

Switching between active and deactivated modes requires addi-
tional transition energy, for example, to switch the gates of power-
gating transistors or to charge and discharge well capacitances. The
right-hand side of Figure 1 illustrates how we compare the overall
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Figure 1: Transition time, steady-state leakage current, and
break-even point time of DDFT leakage-reduction techniques.

energy consumed over time when idling in a normal, high-leakage
state versus transitioning into a low-leakage state. The original idle
leakage energy is shown by the straight line which rises at a con-
stant rate over time dependent on the leakage current. On the same
graph, we show an example curve for a DDFT technique. There is
an initial fixed transition energy cost, which is given by summing
fixed energy costs to move to the low-leakage state and to move
back into the active state. In addition to the fixed transition energy
costs, there may be additional variable transition energy costs pro-
portional to the time that the block is deactivated. For example, in
a virtual GND technique, the GND node is slowly charged over the
transition time, and the amount of energy dissipated when this node
is discharged to wakeup the block depends on the idle time. These
variable transition energy costs are factored into the energy curve.
The curve rises more steeply initially during the transition time,
where variable transition energy costs are being incurred and as
leakage current drops to its steady state value. After the transition
time, the energy curve rises more slowly, as only the steady-state
leakage current is being dissipated.

We define the break-even point time,  breakeven, as the time
when the two curves cross, i.e., when the leakage energy of re-
maining in an active idle state matches the energy consumed after
switching to idle in the low-leakage state. The circuit must be idle
for considerably longer than the break-even point to save significant
energy.

Another important factor in comparing DDFT techniques is the
wakeup time. The wakeup time is the time for a block to become
usable after being in an inactive state. Faster wakeup time is usu-
ally preferable to faster transition time because it reduces any per-
formance penalty. Wakeup time can sometimes be traded for tran-
sition energy, for example, using a wider transistor to discharge a
biased well increases the transition energy to switch the transistor.

Although DDFT techniques do not use slower transistors to re-
duce leakage power, some techniques affect the delay and power of
the active state. For instance, if the NMOS sleep transistor tech-
nique is applied, the virtual GND is slightly higher than GND and
so the circuit is somewhat slower.

5. PROCESS TECHNOLOGIES
To evaluate our DDFT techniques, we use models of four dual-� 	

processes, including 180 nm, 130 nm, 100 nm, and 70 nm pro-

I 



Table 1: 180nm, 130nm, 100nm, and 70nm processes.
Parameter 180nm 130nm 100nm 70nm

Vdd (V) 1.8 1.5 1.2 0.9
Temp (Celsius) 100 100 100 100
FO4 delay (ps) 61.1 47.4 36.7 24.0

16 FO4 freq. (GHz) 1.0 1.3 1.7 2.6
LVT Ion (uA/um) 732 732 732 732
LVT Ioff (nA/um) 21.8 43.6 87.2 174

(optimistic)
LVT Ioff (nA/um) 21.8 87.2 349 1395

(pessimistic)
HVT Ion (uA/um) 554 554 554 554
HVT Ioff (nA/um) 0.35 0.71 1.42 2.83

(optimistic)
HVT Ioff (nA/um) 0.35 1.42 5.68 22.6

(pessimistic)

cess generations. The 180 nm high-
� 	

and low-
� 	

transistors were
modeled after 0.18 � m TSMC low-leakage and medium-

��	
pro-

cesses respectively. The parameters of the 180 nm process were
scaled to the future technologies, using the SIA roadmap [25]. For
example, the SIA roadmap predicts that Ion remains the same, but
Ioff jumps twice for each technology generation. Because of the
difficulty in predicting future leakage numbers, we bracket our re-
sults using our own pessimistic and optimistic estimates of how
leakage currents will scale. The pessimistic estimates assume 4X
leakage increase per generation while the optimistic estimates as-
sume 2X leakage increase per generation. Important parameters
of the processes are summarized in Table 1. We only considered
subthreshold leakage in our estimates; although gate leakage might
become significant at some point in these technology generations,
it is also likely that new gate dielectrics will make gate leakage
insignificant again.
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Figure 2: Normalized active and leakage power for different
processes.

Based on the table, we estimated the scaling of active and leak-
age power for circuits. The results are shown in Figure 2, where
numbers are normalized to the 180 nm process. It is important to
note that the leakage power increases significantly although Vdd
and the total area of the circuit decreases. The active power is de-

creasing quadratically as expected from constant field scaling. If
the leakage power was 10% of the total power at the 180 nm pro-
cess, it will increase to 47-87% for the 70 nm process.

6. DDFT TECHNIQUES FOR CACHES
The L1 caches of high-performance processors can cause signif-

icant leakage current, as they contain a large number of transistors
which must be high-speed to avoid impacting processor cycle time.
In this section, we present circuit-level techniques that support fine-
grain DDFT schemes for reducing leakage.
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Figure 3: A dual-
�
	

SRAM cell. High
��	

transistors are
shaded.

Figure 3 shows the structure of an L1 cache SRAM cell together
with the two primary leakage current paths when the word line is
disabled. One leakage path, ��� , is from the precharged bit-line,
through the access transistor, and across the turned-on n-type pull-
down. The other leakage path, ��� , is from the enabled p-type
pullup to the turned-off n-type in the cross-coupled inverters. The
pullup transistors have been made high-

��	
so that there is negligi-

ble leakage current across the turned-off p-type ( ����� 0), and the
access and pulldown transistors have been made low-

� 	
to main-

tain circuit speed. The current through the leakage path, ��� , is
insignificant since the path has two turned-off transistors and the�����

of the access transistor is zero.
With future technology scaling, noise margin concerns will re-

quire that SRAMs have fewer cells connected to each bitline seg-
ment, as the leakage currents from non-accessed bits reduce the
effective signal from the accessed bit. We assume that only 32 bit
cells are attached to each local bitline within a subbank, and that
these local bitlines are connected through pass-transistor switches
to a global bitline attached to the senseamp.

A key observation is that the leakage current, � � , from each bit-
line into the cell depends on the stored value on that side of the cell;
there is effectively no leakage if the bitline is at the same value as
that stored in the cell ( � � ). We might consider using a sleep vec-
tor on the bitlines to force the SRAM subbank into a low leakage
state. For example, it is known that there are usually more zeros
than ones stored in a cache [31], so if we force the true bitline to
a zero value, while keeping the complement bitline precharged we
could statistically reduce the bitline leakage of an inactive cache
subbank by using this sleep vector. However, this has some dis-
advantages. First, if the percentage of zero bits is under 50%, the
sleep vector technique increases leakage energy. Second, this tech-
nique requires additional bitline charging energy to transition into
and out of the sleep vector state.

We have developed a simple circuit technique, Leakage-Biased
Bitlines (LBB), that reduces bitline leakage current due to the ac-
cess transistors of these structures with minimal transition energy



and wakeup time. Instead of forcing zero sleep values onto the
read bit lines of inactive subbanks, this technique just lets the bit-
lines float by turning off the high-

�
	
NMOS precharging transis-

tors. The leakage currents from the bit cells automatically bias the
bitline to a mid-rail voltage that minimizes the bitline leakage cur-
rent. If all the cells store a zero on one side, the leakage currents
will fully discharge the bitline on that side. If all the cells store a
one, the bitline will be held high. For a mix of ones and zeros, the
leakage currents bias the bitline at an appropriate midrail voltage
to minimize leakage. Although the bitline floats to mid-rail, it is
disconnected from the senseamp by the local-global bitline switch,
so there is no static current draw. This technique has little addi-
tional transition energy because the precharge transistor switches
exactly the same number of times as in a conventional SRAM, we
only delay the precharge until the subbank needs to be accessed.
The wakeup latency is just that of the precharge phase.
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Figure 4: The leakage power of 32-row � 16B SRAM subbank
for forced-zero and forced-one sleep vectors and leakage-biased
bitlines versus percentage of stored zero bits.

Figure 4 compares the steady-state leakage power of the leakage-
biased bitline and the forced-zero/forced-one sleep vector tech-
niques with the original leakage power for a 32-row � 16B SRAM
subarray with varying numbers of stored ones and zeros. It is clear
that the leakage-biased bitline technique has the lowest leakage
power independent of stored bit values.

Figure 5 compares the idle energy and the LBB DDFT energy
consumption for different processes. The LBB DDFT technique
should charge the lost charge on bitlines back before use and the
energy cost saturates at the bitline full swing energy. The break-
even point time, ���� ��!#"$��%&�(' , is around 200 cycles at 180 nm pro-
cess. However, since active energy scales down faster than leakage
energy, the break-even point time gets smaller reaching below one
cycle in the 70 nm process.

Each subbank must be precharged before use, which can add la-
tency to the cache access if the subbank is not known in time. In
this paper, we focus on the application of the LBB DFFT technique
to the processor instruction cache, because the instruction cache
has a predictable access pattern. In the most optimistic case, we
can assume that sufficient address bits are available to allow the
required subbank to be precharged while the remainder of the ad-
dress decode and word line drive completes, and therefore there is
no performance penalty. In the most pessimistic case, we can as-
sume that the additional precharge latency adds an additional cycle
to the fetch pipeline, and hence increases the branch misprediction
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Figure 5: Idle energy and LBB DDFT energy of 32-row � 32B
SRAM subbank for different processes. (optimistic leakage
current was used.)

penalty by one cycle. We also investigate alternative schemes that
do not lengthen the pipeline. By mapping instruction addresses to
cache subbanks such that sequential instructions are next to each
other within a cache subbank, we can predict that the next access
will be to the current subbank, adding a stall cycle when instruc-
tion fetch moves to a different subbank. A small variant of this
scheme is to predict that we will move on to the next subbank
when we access the last line in the current subbank. For an N-way
set-associative cache structure, we access N subbanks in parallel,
where each subbank returns a fetch group of instructions.

7. DDFT TECHNIQUES FOR MULTIPORT
REGFILES
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Figure 6: An embedded dual
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unbalanced 8-read, 4-write
register file cell. High

� 	
transistors are shaded.

Multiport regfiles are another component that can consume con-
siderable leakage power. Figure 6 shows an 8-read port, 4-write
port, regfile cell. Because there are many leakage paths in a multi-
port regfile cell, we chose a baseline design that was already opti-
mized for leakage power. The cell has a high-

��	
storage cell con-

nected to multiple low-
� 	

single-ended read ports. The write ports
are not as latency critical and so these access transistors are high-� 	

. To reduce active and leakage energy further, we make the cell
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asymmetrical, with all read ports arranged so that if the cell stores
a zero, the single-ended bitline is not discharged. Our experiments
showed that around 75% of the bits read from the register file are
zero. (The alternative balanced cell would have half the read ports
with true polarity and half with inverted polarity).

R1 Sleepb
R2 Sleepb

VirtualGND1

VirtualGND2

VirtualGND1

VirtualGND2

R1 Sleepb

Figure 7: Idle register deactivation scheme using NMOS high�
	
sleep transistors.

We applied two DDFT techniques to the multiported register file.
The first technique deactivates individual registers whose contents
are not needed. We exploit the fact that in a superscalar machine
with register renaming, the contents of a physical register is not
needed from the time it enters the free list until the time it is next
written to. During this dead time, the physical register can be
turned off. By using a virtual-GND line and an NMOS high-

� 	
sleep transistor between the virtual GND and GND, the leakage
current can be reduced dynamically (Figure 7). The disadvantage
of this scheme is that the read access time increases because the
sleep transistor resides in the critical read path, and the virtual GND
rises slightly above zero on an access. The delay penalty can be re-
duced by increasing the size of the sleep transistor, but this also
increases the steady-state leakage current and the transition energy.
We sized the sleep transistor to give an overall 5% slowdown.

The second DDFT technique acts in the orthogonal direction to
deactivate read ports that are not in use, again using a leakage-
biased bitline to reduce bitline leakage. We can then exploit the fact
that in a superscalar machine, when fewer than the maximum num-
ber of instructions can issue, some of the regfile read ports will be
idle. The LBB technique can be implemented for the single-ended
read bitlines, in which case the bitlines simply discharge towards
ground if any bits are holding a one. By turning off the precharger
when idle, the leakage current through the read bit lines is reduced
significantly. If the dead time is long enough, the energy overhead
to precharge the bitline back up before an access becomes rela-
tively small compared to the leakage current reduction. Note that
unlike the virtual-GND technique, this technique does not corrupt
the state stored in the register file. Also, there is no performance
loss, because it is known whether a read port is needed before it is
known which register will be accessed in the pipeline, allowing the
precharge time to be overlapped with register file address decode.

As with the SRAM, the register file array is divided into sub-
banks with local bitlines connected to the global bitline, to save
energy and to increase speed and noise margin. We place around
32 register bits on each local bitline. Figure 8 shows the hierarchi-
cal bitlines and a modified column cell for the LBB scheme for our
multiported regfile.

Table 2 shows the energy consumption when reading/writing 32-
bit zeros or ones from the 32 � 32-bit register file with the unbal-
anced embedded dual

� 	
cells. All read/write energy numbers are
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Figure 8: Leakage-biased bitline scheme for multiported regis-
ter file. Each local bitline can be left unprecharged, biased by
local leakage currents.

Table 2: The active read and write energy consumption of
32 � 32b multiported register file subbank for different pro-
cesses.

tr. length(nm) 180 130 100 70

zero read E(pJ) 6.02 2.87 1.38 0.47
one read E(pJ) 17.27 8.23 3.95 1.36
avg. read E(pJ) ( ) � ) 8.83 4.21 2.02 0.70
0-to-0 write E(pJ) 0.73 0.35 0.17 0.06
0-to-1 write E(pJ) 16.50 7.86 3.77 1.30
1-to-0 write E(pJ) 2.17 1.03 0.50 0.17
1-to-1 write E(pJ) 13.04 6.22 2.98 1.03
avg. write E(pJ) ( )+* ) 4.72 2.25 1.08 0.37
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Table 3: The leakage power of 32 � 32-b multiported regfile sub-
bank for different DDFT techniques.

Process Tech. (nm) 180 130 100 70

Original (uW) 177.9 214.1 263.6 276.7
SV steady-state (uW) 2.02 2.43 2.99 3.14

LBB steady-state (uW) 2.02 2.43 2.99 3.14
NST steady-state (uW) 1.84 2.21 2.73 2.86

per single read/write port. The energy consumption for 180 nm was
measured using Hspice simulation and those for other processes
were scaled using Figure 2. The average read and write energy
numbers were calculated assuming 75% of values stored in the reg-
ister files and write data are zero and that the values are statistically
independent. The total active energy consumption is simply the
sum of total read energy and total write energy.

Table 3 shows the steady-state leakage power when different
leakage techniques are applied and the idle leakage power of the
original circuit for different processes. We again assumed 75% of
the bits in the register file are zeros when measuring the leakage
power. Both the leakage-biased bitline (LBB), and NMOS sleep
transistor (NST) techniques reduce the leakage power to less than
1.5% of the original idle power when in the steady state.

Figure 9 shows the dynamic energy consumption of the DDFT
techniques for the set of process technologies. We can see that all
of the DDFT techniques become applicable at shorter time scales
as transistors scale down. This is partly because leakage current
grows as a fraction of active power, but also partly because most
of the transition energy cost scales with active power and so the
relative overhead of switching is reduced. Figure 10 is an expanded
view of the graph for the 70 nm process technology.
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Figure 9: Idle leakage and deactivated leakage energy of differ-
ent DDFT techniques for different processes (optimistic leakage
current was used).

We see that for the sleep vector technique, the break-even point
time is around 200 cycles at the 180 nm process, but shrinks to only
40 cycles in the 70 nm process. The sleep vector technique has high
fixed transition energy costs, and so below the breakeven point,
the energy consumption is much higher than the original leakage
energy.

For the leakage-biased bitline, the break-even point time in the
180 nm process is only around 10 cycles. Moreover, the cumulative
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Figure 10: Expanded view of dynamic leakage energy con-
sumption in 70 nm process technology (optimistic leakage cur-
rent was used).

energy rises slowly from the initial deactivation time, and is not
much larger than the original leakage before the breakeven point.
With technology scaling, the break-even point time becomes less
than a cycle and this technique can therefore give useful leakage
energy savings even for a few cycles of dead time.

The NMOS sleep-transistor performs better than the leakage-
biased bitlines in the coarser feature sizes, but suffers from a long
transition time in the finer-pitch process technologies. The time
taken to charge the virtual GND node leaves this scheme with
higher cumulative leakage energy for small numbers of cycles in
the 70 nm technology, though at large numbers of cycles the cumu-
lative energy drops below that of the leakage-biased bitline scheme.

8. ARCHITECTURAL EVALUATION
In this section, we use detailed simulation of an out-of-order pro-

cessor to estimate the energy savings that can be achieved by using
DDFT techniques on instruction cache subbanks and a multiported
register file.

8.1 Simulation Methodology
We instrumented SimpleScalar [2] 3.0b, an out-of-order, super-

scalar processor simulator, to track the activity of a physical register
file and instruction cache. We consider both four-wide and eight-
wide issue machines with the configurations shown in Table 4. We
modified the SimpleScalar simulator to model a machine with a
separate unified physical register file pool holding both committed
architectural registers and renamed registers. The number of physi-
cal registers in the simulated architecture is determined by the num-
ber of writeable architected registers fixed by the ISA (33) plus the
number of values that can be produced by in-flight instructions. On
SimpleScalar, these in-flight instructions are stored in register up-
date units (RUUs) which unify the reservation stations and reorder
buffer. Thus, to examine our techniques on various sized register
files, it was necessary to increase the number of RUUs in the sim-
ulated machine. While it may be overly optimistic to assume such
a machine could be implemented, increasing the RUUs increases
activity in the machine and would lead to more conservative esti-
mates of the energy saved by fine-grain dynamic leakage reduction
techniques. We restricted our study to the integer register file and
used the SPECint95 benchmark suite. Seven 1 benchmarks were
� The compress benchmark contained floating point operations that
could not be tracked by our simulation model
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Table 4: Simulated Configurations
4-Wide 8-Wide
(64 RUU) (256 RUU)

Physical Registers (Integer) 100 292
Integer ALUs 4 8
Integer Mult/Div 1 2
FP ALUs 1 2
FP Mult/Div 1 2
Load/Store Units 2 4
Load/Store Queue Depth 32 64
Instruction length 4 Bytes
I-Cache 16KB/4-Way/32B Block
D-Cache 16KB/4-Way/32B Block
Unified L2-Cache 256KB/4-Way/64B Block

6 cycle latency
Memory Latency First access: 50 cycs.

Subsequent accesses: 2 cycs.

Table 5: Cache subbank deactivation impact on average IPC
Configuration

Mispredict 4-Wide 4-Wide 8-Wide
penalty (cycles) (64 RUU) (128 RUU) (256 RUU)

3 1.8852 IPC 1.8872 IPC 2.4030 IPC
4 1.8419 IPC 1.8433 IPC 2.3330 IPC

run on their reference data sets until 100 million instructions had
committed.

8.2 Cache Deactivation Results
Figures 11–12 show the energy savings achieved for the instruc-

tion cache subbank deactivation scheme. In these figures and those
that follow, black bars denote the optimistic assumptions of future
process generations as described in Section 5. White bars denote
the pessimistic view of the future (greater leakage). For the 180 nm
generation, there is a net energy increase, but for all other process
technologies there is a net energy savings that reaches over 20% of
total instruction cache energy in the 70 nm generation. The leak-
age energy graphs show the energy saved in idle circuits, i.e., using
our DDFT technique we save over 40% of the idle leakage energy
for the I-cache subbanks that are not in use (we do not include the
leakage energy expended in an active circuit).

As discussed in Section 6 there can be a performance penalty
from the additional precharge latency if the subbank precharge can-
not be overlapped with the rest of the bank address decode. Table 5
presents the change in IPC when misprediction latency increases
from 3 to 4 cycles to allow for a pipelined precharge access cycle.
Figure 13 compares the performance penalty observed when we
increase the branch misprediction latency; when we predict all ac-
cesses will be in the same subbank; and when we predict accesses
will be in the current subbank except when they are to the last line
of the subbank (in which case they are in the next subbank).

Overall, increasing the branch misprediction latency results in
the least performance degradation, of around 3%. This can be at-
tributed to a reasonably accurate branch prediction strategy com-
bined with the frequency that the code switches between subbanks.
Assuming the subbank stays the same actually performs slightly
better than incorporating a simple predictor when the last line in
a subbank has been reached. Since a branch occurs roughly ev-
ery 6 or 7 instructions, and each cache line contains 8 instructions,
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Figure 11: I-cache energy saving : 4-Wide 64 RUU 32-
rows/subbank I-cache configuration.
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Figure 12: I-cache energy saving : 8-Wide 256 RUU 32-
rows/subbank I-cache configuration.
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then typically a branch will be found in each line. Because most
branches are taken, and most branch backwards, it follows that
when the last line in a cache subbank is reached, it is more proba-
ble that the next line will be in a same or previous subbank. Still,
both strategies decrease performance by about 5%, which is worse
than simply using the branch predictor. To reduce the misprediction
penalty further, it might be possible to extend the branch predictor
to predict both the next branch target, and the subbank for follow-
ing fetch following the branch target.

8.3 Regfile Dynamic Deactivation Results
To quantify energy saved by deactivating idle registers with sleep

transistors, we maintain a set of physical register tags which move
between a freelist, the register update units, and the rename table.
To ensure simulation accuracy, no micro-architectural changes are
made to the modeled machine. We note how many times every
physical register is read and written; how many cycles it spends
allocated but inactive; and how many cycles it is dead. When a reg-
ister is read more than once in a particular cycle, we approximate
the additional read energy by assuming it increases linearly. These
counts, together with the the energy, power, and process speed data
presented above, enable us to compute total register file energy
via its active and leakage components. Figure 14 shows an av-
erage leakage energy savings of 41.1% in the 70 nm process (as
with results in the previous section, we only measure savings in the
leakage energy of idle circuits). This corresponds to a 3.0-12.4%
savings in overall register file energy. The figure also shows total
energy savings for both optimistic and pessimistic assumptions of
future processes. Even in the most optimistic case, we see potential
for energy savings. While the overall savings is not as great as was
noted in the I-Cache, note that there is no performance penalty for
deactivating registers. In addition, register file sleep transistors save
energy in all process generations whereas the cache-specific DDFT
optimizations result in an energy penalty in the current 180 nm pro-
cess.

To further improve these savings, we are experimenting with var-
ious physical register allocation policies. Both LIFO (stack) and
FIFO (circular queue) may easily be applied to allocate a single
bank of registers as well as a banked register file. In the multi-
banked design, registers are assigned from a new bank only when
the previous bank is empty, allowing an entire bank to be deacti-
vated at times. Stack-based allocation has the advantage of keep-
ing some registers completely unused and others dead for very long
times. Due to long transition times, such registers see the biggest
savings from DDFT techniques. However, a stack limits the dead
time of frequently used registers while a circular queue distributes
non-negligible deadtime evenly across all registers which may lead
to a greater number of dead cycles overall.

Figure 15 shows the energy savings achieved by deactivating the
read ports. As with the cache subbank deactivation scheme, there
is a net energy increase for the 180 nm generation, but for the re-
maining process technologies, there is a net energy savings. In the
70 nm generation, 87.8-98.5% of the possible leakage energy is re-
moved on average, resulting in a total register file energy savings
of 9.3-47.8%.

As the processor’s issue width increases, a higher number of read
ports is needed. However, IPC does not scale linearly with issue
width, so in general a greater percentage of read ports will be idle.
Thus, we expect the energy savings to be greater for wider-issue
processors. Due to time and space constraints, results are presented
for the four-wide processor only.
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Figure 14: Register file energy saving by idle register deactiva-
tion : 4-Wide 64 RUU configuration.
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Figure 15: Register file energy saving by read port deactivation
: 4-Wide 64 RUU configuration.
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9. RELATED WORK
Butts and Sohi [3] presented a survey of static leakage reduction

techniques and a simple leakage power model, but this model does
not account for state-dependent leakage or dynamic deactivation
techniques. Hamzaoglu et al. [6] briefly describe a “precharge-as-
needed” scheme, apparently similar to our leakage-biased bitlines,
but do not describe the dynamic transient effects of the leakage
reduction or the use of this technique within a microprocessor.

The dynamically-resized instruction cache using gated-Vdd [13]
also reduces instruction cache leakage energy with dynamic deac-
tivation. This scheme is more complex than using leakage-biased
bitlines, and is limited to a direct-mapped instruction cache, but re-
duces leakage further as both storage cell and access port leakage
is cut off. The cache decay approach [29] is another dynamic de-
activation technique, that is complementary to the techniques we
present here.

10. CONCLUSION
Most leakage current is dissipated on critical paths, especially

after slower, low-leakage transistors are used on non-critical paths.
To reduce leakage energy further without impacting performance,
it is desirable to dynamically deactivate the fast transistors on the
critical path. This paper has shown that fine-grain leakage reduc-
tion techniques, whereby a small piece of a processor is placed in a
low-leakage state for a short amount of time, can yield significant
energy savings in future process technologies. To attain savings,
the circuit-level leakage reduction technique must have low tran-
sition energy and rapid wakeup times, and the microarchitecture
must be designed to force blocks to be idle for multiple cycles and
preferably to give early notice when the blocks are to be reawak-
ened.

We have presented three techniques that apply this principle and
have shown how they enable leakage current reductions in the con-
text of a wide superscalar processor. SRAM read path deactivation
saves over 40% of idle circuit leakage energy and over 20% of total
I-cache energy when using a 70 nm process. Dynamically deacti-
vating idle registers reduces regfile idle-circuit leakage energy by
41.1% and total regfile energy by 12.4%. Dynamically deactivat-
ing read ports within a multiported register file saves 87.8-98.5% of
idle circuit leakage energy and 9.3-47.8% of total energy depend-
ing on the prediction of the future process. We are investigating
further circuit techniques of this type for other components of a
superscalar microprocessor.
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