
Write Barrier Removal by Static Analysis

Karen Zee and Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
{kkz, rinard}@lcs.mit.edu

ABSTRACT
\,Ve present a set of static analyses for removing write barri
ers in programs that use generational garbage collection. To
our knowledge, these are the first analyses for this purpose.
Our Intmproceduml analysis uses a flow-sensitive pointer
analysis to locate variables that must point to the most re
cently allocated object, then eliminates write barriers on
stores to objects accessed via one of these variables. The
Callee Type Extension incorporates information about the
types of objects allocated in invoked methods, while the
Caller Context Extension incorporates information about
the most recently allocated object at call sites that invoke
the currently analyzed method. Results from our imple
mented system show that our Full Interproceduml analy
sis, which incorporates both extensions, can eliminate the
majority of the write barriers in most of the programs in
our benchmark set, producing modest performance improve
ments of up to 7% of the overall execution time. Moreover,
by dynamically instrumenting the executable, we are able to
show that for all but two of our nine benchmark programs,
our analysis is close to optimal in the sense that it eliminates
the write barriers for almost all store instructions observed
not to create a reference from an older object to a younger
object.

Keywords
Program analysis, pointer analysis, generational garbage col
lection, write barriers

1. INTRODUCTION
Generational garbage collectors have become the memory
management alternative of choice for many safe languages.
The basic idea behind generational collection is to segregate
objects into different generations based on their age. Gen-

'This research was supported in part by an NSF Fellowship,
DARPA Contract F33615-00-C-1692, NSF Grant CCR00-
86154, and NSF Grant CCR00-63513.

1

erations containing recently allocated objects are typically
collected more frequently than older generations; as young
objects age by surviving collections, the collector promotes
them into older generations. Generational collectors there
fore work well for programs that allocate many short-lived
objects and some long-lived objects - promoting long-lived
objects into older generations enables the garbage collector
to quickly scan the objects in younger generations.

Defore it scans a generation, the collector must locate all ref
erences into that generation from older generations. vVrite
barriers are the standard way to locate these references - at
every instruction that stores a heap reference into an object,
the compiler inserts code that updates an intergenerational
reference data structure. This data structure enables the
garbage collector to find all references from objects in older
generations to objects in younger generations and use these
references as roots during the collections of younger gen
erations. The write barrier overhead has traditionally been
accepted as part of the cost of using a generational collector.

This paper presents a set of new program analyses that en
ables the compiler to statically eliminate write barriers for
instructions that never create a reference from an object in
an older generation to an object in a younger generation.
The basic idea is to use pointer analysis to locate store in
structions that always write the most recently allocated ob
ject. Because this object is the youngest object, such a store
instruction will never create a reference from an older object
to a younger object. The write barrier for this instruction is
therefore superfluous and the transformation eliminates it. 1

\,Ve have implemented several analyses that use this basic
approach to write barrier elimination:

• Intraprocedural Analysis: This analysis analyzes
each method separately from all other methods. It
uses a flow-sensitive, intraprocedural pointer analysis
to find variables that must refer to the most recently
allocated object. At method entry, the analysis con
servatively assumes that no variable points to the most
recently allocated object. After each method invoca-

1This analysis assumes the most recently allocated object is
always allocated in the youngest generation. In some cases
it may be desirable to allocate large objects in older gener
ations. A straightforward extension of our analysis would
statically identify objects that might be allocated in older
generations and suppress write barrier elimination for stores
that write these objects.

tion site, the analysis also conservatively assumes that
no variable refers to the most recently allocated object.

• Callee Type Extension: This extension augments
the Intraprocedural analysis with information from in
voked methods. It finds variables that refer to the ob
ject most recently allocated within the currently an
alyzed method (the method-youngest object). It also
tracks the types of objects allocated by each invoked
method. For each program point, it extracts a pair
(V, T), where V is the set of variables that refer to the
method-youngest object and T is a set of the types of
objects potentially allocated by methods invoked since
the method-youngest object was allocated. If a store
instruction writes a reference to an object o of type C
into the method-youngest object, and C is not a super
type of any type in T, the transformation can elimi
nate the write barrier - the method-youngest object
is younger than the object o.

• Caller Context Extension: This extension augments
the Intraprocedural analysis with information about
the points-to information at call sites that may invoke
the currently analyzed method. If the receiver object
of the currently analyzed method is the most recently
allocated object at all possible call sites, the algorithm
can assume that the this variable refers to the most
recently allocated object at the entry point of the cur
rently analyzed method.

• Full Interprocedural This analysis combines the Callee
Type Extension and the Caller Context Extension to
obtain an analysis that uses both type information
from callees and points-to information from callers.

Our experimental results show that, for our set of bench
mark programs, the Full Interprocedural analysis is often
able to eliminate a substantial number of write barriers, pro
ducing modest overall performance improvements of up to
a 7% reduction in the total execution time. Moreover, by
instrumenting the benchmarks to dynamically observe the
age of the source and target objects at each store instruction,
we are able to show that in all but two of our nine bench
marks, the analysis is able to eliminate the write barriers
at virtually all of the store instructions that do not create
a reference from an older object to a younger object dur
ing the execution on the default input from the benchmark
suite. In other words, the analysis is basically optimal for
these benchmarks. Finally, this optimality requires informa
tion from both the calling context and the called methods.
Neither the Callee Type Extension nor the Caller Context
Extension by itself is able to eliminate a significant number
of write barriers.

This paper provides the following contributions:

• Write Barrier Removal: It identifies write barrier
removal as an effective means of improving the per
formance of programs that use generational garbage
collection.

• Analysis Algorithms: It presents several new static
analysis algorithms that enable the compiler to auto
matically remove unnecessary write barriers. To the

2

class TreeNode {
TreeNode left;
TreeNode right;
Integer depth;
static public void main(String[] arg) {

buildTree(10);
}

void linkDepth(int d) {
depth= new Integer(d);

}

void linkTree(TreeNode 1, TreeNode r, int d) {
1: left = 1;

linkDepth(d);
2: right= r;

}

static TreeNode buildTree(int d) {
if (d <= 0) return null;
TreeNode 1 buildTree(d-1);
TreeNode r = buildTree(d-1);
TreeNode t = new TreeNode();
t.linkTree(l, r, d);

}
}

return t;

Figure 1: Binary Tree Example

best of our knowledge, these are the first algorithms
to use program analysis to eliminate write barriers.

• Experimental Results: It presents a complete set of
experimental results that characterize effectiveness of
the analyses on a set of benchmark programs. These
results show that the Full Interprocedural analysis is
able to remove the majority of the write barriers for
most of the programs in our benchmark suite, produc
ing modest performance benefits of up to a 7% reduc
tion in the total execution time.

The remainder of this paper is structured as follows. Sec
tion 2 presents an example that illustrates how the algorithm
works and how it can be used to remove unnecessary write
barriers. Section 3 presents the analysis algorithms. \,Ve
discuss experimental results in Section 4, related work in
Section 5, and conclude in Section 6.

2. AN EXAMPLE
Figure 1 presents a binary tree construction example. In
addition to the left and right fields, which implement
the tree structure, each tree node also has a depth field
that refers to an Integer object containing the depth of
the subtree rooted at that node. In this example, the main
method invokes the buildTree method, which calls itself
recursively to create the left and right subtrees before creat
ing the root TreeNode. The linkTree method links the left
and right subtrees into the the current node, and invokes
the linkDepth method to allocate the Integer object that
holds the depth and link this new object into the tree.

\,Ve focus on the two store instructions generated from lines
1 and 2 in Figure 1; these store instructions link the left and

right subtrees into the receiver of the linkTree method. In
the absence of any information about the relative ages of
the three objects involved (the left tree node, the right tree
node, and the receiver), the implementation must conserva
tively generate write barriers at each store operation. Dut
in this particular program, these write barriers are super
fluous: the receiver object is always younger than the left
and right tree nodes. This program is an example of a com
mon pattern in many object-oriented programs in which the
program allocates a new object, then immediately invokes
a method to initialize the object. \>\Trite barriers are often
unnecessary for these assignments because the object being
initialized is often the most recently allocated object. 2

In our example, the analysis allows the compiler to omit
the unnecessary write barriers as follows. The analysis first
determines that, at all call sites that invoke the linkTree
method, the receiver object of linkTree is the most recently
allocated object. It then analyzes the linkTree method with
this information. Since no allocations occur between the en
try point of the linkTree method and store instruction at
line 1, the receiver object remains the most recently allo
cated object, so the write barrier at this store instruction
can be safely removed.

In between lines 1 and 2, the linkTree method invokes the
linkDepth method, which allocates a new Integer object
to hold the depth. After the call to linkDepth, the receiver
object is no longer the most recently allocated object. Dut
during the analysis of the linkTree method, the algorithm
tracks the types of the objects that each invoked method
may create. At line 2, the analysis records the fact that
the receiver referred to the most recently allocated object
when the linkTree method was invoked, that the linkTree
method itself has allocated no new objects so far, and that
the linkDepth method called by the linkTree method allo
cates only Integer objects. The store instruction from line
2 creates a reference from the receiver object to a TreeNode
object. Because TreeNode is not a superclass of Integer,
the referred TreeNode object must have existed when the
linkTree method started its execution. Because the re
ceiver was the most recently allocated object at that point,
the store instruction at line 2 creates a reference to an object
that is at least as old as the receiver. The write barrier at
line 2 is therefore superfluous and can be safely removed.

3. THE ANALYSIS
Our analysis has the following structure: it consists of a
purely intraprocedural framework, and two interprocedural
extensions. The first extension, which we call the Callee
Type Extension, incorporates information about called meth
ods. The second extension, which we call the Caller Con
text Extension, incorporates information about the calling
context. \>\Tith these two extensions, which can be applied
separately or in combination, we have a set of four analyses,
which are given in Table 2.

2Note that even for the common case of constructors that
initialize a recently allocated object, the receiver of the con
structor may not be the most recently allocated object -
object allocation and initialization are separate operations
in .Java bytecode, and other object allocations may occur
between when an object is allocated and when it is initial
ized.

3

Intraprocedural
Callee Only
Caller Only
Full Interprocedural

With Callee
Type Extension

No
Yes
No
Yes

With Caller
Context Extension

No
No
Yes
Yes

Figure 2: The Four Analyses

The remainder of this section is structured as follows. \Ve
present the analysis features in Section 3.1 and the program
representation in Section 3.2. In Section 3.3 we present the
Intraprocedural analysis. \Ve present the Callee Only analy
sis in Section 3.4, and the Caller Only analysis in Section 3.5.
In Section 3.6, we present the Full Interprocedural analysis.
Finally, in Section 3.7, we describe how the analysis results
are used to remove unnecessary write barriers.

3.1 Analysis features
Our analyses are flow-sensitive, forward dataflow analyses
that compute must points-to information at each progam
point. The precise nature of the computed dataflow facts
depends on the analysis. In general, the analyses work with
a set of variables V that must point to the object most
recently allocated by the current method, and optionally a
set of types T of objects allocated by invoked methods.

3.2 Program Representation
In the rest of this paper, we use v, v0 , v1, ... , to denote
local variables, m, m0 , m1, ... , to denote methods, and C, Co,
C1, ... , to denote types. The statements that are relevant to
our analyses are as follows: the object allocation statement
"v = NEW C," the move statement "v1 = v2," and the call
statement "v = CALL m(v1, . . . , vk)." In the given form,
the first parameter to the call, v1, points to the receiver
object if the method m is an instance method. 3

\Ve assume that a preceding stage of the compiler has con
structed a control flow graph for each method and a call
graph for the entire program. \Ve use entrym to denote the
entry point of the method m. For each statement st in the
program, PRED (st) is the set of predecessors of st in the
control flow graph. \Ve use •st to denote the program point
immediately before st, and st• to denote the program point
immediately after st. For each such program point p (of
the form •st or st•), we denote A(p) to be the information
computed by the analysis for that program point. \Ve use
CALLERS(m) to denote the set of call sites that may invoke
the method m.

3.3 The Intraprocedural Analysis
The simplest of our set of analyses is the Intraprocedural
analysis. It is a flow-sensitive, forward dataflow analysis that
generates, for each program point, the set of variables that
must point to the most recently allocated object, known as
the m-object. \Ve call a variable that points to the m-object
an m-variable.

The property lattice is P(Var) (the powerset of the set of

3In .Java, an instance method is the same as a non-static
method.

st

v = NEW C

[st](V)

{v}

{
VU{vi}
V \ {vi}

0

if V2 EV
if V2 (/_ V

any other assignment to v V \ {v}
other statements V

Figure 3: Transfer Functions for the Intraprocedural
Analysis

variables Var) with normal set inclusion as the ordering re
lation, where Var is the set of all program variables. The
meet operator used to combine dataflow facts at control-flow
merge points is the usual set intersection operator: n = n.

Figure 3 presents the transfer functions for the analysis. In
the case of an allocation statement "v = NEW C," the new
object clearly becomes the most recently allocated object.
Since v is the only variable pointing to this newly-allocated
object, the transfer function returns the singleton { v }. For
a call statement "v = CALL m2(v1, ... , vk)," the transfer
function returns 0, since in the absence of any interproce
dural information, the analysis must conservatively assume
that the called method may allocate any number or type of
objects. For a move statment "v1 = v,'' where the source of
the move, v2, is an m-variable, the destination of the move,
v1, becomes an m-variable. The transfer function therefore
returns the union of the current set of m-variables with the
singleton { v }. For a move statement where the source of the
move is not an m-variable, or for any other type of assign
ment (i.e., a load from a field or a static field), the destina
tion of the move may not be an m-variable after the move.
The transfer function therefore returns the current set of
m-variables less the destination variable. Other statements
leave the set of m-variables unchanged.

The analysis result satisfies the following equations:

A(•st)

A(ste)

{ ~{A(st'•) I st' E PRED(st)}

[st](A(•st))

if st = entrym
otherwise

The first equation states that the analysis result at the pro
gram point immediately before st is 0 if st is the entry
point of the method; otherwise, the result is the meet of
the analysis results for the program points immediately af
ter the predecessors of st. As we want to compute the set
of variables that definitely point to the most recently allo
cated object, we use the meet operator (set intersection).
The second equation states that the analysis result at the
program point immediately after st is obtained from apply
ing the transfer function for st to the analysis result at the
program point immediately before st.

The analysis starts with the set of m-variables initialized
to the empty set for the entry point of method and to the
full set of variables Var (the top element of our property
lattice) for all the other program points, and uses an iter
ative algorithm to compute the greatest fixed point of the
aforementioned equations under subset inclusion.

4

3.4 The Callee Only Analysis
The Callee Type Extension builds upon the framework of
the Intraprocedural analysis, and extends it by using in
formation about the types of objects allocated by invoked
methods.

This extension stems from the following observation. The
Intraprocedural analysis loses all information at call sites be
cause it must conservatively assume that the invoked method
may allocate any number or type of objects. The Callee
Type Extension allows us to retain information across a call
by computing summary information about the types of the
objects that the invoked methods may allocate.

To do so, the Callee Type Extension relaxes the notion of
the m-object. In the Intraprocedural analysis, the m-object
is simply the most recently allocated object. In the Callee
Type Extension, the m-object is the object most recently al
located by any statement in the currently analyzed method.
The analysis then computes, for each program point, a tu
ple (V, T) containing a variable set V and a type set T.
The variable set V contains the variables that point to the
m-object (the m-variables), and the type set T contains the
types of objects that may have been allocated by methods
invoked since the allocation of the m-object.

The property lattice is now

L = P(Var) x P(Types)

where Var is the set of all program variables and Types is the
set of all types used by the program. The ordering relation
on this lattice is

and the corresponding meet operator is

The top element is T = (Var, 0). This lattice is in fact
the cartesian product of the lattices (P(Var), <:;;;, U, n, Var, 0)
and (P(Types), 2, n, U, 0, Types). These two lattices have
different ordering relations because their elements have dif
ferent meanings: V E P(Var) is must information, while
T E P(Types) is may information.

Figure 4 presents the transfer functions for the Callee Only
analysis. Except for call statements, the transfer functions
treat the variable set component of the tuple in the same
way as in the Intraprocedural analysis. For call statements
of unanalyzable methods (for example, native methods), the
transfer function produces the (very) conservative approxi
mation (0, 0). For other call statements, the transfer func
tion returns the variable set unchanged, but adds to the type
set the types of objects that may be allocated during the call.
Due to dynamic dispatch, the method invoked at st may be
one of a set of methods, which we obtain from the call graph
using the auxiliary function CALLEES(st). To determine the
types of objects allocated by any particular method, we use
another auxiliary function ALLOCATED_TYPES. The set of
types that may be allocated during the call at st is simply
the union of the result of the ALLOCATED_TYPES function
applied to each component of the set CALLEES(st). The
only other transfer function that modifies the type set is the

st

v = NEW C

any other assignment to v
other statements

{
(0, 0)
(V', T')

where V'
T'

[st]((V, T))

({v},0)

{
(VU {v1 }, T) if v2 EV
(V\{v1},T) ifv2rf_V

if ,Ai\'ALYZABLE(st)
otherwise

V \ {v}
TU (LJ ALLOCATED_ TYPES(m))

mECALLEES(st)

(V \ {v}, T)
(V, T)

Figure 4: Transfer Functions for the Callee Only Analysis

allocation statement, which returns 0 as the second compo
nent of the tuple.

The CALLEES function can be obtained directly from the
program call graph, while the ALLOCATED_TYPES function
can be efficiently computed using a simple flow-insensitive
analysis that determines the least fixed point for the equa
tion given in Figure 5.

The analysis solves the dataflow equations in Figure 4 using
a standard work list algorithm. It starts with the entry point
of the method initialized to (0, 0) and all other program
points initialized to the top element (Var, 0). It computes
the greatest fixed point of the equations as the solution.

3.5 The Caller Only Analysis
The Caller Context Extension sterns from the observation
that the Intraprocedural analysis has no information about
the m-object at the entry point of the method. The Caller
Context Extension augments this analysis to determine if
the m-object is always the receiver of the currently analyzed
method. If so, it analyzes the method with the this variable
as an element of the set of variables V that must point to
the m-object at the entry point of the method.

\,Vith the Caller Context Extension, the property lattice,
associated ordering relation, and meet operator are the same
as for the Intraprocedural analysis. Figure 6 presents the
additional dataflow equation that defines the dataflow result
at the entry point of each method. The equation basically
states that if the receiver object of the method is the m
ob.feet at all call sites that may invoke the method, then
the this variable refers to the m-object at the start of the
method. Note that because class (static) methods have no
receiver, V is always 0 at the start of these methods. It is
straightforward to extend this treatment to handle call sites
in which an m-object is passed as a parameter other than
the receiver.

\,Vithin strongly-connected components of the call graph, the
analysis uses a fixed point algorithm to compute the greatest
fixed point of the combined interprocedural and intraproce
dural equations. It initializes the analysis with {this} at
each method entry point, Var at all other program points
within the strongly-connected component, then iterates to
a fixed point. Between strongly-connected components, the
algorithm simply propagates the caller context information
in a top-down fashion, with each strongly-connected corn-

5

ponent analyzed before any of the components that contain
methods that it may invoke.

3.6 The Full Interprocedural Analysis
The Full Interprocedural analysis combines the Callee Type
Extension and Caller Context Extension. The transfer func
tions are the same as for the Callee Only analysis, given in
Table 4. Likewise, the property lattice, associated ordering
relation and meet operator are the same as for the Callee
Only analysis. The analysis result at the entry point of the
method, however, is subject to the equation given in Fig
ure 7.

\,Vith this extension, the analysis will recognize that it can
use ({this}, 0) as the analysis result at the entry point
entrym of a method m if, at all call sites that may invoke
m, the receiver object of the method is the m-object and the
type set is 0. Note that if we expand our definition of the
safe method, we can additionally propagate type set infor
mation from the calling context into the called method.

Like the algorithm from the Caller Only analysis, the al
gorithm for the Full Interprocedural analysis uses a fixed
point algorithm within strongly-connected components and
propagates caller context information in a top-down fashion
between components. It initializes the analysis algorithm to
compute the greatest fixed point of the dataflow equations.

3. 7 How to Use the Analysis Results
It is easy to see how the results of the Intraprocedural anal
ysis can be used to remove unnecessary write barriers. Since
an m-variable must point to the most recently allocated ob
ject, the write barrier can be removed for any store to an
object pointed to by an m-variable, since the reference cre
ated must point from a younger object to an older one. The
results of the Caller Only analysis are used in the same way.

It is less obvious how the analysis results are used when the
Callee Type Extension is applied, since the results now in
clude a type set in addition to the variable set. Consider
a store of the form "v1 .f = v2," and the analysis result
(V, T) computed for the program point immediately before
the store. If v1 E V, then v1 must point to the m-object.
Any object allocated more recently than the m-object must
have type C such that C E T. If the actual (i.e., dynamic)
type of the object pointed to by v2 is not included in T,
then the object that v2 points to must be older than the
object that v1 points to. The write barrier associated with

u Auoc"ED_TYPES(m) ~ {Cl"v ~ NEW C" Em} U [

st; Em
st; is a CALL

(. LJ . ALLOCATED_TYPES(mj)) l
mj EC'ALLEES(sti)

Figure 5: Equation for the ALLOCATED_TYPES Function

{
:<his}

A(•entryJ = VJ

if m is an instance method and
V st E CALLERS(m), v1 EV

where V = A(•st) and
st is of the form "v = CALL m(v1, ... , vk)"

otherwise

Figure 6: Equation for the Entry Point of a Method m for the Caller Only Analysis

the store can therefore be removed if v1 E V, and if the
type of v2 is not an ancestor of any type in T. Note that
v2 Ff: T is not a sufficient condition since the static type of
v2 may be different from its dynamic type. The analysis
results are used in this way whenever the Callee Type Ex
tension is applied (i.e., for both the Callee Only and the Full
Interprocedural analyses).

4. EXPERIMENTAL RESULTS
\,Ve next present experimental results that characterize the
effectiveness of our optimization. In general, the Full In
terprocedural analysis is able to remove the majority of the
write barriers for most of our applications. For applications
that execute many write barriers per second, this optimiza
tion can deliver modest performance benefits of up to 7% of
the overall execution time. There is synergistic interaction
between the Callee Type Extension and the Caller Context
Extension; in general, the analysis must use both extensions
to remove a significant number of write barriers.

4.1 Methodology
\,Ve implemented all four of our write barrier elimination
analyses in the MIT Flex compiler system, an ahead-of-time
compiler for .Java programs written in .Java. This system,
including our implemented analyses, is available under the
GNU GPL atwww.flexc.lcs.mit.edu. The Flex runtime uses
a copying generational collector with two generations, the
nursery and the tenured generation. It uses remembered
sets to track pointers from the tenured generation into the
nursery [18, 1]. Our remembered set implementation uses a
statically allocated array to store the addresses of the cre
ated references. Each write barrier therefore executes a store
into the next free element of the array and increments the
pointer to that element. Dy manually tuning the size of the
array to the characteristics of our applications, we are able
to eliminate the arrav overflow check that would otherwise
be necessary for this

0

implementation.4

\,Ve present results for our analysis running on the .Java ver-

4Our write barriers are therefore somewhat more efficient
than they would be in a general system designed to execute
arbitrary programs with no a-priori information about the
behavior of the program.

6

sion of the Olden Benchmarks [6, 5]. This benchmark set
contains the following applications:

• bh: An implementation of the Dames-Hut N-body
solver [2].

• bisort: An implementation of bitonic sort [4].

• em3d: Models the propagation of electromagnetic waves
through objects in three dimensions [8].

• health: Simulates the health-care system m Colom
bia [15].

• mst: Computes the minimum spanning tree of a graph
using Bentley's algorithm [3].

• perimeter: Computes the total perimeter of a region
in a binary image represented by a quadtree [17].

• power: Maximizes the economic efficiency of a com
munity of power consumers [16].

• treeadd: Sums the values of the nodes in a binary
tree using a recursive depth-first traversal.

• tsp: Solves the traveling salesman problem [14].

• voronoi: Computes a Voronoi diagram for a random
set of points [9].

\,Ve do not include results for tsp because it uses a nonde
terministic, probabilistic algorithm, causing the number of
write barriers executed to be vastly different in each run of
the s,mie executable. In addition, for three of the bench
marks (bh, power, and treeadd) we modified the bench
marks to construct the MathVector, Leaf, and TreeNode
data structures, respectively, in a bottom-up instead of a
top-down manner.

\,Ve present results for the following compiler options:

• Baseline: No optimization, all writes to the heap have
associated write barriers.

{

({this},0)

A(•entryJ =

if m is an instance method and
V st E CALLERS(m), v1 EV, T = 0

where (V, T) = A(•st) and

(0, 0)
st is of the form "v = CALL m(v1, ... , vk)"

otherwise

Figure 7: Equation for the Entry Point of a Method m for the Full Interprocedural Analysis

• Intraprocedural: The lntraprocedural analysis de
scribed in Section 3.3.

• Callee Only: The analysis described in Section 3.4,
which uses information about the types of objects al
located in invoked methods.

• Caller Only: The analysis described in Section 3.5,
which uses information about the contexts in which
the method is invoked. Specifically, the analysis deter
mines if the receiver of the analyzed method is always
the most recently allocated object and, if so, exploits
this fact in the analysis of the method.

• Full Interprocedural: The analysis described in Sec
tion 3.6, which uses both information about the types
of objects allocated in invoked methods and the con
texts in which the analyzed method is invoked.

The Caller Only and Full lnterprocedural analyses view dy
namically dispatched calls as ,ANALYZABLE. The transfer
functions for these call sites conservatively set the analy
sis information to (0, 0). As explained below in Section 4.4,
including the allocation information from these call sites sig
nificantly increases the analysis times but provides no corre
sponding increase in the number of eliminated write barriers.

For each application and each of the analyses, we used the
MIT Flex compiler to generate two executables: an instru
mented executable that counts the number of executed write
barriers, and an uninstrumented executable without these
counts. For all versions except the Baseline version, the com
piler uses the analysis results to eliminate unnecessary write
barriers. We then ran these executables on a 900MHz Intel
Pentium-III CPU with 512MB of memory running RedHat
Linux 6.2. We used the default input parameters for the
Java version of the Olden benchmark set for each applica
tion (given in Table 13).

4.2 Eliminated Write Barriers
Figure 8 presents the percentage of write barriers that the
different analyses eliminated. There is a bar for each ver
sion of each application; this bar plots (1 - W /W B) x 100%
where W is the number of write barriers dynamically exe
cuted in the corresponding version of program and W B is
the number of write barriers executed in the Baseline ver
sion of the program. For bh, health, perimeter, and treeadd,
the Full lnterprocedural analysis eliminated over 80% of the
write barriers. It eliminated less than 20% only for bisort
and em3d. Note the synergistic interaction that occurs when
exploiting information from both the called methods and
the calling context. For all applications except health, the
Caller Only and Callee Only versions of the analysis are able

7

to eliminate very few write barriers. But when combined,
as in the Full lnterprocedural analysis, in many cases the
analysis is able to eliminate the vast majority of the write
barriers.

C:.,,
·- Q)

Q) -"'::,
"' u Q) Q)
~ >< uw
~ ~
Q) -~
Cl~
J9 ;
c: Ill
Q) Q)

~~
C. s:

100%

80%

60%

40%

20%

0%
.c t
-" 0

"' :0 i
a.

"O
"O

"' Q)

~

Full lnterprocedural
Caller Only

Callee Only
lntraprocedural

Figure 8: Percentage Decrease in Write Barriers Ex
ecuted

To evaluate the optimality of our analysis, we used the MIT
Flex compiler system to produce a version of each appli
cation in which each write instruction is instrumented to
determine if, during the current execution of the program,
that write instruction ever creates a reference from an older
object to a younger object. If the instruction ever creates
such a reference, the write barrier is definitely necessary, and
cannot be removed by any age-based algorithm whose goal
is to eliminate write barriers associated with instructions
that always create references from younger objects to older
objects. There are two possibilities if the store instruction
never creates a reference from an older object to a younger
object: 1) Regardless of the input, the store instruction will
never create a reference from an older object to a younger
object. In this case, the write barrier can be statically re
moved. 2) Even though the store instruction did not create
a reference from an older object to a younger object in the
current execution, it may do so in other executions for other
inputs. In this case, the write barrier cannot be statically
removed.

Figure 9 presents the results of these experiments. We present
one bar for each application and divide each bar into three
categories:

• Unremovable Write Barriers: The percentage of
executed write barriers from instructions that create a
reference from an older object to a younger object.

• Removed Write Barriers: The percentage of exe
cuted write barriers that the Full lnterprocedural anal-

~ 1.0
Q) .E 0.9
"' Ill 0.8
s
~ 0.7

" 0.6 .E
0.5 "' C:

>,
0.4 C

0
C:

0.3
0

0.2 'i:
0
C. 0.1 e

0.. 0.0
.c: t'. "O £ "' 2 oi "O
.0 0 <")

cii E ;;:: "O

"' E Q) "' i, Q)
Q) E 0 Q)
.c:

-~
C.

~
C.

Figure 9: Write Barrier Characterization

ysis eliminates.

• Potentially Removable: The rest of the write barri
ers, i.e., the percentage of executed write barriers that
the Full lnterprocedural analysis failed to eliminate,
but are from instructions that never create a reference
from an older object to a younger object when run on
our input set .

These results show that for all but two of our applications,
our analysis is almost optimal in the sense that it managed
to eliminate almost all of the write barriers that can be elim
inated by any age-based write barrier elimination scheme.

4.3 Execution Times
We ran each version of each application (without instrumen
tation) four t imes, measuring the execution time of each
run . The t imes were reproducible; see Figure 15 for the
raw execution time data and the standard deviations. Fig
ure 10 presents the mean execution time for each version of
each application, with this execution time normalized to the
mean execution time of the Baseline version. In general, the
benefits are rather modest, with the optimization producing
overall performance improvements of up to 7%. Six of the
applications obtain no significant benefit from the optimiza
tion, even though the analysis managed to remove the vast
majority of the write barriers in some of these applications.

Figure 11 presents the write barrier densities for the differ
ent versions of the different applications. The write barrier
density is simply the number of write barriers executed per
second, i.e., the number of executed write barriers divided by
the execution time of the program. These numbers clearly
show that to obtain significant benefits from write barrier
elimination, two things must occur: 1) The Baseline version
of the application must have a high write barrier density, and
2) The analysis must eliminate most of the write barriers.

4.4 Analysis Times
Figure 12 presents the analysis t imes for the different ap
plications and analyses. We include the Full Dynamic ln
terprocedural analysis in this table - this version of the
analysis includes callee allocated type information for call

8

I □ lntraprocedural ■ Callee Only □ Caller On ly □ Full lnterprocedural I

1.00

0.99
a,
E 0.98 i=
C: 0.97 0 .,

0.96 :::,

" a,
>< 0.95 w ,,

0.94 a,
.!:!
iij 0.93
E 0.92 0
z

0.91

0.90
.c: t'. ,, £ <ii oi Q) ,, ·5
.0 0 "' cii E ai ;;::

,,
C

<f) E "' e i, a, E 0 Q)
Q) .c: Cl.

~ 0
-~ >
Cl.

F igure 10 : N ormalized Execution T imes for Bench
mark P rograms

Benchmark

bh
bisort
em3d
health

mst
perimeter

power
treeadd
voronoi

Write Barrier Density
(write barriers/s)

187537
4769518

773375
624960

1031059
2053484

3286
955755
815118

F igu re 11: Writ e Barrier D ensit ies o f the Baseline
V ersion of the Bench mark P rograms

sites that (because of dynamic dispatch) have multiple po
tentially invoked methods. As the times indicate, including
the dynamically dispatched call sites significantly increases
the analysis t imes. Including these sites does not signifi
cantly improve the ability of the compiler to eliminate write
barriers, however, since the Full l nterprocedural analysis is
already nearly optimal for seven out of nine of our bench
mark programs.

4.5 Discussion
The experimental results show that, for many of our bench
mark programs, our analysis is able to remove a substantial
number of the write barriers. The performance improvement
from removing these write barriers depends on the inherent
write barrier density of the application - the larger the
write barrier density, the larger the performance improve
ment . While the performance impact of the optimization
will clearly vary based on the performance characteristics
of the particular execution platform, the optimization pro
duces modest performance increases on our platform.

By instrumenting the application to find store instructions

Analysis Time (s)
Full Full Dynamic

Benchmark Intraprocedural Callee Only Caller Only Interprocedural Interprocedural
bh 0.02 14 139 214 988

bisort 0.02 13 142 169 955
em3d 0.02 13 231 240 1051
health 0.02 13 194 218 945

mst 0.02 13 187 163 869
perimeter 0.02 13 262 141 911

power 0.02 14 209 216 943
treeadd 0.02 13 216 155 833

tsp 0.02 13 149 255 920
voronoi 0.02 14 253 186 963

Figure 12: Analysis Times for Different Analysis Versions

that create a reference from an older object to a younger
object, we are able to obtain a conservative upper bound
for the number of write barriers that any age-based write
barrier elimination algorithm would be able to eliminate.
Our results show that in all but two cases, our algorithm
achieves this upper bound.

\,Ve anticipate that future analyses and transformations will
focus on changing the object allocation order to expose addi
tional opportunities to eliminate write barriers. In general,
this may be a non-trivial task to automate, since it may in
volve hoisting allocations up several levels in the call graph
and even restructuring the application to change the alloca
tion strategy for an entire data structure.

5. RELATED WORK
There is a vast body of literature on different approaches to
write barriers for generational garbage collection. Compar
isons of some of these techniques can be found in [19, 12, 13].
Several researchers have investigated implementation tech
niques for efficient write barriers [7, 10, 11]; the goal is to
reduce the write barrier overhead. \,Ve view our techniques
as orthogonal and complementary: the goal of our analyses
is not to reduce the time required to execute a write barrier,
but to find superfluous write barriers and simply remove
them from the program. To the best of our knowledge, our
algorithms are the first to use program analysis to remove
these unnecessary write barriers.

6. CONCLUSION
\,Vrite barrier overhead has traditionally been an unavoid
able price that one pays to use generational garbage collec
tion. Dut as the results in this paper show, it is possible to
develop a relatively simple interprocedural algorithm that
can, in many cases, eliminate most of the write barriers in
the program. The key ideas are to use an intraprocedural
must points-to analysis to find variables that point to the
most recently allocated object, then extend the analysis with
information about the types of objects allocated in invoked
methods and information about the must points-to relation
ships in calling contexts. Incorporating these two kinds of
information produces an algorithm that can often effectively
eliminate virtually all of the unnecessary write barriers.

9

Benchmark
bh

bisort
em3d
health

mst
perimeter

power
treeadd
voronoi

Input Parameters Used
4096 bodies, 10 time steps

250000 numbers
2000 nodes, out-degree 100

5 levels, 500 time steps
1024 vertices

16 levels
10000 customers

20 levels
20000 points

Figure 13: Input Parameters Used on the Java Ver
sion of the Olden Benchmarks

7. ACKNOWLEDGEMENTS
C. Scott Ananian implemented the Flex compiler infrastruc
ture on which the analysis was implemented. Many thanks
to Alexandru Salcianu for his help in formalizing the analy
ses.

8. REFERENCES
[1] Andrew V..'. Appel. Simple generational collection and fast

allocation. Software Practice €1 Experience, 1989.

[2] .Josh Dames and Piet Hut. A hierarchical O(N log NJ force
calculation algorithm. Nature, 1986.

[:3] .Jon Louis Bentley. A parallel algorithm for constructing
minimum spanning trees. In Journal of Algorithms, 1980.

[4] Gianfranco Dilardi and Alexandru Nicolau. Adaptive
bitonic sorting: An optimal parallel algorithm for
shared-memory machines. SIA111 Journal on Computing,
18(2):216-228, 1989.

[5] Brendon Cahoon and Kathryn S. McKinley. Data flow
analysis for software prefetching linked data structures in
.Java. In Proceedings of the 10th International Conference
on Parallel Architectures and Compilation Techniques,
2001.

[6] Martin C. Carlisle and Anne Rogers. Software caching and
computation migration in Olden. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Practices
of Parallel Programming, 1995.

[7] Craig Chambers. The Design and Implementation of the
Self Compiler. an Optimizing Compiler for Object-Oriented
Languages. PhD thesis, Stanford University, 1992.

[8] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. van Eicken, and K. Yelick. Parallel
programming in Split-C. In Proceedings of the ACM/IEEE
Supercomputing Conference, 199:3.

Number of Times \>\Trite Barrier Executed
Full

Benchmark Baseline Intraprocedural Callee Only Caller Only Interprocedural
bh 8589477 8589477 8589477 8589477 1047474

bisort 3911959 3911959 3911959 3911959 3649763
em3d 836173 836173 836173 836173 820103
health 11971243 11971243 11971243 2105955 457489

mst 6544130 5373698 5373698 5373698 2229964
perimeter 3170579 3170579 3170579 3170579 453024

power 23556 23556 23556 23556 13504
treeadd 2097309 2097309 2097309 2087309 106
voronoi 8426852 8426852 8426852 8426852 6266806

Figure 14: Dynamic Write Barrier Counts

Average Execution Time (s) ± Standard Deviation (s)
Full

Benchmark Baseline Intraprocedural Callee Only Caller Only Interprocedural
bh 45.8 ± 0.3 45.6 ± 0.2 45.42 ± 0.03 45.43 ± 0.02 45.13 ± 0.08

bisort 0.820 ± 0.007 0.821 ± 0.003 0.818 ± 0.001 0.819 ± 0.001 0.823 ± 0.003
em3d 1.081 ± 0.005 1.078 ± 0.006 1.076 ± 0.003 1.074 ± 0.002 1.074 ± 0.004
health 19.16 ± 0.02 19.09 ± 0.04 19.06 ± 0.02 18.39 ± 0.04 18.30 ± 0.02

mst 6.35 ± 0.01 6.32 ± 0.05 6.28 ± 0.02 6.25 ± 0.01 6.10 ± 0.02
perimeter 1.54 ± 0.01 1.54 ± 0.01 1.539 ± 0.009 1.5336 ± 0.0005 1.43 ± 0.01

power 7.169 ± 0.006 7.14 ± 0.01 7.137 ± 0.009 7.140 ± 0.003 7.220 ± 0.006
treeadd 2.19 ± 0.02 2.182 ± 0.002 2.179 ± 0.002 2.177 ± 0.002 2.079 ± 0.002
voronoi 10.34 ± 0.01 10.316 ± 0.006 10.280 ± 0.004 10.299 ± 0.007 10.197 ± 0.005

Figure 15: Average Execution Times of Benchmark Programs

[9] L. Guibas and .J. Stolfi. General subdivisions and Voronoi
diagrams. A CM Transactions on Graphics, 1985.

[10] Urs Hiilzle. A fast write barrier for generational garbage
collectors. In OOPSLA '98 Garbage Collection Workshop,
199:3.

[11] Antony L. Hosking and Richard L. Hudson. Remembered
sets can also play cards. In OOPSLA '98 Garbage
Collection Workshop, 199:3.

[12] Antony L. Hosking, .J. Eliot I3. Moss, and Darko Stefanovic.
A comparative performance evaluation of write barriers
implementations. In Proceedings of the 6th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, 1992.

[1:3] Richard .Jones and Rafael Lins. Garbage Collection
Algorithms for Automatic Dynamic Memory Management .
.John vViley & Sons, 1996.

[14] Richard M. Karp. Probabilistic analysis of partitioning
algorithms for the traveling-salesman problem in the plane.
Mathematics of Operations Research, 1977.

[15] G. Lomow, .J. Cleary, I3. Unger, and D. vVest. A
performance study of Time vVarp. In Proceedings of the
SCS Multiconference on Distributed Simulation, pages
50-55, San Diego, California, 1988.

[16] Steve Lumetta, Liam Murphy, Xiaoye Li, David C. Culler,
and Ismail S. Khalil. Decentralized optimal power pricing:
the development of a parallel program. Proceedings of the
ACM/IEEE Supercomputing Conference, 199:3.

[17] Hanan Samet. Computing perimeters of regions in images
represented by quadtrees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1981.

[18] David M. Ungar. Generational scavenging: A
non-disruptive high performance storage reclamation
algorithm. In ACM SIGSOFT/SIGPLAN Practical
Programming Environments Conference, 1984.

[19] Benjamin Zorn. Barrier methods for garbage collection.
Technical Report CU-CS-494-90, 1990.

10

