OPTIMAL QUASI-STATIC ROUTING FOR VIRTUAL CIRCUIT NETWORKS
SUBJECTED TO STOCHASTIC INPUTS

by
Wei Kang Tsail

S.B. Massachusetts Institute of Technology
(1979)

S.M. Massachusetts Institute of Technology
(1982)

E.E. Massachusetts Institute of Technology
(1982)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1986

(©Massachusetts Institute of Technology 1986

Signature of Author VA

Department of Electrical Engineering and Computer Science
June, 2, 1986

Certified by P,
Dimitri P. Bertsekas
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

OPTIMAL QUASI-STATIC ROUTING FOR VIRTUAL CIRCUIT NETWORKS
SUBJECTED TO STOCHASTIC INPUTS

by
Wei Kang Tsai

Submitted to the Department of Electrical Engineering and Computer Science on June 2,
1986 in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

This research evaluates the performances of two classes of quasi-static routing meth-
ods for virtual circuit data networks—adaptive shortest path and gradient projection-in a
stochastic asynchronous environment. The routing models take into account asynchronous
updates, delays in forwarding control messages, flow transients and violation of the quasi-
static load assumption. The congestion measure assumed is a convex increasing separable
cost function of total link flows. The optimal cost is the minimal cost obtainable when the
load equals its long term average.

A deterministic example which shows that shortest path routing with link length
functions taking values from a discrete set does not converge to a long-term optimal routing
is presented.

For the gradient projection routing method with randomized path assignment dur-
ing routing intervals, a new convergence result is obtained. It is shown that the expected
cost decreases to a neighborhood of the optimal cost at an exponential rate which is lower
bounded by the slowest virtual circuit departure rate. When the stepsize is small enough,
the size of the neighborhood is “proportional” to the extent of violation of a so-called “many
small users” assumption.

An open problem for the gradient projection routing method is assigning paths for
incoming virtual circuits so as to achieve the desired path flows which are determined at
the latest routing update. It is shown that, by assigning virtual circuits to paths which are
most deficient in the desired number of virtual circuits, a similar convergence result holds.

Digital simulation results using more realistic routing models confirm the theory
and provide additional insights.

Thesis Supervisor: Dr. Dimitri P. Bertsekas

Title: Professor of Electrical Engineering

Acknowledgements

I would like to thank my thesis advisor, Professor Dimitri Bertsekas, for his guid-
ance, support and encouragement. His insight and approach of conducting a research helped

shape my professional development.

Thanks also to Professor John Tsitsiklis who spent much time discussing the tech-
nical details of this thesis, and provided invaluable insight. I would also like to thank
Professor Robert Gallager for serving as a thesis reader and sharing his understanding on

the subject of data networks.

I am very grateful to Professors George Verghese and Bernard Levy. I appreciate
their guidance as teachers and friends. I would like to thank Professors Fred Scheweppe

and Leonard Gould for their friendship and support.

I will not forget my office-mates who spent much time with me in discussions and
brain-storming sessions. I would like to thank them all : Réne Cruz, Ellen Hahne, Patrick
Hosein, Atul Khanna, Jay Kuo, Whay Lee, Utpal Mukherji, Jean Régnier, and John Spinelli.
Their encouragement, criticism, and friendship greatly enriched my graduate studies at
MIT. In particular, I would like to thank Jay whose friendship is deeply appreciated. In
addition, I have to thank Alain Cohen and Steve Baraniuk who coded the OPNET simulator

and helped set up my simulation.

This work has been supported in part by the National Science Foundation under

grant NSF/ECS 82-17668.

Finally, I owe my deep appreciation and gratitude to my wife, Mei-Huei, my parents,
Yu-Chi Tsai and Hwa-Chu Tsai, and my brother Wei-Tek Tsai. Their unfailing love and
faith in me sustained me through the difficult times. In addition, many thanks to my wife

- Mei-Huei for her excellent typing and proof-reading of the thesis.

To God, my Savior and Lord, and my family I dedicate this thesis.

CONTENTS

Page

L. Introduction LT
1.1 Problem Statement«

1.2 Summary of Previous Works 11
1.2.1 Quasi-Static Routing Models 11

1.2.2 Algorithms for Quasi-Static Routing S

1.2.3 Virtual Circuit Path Assignment 16

1.3 Scope of The Thesis T 1

2. The Quasi-Static Routing Models 19
2.1 Introduction T

2.2 The Gafni-Bertsekas Synchronous Quasi-Static Routing Model 20

2.3 The Stochastic Asynchronous Model e e e e e .. 925

3. Synchronous Shortest Path Routing | e oo oL .29
3.1 Introduction 9o

3.2 Extension of The Gafni-Bertsekas Result S e e e e 29

3.3 Routing With Integer-Valued Link Lengths - :

4. Synchronous Gradient Projection Routing With Randomized Path Assignment . 39
4.1 Introduction 0000 39

4.2 Algorithmic Variations 40

4.3 The Statistics of Path Flows 42

4.4 Preliminary Lemmas 46

4.5 The Convergence Results 51

5. Asynchronous Gradient Projection Routing With Randomized Path Assignment 60

5.1 Introduction00 . 60

5.2 Fundamental Issues of Asynchronous Routings 60

5.3 Preliminary Lemmas 63

5.4 The Convergence Results @&

6. Gradient Projection Routing With Metered Path Assignment 78
6.1 Introductiono 76

6.2 The Path Assignment Problem A

6.3 The Convergence Results 82

7. Routing Simulation 88
7.1 Introduction 88

7.2 Simulation Model 1

7.3 Simulation Parameters e ¢

7.4 The Test Network e 7.

7.5 Results And Interpretations99
7.5.1 Balanced Traffics 100

7.5.2 Unbalanced Traffics 104

7.5.3 Synchronous Routings 107

8. Extensions 109
References T B B
Appendix A. Graphs of Simulation Runs 115
Appendix B. The Simulation Codes 1286

List of Figures

Page
3.1 An Example of Subgradients 34
3.2 The Graph of the Counter-Example Network 35
3.3 The Initial Loads and the Length Functions 36
5.1 The Simple Counter-Example Network 63
7.1 A Typical Node 91
7.2 The Graphof Net8 98

CHAPTER ONE
INTRODUCTION

1.1 Problem Statement

There is a dilemma in the research on routing in data networks. On one hand, the
practical operating environment for routing is so complex [Kobayashi and Konheim 1977]
that no mathematically tractable model can adequately describe the physical phenomenon.
Thus most analytical studies use either a deterministic nonlinear programming formulation
(e.g., [Fratta, Gerla and Kleinrock 1973]) or a steady-state analysis on a simplified syn-
chronous model (e.g., [Yum and Schwartz 1981; Boorstyn and Livne 1981]). On the other
hand, simulation studies which may be capable of realistically modeling the physical routing

environment cannot provide a clear direction to improve the routing performance.

Two recent studies by Gafni and Bertsekas [1983b] (referred to as [GB]) and Tsit-
siklis and Bertsekas [1986] (referred to as [TB]) make an important contribution to the
analytical study on practical routing. [GB] shows that, in a stochastic routing environment,
the synchronous shortest path routing converges to a neighborhood of an optimal routing.
If the updating period is relatively small as compared to the average virtual circuit holding
time, the size of the neighborhood tends to zero as the extent of violation of the quasi-static
assumption tends to zero. [TB| shows that a class of distributed optimal gradient projection
routing methods converges , despite the delay in control packets, measurement inaccuracy,
and asynchronous updating. This work is the first to study optimal routing with an explicit

distributed asynchronous model.

The natural extension of [GB] and [TB] is to combine their routing models to
study both the shortest path and the gradient projection methods. Both classes of methods

are important theoretically and practically. The purpose of this thesis research is to study

7

these two classes of routing methods using a distributed asynchronous stochastic model. The
shortest path method is chosen mainly because of its popularity; the gradient projection
method is studied due to its many advantages over other types of algorithms [Bertsekas
1980; Bertsekas 1982d|. We shall focus more on the gradient projection method in this

thesis.

We assume a long-haul wire virtual circuit data network in which communication
resources are scarce relative to computation resources, and there are no multiple-access
media. Generally, some simplifying assumptions have to be made in any analytical study

on optimal routing. Typical assumptions are as follows.

(A) The Quasi-Static Load Assumption states that the external traffic arrival rate
for each origin-destination (OD) pair is slowly changing over time. This is an approximately
valid description of a situation where the rate at which the offered load statistics change is
reasonably slower than the convergence rate of the routing algorithm. Usually individual
offered traffic samples are assumed not to exhibit frequently large and persistent deviations
from their averages. Physically such a situation arises when there is a large number of
user-pair conversations associated with each OD pair, and each of these conversations has
a traffic rate that is small relative to the total traffic rate for the OD pair. This is the

so-called many small users environment.

(B) The Fast Settling Time Assumption states that the link (or path) flows (mea-
sured in data unit/time unit) adjust to the desired flows instantly at a routing update.
Hence the transient of the flows in a routing change is negligible. This assumption is ap-
proximately valid in datagram networks but less so in virtual circuit (VC) networks where

VC re-routings are forbidden or infrequent.

C) The Synchronous Update Assumption states that, in a distributed routing, all
)

link flows are measured simultaneously and this information is received in time to carry out

8

a simultaneous routing update at all network nodes responsible for routing. In a centralized
routing algorithm, such an assumption is usually valid. However there are disadvantages
such as unreliability in such schemes. Since technical reasons, such as software complexity,
are against enforcing a synchronous update protocol, this assumption is usually not valid.

An example is the new ARPANET routing algorithm [McQuillan et. al. 1980].

(D) Perfect Measurement Assumption states that link or path flows, and perhaps
incremental link costs also, can be measured exactly. It is generally difficult to measure the
rate of bursty random data flow in a link operating with data link control. This assumption
is an idealization that is usually made to keep the analysis tractable. Segall [1977] considers

the problem of estimating link incremental costs.

Most of the existing analyses take for granted the above assumptions. In contrast,
we shall develop a routing model, by combining the models in [GB] and [TB], in which
the above four assumptions are dispensed with. Our model will explicitly describe how
these assumptions are violated. However, the following commonly held assumptions in a

quasi-static routing study are retained:

(E) Conservation of Flow Assumption states that the traffic into a node for a given
destination is equal to the traffic out of the node for that destination. This assumption
is good when the routing update interval, i.e., the time between two consecutive routing

updates, is large as compared to the queueing time-constants.

(F) Convez Separable Cost Assumption states that a reasonable convex increasing
cost can be assigned to each link as a function of the total link flow, and the objective of

routing is to minimize the sum of such costs.

(G) Fized Network Topology Assumption states that during the time period of

interest no topological changes occur. In other words, the routing algorithm will not be

9

responsible for failure recovery and addition of nodes and links.

Our routing model which is constructed on the basis of the above assumptions can
be formulated as a stochastic multicommodity flow problem similar to that of Bertsekas
[1980]. This formulation uses path flows as the routing variables, different from the link
flow counterpart formulation of Gallager [1977]. The path flow formulation is more natural
for virtual circuit oriented routing which is used by most of the operating data networks
in one form or another [Schwartz and Stern 1980]. Comparison of the two formulations is

briefly given in Bertsekas [1982d] and Bertsekas et. al. [1984].

The objective of this thesis research is to evaluate the performances of the two
classes of routings in terms of the cost assumed in (E) with the stochastic asynchronous
routing model we develop. From the viewpoint of adaptive routing, a good algorithm
should not require the updating period to be very small since routing update is expensive.
It should be adapted to current loads and the routing variables should be easily computable.
From the viewpoint of stochastic optimization, we can evaluate these algorithms using the
same criteria such as simple stepsize rules, automatic scaling factors, convergence, fast

convergence rates, stable convergence behavior and so on.

So far our major concern on routing algorithms is that of computing routing up-
dates. There is another problem, however, of implementing these routing updates during
the time intervals between two consecutive updates. We are interested in this problem
because the implementation of routing updates determines the transient behavior of flows,
which consequently affects the overall performance of the routing algorithm. We shall refer

to this problem as the the path assignment problem which is described as follows.

Each path of every OD pair is modeled as a queue with an infinite number of

identical exponential servers and VCs as customers. The VCs are assumed to arrive at the

10

origin node of each OD pair at respective Poisson rates. The problem is, given initial flows
at the beginning of an updating interval, for each origin node to assign the forthcoming VCs
to the respective paths so that the path flows at the end of the updating interval will be as
close as possible to the desired flows . The closeness is measured by some cost functions.
We also assume that the assignment of VCs is made according to the state of queues at

each arrival of a VC, hence the problem is a special case of dynamic routing problem.

Two extreme methods are possible-assigning the VCs randomly with fixed prob-
abilities or assigning the VCs with some deterministic threshold rules. We call the first
method randomization and the second method metering. It is generally believed that me-

tering performs better than randomization with respect to some criteria; however no proof

has been offerred to our knowledge.

The difficulty involved in such a study is that even the simplest dynamic routing
scheme can lead to queue behavior whose statistical characteristics are either hard to cal-
culate or not yet adequately understood (see the comments by Ephremides, Varaiya and

Walrand [1980] and Sarachik [1984]).

To conclude, the result of this thesis research should contribute to the designing
and evaluating of routing algorithms, as well as further understanding of the two classes of

stochastic optimization algorithms.

1.2 Summary Of Previous Works

1.2.1 Quasi-Static Routing Models

Routing algorithms can be roughly classified as static, quasi-static and dynamic,
according to the time-frame best describing the routing dynamics. The concept of quasi-

static routing can be attributed to Gallager [1977].

11

Unlike a static routing algorithm where the route computations can be done off-
line, a quasi-static routing algorithm operates on-line. From time to time, the measurement
of current traffic parameters is taken and is sent to the nodes responsible for routing cal-
culations to be used in performing one or more iterations of the algorithm. The algorithm
is usually based on a static model with stationary traffic and unchanging network. If the
inputs were fixed, the algorithm would converge to a deterministic optimal routing; if the
inputs were slow-varying, the algorithm was hoped to track the variations and keep the

routing close to the changing optimum.

The static optimal routing problem on which optimal quasi-static routing is based
was first formulated by Frank and Chou [1971] as a multicommodity flow problem. The
most common objective function, the average delay, was due to Kleinrock [1964]. Gallager’s
[1977] formulation is an improved version of the earlier formulations based on link flows.

Bertsekas [1980] first formulated a multicommodity flow problem based on path flows.

To capture the effects of slow varying dynamics in quasi-static routing, dynamic
models are called for. The first stochastic model, given by Segall [1977], follows link flow
formulation. Gafni and Bertsekas [1983b] explicitly account for the many small usersrouting
environment and provide a stochastic model based on path flows. Their earlier paper
[1983a)], however, provides a deterministic model using flow approximation. A contribution
of Gafni and Bertsekas [1983b] is that they quantify the degree of violation of the many
small users assumption (defined in section 2.2) with a single parameter and, as a result, a

form of the law of large number becomes evident.

Distributed asynchronous routing is a special case of general distributed asyn-
chronous algorithms. Bertsekas, Tsitsiklis and Athans [1984] provide an extensive survey of
current research results in this field. The routing model we pattern after is that of Tsitsiklis

and Bertsekas [1985] which evolved from Tsitsiklis [1984], and earlier works by Bertsekas

12

(1982b, 1983]. This model is general enough to encompass a large class of update protocols-
protocols that are distributed or centralized, synchronous or asynchronous. This model,
when combined with that of Gafni and Bertsekas [1983b), is more realistic than most of the

existing models since it does away with assumptions (4) — (D).

1.2.2 Algorithms for Quasi-Static Routing

Any nonlinear programming algorithm that solves the multicommeodity flow prob-
lem, with the property that every one or more iterations constitute a descent step, is a
potential candidate for quasi-static routing algorithm. Indeed, a large number of quasi-

static routing algorithms can be found in the literature [Schwartz and Stern, 1980].

First is the popular class of shortest path methods. They are motivated by the
well-known optimality condition: a routing is optimal if and only if it routes the traffic
exclusively on shortest paths where, for each link, the link length is the first derivative of
the cost function with respect to the total link flow (e-g., [Gallager 1977]). Most of the
these methods are heuristic [Schwartz and Stern 1980] and have been known to be either

strictly suboptimal or to exhibit oscillatory behaviors [Bertsekas 1982b].

In a virtual circuit network without VC re-routing, the shortest path method resem-
bles the Flow Deviation (FD) method which is first proposed by Fratta, Gerla and Kleinrock
[1973]. The FD method is in essence a Frank-Wolfe method for nonlinear programming,

and thus suffers from slow sublinear convergence rate (e-g., [Dunn 1979]).

While shortest path routing algorithms with Lipschitz continuous link lengths have
been shown, by Gafni and Bertsekas [1983b], to converge asymptotically under certain
assumptions, it is yet unknown that if such algorithms will converge or not when the link

lengths take values from a discrete set.

13

Second is the class of routing algorithms which is based on a class of gradient pro-
Jection methods for nonlinear programming. This class of nonlinear programming methods
includes the original proposal by Rosen, the reduced gradient methods, the convex simplex
method and etc. (see Luenberger [1973]). While these methods are attractive for small-scale
problems, they are highly unsuitable for large-scale problem with many constraints (see the
discussion in the papers by Bertsekas [1976, 1982a] and Bertsekas and Gafni [1983]). Ear-
lier, a routing algorithm based on this class was proposed by Schwartz and Cheung (1976].
Their computational results show that their method is unsuitable for a large number of

commodities.

Along with introducing the concept of quasi-static routing, Gallager {1977] proposed
a distributed routing algorithm which is essentially a variation of the reduced gradient
method. Since then, this algorithm has been generalized by Segall [1979] for virtual circuit
networks and by Ephremides [1978] for mixed media networks. However, Gallager’s algrithm
suffers from slow convergence and the difficulty in determining a proper stepsize from the

input levels.

To curtail this problem, Bertsekas [1979], and Bertsekas, Gafni and Gallager [1984]
use another class of gradient projection methods originally due to Goldstein [1964], and
Levitin and Poljak [1966]. Since the constraints of the multicommodity flow problem are
simple, the projections in this class can be computed simply. In addition, a more elaborate
form of this class, the projected Newton method, is able to attain superlinear conver-
gence rate, while keeping the computation overhead per iteration moderate (see Bertsekas
(1982a]). However, the projected Newton method is not suitable for distributed implemen-
tation. Alternately the projected quasi-Newton routing algorithms by Bertsekas, Gafni and
Gallager [1984] which attains a linear rate of convergence is suitable for distributed imple-

mentation. Corresponding to these algorithms are the related second derivative algorithms

14

(Bertsekas[1980], Bertsekas and Gafni [1983]) operating in the space of path flows. The
path-flow algorithms have the advantage that loop-free properties of the paths do not need
to be carefully guarded by the algorithm. Hence typically the implementation protocols
and computations are simpler in form. The projected Newton method in path flow formu-
lation by Bertsekas and Gafni [1983] requires global information, thus is not suitable for

distributed implementation.

Another interesting algorithm is the extremal flow method due to Cantor and Gerla
[1974]. This method has the disadvantage that each iteration requires solutions to a nonlin-
ear programming problem and a shortest path problem, thus the computational overhead
per iteration can be excessive. The algorithm is also not suitable for distributed implemen-

tation.

To summarize, for a virtual circuit network, the gradient projection algorithms
scaled by the second derivatives (Bertsekas [1982d]) seem to be the best choice for quasi-
static routing. They have a small computational overhead, while converging faster than the
FD method, they converge only slightly slower than the projected Newton method, when
starting far from an optimal routing. In the context of quasi-static routing, as the input
levels are varying, and the measurements are inherently inaccurate, it is not important for
the algorithm to achieve fast convergence in a neighborhood of an optimal routing. This fact

makes the gradient projection method more attractive than the projected Newton method.

15

1.2.3 Virtual Circuit Path Assignment

There are very few works in the literature that deal with optimizing virtual circuit

path assignments during an update interval.

The closest work we can find is that of Yum [1981]. He considers the problem of
implementing a given optimal static routing for a datagram network in order to minimize
the steady-state average delay. He shows that a deterministic sequence of routing deci-
sions, which approximates a randomized routing scheme, performs better than the pure

randomized scheme.

Other related problems are those local dynamic routing problems whose goal is
to assign routes at an origin node for the arriving customers to traverse a simple queueing
network, in order that the average delay or a related cost is minimized. Most of such studies
assume an infinite horizon of time, and discounted or average costs. When using discrete-
state queueing models, they appear to employ exclusively continuous-time Markov chains
that can be uniformized (see Keilson [1979]), i.e. the chains that are equivalent to their
discrete-time counterparts. These two features simplify the optimality condition and often
lead to closed-form threshold type of schemes. Unfortunately, our problem presumes a finite
horizon of time and due to the assumption of infinite number of servers, our continuous-time

chains cannot be uniformized.

A summary of the related local dynamic routing results are in order. Hajek [1982]
uses little more than the well-known inductive dynamic programming approach (see [Stid-
ham and Prabhu 1974; p. 282]) to show that a threshold type of metering rule is optimal
for controlling two interactive service stations. This result generalizes the similar results by
Rosberg, Varaiya and Walrand [1982], who use uniformization and discrete-time dynamic

programming, and by Foschini and Salz [1978], who use a diffusion model. By employing

16

both deterministic flow equivalent and stochastic discrete queueing models, Sarachik [1982,
1984] similarly discovers that the threshold type of metering rules minimizes the aggregate
or average delay for some local dynamic routing problems. Similar results are obtained by
Ephremides, Varaiya and Walrand [1980], using backward induction on a continuous-time

dynamic programming formulation.

Finally we mention some general results in the optimal control of queueing systems.
Two survey papers by Stidham and Prabhu [1974] and Sobel [1974] provide an introductory
background. Optimality conditions via dynamic programming for general jump processes
are derived by Boel and Varaiya [1977]. Related optimality results using different methods
have been reported by Rishel [1975] (using the minimum principle), Stone [1973] and Borkar
[1984].

1.3 Scope Of The Thesis

This thesis report is organized as follows. We first review the Gafni-Bertsekas
synchronous model and the Tsitsiklis-Bertsekas distributed asynchronous model in chapter
2. We also construct a combined model upon which the problem of optimal routing in a

stochastic network is formulated.

In chapter 3 we present a simple extension of the Gafni-Bertsekas synchronous
shortest path routing convergence result. We also study shortest path routing with length
functions taking values from a discrete set. An example is presented in section 3.3 which
shows that shortest path routing can be fooled by the discrete lengths and fail to converge

to optimality.

The main result of the thesis-the convergence of synchronous gradient projection
routing with randomized path assignment—is presented in chapter 4. We also discuss algo-

rithmic variations and statistics of path flows resulting from randomized path assignment.

17

The main contribution is that the gradient projection method does not require the update
interval to be small in order for the long-term deviation from optimality to be small. As
for the shortest path method, an additional condition that the routing interval is small (as
compared to the average VC holding time) is needed to ensure small long-term deviation

from optimality.

Chapter 5 contains the convergence result of asynchronous gradient projection rout-
ing with randomized path assignment. It is shown that if the update intervals and the time
between consecutive receptions of measurements are bounded, the asynchronous gradient

projection routing has a similar convergence result as that of the synchronous counterpart.

In chapter 6 we study the path assignment problem in detail. We propose a simple
threshold type of scheme which assigns paths according to the differences between actual
and desired numbers of virtual circuits. We then present a convergence result for gradient
projection routing with metered path assignment which is similar to the corresponding

result for gradient projection routing with randomized path assignment.

In chapter 7 we present simulation results. Specifically we discuss simulation pa-
ramefers, the test network, and the various experiments of the simulation. It appears that
when virtual circuits turn over (i.e. arrive and leave) quickly, shortest path routing performs
noticeably worse than gradient projection routing. However, when virtual circuits turn over

slowly, there is no major difference between the performances of both types of routings.

Finally we conclude in chapter 8 by providing some directions for further research.

18

CHAPTER TWO
THE QUASI-STATIC ROUTING MODELS

2.1 Introduction

In this chapter we review the quasi-static routing models developed by Gafni and
Bertsekas [1983b], and Tsitsiklis and Bertsekas [1986]. These two models are combined to

form the stochastic asynchronous routing model which is used in this thesis.

The main contribution of the synchronous model by [GB] is that they define ex-
plicitly the many small users assumption. The extent of violation of the many small users

assumption is quantified by a single parameter.

In the past, most quasi-static routing models simply assume that the load is con-
stant. However, the Gafni-Bertsekas Model considers the network as a set of M /M /oo
queues with each VC as a customer. The VCs are assumed to arrive at Poisson rates and
stay on the network with exponential durations. Furthermore, the traffic rate of each VC of
the same OD pair is assumed to be constant. In this manner, the load is varying slowly over
time and eventually converges to a statistical steady-state. The M/M /oo queue assumption
merely reflects the fact that flow control is not in effect and any VC is allowed to sign on.
This quasi-static model is better than most of the existing ones. Note that the model is

stochastic solely because of the stochastic nature of VC arrivals and departures.

The asynchronous model developed by [TB] is useful for its simple characterization
of delays in control packets, inaccurate flow measurement, and flow transients. However,
the model is deterministic, incapable of capturing the stochastic variations in practical data

networks. We shall have further remarks on this model in section 2.3.

The model that we use is a direct combination of the two above mentioned models,

retaining all the good features of both models.

19

2.2 The Gafni-Bertsekas Synchronous Quasi—Static Routing Model

Consider a network described by a directed graph G = (V, L), where V is the set
of nodes, L is the set of directed links. A set W of generic origin-destination (OD) pairs is
given. For any OD pair w in W, which represents a class of VCs originating from node 1
and ending at node 7, a set of paths P, consisting of loop-free paths from node ¢ to node

7 is assumed given.

We assume, for any OD pair w, a VC arrival rate X, /e (in VC/time unit) with
a communication rate ¥,¢ (in data unit/VC/time unit) per VC so that the average com-
munication rate for the OD pair is kept at Aw¥w- Note that the smaller the parameter ¢,
the larger the VC arrival rate and the smaller the traffic rate per VC. The limit € — 0 is
referred to as the many small users assumption, and € is considered as a measure of the
extent of violation of the assumption. In terms of control, the smaller the € the better the
routing controllers’ ability to fine-tune their control. This is because a path flow is the sum
of traffic rates of the VCs assigned on the path. A controller can adjust a path flow only
by changing the the number of VCs on the path. In the limit that e goes to zero, we have

a fluid approximation of data flows.

Each conversation (or VC) for an OD pair w is assumed to have exponentially
distributed holding time with mean 1/pw. Each OD pair w is assumed to be able to
accommodate all arriving VCs, and each VC is assigned according to some rule to a path p

in P,. Hence each OD pair evolves as an M/M /oo queue with active VCs as customers.
Let z,(t) denote the flow on the path p € P, at time ¢, then
Zp(t) =5,eNp(t) >0 (in data unit/time unit),

where N,(t) is the number of active VCs assigned on path p, and ¥,, is a constant.

20

Eventhough the real communication rate of a VC is random, the rate 7,, used in the
above equation is obtained by averaging the real rates over a long period of time and over
all VCs of the OD pair w so that the variance of 7,, is so small that Y can be considered
as a deterministic quantity. For each OD pair w € W , let 74, (¢) be the total communication
rate (in data unit/time unit), then

ro(t) = D z,(t).
pEP,

At times t = nT, n=0,1,2,..., where T >0 is a fixed updating interval, the total
data flow Fi;(t) on each link (3, 7) is measured and is assumed to be exactly equal to

Fiy(t) = Z Z Zp(t)-
weW peP, (i,j)ep
In order for the above flow conservation equation to hold, the queue associated with each
transmission line must have reached a statistical steady-state — i.e. , the average data flow
into the queue is equal to the average data flow out of the queue. Hence the conservation
of flow assumption is implicitly taken. Another assumption which is needed here is that
the control packets do not use up any bandwidth. This assumption is clearly not true in

practice since over-flooding of control packets does deteriorate the routing performance (see

[McQuillan et. al. 1980]).

All VCs that arrive in the interval (nT, (n+1)T] are assigned to a path p according

to a rule depending on F(nT) = {Fi;(nT) : (1,5) € L}, the link flow vector at time nT.

A separable convex cost function, reflecting the congestion level of the network,
D(F)=) Dy(Fy),
(3,4)eLl
is assumed to be given. For each link (i, 5) € L, the link costrf,-j defined on [0, o) is assumed

to be non-negative real-valued, convex, increasing and subdifferentiable. We shall further

21

assume that the link costs are in general continuously differentiable, the nondifferentiable
case is an exception. Assume that, for all (#,7) € L, there exists a positive constant L

indepent of (¢, 7) such that the derivative

3:0) = S50

satisfies
|E‘iJ'(F‘iJ') - Eij(Fij” < LlFiJ' - Fij| VFiJ"Fi.‘D

ie. di;(-) is uniformly Lipschitz continuous. This assumption excludes using (Kleinrock

[1964]) average queue size as the cost : for all 0 < F;; < Cyy,

_ F.;
D;;(Fi5) = Coim Fi’ (1)

iJ

where C;; is the capacity of the link (i, j).

However we can use the following modified link costs:

Qii(Fy), if Fij < BC,;,
E‘j(F,-j) =< Qi;(BCs;) + Q,-J-(ﬁC'.-_.,-)(F,-J- — BC;;) otherwise, (2)
+3Q5;(8Ci;)(Fij — BCi;)?,
where
Fy
Qi (Fi;) = TJF,,’

where 0 < 8 < 1 is a fixed threshold. We assume that the optimal long-term average
routing (to be defined shortly) does not have F;; = C;j, for any (7,7). Thus as long as 4 is
close enough to unity, the optimal routing of the original problem using (1) is the same as
that of the modified problem using (2). Thus the Lipschitz continuity assumption is not a

real restriction.

We also remark that the choice of the cost function is not critically important either
theoretically or practically. Simulation results have shown that so long as the link cost is

a strictly increasing function of link flow and approaches infinity as the flow goes to the

22

capacity, the optimal routing does not vary much over different choices of link costs (see

[Vastola 1979)).

We are interested in comparing the routing {D(F(t)), F(t)} with an optimal long-
term average routing { D*, F*} which is the solution of the following optimization problem:
min. D(F)

s.t. FeXp,

where Xp is the set of link flows F satisfying

Fi=2 3. = v(i,5) € L,

weW peP,, (i,j)ep

g = 2oy Yw e W,
3 z,=

b
PEP,

z, >0 Vpe Py,,weW.

In words, X is the set of all possible average total link rates resulting from the long-term

or steady-state) average input rate:
g

Tw = Ywe W.

One would think that the routing should minimize the cost D(t) at each time ¢.
However, such a goal calls for solutions to difficult dynamic routing problems. Thus we are

satisfied, in a quasi-static situation, with comparing the steady-state routing performances.

It should be noted that the synchronous model developed so far ignores data-link-
control. The omission of data-link-control is to make the analytical model mathematically
more tractable. With the knowledge of initial number Np(0) of active VCs on each path
p, we can characterize the statistics of all the processes of subsequent interests in this

synchronous routing model.

In order to simplify the analysis, we now introduce an alternative cost defined in

terms of path flows. Let < -,- > and || - || denote the usual Euclidean inner product and its

23

induced norm. Let P = Uy,ew P, be the set of all paths, z = {z, : p € P} be any path
flow vector, and F = {F;; : (i,7) € L} be any link flow vector. For any path flow z, we can

define the corresponding link flow by

F,'j = E E :‘Bp,
wew PGPW (‘lvj)ep
or in matrix form :

F=Hz,

F,‘j =< H,,;J',Z >,

where H is a matrix whose ((%,), p)-th element is one, if (%,7) € p, or zero otherwise. H;;

is the (7, 7)-th row of H. We are thus led to the alternate cost function :

D(z) = E Di;(z),

(5,5)eL
where

D,'J'(:C) = 5,‘_7' (< H.;j, T >) .

Clearly, D;; inherits the convexity and smoothness properties of 5,—,-.

Before presenting the results, we introduce some notations and general rules about

the notations in this report. For any variable y(t), we denote y(nT) by y(n), e.g.,
z,(n) = z,(nT), D(n) = D(F(nT)).
The followings are further notations that are needed subsequently:
zy, ={z, :p€ P,},
du() = 5o (a(r),

dy(n) = j—i(z(n)),

24

Xuw = {zw : E Tp = Tou,Tp > O,VpEPw},
pPEP,

X = {:z: : Z Tp =Tu,Zp 2 0Vpe P, Vw € W},

PEP,
Zy(n) = % (normalized path flow vector),
w
F(n) = HZ(n) (normalized link flow vector),

M = max{p, 1 we W},
u =min{p, :we W},
and the system parameter set A, which is the set of relevant parameters and initial condi-
tions,
A = {Fu,ubu,re(0) : Yw e W}U{T,D,§,A,G = (V, L)},

where A, § are the constants relating to scaling matrices of the gradient projection methods

(see (1.2) of chapter 2).

Note that the normalized flow vectors, F (n),£4(n), are the flow vectors resulting

from scaling the current load, r,, (n), to the steady-state load, 7,,.

2.3 The Stochastic Asynchronous Model

The asynchronous model we use, based on the above quasi-static routing model, is
obtained by substituting asynchronous updates for synchronous updates, and adding details

about flow measurements and delays of control pockets.

First, we assume all routing updates, flow measurements, message transmissions
and receptions occur at discrete time instants of the form nT, where T > 0 is the smallest
time increment, and n = 0,1,2,.... This assumption is not unrealistic, since a data network
is a digital system and all relevant events can be ordered in terms of a global clock, but

individual nodes do not need to have access to this global clock.

25

Flow Measurement

Suppose that a node ¢ has the link (%, 5) attached to it. Then at each time n, node

¢ has an estimate of the instantaneous flow F; ij(n):

n

Fij(n)= Y Cij(n,m)Fij(m),

m=n—Q

where C;;(n,m) are non-negative (generally unknown) scalars summing to unity, and Q
is a bound on the interval over which the measurements are averaged. This is a good
representation of practical implementation- -most networks use some forms of averaging to

estimate link flows.

Message Transmissions and Receptions

From time to time the local flow measurements are forwarded to the nodes which
do not have the local measurements. This is usually done by a flooding mechanism, which
involves some delay. At each node k, at time n, the controller receives or has available an
estimate of F;;(n) for all (¢,5) € L:

Fijk(n) = Fij(n — biju(n)),
for some b;;x(n) > 0. Let us assume that there exists Tq > 0 such that b;;,(n) <
Ty, Vi,3,k,n, then
Fijn(n) = Z dijk(n, m)Fi;(m),

m=n—G

where d;; x(n, m) are non-negative scalars summing to unity, and G = Q + T,. Note that

T4 is a bound on delays due to forwarding of control packets.

Asynchronous Updates

For each w € W we define, the set of update times,

Tw = {n: arouting update is performed for w at time n}.

26

These sets T, are generally not known but we assume an upper bound between consecutive
updates as follows. Assume that there is an @ > 0, such that V w € W,¥n,m € Ty,n,m
are consecutive times in T,

|n —m| <m.
In practice, routing updates are always carried out often enough just to keep the routing

adapted to current loads. Hence the assumption is realistic.

In order to show the convergence result, we need a special definition. We define,

for each w € W, the latest update time before or at time n, ny(n), to be
fiy(n) = max{me€ T, : m < n}.

Hence

0<n-7,(n)<n weW,n=0,1,2,...
Desired (Target) Flows

The desired flows are only needed for gradient projection routing. They are refer-
enced to as the desired flow rate on each path, between a routing update, for the purpose

of monitoring actual flow rates.

At each routing update time n, the controller at the origin node of an OD pair
w updates the desired flows for each path p € P,, zy(n +1). Thus if n ¢ T,, then
z;(n+1) = z3(n). In general, we have
z,(n+1) =z}, (Ry(n) +1).

To calculate these desired flows, the controller needs to estimate the first derivative length
(FDL) of paths, or the first derivatives of the cost against the path flows. Note that

%(x(n)) = {Eii(FiJ‘(n)) if (1,5) € p,

oz, 0 otherwise.

27

Hence, if k is the origin node for w, then Vn € T,,,p € P,,, a natural estimate of the FDL

of path p, ,(n), at n is

dD;; (-
mp(n) = 3o T2 (Byu(m).
(inJ.)EP)

An alternative way is that the FDL for each link is estimated locally and forwarded to
other nodes. This change will not affect the proof in any essential way, so we omit it. For

convenience, we define, Vp € P,,Vn ¢ T,

mp(n) = 1y (n — 1),

that is, when no routing update is performed at n, it is not necessary to update the FDLs.

In general, we have, Yn =0, 1,2, ...

dD;;
'7?(") = Z dF’J
(s.5)ep ¥

(ﬁ',-,-,,,(ﬁ.,,(n))) ,

where F; (7, (n))) satisfies
n
Fik@u(n)) = D gijk(n,m)Fij(m),
m=n—-C
and g,-,-,k(n, m) are non-negative scalars summing to unity and C = Q@+ Ty+n. Thus C

is an upper bound on measurement intervals plus delays in control packets, and the bound

on the time between consecutive routing updates.

The description of the asynchronous model is now complete. We also note that the

system parameter set A should be enlarged to include the parameters, C, and 7.

28

CHAPTER THREE
SYNCHRONOUS SHORTEST PATH ROUTING

3.1 Introduction

Almost all the existing data networks use some forms of shortest path routing. This

popularity deserves a thorough theoretical investigation.

In this chapter we first review the Gafni-Bertsekas [GB] convergence result and
extend the result somewhat. Their convergence result on the link flows requires that for
each link, the length function has a minimum slope. This condition may be too strong for

some choices of cost functions. We have weakened this condition to strict convexity of the

link costs.

We then consider shortest path routing with integer-valued length functions. This
case is of interest because routing in some existing networks, e.g., TYMNET, takes the
length values from a discrete set. We shall show that, by means of a counter-example,
such discontinous length function can fool a shortest path routing algorithm and cause the
routing to oscillate around a non-optimal point. This result further illustrates the unstable

characteristics of shortest path routing.

3.2 Review Of The Gafni-Bertsekas Convergence Result

We review the Gafni-Bertsekas convergence result on synchronous shortest path
routing here because this result will be compared with the counterpart on gradient projection

routing later in this report. In addition we present an extension of their result.

The result, Theorem 3.1, basically states that, on the average, the total network
cost decreases at an exponential rate to a neighborhood of the steady-state minimum cost.

The rate of cost decline is lower bounded by the slowest VC departure rate in the network.

29

In addition, the smaller the update interval and the extent of violation of the many small

users assumption, the smaller the long-term deviation from optimality.

This result is important in the sense that it ensures that VC shortest path routings
do converge to a neighborhood of an optimal performance. The main reason that the result
holds is that if VCs are not re-routed, only the arriving VCs are routed via the current
shortest paths, then the routing is behaving like a stochastic Frank-Wolfe algorithm. As
the deterministic Frank-Wolfe algorithm for the multi-commodity flow problem has been
shown to converge, the stochastic version should likewise converge. Unlike the deterministic
case, the shortest path routing does not, vary its stepsize~there is no stepsize to choose, only
the routing update interval to adjust. Together with the fact that path flows cannot be
infinitesimally divided, the convergence is only to a neighborhood. For Practical purposes,
if the neighborhood is small, a routing close to the optimum is acceptable. Since the load

is always varying, it does not make sense to match the long-term optimal routing exactly.

The last part of the Gafni-Bertsekas result is that if the length functions have some
minimum slopes then the link flow vector converges to the unique optimal flow vector, as
both the extent of violation of the many small users assumption and the update interval tend
to zero. However, such a condition on length functions clearly implies the strict convexity
of the cost. It seems possible to weaken this condition to just strict convexity— since if
the cost is strictly convex, the optimal flow vector must be unique. In fact we prove this

conjecture in Theorem 3.1.

The shortest path routing algorithm is defined as follows. All VCs of an OD pair
w arriving during the interval (nT, (n+ 1)T] are assigned to a path 5, € P, which is the

shortest according to the first derivative lenths (FDL), i.e.,

ds_ (n) = min{d,(n) :p e P,},

30

where

dp(n) =) dij(n).

(s.5)ep

We assume a fixed deterministic rule to resolve ties between paths. Let F(n) (or z(n))

denote the link (or path) flow vector corresponding to the above shortest path routing.

Theorem 3.1. (a) There exist positive constants, c1, ¢, a(e,T), b(e,T),

which depend only on the system parameter set A, such that Yn =0, 1,2,...
—c1e™#"T < E[D(n) — D*] < e *"T [D(0) — D*] + ¢, [a(e,T) + b(e, T)nTe #T|

and that

lim a(e,T) =0, lim b(e,T) < oo,
e—0 T—0 e—0 T—0

lim Tim E[D(n)] = D*.

e—0 T—0n—oo

b) If, in addition, D;; is strictly convex for all (s J) € L, then
J 4

lim Tm E (||F(n) - F*||?) =0.

e—=0 T—0n—ooo

Proof. (a) is proved in [GBJ.

To show (b) we use the convexity result:

— ~ — dD -~ ~
B(E() <DE) + (GREm), Fn) - £
<D(F(n)) + A1||F(n) - F(n)]],
where A; is a positive constant, and the second inequality comes from the fact that F(n) e

XFr, and Xp is a compact set. We have, using (a) and (A13) of [GB],

lim Tim E[D(F(n)] < lim H{E[ﬁ(p(n))]+A1E||ﬁ(n)-F(n)||}

e—0 T—0n—oco e—0 T—0n—oo
=D". (1)

31

Since ﬁ‘(n) is in the compact set X, and D* is the minimal cost over XF, we have, using

the Jensen Inequality, Vn = 0,1,2,...
0<D [E(ﬁ(n))] - D* < E[B(F(n))] - D".

By (1)

lim Tm D [E(}T"(n))] = D*.

e—0 T—0n—oo

This fact with the strict convexity of D imply

lim lim E[F(n)] = F*.

e—0 T—-0n—oo

Now by the Cauchy-Schwarz Inequality
E||F(n) = F*||* < 3E|| F(n) = E(F(n))|[* + 3| E(F(n)) — E(F(n))||* + 3| E(F(n)) — F*|.
Note that, by (A11) of [GB], there exists a positive constant A, such that

B|[F(n) - E(F(m)[? < |H|* Y Var(z,(n)) < Ase.
pPEP,

Also with Jensen Inequality and (A13) of [GB]

IB(F(n) - E(F(a)|* <|H|*|| Ble(n)] - E[z(n))|?

<IH[? Y B [|zp(n) - 25(n))%]

PEP,
<Aze+ Age™ T,

where Ag and A4 are some positive constants. The above two inequalities now imply

lim lim E||F(n) - F*||* < lim Tim {(A; + As)e + Age—#"T

€—0 T—0n—oo0 e—0 T—-0n—oo
+||B(F(n)) - F*|1*}
_ . T = _ *[12 __
It T FE) - P =0,

which proves the assertion (b). Q.E.D.

Some additional comments on shortest path routing are in order. The unstable

behavior of shortest path routing is well-known and the interested reader is referred to

32

[Bertsekas and Gallager 1986] and [Bertsekas 1982c] for detailed treatment. One of the
causes of this instability is that the average VC holding time is very short as compared
to the update interval. Consider the extreme case in which, during an update interval, all
the VCs which arrived before the latest update depart before the next update, then all
the new VCs arriving during the interval are routed via the shortest paths. This results
in overloading the shortest paths. This phenomenon repeats itself during the next update
interval. This is a reason why the update intervals in shortest path routing should be
small as compared to the average VC holding time. In fact, according to Theorem 3.1, this

condition is needed to ensure the convergence of the routing.

3.3 Shortest Path Routings with Integer-Valued Link Length

The routing problem considered in this section is quite different from the earlier
one-the first derivative link lengths are integer-valued and the VC arrival and departure
processes are deterministic. The assumption that the length functions are integer-valued
merely reflects that the length functions only take values from a discret set. With the length
functions being discontinuous, shortest path routing may not converge to optimality. We
shall first derive an optimality condition for the routing problem, then construct a deter-
manistic example showing the non-convergence of shortest path routing. The example in
fact shows that, under certain initial conditions, the routing may oscillate around seemin gly
optimal but actually non-optimal points, and be incapable of finding a descent step. Since
the example is deterministic, we do not know whether shortest path routing will converge

or not in a stochastic environment.

First we need to introduce some additional terminology related to the discontinuity
in the length functions. A link (or path) flow vector F(or z) is said to be a break point if

a link (or path) length is discontinuous at F(or z) . Let F;; be a discontinuity point of a

33

link length 3‘,(), one can define E;J-(F;,-) to be any value between the two integers

lim dy;(Fi; + c) and lim d;;(Fij - c).

¢>0 ¢clo c¢>0¢l0

We shall call these values admissible values. Correspondingly, at a continuity point of a
length 3,-,-, the length is well-defined and is also referred to as an admissible value. Without
loss of generality, we shall assume that each link length has finitely many different values.
Then by standard results of convex analysis (e.g., Rockafellar [1970]), D and D are convex
polyhedral functions, and the subdifferential D at F is the set of link length vectors whose
coordinates take admissible values. The subdifferential 8D at z is the set of path length
vectors definable using link length vectors in dD(H z). For each path flow vector z, any
subgradient v in dD(Hz) is said to be an admissible path length for z. The following figure

provides an example of a break point and its subdifferential.

F —
D(F) = /0 du(F)dF aD(1)=[1,2]

b od.m !
2+ F=1
|

; 2 o 2

Figure 3.1 An Example of Subgradients

From the above example, the set of admissible lengths is the convex hull of the two

extremal lengths, 1 and 2. The next lemma provides the optimality condition for routing.

Lemma 3.2 A path flow z in X is optimal for the deterministic optimal routing

problem, i.e. D(z) = D*, if and only if there exists an admissible path length vector v for

34

z, such that for each OD pair w, z has positive flows only on shortest paths according to

path length vector v. In other words, z is optimal if and only if Vp € P,,z, > 0 implies

v, =min{v; : V€ P, }.

Proof By Theorem 27.4 of Rockafellar{1970}, z is optimal

< JvedD(z), s.t. E vp(yp —2,) 20Vye X
pPEP

<= JvedD(z), st. z,>0= v, <vzYpEP, VweW.
Q.E.D.

The following is the counter-example.

Example 3.3 Consider the following network where the origin and the desti-
nation nodes are connected by three directed links ai, az, as; the links carry flows Fy, Fs,

and Fj respectively. Assume two OD pairs w; and ws and the following:
Ty, =3 Tw, =3,

Pw, = {Pth} P1=a;, p2 =az,

Puw, = {p3,ps} P3 = a3, ps = as.

Figure 3.2 The Graph of the Counter-Example Network

Hence
k= T1

35

Fy = 23 + z3,
F3 = F4.
The overall cost function is given by
_ F; Fg Fa
D(F) = f dy(F)dF + / &y(F)aF+ [dy(F)dF,
0 0 0

where dy, d,,d3, and the initial lows are specified below :

bodiesy NG | t aem
Pt
LV
2 /'.
. e %
=+ F 2 4 F > 4 F

Figure 3.3 The Initial Loads
By Lemma 3.1, it is easy to check that the unique optimal routing is
71=3, z3=0,

23=2, 34=1.

In the limit, € — 0, the updating equation for shortest path routing is given (using e.g.,
Lemma Al of [GB]) by the following: at iteration n, for each OD pair w, if p; is the shortest

first-derivative length path for w, then the average flows are updated by
z;(n+ 1) = z;(n)e*7,

zi(n+1) =3 - z;(n+1),
where p; is the other path in P,.

36

If we implement the iterations by assuming d, (2) =1, we get
11(0) = 2" 11(1) = 2e—ur) 2:1(2) =1+ C_MT + 2(1 -~ e-"'T)z)

z2(0) =1, z3(1)=1+2(1-e*T), z,(2)=¢*T + 2¢7#T (1 — e#T)

23(0) =1, z3(1) =1+42(1-e™T), 4(2) = e7#T 4 2¢7#T(1 — e~#7),
24(0) = 2., z4(1)=2¢7#T, z4(2)=1+e*T 4 2(1— e+,

Thus the routing is oscillating around the break point z = {2,1,1,2}. Indeed by the
summetry between the two OD pairs, ;(n) = z4(n), z2(n) = z3(n) for all n = 0,1,2,...,
and the algorithm does not converge to the unique optimal routing. A similar situation
results if we assume d3(2) = 10. One can also construct a similar example with z(0) in a

neighborhood of the break point {2,1,1,2}, and still obtain non-convergence.

Observe that link a; is a bottleneck link shared by the two paths p; and ps, and
the marginal decrease in cost per unit decrease in z; is 2, while the marginal decrease in
cost per unit decrease in z3 is 4. Thus if we exchange one unit of flow z3 for one unit of
flow z; in link a,, the overall cost decreases by 2. Thus a good routing algorithm should
implement this kind of beneficial trading if it recognized a differential in marginal costs of
the paths (of different OD pairs) sharing a bottleneck link. The problem here is that the
algorithm does not coordinate the OD pairs to do such kind of trading. Note that when
the marginal cost d;(2) is defined to be either the right-hand or the left-hand limit, such

benefit is not obvious from the lengths.

Suppose d3(2) is defined to be any value in the open interval (2,4), then the first
iteration (n = 1) will be a descent step. This observation suggests that a good routing
should be able to dynamically adjust link lengths at or around break points (the interval

(2,4) here actually depends on time-varying path lengths).

37

Note that for both OD pairs, the routing is oscillating around a point which seems
optimal to them individually (applying Lemma 3.2 only to each OD pair respectively).

Thus we have a situation where individually optimal solutions do not constitute a socially

optimal solution.

38

CHAPTER FOUR
SYNCHRONOUS GRADIENT PROJECTION ROUTING
WITH RANDOMIZED PATH ASSIGNMENT

4.1 Introduction

In this chapter, we prove the convergence of two classes of gradient projection
algorithms implemented by randomizing path assignments at origin nodes. The result

contained in this chapter is the core of this thesis.

There is a main advantage of the gradient projection algorithm that can be gleaned
from the analysis. That is, if the load is not changing, the algorithm decreases the average
total cost from a routing update to another, independently of the length of the update
interval. For the shortest path routing algorithm, a decrease in average cost can be assured

if the update interval is small.

One reason for this property is that the gradient projection algorithm has a stepsize
at its disposal. As long as the stepsize is well chosen, the algorithm will not shift large
amounts of flow to the shortest paths, thus avoiding the problem of overloading the shortest
paths associated with the shortest path algorithm. Intuitively, the gradient projection
algorithm does not over-react to good news (shortest paths) as well as bad news (long
paths). The algorithm will shift flows to shortest paths gradually over a number of updates.

This kind of conservative strategy will tend to reduce oscillations of the routing.

The convergence result is similar to that of shortest path routing, except that the
only sufficient condition needed for the long-term deviation from optimality to go to zero is
that the extent of violation of the many small users assumption tends to zero. This result is
important in practice, since the smaller the updating frequency the fewer the communication

resources which are used for forwarding update packets.

39

We chose to analyze the routing implemented by randomizing path assignments
at origin nodes. The main reason isb that this choice greatly simplifies the mathematics
and still provides an desired convergence result. As mentioned earlier, a deterministic path
assignment strategy produces flow statistics that are very difficult to calculate analytically.

We shall turn to that problem in chapter 6.

We first introduce different versions of the gradient projection routing algorithm in
section 4.2. The statistics of path flows which are needed in deriving and understanding
the result are presented in section 4.3. Some lemmas which are needed in the main proof
are reported in section 4.4. Two of these lemmas in fact show the descent property of the
gradient projection algorithm. Finally the convergence result is presented in section 4.5

along with some interpretations and its proof.

4.2 Algorithmic Variations

There are some criteria that a good routing algorithm should satisfy. First, the
routing variables, in our case, the desired flows, must be easily computable. Second, the
routing must adapt to the current load since load variations affect the network congestion.
Third, the desired flows should not be dependent on VC arrival and departure rates. In
practice, these rates may not be Poisson and actually vary with time. A robust routing

algorithm should not depend on the estimates of these rates.

We choose two versions of gradient projection algorithms for our analysis. Both are
adaptive in the sense that they both use the current path flows to compute the next desired
flows at an update. The first version is based on projection onto the simplex constraints
and is computationally more demanding than the second one. The second version is based
on projection onto the orthant constraints. Its computational overhead is almost equal to

that of the shortest path algorithm. We also briefly mention another version in which the

40

next desired flow is based on the current desired flows. This version is not so adaptive-it is

included for completeness purposes.

We assume that at time nT for each w € W, the desired flow z%,(n + 1) for the

next interval (nT, (n + 1)T] is computed at the origin node of w, using the equation

z,,(n+1) = [z4(n) - aM;l(n)dw(n)]Lw () " (1.1)
Here a is a positive scalar stepsize and M, (n) is a symmetric positive definite scaling
matrix, [])t!" (n) denotes the projection onto the simplex

Xw(n) =<z, : Z T, =ry(n),z, > 0,Vp € P,
pEP,

with respect to the norm ||-||ar, (n) induced by M,, (n). M, (n) is typically an approximation
of the Hessian matrix 32D/9z},(n) (for the purpose of increasing the convergence rate);
with such a choice the iteration becomes a projected quasi-Newton update. Since our
analysis does not concern with increasing the convergence rate, we shall not specify further

about M, (n). However, the following uniform bounds are assumed:
0<6I < My(n)<AI Vn,w, (1.2)

where § and A are positive constants and I is the identity matrix of appropriate dimensions.

In practice, the projection in the above algorithms can be computationally cum-
bersome. It requires the solution of a quadratic programming problem, for solving the
projection, at each update. However, if the scaling matrices M, (n) are diagonal, the com-
putational burden is only moderate. On the other hand, the second version which we now

introduce uses the orthant constraints onto which the projections are simply computable.

For each w € W, at each updating epoch nT, the desired flow z;,(n+1) is computed
as follows. Let B, be a shortest path in P, with respect to FDL d,(n), i.e.,
ds, (n) = min{d,(n) : p€ P,}.

41

Let
éw(n) = {zp(n) :PEPw,P¢ﬁw}; (2.1)
dw(n) = {dy(n) - ds (n) :p € Py,p#5,}. (2.2)

Assume that at time nT, a set of diagonal positive definite matrices M, (n) is given Vw € W,
M, (n) = diag (Mw,p(n)).
These scaling matrices also satisfy the following condition: Vw € W,n=0,1,2,. ...
0<6I< M,(n)<AI

where I is the identity matrix of suitable size. Then

£ (n+1) = [20(n) - ablz () du(n)] ", (3.1)
() =ru(n) = Y a(n+1), (3.2)
pEP, p#p,

where []* is defined by:

i — th element of [z]* = max(0, z;).

The third version is adapted from [TB]:

N R +
2u(n+1) = [(n) - b5 ()du ()],
zp (nt 1) =ry(n)— > zi(n+1). (4)
pEP,, P#DP,
The only place (4) differs from (3) is that in (4) the next desired flows are computed from
the current desired flows. This version is not as adaptive as the earlier versions in the sense

that the current flows are not used in computing the next desired flows, only the current

load r, (n) is used. We conjecture that a similar convergence result should be obtainable.

4.3 The Statistics of Path Flows

42

The key statistics needed for the subsequent proofs are the mean and variance of
transient path flows resulting from an update. Following [GB], we assume that each OD

w evolves like an M/M /oo queue with exponential servers at M. Service rate.

Consider an OD pair w. Let z},(n + 1) be the desired (target) flow computed at
time nT. During the interval (nT, (n + 1)T), all arriving VCs are assigned to path p € P,

with fixed probability u,(n):

. z3(n+1)
Nim = Vpe P, (5.1)

and the total number n, (n) of VCs by
* Tw (n)
Nw(n) = Z .N'p (n) = ? (52)
Tw
PEP,
Then the probability u,(n) is in fact a ratio of the desired number of VCs to the total
number of VCs :
Ng(n)

up(n) = m

We shall also need the normalized flow #, (n + 1) defined by

z, (n+ 1)7,

F(nt1) = B

(6)

Let z(n)(or F(n)) be the path (or link) flow at time nT resulting from the gradient projection

algorithm with the above randomized path assignment scheme.
Lemma 4.1 Foralln=0,1,2,...andw e W

Elry(n)] =Fu + e #="T[r,(0) — Twls (7.1)
Var[r,(n)] = 7, (1 - e—“"'"T) [Fu, + e #enTy (0)] . (7.2)

43

Furthermore, for each w € W, each p € P,,

Elz,(n + 1)|z(n)] = Z(n+1)+ e #T[z,(n) - Z;(n+1)], (8.1)

Var(z,(n + 1)|z(n)] = €7,, (1 — e7#=T) [Z}(n+ 1) + e+« Tzo(n)]. (8.2)

Proof. The first half of the result follows directly from Lemma A1l of [GB]. Now
each path can be represented by an M/M/oco queue with arrival rate Up (n)A, /€ and service

rate p,, by equation (A8) of [GB|:

BINy(n + Dla(n)] = Z22E 4 oo [,,() ——z(())]

Multiplying both sides by €7,,, it yields

Tung(n)

Bley(n+ Dla(n)] = =% + e+ [x,() (n)rw]

ny(n)

which is equivalent to (8.1). Similarly by equation (A9) of [GB], we have

Var[Ny(n + 1)|a(n)] = (1— e~#T) [i—‘()) + e-""'-’N,,(m] -

Multiplying both sides by €272 | it yields (8.2). Q.E.D.

The implication of the above lemma is that if the updating period is long as com-
pared to the VC time constant 1/p, (i.e. T — o0), the average flows will be close to the
long-term average (normalized) desired flows. Furthermore, if the extent of violation of
many small users assumption converges to zero (i.e. € — 0), the flows converge in mean

square to the average desired flows exponentially at the natural rate By

Alternately, the smaller the ¢ the smaller the variance of the flows. In the limit
¢ — 0, the path flows become essentially deterministic. The results (7) and (8) are in fact
one of the keys to show the convergence result Theorem 4.5. Also the results (7) and (8)

imply that the mean flows converge to the long-term averages.

44

We have seen that the convergence rate of the shortest path algorithm critically
depends on p (see Theorem 3.1). Without re-routing, there is no way for the routing
controllers to shift flows faster than the slowest VC departure rate. Hence the convergence

of the gradient projection algorithm cannot be much faster than the smallest P, 1€ .
We need to introduce another notation, the step at time n:
s(n) =z*(n+1) — z(n), (9)

which is the difference between the desired flow and the current flow at nT. Note that when
the routing algorithm converges to optimality, the desired flows should equal to the current
flows, i.e., s(n) = 0. Hence, an important part of the convergence proof is to show that the
step converges to zero in some sense. The next lemma gives a bound on the second order

terms in the Taylor series expansion of D.

Lemma 4.2 There exist positive constants A, — Ag depending only on system

parameter set A, such that Yn =0,1,2,...

B lz(n +1) - 2(n)|]*|a(n)] < Ase ; [(n+1) + e~ #Tz, (n)]
+ A (1|D|s(n)||2 +E (n+1) - 2* (a+ 1)?), (10.1)
and for all p € P
B [|&3(n+1) - zj(n+ I] < Ase+ A0, (10.2)

E [|la(n+1) - 2(n)|]*] < Ase+ 4;E [||s(n)||2] + Age—#nT. (10.3)

Proof. Consider any w € W, for any p€ P,,, n =0, 1,2,..., using (8), we get

E l2y(n + 1) - 2,(n)’[z(n)]
=Vat [z, (n+ 1)[z(n)] + [25(n) — E {z,(n + 1)|a(n)}]?

45

=67, (1 — e7#=T) [Zp(n+1) +e =Ty, (n)]
+ (1- e #T) (35(n+ 1) - z,(n))
<eF, (1 - e"“"T) [E;(n +1)+ e"“"sz(n)]

+2(1= e) oy (" + 55 (n+ 1) - 230+), (1

where the inequality comes from (9). Summing (11) over all p € P, we get (10.1). By (10),

the following inequalities hold for any w and any p € P,:

E EE;(n+1) = Fu,

PEP,

-

E|) zp(n)| = Elru(n)] < Fu + [ru(0) - 7,

pEP,]
2500 (1 72t2)]

rw
which is (10.2). Using the above inequalities and taking expectation on both sides of (10.1),

E [Z(n+1) - zi(n+ 1)[21 =E [

S A3€ + A4e_""T,

we get (10.3). Q.E.D.

4.4 Preliminary Lemmas

Several lemmas which are needed to show the convergence result are presented here.
Lemmas 4.3 and 4.4 are for the algorithm with the simplex constraints, whereas lemmas

4.3.2 and 4.4.a are the counterparts for the algorithm with the orthant constraints.

Lemmas 4.3 and 4.3.a are important in the sense that they show that a gradient
projection update is a descent step. More precisely, the lemmas show that if the flow at -
n + 1 is precisely the desired flow for n + 1, then the routing decreases a linearized cost
from n to n + 1 (the linearized cost is the first order Taylor series expansion of the cost at
time n). In the following lemmas, recall that « is the stepsize, 6 and A are respectively the

smallest and the largest eigen values of the scaling matrices.

46

Lemma 4.3 Forallwe W and foralln=0,1,2,...
6 2
{du(n), su(n)) < ——[lsu(n)|". (12)
Proof. Let M be a symmetric positive definite matrix. We define the inner
product < -,- >s and the associated norm || - |as by
<z, y>m=<z,My>,

lzllis =<z, M z > .

In RI¥l let [d];tf be the projection of d onto a closed convex subset G with respect to the

norm | - |[ar. By the definition of the projection [-]7, we have
(a-[d)}, M(z - [dy)) <0 Vreq,vd (13.1)
By substituting d by = + d in (13.1) and simple algebra, we have
(Md, [z +d]}, - 2) > |= - [a:+d]L”L ¥z € G,Vd. (13.2)

Applying (15.2) with

d=—aMj'(n)d,(n),

M = M,(n),
z = z,(n),
G = X,(n),

we get, by (2),
—a(du(n), 5u(n)) 2 |lsw(n)l3r, (n) > 6llsw(n)].
Q.E.D.

47

The next lemma provides a bound on the first order terms in the Taylor series

expansion of D,

Lemma 4.4 There exists a positive constant A7, depending only on A and

W, such that for all we W, for all n = 0,1,2,..., for any y € Xw(n),

(du(m), 2l (n+1) =) < v ()lsu ()] (14

Proof. Following the same notation as that in Lemma 4.2, let
z(e) = [z - ad]L.
By the definition of the projection, we have
(z ~ ad - z(a), M(y - z(a))) <0,
which implies
(2~ 2(a), M(y - 2(a))) < a(d, M(y - z(a))). (15)

Applying (14) with

d= Mujl(n)dw(n))

M = M,(n),
T = z4(n),
G = X,(n),

© we get

(du(m), 2 (n+1) -) < < (ou(n), M(y — 23 (n + 1))
< Zlisu(n)llly - 22 (n -+ D). (16)

48

But y,z;,(n+ 1) € X, (n) implies the existence of a scalar ¢ depending on w, such that

ly = za(n+1)|| < cru(n).

Combining (16) and (17) gives (14). Q.E.D.

(17)

The following lemmas 4.3.a and 4.4.a (for the gradient projection algorithm with

orthant constraints) correspond respectively to lemmas 4.3 and 4.4 (for the algorithm with

simplex constraints).

Lemma 4.3.a There exists a positive constant Ag, depending only on W and

6, such that for all w e W, for alln =0,1,2,...

< du(n),50(n) >< ~ 22 Jsu ().

Proof. Note that Vpe P,,p #p,,

0< —sp(n) < %"(n) (dp(n) — s, (n)) .

Hence

- Y @M -d)sm 2 Y R,

PEP, p#P, PEP, p#P,

which implies

> (dp(n)—ds.,(n))sp(n)s—g D lsp(n)?

PEP, p#p, PEP, p#p,

But

s5,(n) = - Z sp(n).

PEP, p#P,

Thus by the Cauchy-Schwarz inequality,

|55, ()| < lwlll3w (n)|I2,

49

(18)

(19)

(20)

(21)

where

§w(n) = {sp(n) 'pEPy,p# 5«;}

Also
2. (do(m) = d5_ (1)) 5p(n) = (du(n), su(n)). (22)
PGPW P#Eu
(20),(21) and (22) implies (18). Q.E.D.
Lemma 4.4.a There exists a positive constant Ao, depending only on A and

W, such that for all w € W, for all n =0,1,2,..., for any y € Xuw(n),

(du(m), 25 (n+ 1) = 4) < 2r () su(w)]]. (2)

Proof. Note that if £} (n + 1) = 0, then

%) = iy ((n) ~ d5(m)) ~ £3(n + 1) <,

and if £;(n 4 1) > 0, then

25(n) = oy (o) = di, () = £5(m +1) =0,

This fact implies that

(8o(n) = 13 (m)du(m) - 24 (n+ 1), Mu(n) (5 - 24 (n+1))) <0
where
9={vp :PE Py, p#P,}.

Thus, as in the proof of Lemma 4.4, we have

(=80 (n), B () (9 - 84 (n + 1))} < o (K152 (n)du (), KL (n) (5 — 22 (n + 1))

Hence

(du(n), 850 +1) = §) = {du(n), 24 (n+ 1) - y)
< Slu ()l - 2o (n+ 1.

50

(23) is true by noting the fact:
18w ()]l < {lsw ()],
1§ = 2u(n+1)|| < cru(n),

for a positive constant c. Q.E.D.

4.5 The Convergence Result

The convergence result states that the average network cost decreases at a expo-
nential rate which is bounded below by the slowest VC departure rate, to within a neigh-
borhood of the long-term optimal cost. If the stepsize is small enough, the smaller the
extent of violation of the many small users assumption the smaller the long-term deviation
from optimality. The bound on long-term deviation from optimality, m,._,ooa(n,e), is a
function of the stepsize and the system parameter set A, which includes the initial deviation

from optimality, the update interval, the smallest VC departure rate, and etc.

There are two major differences between the convergence result (Theorem 4.5)
and the counterpart (Theorem 3.1) of shortest path routing. First, the update interval
needs not to be small in order to reduce the long-term deviation from optimality. One
way to understand this property is to consider the update equations (2). With the stepsize
reasonably small, the gradient projection algorithm will shift only moderate amounts of flow
to the current shortest paths, during an update. Thus even if the update interval is large
as compared to the average VC holding time, the large number of the new VCs arriving
between the updates will not all be assigned to the shortest paths. Thus the problem of

overloading the shortest paths is avoided.

We can also consider a routing update as a step in a stochastic programming al-
gorithm. The algorithm moves the flows in a direction of decent based on the current

linearization of the cost. If the step results in a large shift of flows, the linearization may

51

not be good enough, the resulting flow would contribute to an increase in the cost. The
shortest path algorithm with fast VC departure rate (as compared to the updating fre-
quency) is committing the error of large step. On the other hand, the gradient projection
algorithm controls the amount of flow shifting by adjusting its stepsize, essentially indepen-
dently of the update interval (when the update interval is small, all the routing algorithms

move a small step).

The second major difference between the two algorithms is that the gradient pro-
Jection algorithms have an extra parameter, the stepsize, to fine-tune their performances.

The result says that the long-term deviation from optimality is a function of the stepsize.

Theorem 4.5 There exist a positive constant, ¢;, and a positive function

a(n, €) (which depends only on the system parameter set A and), such that Vn = 0,1,2, ...

—cie #"T < E[D(n)] - D* < e~*"T [D(0) — D*] + a(n,€), (24.1)
Ea(n,e) < co. (24.2)

Furthermore, there exists a scalar @ > 0 such that Va € (0,a], Ve < 1, the following is true:

(a)There exists a positive constant c; (which depends on the system parameter set A and

a), such that

Tim E[D(n)] — D* < cjet, (25)
lim Tim_E||s(n)|* =0, (26)

lim lim a(n,e) =0, (27)

e—0n—oo

lim Tim E[D(n)] = D*. (28)

e—0n—oo

(b) If, in addition, D;; is strictly convex for all (,) € L, then

lim lim E||F(n) — F*||2=0.

e—0n—oco0

52

The proof of Theorem 4.5 is fairly long and complicated, therefore we provide some
intuition here. Although our model is in continuous time, we can concentrate on the discrete

events of routing update.

Roughly speaking, our approach is to derive a linear first order dynamic system
whose state is an upper bound on the average cost. If the linear system is stable with
bounded input, we can compute the bound on the average cost easily by using the variation
of constants formula. To derive this linear system, we linearize the cost at each update
using the first order Taylor series expansion with remainder. So long as the average cost
has a sufficient decrease in one routing update, after taking into account the second and

the higher order terms, the system will be stable.

When the algorithm converges to optimality in the limit ¢ — 0, the step s(n) must
go to zero in some sense. If s(n) is zero, all the flows are on the shortest paths with respect
to the FDLs, which is the optimality condition (see [Bertsekas 1982d]). By Lemmas 4.3
and 4.3.a, if the step is small enough there will be a sufficient decrease in the cost. If the

algorithm converges, the cost cannot decrease forever, the step then must go to zero.

The proof is complicated by two factors. First, we have to ensure the effects of the
second and the higher order terms in the Taylor series to be small. Second, the loads r,, (n)
are varying stochastically. Our approach is to estimate these uncertainties by bounding

them and to show that these bounds only affect the main argument slightly.

Proof of Theorem 4.2. In this proof, the constants A; — A4 are positive and
depend only on the system parameter set A and perhaps a. We first show the inequality
(24). The left hand side follows directly from the beginning of the proof of Theorem 1 in

[GB].

53

To show the right hand side, take the Taylor series expansion:

D(n+1) < D(n) +) dp(n) (zp(n + 1) = 25(n)) + Asole(n+1) — z(n)||*, (29)
peEP

where A;¢ is a positive constant depending only on the system parameter set A. Let

z1(n) =) _ dp(n) (zp(n+ 1) — z,(n)), (30.1)
pEP
z3(n) = Apollz(n+ 1) - a:(n)||2. (30.2)

First we bound 2, (n) by using (8)

E[z1(n)|2(n)]

= z (1 - e_“"T) (dw(n)’i:u(n + 1) - x"’(n))

weW
= (1=e#T) [(du(n), 25 (n+1) = 24 (n)) + (du(n), &} (n + 1) — 2} (n +1))] .
weWw
(31)
By Lemma 4.3
(du(n), 23 (n + 1) — 24 (m)) <O.
Thus (31) can be strengthened to yield
E [z1(n)|z(n)] < 2z3(n) + 24(n), (32.1)
where
z3(n) = (1 - e_“T) z dp(n) (a::,(n +1) - ”p("))) (32.2)
pEP
24(n) = E (1-e#T) (dy(n), 25 (n+1) - 25 (n+1)). (32.3)

weWw
Let z* = {z}, : w € W} be any optimal deterministic routing, i.e.,
D(z*) = D*.

54

Let
— ZyTw(n)
2(n) = {Zu(n) Zuln) = 222 vy ey,
W
Hence Z,, € Xy (n), the simplex for the OD pair w at time nT. By adding and subtracting

terms, transform (32) into

E[z1(n)|z(n)] < 25(n) + 26(n) + 27(n) + 24(n), (33.1)
where
zs(n) = (1 - e—“T) Z dp(n) [:c;(n +1) - z,(n)], (33.1)
pEP
z6(n) = (1 - e7#T) Y " dy(n) [z} — z,(n)], (33.2)
pEP
zz(n) = (1 — e7#7) Z < dy(n),z; > (r,,, (m) -) (33.3)

weW
We shall now bound 24(n) — 27(n). First, observe that

[dw (2(n))]| < lldw (2(n)) — du(0)|| + [|dw (0)]]

<An) |lzu(n)] + Arz

weW
<A1z) ru(n) + Ans. (34)
wew
By (7)
E[ry(n)] < Ay, (35)
E [ry,(n)] = Var [ru(n)] + (E [ru(n)])* < Ass, (36)

B [[Fu = ru(n)]*] = Var[ra(n)] + (B [ru (n)] - 74)?
< Agze + A4€_"’nT. (37)

Now by Lemma 4.4, the Holder’s inequality and (36)

E[zs(n)] < A—E[3 ru(n)llsw n)u]

weW

> @2 (B’
A“Z((e mI?])*. (39)

55

By the convexity of D

zg(n) < (1 - e *T) (D* - D(n)). (39)

Using the Holder’s inequality, (35) and (37)

Elz(n)] < A E [Z |Fu = fw(n)llldw(n)llllxlﬂ]

< Ayz Z (E|F.,, - rw(n,)lz)% (E [Als E rw(n) + A19:|)

weEW wew

< Ago[Ase + Age™#nT] 5 (40)
Similarly by (34), (10.2) in Lemma 4.2, and (36)
Elz4(n)] < Az [Ase + Age#nT] % (41)
By (38)-(41), we now have

Elz1(n)] < (1-e™#7) [D* - E(D(n))]

1
2

+ Ana[Age + AgeenT] 4 220 > (B[ise]) (42
By (10.3) in Lemma 4.2
Blza(n)] < Asse + Az [|[s(n)][*] + Azse*"T. (43)
Combining (42), (43), and (29)
E[D(n+1)] < E[D(n)]+ (1 — e #T) [D* — E(D(n))] + b(n,¢), (44.1)
where
b(n,€) =Azse + AnsE [|ls(n)[|*] + Azse™#"T + Az [Age + Age#nT]?
+28 5 (B [lau(ml])? (44.2)

o
weW

56

By repeated application of (44), we get

E[D(n)] - D* < e **T[E[D(0)] - D*] + a(n,¢),

where

n—1
a(n,e) = Z b(i,e)e~#n—i-1)T,
=1

Since (44.1) is a stable linear system, and b(n, €) is bounded, the limit

lim a(n,¢)

exists. Thus completes the proof of (24).

To show (a) By Lemma 4.3

By Lemma 4.2 (10.1)

B [z2(n)la(n)] < Azae + s [ls(m)® + |12° (n+ 1) — 2* (n + 1)]*].

() < ~ 22 o(n)]”.

Thus (41), (48), (49), (29) imply

E[D(n + 1)ja(n)] < D(n) — (

with

Azg

220 — o) s(m)l* + z5(n),

z5(n) =Az) [{du(n), 2 (n+1) - 2% (n +1))]

weEW

+ Agge + Ago|Z*(n + 1) — 2*(n+ 1)||* > 0.

Choose a small enough so that

at0) = (

A
28 _ A,
a

57

) >0

(45.1)

(45.2)

(46).

(47)

(48.1)

(48.2)

Use convexity to get

D(n)+ > (du(n),z} — z4(n)) < D*.

weW
Hence
D(n) = D* < 3 (du(n),zu(n) — z4(n))
weW
= Y {{du(n),zu(n) — 25 (n+ 1)) + (du(n), 2% (n + 1) — Z, (n))
weW
+ <d‘w(n)a Ew(n) - :L';,) })
where
:l:,,,(n) — z:"_;:(l)

is a vector in

Xuw(n) = {zy : Z T, = ry(n),z, > 0}.
PEP,
Note that
(dw(n), zw(n) — z3,(n +1)) < [|du(n)|[|sw(n)]l.
By Lemma 4.4

(du(n), 23 (n+1) - Zu(2)) < Zry(m) lau(m)l,

(du(n), Zu(n) — z3) < Mu(mlIzullra(n) = 7u|

Tw

These inequalities lead to
E[D(n)] - D* < Asy (Ells(m)]?) + Ass [Ase + Age=#oT] ¥
Thus 3n; > 0 such that Vn > n,
B[D(n)] = D* < Ass (Ells()|)* + Anse?. (49)
Rewrite (49) into, with As4 > 0, and Ass > 0, which depend on a,

As4{BID(n)] - D*} - Asse < [A(e)El|s(n)||?] . (50)

58

We can bound (48) by, using Lemma 4.2,
E[D(n+1)] £[D(n)] - A(a)E||s(n)[|* + Agee + Agze™*"T

S
+ A38([A3€ + A.;e‘“"] 2)
Now, by (48), there exists ny > n; such that Vn > ny, Ve < 1

E[D(n +1)] < E[D(n)] - A(a)Ells(n)|* + Asoc? .
Let Agyg = (Agg)% . Suppose that, for all n > n,,
E[D(n)] — D* > (Asa) "' {(Ass + 1)e? + Agoet},
then
A34{E|D(n)] — D*} — Asse? > &3 + Agqet.
By (50)
A()B|s(m)|? > (% + Aswet)? > e + Agoc?,
which implies
E[D(n+1)] - E[D(n)] <e.
The above facts now imply that
Tm E[D(n)] - D* < (4se)™* ((Ass + 1)et + Agoet) + Aget,

which is essentially (25).
(28) follows trivially from (25).
By (51),

Bls(m)|* < (A(2))™* { B[D(n) ~ B[D(n +1)] + Asoe? .
Thus

lim lim E|s(n)|* =0,

e—0n—oo

which implies (27).

(b) is proved by the end of the proof of Theorem 3.1. Q.E.D.

59

(51)

CHAPTER FIVE
ASYNCHRONOUS GRADIENT PROJECTION ROUTING
WITH RANDOMIZED PATH ASSIGNMENT

5.1 Introduction

The convergence result of distributed asynchronous gradient projection routing with

randomized path assignment is presented in this chapter.

We first discuss the fundamental issues of asynchronous routing and the approach
used to show the convergence result in section 5.2. We also present an example showing
the non-convergence of the routing algorithm, under the condition that the time between

consecutive receptions of flow measurements is unbounded.

Some preliminary lemmas which are needed to prove the convergence result are
presented in section 5.3. Lemma 5.2 gives the descent property of the gradient projec-
tion algorithm. Other lemmas are the estimates about the uncertainities in the routing

environment.

The convergence result, its proof, and interpretations are presented in section 5.4.
The gradient projection algorithms we consider in this chapter are similar to the algorithms
of chapter 4 with either the simplex constraints (equation (1) of chapter 4) or the orthant
constraints (equation (3) of chapter 4). The only difference is that the FDLs d,,(n) are now
replaced by the estimated FDLs 7, (n). We shall only present the proof for the algorithm
with the simplex constraints— the proof for the algorithm with the orthant constraints is

only a slight modification of the proof presented in this chapter.

5.2 Fundamental Issues Of Asynchronous Routing

60

There are several reasons why practical routing should be asynchronous. First,
the routing should adapt to sudden large flow fluctuations. At a sudden surge of local
congestion, the routing controller should have the freedom to perform an update in an
effort to reduce this local problem, without waiting till its next designated update time.
Second, the forwarding of control packets (containing flow measurements) has unpredictable
delays. If the delays are predictable, a global controller can order the updating times for
each local controller, in an effort to solve the global optimization problem with a strict

coordination among the local controllers.

The asynchronous case is more complicated than the synchronous case in many
aspects. First, in the asynchronous model we do not assume perfect measurement of link
flows. As a result, the FDLs for all links, which are needed for computing the routing
variables at an update, is usually inaccurate. Furthermore, the link flow measurements
will be forwarded to all nodes that need this information, with a bounded delay. Also the
routing controllers for each OD pairs perform updates not in synchronism with each other.

All these particularities add to the complexity of the analysis.

In practice, each routing controller at the nodes of the network has its own local
memory storing the information needed to perform a routing update. These controllers
together are to solve a global optimization problem to attain an optimal routing. The first
problem that arises is how to guarantee that their information is mutually consistent so
that they are together solving the same global problem. This problem is in fact a kind of

agreement problem in fault-tolerant computing.

For quasi-static routing, this agreement problem causes little concern for us. We
assume that the network is reliable and all the link flow measurements are broadcast to all
nodes in the network with a bounded delay. Such a broadcast mechanism ensures that each

controller has approximately the same information. If all the controllers stop updating and

61

the load is kept constant with the broadcast mechanism running, the flow estimates at each
node will agree with each other in a bounded time. Thus, the agreement problem is in a

sense trivially solved.

The proof technique for showing the convergence result is that of [TB]. Two keys of
this approach are the small stepsize and the assumption that the time between consecutive

receptions of flow measurements is bounded.

The Need For A Small Stepsize

In the synchronous case, the main reason that the stepsize must be small is that a
small stepsize ensures the linearization of the cost at each routing update to be good. In the
asynchronous case, there is one additional reason for a small stepsize: the flow estimates
at each routing updates are inaccurate and possibly quite out-of-date. If the algorithm
moves the flows slowly then the flow estimates at each node will become more accurate
and up-to-date. With a more accurate flow estimate, the algorithm has a better chance of

decreasing the cost at each update.

The Need For A Bounded Time Between Measurement Receptions

The problem with an unbounded time between consecutive measurement receptions
is that the flow estimates available at local nodes may be far out-of-date. We provide here an
example, which is simpler than that in [TB], to show the non-convergence of the algorithm
without this boundedness assumption. Consider the following simple network. There are
two OD pairs: w; = (1,4),w; = (2,4), each with two paths, one via link a3, the other via
link a4. Assume that both links as and a4 have a capacity of 2.01, and both links a; and
a2 have a capacity of 10.0, each OD pair has an input traffic of 1.0. Suppose the link cost

D, for a link a is given by the average queue size for an M /M/1 queue:

F,

Da(Fa) = C—F

62

where F, and C, are the link flow and the capacity of the link respectively.

b
Figure 5.1 The Simple Counter-Example Network -

It is obvious that an optimal routing must have both links a3 and a4, each carries
a flow of 1.0. Suppose that the initial loading is that both OD pairs send all their traffics
through link a3. Let node 1 and 2 both carry out a large number of gradient projection
updates without receiving any new flow measurement updates. Assuming fast VC departure
and arrival rates, at the time of next measurement reception, all the traffic will be going
through link a4. If the nodes receive the same measurements, and the next measurement
updates and receptions are again very late, all the flows will be sent through link a;. In
this manner, the routing will oscillate just like a shortest path routing with long update

intervals, and convergence to optimality is impossible.

5.3 Preliminary Lemmas

As the approach of proving convergence of the asynchronous algorithm is similar
to that of the synchronous version, we need the corresponding counterparts of Lemmas 4.3,
and 4.4. The first lemma provides the descent property of a step in the gradient projection
algorithm, while the second lemma gives a bound on the first order terms in the Taylor

series expansion.

To deal with the particularities in the asynchronous case we need to bound the extra

uncertainities in the network. These uncertainities include inaccurate flow measurements

63

and delays due to broadcasting. The lemmas 5.3 and 5.4 serve this purpose.
Lemma 5.1 (c.f. Lemma 4.3) For all w € W and for all n € T,
6 2

{1w(n), su(n)) < ——|lsu(n)|". (1)
Lemma 5.2 (c.f. Lemma 4.4) There exists a positive constant A;, depending

only on A and W such that for all w € W, for all n € T, for any y € X,,(n),

* Al

{nw(n), zu(n +1) — y) < —ru(n)lsu(n)] (2)

The proof of Lemmas 5.1 and 5.2 are omitted because they can be derived by simply

modifying the proofs of Lemmas 4.3 and 4.4.

Lemma 5.3 There exist positive constants A, — Ag depending only on the

system parameter set A, such that Yn =0,1,2,...,Vw e W

Elllzu(n + 1) = zu(n)|]*] < Aze + A3E|jsu(7w(n))]|® + Age™ 2T, (3)
Bz (n+ 1) - 84 (n + 1| < Ase + Age 277, (4.1)
E[Irw (n) - ?wlzl S A5€ + A66_2“nT. (42)

Proof: Fix any w we have
lzw(n+1) = zu(8)]]* < 2l|zu(n +1) = 25, (n + 1)||* + 22w (n) — &5 (n + 1)| 1%

For all p € P,,

E [|z,(n) - £5(n + 1)|? | 2w (fw(n))]

=Var[z, (n)|zw(Rw (n))] + [E{zp(n) 2w (Fw(n))} — £;(n + 1))

=67, (1 = e #e T e lN) (3 (n 4 1) 4 e #e T (g, (71, (n))]

+ (7T Pe M)2 (g, (7 (n)) — £5(n + 1))
<7y (Z5(n + 1) + 2p(Aw(n))) + 2|8p(Fw(n)) |2 + 2| Ex(n + 1) — 23(n + 1)[”.

64

Hence

Elllzo (n) - &4 (n + 1)|Y] € Are + 2E]|sy (R (m))|]? + Age=24"T.

Similarly
Ell|ew(n) — 2, (n + DII*] < Aze + 2|54 (T (n))||* + Age™?#T.
Now (3) follows. (4) follows immediately from Lemma 4.1. Q.E.D.
Lemma 5.4 There exist positive constants Ag — A;; such that for all OD pairs

weW,and foralln=0,1,2,...,

C
< 4o) le(n+m—1) - z(n+ m)], (5)

m=1

22 (m) = oln)

ll7w(n)|| < Aso Z Z rw(n —m)+ Aj. (6)

m=1weWw

Proof:

|32 () = nutm)

- “:le,(n) = N (Ru(n)) ‘

< A max |Fij (R (n)) — Fij(n)|

SApmax max || Fi(m) - Fiy(n)|

<4y max_|lz(m) - z(n)]|
c
< Ag Z |z(n — m+1) — z(n — m)||,

m=1

which is (5). To show (6),

lImw (m)ll <

(30 - 50 + | 22)
< A3 max | i k(B (n)) = O] + Ay

< A13 max |F,J (m) Ol + A11

%, n— C<m

<4y Icn<ax< llz(m)[l + A1z

<A102 E ru(n—m)+ Ay

m=1weW

65

Q.E.D.

5.4 The Convergence Result

The convergence result is similar to that of the synchronous case. The major

difference is the convergence rate estimate.

The convergence rate estimate clearly reflects the effect of asynchronism. We see

that the convergence rate estimate () satisfies
e T < B(m) < 1, Vn=0,1,2,...

Also 3(7) increases to 1, or the convergence rate becomes slower, as 7, the bound on time
between consecutive updates, goes to infinity. This is intuitively obvious. As the routing

updates become slower, it takes longer to advance to optimality.

Note that the long-term deviation from optimality is now a function of C, a bound
on measurement periods, delays in control packets and time between consecutive routing

updates. The proof reveals that the larger the C, the larger the long-term deviation.

Theorem 5.5 There exist a positive constant, c;, and a positive function

a(n,) (which depends only on the system parameter set A and o), such that Vn = 0,1,2, . ..

—c1e*"T < E[D(n)] - D* < B(7) [D(0) — D*] + a(n,é), (7.1)
B(R) =1-e M (1 - e~#T), (7.2)
Ea(n, €) < oo. (7.3)

Furthermore, there exists a scalar @ > 0 such that Ya € (0,@], Ve < 1, the following is true:

(a)There exists a positive constant c; (which depends on the system parameter set A and

a) such that

Tim E[D(n)] — D* < cet, (8)

66

limy T Blou(mu () = 0,V € W, ©)
li_l}tl) '}Lngoa(n, €)=0, (10)
lim ,,ILHJOE[D("')] = D*. (11)

(b) If, in addition, D;; is strictly convex for all (1, 7) € L, then

. T _ |2 —
ll_r.%nll.ngoE”F(n) F*||*=o0.

Proof:

First we show inequality (7). The left-hand-side is shown by the beginning of the

proof of Theorem 1 of [GB]. To show the right-hand side, take the Taylor series expansion:

D(n+1) < D(n)+ Y <du(n),zu(n+1) - z4(n) > +As4]|z(n + 1) — z(n)]|*.

Rewrite the above inequality into

D(n+1) < D(n) + z1(n) + 23(n),

where
z1(n) = D < nu(n),zuln +1) - z,(n) >,
weW
z22(n) =) <du(n) - 1u(n),zu(n+1) - z4(n) >,
weW

z3(n) = Aua|z(n + 1) - z(n)||*.
By Lemma 4.1,

Elzy(n +1)|zw(fu(n))] = &, (n + 1) + e #eT=Fe) (4 (7, (n)) — 5 (n + 1)),
Elzw () 2w (0(n)] = £ (n +1) + e Tl (5, (1, (1)) — 5 (n + 1)).
Hence

Elz1(n)] =E[) (< nu(n), 24 (n + 1) - 24 (u(n)) >
weW

+ < u(n), 55 (1 + 1) 24 (Fu(n) >)e #eTOTEN (1 _ =paT)]

67

With the above expression for E[z;(n)], we can write
Elz1(n)] = E[z4(n)] + Elzs(n)],
where

za(n) = D <nu(n),zy(n+1) - 2y (Fu(n)) > e e T=Felm)(] _ g=neT),
weW

z5(n) = Z <nw(n),zy,(n+1) —z4(n+1) > e'“"T(“_i"’(”))(l —e kT,
weW

Now by Lemma 5.1 (3), Vw € W,
< ny(n),zy(n+1) — z,(7,(n)) >< 0.
Hence z4(n) can be bounded by

z4(n) < (1 — e7#T) e~ MTR Z < nw(n),z5,(n+ 1) — 24 (7, (n) >,
weW

where we recall
p=min{p,},
M= mu?x{uw}.

z4(n) is still not in the form that can be easily bounded. Thus we add and subtract terms

to get
24(n) < (1- e7#7) ™M™ [26(n) + 27(n) + 28(n) + 25(n)),
where
zg(n) = E < nw(n),zy(n+1) — Z,(n) >,
weW
z7(n) = E < nw(n),zy, — 24 (n) >,
weWw
z(n) = D < nu(n),Fu(n) -z >,
weEW
z9(n) =) < nu(n),zu(n) - 2u(7u(n)) >,
weW

68

z* is any deterministic optimal routing, i.e.,
D(z*) = D*,

and

Zu(n) = Ty,Tw(w(n)))]

Tw
We further expand z;(n):

27(n) = 210 + z11(n),

where
Zi0 = Z < dy(n),z; — zu(n) >,
weWw
z11 = Z < nw(n) — du(n),z;, — z,(n) > .

weW

Now we shall bound E[z;(n)], for ¢ = 2,3,5,6,8,9,10,11. First, we bound E[(n)]
for ¢ =6,8,5,10. By Lemma 5.2 (2)

20(n) < 213 ru () lsu(mu (W)

By the Holder’s inequality

Blzo(n)] < 222 2 (Bl (12)
Note that . _
z5(n) =) <nu(n),z, > rw(nw(:)) —*
weWw w
< 3 Ina(leg o) =Pl
wewW

By (2) and the Holder’s inequality, we get

Elzs(n)] < D Asg[Ase + Age 247 (T |1 (13)
weEW

Similarly

25(n) < (1= e™T) 3 fnu ()23 (n-+ 1) el =Pl

weW

69

which implies

E[Zs(n)] < Z A17[A55+Aee_2“iw(")1']%_
weWw

By the convexity of D,
E[z10(n)] < D* — E[D(n)).
Now we bound E[z;(n)] and E[z1;(n)]

z3(n) = Z <dy(n) = nw(n),zu(n+1) — z,(n) >

weWw
< D lldu(n) = tw(n)flzu(n + 1) - zu(n)]|
weEW
C
< A1 > fla(n— m+ 1) = 2(n — m)llllz(n+ 1) — z(n)]

C
< 241 3 llz{n = m+ 1) = z(n — m)| + [lo(n + 1) - a(n)]

m=1

c
<A1) lle(n—m+1) - z(n - m)|?,

m=0

where

and the second inequality comes from Lemma 5.4.

Now by Lemma 5.3,

c
Elz2(n)] < Azoe + Azye72#"T 1 A,, Z Z E||sw(ftw(n — m))||%.
m=0wecW

By the Holder’s inequality,

Elzu(n)] < Y (Ellnw(r) — du(m)l|2)? (Ellal — zu(n)]?)? .

weW

Note that 3A33 > 0, such that we W, pe P,,
Ellz; — zp(n)|*] < 2E[(z})* + 1}, (n)]
< Ajgs.

70

(14)

(1)

Hence, using Lemma 5.4,

Elz11(n)] < Az D (Ellnw(n) - du(n)]?)*

weWw

< Agg (E [(Z |lz(n — m+1) - z(n - m)”)])

< AysC (E lz lz(n —m+1) — z(n — m)||2J)

W=

c
< Agg (A4 Z Z E||sw(fiw(n — m))||2 + Ase + A4e_2“”T) , (17

m=1wew

where the third inequality comes from the Cauchy-Schwarz inequality.
Lastly, we bound E[z3(n)] and E[z9(n)]. By Lemma 5.3,

Elzs(n)] < Are Y (AsEl|su(Ru(n)||® + Aze + Age=2#7T) % (18)
weW

Also
Elz9(n)|zw(fow (n))]

= > <nu(n),#(n+1) - z4(Fu(n)) > (1 — e #eT=Ru(n))
weWw

< S lInu IIEL (0 + 1) = 2 [()| + llsw (o (W)} (1 — e=MT5).

weEW
By the Holder’s inequality, (6), and (4.1),

Efllna (mlIE%(n + 1) = 2o @u()Il] < (Ellnem)2)?* (BI&% (0 + 1) - zu(mw (n)]2)
< Agr(Ase + Age~ 2471,

By the Holder’s inequality again

Elllnw (m)llsu (Fu (M)I] < Aar (Ellsu(ma(m)]2)* .

The above two inequalities imply

Blzo(n)] < Azs(Ase + doe ")} + A3s > (Bllsu(@u(m)|?)?. (19)
weW

71

Finally, by combining inequalities (12)-(18), we get

E[D(n+1) < E[D(n)] + (1 - 7#T) e"™T7[D* — E(D(n))] + b(n,¢),

where
3 _ 1
b(n,¢) = Azoe + Asy (Ase + Aoe ™) ¥ + Agy Y (Ase + Age™ (W)
weW
+ A32 (143.E”Sw(ﬁ‘w(n))”2 + A2€ + A4e—2unT) 2
c
A 1
s) D Ellsu(@u(n - m)|I* + (7 * Azs) > (Bllsu(ma(m)])*
m=0 wew wew
Hence,

E[D(n+1)] - D* < (1 - e ™™ (1 - ¢#T)) [E[D(n)] — D*] + b(n,¢).

Repeated application of the above inequality yields

E[D(n)] - D* < g"(7)[D(0) — D*] + a(n,¢),

where
n—1]
a(n,e) = Y AP @)b(i, €).
i=1
Since b(n,) is bounded,
g aln.e)

- exits. Thus completes the proof of (7).

To show (a) we have to bound z4(n) differently. By Lemma 5.1, we have

24(n) < (1 - e#7) e MT7 2 5 oy (mu ().

(20)
wew

Using (20), (14), (18), (18) to bound E[z4(n)], E[zs(n)], E[z2(n)], E[23(n)], we get

C
E[D(n+1)] < E[D(n)] - %Ellg(n)ll2 + 433) E|[s(n — m)|?

m=0
+ Agoe + Agge™ 2T Ar7(Ase + ABe_zlmT)%: (21)
72

where
5(n) = [sw (Aw(n)]yew -

Choose a small enough so that
A(a) = (m - A33> > 0.

Now by the convexity of D,

D(n) - D* < Z < Nw(n), z4(n) — =, >

- w§{< dy(n) = 1w(n), zu(n) = o4 > + < ny(n), zu(n) — 24 (n+1) >
+ :f::(n),z;(w D-Zo(n) >+ <mo(n)Zuln) -2l >. (22)
By Lemma 5.4,
"%:V < dy(n) — 7w (n), zu(n) — 2, >
< Ase mZ: ll2(n = m+1) = z(n— m)|| 3 |lzu(n) - 25|

weWw

C
< 4s7) lla(n—m+1) - o(n - m)|fl=(n) - z*||.

m=1

Hence,

B Z < dy(n) = nw(n),zu(n) - zj, >]

weWwW

c
<Aazg Z (Ellz(n — m +1) — z(n - m)||*)*

m=1

C
1
<Az Z [E||5(n — m)||2 + Agoe + A41e_2“T"] 2

m=1

C
SAso Z (E|I§(" - m)Hz)% + Ag2 (A4o€ + A4le_2“T")% . (23)
m=1

73

Now we bound the second term of (20),
E[< nu(n),z0(n) — zi,(n + 1) > |24 (Rw(n))]
=< nu(n),zl(n+1)—zyu(n+1) >
+ < Ny (n), 2y (A (n)) — 25 (w(n) + 1) > e #eT(r=Tu(m)
=<nu(n),zy(n+1)—zu,(n+1)>(1- e—u..T(n—ﬁ,,(n)))

<M (n)asw(ﬁw(n)) > g buT(n—Tu(n))

Hence,
5[% <mohentn -zt |
weW
< Aus(Ase + Age ™" T)E 1 Ay (B|[5(n)]%)}.
Also,

E [Z < nw(n),zy(n + 1) = [l2(n + 1) - z(n)||(n) >}

weW

<E [) %rw(ﬁw(n)nww(m(n»n]

weW
< Ass (Ells(m)]?)?.

By a similar argument, the fourth term in (22) is bounded by
E [Z < nw(n),z,(n) — z, >] < Age(Ase + Age 24T,

weW

Now (22)-(26) imply

E[D(n)] - D* < Ass) _ (Ells(n — m)||?)*

m=1
+ Aur(Ase + Age ") + A4y (B|5(n)][%)3.
Thus there exist positive constants A4g, A4 and n; > 0, such that Vn > ny,
¢ 1 1
E[D(n)] - D* < Ags Y _ (El[s(n— m)||?)% + Agoc?.

m=1

74

(24)

(25)

(26)

(27)

Now there exists a positive constant Asg such that we can rewrite (27) into

1
C 2
Aso[E(D(n)) — D*] — As1e? < [A(a) > E|fs(n - m)||2] : (28)
m=0
Now using (21), there exists ny > n; such that for all n > ny, Ve < 1,
A 1
E[D(n +1)] < E[D(n)] - == E|[s(n)||* ~ AssE[l5(n — m)||* + Asse?. (29)

Repeating (29) we get

E[D(n)] < D(0) + nzl ZC: [(At A33>] E|[s(i — m)||? + 2252_¢3

= = a(C+1) C+1
= D)+ 3400, (30)

=1

where
¢ A
o _ =(s _ 2 53 1
.<1(=)—mz__:0 A(a)E|[3(: — m)||* + critt

Let

Ass = (As3)?.
Now for alln > ng, e < 1, if
E[D(n)] = D* 2 (Aso) *[(As1 + 1)e? + Asze],

then

Aso(E[D(n)] — D*) — As1e% > % + Agget.
By (28)

c
A@) Y E|fs(n — m)||? > (e + Asset)? > € + Agpe?,

m=0

which implies
g(n) < —e.
Thus
Tim E[D(n)] - D* < (4s0) *[(As1 + 1)e? + Asset],

which is (8). Now (9), (10), and (11) can be proved by using the same argument as that of
Theorem 4.5. Q.E.D.

75

CHAPTER SIX

THE PATH ASSIGNMENT PROBLEM

6.1 Introduction

The VC path assignment problem and gradient projection routing with metered

path assignment are studied in this chapter.

By nature, the VC path assignment problem is a dynamic routing problem in the
sense that the assignment (routing) is based on the instantaneous state of the network.
More precisely, the paths are assigned on the basis of the routing variables determined at
the latest routing updates, i.e., the desired flows, and the instantaneous number of VCs on
each path. The problem is formulated as an optimal queueing control problem in section

6.2. Dynamic routing problems are generally known to be difficult [Ephremides et.al. 1978].

We study the path assignment for two purposes. First, we need to design a best
assignment policy so that gradient projection routing can perform well. Second, we need
to analytically compute or estimate the statistics of the path flows resulting from such
a policy. These statistics are crucial in the convergence proof since they determine the

transient behavior of the path flows during a routing interval.

The sum of the square of the difference between the actual and the desired VC
numbers on each path at the end of a routing interval, is a natural cost for the queueing
control problem. Intuition suggests that an optimal control should take the VC departure
and arrival rates into account. Although we have not found an optimal control, we have
found that a control based on the deficiency in the desired numbers of VC is good in some
sense. In fact we analytically estimate the quadratic cost resulting from our metering rule
based on the deficiency. At steady-state, we show that this rule incurs a smaller cost than

the randomized policy.

76

With the estimates of the quadratic cost incurred by the metering rule, we upper
bound the first and the second order statistics of the transient flows resulting from a routing
update. With these bounds, we show a similar convergence result of the gradient projection
algorithm with the simplex constraint, except with an additional condition. The added
condition is that, either the scaling matrix I\;Iw(n) is a scalar multiple of an identity matrix,
or the routing interval must be sufficiently long. We believe that this added condition
is unnecessary; it arises because we are only using bounds on the first and the second
order statistics on the trahsient path flows. Should these statistics or tighter bounds be

analytically available, the added condition would be discarded.

6.2 The Path Assignment Problem

We first motivate the path assignment problem by considering the first step in the

convergence proof of Theorem 4.1:

D(n+1) <D(n)+ Y < du(n),zw(n+1) —z,(n) >
wew

+ Zllatn+1) - 2(m)|?,

<D(n) + E <dy(n),zu(n+1) — z,(n) >
wew

+L{|lz(n +1) — 2*(n + 1)|I* + ||z*(n + 1) — =(n)||*}.

We need to compute analytically the expectation of the above first and second order
terms of z(n + 1) — z(n). Since z;(n + 1) is proportional to N}(n+1),Yp € P, we would
like to bound the following quadratic term,

E[) (Np(n+1) - Ny (n+1))?,
pEP,
which shall become the cost for the path assignment problem. Once this quadratic cost is

found, we can use the Hélder’s inequality to compute the first order term, which is shown

in lemma 6.4.

77

We now reformulate the problem, for any OD pair, as an optimal queueing control
problem. Consider a queueing system with [queues and each queue having an infinite
number of exponential servers with service rate p. Assume that the desired numbers of
customers Ny, k=1,2,... ,i are given and known to the controller. The customers arrive
at a Poisson rate A, and each customer is to be assigned by the controller to be served at
one of the queues, upon arrival. At time ¢, the controller observes the system state, i.e., the
number of customers at each queue, and make the control decision, uk(t), the probability of
assigning the customer arriving at t to queue k. The controller does not have the knowledge

of either A or u. The objective is to minimize the cost:
I
E*[D_(N(T) - N})?),
k=1

where T is the terminal time, and E*[] is the expectation conditioned on the control u(t),

and the system is started at time O with arbitrary initial conditions.

First we recall that Ephremides, Varaiya, and Walrand (1980] solved a similar
problem. They considered two queues, with each queue having an identical exponential
server. They proved that sending the arriving customers to the shortest queue optimizes a
certain cost. As our‘ problem is quite similar to theirs, a natural guess of the optimal control
would be sending the arriving customers to the relatively shortest queue, with relative queue
size measured by

Ni(t) — N;.

We shall call this rule the deficiency rule.

This rule is in fact very natural. Consider the case where a customer at ¢ is to be
added to the system, the immediate resulting cost is minimized if the customer is sent to
the queue with the most negative N(t) — Nj. Alternately the marginal cost of adding a

customer to queue k at time ¢ is precisely 2(Ny(t) — N;)+ 1. This observation suggests the

above deficiency rule.

78

Is this deficiency rule optimal in minimizing the quadratic cost? We doubt it is.
Consider the following scenario: two queues with N;(0) = 999, N,(0) = 1, N} = 1000,
N3 = 2, and there is only one arrival followed by one departure to occur between [0, T].
Clearly, the arriving customer can be sent to either one of the queues, according to the
deficiency rule. However, the cost incurred due to the assignment to queue 1 is about 2
whereas the cost incurred by the assignment to queue 2 is about 4. In the calculation we
have assumed that the departure at a queue occurs with a probability proportional to the
queue size. The problem with the deficiency rule is that it does not take into account the

different departure rates.

The above scenario suggests that an optimal control should estimate u or even X in
an effort to base its control on the expected queue length at the next arrival or the terminal
time T. However, the result of Ephremides et. al. [1980] suggests that an assignment
policy based on expected queue lengths can often be non-optimal. Thus, we believe that an
optimal control must have a different form than what we have considered so far. However,

In practice, the metering rule should be simply implementable. The deficiency rule certainly

meets this requirement.

We need additional notations to present the bounding result. Let E[.] represent
expectation conditioned on the deficiency rule for the subsequent development. Let V' (t)

be the quadratic cost incurred at time t:

1
V() = D E[(Ni(t) - N7)*.
k=1

Let u(t) be the deficiency rule. Let N be the initial total number of customers in the system

satisfying the equation:
I
N=>"N;.
k=1
We denote the queue size vector at time t by N(t). Let the long-term average number of

79

customers be N:
~ A
N=—,
I

which comes from the Little’s rule. Define the normalized desired number of customers to
be 1~V,: :

.. NiN
Nk= N .

In most of the equations presented in the rest of this section, the equality or inequality holds

true almost surely. However, for simplicity we omit the phrase a.s. in these equations.

The approach we take is to find a first order differential inequality which V(¢)
satisfies. The trick is to use the first order Taylor series expansion on the conditional

expectations.

Theorem 6.1

i
d%V(t) < 2V () + 2,;E[k2=:l N()]IN - F|+ .

Proof: Fixany 0 <t < T, consider any 0 < h < T — ¢t small enough,

V(t) = E[E[Q_ (Nt + k) — NN (2)]).

Expand the conditional expectation in the above equation by the Taylor series expansion:

l
E[) (Ni(t+ k) - N3)*|N(t)]
k=1

l
= > {(Nu(t) - N)?(1 - hulNi(t) — hAug(?))
k=1

+ (Ni(t) — Ni — 1)hulNi(t) + (Nk(t) = Ni + 1)2RAui(t)} + o(h?).
Simple algebra leads to
E[V(t+h)|N(t)]

l
=D {(Nu(t) = NQ)[(Nk(t) - Ni2) = 2ulNy(t)h + 2Au(t)h]}
k=1

+ huE[i Ni(t)] + hX + o(h?).

80

We can factor out V' (¢) in the above equation to get

EV(t+ h)|N(2)]

4
=E{D_ (1 - 2hp)(Ny(t) - N})?
k=1
+ 2hp(Ni(t) — N2)(Nui(t) - N7)}
l
+ huE[Y | Ni(t)] + hX + o(h?).

k=1
Henee V(t+h) = (1- 2h)V (&) + 2uE[E[z: (8) + 22(8)| N (1))
+RAE]) Ni(t)] + o(h?),
with)
L N*
21(0) = F 3 (Wult) - M) (us() - 2E), (1)
k=1
{
(1) = 3 (Nult) - MR - VD). (2)
k=1

We now bound z;(t) and z;(t). From (1) it is clear, due to the fact that %’:- are non-negative
numbers summing to unity, that if u,(t) = 1 for some j satisfying

. — . N t _ *

j = arg min [Ni(t) ~ Ny],

then z,(t) < 0. To bound z,(t), note that

Ny
N

i
2(t) = (N = N) Y _(Ni(t) - V)

< E[D Ni(t)]|N - N|.

Hence the result follows by taking the limit A | 0. Q.E.D.

An alternate metering rule used in practice is the following rule (referred to as the
fraction rule): a customer arriving at time ¢ is assigned to queue ¢ where
t{ =arg min Nk—(t)
k=12,.0 | N¢ |~

81

Note that this rule does not minimize the term 2,(t) in (1). The deficiency rule is optimal

in the sense that it minimizes z;(t).

The above result has an interesting corollary when N = N. The corollary says that

if the queueing system has reached a steady-state, then metering is better than randomiza-

tion.
Corollary 6.2

Let

!
Vi(t) = E[Z(Nk(t) — N;)?|u(t) = the deficiency rule],
k=1

!
Va(t) = E[Z(Nk(t) — N¢)?|u(t) = randomization],
k=1

e(t) = Vi(t) — Va(t).
Suppose N = N, then e(t) satisfies the differential inequality:

%e(t) < —2pue(t).

The proof of the above corollary is omitted as it can be easily derived using a similar
argument to that of Theorem 6.1. Assume the condition of the above corollary and that
€(0) = 0, then it is clear that e(t) < 0, for all t > 0, i.e., the deficiency rule incurs a smaller

cost than the randomization rule for all time.

6.3 The Convergence Result With Metered Path Assignment

By studying the proofs of the convergence results (Theorems 4.5 and 5.5), we note
that there are two crucial steps. First, the first order terms must constitute a negative
quadratic term of s(n), and be inversely proportional to the stepsize a. Second, the second

order terms must be proportional to a quadratic form of s(n) plus terms which decay to

82

zero as € — 0 and n — oo. Thus we only need to show modified versions of lemmas 4.2 and
4.3. We will omit the asynchronous case since the lemmas and proofs are more complicated,
yet provide little additional insight. The reader can easily generalize the lemmas 6.3 and 6.4

in this section, and follows the spirit of the proof of Theorem 5.5 to obtain the convergence

result for the asynchronous case.

With the result of Theorem 6.1, we show the bounds for the second order terms in

the following lemma.

Lemma 6.3 (cf. Lemma 4.2) There exist positive constants A; — A such

that

Efllz(n + 1) - 2(n) [*|=(n)] < Ase + A Ellls(m)][*] + As|ru () - 7.

Proof: By the inequality (a + 5)? < 2(a? + b%) we have
E[lz(n + 1) - 2(n)|*|2(n)] < 2B[|z(n + 1) — 2* (n + 1)||*[z(n)] + 2||s(n)||*.
Fix any w, by Theorem 6.1 and the variation of constants formula (e.g., (A9) of [GB]),
Bllza(n+1) = 2(n + DIPle(n)] < e Tflu ()] + Aa(1 = e#+T)ru (n) ~ 7ol
+ €7, (1 - e_“T) (Fw + e P=Ty, (n)). (3)
Now the result follows from the above inequality. Q.E.D.
The next lemma is a combination of the modified lemmas 4.3 and 4.4, and shows

the sufficient decrease in the cost due to the first order terms. The algorithm assumed here

is the gradient projection with simplex constraints (equation (1) of chapter 4).

Lemma 6.4 There exist positive constants As — Ag such that Y w e W

Bl< du(m, 2o+ 1) = 2 () >] < = (£ = Beome) o,
+A5€% + AgFE [lr,,,(n) —le%] .

83

Proof: By adding and subtracting terms, we get

< dy(n),zw(n + 1) — z4(n) >= z1(n) + 2z2(n),

with
zi(n) =< dy(n),zy(n+ 1) — zy(n) >,
z3(n) =< dy(n),zu(n+1) -zl (n+1) > .
By Lemma 4.3 we have
0
() < - 2fu @ (@
By Lemma 4.4 and equation (16), we have, with y = z,,(n),
A .
z2(n) < —lsu(n)llllz5(n + 1) - zu(n)]].

By the Holder’s inequality,

Blea(m)) < 5

(Ellsw(m*])? (Bl (r+ 1) — 20 (n)]|)E.

By equation (3) (in the proof of lemma 6.3), there exist positive constants As and Ag such

that
A _ T 2 i = |
Elzs(n)] < Ze T Ellsu(n)|I* + Ase? + AoF [|ru(n) - 7ulF] . (5)
The result follows from (4) and (5). Q.E.D.
From the above lemma, in order to guarantee the convergence, it is crucial that
Aa):
6 A
_ —_ — — _”'wT
Ae)= -~ SemT, ©)

is positive. A(c) is positive if either § = A or Ty, is large enough. However, we believe that
such conditions should not be necessary. It is due to the weakness of our bounding result.

The next lemma is the counterpart of Lemma 6.4. The algorithm assumed for Lemma 6.4.a

84

is the gradient projection with the orthant constraint. The proof is similar in the spirit to

that of Lemma 6.4.

Lemma 6.4.a There exist positive constants A7 — A; such that Yw e W
E[< dy(n),zw(n+1) — z4(n) >]

< - (ia’- - %e_""r) E||sy(n)||? + Aoe? + AjoE [|rw(n) - mé] .

Proof: First write

< dy(n),zu(n+1) — z4(n) >= 21(n) + z2(n),

with
z1(n) =< dy(n),z,,(n+ 1) — z,(n) >,
z3(n) =< dy(n),zu(n+1) -z, (n+1) > .

By Lemma 4.3.a, we have
A7
z1(n) < —gllsw(n)ll’- (7)

By Lemma 4.4.a, we have, with y = z,,(n),
Ag .
z2(n) < —[lsw(n)llllzs(n + 1) — zu(n)].
By the Holder’s inequality,
Ag 1 . 1
Elzz(n)] < —=(Elllsu (I’ % (Ellley (n+ 1) — 24 (n))%

By equation (3) (in the proof of lemma 6.3), there exist positive constants A9 and A;, such

that
Ag _ L _ 1
Elzy(n)] < —re #TE|lsu(n)l|” + Ase? + AsoF [|ru(n) - 7u?] . (8)
The result follows from (7) and (8). Q.E.D.

85

Finally, we present the corresponding convergence result of the synchronous gradi-
ent projection algorithm with the deficiency rule and the simplex constraints. It is identical
with its counterpart which uses the randomized path assignment, except the above men-

tioned extra condition (6).

Theorem 6.5 There exist a positive constants, c;, and a positive function

a(n, €) (which depends only on the system paré.meter set A and a), such that Vn =0,1,2,...

—c1e7#"T < E[D(n)] — D* < e **T [D(0) — D*| + a(n,¢), (9.1)
r}_inza(n,e) < oo. (9.2)

Furthermore, if § = A or if

then there exists a scalar @ > 0, such that Vo € (0,@], Ve < 1, the following is true:

(a)There exists a positive constant c; (which depends on the system parameter set A and

a) such that
lim E[D(n)] — D* < cjet, (10)
lim Iim E|s(n)|* =0, (11)

e—0n—oo

lim lim a(n,e) =0, (12)

e—0n—oo

lim lim E[D(n)] = D*. (13)

e—0n—oo

(b) If, in addition, D;; is strictly convex for all (i, 5) € L, then

lim lim E||F(n) - F*||* = 0.

e—0n—oo

The proof of the above Theorem is very similar to that of Theorem 4.5. The first half is
almost identically the same. The major difference is in proving (a), where the counterpart

of inequality (48.1) needs the lemma 6.4. We shall omit the proof.

86

We also omit here the corresponding convergence result of asynchronous gradient
projection routing with metered path assignment. The statement of the corresponding
theorem and the corresponding proof is similar to that of their counterparts in chapter
5. Again the major difference is the counterpart of the condition (6) and the lemmas and

proofs associated with it.

87

CHAPTER SEVEN
ROUTING SIMULATION

7.1 Introduction

Real world data network routing is so complicated that no analytical model is
capable of capturing all its characteristics. We present in this chapter a digital simulation
which accounts for the many details of practical routing omitted by the analytical models

presented so far.

The purpose of the simulation is to compare qualitatively the analytical results
with the simulated performance and to supplement the analytical study with additional
insight. Since our study is not an extensive Monte Carlo simulation, we shall mostly extract

qualitative observations instead of drawing quantitative conclusions.

In particular there are many factors that affect the performance of virtual circuit
routing. It is thus interesting to compare routing performances due to variations of these
factors. First, there are the factors and parameters associated with the routing algorithms
and routing update implementation : stepsize choice, algorithmic variations, path assign-
ment policy, and the policies associated with flow measurement and the flooding of update
packets. Second, different traffic conditions also produce different routing performance.
Lastly, there are the parameters associated with the load : VC arrival rates, VC departure

rates, packet arrival rates per VC, and the average packet size.

The simulation software is written as an extension of a general purpose network
simulation system — OPNET - developed at MIT by Cohen and Baraniuk [1986], on a Data
General MV10000, a 32-bit super-mini. The software models routing with many details :

packets, virtual circuits, and routing implementations.

88

We choose a test network, Net8, from Bertsekas, Gafni, and Vastola [1978] for

detailed simulation. Net8 (see Figure 7.2) is an 8-node network with good connectivity.

This chapter is organized as follows. The digital routing model is described in some
details in section 7.2. A discussion on the simulation parameters is given in section 7.3.
Section 7.4 introduces the test network and section 7.5 contains the main simulation results
and interpretations. The graphs of the simulation runs are provided in Appendix A, while

the codes are given in Appendix B.

7.2 Simulation Model

We first introduce OPNET, the underlying package upon which the simulation
program is written. OPNET is a dynamic stochastic hierarchical general purpose network
simulation system. The system is discrete-time in the sense that all the finest-grain events
are associated with a single time interval and the time is advanced by fixed increments.

The smallest fixed increment is referred to as a simulation cycle.

The simulation model can be roughly categorized into three levels : packet level,

VC level, and routing level, which are now described below.

Packet Level

The simulator actually generates packets, both data and update (control) packets,
which will traverse the network and eventually be read and destroyed upon exiting the
network. The arrival of the packets for each VC is either an approximate Poisson processes
or a deterministic process. Packet length (in bits) is either constant or approximately
exponentially distributed. The packets are capable of carrying such information as the flow

rate of a certain link at a certain time.

89

The code simulates seven components which deal with packets : load generators,

routing processors, queues, transmitters, receivers, transmission lines, and pipes. Their

functions are described below.

Load Generator :

Routing Processor

Queue :

Transmitter :

Transmission Line :

generates packets as specified.

: routes the transit packets, destroys/reads packets destinated for the

local node, and forwards packets originated locally.

stores packets temporarily, with a non-preemptive fixed priority
queueing discipline in which the update packets have the higher

priority.

repeatedly takes the top packet from the queue attached at its input
port and transmits the packet (over a transmission line attached).
To model continuous transmission, if the length of the current packet
to be sent plus the total accurmulated packet length transmitted in
the current cycle is greater than the pre-specified rate (in bits/cycle),
the transmitter will break the packet into two smaller packets. The
first small packet is of the length equal to the remaining bandwidth
of the transmission line at the current cycle, and the second small
packet takes the remaining bitsize of the original packet. The first
small packet will be transmitted in the current cycle while the second

small packet will be the first packet to be sent in the next cycle.

forwards, without error (no ARQ), all the packets transmitted in
a cycle by the transmitter at one end to the receiver at the other
end at the beginning of the next cycle; thus a delay of one cycle is

imposed on the packets traversing a transmission line.

90

Receiver : receives all the packets forwarded by the transmission line attached

and sends them to the output port.

Pipe : transports the packets inside a node; the packets are forwarded with-
out any delay.

A schematic diagram for a typical node is depicted below (the controller will be

introduced shortly).

Controller
]

Generator

1

'

)

!

! Transmitter — .. .

! _ --Transmission Lines
[}

i

Receiver

Figure 7.1 A Typical Node

VC Level

For each node, there is a controller which generates and keeps track of the VCs

of the OD pairs originating from the node. The VCs are usually generated according to

91

approximate Poisson processes, and their durations are roughly exponentially distributed.
To simulate a deterministic routing environment, the program has an option of keeping the
total number of VCs constant for each OD pair. Also every packet of each VC originated
at a node is generated by the local load generator and is assigned, by the local routing

processor, a path number. The packets with a particular path number belong to the VCs

routed via that path.

There are four ways to assign the arriving VCs: the deficiency rule, the fraction rule,
the randomization rule, and the shortest-path rule. The deficiency rule and the fraction
rule are described in chapter 6, while the randomization rule is described in chapter 4.
The shortest path rule is the path assignment rule for the shortest path routing algorithm

described in chapter 3.

Routing Level

The tasks at this level include : flow measurement, communication of update pack-
ets, and routing updates. These tasks are carried out jointly by the controllers and the

routing processors.

For each directed link, the flow rate (in bits/cycle) is calculated continually as
a moving-average of the most recent instantaneous flow rates over a fixed measurement
period, at the starting and the ending nodes of the link. For example, if the measurement
period is 100 cycles, the flow (or more precisely the short-term average flow rate) at time t,
F;(t) for each link (%, 7), which originates at node ¢ and ends at node 7, is computed as the
average of f;;(t —1),---, fi;(t — 100), where f;;(t) is the instantaneous flow rate at time ¢.

The calculation is done both at nodes ¢ and j.

The locally computed short-term flows have to be sent to those nodes which do

not have but need this information. By default these flows are forwarded by a flooding

92

mechanism with time stamps. Each node also keeps a table of all the flows of the network
— the current flows for the links locally attached, the most recent updates received via the
flooding for all other links. To simulate an ideal routing environment, the program has an

option that all the nodes have access to all the current short-term flows network-wide.

Asynchronous Operation

We use a reducing threshold method, following the new ARPANET routing scheme,
to determine when to initiate a flooding of a link measurement. Each directed link in the

network has a pre-assigned node which is responsible for flooding its flow measurement.

Consider a directed link and the node responsible for flooding its flow measurement.
The node keeps track of the latest flooding time, the latest flooded flow measurement, the
current threshold for the link. If the difference between the current flow measurement and
the latest flooded measurement excéeds the current threshold, then a flooding is initiated
at the current cycle. If, however, the difference is less than the threshold, no flooding will
be initiated, and the threshold will be decremented by a small fixed amount. To speed
up the response of the routing algorithm to over-loading, a flooding will be initiated for a
link whose utilization factor exceeds a fixed threshold, say, 88%. However, to avoid over-

flooding, we keep a minimum difference between the consecutive flooding times for every

directed link.

Consider any node in the network. Upon receiving a new flow measurement, the

OD pairs originating at the node will carry out a routing update, using the table of network

flows available at the node.

The Cost and Routing Algorithms

The cost D;; for each link (4,7) is a modified steady-state average queue size of

93

M/M/1 queues (Kleinrock [1976]) :
Qi (Fij), if Fij < 0.99C;;,
Et'j(Fij) = { Qi;(0.99C;;) + Q;,—(O.QQC.-,-)(F,-_.,- —0.99C;;) otherwise,
+3@:;(0.99C;;) (Fi; — 0.99C;;)2,

where

_ FiJ’
Q‘J(Fl.‘l) - C,‘J' — Fi"

and C;; is the capacity of the link (i, 7).

The above cost function is thus well defined for all non-negative flows. The above
cost equation can be rewritten in terms of the utilization factors Pij,

5

Pij =

Q

It is clear that with the above cost, the routing performance would be good virtually for
any algorithms if the maximum utilization factor is low, say 40% or below. Thus it is more

interesting to simulate the situations in which the maximum utilization factor is above 80%.

Two routing algorithms — the shortest path algorithm and the gradient projection
algorithm with the orthant constraints implemented by the deficiency metering rule — are
the focus of the simulation. The update equations for the gradient projection algorithms
are taken from Bertsekas [1982d] with a simple modification. The diagonal scaling matrix
M, (n) has the second derivatives of the reduced cost function at time n. The reduced cost at
time n is obtained by eliminating the path flows of the shortest paths, for all the OD pairs,
in the simplex constraint equations in order to retain only non-negativity constraints (see
Bertsekas [1982d]). The update equations are as follow. Consider an OD pair w originating

at node k, with the shortest path p,, at n, and n € T,
zp(n +1) = [z5(n) — aL;? (n)(np(n) — np(n))]*, Vp€ Pu,p#5p,, (1)
&*D;; .
Ly(n)=) —7z (Fisr(n),
(h7)es, %

94

gz (n+1)=ry(n)— > zi(n+1),
pEP, P#Bu
where for each p, S, is the set of links that belong to either the path p or the shortest path

P, but not both, at time n. Another algorithm which is less adaptive is to replace (1) by

the following.

zp(n+1) = [z5(n) — aL; (n)(np(n) = np())]*, Vp € Pu,p# 5B, (2)

We shall call this second version algorithm 2, the first version algorithm 1. We will
focus on the algorithm 1 with the deficiency metering rule, with the fraction metering rule,
with the randomization rule; the algorithm 2 with the deficiency rule ; and the shortest path

algorithm.

7.3 Simulation Parameters

Since the simulator is highly parameterized, it is easy to generate many different
kinds of routing environment to simulate. However, the choices must be limited. The fol-
lowing is a set of parameters consistent with most of the assumptions made in the literature
(e.g., Rudin [1976], McQuillan and Walden [1977]). This set of parameters are close to the

parameters of the new ARPANET routing algorithm.
1). All lines are full duplex with capacity 50 kbits/sec.
2). Data packets average about 960 bits.
3). Update packets average about 176 bits.
4). The measurement period is 10 seconds.

The following is the set of parameters assumed for all our simulations, and is ob-

tained by scaling the above set.

95

1). All lines are full duplex with capacity 1 or 0.5 kbits/sec.

2). The length of data packets is exponentially distributed with an average of 10 bits.
3). Update packets are fixed at 2 bits.

4). The measurement period is 10 seconds.

It is clear that there is no essential difference between the two sets. To provide

granularity in time, the smallest time unit, cycle, in our simulation is set to 0.1 sec.

Two important parameters to be chosen are the VC arrival rates and departure
rates. According to the analytical results, the convergence rate of a routing critically de-
pends on the average VC duration. Also, the larger the VC arrival rate (hence the smaller
the VC data rate) the better the many small users assumption is. Hence we experiment with
these parameters. We discover that the larger the VC arrival rate the smaller the long-term
deviation from optimality, and the shorter the VC duration the faster the routing converge,
given the same routing algorithm. In our typical simulations, the total number of VCs per

OD pair is 300, and this number seems to give enough granularity in path flows for the

controllers.

One way to consider these VC rates together is to assess the VC turnover rate
which can be properly defined as the ratio of the average number of new VC arrivals in one
update interval to the long-term average number of VCs. At a statistical steady-state, the
average numbers of VC arriving and leaving over a fixed interval should be equal. Thus the
VC turnover rate measures how fast the VCs are turning over (arriving and leaving) in one
update interval. Thus the VC turnover rate also gives a measure of how much control the
routing controllers can have over the VCs on each path. If the VC turnover rate is 100%

over an update interval, then the controllers have almost full control over the path flows

96

over one update interval. On the other hand, if the VC turnover rate is only 5%, then the

best the controllers can do is to change about 5% of the path flows over one update interval.

For our simulations, we use two VC turnover rates. The first is the fast rate
corresponding to about 10% and the second is the slow rate corresponding to about 5%.

The typical VC arrival and departure rates are listed below.
e Fast Rate: arrival rate = 3.0/sec, departure rate = 0.01/sec.
e Slow Rate: arrival rate = 1.5/sec, departure rate = 0.005/sec.

Another important parameter is the average number of packets per VC per second.
This parameter together with the VC arrival and departure rates determine the average
number of packets generated per second in the long run. For the test network, we have 16
OD pairs, each averaging 300 VCs at steady-state, with 0.1 packets per second. Together,
the long-term average number of packets generated per second is 480. As we typically
simulate for 700-1000 seconds, the average number of packets generated per simulation is

about 3.36 x 105 — 4.8 x 105.

Other parameters include the threshold used to determine when to flood a mea-
surement, and the minimum times between consecutive floodings of the measurement of

the same link. These parameters are adjusted to the different VC turnover rates and the

algorithms used.

97

7.4 The Test Network

The test network Net8 is depicted below.

Figure 7.2 The Graph of Net8

The network has 16 OD pairs, each with a long-term average traffic rate of 300 bits
or 30 packets per second. The average number of packets per VC per second is 0.1. The

OD pairs and the capacities are given below.
OD pairs: W = {(1,3),(2,4), (3,5), (4,6),(5,7), (6, 8), (7, 1),(8,2),
(1,7),(2,8),(3,1),(4,2),(5,3),(6,4),(7,5), (8,6)}.
Capacities C; ; = 0.5 kbits/sec, if 1 or j is in the set {7,8},
otherwise C; ; = 1.0 kbits/sec.

The above traffic pattern seems balanced and is used as our major simulation ex-
ample. The concept of balanced traffic was perhaps first introduced by Chou et. al. [1981].
In their paper, a balanced traffic is a situation where each node sends equal amount of data

traffic to every other node. According to this definition, the above traffic requirement is

98

not balanced. However, there is no compelling reason to accept their definition literally. We

shall call the above traffic requirement balanced.

7.5 Results and Interpretations

The simulation results confirm qualitatively with the analytical results developed
earlier. However, we are more interested in knowing the properties of the routings that the
analytical results cannot provide. In general, when the VC turnover rate is large, shortest
path routing exhibits more oscillatory behaviors than gradient projection routing does.
When the VC turnover rate is small, the two routings behave approximately the same. We
also observe that the best gradient projection routing algorithm seems to be the algorithm

1 implemented with the deficiency metering rule.

In order to obtain realistic initial conditions, each run of simulation starts with
an empty network — no packets and VCs. As the simulation progresses the VC arrives
and leaves, the packets arrives and leaves. In this way we do not create artificial initial
conditions for the routing algorithms. In section 7.5.2 we fail a link after the average load is
around the long-term average load level. This is the only case when we ‘artificially’ disturb

the network.

It is difficult to measure the long-term deviation from optimality accurately. One
has to ask when a routing can be considered as having reached a steady-state. There is no
good answer for it. Thus for a very crude measure, we take the average of the network costs
from the time the load reaches approximately the long-term average level to the end of the
simulation. Typical length of such a period is 400 seconds. We use this average network

cost as a crude measure of the long-term average cost.

For both gradient projection and shortest path routing we try to ‘optimize’ their

performance over the following parameters: minimum time between two consecutive flood-

99

ings of a link, initial threshold and the decrements for the threshold used to determine when
to initiate a flooding. In general, we find that the best operating conditions for both types
of algorithms are about the same. As expected from the theory, the shortest path rout-
ing algorithm typically needs more frequent floodings than the gradient projection routing
does. One interesting lesson learned from this kind of ad hoc optimization is that too many

floodings do deteriorate the routing performance.

For the gradient projection algorithms, there is one extra parameter to optimize
over, i.e., the stepsize a. As expected from nonlinear programming, too large a stepsize
creates oscillation in the routing. Too small a stepsize, in a noisy routing environment, can

force the routing to stagnate.

7.5.1 Balanced Traffic

For this part of the simulation, we use the traffic data provided in section 7.4. The

traffic requirement is a situation which we considered as balanced.

We run ten experiments here, five with fast VC turnover rate and five with slow
VC turnover rate. For each VC turnover rate, the five algorithms simulated are: the
shortest path algorithm(S), algorithm 1 with the deficiency rule (M), algorithm 1 with the
randomization rule (R), algorithm 1 with the fraction rule (MF), algorithm 2 with the
deficiency rule (MG2). Recall that both algorithms 1 and 2 are the gradient projection
algorithms with the orthant constraints. For fast VC turnover, the graphs presented in the
appendix A start plotting the cost at time 300-th second and end at time 700-th second.
For slow VC turnover, the graphs presented in the appendix A start plotting the cost at
time 600-th second and end at time 1000-th second. Also note that the time unit used in
these graphs is one tenth of a second, rather than a second. In general, the starting times

are the first time the load reaches approximately the long-term average level. To give an

100

approximate estimate of the long term deviation from optimality, we also provide the final

costs, at the end time of each simulation.

Fast VC Turnover

The costs are listed below. The known optimal cost is about 42.0.

S M R MF MG2
average cost 58.48 50.15 44.92 52.82 253.91
final cost 49.53 47.85 42.39 50.53 64.17

Some comments on the transient behaviors of the algorithms are in order. The
shortest path algorithm (S) incurs higher cost almost everywhere than the gradient pro-
jection algorithm (M). More importantly, the shortest path algorithm produces wild oscil-
lations for two occasions. This agrees with the intuition that the shortest path algorithm
tends to over-react to good news (shortest paths) and bad news (long paths). The peak-
ing in this shortest path routing simulation and other simulations are the result of one or
more links reaching an utilization factor of 99% or above. Such kind of loading on a link is
possible-since the optimal routing has a maximum utilization factor of 82%, if the load is

temporarily high, the routing is not optimal, an utilization factor of 99% can be reached.

The difference between the deficiency rule and the fraction rule does not appear
to be large. However, generally in this experiment and in other experiments, the fraction
rule appears to be worse than the deficiency rule. The behavior of the gradient projection
algorithm with the randomization rule in this simulation and in other experiments is quite
puzzling. Except in the case of balanced traffic and slow VC turnover, the algorithm with
the randomization rule incurs a lower cost most of the time than the algorithm with the
deficiency rule. However, in all cases, the algorithm with the randomization rule produces

peakings which the algorithm with the deficiency rule does not generate. Such kind of

101

strange behaviors is not fully understood yet. Note that the randomization rule is an open
loop control, i.e., it assigns VC independently of the current state of the paths. Such kind of
non-adaptive open-loop policy may hurt the routing algorithm. The following is a scenario
in which the randomization rule may hurt the performance. Suppose that, on the average,
a number of VCs on a certain path p should depart from the network at the next routing
update. However, by chance, these VCs do not depart, and the randomization rule, by
chance again, assigns a group of new VCs on the path p. The possible outcome is that path

p will be over-loaded temporarily.

Let us also recall the example provided in chapter 6 which shows that the deficiency
rule does not anticipate VC departures and produces a worse quadratic cost than that of a
rule anticipating the VC departures. Such kind of phenomenon may consistently hurt the

performance of the deficiency rule.

The above two observations do not fully explain the different behaviors of the
gradient projection algorithms with the randomization rule and the deficiency rule. Further

study is needed to investigate the reasons and the implications of such behaviors.

Lastly, a comparison between algorithm 2 (MG2) and algorithm 1 (M) shows the
clear superiority of algorithm 1. Intuitively, algorithm 2 is much less adaptive than algo-
rithm 1 (compare equations (1) and (2)). Indeed, algorithm 1 uses the current flows to
compute the next desired flows while algorithm 2 uses the current desired flows to compute
the next desired flows. In general, the current flows can be quite different from the current
desired flows when the algorithm has not converged to optimality. Hence algorithm 2 can
often lead the routing into the wrong direction. In fact, algorithm 2 performs even worse

than the shortest path.

Slow VC Turnover

102

The costs for this case are listed below.

S M R MF MG2
average cost 49.79 49.95 58.98 51.26 59.12
final cost 52.82 52.51 58.11 54.34 55.18

With the VC now moves twice as slow as the fast case, shortest path algorithm
should perform better, since now the update intervals become relatively twice shorter. In
fact, the plots in the appendix reveal that there is no essential difference between shortest
path routing and gradient projection routing. The shortest path algorithm incurs a higher
cost in many places than that of the gradient projection algorithm. However, the two
perform about the same, the shortest path algorithm ends up with a slightly lower average

cost, while the gradient projection algorithm ends up with a lower final cost.

As for the gradient projection algorithm with the fraction rule (MF), it behaves
just like its counterpart in the fast case. It still performs almost everywhere worse, but only

by a small difference, than the algorithm with the deficiency rule (M).

With the slower VC turnover rate, algorithm 2 (MG2) seems better than its coun-
terpart in the fast case. The oscillation is reduced. This may be due to the fact that, as
the change in VC becomes slower, the algorithm, which is only adapted to the first and the

second derivative lengths and the total load for each OD pair, adapts better.

Before discussing the simulations with unbalanced traffic we shall comment on the
difference between the gradient projection algorithm (M) and the shortest path algorithm
(S). It appears that when the VC turnover rate is fast, the shortest path algorithm gen-
erates peak{ngs in the cost, while the gradient projection algorithm does not. However,
the above simulations have the maximum utilization factor of 85%. The natural reason for

the peakings generated by the shortest path algorithm is that, in one routing interval, all

103

the new VCs are assigned to the shortest paths, and the shortest paths may then be over-
loaded temporarily. Thus if the above reason is correct, one should be able to see peakings
generated by the shortest path algorithm at a lower load but with a higher VC turnover
rate. Indeed, we run another set of simulations with VC turnover rate at about 30% and

maximum utilization factor at about 75%. The costs are listed below.

S M
average cost 41.40 34.93
final cost 36.97 33.87

The graphs in the appendix show that the shortest path algorithm generates a

peaking while the gradient projection algorithm performs better almost everywhere.

7.5.2 Unbalanced Traffic

In this section we change the traffic requirement in section 7.4 to create a more
unbalanced situation. In the first set of experiments, we decrease the load on the left side
(the nodes 1,2,3,8) of the network by 20% and increase the load on the right side (the nodes
4,5,6,7) of the network by 20%. In the second set of experiments, we reduce the capacity
of link (7,6) and (6,7) to one half of their original values when the maximum utilization
factor in network is about 85% loaded. This case is to simulate a link failure and create a

distressed condition for the routing algorithm.

Unbalanced Left and Right Traffics

The VC arrival rates and departure rates are kept the same as that in the balanced
traffic case. The only parameter changed is the average packet arrival rate per VC per
second. The packet rates for OD pairs (1,3), (2,4), (2,8), and (8,2) are reduced to 80% of
their original values; while the packet rates for OD pairs (4,6), (6,4), (7,5), and (5,7) are

increased to 120% of their original values.

104

The average costs for the fast VC turnover rates are listed below. The known

optimal cost is about 43.0.

S M R MF MG2
average cost 52.68 49.62 46.97 51.66 144.82
final cost 54.30 53.64 46.01 56.57 60.19

There is again an evident difference between the shortest path algorithm (S) and
the gradient projection algorithm(M). However, in this case the shortest path algorithm
does not have wild oscillations. The shortest path algorithm still incurs a cost which is
almost everywhere higher than the cost incurred by the gradient projection algorithm.

Both algorithms do not seems to be bothered by the unbalanced load distribution.

The gradient projection algorithm with the randomized rule seems to do slightly
worse than its counterpart in the balanced case. However, the behaviors are about the same.
Likewise is the behavior of the algorithm with the fraction rule. It still performs worse than

the algorithm with the deficiency rule most of the time.

An interesting case is the algorithm 2 which performs noticeably worse than its
counterpart in the balanced case. It could be the unbalanced load or the random sequence

that produces such a difference.

The average costs for the slow VC turnover are listed below.

S M R MF MG2
average cost 48.33 49.75 47.14 49.94 55.62
final cost 45.70 46.20 39.64 47.86 46.14

There are no major differences between the graphs in this case and the graphs in
the slow and balanced case. The only noticeable differences come from algorithm 2 (MG2)

and the gradient projection algorithm with the randomization rule (R). There are slightly

105

more peakings with the algorithm 2 in the unbalanced case than that in the balanced case.
The algorithm with the randomization rule also has much less peakings than its counterpart
in the balanced case. Note that in this case the shortest path algorithm preforms slightly

better than the gradient projection algorithm. The difference is not significant though.

Link Failure

For this set of experiments we choose to study only the shortest path algorithm
(S) and the gradient projection (algorithm 1 with the deficiency rule) algorithm (M). We
also simulate only the fast VC turnover case, as this is a more distressed case than the

corresponding slow VC turnover case.

At time 320-th second, the capacities for links (6,7) and (7,8) are reduced from 0.5
kbits/sec to 0.25 kbits /sec. One possible practical situation resembles this case is as follows.
There are two transmission lines or media connecting nodes 6 and 7, and accidentally one

of the lines or media goes down.

At time 320-th second, node 6 and 7 detect the link failure and start flooding a
special message to all the other nodes saying that links (6,7) and (7,6) lose half of their
capacities. Upon receiving these messages, all the nodes which have paths using these two
links start shifting half of the original VCs using these links to the current shortest paths.
While these VCs are being re-routed, all the links and paths involved in these re-routing
will have their measurements updated. For example, if the link (2,1) discovers at time ¢
that 10 VCs are suddenly Joined to the groups of VCs using itself, all the past instantaneous
flow measurements fi;(t — 1),...,f;(t - 100) and the current flow measurement Fi;(t) are

increased by 10 units of average data traffic per VC per second.

After this re-routing is done, some links are operating around a utilization factor

of 90%, and the routing becomes very susceptible to further disturbance. The oscillations

106

we see in the graphs in the appendix are due to the new disturbance. The optimal cost for

this case is about 64.7. The costs are listed below.

S M
average cost 456.04 369.56
final cost 376.60 87.94

As we can see from the graph, the gradient projection algorithm struggles a while
before it finally reduces the congestion to a reasonable level. However, the shortest path
algorithm has wilder and more oscillatory swings. Note that at time 700-th second, the
gradient projection algorithm appears to converg to a neighborhood of an optimal routing

while the shortest algorithm is still oscillating.

7.5.3 Synchronous Routing

One problem with the asynchronous routings simulated so far is that the controllers
usually carry out a routing update with out-of-date flow measurements. Sometimes this out-
of-date information can mislead the routing controllers. One way to remedy this problem
is to use synchronous routing, i.e., all the flow measurements are flooded at the same time,

and all nodes update their routings at the same time.

We only run these experiments for the fast VC turnover case with the balanced

load. Below are the costs.

Syn. S Asyn. S Syn. M Asyn. M
average cost 86.98 58.48 48.04 50.15
final cost 53.93 49.53 45.81 47.85

We see that the shortest path asynchronous algorithm is better than the corre-
sponding synchronous algorithm. This is perhaps due to the fact that the shortest path

algorithm needs short update intervals, and our asynchronous shortest path algorithm has a

107

shorter update interval than its synchronous counterpart. Here the availability of the asyn-
chronously flooded flow measurement seems to help the shortest path algorithm reduce the
oscillations. As for the gradient projection algorithms, the synchronous and asynchronous
cases are about the same, with the synchronous algorithm incurring a slightly lower cost.

This suggests that up-to-date flow information is good for the gradient projection algo-

rithms.

108

CHAPTER EIGHT
EXTENSIONS

We discuss some possible extensions to the results of this thesis in this chapter. The
following issues are discussed: shortest path routing with length functions taking values from

a discrete set, the path assignment problem, and optimal routing in an integrated network.

We have seen that the shortest path algorithm may not converge to optimality
when the length functions take values from a discrete set. However, the counter-example
that we have shown assumes deterministic VC arrivals and departures. It is interesting to
investigate whether or not a similar non-convergence can happen in the stochastic case. For
data network applications, one simple way to remedy this non-convergence problem is to
replace the discontinuous length functions by continuous ones. For nonlinear programming
the counter-example in fact shows that a version of the Frank- Wolfe method fails to converge
when the cost is non-differentiable. Thus it is interesting to find out what modification is

needed to make the Frank-Wolfe method converge.

1t is clear that the research on the path assignment problem, or in general, optimal
dynamic routing problems, have a long way to go. It is interesting to find an optimal policy
for the path assignment problem. However, this problem appears to be difficult. Thus it

makes sense to consider ad hoc policies like the deficiency rule proposed in this thesis.

Two alternative policies to the deficiency rule are suggested below. First is that
the arriving VC is assigned to the path which is, on the average, most deficient in the
desired number of VCs at the next VC arrival. Second is that the arriving VC is assigned
to the path which is, on the average, most deficient in the desired number of VCs at the
next routing update. Since both policies involve estimating the VC arrival and departure

rates, they are susceptible to the estimation errors. The second policy requires, in addition,

109

the next routing update time, which may not be known in an asynchronously operating

environment.

As the fraction rule is used in the industry, it is also interesting to find out the
statistics of the path flows resulting from such a rule. We believe that the gradient projection
algorithm implemented with the fraction rule should have a similar convergence result to
that implemented with the deficiency rule. Possibly, the proof technique we used to find
the bound for the quadratic cost incurred by the deficiency rule can be applied similarly to
show this result. Such a proof technique may provide a useful tool to solve related queueing

control problems.

Furthermore, our simulation results show that the gradient projection algorithm
with the randomization rule performs in some way better than the algorithm with the
metering rule in certain operating conditions. Further investigation is needed to understand

this phenomenon and its implications.

Let us consider the overall optimal quasi-static routing problem. It is clear that the
future communication networks will most likely be Integrated Services Networks (or simply
integrated networks). In an integrated network, there can be many different kinds of user-
pairs: interactive data exchange, voice conversation, video transmission, electronic mailing,
and etc. Some of these user-pairs, e.g., digitized voice and video, demand small end-to-end
delays. However, our formulation only accounts for the average delay per packet regardless
of the type of user-pairs. The question one can ask is that is it possible to reformulate the
problem to account for the end-to-end delay requirement for different kinds of user-pairs
and solve the resulting optimal quasi-static routing problem. We believe that in this newly
formulated problem the cost will not be a separable function of the total link flows, and as

a result, the new problem is more difficult.

110

REFERENCES

Bertsekas, D.P.,(1976), “On the Goldstein-Levitin-Poljak Gradient Projection Methods,”
Trans. on Auto. Control, Vol AC-20, pp. 174-184.

Bertsekas, D.P.,(1979), “Algorithms for Nonlinear Multicommodity Network Flow Prob-
lems,” proc. int. Symposium on Systems Optimization and Analysis, A. Bensoussan and
J.L. Lion, (eds.), Springer-Verlag, N. Y., pp. 210-224.

Bertsekas, D.P.,(1980), “A Class of Optimal Routing Algorithms for Communication Net-
works,” proc. Fith Int. Conf. Comp. Comm., Atlanta, GA, Oct. pp. 71-75.

Bertsekas, D.P.,(1982a), “Projected Newton Methods for Optimization Problems with Sim-
ple Constraints,” SIAM J. Control and Optimization, Vol 20, pp. 221-246.

Bertsekas, D.P.,(1982b), “Distributed Dynamic Programming,” Trans. on Auto. Control,
Vol AC-27, pp. 610-615.

Bertsekas, D.P.,(1982c), “Dynamic Behavior of Shortest Path Routing Algorithm for Com-
munication Networks,” Trans. on Auto. Control, Vol. AC-27, pp. 60-74.

Bertsekas, D.P.,(1982d), “Optimal Routing and Flow Control Methods for Communication
Networks,” in Analysis and Optimization of Systems, Bensoussan,A., and Lions, J.L., (eds.),
Springer-Verlag, N.Y., pp.615-643.

Bertsekas, D.P.,(1983), “Distributed Asynchronous Computation of Fixed Points,” Mathe-
matical Programming, Vol. 27, pp. 107-120.

Bertsekas, D.P., and Gafni, E.M., (1983), “Projected Newton Methods and Optimization
of Multicommodity Flows,” Trans. on Auto. Control, Vol. AC-28, pp. 1090-1096.

Bertsekas, D.P., Gafni, E.M., and Gallager, R.G., (1984), “Second Derivative Alforithms
for Minimum Delay Distributed Routing in Networks,” IEEE Trans. on Commun., Vol.
COM-32, pp. 911-919.

Bertsekas, D.P., and Gallager, R.G.,(1986), Date Networks, Prentice Hall, Englewood Cliffs,
N.J.

Bertsekas, D.P.,Gendron,B., and Tsai,W.K.,(1984), “Implementation of an Optimal Mul-
ticommodity Network Flow Algorithm Based on Gradient Projection and a Path Flow
Formulation,” LIDS Report, p-1364, MIT ,MA.

Bertsekas, D.P., Tsitsiklis, J.N., and AthansM.,(1984), “Convergence Theories of Dis-
tributed Iterative Processes: A Survey,” LIDS Report P-1412, MIT, MA.

Boorstyn,R.R., and Livne,A.,(1981), “A Technique for Adaptive Routing in Networks,”
IEEE Trans. on Commun., Vol. COM-29, pp.474-480.

111

Borkar, V.S., (1984), “On Minimum Cost Per Unit Time Control of Markov Chains,” STAM
J. Control and Optimization, Vol. 22, Nov., pp. 965-978.

Cantor, D.G., and Gerla,M., (1974), “Optimal Routing in a Packet Switched Computer
Network,” IEEE Trans. on Commun., Vol. C-23, pp. 1062-1069.

Chou, W., et. al., (1981), “ The need for Adaptive Routing in the Chaotic and Unbalanced
Traffic Environment,” IEEE Trans. on Commun., April 1981.

Cohen, A., Baraniuk, S., (1986), “OPNET User Manual,” MIT, Dept. of EECS, Laboratory
for Information and Decision Systems.

Dunn, J.C., (1979), “Rates of Convergence of Conditional Gradient Algorithms Near Singu-
lar and Nonsingular Extremals,” SIAM J. Control and Optimization, Vol. 17, pp. 187-211.

Ephremides, A., (1978), “Extension of an Adaptive Distributed Routing Algorithms to
Mixed Media Networks,” IEEE Trans. on Commun., Vol. COM-26, Aug, pp. 1262-1266.

| Ephremides, A., Varaiya, P., and Walrand, J., (1980), “A Simple Dynamic Routing Prob-
lem,” Trans. on Auto. Control, Vol. AC-25, Aug. , pp. 690-693.

Foschini., G.J., and Salz, J.,(1978), “A Basic Dynamic Routing Problem and Diffusion,”
IEEFE Trans. on Commun., Vol. COM-26, pp. 320-347.

Frank, H., and Chou, W.,(1971), “Routing in Computer Networks,” Networks Vol. 1, pp.
990-122.

Fratta, L., Gerla, M., and Kleinrock, L.,(1973), “The Flow Deviation Method: An Approach
to Store-and-Forward Communication Network Design,” Networks, Vol. 3, pp. 97-133.

Gafni, E.M., and Bertsekas, D.P., (1983a), “Path Assignment for Virtual Circuit Routing,”
SIGCOMM 83 Symposium on Communication Architectures and Protocols, Austin, Texas,
March, pp. 21-25.

Gafni, E.M., and Bertsekas,(1983b), “Asymptotic Optimality of Shortest Path Routing,”
LIDS Report, p-1307, MIT, MA.

Gallager, R.G.,(1977), “A Minimum Delay Routing Algorithm Using Distributed Compu-
tation,” IEEE Trans. on Commun., Vol. COM-25, pp. 73-85.

Goldstein, A.A., (1964), “Convex Programming in Hilbert Space,” Bull. Amer. Math. Soc.,
Vol. 70, pp. 709-710.

Hajek, B., (1982), “Optimal Control of Two Interacting Service Stations, ” Proc. 21st
C.D.C., pp. 840-845.

Keilson, J. (1979), Markov Chain Models-Rarity and Ezponentiality, Springer-Verlag , N.Y.

112

- Kleinrock, L., (1964), Communication Nets: Stochastic Message Flow and Delay, McGraw-
Hill, N.Y.

Kobayashi,H., and Konheim,A.G.,(1977), “Queueing Models for Computer Communication
System Analysis,” IEEE Trans. on Commun., Vol. COM-25, pp.2-29.

Levitin, E.S., and Poljak, B.T., (1966), “Constrained Minimization Problems,” USSR Com-
put. Math. Math. Phys., Vol. 6, pp. 1-50.

Luenberger, D.G.,(1973), Introduction To Linear and Nonlinear Programming, Addison-
Wesley, Reading, MA.

McQuillan, J.M., Richer, I., and Rosen, E.C., (1979), “The New Routing Algorithm for the
ARPANET,” IEEE Trans. on Commun., Vol. COM-28, pp. 771-719.

McQuillan, J.M., and Walden, D.C., (1977), “The Arpa Network Design Decisions,” Com-
puter Networks 1, pp. 243-289.

Rishel, R., (1975), “A Minimum Principle for Controlled Jump Processes,” Control Theory
Numerical Methods and Computer System Modeling, Bensoussan A., and Lions J.L., (eds.),
Springer- Verlag, Berlin, pp. 493-508.

Rockafellar,R.T.,(1970), Convez Analysis, Princeton Un. Press, Princeton, N.J.

Rosberg, Z., Varaiya, P.P., and Walrand, J.C., (1982), “Optimal Control of Service in
Tandem Queues,” Trans. on Auto. Control, Vol. AC-27, pp. 600-610.

Rudin, H., (1976), “ On Routing and Delta Routing: A Taxonomy and Performance Com-
parison of Techniques for Packet-Switched Networks,” IEEE Trans. on Commun., Jan.

Sarachik, P.E., (1982), “An Effective Local Dynamic Strategy to Clear Congested Multi-
Destination Networks,” Trans. on Auto. Control, Vol. AC-27, pp. 510-513.

Sarachik, P.E., (1984), “Congstion Reducing Dynamic Routing Strategies for Multidestina-
tion Traffic Networks,” proc. 28rd C.D.C., Las Vegas, N.V., pp. 1383-1387.

Schwartz, M., and Cheung, C.K., (1976), “The Gradient Projection Algorithm for Multiple
Routing in Message-Switched Networks,” IEEE Trans. on Commun.. Vol . COM-24., pp.
449-456.

Schwartz, M., and Stern, T.E., (1980), “ Routing Techniques Used in Computer Commu-
* nication Networkes,” IEEE Trans. on Commun., Vol . COM-28, pp. 529-552.

Segall, A., (1977), “The Modeling of Adaptive Routing in Data-Communication Networks,”
IEEFE Trans. on Commun., Vol. COM-25, pp.85-95.

Segall, A., (1979), “Optimal Routing for Virtual Line-Switched Data Networks,” IEEE
Trans. on Commun., Vol. COM-27.

113

Sobel, M.J., (1974), “Optimal Operation of Queues” in Mathematical Method in Queueing
Theory, Clarke, A.B ., (ed,), Springer-Verlag, Berlin, pp. 231-261.

Stidham, S. and Prabhu, N.U., (1974), “Optimal Control of Queueing Systems,” in Mathe-
matical Method in Queueing Theory, Clarke, A.B., (ed.), Springer-Verlag, Berlin, pp. 231-
361.

Stone, L., (1973), “Necessary and Sufficient Conditions for Optimal Control of Semi-Markov
Jump Process,” SIAM J. Control and Optimization, Vol. 11, pp. 187-201.

Tsitsiklis, J.N., (1984), “Problems in Decentralized Decision Making and Computation, ”
Ph.D. Theses, Dept. of Electrical Engineering and Computer Science, MIT, MA.

Tsitsiklis, J.N., and Bertsekas, D.P., (1985), “Distributed Asynchronous Optimal Routing
in Data Networks,” Manuscript.

Vastola, K. S., (1979), “A Numerical Study of Two Measures of Delay for Network Routing,”
M.S. Thesis, Dept. of Electrical Engineering, Univ. of Illinois, Urbana.

Yum, T.P., (1981), “The Design and Analysis of a Semi-dynamic Deterministic Routing
Rule,” IEEE Trans. on Commun., Vol. COM-29, pp. 498-504.

Yum, T.P., and Schwartz, M., (1981), “The Join-Biased-Queue Rule and Its Application to
Routing in Computer Communication Networks,” IEEE Trans. on Commun., Vol. COM-
29, pp. 505-511.

114

APPENDIX A
GRAPHS OF SIMULATION RUNS

We present the graphs of the simulation runs described in section 7.5. The graphs

appear in the order they appear in section 7.5. Recall the following abbreviations:
M - Gradient Projection Algorithm 1 with the Deficiency Rule.
R — Gradient Projection Algorithm 1 with the Randomization Rule.
MG2 - Gradient Projection Algorithm 2 with the Deficiency Rule.
MF - Gradient Projection Algorithm 1 with the Deficiency Rule.

S — The Shortest Path Algorithm.

115

8 1 ’
W T
250 1
200 1

S0 T

|q0 J(

so 1

0 + + — + + + —
3000 3500 4000 4500 5000 5500 6000 6500

o Cost of Algorithm M with Fast VC Turnover and Balanced Traffic
o Cost of Algorithm S with Faat VC Turnover and Balanced Traffic

96
90

80
o
60
50

4o

10
a1

0 t

0 3000 3500 4000 4500 5000 5500 5000 5500

o Cost of Algorithm N with Fast VC Turnover and Balanced Traffic
o Cost of Algorithm R with Fast VC Turmover and Balanced Traffic

i

116

in g

100

5

S0

25

3000 T00 v000 400 S000 5500 5000 5500

o Cost of Algorithm M with Fast VC Turnover and Balanced Traffic
© Cost of Algorithm MF with Fast VC Turmover and Balanced Traffic

™ T
so0

800 1

oot

600 T

%00 t

4o ¢

300 1

00

00 7

U 3000 3500 w00 4500 Sa00 Ss00 5000 5500

o Cost of Algorithm M with Fast VC Turnover and Balanced Traffic
o Cost of Algorithm NMG2 with Fast VC Turnover and Balanced Traffic

117

0

cl
10
a $ + + + + 4 +
6000 6500 1000 1500 8000 8500 9000 9500
@ Cost of Algorithm M with Slow VC Turnover and Balanced Traffic
© Cost of Algorithm S with Slow VC Turnover and Balanced Traffic
¢
el ¢
s ¢ [
50 1
125
o0 ¢
% M
Su 4
9
N T T T T T TR

o Cost of Algorithm M with Slow VC Turnover and Balanced Traffic
©Cost of Algorithm R with Slow VC Turnover and Balanced Traffic

118

R
&0

S0

4a

30

c0

0 coo0 5500 7000 1500 8000 8500 9000 9500

o Cost of Algorithm M with Slow VC Turnover and Balanced Traffic
© Cost of Algorithm MF with Slow VC Turnover and Balanced Traffic

7
00t
a0 1
200 !
IS0 1

N L

EI

0 cooo ES00 Y000 1500 8000 8500 3000 9500

o Cost of Algorithm M with Slow VC Turnover and Balanced Traffic
o Cost of Algorithm MG2 with Slow VC Turnover and Balanced Traffic

119

EEET ¢

300 1
el T
cil T
50 ¢
o +

S0 g :& ! & A

U 3000 3500 wom 4500 5000 5500 5000 6500

o Cost of Algorithm M with 30% VC Turnover and 75% Maxium Utilization
o Cost of Algorithm S with 30% VC Turnover and 75% Maxium Utilization

0

&0

90

4o

w |

cl

U 3000 3500 w00 4500 5000 5500 6000 6500

o Cost of Algorithm M with Fast VC Turnover and Unbalanced Traffic
o Cost of Algorithm S with Fast VC Turnover and Unbalanced Traffic

120

0 T
o ¢

LR

S0 1

5

U 3000 3500 w000 4500 5000 5500 5000 5500

='Cost of Algorithm M with Fast VC Turmover and Unbalanced Traffic
o Cost of Algorithm R with Fast VC Turmover and Unbalanced Traffic

65
60

50

4o

30

c0

U 3000 3500 400 4500 5000 5500 5000 6500

o Cost of Algorithm M with Fast VC Turnover and Unbalanced Traffic
® Cost of Algorithm MF with Fast VC Turnover and Unmbalanced Traffic

121

640 -
600 T

500

400 1

300 1

¢l ¢

100

+

0 + — + i — + +
3000 3500 4000 4500 5000 5500 6000 6500

@ Cost of Algorithm M with Fast VC Turnover and Unbalanced Traffic
® Cost of Algorithm MG2 with Fast VC Turnover and Unbalanced Traffic

BB
&0

S0

40

30

cl

0 cioo 5500 2000 1500 800D 8500 9000 9500

__|

o Cost of Algorithm M with Slow VC Turnover and Unbalanced Traffic
o Cost of Algorithm S with Slow VC Turnover and Unbalanced Traffic

122

e

300 ¢
¢l ¢

cll

0 + + + +
6000 6500 1000 1500 BO0O

Sﬂlvvw&:m/»bzww

o Cost of Algorithm M with Slow VC Turnover and Unbalanced Traffic
© Cost of Algorithm R with Slow VC Turnover and Unbalanced Traffic

1] + - — 4
kOOD B500 000 1500 Booc

o Cost of Algorithm M with Slow VC Turnover and Unbalanced Traffic
o Cost of Algorithm MF with Slow VC Turmover and Unbalanced Traffic

123

BRI
(

300 1
cal T
cld T
150 1

00 + |

50

“eim mm wm wm w20 o0 %

o Cost of Algorithm M with Slow VC Turnover and Unbalanced Traffic
o Cost of Algorithm MG2 with Slow VC Turnover and Unbalanced Traffic

oo 1
900
BOD
uw
600 1

500 T

400

00 ¢

cid ¢

o 1

U 3000 X0 wm 4500 5000 5500 £000 5500

o Cost of Algorithm M with Fast VC Turnover and Link Failure
oCost of Algorithm S with Fast VC Turnover and Link Failure

124

310
350

300

asl 1

il

S0 ¢

100

S0

U 3000 3500 w000 w00 S000 5500 5000 5500

o Cost of Asyhchronous Algorithm S with Fast VC Turmover and Balanced Traffic
o Cost of Syhchronous Algorithm 8 with Fast VC Turnover and Balanced Traffic

16
10

&0

50

4o

0

el 1

o ¢+

U 300 X0 W0 4500 5000 5500 5000 BS00

° Cost of Asyhchronous Algorithm M with Fast VC Turnmover and Balanced Traffic
® Cost of Sybchromous Algorithm M with Fast VC Turnover and Balanced Traffic

125

APPENDIX B
SIMULATION CODES

We present a listing of the subroutines implementing the controllers, the routing
processors, and the transmitters. Their functions are described in section 7.2. A transmitter
is implemented by a cascade of a link server and a simple transmitter. The link server makes
sure that the bit rate transmitted per simulation cycle does not exceed the pre-specified

limit, and the simple transmitter just forwards the packets sent by the link server.

Since the codes are written as an extension of the OPNET simulator, these codes
have to be used with the main body of the OPNET codes. The files cnet8.c and pnet8.c are
given as an example showing how to use these codes. The network used in this example is

Net8, our test network.

126

© 0 N O e W N =

W W W W W NN NN NN NN NN O e e e e e e e e
333%33333&35'&8%3330-&-0»-—oomqmw»uuuoomqmmhwnwo

/*

File struct.h

This file contains the data structures*/

#define
#define
#define
#define
#define
#define
#define

typedef

typedef

typedef

typedef

maxp 10
maxpl 11
maxl 10
maxltot 30
maxn 5
maxint 100
maxRT 60

struct

{

int no_link;

int link_no[maxl];
} path;

struct

{

double link_f[maxltot];
int time[maxltot];

} ntcp;

struct

{

int no_receiver;
int node_no;

int no_path;

int path_no[maxRT];
int outch[maxRT];

} RT;

struct

{

char name[maxn];

double pi;

double p2;

double gm;

int no_path;

double x[maxp];

double xd[maxp];

double kd[maxp];

double k[maxp];

double xt[maxp] [maxint];
double xbuf [maxp];

int i_first[maxp];

int set_path_inch;

int load;

int set_path_pno[maxp];
int set_path_outch[maxp];
path path[maxp];

int i_sh;

/*maximum no.
/*maximum no.
/*maximum no.

of paths*/

of paths plus 1%/

of links in a paths*/
/*maximum no. of links in a net*/
/*maximum no. of char. in a namex*/
/*maximum length of flow update int.*/
/*maximum number of paths in a RT*/

/* path */

/*no. of links*/
/*link numbers of the path*/

/* ntcp */

/*copy of the link flowsx/
/*time stamps of the flows*/

/* RT */

/*no. of receiversx/

/*the node number*/

/*no. of paths passing through*/
/*the paths which pass through#*/

/*the output channels :maximum

no. of paths through the node is 60%/

/* 0D */

/*0Dname*/

/*VC arrival prob.x/

/*#VC departure prob.*/

/*gamma: no. of dbs per VCx/
/*no. of pathsx/

/*flowx/

/*desired flows*/

/*desired no. of VC*/

/*no. of VCx/

/*temp. array of path flows#*/
/*buffer to calculate path flows*/
/*first index of the xt array*/
/*in channel of the paths*/
/*domain index for the load generatorx/
/*path numbers*/

/*out channels of paths*/

/*path list*/

/*The shortest path no.*/

127

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

typedef

typedef

int
int
int
int
int

p-update_int;
r_update_T;
r_update_bias;
r_update_time;
update_flag;

int dbsize;
int old_update_t;
} oD;

struct

{

int no_link;

int update;

int link_no[maxp] [3];

int send_int;
int send_bias;
ntcp *ntpt;

RT *RTpt;

int no_0D;

0D *0Dpt[2];

} node;

struct

{

int tm;

int t1;

int synch;

int moving_a;

double beta;

double m_thre;

int linktot;

int constant_db;

int instant;

int re_route;

int det;

int i_first[maxltot];
char link_name[maxltot] [maxn];
double link_f[maxltot];
double link_fo[maxltot];
int old_flood_t[maxltot];
double c[maxltot];

int update_int;

double diff[maxltot];

double link_ft[maxltot] [maxint];/*temp.

int mode;

int algo;

char foutn[16];

/*path measurement interval for the 0D*/

/*route update interval for the 0D*/

/*route update bias for the 0Dx*/

/*next r_update timex*/

/* =1 if the current time is a r_update
time; =0 otherwisex/

/*size of an ordinary db%*/

/*0ld routing update timex/

/* node */

/*no. of links attached to the nodex/
/* > 0 if arrival of control dbx*/
/*1link_no[.]1[0] = incoming link no;
link_no[.][1] = outgoing link no.
link_no[.][2] = outgoing channel no.*/
/*the interval for sending link flows*/
/*the bias for sending link flows*/

/*pt. to a copy of the network*/
/*pt. to the Routing Table*/

/*no. of OD pairs*/

/*pt. to the 0D pairs*/

/* Net */

/#minimum time between two floodings*/

/*maximum time between r update*/

/*=1 if synchronous routing*/

/*=1 if moving avg; else exponentials/
/*the weighting of the new measure.x/
/*threshold for emergency flooding+/

/*total no. of links*/

/*=1 if no. of dbs per VC is constant*/
/*=1 if all info. is instantaneous*/
/*=1 if VC is rerouted ;=0 otherwisex/
/*=1 if no. of VC’s fixed;=0 otherwisex*/
/*first index of the ft arrays*/

/#link name list*/

/*link flows*/

/*0ld link flows*/

/*0ld flood timex/

/*capacities*/

/*update interval for links*/

/*reducing threshold for links/

array of link flows*/

/*mode for routing : 1=metering
2=randomization, 3=shortest path

4= metering using fractions*/
/*1= gradient proj wrt current flows
2= gradient proj wrt desired flows*/

/*file name to output result*/

128

107
108
109

© 0 3 0 O A W N e

W N NN NN NN N N N e e e e e e e e
ggggggsgoowqmmpu»-—-oomﬂamhunuo

int print_flag; /*flag=1:print all times;=0 no print*/
int c¢_dbsize; /*size of a control db*/
int print_init; /%=1 if print init data; =0 otherwise*/
double f_thre; /*threshold for link congestion*/
double small; /*decrement for threshold for links*/
double af; /*alfa the stepsizex/
double cost; /*cost of the Networks/
double load; /*load of the Network*/
} Net;
typedef struct ‘ /* state_var */
{
Data_Block held_db; /*db being heldx/
int active; /*1 if active db held#*/
} state_var;
/* File con.c
This file contains the routing controllers’ codes.
NCC (the Network Control Center):
updates the network state,
also serves as a local controller.
cn (the local controller at a node):
does the follwings:
controlling VC arrivals and departures,
performing routing updates,

and, initializing itself.*/

#include <stdio.h>
#include <opnet.h>

/* global declaration */
#include "struct.h"

extern Net *Netpt;
extern FILE *fout;

/* controller NCC */

NCC(end,Ntpt,ndpt,fnet,fn,0Dpt1,0Dpt2,ntpt,RTpt)
node* ndpt;
Net *Ntpt;
char *fn,*fnet;
0D *0Dpt1,*0Dpt2;

ntcp *ntpt;
RT *RTpt;
int end;
{
if (Time!=0)
{
Net_update(); /*update Net link flows*/
if (Netpt->print_flag==1) printNet () ;/*if needs to print

Netpt->load = 0.0;

the network statex/

nd_update (ndpt) ; /*update the nodex/

129

= [< IS T < B~ B < B < LB < B <, S N N A
3333323ssogmqampunuoomqampuu»—oo

© @ 3 6 O & O N =

NN N e e R e e e e e e
N = C © @@ 3 O O » W N = O

if (Time==end)
fclose(fout);
}
else
{
ininet(Ntpt,fnet); /*initialize the Network*/
Netpt->load = 0.0;
inind(ndpt,fn,0Dpt1,0Dpt2,ntpt,RTpt) ;/*initialize the node*/
} .

/*Controller type cn*/

cn(ndpt,fn,0Dpt1,0Dpt2,ntpt,RTpt)
node* ndpt;
char* fn;
0D *0Dpt1,*0Dpt2;
ntcp *ntpt;
RT *RTpt;
{

if (Time!=0)
{
nd_update (ndpt) ; /*update the node*/
}

else
{
inind (ndpt,fn,0Dpt1,0Dpt2,ntpt,RTpt) ;/*initialize the node*/
}

}
/* File init.c
This file contains the initializing routines.
ininet: initializes the network in genmeral;
inind: initializes a node;
iniOD: initializes an 0D pair.*/

#include <stdio.h>

#include <opnet.h>

#include "struct.h"

#define FPRINTF if (Netpt->print_init==1) printf(/*if print_init=1 print the data
as they are being read in */

extern FILE *fout;
extern Net *Netpt;

/*This function initializes a network*/

ininet (Ntpt,£fn)

Net *Ntpt;
char *fn; /*The Network Data Filex/
{

FILE *fp,*fopen();
int i,imax,t,j;

130

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

double f_thre;
Netpt=Ntpt; /*initializes the Network pointer Netpt+*/
fp=fopen(fn,"r");/*fp points the network data filex/
/*start reading in network data*/
fscanf (fp,"%d %d %d %d", &(Netpt->instant),
&(Netpt->constant_db) ,&(Netpt->re_route) ,&(Netpt->det));
fscanf(fp,"%s %d",Netpt->foutn,&(Netpt->print_flag));

fscanf (fp,")d %d",&(Netpt->c_dbsize),&(Netpt->print_init));
fout=fopen(Netpt->foutn,"w");

FPRINTF "instant = %d\n",Netpt->instant);

FPRINTF "control dbsize = %d print_init = %d constant_db = %d\n",
Netpt->c_dbsize,Netpt->print_init,Netpt->constant_db);

FPRINTF "re_route = %d det = %d\n",Netpt->re_route,Netpt->det);

fscanf (fp,"%d %d %f",&(Netpt->synch),&(Netpt->moving_a),&(Netpt->beta));
fscanf (fp,"%d %d %f %E",&(Netpt->tm),&(Netpt->tl),
&f_thre,&(Netpt->small));
fscanf (fp,"%f",&(Netpt->m_thre));
FPRINTF "m_thre = %f\n",Netpt->m_thre);
Netpt->f_thre = f_thre;
FPRINTF "tm =Jd tl1 =%d f_thre =%f small =%f\n",
Netpt->tm,Netpt->tl,Netpt->f_thre,
Netpt->small);
FPRINTF "synch = %d moving_a = %d beta = %f\n",
Netpt->synch,Netpt->moving_a,Netpt->beta) ;
fscanf (fp,"}d %d",&(Netpt->mode) ,&(Netpt->algo));

FPRINTF "Output File : %s Print-Flag = %d\n",
Netpt->foutn,Netpt->print_flag);

FPRINTF "mode = %d algo = %d\n",Netpt->mode,Netpt->algo);

fscanf (fp,"%f",&(Netpt->af));

FPRINTF "af=%f\n",Netpt->af);

fscanf (fp,"%d %d",&imax,&(Netpt->update_int));

FPRINTF "linktot = %d update_int = %d\n",imax,Netpt->update_int);
Netpt->linktot=imax;

for(i=0;i<imax;++i)

{
fscanf (fp,"%s %f",Netpt->link _name[i],&(Netpt->c[il));
FPRINTF "link_name[%d]=%s c[%d]=%£f\n",

i,Netpt->link_name[i],i,Netpt->c[i]);
Netpt->link_f[1]=0.0;
Netpt->link fo[i] = 0.0;
Netpt->i_first[i] = 0;
Netpt->o0ld_flood_t[i] = O;
Netpt->diff[i] = f_thre;
for(j=0;j<t;++j)
{
Netpt->link_ft[i]l[j]=0.0;
}

131

fclose(fp);
}

/* This function initializes an 0D pair*/

iniOD(0Dpt, fp)

0D *0Dpt;

FILE *fp; /*pointer to the file containing the OD pair data*/

{
int i,imax, j, jmax,t;
double gm,x,xtot,x1,x2;

0Dpt->update_flag=0;
/*start reading in the 0D pair datax/
facanf (fp,"%s",0Dpt->name) ;

fscanf (fp,"%d",&(0Dpt->p_update_int));
fscanf (fp,"%d %d",&(0Dpt->load),&(0Dpt->dbsize));

FPRINTF "\n 0D pair : %s p_update_int=Y%d load_index = %d\n",

0Dpt->name, 0Dpt->p_update_int,0Dpt->load) ;
FPRINTF "db_size = %d\n",0Dpt->dbsize);

fscanf (fp,"%f %f %f",&(0Dpt->p1),&(0Dpt->p2),&gm);

FPRINTF "pi1=if p2=%f gm=%f\n",0Dpt->p1,0Dpt->p2,gm);
ODpt->gm=gm;

facanf (fp,"%d",&(0Dpt->i_sh));

FPRINTF "i_sh=%d\n",0Dpt->i_sh);

fscanf (fp,"%d %d",&(0Dpt->r_update_T),&(0Dpt->r_update_bias));
FPRINTF "r_update_T = %d r_update_bias = %d\n",

0Dpt->r_update_T,0Dpt->r_update_bias);
ODpt->r_update_time = ODpt->r_update_T + ODpt->r_update_bias;
ODpt->o0ld_update_t = 0;

/*calculate initial flows*/

fscanf (fp,"%d",&(0Dpt->no_path));

FPRINTF "no_path=%d\n",0Dpt->no_path) ;
imax = ODpt->no_path;

x1=gm* (ODpt->dbsize) ;

xt0t=0.0;

t=0Dpt->p_update_int;

for(i=0;i<imax;++i)

{
fscanf (fp,"%£",&(0Dpt->k[i]));
FPRINTF "k[%d]=%£\n",i,0Dpt->k[i]);

xtot += ODpt->k[i]*x1;
for(j=0;j<t;++j)
{
o0Dpt->xt[i]l [j] = 0.0;
}

132

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
1456
146
147
148
149
150
151
152
163
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

for(i=0;i<imax;++i)

{

fscanf (fp,"%f",&(0Dpt->kd[i]));

FPRINTF
}

"kd[%d]=%f\n",i,0Dpt->kd[i]);

/*set initial conditions*/

for(i=0;i<imax;++i)

{

0Dpt->xd{i] = ODpt->kd[i]#*x1;
0Dpt->x[i] = 0.0;
O0Dpt->i_first[i] = 0;

}

/*input path link description*/

for(i=0;i<imax;++i)

{

fscanf (fp,"%d", &jmax) ;

FPRINTF

"no_link[%d]=%d\n",i, jmax);

0Dpt->path[i] .no_link=jmax;

for(j=0;

}

ij<jmax;++j)

{
fscanf(fp,"%d",&(ODpt->path[i].link_no[j]));
FPRINTF "path[%d].link_no[%d]=%d\n",

i,j,0Dpt->path[i].link_no[j]);
}

imax = ODpt->no_path;

fscanf (fp,"%d",&(0Dpt->set_path_inch));

FPRINTF "IN CHANNEL = %d\n",0Dpt->set_path_inch);
for(i=0;i<imax;++i)

{

fscanf (fp,"%d %d",&(0Dpt->set_path_pno[i]),

FPRINTF

}

&(0Dpt->set_path_outch[i]));

"set_path_pno[%d]=)d set_path_outch[%d]=%d\n",
i,0Dpt->set_path_pno[i],
i,0Dpt->set_path_outch[i]);

/*#This routine initializes a node*/

inind(ndpt,fn,0Dpt1,0Dpt2,ntpt,RTpt)

node #*ndpt;
ntcp *ntpt;
RT *RTpt;
char *fn;
0D *0Dpt1;

/*this file contains data for the node*/

133

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

0D *0Dpt2;

{
int i,imax,j,t,id;
FILE *fp;

FILE *fopen();
fp=fopen(fn,"r");

/*start reading in the node datax/

FPRINTF "\n Node file : %s\n\n",fn);
fscanf (fp,"%d", &(ndpt->no0_0D));
FPRINTF "no. of 0D pairs = %d\n",

ndpt->no_0D) ;
/*initializes the OD pairs originating from the nodex/

ndpt->update = 0;

if (ndpt->no_0D == 1)
{
iniOD(0Dpt1, £p);
ndpt->0Dpt [0] = ODpt1;
}

else if (ndpt->no_0D == 2)
{
ini0D(0Dpt1,£p) ;
ndpt->0Dpt [0] = ODpt1;
iniOD(0Dpt2,fp) ;
ndpt->0Dpt[1] = ODpt2;
}

fscanf (fp,"%d %d %d",&(ndpt->no_link),
&(ndpt->send_int) ,&(ndpt->send_bias));

FPRINTF "\n no. of links = %d : send-int = %d send-bias = %a\n",
ndpt->no_link,ndpt->send_int,ndpt->send_bias);

ndpt->ntpt=ntpt; /*initializes the node pointerx*/

imax = ndpt->no_link;
for(i=0;i<imax;++i)

{

fscanf (fp,"%d %d %d",&(ndpt->link_no[i] [0]),
&(ndpt->link_no[il[1]),&(ndpt->1link_no[i][2]));

FPRINTF "inlink[%d] [0]=%d outlink[%d][1]=%d outch[%d]=%d\n"
,i,ndpt->1link_no[i] [0],i,ndpt->1link_no[i][1],
i,ndpt->link_no[i][2]);

}

/*initialize the Routing Tables*/
ndpt->RTpt = RTpt;
fscanf (fp,"%d %d %d",&(RTpt->no_receiver),

134

235 - &(RTpt—->no_path) ,&(RTpt->node_no));

236 FPRINTF "no_receiver = %d no_path = %d\n",
237 RTpt->no_receiver,RTpt->no_path);
238 FPRINTF "node_no = %d\n",RTpt->node_no);
239
240 imax = RTpt->no_path;
241 for(i=0;i<imax;++i)
242 {
243 fscanf (fp,"%d %d",
244 &(RTpt->path_no[il) ,&(RTpt->outch[i]));
245 FPRINTF "path_no[%d] = %d outch[%d] = %d\n",
246 i,RTpt->path_no[i],i,RTpt->outch[i]);
247 }
248
249 /* Dynrt the ODpairs */
250
251 imax = ndpt->no_0D;
252 for(i=0;i<imax;++i)
253 {
254 dynrt (ndpt,ndpt->0Dpt[i]) ;
255 }
256
257 fclose(fp);
258 }
1 /* File dynrt.c
2 This file contains the routine controlling the VCs--dynrt--and
3 the routines responsible for updating the states of the network,
4 the nodes, and the 0D pairs.
5 dynrt (DYNamic RouTing): generates and destroys VCs, and assigns paths;
6 re_route: re-routes the VCs;
7 Net_update: updates the the network link flows;
8 nd_update: wupdates the states of a node;
9 OD_update: updates the path flows for an 0D pair.*/
10
11 #include <stdio.h>
12 #include <opnet.h>
13 #include <math.h>
14 #include "struct.h"
15
16 #define SET set_generator_load(0ODpt->load,constant((int) xflow)); else
17 #define NONZERO if(pp != 0.0)
18
19 extern FILE *fout;
20 extern Net *Netpt;
21
22 /*#This function assigns VC dynamically#*/
23
24 dynrt(ndpt,0Dpt)
25 0D *0Dpt;
26 node *ndpt;
27 {
28 double pp,randi(),rani,xflow,ktot,dif,mindif;
29 double p[maxpi),pilmaxpi];

135

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64 .

65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
830
81
82

double ran;
int i,imax,imax1,i_d,mode;

/*if need to re-route the VC’s*/

if (Netpt->re_route)
{
re_route (0Dpt) ;
goto prin;

}
/*calculate prob. so that ran can be tested*/

mode = Netpt->mode;
ran=randi();
rani=randi();
imax=0Dpt->no_path;
pp=0Dpt->p2;
p[0]1=0Dpt->k[0] *pp;
ktot = 0Dpt->k[0];

for (i=1;i<imax;++i)
{
ktot += ODpt->k[il;
plil=p[i-1]+0Dpt->k[i]*pp;
}

plimax]=p[imax-1]+0Dpt->p1;
if (p[imax]>1)
printf ("probability too large\n");

/*test which case: updating VC nos.x/
/*i_d is the path to add the arriving VC*/

if (ran<p[0]) /*path[0] has a departure of VCx*/
{
if (0Dpt->k[0]>=1.0)
{
0Dpt->k[0]=0Dpt->k[0]-1.0;
xflow = (ktot - 1.0)*(0Dpt->gm);
if (Netpt->constant_db) SET
set_generator_load(0Dpt->load,poisson(xflow)) ;

}
}
else if (plimax-1]<=ran&&ran<p[imax]) /*there is an arrivalx/
{
if (mode==1) /*if metering find desired pathx/
{
i_d=0;

mindif = ODpt->k[0] -~ ODpt->kd[0];
for(i=1;i<imax;++i)

{

136

96

find:

if (ODpt->kd[i] <= 0.4) goto find;
dif = 0Dpt->k[i] - ODpt->kd[il;
if (mindif - dif >=1.0)
{
id=i;
mindif = dif;
}
else if ((dif - mindif < 1.0) &&
(ODpt->kd[i] > ODpt->kd[i_d]))

{
id=1i;
mindif = dif;
}
i/*continue to find i_d*/
}
}
else if (mode == 4)/*if metering (4) find desired path+/
{
i_d=0;

else if

if (0Dpt->kd[0] <= 0.01)

mindif = 1000.0;
else

mindif = 0Dpt->k[0] / ODpt->kd[0];
for(i=1;i<imax;++i)

{

if (ODpt->kd[i] <= 0.01)
dif = 1000.0;

else

dif = ODpt->k[i] / ODpt->kd[i];
if (mindif - dif > 0.0)

{
id=1i;
mindif = dif;
}
}
}
(mode == 2) /*if randomizing the routing/
{
pp = 0.0;

imaxl = imax - 1;
for(i=0;i<imax;++i)

{

PP += ODpt->kd[i];

}
NONZERO p1[0]=0Dpt->kd[imax1]/pp;
else

{

id = 0;

goto add;

}

for(i=1;i<imax;++i)

137

136
137
138
139
140
141
142

144
145
146
147
148
149
150
161
1562
153
154
156
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

{
p1[il=p1[i-1]+(0Dpt->kd[imax1-il)/pp;
}
if(rani<p1[0]) /*path[imax1] has an arrival*/
{
i_d = imaxi;
goto add;
}
for(i=0;i<(imax-1);++i) /*path[imax1-1-ilhas a arrivals*/
{
if ((p1[i]<=ran1)&&(rani<pi[i+1]))
{
id = imaxl - i - 1;
goto add;
}
}
}
else if (mode==3) /*if shortest path routing*/
{
i_d=0Dpt->i_sh;
}
add:
xflow = (ktot + 1.0)*(0Dpt->gm);
0Dpt->k[i_d]=0Dpt->k[i_d]+1.0;
if (Netpt->constant_db) SET
set_generator_load(0Dpt->load,poisson(xflow));
}
else for(i=0;i<(imax-1);++i) /*path[i+1] has a departure*/
{
if (p[i]<=ran&&ran<p[i+1])
{
if (ODpt->k[i+1]>=1.0)
{
O0Dpt->k[i+1]=0Dpt->k[i+1]-1.0;
xflow = (ktot - 1.0)*(0Dpt->gm);
if (Netpt->constant_db) SET
set_generator_load(ODpt->load,poisson(xflow));
}
}
}
prin: H /*if need to print some datax/
if (ODpt->update_flag)
{
print0D(ndpt, 0Dpt) ;
}
else if (Netpt->print_flag)
{
print0D(ndpt,0Dpt) ;

138

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
206
206
207
208
209
210
211
212
213
214
216
216
217
218
219
220
221
222
223
224
2256
226
227
228
229
230
231
232
233
234
2356
236
237
238
239
240
241

}

/*Routine to re-route VCs*/

re_route(0Dpt)

0D *0Dpt;

{

double pp,randi(),ran,ranl,xflow,ktot,dif,mindif;

double p,pil;

int i,imax,i_d,mode; /*#i_d the path to add a VC*/

/*calculate prob. so that ran can be testedx/

mode = Netpt->mode;
imax=0Dpt->no_path;

ran = randi();

ranl = randi();
pp = 0Dpt->p2;

p=0.0;

ktot = 0.0;

for(i=0;i<imax;++i)
{
ktot += 0Dpt->k[il;
P += 0Dpt->k[i]*pp;
}
if (Netpt->det) ktot = ODpt->p1/(0Dpt->p2);

if (Netpt->det) goto reset;
pl = p + 0ODpt->pi;
if (p1 >1)

printf ("probability too large\n");

/*test which case: updating VC nos.*/

if (ran < p) /*there is a departure of VC*/
{
if (ktot >= 1.0)
{
xflow = (ktot - 1.0)*(0Dpt->gm);
ktot -= 1.0;

if (Netpt->constant_db) SET
set_generator_load(0ODpt->load,poisson(xflow));

}
}
else if(p <= ran && ran < pl) /+there is an arrivals/
{
xflow = (ktot + 1.0)*(0Dpt->gm);
ktot += 1.0;

139

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
2756
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

reset:

if (Netpt->constant_db) SET

set_generator_load(0ODpt->load,poisson(xflow));
}

/*start re-routing the VCsx/
for(i=0;i<imax;++i)

{
0Dpt->k[i] = 0.0;
}
if(mode == 3) /*shortest path routing*/
{
0Dpt->k[0Dpt->i_sh] = ktot;
}
else if (mode == 4) /*metering (4) */
{
while(ktot > 0.0)
{
id=0;
if (0Dpt->kd[0] <= 0.01)
mindif = 1000.0;
else
mindif = 0Dpt->k[0] / ODpt->kd[0];
for(i=1;i<imax;++i)
{
if (ODpt->kd[i] <= 0.01)
dif = 1000.0;
else
dif = ODpt->k[i] / ODpt->kd[i];
if (mindif - dif > 0.0)
{
mindif = dif;
id=1i;
}
}
ODpt->k[i_d] += 1.0;
ktot -= 1.0;
}
}
else if (mode == 1) /*meteringx/
{
while(ktot > 0.0)
{
i_d = 0;

mindif = ODpt->k[0]-0Dpt->kd[0];
for(i=1;i<imax;++i)
{
if (0Dpt->kd[i] <= 0.4) goto find;
dif = 0Dpt->k[i]-0Dpt->kd[i];
if (mindif - dif >= 1.0)
{

140

295 mindif = dif;

296 id=1i;

297 }

298 else if ((dif - mindif < 1.0) &&
209 (ODpt->kd[i] > ODpt->kd[i_d]))
300 {

301 id=1i;

302 mindif = dif;

303 }

304 find: H

305 }

306 O0Dpt->k[i_d] += 1.0;

307 ktot -= 1.0;

308 }

309 }

310

311 else printf("re-routing dose not allow randomization\n");
312 }

313

314 /*This routine updates flows for the overall Network*/
315

316 Net_update()

317 {

318 int i,imax,j,t.i_first,moving_a;

319 double x,beta;

320

321 moving_a = Netpt->moving_a;

322 imax = Netpt->linktot;

323 if (moving_a) /*if moving averagex/

324 {

325 t = Netpt->update_int;

326 for(i=0;i<imax;++i)

327 {

328 x = get_external(Netpt->link_name[i])/t;
329 i_first = Netpt->i_first[i];

330

331 if(t == 1)

332 {

333 Netpt->link_f[i] = x*t;

334 goto repeat;

335 }

336

337 Netpt->link_f[i] -= Netpt->link ft[i][i_first];
338 Netpt->link ft[i] [i_first] = x;

339 Netpt->link_f[i] += x;

340 Netpt->i_first[i] = (i_first + 1)%t;
341 repeat: H

342 }

343 }

344 else

345 {

346 beta = Netpt->beta;

347 for (i=0;i<imax;++i)

141

348 {

349 x = get_external(Netpt->link_name[i]);
350 Netpt->link_f[i] = beta*x + (1-beta)*(Netpt->link_f[i]);
351 }

352 }

353

354 }

355

356 /*This routine updates ODpair path flows*/

as7

3ss OD_update (0Dpt)

359 0D *0Dpt;

360 {

361 int i,imax,t,j,i_first,moving_a;

362 double x,beta;

363

364 /*update short-term path flows*/

365

366 moving_a = Netpt->moving_a;

367 imax = ODpt->no_path;

368 t = ODpt->p_update_int;

369

370 if (moving_a) /*if moving average*/

371 {

372 if(t == 1)

373 {

374 for(i=0;i<imax;++i)

375 0Dpt->x[i] = ODpt->xbuf[i];
376 return;

377 }

378

379 for(i=0;i<imax;++i)

380 {

381 x = ODpt->xbuf[i]/t;

382 i_first = ODpt->i_first[i];

383

384 0Dpt->x[i] -= ODpt->xt[i][i_first];
385 ODpt->xt[i] [i_first] = x;

386 0Dpt->x[i] += x;

387 ODpt->i_first[i] = (i_first + 1)%t;
388 }

389 }

390 else

391 {

392 beta = Netpt->beta;

393 for(i=0;i<imax;++i)

304 {

395 x = O0Dpt->xbuf[i];

396 0Dpt->x[i] = beta*x + (1-beta)*(0Dpt->x[i]);
397 }

398 }

399

400 }

142

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

© 03O0 R WN e

/*This routine updates the states of a node*/
nd_update (ndpt)
node *ndpt;
{
int i,imax,k1,k2;
/*First update the link flows for the links locally attachedx/
/*if instantaneous info. is available, update all flows*/
if (Netpt->instant)
{
imax = Netpt->linktot;
for(i=0;i<imax;++i)
{
ndpt->ntpt->link_f[i] = Netpt->link_f[i];
ndpt->ntpt->time[i] = Time;
}
goto ODupdate;
}
imax=ndpt->no_link;
for(i=0;i<imax;++i)
{
k1 = ndpt->link_no[i] [0];
k2 = ndpt->link_no[i][1];
ndpt->ntpt->link_f [k1]=Netpt->1link_f [ki];
ndpt->ntpt->1link_f [k2]=Netpt->link_f [k2];
ndpt->ntpt->time[ki1] = Time;
ndpt->ntpt->time [k2] = Time;
}
/* perform OD_update, r_update,dynrt for OD pairs */
ODupdate:
imax = ndpt->no_0D;
for(i=0;i<imax;++i)
{
0D_update (ndpt->0Dpt [i]) ;
r_update(ndpt,ndpt->0Dpt[i]);
dynrt (ndpt,ndpt->0Dpt [i]) ;
}
}
/* File update.c
This file contains the routing controller and other supporting routines.
r_update (the routing controller): updates the routing variables;
Dcal :calculate the cost;
printNet:print the state of network;
print0D :print the state of an 0D pair;
OD_printNet: print the table of the estimates of link flows available locally.*/
#include <stdio.h>

143

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
563
54
55
56
57
58
59
60
61
62

#include <math.h>
#include <opnet.h>
#include "struct.h"

extern FILE *fout;

extern Net *Netpt;

/*This function calculate costs*/
Dcal()

{

double d,f,c,ff;

int i,imax;

imax=Netpt->linktot;

d=0.0;

for(i=0;i<imax;++i)

{

f = Netpt->link_f[i];

c = Netpt->c[i];

if (f > 0.99%c)

{

ff = f - 0.99%c;

ff = 99.0 + 10000.0*ff/c + 1000000.0+ff*ff/(c*c);
d += ff;

}

else d += £/(c-f);

}
cont_save_variable("cost",d);
Netpt->cost = d;

}
/*This function prints Network flows*/
printNet ()
{
double d,f,c,ff,g,de;
int i,imax;
imax = Netpt->linktot;
d =0.0;
fprintf (fout,"\n**** Time = %d Network-wide #***\n\n",Time);
for(i=0;i<imax;++i)

{

f = Netpt->link_f[i];

c = Netpt->c[il;

g = f/c;

if (f > 0.99%c)

{
ff = £ - 0.99%c;
ff = 99.0 + 10000.0*ff/c + 1000000.0%ff*ff/(c*c);
d += ff;
de = ff;
¥
else

144

{
de = £/(c-f);
d += de;
}
fprintf (fout,"f[%d] = %f £/c[%d] = %f d[%d] = %f\n",
i,Netpt->link f[i],i,g,i,de);
}

fprintf (fout,"cost = %f\n",d);
}

OD_printNet (ndpt,0Dpt)

0D *QDpt;
node *ndpt;
{

int i,imax;

imax=Netpt->linktot;
fprintf (fout,"\n#*** Time = %d 0D pair %s ****\n\n",Time,ODpt->name);
for(i=0;i<imax;++i)
{
fprintf (fout,"link flow [%d] = %f time[%d] = %d\n",
i,ndpt->ntpt->1link_£[i],i,ndpt->ntpt->time[i]);
}

}

/*This function prints 0D flows*/

print0D(ndpt,0Dpt)

/*

0D *0Dpt;

node *ndpt;

{

int i,imax;
double k,kd,x,xd;

imax=0Dpt->no_path;

OD_printNet (ndpt,0Dpt); */
fprintf (fout,"\n**** Time = %d 0D pair %s ****\n\n",Time,ODpt->name);
fprintf (fout,"i_sh = %d\n\n",0Dpt->i_sh);

for(i=0;i<imax;++i)
{
k=0Dpt->k[il];
kd=0Dpt->kd[i];
fprintf (fout,"k[%d]= %f kd[%dl= %f\n",i,k,i,kd);
}

for(i=0;i<imax;++i)
{
x=0Dpt->x[i];
xd=0Dpt->xd[i];

145

116

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
167
158
159
160
161
162
163
164
165
166
167
168

fprintf (fout,"x[%d]= %f xd[%d]= %f\n",i,x,i,xd);

}
}

/*This function updates routing variables/

r_update (ndpt,0Dpt)

start:

0D *0Dpt;
node *ndpt;
{

int i_sh,t,synch;

/*the shortest path is i_sh#/

int i,imax,j,jmax,k,kmax,diff;
double d,dl,xnonsh,xtot,x1,f,c,ff;

double pd[maxp],pdi[maxp]; /*the FDL and SDL of pathsx/
double 1d2[maxltot],1ldi[maxltot]; /*the link FDL and SDL*/
synch = Netpt->synch;
if (synch) /*if synchronous routing*/

{

t = ODpt->r_update_time;
if(Time!=t) return;

goto start;
}

diff = Time - ODpt->old_update_t;

if ((ndpt->update <= Q)

&& (diff < Netpt->t1)) return;

/*Calculate Link FDL & SDL*/

imax = Netpt->linktot;
for(i=0;i<imax;++i)

ndpt->ntpt->link_f[i];

= 10000.0/c;
= 2000000.0/ (c*c) ;

ff = (c-f)*(c-f);

= c/ff;
= 2%c/(ff*(c-f));

{

f =

c = Netpt->c[i];

if (£ > 0.99%c)
{
1d1[i]
1d2[i]
}

else
{
1d1[i]
1d2[i]
}

}

/*claculate FDL*/

imax=0Dpt->no_path;
for(i=0;i<imax;++i)

{
d=0.0;
di1=0.0;

146

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
2156
216
217
218
219
220
221

jmax=0Dpt->path[i] .no_link;
for(j=0;j<jmax;++j)
{
k = ODpt->path[i].link_no[j]; /*link no.*/
d += 1d1[k];
di += 1d2[k];
}
pdli] = 4;
pdi[i] = d1;
}
/*find the shortest path i_sh*/
i_sh = 0;
for (i=0;i<imax;++i)
{
if (pd[il<pd[i_sh])
i_sh=i;
}
/*calculate current total flow: xtot*/
xtot = 0.0;
for(i=0;i<imax;++i)
{
xtot += ODpt->x[i];
}
if (synch) goto proceedi;
/*proceed to r_updatex/
proceed: /*1 am now committed to asynchronous r_update*/
ndpt->update -= 1;
ODpt->0ld_update_t = Time;
proceedl: /*1 am now committed to synchronous r_update*/
ODpt->i_sh= i_sh;
if (Netpt->mode == 3) /*if shortest path routingx/
goto end_update;
if (Netpt->print_£flag)
{
fprintf (fout,"\n### Routing Update Time = %d ###\n", Time):
fprintf(fout,” 0D pair %s\n\n",ODpt->name);
ODpt->update_flag=1;
for(i=0;i<imax;++1i)
{
fprintf (fout,"d[%d]= %f d_1[%d]= %f\n",
i,pd[il,i,pd1[il);

147

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
2565
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

}
}
/*calculate SDL*/
for(i=0;i<imax;++i)
if(i!'=i_sh)
{
pdi[i] += pdi[i_sh];
jmax=0Dpt->path[i] .no_link;
kmax=0Dpt->path[i_sh].no_link;
for(j=0;j<jmax;++j)
{
for (k=0;k<kmax;++k)
{
if (0Dpt->path[i] .link_no[jl==0Dpt->path[i_sh].link_no[k])
pdi[i] -= 1d2[0Dpt->path[i].link no[j]]*2.0;
}
}
}
/*claculate desired flows*/
d = pd[i_sh]; /*the shortest FDL*/
xnonsh = 0.0;
x1=(0Dpt->gm) * (0Dpt->dbsize); /*one unit of bitflow per VCx/
for(i=0;i<imax;++i)
{
if(it=i_sh)
{
di = pdi[i];
if (Netpt->algo == 1)
{
0Dpt->xd[i]l=fmax (0.0,
0Dpt->x[i]-(Netpt->af) *(pd[i]-d)/d1);
}
else if (Netpt->algo == 2)
{
ODpt->xd[i]=fmax (0.0,
0Dpt->xd[i]-(Netpt->af)*(pd[i]-d)/d1);
}
0Dpt->kd [i]=0Dpt->xd[i]/x1;
xnonsh=xnonsh+0Dpt->xd[i] ;
}
}
O0Dpt->xd[i_sh] = xtot - xnomsh;
0Dpt->kd [i_sh] = ODpt->xd[i_sh] / x1;
end_update:
if (synch)

148

275
276
277

© 0 3 0 O WD =

B W W W W W WL WW W RN D NN NN NN e e e e e e e e
g@s:33:$$:oomqma‘humaoomummpunwowmqmmpmuwo

0Dpt->r_update_time += ODpt->r_update_T;/*set next update time*/
}
/* File proc.c
This file contains the routing processor, routing-server,
and the link-server, and other supporting routines.
Packets are referred to as Data-Blocks, or simply dbs.
routing_server: processes data-blocks for a node, tasks including
sending data-blocks for VCs originating locally,
reading the contol data-blocks,
flooding control data-blocks,
and continuing a flooding by copying cotrol data-blocks and

sending the copies to neighbors;
send_db: sends useful control data-blocks away;
set_path: sends data-blocks for the VCs originating locally;
check_db: checks to see if the received control db is useful;
cpoy_cdb: copies a useful control data-block;
link_server: makes sure the bit rate transmitted is not greater than
the pre-specified rate for the transmitter attached.*/

#include <opnet.h>
#include <stdio.h>
#include <math.h>

#include "struct.h"

extern Net *Netpt;

/*Field description of a data-block

field O : path number :0 => control db
field 1 : link number
field 2 : time stamp
field 3 : link flow
field 4 : link to be traversed
*/

/*routine origins control db*/

send_db(lno.ndpt.outch,outlink,dbsize.orig)
int lno,dbsize,outch,outlink,orig;
node *ndpt;
{
Data_Block *dbpt;

dbpt = proc_create_db(dbsize);

proc_set_field(dbpt,0,0.0,0); /*assign path no*/
proc_set_field(dbpt,1, ((double) 1no),0); /*assign link no*/
proc_set_field(dbpt,2, ((double) Time),0); /*assign time stamp*/
proc_set_field(dbpt,4, ((double) outlink),0); /*assign outlink*/

proc_set_field(dbpt.3,ndpt->ntpt->link_f[lno],O);/*assignlinkflow*/
proc_output_db(dbpt, outch);
}

/*routine copies control db*/

149

51
52 copy_cdb(dbpt,outch, outlink,orig)

53 int outch,outlink,orig;

54 Data_Block *dbpt;

55 {

56 Data_Block *dbptil;

57

58 dbptl = proc_copy_db(dbpt) ;

59 proc_set_field(dbpt1i,4, ((double) outlink),0); /*assign outlink*/
60 proc_output_db(dbpt1,outch);

61

62 }

63

64 /*routine reads control db*/

65

66 check_db(dbpt,pno,ndpt,dest)

67 node *ndpt;

68 Data_Block *dbpt;

69 int dest,pno;

70 {

71 int lno,time;

72 lno = (int) proc_get_field(dbpt,1);

73 time = (int) proc_get_field(dbpt,2);

74 if (time > ndpt->ntpt->time[1lno])

75 {

76 ndpt->ntpt->link_f[lno] = proc_get_field(dbpt,3);
77 ndpt->ntpt->time[lno] = time;

78

79 ndpt->update = 2;

80 return (1); /*if useful control db read*/
81 }

82 else

83 {

84 proc_destroy_db(dbpt) ;

85 return (0); /*if redundant info*/
86 }

87 }

88

89 /*routine to set path numbers and routs them*/
90

o1 set_path(0ODpt)

92 0D *0Dpt;

93 {

94 int i,imax,i_d,inch.pno.outch.k,kmax,j.jmax,db_no== 0;
95 int bitsize;

96 double pp,ran,randi();

o7 double plmaxp];

98 Data_Block *dbpt ;

99

100 inch = ODpt->set_path_inch;

101 imax = ODpt->no_path;

102 pp = 0.0;

103 for(i=0;i<imax;++i)

150

104
105
106
107
108
109
110
111
112
113
114
1156
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
163
154
165
156

{
pp += 0Dpt->k[il;
0Dpt->xbuf[i] = 0.0;
}

if(pp == 0.0) return;

if (Netpt->constant_db) goto constant;

plo]l = oDpt->k[0]/pp;
for(i=1;i<imax;++i)

pli]l = p[i-1] + (0ODpt->k[il)/pp;

while(!proc_is_stream_empty(inch))

{

dbpt = proc_get_first(inch);

ran = randi();

if(ran < p[0]) /+*if path[0] has an arrival*/

_d = 0;

WOHe e

else for(i=0;i<(imax-1);++i)

{

/*if path[i+1] has an arrival*/

if(p[i] <= ran && ran <p[i+1])

{

i_d = i+1;

goto setting;

}
}

setting:

pno = ODpt->set_path_pnol[i_d];

outch = 0Dpt->set_path_outch[i_d];
bitsize = proc_get_bitcount(dbpt);

proc_set_field (dbpt,0, ((double) pno),0);

++db_no;

proc_output_db(dbpt, outch);

O0Dpt->xbuf[i_d] += (double) bitsize;

}

for (i=0;i<imax;++i)

Netpt->load += ODpt->xbuf[i];

/* printf("0D name : Y%s db marked = %d Time = %d\n",

0Dpt->name,db_no, Time) ;
return;

*/

constant: /#if the VC number is constant, and the packet rate per
VC is constant, we have to send the data-blocks differently*/

jmax = (int) ODpt->gm;
for(i=0;i<imax;++i)

{

151

157
168
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

kmax = (int) (0.5 + 0Dpt->k[i]);
for (k=0;k<kmax;++k)
{
for(j=0;j<jmax;++j)
{
dbpt = proc_get_first(inch);
pno = ODpt->set_path_pno[i];
outch = 0Dpt->set_path_outch[i];
proc_set_field (dbpt,0, ((double) pno),0);
++db_no;
proc_output_db(dbpt, outch) ;
0Dpt->xbuf[i] += (double)
proc_get_bitcount (dbpt) ;
}
}
}
/* printf("0D name : Y%s db marked = %d Time = %d\n",
0Dpt->name,db_no, Time) ; */
}
/*This is a server attached to a link with capacity cp*/
link_server(cp)
int cp;
{
int active,total = O;
int bitcount,diff,cbitsize;
Queue *quept;
Data_Block *dbpt,*held_dbpt;
if(Time == 0) /*initialize the state variablex/
{
proc_alloc_state(sizeof (state_var));
((state_var*) proc_state_ptr())->active = O;
}
quept = proc_get_queue_ptr(0); /*the queue pointer*/
cbitsize = QueueSLE(quept,0,0.0,cp); /*the bandwidth used by

control dbs*/
cp -= cbitsize;
proc_output_stream(0,0);

if(cp == 0) return;/*if the control dbs use up all the bandwidth*/

/*assess the state to see if there is a left over db to be sent*/

held_dbpt = &(((state_var*) proc_state_ptr())->held_db);

active = ((state_var*) proc_state_ptr())->active;

if (active) /*if there is a left over db to be sent*/
{

dbpt = proc_copy_db(held_dbpt);

152

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
2556
256
257
258
259
260
261
262

repeat: /*start

bitcount = proc_get_bitcount (dbpt);

diff = bitcount - cp;

if(diff > 0)/*if the left over db has to be brokened up*/
{
proc_set_bitcount (dbpt,cp) ;
proc_set_bitcount (held_dbpt,diff);
proc_output_db(dbpt,0) ;

return;
}
else if(diff == 0)/*if the left over db ueses up all the
available bandwidthx/
{

proc_output_db(dbpt,0);
((state_var*) proc_state_ptr())->active = 0;
return;

}

/*Now there are some left over bandwidth to send more dbsx/

proc_output_db(dbpt,0);
total += bitcount;
((state_var*) proc_state_ptr())->active = 0;

}

sending data packets*/

proc_access_head(0) ;
if (proc_is_stream_empty (0))

{
return;

}

dbpt = proc_get_first(0);
bitcount = proc_get_bitcount (dbpt) ;
diff = total + bitcount - cp;

if (diff

else if

else

< 0) /*more bandwidth available*/
{
proc_output_db(dbpt,0);
total += bitcount;
goto repeat;
}
(diff == 0)/+the bandwidth is just exhaustedx/
{
proc_output_db(dbpt,0);
return;
}

/*a db must be brokened up and left overx/
{
proc_replicate_db(dbpt,held_dbpt);
proc_set_bitcount (held_dbpt,diff);
proc_set_bitcount (dbpt, (cp - total));
proc_output_db(dbpt,0);
((state_var*) proc_state_ptr())->active = 1;
return;

}

153

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
203
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
316

}

/*This is a general purpose routing server*/

routing_server(ndpt,RTpt)

RT *RTpt;

node *ndpt;

{

int i,imax.j,jmax.T,node_no.outlink.outch.lnol.1n02.pno,synch;
int tm,ts,diff;

double fabs(),f1,f2,f3;

Data_Block *dbpt;

int db_no = 0;

node_no = RTpt->node_no;

imax = ndpt->no_0D;

for(i=0;i<imax;++i) /+*sending the dbs for the local VCs*/
set_path(ndpt->0Dpt[i]);

imax = RTpt->no_receiver;/*checks the dbs receivedx/
for(i=1;i<=imax;++i)

{
while(!proc_is_stream_empty(i))
{
dbpt = proc_get_first(i);
pono = (int) proc_get_field(dbpt,0);
if(pno != Q)
{
jmax = RTpt->no_path;
/*route the dbsx/
for(j=0;j<jmax;++j)
{
if (pno == RTpt->path_no[j])
{
outch = RTpt->outch[j];
if (outch < 0)
{
proc_destroy_db(dbpt);
++db_no;
goto end_route;
}
proc_output_db(dbpt,outch);
goto end_route;
}
}
printf ("db not routed pno = %d\n",pno);
printf ("node_no = %d\n",node_no);
end_route: ;

}

/*if need to flood#*/

else if(check_db(dbpt,pno,ndpt,node_no))
{

154

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
363
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

/*

jmax = ndpt->no_link;
lnol = (int) proc_get_field(dbpt,4);
for(j=0;j<jmax;++j)

if (ndpt->link_no[j]1[0] != 1lnol)
{
outch = ndpt->link_no[j][2];
outlink = ndpt->link_no[j][1];
copy_cdb(dbpt, outch, outlink,node_no);
}
}
proc_destroy_db(dbpt) ;
}

}

printf("Node no: %d db destroyed = %d Time = %d\n",node_no,
db_no,Time) ; */

/*send the control db*/
if (Netpt->instant) return; /*if instant send no control dbx/

synch = Netpt->synch;
if (synch)
{
T = ndpt->send_int;
if(Time < T) return;
if(Time)T == ndpt->send_bias)
{
imax = ndpt->no_link;
jmax = imax;
for(i=0;i<imax;++1i)
{
1lno2 = ndpt->link_no[i][1];
for(j=0;j<jmax;++j)

if(i 1= j)
{
outlink = ndpt->link no[j][1];
outch = ndpt->link_no[j}[2];
send_db(1no2,ndpt,outch, outlink,
Netpt->c_dbsize,node_no);

}
}

}

else

{

tm = Netpt->tm;

imax = ndpt->no_link;
jmax = imax;

155

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

™ 3 O O W N

flood:

repeat:

/*

for(i=0;i<imax;++i)

{
lno2 = ndpt->link_no[i][1];

/*test if need to flood*/

diff = Time - Netpt->old_flood_t[1no2];
if (diff <= tm) goto repeat;

f1 = Netpt->link_f[1no2]/Netpt->c[1no2];
f3 = Netpt->link_fo[lno2];

f2 = fabs(fl - £3);

if (f1 > Netpt->m_thre)
{
goto flood;
}
else
{
if(£2 >= Netpt->diff[1no2]) goto flood;
Netpt->diff[lno2] -= Netpt->small;
goto repeat;

}
/*start flooding*/

ndpt->update = 2;
Netpt->link_fo[lno2] = f1;
Netpt->o0ld_flood_t[1no2] = Time;
Netpt->diff[lno2] = Netpt->f_thre;

for (j=0; j<jmax;++j)
{
if(i 1= j)
{
outlink = ndpt->link_no[j][1];
outch = ndpt->link_no[j][2];
send_db(1no2,ndpt, outch,outlink,
Netpt->c_dbsize,node_no);
}
}
;/*continue to see if other links attcahed
need flooding*/
}

File q.c

This file contains the routine implementing the priority queueing.

QueueSLE is a Queue-access method which gives control db full priority;

QueuelE is a Queue-access method which make sure that specify bandwidth

is not exceeded.

#include <opnet.h>

156

9 /* Queue-access method: select dbs whose field(fieldnum)=val, w/ total bandwd */
10

11 QueueSLE(quept,fieldnum,val,bandwd)

12 Queue* quept;

13 int fieldnum,bandwd;

14 double val;

15 {

16 int total = O;

17 int bitcount;

18

19 queue_set_pointer (quept);

20

21 if (queue_is_empty()) return 0;

22 queue_goto_head();

23 while(!queue_is_finished())

24 {

25 if (queue_db_field(fieldnum) == val)
26 {

27 bitcount = queue_db_bitcount();
28 if ((total + bitcount) <= bandwd)
29 {

30 queue_pop() ;

31 total += bitcount;
32 }

33 else return (total);
34 }

35 else queue_backward() ;

36 }

37 return (total);

38 }

39

40 /* Queue-access method: w/ total bandwd */

41

42 QueueLE(quept,bandwd)

43 Queue* quept;

44 int bandwd;

45 {

46 int diff,total = 0O;

47 int bitcount;

48 Data_Block *dbpt;

49

50 queue_set_pointer(quept) ;

51

52 if (queue_is_empty()) return 0;

53 queue_goto_head();

54 while(!queue_is_finished())

55 {

56 bitcount = queue_db_bitcount();
57 diff = total + bitcount - bandwd;
58 if (diff < 0)

59 {

60 queue_pop();

61 total += bitcount;

157

~ N4 NN 9NN 0 0000000
Jaasdd23gasaaras

© 0 O O s W N e

W W W W W WL W NNNNNR N RN R R e
N O R WN RO O ®® 0RO N O © W00 WN RO

/*

return (total);

}

}

else if (diff == 0)

else

}

{
queue_pop() ;
return (bandwd);

}

{

dbpt = queue_copy_db(bandwd - total);/*cp w/ bitcount*/
queue_set_bitcount (diff); /*set head bitcount#/
queue_load{dbpt) ; /*load the created db*/

return (bandwd);

}

File cnet8.c

This file contains routines calling the controller codes*/

#include <stdio.h>
#include <opnet.h>
#include "struct.h"

Net Netwk;

Net *Netpt;

oD w13,w24,w35,w46,w57,w68.w71,w82,w17,w28,w31.w42.w53,w64.w75,w86;

node
ntcp
node
node
node
node
node
node
node
node

nl,n2,n3,n4,n5,n6,n7,n8;
ntl,nt2,nt3,nt4,nt5,nt6,nt7,nt8s;

*nipt
*n2pt
*n3pt
*n4pt
*n5pt
*n6pt
*n7pt
*n8pt

∋
&n2;
&n3;
&n4;
&n5;
&n6;
&n7;

= &n8;

RT RT1,RT2,RT3,RT4,RT5,RT6,RT7,RTS;

FILE *fout;

double avg=0.0;

ct2()

/*controller ct2x/

{

NCG(SI,&Netwk.&nZ,"fnet8"."fn2",&w24,&w28,&nt2,&RT2);

if (Time
if (Time

if(Time

>= 3000)

avg += Netpt->cost/4000.0;

== 7000)

cont_save_variable("avg",avg);

{

== 7000)

158

38
39
40
41
42

. 43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80

-]
-

© 0 N O ¢ e W N

print0D(nipt,&wi3);
printOD(nipt, &wl7) ;
print0D(n2pt, &w24) ;
print0D(n2pt, &w28) ;
print0OD(n3pt,&w35) ;
print0D(n3pt,&w3l);
print0D(ndpt, &wds6) ;
print0D(ndpt,&w42) ;
print0OD(n5pt, &w57) ;
printOD(n5pt, &w53) ;
print0D(n6pt, &w68) ;
print0D(n6pt, &w64) ;
print0D(n7pt,&w71) ;
print0D(n7pt, &w75) ;
print0D(n8pt, &w82) ;
print0D(n8pt, &w86) ;
fprintf (fout,"\n cost = %f\n",Netpt->cost);
}
}
/*controller ctix/
cti()
{
cn(&n5, "fn5",&w57,&w53,&nt5, &RT5) ;
}
/*controller ct3+*/
ct3()
{
if (cont_dev_id() == 1) cn(&n3,"fn3", &w31,&w35,4&nt3,4&RT3);
else if (cont_dev_id() == 2) cn(&n4,"fn4",h &wd6,&wd2,&ntd,&RT4);
else if(cont_dev_id() == 4) cn(&n6,"fn6",&w68,&w64,4&nt6,&RT6) ;
else if(cont_dev_id() == 5) cn(&ni,"fni", &w13,&w17,&nt1,&RT1);
}
/*controller ctd*/
ct4()
{
if(cont_dev_id() == 6) cn(&n7,"fn7",&w71,&w75,&nt7,&RT7);
else if (cont_dev_id() == 7) cn(&n8,"fn8",&w82,4&w86,4&nt8,&RT8);
}
/* File pnet8.c
This file contains routines calling the processor codes*/
#include <opnet.h>
#include "struct.h"
extern Net *Netpt;
extern node *nipt,*n2pt,*n3pt, *n4pt, *nbpt, *n6pt, *n7pt, *n8pt;

159

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
87
58
59

st1()

st2()

8t3()

st4()

8500()

81000()

/*server stix*/

{
routing_server(n5pt,n5pt->RTpt) ;
}

/*server st2*/

{

Dcal();
routing_server(n2pt,n2pt->RTpt) ;

}

/*server st3*/

{

if (proc_dev_id() == 1) routing_server(n3pt,n3pt->RTpt);

else if (proc_dev_id() == 2) routing_server(n4pt,ndpt->RTpt);
else if (proc_dev_id() == 4) routing_server(n6pt,n6pt->RTpt) ;
else if (proc_dev_id() == 5) routing_server(nipt,nipt->RTpt);

}
/*server stdx/
{

if (proc_dev_id() == 6) routing_server(n7pt,n7pt->RTpt);
else if(proc_dev_id() == T7)

{

routing_server(n8pt,n8pt->RTpt);
proc_save_variable("load",Netpt->load); %/
}

}

/*server s8500%/

{
link_server (50) ;

}

/*server s1000%/

{
link_server(100);
}

160

