
18.785 Number Theory Fall 2019 

Problem Set #7 

Description 

These problems are related to the material covered in Lectures 13–15. Collaboration 
is permitted/encouraged, but you must identify your collaborators, and any references 
you consulted. If there are none, write “Sources consulted: none” at the top of your 
problem set. The first person to spot each nontrivial typo/error in any of the problem 
sets or lecture notes will receive 1–5 points of extra credit. 

Instructions: First do the warm up problems, then pick a set of Problems 1–6 that 
sum to 96 points (if you have taken 18.783 and solved Problem 4 in that course, please 
do not choose it again). Finally, complete the survey problem (worth 4 points). 

Problem 0. 

These are warm up problems that do not need to be turned in. 

(a) Prove that a cubic field K is Galois if and only if DK is a perfect square. 

(b) Prove that our two definitions of a lattice Λ in V ' Rn are equivalent: Λ is a Z-
submodule generated by an R-basis for V if and only if it is a discrete cocompact 
subgroup of V . 

√ 
(c) Let n ∈ Z>0 and assume n2 − 1 is squarefree. Prove that n + n2 − 1 is the √ 

fundamental unit of Q( n2 − 1). 

Problem 1. Classification of global fields (64 points) 

Let K be a field and let MK be the set of places of K (equivalence classes of nontrivial 
absolute values). We say that K has a (strong) product formula if MK is nonempty for 
each v ∈ MK there is an absolute value | |v in its equivalence class and a positive real 
number mv such that for all x ∈ K× we have Y 

|x|mv = 1, v 
v∈MK 

where all but finitely many factors in the product are equal to 1. Equivalently, if we fix 
normalized absolute values k kv := |x|mv for each v ∈ MK , then for all x ∈ K× we have v Y 

kxkv = 1, 
v∈MK 

with kxkv = 1 for all but finitely many v ∈ MK . 

Definition. A field K is a global field if it has a product formula and the completion 
Kv of K at each place v ∈ MK is a local field. 

In Lectures 10 and 13 we proved every finite extension of Q and Fq(t) is a global 
field. In this problem you will prove the converse, a result due to Artin and Whaples 
[?]. 

1



Let K be a global field with normalized absolute values k kv for v ∈ MK that satisfy 
the product formula. As we defined in lecture, an MK -divisor is a sequence of positive 
real numbers c = (cv) indexed by v ∈ MK with all but finitely many cv = 1 such that 
for each v ∈ MK there is an x ∈ K× for which cv = kxkv. For each MK -divisor c we v 
define the set 

L(c) := {x ∈ K : kxkv ≤ cv for all v ∈ MK }. 

(a) Let E/F be a finite Galois extension. Prove E is a global field if and only if F is. 

(b) Extend your proof of (a) to all finite extensions E/F . 

(c) Prove that MK is infinite but contains only finitely many archimedean places. 

(d) Assume K has an archimedean place. Prove that L(c) is finite for every MK -
divisor c (we proved this in class for number fields, but here K is a global field as 
defined above). 

(e) Extend your proof of (d) to the case where K has no archimedean places. 

(f) Prove that if MK contains an archimedean place then K is a finite extension of Q 
(hint: show Q ⊆ K and use (d) to show that K/Q is a finite extension). 

(g) Prove that if MK does not contain an archimedean place then K is a finite extension 
of Fq(t) for some finite field Fq (hint: by choosing an appropriate MK -divisor c, 
show that L(c) is a finite field k ⊆ K and that every t ∈ K − k is transcendental 
over k; then show that K is a finite extension of k(t)). 

(h) In your proofs of (a)-(g) above, where did you use the fact that the completions 
of K are local fields? Show that if K has a product formula and Kv is a local field 
for any place v ∈ MK then Kv is a local field for every place v ∈ MK (so we could 
weaken our definition of a global field to only require one Kv to be a local field). 
Are there fields with a product formula for which no completion is a local field? 

Problem 2. A non-solvable quintic extension (32 points) 

Let f(x) := x5 − x + 1, let K := Q[x]/(f) =: Q[α] and let L be the splitting field of f . 

(a) Prove that f is irreducible in Q[x], thus K is number field. Determine the number 
of real and complex places of K, and the structure of O× as a finitely generated K 
abelian group (both torsion and free parts). 

(b) Prove that the ring of integers of K is OK := Z[α] and compute disc OK , which you 
should find is squarefree. Use this to prove that for each prime p dividing disc OK 

exactly one of q|p is ramified, and it has ramification index eq = 2 and residue 
field degree fq = 1. Conclude that K/Q is tamely ramified (this means that for all 
places p of Q and places v|p of K the extension Kv/Qp is tamely ramified). 

(c) Using the fact that any extension of local fields has a unique maximal unramified 
subextension, prove that for any monic irreducible polynomial g ∈ Z[x] the splitting 
field of g is unramified at all primes that do not divide the discriminant of g. 
Conclude that L/Q is unramified away from primes dividing disc OK and tamely 
ramified everywhere, and show that every prime dividing disc OK has ramification 
index 2. Use this to compute disc OL. 
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(d) Show that OK has no ideals of norm 2 or 3 and use this to prove that the class 
group of OK is trivial and therefore OK is a PID. 

(e) Prove that Gal(L/Q) ' S5, and that it is generated by the Frobenius elements σ2 

and σ5 (here σ2 and σ5 denote conjugacy class representatives). 

Problem 3. Some applications of the Minkowski bound (32 points) 

For a number field K, let � �s p n! 4 
mK := |DK | 

nn π 

denote the Minkowski constant and let hK := #cl OK denote the class number. You may 
wish to use a computer to help with some of the calculations involved in this problem, 
but if you do so, please describe your computations (preferably in words or pseudo-code). 

(a) Prove that if OK contains no prime ideals p of norm N(p) ≤ mK other than inert 
primes, then hK = 1, and show that when K is an imaginary quadratic field the 
converse also holds. 

(b) Let K be an imaginary quadratic field. Show that if hK = 1 then |DK | is a power 
of 2 or a prime congruent to 3 mod 4, and then determine all imaginary quadratic 
fields K of class number one with |DK | < 200 (this is in fact all of them). 

(c) Prove that there are no totally real cubic fields of discriminant less than 20 and that 
every real cubic field K with DK < M can be written as K = Q(α), where α is 
an algebraic integer with minimal polynomial x3 + ax2 + bx + c whose coefficients √ √ √ 
satisfy |a| < M + 2, |b| < 2 M + 1, and |c| < M . 

(d) Prove that for any prime p there is at most one totally real cubic field K that is 
ramified only at p. Determine the primes p < 10 for which this occurs and give a 
defining polynomial for each field that arises. You may wish to use the formula 

3 2 3 2 disc(x + ax + bx + c) = −4a c + a 2b2 + 18abc − 4b3 − 27c . 

(e) Prove that a totally real cubic field ramified at only one prime is Galois if and only 
if it is totally ramified at that prime. 

Problem 4. Binary quadratic forms (32 points) 

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables: 

f(x, y) = ax 2 + bxy + cy 2 , 

which we identify by the triple (a, b, c). We are interested in a specific set of binary 
quadratic forms, namely, those that are integral (a, b, c ∈ Z), primitive (gcd(a, b, c) = 1), 
and positive definite (b2 − 4ac < 0 and a > 0). To simplify matters, in this problem 
we shall use the word form to refer to an integral, primitive, positive definite, binary 
quadratic form. 
The discriminant of a form is the integer D := b2 − 4ac < 0; although this is not 

necessary, for the sake of simplicity we restrict our attention to fundamental discrimi-√ 
nants D, those for which D is the discriminant of Q[x]/(f(x, 1)) = Q( D). 
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We define the (principal) root τ := τ(f) of a form f = (a, b, c) to be the unique root 
of f(x, 1) in the upper half plane H := {z ∈ C : im z > 0}: 

√ 
−b + D 

τ = . 
2a 

√ 
Let F (D) denote the set of forms with fundamental discriminant D, let K = Q( D), 
and let OK be the ring of integers of K. 

(a) For each form f = (a, b, c) ∈ F (D) with root τ , define I(f) := aZ + aτZ. Prove that 
OK = Z + aτZ and that I(f) is a nonzero OK -ideal of norm a. Show that every 
nonzero fractional ideal J lies in the ideal class of I(f) for some f = (a, b, c) ∈ F (D). 

t (b) For each γ = ( s ) ∈ SL2(Z) and f(x, y) ∈ F (D) define u v 

fγ (x, y) := f(sx + ty, ux + vy). 

Show that fγ ∈ F (D), and that this defines a right group action of SL2(Z) on the set 
F (D) (this means ( 1 0 ) acts trivially and f (γ1γ2) = (fγ1 )γ2 for all γ1, γ2 ∈ SL2(Z)). 0 1 

Call two forms f, g ∈ F (D) equivalent if g = fγ for some γ ∈ SL2(Z). 

(c) Prove that two forms f, g ∈ F (D) are equivalent if and only if I(f) and I(g) represent 
the same ideal class in cl(OK ). 

Recall that SL2(Z) acts on the upper half plane H (on the left) via � � 
a b aτ + b 

τ := , 
c d cτ + d 

and that the set � � 
F = τ ∈ H : re(τ ) ∈ [−1/2, 0] and |τ | ≥ 1 ∪ τ ∈ H : re(τ) ∈ (0, 1/2) and |τ | > 1 

is a fundamental region for H modulo the SL2(Z)-action. A form f = (a, b, c) is said to 
be reduced if 

−a < b ≤ a < c or 0 ≤ b ≤ a = c. 

(d) Prove that two forms are equivalent if and only if their roots lie in the same SL2(Z)-
orbit, and that a form is reduced if and only if its root lies in F . Conclude that 
each equivalence class in F (D) contains exactly one reduced form. 

(e) Prove that if f is reduced then a ≤ 
p
|D|/3; conclude that # cl(OK ) ≤ |D|/3. 

Remark. One can define (as Gauss did) a composition law for forms corresponding to 
multiplication of ideals; the product of reduced forms need not be reduced, so one also 
needs an algorithm to reduce a given form, but this is straight-forward. This makes 
it possible to compute the group operation in cl(OK ) using composition and reduction 
of forms. One can then use generic group algorithms (such as the baby-step giant-step 
method) to compute # cl(OK ) much more efficiently than by simply enumerating reduced 
forms; one can also compute the group structure of cl(OK ) not just its cardinality. 
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Problem 5. Unit groups of real quadratic fields (64 points) 

A (simple) continued fraction is a (possibly infinite) expression of the form 

1 
a0 + 

1 
a1 + 

a2 + · · · 

with ai ∈ Z and ai > 0 for i > 0. They are more compactly written as (a0; a1, a2, . . .). 
For any t ∈ R>0 the continued fraction expansion of t is defined recursively via 

t0 := t, an := btnc, tn+1 := 1/(tn − an), 

where the sequence a(t) := (a0; a1, a2, . . .) terminates at an if tn = an, in which case we 
say that a(t) = (a0; a1, . . . , an) is finite, and otherwise call a(t) = (a0; a1, a2, . . .) infinite. 
If a(t) is infinite and there exists ` ∈ Z>0 such that an+` = an for all sufficiently large n, 
we say that a(t) is periodic and call the least such integer ` := `(t) the period of a(t). 
Given a continued fraction a(t) := (a0; a1, a2, . . .) define the sequences of integers 

(Pn) and (Qn) by 

P−2 = 0, P−1 = 1, Pn = anPn−1 + Pn−2; 

Q−2 = 1, Q−1 = 0, Qn = anQn−1 + Qn−2. 

(a) Prove that a(t) is finite if and only if t ∈ Q, in which case t = a(t). 

(b) Prove that if a(t) = (a0; a1, a2, . . .) is infinite then (a0; a1, . . . , an) = Pn/Qn and 
tn = (an; an+1, an+2, . . .) for all n ≥ 0; conclude that t = limn→∞ Pn/Qn = a(t). 

(c) Prove that a(t) is periodic if and only if Q(t) is a real quadratic field. 

Now let D > 0 be a squarefree integer that is not congruent to 1 mod 4 and let √ √ 
K = Q( D). As shown on previous problem sets, OK = Z[ D], and it is clear that √ 
(OK 

× )tors = {±1}. Every α = x + y D ∈ O× has N(α) = ±1, and (x, y) is thus an K 
(integer) solution to the Pell equation 

X2 − DY 2 = ±1 (1) 

(d) Prove that if (x1, y1) and (x2, y2) are solutions to (??) with x1, y1, x2, y2 ∈ Z>0 then √ √ 
x1 + y1 D < x2 + y2 D if and only if x1 < x2 and y1 ≤ y2. Conclude that the √ 
fundamental unit � = x + y D of O× is the unique solution (x, y) to (??) with K 
x, y > 0 and x minimal. 

√ 
(e) Let a( D) = (a0; a1, a2, . . .), and define tn, Pn, Qn as above. Prove that 

√ tnPn−1 + Pn−2 
Pn−1Qn−2 − Pn−2Qn−1 = ±1 and = D 

tnQn−1 + Qn−2 

for all n ≥ 0. Use this to show that (Pk`−1, Qk`−1) is a solution to (??) for all k ≥ 0, √ √ 
where ` := `( D). Conclude that � = P`−1 + Q`−1 D. 

√ 
(f) Compute the fundamental unit � for each of the real quadratic fields Q( 19), √ √ √ 

Q( 570), and Q( 571); in each case give the period `( D) as well as �. 
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Problem 6. S-class groups and S-unit groups (32 points) 

Let K be a number field with ring of integers OK , and let S be a finite set of places of K 
including all archimedean places. Define the ring of S-integers OK,S as the set 

OK,S := {x ∈ K : vp(x) ≥ 0 for all p 6∈ S}. 

(a) Prove that OK,S is a Dedekind domain containing OK with the same fraction field. 

(b) Define a natural homomorphism between cl OK,S and cl OK (it is up to you to 
determine which direction it should go) and use it to prove that cl OK,S is finite. 

(c) Prove that there is a finite set S for which OK,S is a PID and give an explicit upper 
bound on #S that depends only on n = [K : Q] and | disc OK |. 

(d) Prove the S-unit theorem: O× is a finitely generated abelian group of rank #S−1. K,S 

Problem 7. Survey (4 points) 

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”), 
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount 
of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
Problem 5 
Problem 6 

Please rate each of the following lectures that you attended, according to the quality of 
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material to you (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
10/28 Dirichlet’s unit theorem 
10/30 Prime number theorem 

Please feel free to record any additional comments you have on the problem sets and the 
lectures, in particular, ways in which they might be improved. 
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