
Compositionality for Probabilistic Automata

Nancy Lynch1·*, Roberto Segala2•**, and Frits Vaandrager3·* * *

1 MIT Laboratory for Computer Science
Cambridge, MA 02139, USA
lynch©theory. lcs. mi t. edu

2 Dipartimento di Informatica, Universita. di Verona
Strada Le Grazie 15, 37134 Verona, Italy

roberto.segala©univr .it
3 Nijmegen Institute for Computing and Information Sciences

University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

fvaan©cs .kun.nl

Abstract. We establish that on the domain of probabilistic automata,
the trace distribution preorder coincides with the simulation preorder.

1 Introduction

Probabilistic automata [9,10,12] constitute a mathematical framework for mo
deling and analyzing probabilistic systems, specifically, systems consisting of
asynchronously interacting components that may make nondeterministic and
probabilistic choices. They have been applied successfully to distributed algo
rithms [3,7,1] and practical communication protocols [13].

An important part of a system modeling framework is a notion of external
behavior of system components. Such a notion can be used to define imple
mentation and equivalence relationships between components. For example, the
external behavior of a nondeterministic automaton can be defined as its set of
traces- the sequences of external actions that arise during its executions [5].
Implementation and equivalence of nondeterministic automata can be defined
in terms of inclusion and equality of sets of traces. By analogy, Segala [9] has
proposed defining the external behavior of a probabilistic automaton as its set of
trace distributions, and defining implementation and equivalence in terms of in
clusion and equality of sets of trace distributions. Stoelinga and Vaandrager have
proposed a simple testing scenario for probabilistic automata, and have proved
that the equivalence notion induced by their scenario coincides with Segala's
trace distribution equivalence [14] .

* Supported by AFOSR contract #F49620-00-l-0097, NSF grant #CCR-0121277, and
DARPA/ AFOSR MURI #F49620-02-l-0325.

** Supported by MURST projects MEFISTO and CoVer.
* * * Supported by PROGRESS project TES4999: Verification of Hard and Softly Ti

med Systems (HaaST) and DFG/NWO bilateral cooperation project 600.050.011.01
Validation of Stochastic Systems (VOSS).

R. Amadio, D. Lugiez (Eds.) : CONCUR 2003, LNCS 2761. pp. 208-221, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Compositionality for Probabilistic Automata 209

However, a problem with these notions is that trace distribution inclusion
and equivalence are not compositional. To address this problem, Segala [9] de
fined more refined notions of implementation and equivalence. In particular, he
defined the trace distribution precongruence, S oc, as the coarsest precongruence
included in the trace distribution inclusion relation. This yields compositionality
by construction, but does not provide insight into the nature of the Soc relation.
Segala also provided a characterization of Soc in terms of the set of trace dis
tribut ions observable in a certain principal context-a rudimentary probabilistic
automaton that makes very limited nondeterministic and probabilistic choices.
However , this indirect characterization still does not provide much insight into
the structure of Svc, for example, it does not explain its branching structure.

In this paper, we provide an explicit characterization of the trace distribution
precongruence, Soc, for probabilistic automata, that completely explains its
branching structure. 1-amely, we show that Pi Soc P2 if and only if there
exists a weak probabilistic (forward) simulation relation from P 1 to P 2 . Moreover,
we provide a similar characterization of Soc for nondeterminist ic automata
in terms of the existence of a weak (non-probabilistic) simulation relation. It
was previously known that simulation relations are sound for Soc [9], for both
nondeterministic and probabilistic automata; we show the surprising fact that
they are also complete. That is, we show that, for both nondeterministic and
probabilistic automata, probabilistic contexts can observe all the distinctions
that can be expressed using simulation relations.

Sections 2 and 3 contain basic definitions and results for nondeterministic and
probabilistic automata, respectively, and for the preorders we consider. These
sections contain no new material, but recall definit ions and theorems from the
literature. For a more leisurely introduction see [5,12]. Sections 4 and 5 con
tain our characterization results for nondeterministic and probabilistic automata.
Section 6 contains our conclusions.

A full version of this paper, including all proofs, appears in [4].

2 Definitions for N ondetermin istic A utomata

A (nondeterministic) automaton is a tuple A = (Q, 1.j, E, H , D), where Q is a
set of states, 1.j E Q is a start state, E is a set of external actions, H is a set
of internal (hidden) actions with En H = 0, and D ~ Q x (Eu H) x Q is a
transition relation. We denote EUH by A and we refer to it as the set of actions.
We denote a transition (q,a,q') of D by q ➔ q' . We write q ➔ q' if q ➔ q' for
some a, and we write q ➔ if q ➔ q' for some q'. We assume finite branching: for
each state q the number of pairs (a, q') such that q ➔ q' is finite. We denote the
elements of an automaton A by QA, 1.jA , EA, HA , DA, AA, ➔ A· Often we use the
name A for a generic automaton; then we usually omit the subscripts, writing
simply Q, 1.j, E , H , D , A , and ➔. We extend this convention to allow indices
and primes as well; thus, the set of states of automaton A~ is denoted by Q~.

An execution fragment of an automaton A is a finite or infinite sequence
a = qoa1q1a2q2 · · · of alternating states and actions, starting with a state and,

210 N. Lynch, R. Segala, and F. Vaandrager

if the sequence is finite, ending in a state, where each (qi, ai+I, qiT1) ED. State
q0 , the first state of a:, is denoted by fstate(o:). If a: is a finite sequence, then the
last state of a: is denoted by lstate(o:). An execution is an execution fragment
whose first state is the start state ij. We let frags(A) denote the set of execution
fragments of A and frags* (A) the set of finite execution fragments. Similarly,
we let execs(A) denote the set of executions of A and execs*(A) the set of finite
executions.

Execution fragment a: is a prefix of execution fragment a:', denoted by a:$
a:', if sequence a: is a prefix of sequence a:'. Finite execution fragment o:1 =
qoa1q1 - - - akqk and execution fragment a2 can be concatenated if fstate (o:2) = qk.
In this case the concatenation of o:1 and 0:2, o:1 ,,.... 0:2, is the execution fragment
qoa1q1 - - - ak0:2- Given an execution fragment a: and a finite prefix a:' , a: 1> a:'
(read a: after a:') is defined to be the unique execution fragment a:" such that
a: = a:' ,,.... a" .

The trace of an execution fragment a: of an automaton A, written traceA(o:),
or just trace(o:) when A is clear from context. is the sequence obtained by re
stricting a to the set of external actions of A. For a set S of executions of A,
tracesA(S), or just traces(S) when A is clear from context, is the set of traces
of the executions in S. We say that /3 is a trace of A if there is an execution a:
of A with trace(o:) = /3. Let traces(A) denote the set of traces of A. We define
the trace preorder relation on automata as follows: A 1 $r A2 iff E 1 = E2 and
traces(A1) ~ traces(A2)- We use =T to denote the kernel of $y.

If a E A, then q ~ <I iff there exists an execution fragment a: such that
fstate(o:) = q, lstate(o:) = </, and trace(o:) = trace(a). (Here and elsewhere, we
abuse notation slightly by extending the trace function to arbitrary sequences.)
v"\ie call q ~ q' a weak transition. We let tr range over either transitions or weak
transitions. For a transition tr= (q,a,q'), we denote q by source(tr) and q' by
target(tr).

Composition: Automata A1 and A2 are compatible if H1 n A2 = A1 n H2 = 0.
The composition of compatible automata A 1 and A2, denoted by A 1 IIA2. is the
automaton A~ (Q1 x Q2, (q1,ii2), E1 U E2, H 1 U H2 , D) where D is the set of
triples (q,a,q') such that, for i E {1,2}:

a E Ai ⇒ (1ri(q), a, "i(q')) E Di and a</. Ai ⇒ 1ri(q) = 1ri(q').

Let a: be an execution fragment of A 1 IIA2, i E {1,2}. Then 7ri(o:), the ith

projection of a:, is the sequence obtained from a: by projecting each state onto its
i th component, and removing each action not in Ai together with its following
state. Sometimes we denote this projection by o:f A .

Proposition 1. Let A1 and A2 be automata, with A 1 $r A2- Then, for each
automaton C compatible with both A1 and A2, A1 IIC $r A2IIC.

Simulation Relations: Below we define two kinds of simulation relations: a for
ward simulation, which provides a step-by-step correspondence, and a weak for
ward simulation, which is insensitive to the occurrence of internal steps.

Compositionality for Probabilistic Automata 211

Namely, relation R <:;;; Q 1 x Q2 is a forward simulation (resp., weak forward
simulation) from A1 to A2 iff E 1 = E2 and both of the following hold:

1. i'i1 R i'i2-
2. If q1 R q2 and q1 ~ q~, then there exists q2 such that q2 ~ q2 (resp.,

q2 ¾ q2) and q~ R q2.

We write A1 '.'::.F A2 (resp., A1 5:wF A 2) when there is a forward simulation
(resp., a weak forward simulation) from A1 to A2.

Proposition 2. Let A1 and A2 be automata. Then:

1. If A1 '.'::. F A2 then A1 '.'::.wF A2.
2. If H1 = H2 = 0, then A1 5:F A2 iff A1 5:wF A2.
3. If A1 '.'::.wF A2 then A1 5:r A2.

Proof Standard; for instance, see [6] .

Tree-Structured A utomata: An automaton is tree-structured if each state can
be reached via a unique execution. The unfolding of automaton A, denoted by
Unfold(A), is the tree-structured automaton B obtained from A by unfolding
its transition graph into a t ree. Formally, QB = execs*(A), i'jr3 = i'iA , EB = EA,
Hs = HA , and DB = {(o,a,oaq) I (lstate(o),a,q) E DA}-

P roposition 3. A =F Unfold(A).

Proof See [6]. It is easy to check that the relation R, where o R q iff lstate(o) =
q, is a forward simulation from Unfold(A) to A and that the inverse relation of
Risa forward simulation from A to Unfold(A) .

Proposit ion 4 . A =T Unfold(A) .

Proof By Proposition 3 and Proposition 2, Parts 1 and 3.

3 D efinitions for Probabilistic Automata

A discrete probability measure over a set X is a measureµ on (X , 2X) such that
µ(X) = 1. A discrete sub-probability measure over Xis a measureµ on (X , 2X)
such that µ(X) 5: 1. We denote the set of discrete probability measures and
discrete sub-probability measures over X by Disc(X) and SubDisc(X), respec
tively. We denote the support of a discrete measure µ , i.e., the set of elements
that have non-zero measure, by supp(µ). We let J(q) denote the Dirac measure
for q, the discrete probability measure that assigns probability 1 to {q} . Finally,
if X is finite, then U (X) denotes the uniform distribution over X , the measure
that assigns probability 1/IX I to each element of X .

A probabilistic automaton (PA) is a tuple P = (Q,q, E, H , D), where all
components are exactly as for nondeterministic automata, except that D , the
transition relation, is a subset of Q x (E U H) x Disc(Q). We define A as before.

212 N. Lynch, R. Segala, and F. Vaandrager

We denote transition (q, a,µ) by q ~ µ. We assume finite branching: for each
state q the number of pairs (a,µ) such that q ~ µ is finite. Given a transition
tr= (q,a,µ) we denote q by source(tr) andµ by target(tr).

Thus, a probabilistic automaton differs from a nondeterministic automaton
in that a transition leads to a probability measure over states rather than to a
single state. A nondeterministic automaton is a special case of a probabilistic
automaton, where the last component of each transition is a Dirac measure. Con
versely, we can associate a nondeterministic automaton with each probabilistic
automaton by replacing transition relation D by the relation D' given by

(q, a, q') E D' ¢::> :lµ : (q, a,µ) E D I\ µ(q') > 0.

Using this correspondence, notions such as execution fragments and traces carry
over from nondeterministic automata to probabilistic automata.

A scheduler for a PA P is a function a : frags•(P) ➔ SubDisc(D) such
that tr E supp(a(a:)) implies source(tr) = lstate(a:) . A scheduler a is said to be
deterministic if for each finite execution fragment a:. either a(a:) (D) = 0 or else
a (a:) = o(tr) for some tr E D.

A scheduler a and a state q0 induce a measureµ on the a -field generated by
cones of execution fragments as follows. If a:= qoa1q1 · · · akqk is a fini te execution
fragment, then the cone of a: is defined by Ca = {a:' E frags(P) I a:~ a:'}. and
the measure of Ca is defined by

Standard measure theoretical arguments ensure that µ is well defined. We call the
measure µ a probabilistic execution fragment of P and we say that µ is generated
by a and q0 . We call state q0 the first state ofµ and denote it by /state(µ). If
/state(µ) is the start state q, thenµ is called a probabilistic execution.

The trace function is a measurable function from the a -field generated by
cones of execution fragments to the a-field generated by cones of traces. Gi
ven a probabilistic execution fragment µ, we define the trace distribution of µ,
tdist(µ), to be the image measure ofµ under trace . We denote the set of trace
distributions of probabilistic executions of a PA P by tdists(P) . We define the
trace distribution preorder relation on probabilistic automata by: P1 ~D P2 iff
E1 = E2 and tdists(Pi) ~ tdists(A) .

Combined Transitions: Let {q ~ µi}iEI be a collection of transitions of P, and
let {PdieJ be a collection of probabilities such that ~ iEJ Pi = L Then the triple
(q, a, ~iEJ Piµi) is called a combined transition of P .

Consider a probabilistic execution fragment µ that assigns probability 1 to
the set of all finite execution fragments with trace a. Let µ' be the measure
defined by µ'(q) = µ({ a: I lstate(a:) = q}). Then /state(µ)~µ' is a weak com
bined transition of P. Ifµ can be generated by a deterministic scheduler, then
/state(µ)~µ' is a weak transition.

Compositionality for P robabilistic Automata 213

Prop osit ion 5. Let { trdiEI be a collection of weak combined transitions of a
PA P , all starting in the same state q, and all labeled by the same action a,
and let {pi}iEI be probabilities such that 'E,iEI p; = 1. Then 'E,iEI Pitri is a weak
combined transition of P labeled by a.

Proof. See [9] or [11] .

Composition: Two PAs, A and P2, are compatible if H1 n A2 = A1 n H2 =
0. The composition of two compatible PAs A , A , denoted by A IIP2, is the
PA P = (Q1 x Q2, (q1, ii2), E1 U E2, H 1 U H2, D) where D is the set of triples
(q, a, µ 1 x µ2) such that, for i E {1, 2}:

a EA ⇒ (11i(q),a,µi) E Di and a¢ Ai ⇒ µi = 0(11i(q)) .

The trace distribution preorder is not preserved by composition [10,11] . Thus,
we define the trace distribution precongruence, ~DC, to be the coarsest precon
gruence included in the trace distribution preorder ~ v . This relation has a simple
characterization:

P roposition 6. Let A and P2 be PAs. Then A ~Dc A iff for every PAC
that is compatible with both A and P2, AIIC ~D P 2IIC.

Simulation Relations: The definitions of forward simulation and weak forward
simulation in Sect. 2 can be extended naturally to PAs [10]. However, Segala
has shown [8] that the resulting simulations are not complete for ~De, and
has defined new candidate simulations. These new simulations relate states to
probability distributions on states.

In order to define formally the new simulations we need three new con
cepts. First we show how to lift a relation between sets to a relation bet
ween distributions over sets [2]. Let R ~ X x Y. The lifting of R is a re
lation R' ~ Disc(X) x Disc(Y) such that µx R' µy iff there is a function
w : X x Y-+ [O, l] that satisfies:

l. If w(x,y) > 0 then x R y.
2. For each x EX, 'E,yEY w(x, y) = µx(x).
3. For each y E Y , 'E,xEX w(x, y) = µy(y).

We abuse notation and denote the lifting of a relation R by R as well.
Next we define a flattening operation that converts a measure µ contained

in Disc(Disc(X)) into a measure flatten(µ) in Disc(X). Namely, we define

flatten(µ)= L µ(p)p.
pE s1,pp(µ)

Finally, we lift the notion of a transition to a hyper-transition [11] that begins
and ends with a probability distributions over states. Thus, let P be a PA and
letµ E Disc(Q) . For each q E supp(µ), let q ~ µq be a combined transition of
P . Let µ' be 'E,qE supp(;,) µ(q)µq . Then µ ~ µ' is called a hyper-transition of P.

214 N. Lynch, R. Segala, and F. Vaandrager

Also, for each q E supp(µ), let q ¾ µq be a weak combined transition of P. Let
µ' be I:qEsupp() µ(q)µq · Thenµ¾µ' is called a weak hyper-transition of P.

We now detne simulations for probabilistic automata. A relation R ~ Q1 x
Disc(Q2) is a probabilistic forward simulation (resp., weak probabilistic forward
simulation) from PA P 1 to PA A iff E1 = E2 and both of the following hold:

1. q1 R o(q2).
2. For each pair q1, µ 2 such that q1 R µ2 and each transition q1 ..; µ~ there

exists a distribution µ2 E Disc(Disc(Q2)) such thatµ~ R µ2 and such that
µ2 ..; fiatten(µ2) (resp. , µ2 ¾ fiatten(µ 2)) is a hyper-transition (resp. , a
weak hyper-transition) of D2.

We write A SPF P2 (resp., A SwPP P2) whenever there is a probabilistic
forward simulation (resp., a weak probabilistic forward simulation) from P 1 to
P2. -ote that a forward simulation between nondeterministic automata is a
probabilistic forward simulation between the two automata viewed as PAs:

P roposition 7. Let A 1 and A2 be nondeterministic automata. Then:

1. A1 SP A2 implies A1 5,pp A2, and
2 . A1 SwF A2 implies A1 SwPP A2.

Proposition 8. Let A and P 2 be PAs. Then:

1. If Pi $pp P2 then Pi SwPF P2.
2 . If H1 = H2 = 1/J then A $ pp A iff A SwPF P2.
3. If Pi SwPF P2 then Pi SDc P2.

Proof. See [9].

Tree-Structured Probabilistic Automata: The unfolding of a probabilistic auto
maton P, denoted by Unfold(P), is the tree-structured probabilistic automa
ton Q obtained from P by unfolding its transition graph into a tree. Formally,
QQ = execs*(P), fo = qp, EQ = Ep, HQ = Hp , and DQ = {(a:,a,µ) I
3µ' (lstate(a:), a,µ') E Dp , Vqµ'(q) = µ(a:aq)}.

Proposition 9. P =PF Unfold(P).

Proof. It is easy to check that the relation R where a: R o(q) iff lstate(a:) = q is
a probabilistic forward simulation from Unfold(P) to P and that the "inverse"
of R is a probabilistic forward simulation from P to Unfold(P) .

Proposition 10. P =De Unfold(P) .

Proof. By Proposition 9, and Proposition 8, Parts 1 and 3.

Compositionality for Probabilistic Automata 215

4 Characterizat ions of <vc: Nondeterministic Automata

In this section, we prove our characterization theorems for Svc for nondeter
ministic automata: Theorem 1 characterizes SDc in terms of SF, for automata
without internal actions, and Theorem 2 characterizes Svc in terms of SwF,
for arbitrary nondeterministic automata. In each case, we prove the result first
for tree-structured automata and then extend it to the non-tree-structured case
via unfolding. T he interesting direction for these results is the completeness di
rection, showing that A1 Svc A2 implies the existence of a simulation relation
from A1 to A2.

Our proofs of completeness for nondeterministic automata use the simple cha
racterization in P roposition 6, applied to a special context for A1 that we call the
dual probabilistic automaton of A1 . Informally speaking, the dual probabilistic
automaton of a nondeterministic automaton A is a probabilistic automaton C
whose traces contain information about states and transitions of A. C's states
and start state are the same as those of A. For every state q of A, C has a
self-loop transition labeled by q. Also, if Tr is the (nonempty) set of transitions
from q in A, then from state q, C has a uniform transition labeled by ch to
{target(tr) I tr E Tr}.

D efinition 1. The dual probabilistic automaton of an automaton A is a PAC
such that

Qc = QA, Qc = QA,
Ee = QA u {ch}, H c = 0,
D c = { (q, ch, U ({ q' I q -+ A q'})) I q -+A} u { (q, q, q) I q E QA} .

Since C and A share no actions, C cannot ensure that its traces faithfully
emulate the behavior of A. However, an appropriate scheduler can synchronize
the two automata and ensure such an emulation.

4.1 Automata wit hout Internal A ctions

Vve first consider tree-structured automata.

Proposit ion 11. Let A 1 and A2 be tree-structured nondeterministic automata
without internal actions. such that A1 Svc A2 . Then A 1 SP A2 .

Proof. Assume that A1 Svc A2. Let C be the dual probabilistic automaton of
A 1 . Without loss of generality, we assume that the set of actions of C is disjoint
from those of A 1 and A2. This implies that C is compatible with both A 1 and
A2.

Consider the scheduler o-1 for A1 IIC that starts by scheduling the self-loop
transition labelled by the start state of C, leading to state (q1 , q1), which is of
the form (q, q) . Then o-1 repeats the following as long as q -+1 :

1. Schedule the ch transition of C, thus choosing a new state q' of A1 .

216 :--J. Lynch, R. Segala, and F. Vaandrager

2. Schedule (q, a, q') in A 1 . where a is uniquely determined by the selected state
q' (recall that A 1 is a tree).

3. Schedule the self-loop transition of C labeled by q', resulting in the state
(q', q'), which is again of the form (q, q).

Scheduler a-1 induces a trace distribution µy . Observe that µy satisfies the fol
lowing three properties, for all finite traces /3 and for all states q:

(1)

(2)

I:: µy(Cf3qchaq') = µr(Cf3qch) (3)

a,q'Jq~1q'

Since A1 5:.oc A 2, Proposition 6 implies that µr is also a trace distribution
of A2IIC. T hat is, there exists a probabilistic executionµ of A2 IIC, induced by
some scheduler a-2 , whose trace distribution is µr . Now we define a relation R:
q1 R q2 if and only if there exists an execution a of A 2 IIC such that:

1. lstate(a) = (q2, q1),
2. µ(C0J > 0, and
3. a-2 (a) assigns a non-zero probability to a transition labeled by q1 .

We claim that Risa forward simulation from A1 to A2 . For the start condition ,
we must show that q1 R q2 . Define execution a to be the trivial execution
consisting of the start state (ff.2, q1). Condit ions 1 and 2 are clearly satisfied. For
Condition 3, observe that, by Equation (1), µy(Cii,) = 1. Therefore, since there
are no internal actions in A 2 or C, the only action that can be scheduled initially
by 0-2 is q1 . Therefore, 0-2(0:) assigns probability 1 to the unique transition whose
label is q1 , as needed.

For the step condit ion, assume q1 R q2, and let q1 ~ 1 qi . By definition of
R, there exists a finite execution a of A2 IIC, with last state (q2 ,q1), such that
µ(C0) > 0 and a-2 (a) assigns a non-zero probability to a transition labeled by
q1 . Therefore, the sequence a' = aq1 (q2, q1) is an execution of A2 IIC such that
µ(C0 ,) > 0. Therefore, µr[C1391] > 0, where /3 = trace(a). Since q1 enables at
least one transition in A1 , Equation (2) implies that µr(C13q1 ch) = µy(C13qJ·
Then since A2 and C have no internal actions, a-2 must schedule action ch from
a' with probability 1.

Since action ch leads to state q~ of C with non-zero probability, which enables
only actions qi and ch, by Equation (3), 0-2 schedules at least one t ransition
labeled by a, followed by a transition labeled by q~. Observe that the transition
labeled by a is a transition of A2. Let (q2, a, q2) be such a transition. Then. the
sequence a"= a' ch(q2, qDa(q2, qD is an execution of A2IIC such that µ(Co") > 0
and such that 0-2(0:") assigns a non-zero probability to a transition labeled by
qi. This shows that q~ R q2 and completes the proof since we have found a state
q2 such that q2 ~2 q2 and q~ R q2.

Compositionality for Probabilistic Automata 217

Now we present our main result, for general (non-t ree-structured) nondeter
ministic automata without internal actions.

T heorem 1. Let A1, A2 be nondeterministic automata without internal ac
tions. Then A1 S:.vc A2 if and only if A1 5:.F A2.

Proof. First we prove soundness of forward simulations:

A 1 S:_p A2 ⇒ (Proposition 7, Part 1)
A1 S:_pp A2 ⇒ (Proposition 8, Part 1)
A1 5:.w PF A2 ⇒ (Proposition 8, Part 3)
A1 S:.vc A2 .

Completeness is established by:

A1 S:.vc A 2 ⇒ (Proposition 10)
Unfold(A 1) S:.vc A 1 S:.vc A2 S:.vc Unfold(A2) ⇒ (S:.vc is transitive)
Unfold(A 1) S:.vc Unfold (A2) ⇒ (Proposition 11)
Unfold(A1) S:_p Unfold(A2) ⇒ (Proposition 3)
A1 S:_p Unfold(A1) S:_p Unfold(A2) -:::;p A2 ⇒ (-:::;pis transitive)
A1 S:_p A2 .

4 .2 Automata wit h Internal Actions

Next we extend the results of Sect. 4.1 to automata that include internal actions.
The proofs are analogous to those in Sect. 4.1, and use the same dual probabilistic
automaton. The difference is that, in several places in the proof of Proposition 12,
we need to reason about multi-step extensions of executions instead of single-step
extensions. Again, we begin with tree-structured automata.

Prop osit ion 12. Let A1 ,. A 2 be tree-structured nondeterministic automata such
that A1 S:.vc A2- Then A1 5:.wF A2.

Proof. Assume that A1 S:.vc A2. Let C be the dual probabilistic automaton of
A1 , and define scheduler o-1 exactly as in the proof of Proposition 11. Equati
ons (1), (2) and (3) hold in this case as well. We redefine relation R: q1 R q2 iff
there exists an execution a: of A2 IIC such that:

1. lstate(ex) = (q2,q1),
2. µ(C0) > 0, and
3. there exists an execution fragment, a:', of A2 IIC, such that trace(a:') = q1

and µ(Co-o') > 0.

We claim that R is a weak forward simulation from A1 to A2 . For the start
condition, we show that q1 R q2 . Define a: to be the trivial execution consisting of
the start state (1J.2,q1); this clearly satisfies Conditions 1 and 2. For Condition 3,
observe that, by Equation (1), µr(Cq,) = 1. The inverse image under the trace
mapping for A2 IIC, of Cq" is a union of cones of the form C0 ,, where a:' is

218 N. Lynch, R. Segala, and F . Vaandrager

an execution of A2 IIC with trace q1 ; therefore, there exists such an cl with
µ (C0 _,) > 0. Since the first state of cl is (q2, iii), ex,.....ex, = ex'. Thus, µ (Co-o') > 0,
as needed.

For the step condition, assume q1 R Q2, and let q1 ~1 qi. By definition
of R , there exists a finite execution ex of A2IIC, with last state (q2, Qi), such
that µ(Ca)> 0 and there exists an execution fragment, ex', of A2IIC, such that
trace(o:') = q1 and µ(Ca-a')> 0. Let /3 = trace(ex); then trace(ex ,...._ex')= f3q1.
and so µr(C13q,) > 0. Since q1 enables at least one transition in A1, Equation (2)
implies that µr(C13q, ch) = µr(C13q1). Thus there exists an execution fragment
ex" of A2 IIC with trace ch such that µ(Ca-a'-o") > 0. Furthermore, since the
transition of C labeled by ch leads to state q~ with non-zero probability, we can
assume that the last state of ex" is of the form (q", ifi) for some state q".

Since µr(C13q,ch) > 0, Equation (3) applies. Furthermore, since from the last
state of ex" the only external actions of C that are enabled are ch and q~. there
exists an execution fragment ex111 with trace aifi (a is uniquely determined by q~
since A1 is tree-structured). such that µ(Ca-o:'-a"-a"') > 0.

Now we split ex"' into ext ,...._ ex2', where trace(ext) = a. Then the last state
of ex~' is of the form (q'", ifi). We claim that q~ R q"' . Indeed, the execu
tion ex,...._ ex',...._ ex" ,...._ ext ends with state (q'",qD (Condition 1) and satisfies
µ(Co:-a'-a"-at) > 0 (Condition 2). Furthermore. exr is au execution frag
ment that satisfies Condition 3.

It remains to show that q2 ~ q"'. For this, it suffices to observe that the
execution fragment (ex',...._ ex",...._ ex~')f A2 has t race a, first state q2, and last state
q"' .

Theorem 2. Let A1, A2 be nondeterministic automata. Then A1 $De A2 if
and only if A1 $wF A2.

Proof. Analogous to the proof of Theorem 1.

5 Characterizations of <De: Probabilistic Automata

Finally, we present our characterization theorems for $De for probabilistic auto
mata: Theorem 3 characterizes $oc in terms of $pp, for PAs without internal
actions, and Theorem 4 characterizes $oc in terms of $wPF, for arbitrary PAs.
Again, we give the results first for tree-structured automata and extend them
by unfolding.

Our proofs of completeness for PAs are analogous to those for nondetermi
nistic automata. We define a new kind of dual probabilistic automaton C for a
PA P , which is slightly different from the one for nondeterministic automata.
The main differences are that the new C keeps track, in its state, of transitions
as well as states of the given PAP. and that the new Chas separate transitions
representing nondeterministic and probabilistic choices within P. Specifically,
the states of C include a distinguished start state, all the states of P, and all
the transitions of P. C has a special transition from its own start state iic to

Composit ionality for Probabilistic Automata 219

the start state of P, ij_p , labeled by ij_p . Also, from every state q of P, C has
a uniform transit ion labeled by ch to the set of transitions of P that start in
state q. Finally, for every transition tr of P, and every state q in the support of
target(tr), C has a transition labeled by q from tr to q.

Definition 2 . The dual probabilistic automaton of a PAP is a PAC such that

- Qe = {qc} U Qp U Dp,
- Ee= Qp u {ch}, He= 0,
- De= { (if.e,if.p,if.p) }u

{(q, ch,U({tr E Dp I source(tr) = q})) I q E Qp }u
{(tr,q,q) I tr E Dp,q E supp(target(tr))}.

Proposit ion 13. Let A, P2 be tree-structured probabilistic automata without
internal actions, such that A Svc P2. Then A SPF P2.

Proof. (Sketch:) Assume that A Svc P2. Let C be the dual probabilistic au
tomaton of A . Consider the scheduler a-1 for A IIC that starts by scheduling
the transition of C from the start state of C to the start state of P 1 , leading to
state (ij_1 , ij_1), which is of the form (q, q) . Then a-1 repeats t he following as long
as q ➔1 :

1. Schedule the ch transition of C, thus choosing a transition tr of P1 .

2. Schedule transition tr of P 1 , leading P 1 to a new state q' .
3. Schedule the t ransition of C labeled by the state q', resulting in the state

(q',q'), which is again of the form (q,q) .

Scheduler a-1 induces a trace distribution µr. Since P1 Svc P2 , Proposition 6
implies that µr is also a trace distribution of A IIC. That is, there exists a
probabilistic execution µ of P2 IIC, induced by some scheduler a-2, whose trace
distribution is µr.

For each state q1 in Q1 , let 8q1 be the set of finite executions of A2 IIC whose
last transition is labeled by q1 . For each state q2 of P2, let 8q

1
,q

2
be the set of

finite executions in 8q1 whose last state is the pair (q2 ,q1) . Now define relation
R: q1 R µ2 iff for each state q2 of Q2,

()
LaE8q

1
,q

2
µ(Ca)

µ2 q2 = '°'
L.,aE8q

1
µ(Ca)

(4)

We claim that R isa probabilistic forward simulation from A to A. The proof
of this claim appears in [4].

Theorem 3. Let A, P2 be probabilistic automata without internal actions.
Then A Snc P2 if and only if A SP P P2.

Proposit ion 14. Let P1 , P2 be tree-structured probabilistic automata such that
A Svc P2. Then A SwPP P2.

220 N. Lynch, R. Segala, and F. Vaandrager

Proof. (Sketch:) We use the same dual automaton C. Define scheduler a 1 and
relation R exactly as in the proof of Proposition 13. -ow Risa weak probabilistic
forward simulation, as shown in [4] .

Theorem 4. Let Pi, P2 be probabilistic automata. Then Pi ~ DC P2 if and only
if Pi ~wPFA-

6 Concluding Remarks

\Ve have characterized the trace distribut ion precongruence for nondeterministic
and probabilistic automata, with and without internal actions, in terms of four
kinds of simulation relations, ~P, ~wF, ~PF, and ~wPP· In particular, this
shows that probabilistic contexts are capable of observing all the distinctions
that can be expressed using these simulation relations. Some technical improve
ments are possible. For example, our finite branching restriction can be relaxed
to countable branching, simply by replacing uniform distributions in the dual
automata by other distributions such as exponential distributions.

For future work, it would be interesting to try to restrict the class of sche
dulers used for defining the t race distribution precongruence, so that fewer di
stinctions are observable by probabilistic contexts. It remains to define such
restrictions and to provide explicit chacterizations of the resulting new notions
of ~DC, for instance in terms of button pushing scenarios.

References

1. S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Master's
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, May 1994. Available as Technical Report MIT / LCS/ TR-
632.

2. K.G. Larsen B. Jonsson. Specification and refinement of probabilistic processes.
In Proceedings 6th Annual Symposium on Logic in Computer Science, Amsterdam,
pages 266- 277. IEEE Press, 1991.

3. N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized dis
tributed algorithms. In Proceedings of the 13th Annual ACM Symposium on the
Principles of Distributed Computing, pages 314- 323, Los Angeles, CA, August
1994.

4. N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for probabilistic
automata. Technical Report MIT-LCS-TR-907, MIT, Laboratory for Computer
Science, 2003.

5. -.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219-246, September 1989.

6. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Untimed
systems. Information and Computation, 121(2):214- 233, September 1995.

7. A. Pogosyants, R. Segala, and N.A. Lynch. Verification of the randomized con
sensus algorithm of Aspnes and Herlihy: a case study. Distributed Computing,
13(3):155-186, 2000.

Compositionality for Probabilistic Automata 221

8. R. Segala. Compositional trace-based semantics for probabilistic automata. In
Proc. CONCUR'95, volume 962 of Lecture Notes in Computer Science, pages 234-
248, 1995.

9. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sy
stems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1995. Available as Technical Report
MIT / LCS/ TR-676.

10. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250 273, 1995.

11. M.I.A. Stoelinga. Alea jacta est: Verification of Probabilistic, Real-Time and Pa
rametric Systems. PhD thesis, University of Nijmegen, April 2002.

12. M.I.A. Stoelinga. An introduction to probabilistic automata. Bulletin of the Eu
ropean Association for Theoretical Computer Science, 78:176- 198, October 2002.

13. M.l.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In J .-P.
Katoen, editor, Proceedings 5th International AMAST Workshop on Formal Me
thods for Real-Time and Probabilistic Systems, Bamberg, Germany, volume 1601
of Lecture Notes in Computer Science, pages 53- 74. Springer-Verlag, 1999.

14. YI .I.A. Stoelinga and F.W. Vaandrager. A testing scenario for probabilistic auto
mata. In J.C.M. Baeten, J.K. Lenstra, J . Parrow, and G.J. Woeginger, editors,
Proceedings 30th !GALP, volume 2719 of Lecture Notes in Computer Science, pages
407- 418. Springer-Verlag, 2003.

