Description

These problems are related to the material covered in Lectures 13–15. Collaboration is permitted/encouraged, but you must identify your collaborators, and any references you consulted. If there are none, write "Sources consulted: none" at the top of your problem set. The first person to spot each nontrivial typo/error in any of the problem sets or lecture notes will receive 1–5 points of extra credit.

Instructions: First do the warm up problems, then pick a set of Problems 1–6 that sum to 96 points (if you have taken 18.783 and solved Problem 4 in that course, please do not choose it again). Finally, complete the survey problem (worth 4 points).

Problem 0.

These are warm up problems that do not need to be turned in.

- (a) Prove that a cubic field K is Galois if and only if D_K is a perfect square.
- (b) Prove that our two definitions of a lattice Λ in $V \simeq \mathbb{R}^n$ are equivalent: Λ is a \mathbb{Z} -submodule generated by an \mathbb{R} -basis for V if and only if it is a discrete cocompact subgroup of V.
- (c) Let $n \in \mathbb{Z}_{>0}$ and assume $n^2 1$ is squarefree. Prove that $n + \sqrt{n^2 1}$ is the fundamental unit of $\mathbb{Q}(\sqrt{n^2 1})$.

Problem 1. Classification of global fields (64 points)

Let K be a field and let M_K be the set of places of K (equivalence classes of nontrivial absolute values). We say that K has a (strong) product formula if M_K is nonempty for each $v \in M_K$ there is an absolute value $| |_v$ in its equivalence class and a positive real number m_v such that for all $x \in K^{\times}$ we have

$$\prod_{v \in M_K} |x|_v^{m_v} = 1,$$

where all but finitely many factors in the product are equal to 1. Equivalently, if we fix normalized absolute values $\| \|_{v} := |x|_{v}^{m_{v}}$ for each $v \in M_{K}$, then for all $x \in K^{\times}$ we have

$$\prod_{v \in M_K} \|x\|_v = 1$$

with $||x||_v = 1$ for all but finitely many $v \in M_K$.

Definition. A field K is a global field if it has a product formula and the completion K_v of K at each place $v \in M_K$ is a local field.

In Lectures 10 and 13 we proved every finite extension of \mathbb{Q} and $\mathbb{F}_q(t)$ is a global field. In this problem you will prove the converse, a result due to Artin and Whaples [?].

Let K be a global field with normalized absolute values $|| ||_v$ for $v \in M_K$ that satisfy the product formula. As we defined in lecture, an M_K -divisor is a sequence of positive real numbers $c = (c_v)$ indexed by $v \in M_K$ with all but finitely many $c_v = 1$ such that for each $v \in M_K$ there is an $x \in K_v^{\times}$ for which $c_v = ||x||_v$. For each M_K -divisor c we define the set

$$L(c) := \{ x \in K : ||x||_v \le c_v \text{ for all } v \in M_K \}.$$

- (a) Let E/F be a finite Galois extension. Prove E is a global field if and only if F is.
- (b) Extend your proof of (a) to all finite extensions E/F.
- (c) Prove that M_K is infinite but contains only finitely many archimedean places.
- (d) Assume K has an archimedean place. Prove that L(c) is finite for every M_{K-} divisor c (we proved this in class for number fields, but here K is a global field as defined above).
- (e) Extend your proof of (d) to the case where K has no archimedean places.
- (f) Prove that if M_K contains an archimedean place then K is a finite extension of \mathbb{Q} (hint: show $\mathbb{Q} \subseteq K$ and use (d) to show that K/\mathbb{Q} is a finite extension).
- (g) Prove that if M_K does not contain an archimedean place then K is a finite extension of $\mathbb{F}_q(t)$ for some finite field \mathbb{F}_q (hint: by choosing an appropriate M_K -divisor c, show that L(c) is a finite field $k \subseteq K$ and that every $t \in K - k$ is transcendental over k; then show that K is a finite extension of k(t)).
- (h) In your proofs of (a)-(g) above, where did you use the fact that the completions of K are local fields? Show that if K has a product formula and K_v is a local field for any place $v \in M_K$ then K_v is a local field for every place $v \in M_K$ (so we could weaken our definition of a global field to only require one K_v to be a local field). Are there fields with a product formula for which no completion is a local field?

Problem 2. A non-solvable quintic extension (32 points)

Let $f(x) := x^5 - x + 1$, let $K := \mathbb{Q}[x]/(f) =: \mathbb{Q}[\alpha]$ and let L be the splitting field of f.

- (a) Prove that f is irreducible in $\mathbb{Q}[x]$, thus K is number field. Determine the number of real and complex places of K, and the structure of \mathcal{O}_K^{\times} as a finitely generated abelian group (both torsion and free parts).
- (b) Prove that the ring of integers of K is $\mathcal{O}_K := \mathbb{Z}[\alpha]$ and compute disc \mathcal{O}_K , which you should find is squarefree. Use this to prove that for each prime p dividing disc \mathcal{O}_K exactly one of $\mathfrak{q}|p$ is ramified, and it has ramification index $e_{\mathfrak{q}} = 2$ and residue field degree $f_{\mathfrak{q}} = 1$. Conclude that K/\mathbb{Q} is tamely ramified (this means that for all places p of \mathbb{Q} and places v|p of K the extension K_v/\mathbb{Q}_p is tamely ramified).
- (c) Using the fact that any extension of local fields has a unique maximal unramified subextension, prove that for any monic irreducible polynomial $g \in \mathbb{Z}[x]$ the splitting field of g is unramified at all primes that do not divide the discriminant of g. Conclude that L/\mathbb{Q} is unramified away from primes dividing disc \mathcal{O}_K and tamely ramified everywhere, and show that every prime dividing disc \mathcal{O}_K has ramification index 2. Use this to compute disc \mathcal{O}_L .

- (d) Show that \mathcal{O}_K has no ideals of norm 2 or 3 and use this to prove that the class group of \mathcal{O}_K is trivial and therefore \mathcal{O}_K is a PID.
- (e) Prove that $\operatorname{Gal}(L/\mathbb{Q}) \simeq S_5$, and that it is generated by the Frobenius elements σ_2 and σ_5 (here σ_2 and σ_5 denote conjugacy class representatives).

Problem 3. Some applications of the Minkowski bound (32 points)

For a number field K, let

$$m_K := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|D_K|}$$

denote the Minkowski constant and let $h_K := \# \operatorname{cl} \mathcal{O}_K$ denote the class number. You may wish to use a computer to help with some of the calculations involved in this problem, but if you do so, please describe your computations (preferably in words or pseudo-code).

- (a) Prove that if \mathcal{O}_K contains no prime ideals \mathfrak{p} of norm $N(\mathfrak{p}) \leq m_K$ other than inert primes, then $h_K = 1$, and show that when K is an imaginary quadratic field the converse also holds.
- (b) Let K be an imaginary quadratic field. Show that if $h_K = 1$ then $|D_K|$ is a power of 2 or a prime congruent to 3 mod 4, and then determine all imaginary quadratic fields K of class number one with $|D_K| < 200$ (this is in fact all of them).
- (c) Prove that there are no totally real cubic fields of discriminant less than 20 and that every real cubic field K with $D_K < M$ can be written as $K = \mathbb{Q}(\alpha)$, where α is an algebraic integer with minimal polynomial $x^3 + ax^2 + bx + c$ whose coefficients satisfy $|a| < \sqrt{M} + 2$, $|b| < 2\sqrt{M} + 1$, and $|c| < \sqrt{M}$.
- (d) Prove that for any prime p there is at most one totally real cubic field K that is ramified only at p. Determine the primes p < 10 for which this occurs and give a defining polynomial for each field that arises. You may wish to use the formula

$$\operatorname{disc}(x^3 + ax^2 + bx + c) = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2.$$

(e) Prove that a totally real cubic field ramified at only one prime is Galois if and only if it is totally ramified at that prime.

Problem 4. Binary quadratic forms (32 points)

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables:

$$f(x,y) = ax^2 + bxy + cy^2,$$

which we identify by the triple (a, b, c). We are interested in a specific set of binary quadratic forms, namely, those that are *integral* $(a, b, c \in \mathbb{Z})$, *primitive* $(\gcd(a, b, c) = 1)$, and *positive definite* $(b^2 - 4ac < 0 \text{ and } a > 0)$. To simplify matters, in this problem we shall use the word *form* to refer to an integral, primitive, positive definite, binary quadratic form.

The discriminant of a form is the integer $D := b^2 - 4ac < 0$; although this is not necessary, for the sake of simplicity we restrict our attention to fundamental discriminants D, those for which D is the discriminant of $\mathbb{Q}[x]/(f(x,1)) = \mathbb{Q}(\sqrt{D})$.

We define the (principal) root $\tau := \tau(f)$ of a form f = (a, b, c) to be the unique root of f(x, 1) in the upper half plane $\mathbb{H} := \{z \in \mathbb{C} : \text{im } z > 0\}$:

$$\tau = \frac{-b + \sqrt{D}}{2a}.$$

Let F(D) denote the set of forms with fundamental discriminant D, let $K = \mathbb{Q}(\sqrt{D})$, and let \mathcal{O}_K be the ring of integers of K.

- (a) For each form $f = (a, b, c) \in F(D)$ with root τ , define $I(f) := a\mathbb{Z} + a\tau\mathbb{Z}$. Prove that $\mathcal{O}_K = \mathbb{Z} + a\tau\mathbb{Z}$ and that I(f) is a nonzero \mathcal{O}_K -ideal of norm a. Show that every nonzero fractional ideal J lies in the ideal class of I(f) for some $f = (a, b, c) \in F(D)$.
- (b) For each $\gamma = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in SL_2(\mathbb{Z})$ and $f(x, y) \in F(D)$ define

$$f^{\gamma}(x,y) := f(sx + ty, \, ux + vy).$$

Show that $f^{\gamma} \in F(D)$, and that this defines a right group action of $\mathrm{SL}_2(\mathbb{Z})$ on the set F(D) (this means $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$) acts trivially and $f^{(\gamma_1 \gamma_2)} = (f^{\gamma_1})^{\gamma_2}$ for all $\gamma_1, \gamma_2 \in \mathrm{SL}_2(\mathbb{Z})$).

Call two forms $f, g \in F(D)$ equivalent if $g = f^{\gamma}$ for some $\gamma \in SL_2(\mathbb{Z})$.

(c) Prove that two forms $f, g \in F(D)$ are equivalent if and only if I(f) and I(g) represent the same ideal class in $cl(\mathcal{O}_K)$.

Recall that $SL_2(\mathbb{Z})$ acts on the upper half plane \mathbb{H} (on the left) via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau := \frac{a\tau + b}{c\tau + d},$$

and that the set

$$\mathcal{F} = \left\{ \tau \in \mathbb{H} : \operatorname{re}(\tau) \in [-1/2, 0] \text{ and } |\tau| \ge 1 \quad \cup \left\{ \tau \in \mathbb{H} : \operatorname{re}(\tau) \in (0, 1/2) \text{ and } |\tau| > 1 \right\}$$

is a fundamental region for \mathbb{H} modulo the $SL_2(\mathbb{Z})$ -action. A form f = (a, b, c) is said to be *reduced* if

 $-a < b \le a < c$ or $0 \le b \le a = c$.

- (d) Prove that two forms are equivalent if and only if their roots lie in the same $SL_2(\mathbb{Z})$ orbit, and that a form is reduced if and only if its root lies in \mathcal{F} . Conclude that
 each equivalence class in F(D) contains exactly one reduced form.
- (e) Prove that if f is reduced then $a \leq \sqrt{|D|/3}$; conclude that $\# \operatorname{cl}(\mathcal{O}_K) \leq |D|/3$.

Remark. One can define (as Gauss did) a composition law for forms corresponding to multiplication of ideals; the product of reduced forms need not be reduced, so one also needs an algorithm to reduce a given form, but this is straight-forward. This makes it possible to compute the group operation in $cl(\mathcal{O}_K)$ using composition and reduction of forms. One can then use generic group algorithms (such as the baby-step giant-step method) to compute $\# cl(\mathcal{O}_K)$ much more efficiently than by simply enumerating reduced forms; one can also compute the group structure of $cl(\mathcal{O}_K)$ not just its cardinality.

Problem 5. Unit groups of real quadratic fields (64 points)

A (simple) continued fraction is a (possibly infinite) expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$

with $a_i \in \mathbb{Z}$ and $a_i > 0$ for i > 0. They are more compactly written as $(a_0; a_1, a_2, \ldots)$. For any $t \in \mathbb{R}_{>0}$ the *continued fraction expansion* of t is defined recursively via

$$t_0 := t, \qquad a_n := \lfloor t_n \rfloor, \qquad t_{n+1} := 1/(t_n - a_n),$$

where the sequence $a(t) := (a_0; a_1, a_2, ...)$ terminates at a_n if $t_n = a_n$, in which case we say that $a(t) = (a_0; a_1, ..., a_n)$ is finite, and otherwise call $a(t) = (a_0; a_1, a_2, ...)$ infinite. If a(t) is infinite and there exists $\ell \in \mathbb{Z}_{>0}$ such that $a_{n+\ell} = a_n$ for all sufficiently large n, we say that a(t) is periodic and call the least such integer $\ell := \ell(t)$ the period of a(t).

Given a continued fraction $a(t) := (a_0; a_1, a_2, ...)$ define the sequences of integers (P_n) and (Q_n) by

$$P_{-2} = 0,$$
 $P_{-1} = 1,$ $P_n = a_n P_{n-1} + P_{n-2};$
 $Q_{-2} = 1,$ $Q_{-1} = 0,$ $Q_n = a_n Q_{n-1} + Q_{n-2}.$

- (a) Prove that a(t) is finite if and only if $t \in \mathbb{Q}$, in which case t = a(t).
- (b) Prove that if $a(t) = (a_0; a_1, a_2, \ldots)$ is infinite then $(a_0; a_1, \ldots, a_n) = P_n/Q_n$ and $t_n = (a_n; a_{n+1}, a_{n+2}, \ldots)$ for all $n \ge 0$; conclude that $t = \lim_{n \to \infty} P_n/Q_n = a(t)$.
- (c) Prove that a(t) is periodic if and only if $\mathbb{Q}(t)$ is a real quadratic field.

Now let D > 0 be a squarefree integer that is not congruent to 1 mod 4 and let $K = \mathbb{Q}(\sqrt{D})$. As shown on previous problem sets, $\mathcal{O}_K = \mathbb{Z}[\sqrt{D}]$, and it is clear that $(\mathcal{O}_K^{\times})_{\text{tors}} = \{\pm 1\}$. Every $\alpha = x + y\sqrt{D} \in \mathcal{O}_K^{\times}$ has $N(\alpha) = \pm 1$, and (x, y) is thus an (integer) solution to the *Pell equation*

$$X^2 - DY^2 = \pm 1$$
 (1)

- (d) Prove that if (x_1, y_1) and (x_2, y_2) are solutions to (??) with $x_1, y_1, x_2, y_2 \in \mathbb{Z}_{>0}$ then $x_1 + y_1\sqrt{D} < x_2 + y_2\sqrt{D}$ if and only if $x_1 < x_2$ and $y_1 \leq y_2$. Conclude that the fundamental unit $\epsilon = x + y\sqrt{D}$ of \mathcal{O}_K^{\times} is the unique solution (x, y) to (??) with x, y > 0 and x minimal.
- (e) Let $a(\sqrt{D}) = (a_0; a_1, a_2, \ldots)$, and define t_n, P_n, Q_n as above. Prove that

$$P_{n-1}Q_{n-2} - P_{n-2}Q_{n-1} = \pm 1$$
 and $\frac{t_n P_{n-1} + P_{n-2}}{t_n Q_{n-1} + Q_{n-2}} = \sqrt{D}$

for all $n \ge 0$. Use this to show that $(P_{k\ell-1}, Q_{k\ell-1})$ is a solution to (??) for all $k \ge 0$, where $\ell := \ell(\sqrt{D})$. Conclude that $\epsilon = P_{\ell-1} + Q_{\ell-1}\sqrt{D}$.

(f) Compute the fundamental unit ϵ for each of the real quadratic fields $\mathbb{Q}(\sqrt{19})$, $\mathbb{Q}(\sqrt{570})$, and $\mathbb{Q}(\sqrt{571})$; in each case give the period $\ell(\sqrt{D})$ as well as ϵ .

Problem 6. S-class groups and S-unit groups (32 points)

Let K be a number field with ring of integers \mathcal{O}_K , and let S be a finite set of places of K including all archimedean places. Define the ring of S-integers $\mathcal{O}_{K,S}$ as the set

$$\mathcal{O}_{K,S} := \{ x \in K : v_{\mathfrak{p}}(x) \ge 0 \text{ for all } \mathfrak{p} \notin S \}.$$

- (a) Prove that $\mathcal{O}_{K,S}$ is a Dedekind domain containing \mathcal{O}_K with the same fraction field.
- (b) Define a natural homomorphism between $\operatorname{cl} \mathcal{O}_{K,S}$ and $\operatorname{cl} \mathcal{O}_K$ (it is up to you to determine which direction it should go) and use it to prove that $\operatorname{cl} \mathcal{O}_{K,S}$ is finite.
- (c) Prove that there is a finite set S for which $\mathcal{O}_{K,S}$ is a PID and give an explicit upper bound on #S that depends only on $n = [K : \mathbb{Q}]$ and $|\operatorname{disc} \mathcal{O}_K|$.
- (d) Prove the *S*-unit theorem: $\mathcal{O}_{K,S}^{\times}$ is a finitely generated abelian group of rank #S-1.

Problem 7. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it (1 = "mind-numbing," 10 = "mind-blowing"), and how difficult you found it (1 = "trivial," 10 = "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			
Problem 4			
Problem 5			
Problem 6			

Please rate each of the following lectures that you attended, according to the quality of the material (1="useless", 10="fascinating"), the quality of the presentation (1="epic fail", 10="perfection"), the pace (1="way too slow", 10="way too fast", 5="just right") and the novelty of the material to you (1="old hat", 10="all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
10/28	Dirichlet's unit theorem				
10/30	Prime number theorem				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

References

[1] Emil Artin and George Whaples, Axiomatic characterization of fields by the product formula for valuations, Bull. Amer. Math. Soc. **51** (1945), 469–492.

18.785 Number Theory I Fall 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.