
The aegis Processor Architecture for Tamper-Evident and

Tamper-Resistant Processing

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, Srinivas Devadas

MIT Laboratory for Computer Science

Cambridge, MA 02139, USA

{suh,declarke,gassend,marten,devadas}@mit.edu

Abstract

We describe the architecture of the aegis processor
which can be used to build computing systems secure
against both physical and software attacks. aegis

assumes that the operating system and all compo-
nents external to it, such as memory, are untrusted.
aegis provides tamper-evident, authenticated envi-
ronments in which any physical or software tamper-
ing by the adversary is guaranteed to be detected,
and private and authenticated, tamper-resistant envi-
ronments where additionally the adversary is unable
to obtain any information about software or data by
tampering with, or otherwise observing, system op-
eration. aegis enables many applications, such as
commercial grid computing, software licensing, and
digital rights management.

We present a new encryption/decryption method
that successfully hides a significant portion of en-
cryption/decryption latency, in comparison to a con-
ventional direct encryption scheme. Efficient mem-
ory encryption and integrity verification enable the
implementation of a secure computing system with
the only trusted component being a single-chip aegis

CPU.
Detailed simulation results indicate that the per-

formance overhead of security mechanisms in aegis

is reasonable.

1 Introduction and Motivation

It is becoming common to use a multitude of comput-
ing devices that are highly interconnected to access
public as well as private or sensitive data. On the one
hand, users desire open systems for ease-of-use and
interoperability, but on the other hand, they require
privacy mechanisms that restrict access to sensitive
data, and authentication mechanisms that ensure
data integrity. With the proliferation and increasing
usage of embedded, portable and wearable devices,
in addition to protecting against attacks from ma-

lignant software, we also have to be concerned with
physical attacks that corrupt data, discover private
data or violate copy-protection, as well as combina-
tions of physical and software attacks.

Given these trends, computing systems have to
achieve several goals in order to be secure. Systems
should provide tamper-evident environments where
software processes can run in an authenticated en-
vironment, such that any physical tampering or soft-
ware tampering by an adversary is guaranteed to
be detected. In private and authenticated tamper-
resistant environments1, an additional requirement
is that an adversary should be unable to obtain any
information about software and data within the en-
vironment by tampering with, or otherwise observ-
ing, system operation. Ideally, a computing platform
should provide a multiplicity of private and authen-
ticated environments wherein each process (or each
user) is protected from all other users and potential
adversaries.

In this paper we describe the aegis processor ar-
chitecture, which provides multiple mistrusting pro-
cesses with environments such as those described
above, assuming an untrusted operating system and
untrusted external memory. We believe that these
environments will enable a new set of applications.
For example, grid computing is a popular way of solv-
ing computationally-hard problems (e.g., SETI@home,
distributed.net) in a distributed manner on a huge
number of machines with different volunteer own-
ers connected via the Internet. However, maintain-
ing reliability in the presence of malicious volunteers
requires significant additional computation to check
the results produced by volunteers. The tamper-
evident and tamper-resistant environments provided
by aegis can enable commercial grid computing on
multitasking server farms, where computation power
can be sold with the guarantee of a compute envi-
ronment that processes data correctly and privately.

1In the remainder of this paper, we may refer to these envi-
ronments as private tamper-resistant environments for brevity.

1

Private tamper-resistant environments can also en-
able applications where a compute server is used as
a trusted third party. For example, a proprietary
algorithm owned by party A can be applied to an
proprietary instance of a problem owned by party
B to produce a certifiable result, ensuring that no
information regarding either the algorithm or the
problem instance is leaked, and ensuring that the
data was processed by the code correctly.2 Private
tamper-resistant environments also enable the copy-
protection of software and media content in a wide
range of computing systems in a manner that is re-
sistant to software or physical attacks. This will en-
able strong forms of software licensing and intellec-
tual property protection on portable as well as desk-
top computing systems.

The key architectural mechanisms required in
aegis are memory integrity verification, encryp-
tion/decryption of off-chip memory accesses and a se-
cure context manager. In this paper, we describe how
these mechanisms are integrated into the aegis mi-
croarchitecture, and evaluate the performance over-
heads of these mechanisms. We also present a
new encryption/decryption method that generates
one-time pads using the AES encryption algorithm,
successfully hiding a significant portion of encryp-
tion/decryption latency, and improving performance
relative to a conventional, direct encryption scheme.
A companion paper (also submitted to this confer-
ence) describes new and efficient integrity verifica-
tion mechanisms. Detailed simulation results indi-
cate that the performance overhead of security mech-
anisms in aegis is reasonable. These mechanisms
therefore enable the implementation of a secure com-
puting system with the only trusted component being
a single-chip aegis CPU.

We present our security model in Section 2. The
aegis processor architecture is described in Section
3. We describe how the architecture can be used for
a certified execution application and a simple Digital
Rights Management (DRM) application in Section
4. The integration of integrity verification techniques
described in [18] is the subject of Section 5. A new en-
cryption/decryption scheme is presented in Section 6.
Simulation experiments to evaluate the performance
overheads of the various mechanisms are presented
in Section 7. Related work is described in Section 8,
and we conclude the paper in Section 9.

2By correctly, we do not mean that the code does not have
any bugs, but that the code was not tampered with and was
correctly executed.

2 Secure Computing Model

We consider systems that are built around a process-
ing subsystem with external memory and peripher-
als. Figure 1 illustrates the model. The processor
is assumed to be trusted and protected from physi-
cal attack, so that its internal state cannot be tam-
pered with or observed directly by physical means.
The processor can contain secret information that
identifies it and allows it to communicate securely
with the outside world. This information could be
the secret part of a public key pair protected by a
tamper-sensing environment [17], or a Physical Ran-
dom Function [6].

In the model of Figure 1, external memory and pe-
ripherals are assumed to be untrusted. They may be
observed and tampered with at will by an adversary.
The operating system (OS) is also untrusted. Soft-
ware attacks by the operating system or from other
malicious software are therefore possible. The pro-
cessor is used in a multitasking environment, which
uses virtual memory, and runs mutually mistrusting
processes within tamper-evident or private tamper-
resistant environments. Given that the OS is un-
trusted, the processor needs support for secure con-
text switching.

The adversary can attack off-chip memory, and the
processor needs to check that it behaves like valid
memory. Memory behaves like valid memory if the
value the processor loads from a particular address is
the most recent value that it has stored to that ad-
dress. If the contents of the off-chip memory have
been altered by an adversary, the memory may not
behave correctly (like valid memory). We therefore
require memory integrity verification [18].

In the case of private tamper-resistant environ-
ments, we have to encrypt data values stored in off-
chip memory.

Thus, the three main processor mechanisms re-
quired for security are memory integrity verification,
secure context management, and memory encryp-
tion.

3 The aegis Processor Archi-
tecture

3.1 Tamper-Evident Architecture

This section describes a processor architecture that
a tamper-evident execution environment can be built
around. We first define the tamper-evident environ-
ment. Then, we discuss the protections required for
security and additional mechanisms required for use-
fulness. Finally, the secure processor architecture as-

2

Private Key

Secure Context
Manager

Registers
Cache

Encryption

Untrusted
Memory

Tamper-Evident Env.
Private Tamper-Resistant Env

Untrusted
O/S

Software
Attacks

Integrity
Verification

Processor

Software,
Physical
Attacks

Key
board

Display Sound
card

Disk

Physical Attacks

Figure 1: Our secure computing model.

suming an untrusted operating system is described.
The tamper-evident execution environment guar-

antees that any physical or software tampering that
can alter the behavior of a program is detected or
prevented. In other words, the integrity of a pro-
gram execution is guaranteed. Tamper-evident exe-
cution does not provide any privacy for code or data;
a private tamper-resistant environment is required for
privacy.

To enter tamper-evident execution mode, an ap-
plication program executes an enter tee (enter
tamper-evident environment) instruction, specifying
regions of code and data that should be verified. Sim-
ilarly, a program exits the tamper-evident mode using
an exit tee instruction.

A valid execution of a program on a general-
purpose time-shared processor can be guaranteed by
securing three potential sources of attacks: attacks
on initial state, state on a context switch, and on-
chip/off-chip memory.

• initial state: For a correct execution, the initial
state of a program must be properly set up. In
particular, the program’s code and data must be
unmodified, execution must start at the instruc-
tion that follows enter tee, and in some archi-
tectures, the stack pointer must not overlap with
the program’s code or data.

• state on a context switch: The program state
can be tampered with on a context switch when

control transfers to either an operating system or
another program. Therefore, the processor needs
to verify the program state whenever it resumes
execution.

• on-chip/off-chip memory: Finally, the integrity
of program instructions and data in the on-
chip/off-chip memories should be protected. On-
chip registers and caches are secure from physical
attacks but can be tampered with by malicious
or buggy software. Off-chip memory including
pages swapped out to the disk is vulnerable to
both physical and software attacks.

For the tamper-evident execution to be useful in
practice, a user should be able to trust the result
provided by a system when all communication chan-
nels from a processor are untrusted. In order to trust
the result, a user first needs to authenticate that the
system has a valid tamper-evident execution environ-
ment (system authentication). Then, the program ex-
ecuted by a processor should be verified to be the one
that is sent by a user (program authentication). Fi-
nally, a processor should have an authenticated com-
munication channel with a user (message authentica-
tion).

3.2 The Secure Context Manager

To have a tamper-evident environment without trust-
ing the operating system, the processor needs to keep

3

/

Vulnerability Solutions

Initial state PC dependent program hash,
Check the stack pointer

Context switching Store the hash of the state on an interrupt
and verify the hash on a resume

On-chip caches Tagged with secure process IDs (SPID)
Off-chip memory Virtual memory verified by a processor:

Memory integrity checking mechanisms

Capabilities Mechanisms

System authentication Processor: Private/public keys in a processor
Program authentication Hash of a program by a processor
Message authentication Out: Sign with a private key

In: Public keys in a program

Table 1: The implementation of the tamper-evident environment with an untrusted operating system.

track of the processes that it is running in tamper
evident mode, so that it can securely keep track of
their state. We introduce a secure context manager
(SCM), which is specialized hardware in the proces-
sor that ensures proper protection for each process.

The SCM maintains a table that holds various pro-
tection information for each process executing in the
tamper-evident mode. The table entry for a process
consists of a secure process ID (SPID), the program
hash (H(Prog)), the hash of registers (H(Regs)),
and a hash used for memory integrity verification.
We refer to the table as the SCM table. A new entry
is created by the enter tee instruction, and deleted
by the exit tee instruction. The operating system
can also delete an entry as it has to be able to kill
processes; this feature is not a security issue, as it
does not allow the operating system to impersonate
the application that it killed.

The SCM table can be entirely stored on the pro-
cessor as in [9], however, this severely restricts the
number of tamper-evident processes. Instead, we
store the table in a virtual memory space that is
managed by the operating system. Memory integrity
verification mechanisms prevent the operating system
from tampering with the data in the SCM table. An
on-chip cache similar in structure to a TLB is used
to store on-chip the SCM table entries for recent pro-
cesses.

3.2.1 Protection Mechanisms

To ensure a valid initial state, the SCM computes a
hash of essential program code and data (and checks
the initial stack pointer on architectures such as x86
to avoid a stack overflow if an interrupt occurs)
when the enter tee instruction is executed. The
instruction specifies the code and data segments to

be hashed for authentication purposes. The trusted
code segment is assumed to include the enter tee in-
struction. Therefore, if the entry point changes, the
program hash also changes and the user will be able
to detect the tampering.

Given that context switching is a rather compli-
cated task, we let the untrusted operating system
manage all aspects of multitasking. The processor
nevertheless has to verify that a tamper-evident pro-
cess’ state is correctly preserved when it is not execut-
ing. For that reason, the SCM stores all the process’
register values in the SCM table when the interrupt
occurs, and restores them at the end of the interrupt.

Finally, on-chip/off-chip memory integrity should
be checked by the processor. First, on-chip caches are
protected using tags. When a tamper-evident process
accesses instructions or data, the corresponding cache
block is tagged with the process’ SPID. For a cache
hit, a request is serviced with the existing cache block
only if the tag matches the active SPID. Otherwise,
the block is invalidated and reloaded from the off-
chip memory, which invokes integrity verification by
the off-chip mechanism.

For off-chip memory, including pages swapped to
disk, we use memory integrity verification algorithms
(see Section 5). The memory verification algorithms
are applied to each tamper-evident process’ virtual
memory space. Each tamper-evident process uses dif-
ferent hash trees or multiset hashes to protect its own
virtual memory space. Changes made by a different
process are detected as tampering. Because we are
protecting virtual memory, pages are protected both
when they are in RAM and when they are swapped
to disk.

The integrity verification mechanism described
above does not allow any sharing of memory space
among processes. In order for a process to read

4

data from another process without an error, we
provide an explicit instruction load nocheck. The
load nocheck instruction reads data without any in-
tegrity verification.

3.2.2 Authentication Mechanisms

To send authenticated messages to a user, a pro-
gram can use the sign msg instruction. It returns
{H(Prog), M}SKp, where H(Prog) is the hash of
the program that was computed when the enter tee

instruction was executed, and which was stored in
the SCM table. The processor only signs the mes-
sage if the program is in tamper-evident mode, and
always includes the program hash in the signature.
That way, when the user receives a message signed
by the processor’s secret key SKp, he knows that the
message is from a particular processor (system au-
thentication). The program hash is used to identify
the program that sent the message (program authen-
tication), and the message is also signed (message
authentication).

3.2.3 Performance Implication

Most mechanisms that are required for tamper-
evident processing have marginal overhead on the
processor performance. The enter tee instruction
and the sign msg instruction incur cryptographic
hash computation and private/public key signing,
respectively, which are rather expensive operations.
However, these instructions are only used very in-
frequently; the enter tee instruction is only for the
beginning of a program, and the sign msg instruc-
tion is only for exporting trusted results. Thus, the
overhead will be amortized over a long execution pe-
riod.

There are three mechanisms that are frequently
used at run-time: register protection on an interrupt,
on-chip cache tagging, and off-chip integrity verifica-
tion. Fortunately, the performance overhead of regis-
ter protection and cache tagging is negligible. Regis-
ter protection simply requires storing the register in
the SCM table, and the cache tags do not increase
cache access time although they occupy additional
on-chip storage.

The only significant performance overhead comes
from off-chip integrity verification. The integrity ver-
ification consumes additional memory bandwidth to
access meta-data such as hashes or time stamps on
every memory access, and may also cause additional
latency for the sign msg instruction. Our compan-
ion paper [18] indicates that the integrity verification
incurs less than 5% performance degradation in most
cases, and 15% degradation in the worst case when
the signing operation is infrequent. Therefore, even

if we include the amortized overhead of the start-up
and signing costs, our tamper-evident processing can
be done with less than 10% performance overhead in
most cases.

3.3 Private Tamper-Resistant Archi-
tecture

This section extends the tamper-evident processor ar-
chitecture presented in the previous section to sup-
port a private tamper-resistant execution. Additional
mechanisms are needed to ensure the privacy of regis-
ters, on-chip caches, and off-chip memory. Two new
instructions are needed to provide privacy:

• set key: Sets the key Kstatic that is used to de-
crypt static data. That is, data that is encrypted
in the program binary.

• store private: Private version of the regular
store instructions. If data is stored using the
store private instruction, it is to be encrypted
in memory.

3.3.1 Ensuring Privacy

The main mechanism that we use to protect the
privacy is symmetric key encryption. Whenever
data that needs to remain private goes off-chip,
the processor encrypts it. Fast symmetric encryp-
tion/decryption can be used because the data only
needs to be read by the processor that wrote it in
the first place. The processor holds a master key
KM , and each process uses a pair of keys, Kstatic

and Kdynamic. Kstatic is obtained from the set key

instruction, and Kdynamic is randomly chosen by the
processor when enter tee is called. The static key is
used to decrypt data from the program binary. The
dynamic key is used to encrypt and decrypt data that
is generated during the program’s execution. Sec-
tion 6 details the encryption mechanism. To deter-
mine when data should be decrypted using the static
key, the processor checks for the special encryption
time stamp value of zero. The keys for each pro-
cess are stored in the SCM table, the private parts
of which are protected by the master key KM when
they are stored in untrusted memory.

Simply encrypting memory does not provide com-
plete opacity of program operation. Much informa-
tion can be leaked via memory access patterns or
other covert channels [1]. Here we will assume that
programs are well-written and do not leak their se-
crets via those channels. Techniques exist (e.g., [10])
which can check programs for information leaks.

Whether data should be encrypted is determined
on a page granularity using an extra bit per page in

5

the page table. However, the page table is under the
control of the untrusted operating system, so it can-
not be relied on. Therefore, the program additionally
explicitly indicates whether it wants to use the store
or store private instruction when writing to mem-
ory. If the bit in the page table does not match the
store instruction, the secure process aborts. One bit
per cache block (the ’private bit’ is additionally used
to remember whether the block is private, to prevent
the operating system from changing the page table
entry between the store and the write-back. The bit
in the page table is used when reading data from
memory, to decide whether to decrypt it or not. If
the bit is tampered with, incorrect data gets put into
the cache, and the memory integrity checker aborts
the program. The encryption/decryption is done by a
hardware engine placed between the on-chip L2 cache
and the off-chip memory bus.

The privacy of registers and on-chip caches must
also be protected by the processor. Indeed, when
an interrupt occurs, the interrupt handler, which in
general cannot be trusted, must be prevented from
reading the private tamper-resistant process’ regis-
ter values. Therefore, once the register values are
stored in the SCM, the working copy of the registers
is cleared so that the interrupt handler cannot see
their previous values.

The privacy of on-chip caches is protected using the
same tags that are used for integrity verification. If
the private bit is set, the processor only allows access
to a block in the cache when the SPID of the block
matches the active SPID.

3.3.2 Secret Sharing

Programs in the tamper-evident architecture could
only use private/public key cryptography to authen-
ticate a message from a user, because privacy was
not provided. In the private tamper-resistant envi-
ronment, privacy is available, so programs can use
symmetric key cryptography to interact with the out-
side world.

To share a secret with a program, a user sends an
encrypted message EPKp(H(Prog), M). To decrypt
the message, the program uses a special decrypt msg

instruction. The processor decrypts the message
with its private key, and returns M only if H(Prog)
matches the current program hash. Therefore, the
message can only be read by the program with the
hash H(Prog) running on a valid private tamper-
resistant processor.

3.3.3 Performance Implication

The only additional run-time mechanism that is re-
quired for private tamper-resistant processing over

tamper-evident processing is off-chip memory encryp-
tion. Therefore, the performance overhead of our pri-
vate tamper-resistant architecture can be estimated
by considering only memory integrity verification and
memory encryption given that the memory integrity
verification is the only major performance overhead
in the tamper-evident architecture. We study this
performance impact quantitatively through detailed
simulations in Section 7.

4 Applications

We describe two representative applications enabled
by the aegis processor, Certified Execution and Dig-
ital Rights Management.

4.1 Certified Execution

Job Dispatcher Processor

Program,

Data,

PKm

�
Compute H(Program)

�
Verify signature�
Verify hash

SKp, PKp,

{PKp}SKm

�
Start: enter_tee:

Processor computes

H(Program)
�

Execute � Out�
Sign: sign_msg

�
Program

program

executes

�
{H(Program’), Out}SKp, {PKp}SKm

Figure 2: Certified execution for distributed compu-
tation.

A typical example of certified execution is grid
computing. At present, computation power is a com-
modity that undergoes massive waste. Most com-
puter users only use a fraction of their computer’s
processing power, though they use it in a bursty
way, which justifies the constant demand for higher
performance. A number of organizations, such as
SETI@home and distributed.net, are trying to tap
that wasted computing power to carry out large com-
putations in a highly distributed way. This style of
computation is unreliable as the person requesting
the computation has no way of knowing that it was
executed without any tampering. In order to obtain
correctness guarantees, redundant computations are
performed, resulting in a loss of efficiency. More-
over, to detect malicious volunteers, it is assumed
that these volunteers do not collude and are contin-
uously malicious [14].

Using a tamper-evident environment as described
in Section 3, a certificate can be produced that proves
that a specific computation was carried out on a spe-
cific processor chip. The person requesting the com-
putation can then rely on the trustworthiness of the
chip manufacturer who can vouch that he produced
the processor chip, instead of relying on the owner of
the chip.

6

=--= l --

Figure 2 outlines a protocol that could be used by a
job dispatcher to do certified execution of a program
on a remote computer. First (1) the job dispatcher
needs to know the hash of the program that it is send-
ing out. For simplicity, we assume that the program
encompasses all the necessary code and data for the
run. The program is sent to the secure processor
(2), which proceeds to run it. The program enters
tamper-resistant mode by using the enter tee in-
struction (3), at that time, a hash of the program gets
computed for later use. The program executes and
produces a result (4). The result gets concatenated
with the program’s hash and signed (5). The pro-
cessor returns the signed result to the job dispatcher
along with a certificate from the manufacturer that
proves certifies the processor’s public key as belong-
ing to a correct processor (6). The job dispatcher
checks the signature (7) and the program hash (8)
before accepting the program’s output is correct.

4.2 Application: Digital Rights Man-
agement

Content Provider Processor

Secure Player,

Content,

PKm

SKp, PKp,

{PKp}SKm

�
{H(Player’), M}SKp, {PKp}SKm�

Compute H(Player)

�
Verify signatures

M = nonce, desired content

�
Encrypt: Data, nonce

�
Start: enter_tee

Processor computes

H(Player’)

�
Get K: decrypt_msg

�
Decrypt Data, nonce

�
Decode and play

�
Encrypt and sign K

	
Secure Player

Analog

Output�
EK(Data,nonce),EPKp(K)

Figure 3: Digital rights management with private
tamper-resistant architecture.

Digital Rights Management (DRM) is a hot topic
since the advent of large scale sharing of copyrighted
media over the internet. We are starting to see ap-
plications that attempt to enforce simple DRM poli-
cies [16]. A typical scenario is for an individual to buy
a media file that can only be played once. This type of
policy is enforced by encrypting the the media file so
that it can only be decoded by an authorized reader,
which enforces the single use policy. Unfortunately,
a determined attacker can use debugging tools to get
the player to provide him with a decrypted version of
the media file, thus breaking the DRM scheme.

Figure 3 shows the main elements of a DRM imple-
mentation. The content provider develops a player
application, and identifies it by its program hash
(1). The player is then distributed to customers
(2). When customers run the player, it uses the
enter tee instruction to enter secure mode (3). The
player allows the user to pick the content he desires.

It then sends the choice to the content provider, along
with a nonce (4); the message is signed as in the
certified execution application so that the content
provider can check its authenticity (5). The con-
tent provider then encrypts the desired data and the
nonce (6) with a randomly selected key. The key is
encrypted with the processor’s public key (7). All
the encrypted data is then sent to the processor (8),
which decrypts it (9, 10). Once the nonce is checked
to make sure that stale data isn’t being replayed (we
assume that the data and nonce were encrypted in
a non mutable way, i.e., that it is hard replace the
nonce by a chosen nonce), the data can be decoded
(11) and played over an analog channel (12). As with
any DRM scheme, this scheme can be broken by tap-
ping into the final analog stream, but in that case,
the ripped data is of lower quality than the original
media file.

5 Memory Integrity Verifica-
tion Mechanisms

Memory integrity checking mechanisms [18] can be
added as a layer between the L2 cache and the en-
cryption mechanisms that we describe in section 6.
For example, a hash tree can be maintained with the
hashes computed over the plaintext data, the data
being encrypted when it is stored in memory (the
root of the tree is kept in the processor where it can
be used to verify the integrity of the processor’s op-
erations on the memory). Memory integrity checking
mechanisms check that the value the processor loads
from a particular address is the most recent value
that it stored to that address [18]. Thus, if an ad-
versary tampers with the data, he will be detected
by these mechanisms. The advantage of having the
integrity checking mechanisms protect the plaintext
data, instead of the encrypted data, is that the page
table does not have to be trusted (the page table de-
cides which blocks have to be encrypted/decrypted,
and which do not).

We assume that the processor speculatively uses
data fetched from off-chip memory while integrity
checking is performed in the background. Thus, in-
tegrity checking latency does not directly add to data
access latency seen by a processor. There are excep-
tions to this rule, however. In a tamper-evident envi-
ronment, the processor must wait for integrity check-
ing if there is an instruction that signs a message
(sign msg) to be exported outside of the processor.
In a private, tamper-resistant environment, besides
waiting if there is a signing instruction, the processor
must also wait for the integrity checking if there is
an instruction that stores plaintext data to off-chip

7

memory, for example, the store instruction.
For untrusted disk, as virtual memory is being pro-

tected, pages will already be protected by the mem-
ory checking when they are stored on disk. For Direct
Memory Access (DMA), an unprotected area for use
in DMA transfers can be set aside in virtual memory.
When the transfer is done, the process can authenti-
cate the data, using some scheme of its choosing, and
decrypt the data if necessary. If the data is verified
successfully, the process can then copy it to authen-
ticated memory.

6 Encryption Mechanisms

Encryption of off-chip memory is essential for provid-
ing privacy to programs. Without encryption, physi-
cal attackers can simply read confidential information
from off-chip memory. On the other hand, encrypt-
ing off-chip memory directly impacts the memory la-
tency because encrypted data can be used only after
decryption is done. This section discusses issues with
conventional encryption mechanisms and proposes a
new mechanism that can hide the encryption latency
by decoupling computations for decryption from off-
chip data accesses.

6.1 Advanced Encryption Standard
(AES)

For off-chip memory encryption, we use a symmetric
key encryption algorithm rather than public/private
key algorithms. In our case, it is easy to use symmet-
ric keys because the same processor performs both
encryption and decryption. Also, symmetric encryp-
tion algorithms are simpler to implement than public
key algorithms, they consume less power, and are sig-
nificantly faster.

The National Institute of Standards and Technol-
ogy (NIST) specifies Rijndael as the Advanced En-
cryption Standard (AES), which is an approved sym-
metric encryption algorithm [12]. AES is one of the
most advanced symmetric encryption algorithms in
terms of both security and performance. We base
our subsequent discussions on AES as a representa-
tive symmetric algorithm.

AES can process data blocks of 128 bits using ci-
pher keys with lengths of 128, 192, and 256 bits. The
critical path of one round consists of one S-box look-
up, two shifts, 6-7 XOR operations, and one 2-to-1
MUX. This critical path will take 2-4 ns with the cur-
rent 0.13µ technology depending on the implementa-
tion of the S-box look-up table. Therefore, encrypt-
ing or decrypting one 128-bit data block will take
about 20-64 ns depending on the implementation and
the key length.

When the difference in technology is considered,
this latency in good agreement with one custom ASIC
implementation of the Rijndael in 0.18µ technology
[8, 15]. It reported that the critical path of encryp-
tion is 6 ns and the critical path of key expansion
is 10 ns per round with 1.89 ns latency for the S-
box. Their key expansion is identical to two rounds
of the AES key expansion because they support 256-
bit data blocks. Therefore, the AES implementation
will take 5 ns per round for key expansion, which re-
sults in a 6 ns cycle per round, for a total of 60-96 ns,
depending on the number of rounds.

Given the gate counts in [15], a 128-bit block
encryption using AES without pipelining costs ap-
proximately 75,000 gates. If we implement AES
fully in parallel for the four 128-bit blocks in an L2
cache block to match off-chip memory bandwidth, the
module should be duplicated four times. Therefore,
the AES implementation will result in the order of
300,000 gates.

6.2 Direct Block Encryption

We encrypt and decrypt off-chip memory on a L2
cache block granularity because memory accesses are
carried out for each cache block. Encrypting multiple
cache blocks together will require accessing all those
multiple blocks for decrypting any part of them.

Cache Block B[1] B[2] B[3] B[4]

AESKey AES AES AES

EB[1] EB[2] EB[3] EB[4]Cipher Text

AES-1 AES-1Key AES-1

B[3]

AES-1

Encryption

Decryption

B[1] B[2] B[4]Cache Block

V

V

Figure 4: Encryption mechanism that directly en-
crypt cache blocks with the AES algorithm.

The most straightforward approach is to use a L2
cache block as an input data block of the AES al-
gorithm. For example, a 64-B cache block B is bro-
ken into 128-bit chunks (B[1], B[2], B[3] and B[4]),
and encrypted by the AES algorithm. Figure 4 illus-
trates this mechanism with Cipher Block Chaining
(CBC) mode. In this case the encrypted cache block
EB = (EB[1], EB[2], EB[3], EB[4]) is generated
by EB[i] = AESK(B[i] ⊕ EB[i-1]), where EB[0] is
an initial vector I. To prevent adversaries from com-
paring whether two cache blocks are the same or not,

8

I can be randomized and stored in off-chip memory
along with data.

This scheme perfectly serves our purpose in terms
of security, however, it has a major disadvantage for
performance. On a L2 cache miss, an encrypted cache
block is read from memory. Since decryption can only
start after reading data from off-chip memory, the
decryption latency is directly added to the memory
latency and delays the processing (See Figure 7 (a)).
For example, if the memory latency is 120 ns and the
decryption latency is 40 ns, the processor will see a
load latency of 160 ns.

6.3 One-Time-Pad Encryption

The main problem of the direct encryption scheme
is that most of the AES decryption latency cannot
be overlapped with the memory access. We there-
fore adopt a different encryption mechanism that de-
couples the AES computation from the correspond-
ing data access using one-time-pad encryption [2] and
time stamps.

AES-1 AES-1 AES-1 AES-1

EB[1] EB[2] EB[3] EB[4]

B[1] B[2] B[3] B[4]

128 bits128 bits 128 bits 128 bits

(V, Address,

Time Stamp, 0)

(V, Address,

Time Stamp, 1)

(V, Address

Time Stamp, 2)

(V, Address,

Time Stamp, 3)

Pad

GenerationKey

Encryption Pad

Cache Block B[1] B[2] B[3] B[4]

Encryption

Cipher Text

Decryption

Cache Block

Figure 5: Encryption mechanism that uses one-time-
pads from the AES algorithm with time stamps.

Figure 5 illustrates the scheme. A cache block, B,
consists of four chunks, B[1], B[2], B[3], and B[4].
Each chunk is XOR’ed with an encryption pad, and
the resulting encrypted cache block, EB, is stored in
off-chip memory. To decrypt the block, the encrypted
cache block, EB, is XOR’ed with the same encryption
pad.

To obtain encryption pads, the AES algorithm is
used with a time stamp. To generate an encryption
pad for the 128-bit chunk, B[i], of a cache block, B,
the processor decrypts (V, Address, TS, i) with a se-
cret key K.3 V is a fixed bit vector that makes the
input 128 bits, and can be randomly selected by the
processor at the start of program execution. TS is

3In general K is the dynamic key Kdynamic, except when
TS is zero, in which Kstatic is used (see section 3.3).

• For an L2 cache write-back
write-back-block(Address, B):

1. Increment Timer. TS = Timer.

2. For each 0 ≤ i ≤ 3

(a) OTP[i] = AES−1

K (V, Address, TS, i).

(b) EB[i] = B[i] ⊕ OTP[i].

3. Write TS and EB to in memory.

4. Cache TS. (Note: This step was used for the
simulations, but better performance can be ex-
pected if we omit it)

• For an L2 cache miss
read-block(Address):

1. Check the cache for the time stamp for
Address. If the time stamp is not in the
cache, read it from in memory. Denote the
time stamp as TS.

2. For each 0 ≤ i ≤ 3

(a) Start OTP[i] = AES−1

K (V, Address, TS,
i).

3. Read EB from Address in memory.

4. For each 0 ≤ i ≤ 3

(a) B[i] = EB[i] ⊕ OTP[i].

5. Cache TS and B.

Figure 6: One-Time-Pad Encryption Algorithm.

a time stamp that is the current value of Timer.
Timer is a counter that the processor increments
for every write-back of a cache block. The processor
maintains Timer on-chip where it cannot be tam-
pered with. TS is stored in the clear in the off-chip
memory with the cache block. As (Address, TS) is
unique for each write-back to memory, the encryption
pads are used only once.

Figure 6 details the scheme. write-back-block is
used to write dirty cache blocks to memory4. In steps
1 to 3, the Timer is increased, and the block is en-
crypted using a one-time pad. The time stamp used
to create the pad is cached in a special time stamp
cache in step 4.

read-block is used to read cache blocks from mem-
ory. The first step is to check if Address’s time stamp
is in the cache. If not, the time stamp is fetched from
memory. In either case, once the time stamp is re-
trieved, we immediately start with the generation of
the OTP using AES in step 2. The pad is generated

4If the block that is being evicted is clean, it is simply
evicted from the cache, and not written back to memory. This
avoids incrementing Timer in the processor and updating TS

in memory; this implies that we do not need to update EB by
decrypting and re-encrypting with a new time stamp.

9

while EB is fetched from memory in step 3. Once the
pad has been generated and EB has been retrieved
from memory, EB is decrypted in step 4. In step 5, EB
is cached in L2, and TS is cached in the special time
stamp cache. We are assuming that time stamps are
stored separately from data in memory, and that a
cache-block sized set of time stamps is loaded along
with TS. Therefore, when we cache TS, we are also
caching neighboring time stamps, which are likely to
be used in subsequent accesses because of spatial lo-
cality.

When the Timer reaches its maximum value, the
processor changes the secret key and re-encrypts
blocks in the memory. The re-encryption is very in-
frequent given an appropriate size for the time stamp
(32 bits for example), and given that the timer is only
incremented when dirty cache blocks are evicted from
the cache. We do not need to increment TS during re-
encryption, because Address is included as an argu-
ment to AES−K , thus guaranteeing the unicity of the
one-time-pads. This trick allows us to extend the pe-
riod between re-encryptions. During re-encryption,
the processor uses page table bits to determine which
data has to be re-encrypted.

Also, we note that, instead of a global Timer, we
could use per-address time stamps, TS. In this case,
TS for Address should be fetched from the cache and
incremented in step 1 of write-back-block. We need
a slightly more complicated cache replacement policy
for time stamps to ensure that TS for a cache block B

is not evicted from the cache before B is evicted from
the cache. An intermediate variant of this scheme is
to only apply this improved scheme when TS happens
to be present in the cache. For these schemes to work,
we have to ensure that the memory integrity checking
mechanisms detect any altering of the time stamps by
the adversary before the block gets written-back. The
advantage of per-address time stamps is that they can
be smaller in size.

Security of the Scheme The conventional one-
time-pad scheme is proven to be secure [2]. Therefore,
to prove the security of our scheme, we only need to
prove that it is infeasible for an adversary to find the
encryption pad for a cache block with a particular
time stamp. We assume that the adversary knows
V, Timer, and possibly many encryption pads for
different time stamps.

The security of our encryption pad can be easily
proven by the property of a good symmetric encryp-
tion algorithm. First, an adversary cannot find the
encryption pad given the input (V, Address, TS,

i) because it implies decrypting a cipher text. Also,
an adversary cannot find the encryption pad for one
time stamp from the encryption pad for another time

stamp because it breaks the non-malleability of the
encryption algorithm.

Hiding Latency Unlike the direct encryption
scheme, the data access and the AES computation
are independent in our new scheme. Therefore, the
encryption latency can be hidden from the processor
by overlapping AES computations with data accesses.

Time Stamp

(Cache, Predict)

Access

Memory

First

Chunk

Compute

a Pad

(AES)Last

Chunk

Decrypt

(AES)

Access

Memory

Compute

a Pad

(AES)

Access

Memory

Time

Stamp

XOR
XOR

First

Chunk

Last

Chunk

(a) (b) (c)

Figure 7: Impact of encryption mechanisms on mem-
ory latency.

Computing an encryption pad requires the time
stamp for the cache block. Without caching or spec-
ulation, the AES computation for decryption starts
after the time stamp comes back from the off-chip
memory as shown in Figure 7 (b). This computation
is overlapped with the following bus accesses for the
cache block. Once the entire cache block is read and
the pad computation is done, an XOR operation is
performed for decryption. Although we may not hide
the entire AES latency, our scheme can hide signif-
icant portion of the latency even in the worst case.
For example, if it takes 80 ns for readying the first
chunk and 40 ns for the rest of the chunks in a cache
block, we can hide 40 ns of the AES latency.

When overlapping the AES computation with data
bus accesses is not sufficient to hide the entire latency,
the time stamp can be cached on-chip or speculated
based on recent accesses. In this case, the AES com-
putation can start as soon as the memory access is
requested as in Figure 7 (c), and completely hides the
encryption latency.

The ability to hide the encryption latency obvi-
ously benefits the processor performance. It also en-
ables a less aggressive implementation of the AES
algorithm. If our scheme can always hide up to 40 ns
latency by overlapping with data accesses, the gener-
ation of the 4 one-time-pad blocks no longer has to
be done in parallel.

10

l

+1

BV

Time
Stamp
Cache

K1

K2

AES-1

Global
TS

L2

+

Memory Bus

Addr

K

O T Pad +

Figure 8: The implementation of the one-time-pad
encryption algorithm.

6.4 Implementation

Figure 8 illustrates the implementation of the one-
time-pad algorithm. The dotted lines differentiate
the data flow of cache misses from the flow of cache
write-backs. When there is a write-back, the global
time stamp is used to compute the one-time-pad, and
incremented. The one-time-pad is XOR’ed with the
evicted data, and written back to memory. The time
stamp is stored in a time stamp cache.

The same mechanisms are used to find the physi-
cal address of the corresponding time stamp for each
evicted cache block, as in memory integrity verifica-
tion. The L2 cache holds the virtual address of each
block. In the virtual memory space, time stamps are
laid out linearly starting at TSBase. Therefore, the
address of a time stamp can be simply computed by

T imeStampAddr = TSBase +
Addr

BL2
× BTS .

BL2 is the L2 block size, and BTS is the size of a time
stamp. Once the virtual address of a time stamp
is found, it is translated into the physical address
using the secure PID and the second TLB next to
the encryption module.

Similarly, when there is a cache miss for an en-
crypted block, the module reads a time stamp for
the time stamp cache and computes the one-time-
pad, which may access the memory on a miss. Then,
the data block is read from the memory, XOR’ed with
the pad, and returned to the L2 cache.

7 Experiments

This section evaluates the performance overhead of
our new encryption scheme and the aegis processor

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

Memory bus 200 MHz, 8-B wide (1.6 GB/s)
Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

AES latency 40 cycles
AES throughput 3.2 GB/s

Hash latency 160 cycles
Hash throughput 3.2 GB/s

Hash buffer 32
Hash length 128 bits
Time stamps 32 bits

Time stamp cache 32 64-B entry

Table 2: Architectural parameters used in simula-
tions.

architectures through detailed simulations.

7.1 Simulation Framework

Our simulation framework is based on the Sim-
pleScalar tool set [3]. The simulator models specula-
tive out-of-order processors. To model the memory
bandwidth usage more accurately, separate address
and data buses were implemented.

The architectural parameters used in the simula-
tions are shown in Table 2. SimpleScalar is config-
ured to execute Alpha binaries, and all benchmarks
are compiled on EV6 (21264) for peak performance.

To capture the characteristics of benchmarks in the
middle of computation, each benchmark is simulated
for 100 million instructions after skipping the first
1.5 billion instructions. In the simulations, we ignore
the initialization overhead of the integrity checking
schemes. Given the fact that benchmarks run for
a long time, the overhead should be negligible com-
pared to the steady-state performance.

For all the experiments in this section, nine
SPEC2000 CPU benchmarks [7] are used as represen-
tative applications: gcc, gzip, mcf, twolf, vortex,
vpr, applu, art, and swim.

7.2 Encryption Performance

Figure 9 compares the direct encryption mechanism
with the one-time-pad encryption mechanism. The
instructions per cycle (IPC) of each benchmark is
normalized by the IPC of standard processor with-
out encryption. In the exeriments, we simulated the
worst case when all instructions and data are en-
crypted in the memory. Both encryption mechanisms
degrade the processor performance by consuming ad-
ditional memory bandwidth for either time stamps or

11

I

-◊

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
iz

ed
 IP

C
Direct
OTP

Figure 9: The performance overhead of direct encryp-
tion and one-time-pad encryption.

initial vectors, and by delaying the data delivery for
decryption.

As shown in the figure, the memory encryption for
this configuration results in up to 25% performance
degradation for the one-time-pad encrytion, and 32%
degradation for the direct encryption. The one-time-
pad scheme outperforms the direct encryption by 6%
on average, and 12% in the best case.

As we increase the L2 cache size or L2 block size,
the overhead of encryption decreases (not shown in
the figure). For larger L2 cache, there are fewer off-
chip memory accesses , thus the decryption latency is
less important. Larger L2 blocks reduces the band-
width overhead of the encryption scheme.

7.2.1 Impact of the High Memory Band-

width

Our base configuration assumes the memory band-
width of 1.6GB/s, which corresponds to 5 processor
cycles per 8-B memory transfer in our case. Modern
microprocessors are beginning to have higher band-
width with the development of new memory and in-
terconnect technologies. Figure 10 shows the impact
of this higher memory bandwidth on the memory en-
cryption overhead.

With high bandwidth, the performance is more
sensitive to the memory latency because it is not lim-
ited by the bandwidth anymore. At the same time,
the memory latency without encryption decreases as
we can transfer a cache block faster, which means
that the decryption latency becomes more significant
in comparison to the original memory latency. On the
other hand, higher bandwidth mitigates the effect of
the bandwidth overhead for accessing time stamps
and initial vectors.

Direct encryption cannot hide any latency and the
impact of relatively increased decryption latency of-

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

1.6GB/s
4GB/s
8GB/s

(a) Direct Encryption

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

1.6GB/s
4GB/s
8GB/s

(b) One-Time-Pad Encryption

Figure 10: The impact of memory bandwidth on the
memory encryption overhead.

ten outweighs the mitigated bandwidth overhead. As
a result, the relative performance degradation due to
decryption is often larger for higher memory band-
width in the direct encryption scheme.

The one-time-pad encryption scheme benefits when
higher bandwidth is available. Because the time
stamp can often be found in the time stamp cache
(on average, the hit rate is 73% in our experiments),
the AES latency can be hidden by the long memory
access latency. Therefore, the overhead of the one-
time-pad scheme usually decreases as the memory
bandwidth increases. Thus, the advantage of the one-
time-pad scheme over the direct encryption is greater
as memory bandwidth increases. For example, the
one-time pad scheme is 20% better than the direct
scheme for swim in the 8 GB/s bandwidth case.

12

Iii I
- I~ I n "' -

In

11 n
.. .

. .

.. . .
.. .

-

,n . rn 1~ I
n ,n

.

.

··•

.

7.2.2 Impact of the AES Latency

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

20ns
40ns
80ns

(a) Direct Encryption

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

20ns
40ns
80ns

(b) One-Time-Pad Encryption

Figure 11: The impact of AES latency on the encryp-
tion overhead.

Our experiments assume 40ns latency of the AES
computation. However, more advanced VLSI tech-
nology can reduce this latency. On the other hand,
an implementation with longer latency is desirable
to reduce the logic overhead. Figure 11 illustrates
the impact of the AES computation latency on the
encryption overhead. Obviously, longer latency de-
grades the encryption performance in both schemes.

The performance of the direct encryption is a little
more sensitive to the AES latency as compared to the
one-time-pad encryption scheme. This is because a
portion of the latency is hidden in the latter scheme.

7.2.3 Re-Encryption Period

As noted in Section 6, the one-time-pad encryption
mechanism requires re-encrypting the memory when

the global time stamp reaches its maximum value.
Because the re-encryption operation is rather expen-
sive, the time stamp should be large enough to either
amortize the re-encryption overhead or avoid the re-
encryption itself.

Fortunately, the simulation results for the SPEC
benchmarks indicates that even 32-bit time stamps
are large enough. In our experiments, the proces-
sor writes back to memory every 4800 cycles when
averaged over all the benchmarks, and 131 cycles
in the worst case of swim. Given the maximum
time stamp size of 4 million, this indicates the re-
encryption needs to be done on every 5.35 hours (in
our 1 GHz processor) on average, or 35 minutes for
swim. For our benchmarks, the re-encryption takes
less than 300 million cycles even for swim that has
the largest working set. Therefore, the re-encryption
overhead is negligible in practice. If the 32-bit time
stamps are not large enough, the encryption period
can increased by having larger time stamps or per-
page time stamps.

7.3 Tamper-Evident Processing

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

Hash Tree
L−Hash

Figure 12: The performance overhead of tamper-
evident processing for the baseline configuration.

Tamper-evident processing only requires memory
integrity verification. In Section 3.2.3, we briefly
mentioned the overheads associated with the schemes
of [18]. We summarize performance results for mem-
ory integrity verification, and therefore, tamper-
evident processing, for the baseline configuration in
Figure 12.

There are two possible schemes for integrity veri-
fication: hash trees and log hashes. The hash tree
scheme (Hash Tree) verifies every memory access,
and the log hash scheme (L-Hash) verifies a sequence
of memory accesses just before a signing operation.

Assuming that the signing operation is infrequent,
the tamper-evident processing can be done with less
than 5% performance overhead for most cases, and

13

.... ;-;

Iii I
.

. .

. .

. .

. .

15% overhead in the worst case. On the other hand,
the hash tree scheme has less than 20% overhead for
most cases, and 50% overhead in the worst case.

7.4 Private Tamper-Resistant Pro-
cessing

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

L−Hash + OTP

Figure 13: The performance overhead of private
tamper-resistant processing for the baseline config-
uration.

Private tamper-resistant processing requires both
memory encryption and memory integrity verifica-
tion. As discussed in Section 3.3.3, the overhead of
these two mechanisms are the only major concerns
for our private tamper-resistant architecture. Other
mechanisms either are very infrequent or do not have
any performance overhead. Therefore, we estimated
the performance overhead of the private tamper-
resistant architecture by simulating both memory en-
cryption and memory integrity verification as shown
in Figure 13.

The figure demonstrate that the private tamper-
resistant processing can be done with 55% overhead
in the worst case (art), and less than 25% overhead in
most cases. We note that these numbers correspond
to the extreme case where all instructions and data
are encrypted.

8 Related Research

8.1 Secure Processors

Secure co-processors have been proposed (e.g., [19],
[17]) that encapsulate processing subsystems within a
tamper-sensing and tamper-responding environment
where one can run security-sensitive processes. A
processing subsystem contains the private key of a
public/private key pair [5] and use classical public
key cryptography algorithms such as RSA [13] to en-
able a wide variety of applications. To maintain per-
formance, the processing subsystems have invariably

been used as co-processors rather than primary pro-
cessors. Therefore, the primary processor also has
to be protected. The processing subsystems of these
processors typically assume that system software is
trusted.

The eXecute Only Memory (XOM) architecture
[9] is designed to run security requiring applications
in secure compartments from which data can es-
cape only on explicit request from the application.
Even the operating system cannot violate the secu-
rity model. However, XOM’s integrity mechanism is
vulnerable to replay attacks, which was also pointed
out in [16]. In particular, XOM will not notice if
only the first write to an address is ever actually per-
formed. XOM can be fixed by using memory integrity
verification to protect against replay attacks. In the
aegis architecture that assumes an untrusted operat-
ing system, we have drawn from XOM, notably, the
on-chip data tagging mechanism and the saving of
contexts. Our implementation of our context man-
ager is different because we use hash-trees to ver-
ify process state. This allows us to support a much
larger number of processes running in tamper-evident
and private tamper-resistant environments. We use
the log-hash-based integrity verification mechanism
of [18] for efficiency reasons. In this paper, we have
proposed a fast encryption scheme that meshes well
with the log-hash integrity verification scheme.

8.2 Cryptographic Processors

Conventional methods for encryption and decryption
of memory blocks use DES [11], Triple DES [11], AES
[12] to encrypt and decrypt memory blocks; this can
appreciably increase memory access latency for reads.
We have used one-time pads to hide virtually all the
decryption altency.

8.3 Systems

The Trusted Computing Platform Alliance (TCPA)
is an alliance led by Intel whose stated goal is ‘a
new computing platform for the next century that
will provide for improved trust in the PC platform.’
Palladium, Microsoft’s proposed security model [4],
is software that Microsoft says it plans to incorpo-
rate in future versions of Windows; it will build on
the TCPA hardware, and will add some extra fea-
tures. In Palladium, the nexus is a trusted security
kernel. Palladium protects software from software,
and it does not concern itself with physical attacks.

TCPA will implement DRM mechanisms but does
not implement certified execution or secure virtual
machines on its own. For this, it will probably rely
on Palladium. Palladium works by providing a way

14

I □
.... r---

.... r---
--

for applications to be executed in a secure context.
However, hardware attacks remain possible.

TCPA and Palladium can be enhanced, i.e., made
secure against a larger set of attacks, using the com-
ponents in the aegis processor, namely, integrity ver-
ification and memory encryption. With integrity ver-
ification, applications could get guarantees that their
data has not been modified, even by a physical at-
tacker. Encrypting data that is in main memory, not
just disk, will prevent physical attacks on the mem-
ory that attempt to read private data.

9 Conclusion

We have described the architecture of a processor
that can be used to build secure computing sys-
tems where the processor is the only trusted com-
ponent. This requires the integration of many ar-
chitectural mechanisms into a conventional architec-
ture, notably, memory integrity verification, memory
encryption/decryption, and secure context manage-
ment. Using simulation, we have shown that the per-
formance overhead of integrating such mechanisms
into a high-performance super-scalar processor is rea-
sonable. We believe this overhead can likely be re-
duced with further architectural innovation.

References

[1] J. Agat. Transforming out timing leaks. In 27th

ACM Principles of Programming Languages,
January 2000.

[2] R. J. Anderson. Security Engineering: A
Guide to Building Dependable Distributed Sys-
tems. John Wiley and Sons, 2001.

[3] D. Burger and T. M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical report, Uni-
versity of Wisconsin-Madison Computer Science
Department, 1997.

[4] A. Carroll, M. Juarez, J. Polk, and T. Leininger.
Microsoft “Palladium”: A Business Overview.
In Microsoft Content Security Business Unit,
August 2002.

[5] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Informa-
tion Theory, IT-22(6):644–654, 1976.

[6] B. Gassend, D. Clarke, M. van Dijk, and S. De-
vadas. Silicon Physical Random Functions . In
Proceedings of the Computer and Communica-
tion Security Conference, May 2002.

[7] J. L. Henning. SPEC CPU2000: Measuring
CPU performance in the new millennium. IEEE
Computer, July 2000.

[8] H. Kuo and I. M. Verbauwhede. Architectural
optimization for a 1.82 gb/s vlsi implementation
of the aes rijndael algorithm. In Cryptographic
Hardware and Embedded Systems 2001 (CHES
2001), LNCS 2162, 2001.

[9] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Archi-
tectural Support for Copy and Tamper Resistant
Software. In Proceedings of the 9th Int’l Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-
IX), pages 169–177, November 2000.

[10] A. C. Myers. JFlow: Practical Mostly-Static In-
formation Flow Control. In 26th ACM Principles
of Programming Languages, January 1999.

[11] NIST. FIPS PUB 46-3: Data Encryption Stan-
dard (DES), October 1999.

[12] N. I. of Science and Technology. FIPS PUB 197:
Advanced Encryption Standard (AES), Novem-
ber 2001.

[13] R. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of
the ACM, 21:120–126, 1978.

[14] L. F. G. Sarmenta. Volunteer Computing. PhD
thesis, Massachusetts Institute of Technology,
June 2001.

[15] P. R. Schaumont, H. Kuo, and I. M. Ver-
bauwhede. Unlocking the design secrets of a 2.29
gb/s rijndael processor. In Design Automation
Conference 2002, June 2002.

[16] W. Shapiro and R. Vingralek. How to Manage
Persistent State in DRM Systems. In Digital
Rights Management Workshop, pages 176–191,
2001.

[17] S. W. Smith and S. H. Weingart. Building
a High-Performance, Programmable Secure Co-
processor. In Computer Networks (Special Is-
sue on Computer Network Security), volume 31,
pages 831–860, April 1999.

[18] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk,
and S. Devadas. Hardware mechanisms for mem-
ory integrity checking. In Technical Report MIT-
LCS-TR-872, November 2002.

15

[19] B. S. Yee. Using Secure Coprocessors. PhD the-
sis, Carnegie Mellon University, 1994.

16

