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INVESTIGATION OF ACOUSTIC FIELD NON-LINEARITIES BY SUSPENSION

OF PARTICLES IN A CYLINDRICAL RESONATING CAVITY

I. Abstract

Non-linear behavior of high amplitude acoustic waves
is investigated by observationofnon-zerotime average
forces predicted by a second order perturbation theory
analysis. A theoretical description is given of the force
on a sphere in a cylindrical cavity driven at resonance.
due to field non-linearities.

These forces are observed in a cylindrical cavity
driven at resonance at 155-165 dbs. A qualitive description
of these effects is given for particles of millimeter order.
Auantitive measurement of non-linear forces is made by
suspension of spheroids of diameters of centimeter order.
The behavior of the forces with respect to experimental
variables is found to be in substantial agreement with
prediction within the limits of experimental accuracy.
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3.

IIT. Introduction

Expressions for the acoustic variables, fluid density, fluid

velocity, and fluid pressure can be obtained by linearizing the equations

governing fluid motion, neglecting the internal energy loss terms. These

expressions are valid for low sound pressure levels below 145 db. The

accuracy of the first order decreases as the sound level is raised, due

to the contribution of second order effects which increase as the square

of the pressure amplitude of the first order. In the range between 145

and 160 dbs., the second order effects become non-negligeable but still

small compared to the total function. In this region a perturbation

approximation is a valid description of the physical situation. As the

sound level is raised to above 165 db., the higher orders become so large

that it makes no sense to use the perturbation analysis. In this case,.

the medium is said to be "shocked."

In the first order, the time dependence of the fluid variables is

sinuosoidal, giving time averages which equal zero. The second order is,

however, non-linear, and will include terms which are products of two

first order variables, giving rise to gin” and sos’ terms in the time

dependence, In the second order, then, the acoustic variables have a

definite non-zero time average value. |

In particular, the non-zero time average pressure field gives

rise to definite steady state forces. The nature of these forces in a

cavity at resonance have been the subject of investigation for some time.

Investigation has been carried out by observation of fluid deformatian
in rectangular — observation of dust particle patterns: etc,

In the present experiment the magnitude of the non-linear forces

is measured by balanc¢ing it against a constant, known force, that of

gravity. This is done by using the non-linear forces to keep a small,

light spheroid in suspension in a cylindrical cavity driven at its

purely longitudinal resonance modes. The sound pressure level needed

to sustain this suspension is measured as a function of varying sphere mass,

resonant frequency, and sphere size, and the results compared to theoretical

prediction.
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IV. Theory

A. General

The fYindamental'equations governing fluid flow are expressions of

mass and momentum conservation and the ideal gas law. In these equations

P(r) = +otral fluid density
 vr (rt) = total Flod velocity
Pl,vd = Toll Hod pressure

These equations are partial differential equations, the partial

derivative operator indicating that these equations are written in the Eulerian

frame of reference, in which the change in a fluid function is measured at a

fixed point ams the fluid streams past.

1. Equation of Continuity

N=, v- (PCr, oe) = Q
(1°

This equation states that the rate of change of material in a region

is equal to the net flow of material into that region plus the net rate of

creation in the region. Q is the creation term, determined by the placement of

material sources and sinks. If there are no sources or sinks, Q is zero and

equation (1) becomes

of _ _ V- (0 (ee) vex)
ot

~*
Cm

Newton's Second Law

ep Serie role) V ole Ye - plat) (3)

3. The Ideal Gas Law

The thermodynamic variable, the bulk compressibility ¥, is

defined by the relation

oo ( of )h a [op &lt; (A)
’

The differentiation is for an adiabatic process because the pressure changes

are so rapid that %there is’ no heat exchange‘fromonepartofthefiuid to

another.

The equation of state for adiabatic processes in an ideal gas is

Vo \! 3
= Po o fy = Po ofp)

where Pp \, S fs represent the ambient conditions in the absence of sound
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and Y is equal to the ratio of the specific heat of the gas at constant pressure

to that at constant volume.

If Ap , the difference between the pressure.in a region and the

ambient pressure Pos is small, then ng , the difference in density from

ambient conditions, is given by equation (4) as

AQ=IE, Ap
Fe

Equations (1), (3), and (6) constitute three equations in three

unknowns which, in principle, may be solved exactly. Approximate solutions

may be obtained by writing the acoustic variables as:
- 2

$028 + \ Ce
U =U, *\5, Xe NT,

. P=Pe trp, + Npa o-oo.
where \ is a "bookkeeping" variable, the zero subscripted variables are the

values in the absenee of a disturbance, and the integer subscripted variables

are the corrections to the ambient values due to a disturbance. In this

perturbation analysis £,&lt;&lt; fo1° ( £ any acoustic variable Ya
Inserting these solutions into a frame of reference where v5=0s

and in a situation where there are no sources or sinks of material gives

2 z Fava) =

O (00 + NP) + Vo (00ND VOT NTI=0 (2)
2% 0 \ 2. 0 ' 2

(0 0 «320 2 (ONS, SN gi Le© PNG, 12 J, Y+(NS, «N90,) TOS, VG, (30)
-V (p+ AP, x Np, +

XO(Np,«Np,N=(AQ+Nu. &gt;

ll. First Order Solutions

Equating coefficients of

8 LUT =0
 tL

A in equations (2a), (3a), and (6a):
(2b)

v ~N—&gt; _ _ 5J, + Vp.
21d

\
’

7JI)

5 = XO (61 )
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Combining these equations gives the classical linear wave equation

for the acoustic variables.
Z

| 2 —ot, + vi =o
n= nf,

[0

Thus, to the first order, a wave disturbance may be propagated
Zi

through the fluid medium with the speed (XR) “2 From equations (4) and (5)
} - 1

-V of 72 ¥- | L (8)xe) *- \ ) : ) 2 L," or J. HE 5) | OR)

¢ «&lt; 2 Equation (7) must be solved with respect to the boundary conditions

imposed by the specific geometry. This gives the form of the spatial part

of the solution. The time dependence of the solution is always sinuosoidal

if

ocivings

¢ = Pv, x, x) 0
i

/¢ 3)

The time average of +, ’ LED, is given by

ED = lm I. +, ali x Pb J \ de = O
Ld x - +&gt; x we

Thus, none of the first order acoustic variables have non-zero

§

timee averages

2, Second Order Solutions

Lguating coefficients of
—

A in equations (2a), (3a), and (6a)
rives:

x + VV. (Qo, + So) =Q0

D
Ya ow +S. 2 + (op VOI, = - VP.

x 0 T- = 0.

f
 Pu 1)

I. )

6¢ )

Again, three equationsinthreeunknowns can be solved for the

second order correction factor. In general it is not easy to solve these
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equations. This difficulty can be circumvented for the present, since the time

average of the second order pressure field is the quantity of interest. Operating

on equation (3c) with the time average operator gives

&lt;u, voy = NF,
qe

The time average pressure calculated in (3d) is an average over

terms like gin® and cone due to the non-linear {v;.Vuy term. The time average

of these terms is non-zero, so that there will be a non-zero pressure field

and therefore non-zero forces in the second order.

B. Application to Experiment

Using this theoretical machinery, we try to find the time average

force on a sphere in a cylindrical cavity. We are given a sphere of radius a

placed in a rigid walled cylinder length L, radius The such that the center
bf the sphere lies on the.central axis of the cylinder. (See Fig. 1)

1
”“~

{

i |
iy)

fo—4

'isure 1.

|
| - A(r, 2,2)

z
Ae — sci—f

—
2

It is assumed that there is no scattering interaction between the sphere and

the pressure field.

The pressure and velocity fields are given to the first order

by wave equation (7) withthe boundary requirements that the radial velocity
be zero at T=Tqy that the axial velocity be zero at z=0 and z=L, and that fo :=fe zw.

The form of the first order pressure field is then givenlby:

(11)
\ = Poms

 Po own A, Ludo WN C nS wrdev SY J ( a )TY COS nll 2 i 2 k,
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where A is the pressure amplitude at sy J is a Bessel function
l,myn l,myn? "m

of the m-th order. The values of ky are restricted to those which satisfy the

boundary condition on the radial velocity. Further, there is the requirement

that
2. 2 ra 2

k, + Nn Tr Wy 2,m
&gt;

where ¢ is the speed of sound.

5)

Since the system is symmetric about the central axis, f(r,8,z)

is equal to f(r,z). Thus only P; o.n terms are included in the sum of ecuation
M9

(11). If the tube is driven at the resonance frequency, Wz (FY), then k, =0

and the pressure field is given by
Sw

Poon = Rua" cos allz
i.

Thus, at tube resonance, the pressure field is a longitudinal,

compressional standing wave, a function of z alone. It is identical to the

expression for the (0,0,n) resonance mode of a rectangular cavity.

For the general pressure field in a cylindrical cavity the calc-

ulation of the time average second order pressure is not simple. For the

resonange pressure field, equation (13), the mathematics is considerably

simplified. The solution, obtained by getting Yin from Pi, by equation (3b),

substituting into equation (3b), and integrating in rectangular coordinates
to. solve (3b), can be expressed exactly as

&lt;

(Pan (BY)==An [4- cos Zoe |
| 4Rc" -

This expression can be used to calculate the net force on the

sphere. Integration of the pressure over the sphere surface is performed by

summing of infinitesmal zones at angle é to the tube axis. (See Fig. 1)

This gives -

CF Y= - | Cple-oces PNzmet snd cock 8 (19)
Z &gt; 2a

Inserting the expression from equation (14)
TT _ _—= 16

G \ | To. A cos Zar (z-a.cos®) sind cos ® Ad (16)
z z L

2% c 0
This integral can be done exactly by integration by varts, The solution is

sciven by

AS aL |
C MD) - Ry OG = S\n 202 L Sw oa CoS 20Tra!

2 4 ob A L Zalla \. 2

\ =
Ty =

iJ
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V7. Design of Experiment

A schematic of the experiment is given in Figure 1.
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A. Resonant Cavity

The cavity is a cylindrical plexiglass tube of radius 5.7 cm. with

walls of thickness .63 cm. It is stopped at one end by a removable plexiglass

cap so that the length of the tube is 175 cme At the other end, the speaker,

an Atlas Sound PD-60T driver with a radius of 1.12 cm, is set into a 2.2 cm.

thick aluminum plate which is secured by screws flush against the inner wals of

the tube. The speaker is operated at 16 ohms impedence.

Be Sigmal Production

A 5 volt peak to peak sinuosoidal signal is produced by a Wavetech

#110 Punction Generator. The frequency of the signal is monitored by a

Hewlett Packard #5221B Digital Electronic Counter. The signal is then passed

through = scaled variable voltage attenuator which is used as a volume control.

Finally, the signal is amplified by a Dynaco Mark III Amplifier by a factor

of 28 db. The signal from the amplifier is displayed on a Tektronix #5454

Oscilloscope for the purpose of observing the onset of amplifier clipping or
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any other signal distortion.

~
oF wr Sound Level Detection

A Bruel and Kjaer #4135 quarter inch condenser microphone is inserted
into a hole in the tube wall exactly half way along the length of the tube for

the purpose of measuring the sound pressure level of standing waves of = ‘

integer number of wavelengths in the cavity. The condenser microphone is operated

with a Bruel and Kjaer #2615 Cathode Follower and #2801 Power Supply. This

microphoneischaracterizedby a flat pressure response over the frequency range

from 80-10,000 cps., when operated between 64 and 174 db. The harmonic

distortion due to the microphone system is less than 1% over this sound

pressure range. Variation of sensitivity and response is also insignificant
over the ranges of temperature, ambient pressure, and humidity encountered

in the experiment. Microphone characteristic graphs may be found in Appendix I.

The microphone output is monitored by the oscilloscope for distortion

indicative of impending speaker breakdown. The root mean square voltage of this

signal can be measured at any frequency %o within 5% by.a Hewlett Packard Wave

Analyser J#302A.

D. Particle Obstacles

M1 of the particles used in the experiment are made from a low

density eccofoam material called Dalon. This substance'is widely used as packing

material. The Dalon material is in the form of small hemispherical shells of

varying sizes in the range of one to two centimeters in radius. The spheroids

used are constructed by glueing two hemispheres of the same size together with

Duco cement after shaving them down with a penknife’in order to make them as light

as possible. These spheroids are weighed with a high precision Mettler Type

HP 6 balance.

Small particles of millimeter order are made from Dalon by grinding

the hemispheres with an ordinary kitchen grater.



11.

VI. Qualitative Observation of Small Particles in the Cavity

A resonant cavity with fine particles in it is usually called

a Kundt's tube after the man who first reported his observations of such a

system in the 1870's. An excellent account af Kundt's tube characteristics

using cork dust is given over a wide range of sound pressure level and frequency

by indrzad. The observations described below were all made by Andrade and his

descriptive language is used in this account. Photographs of the phenomenae

described appear in Appendix II.

We expect the particles, a millimeter or less in size, to more or

less behave like the fluid medium. 4t resonance these particles are observed

to clump in regular intervals of one half of the linear wavelength. In addition

little ridges appear in regular intervals between these clusters. (Photo 1,2)

Particles are observed to fly off these ridges and be pushed in the air toward

the nodal clumps. As the sound level is increased, these ridges migrate from

the inter-nodal areas (Photo 3,4), a condition called clearance, and gather

around the clumps to give a nodal eye structure. (Photo 5)

The particles clump in the minima of the field potential, which

occur at the pressure maxima or velocity nodes, occurring at values ofzsuch

that cos Ae =1. This means that the stable position for a sphere, according

to equation (17), should be halfway between two particle clumps. This is

observed to be the case. (Photo 6)

The transport mechanism for the particles was first explained by
Rayleigh’in 1883 by assuming a force of friction between the fluid and the

tube walls. He calculated the second order time average velocity at resonance

to be
2

CM, p= VM Sn Za Z |Z - J
40 L "

(13)
r L

This gives rise to a circulation current in the tube that is sketched in Figure

TT J)
Figure 1.
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Andrade proposed a mechanism for explaining the wavelet formation

and structure due to the buildup of vortex currents due to scattering off

particles, causing additional particles to be sucked into the original

scattering point. The proposed fluid flow is sketched in Figure 2,

pian cine

Noo
Figure 2

With the tube in the vertical position the particles are suspended

in equally spaced layers. (Photo 7) The particles cluster along the tube walls,

with some particles seen:rising throughthecenterofthetubeandbeing

pushed outward in a fountainlike effect like that predicted by the circulation

currents of Figure 1. (Bhoto 8) As the sound level is decreased the larger

particles fall. All the particles have fallen by 143-150 dbs (at 764 cps.).
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VII. The Experiment

A. Procedure

1. Microphone Calibration

The calibration of the root mean square voltage of tne microphone

output signal to sound pressure level is achieved by means of a Bruel and

Kjaer #4220 Pistonphone. The pistonphone is a small battery driven chamber

driven at a known decibel level, 124 db., and frequency, 1000 cps. The micro-

phone is inserted into this chamber by means of coupling adaptors and the .

R.ll.S. output voltage is measured with a Bruel and Kjaer voltmeter.

2, Determination of Besonant Frequencies

The resonant frequencies of the cavity can be determined to within

15 cps. .by listening for a loud "shriek" emitted from the tube. This shriek

is due to the vibration of the tube walls. By adjusting to the loudest

shriek the resonant frequencies can be excellently approximated. As discussed

previously, if dust particles are introduced into the cavity, nodal eye

structure and clearance occurs at resonance. Determination by these means

cuts down the possible frequency error to about 5-8 ¢ps. More exact Jel

determination may be made for those resonances where the standing waves consist

of. integer numbers of wavelengths by using the microphone and observing

the voltage output on the oscilloscopeformaximimvoltage.

A:table of the resonant frequencies determined by these means appears

in Appendix III A.

3, Determination of Nodes

A node, with regard to this experiment, is used to mean any region

where a spheroid may be stably suspended by the field. The positions of these

nodes are determined directly and easily at any resonance frequency by sus-

pending a spheroid in the topmost node, turning down the volume to allow the

ball to drop, and then quickly increasing the volume again to trap the ball

in the next node down. This procedure is repeated to insure that all nodes

have been found. Data on the location of nodes in the tube at two resonant

frequencies is found in Appendix III B.
—_—



14.

4. Microphone Placement

In order to measure the pressure level of the standing waves

in the tube, the microphone is placed in a hole drilled halfway along its

length. The halfway point is determined by observing the clumping of the

small particles at the nodes at resonance. Determination by this means

agrees with direct measurement. The microphone is suspended in the cavity

by means of an adaptor which comes in contact with it far from the sensitive

region. The :adaptor and microphone are puttied into place to reduce any pos-

sible error due to vibration of the tube walls.

3 Volume Control Calibration

The volume control consists of three knobs, each of ten divisions,

corresponding to voltage differences of one-tenth, one, and ten decibels.

Thus the voltage going into the speaker is calibrated to a tenth of a decibel.

This, however, cannot be used in pressure level calibration due to the fact

that the speaker behaves non-linearly in the decibel region used in the

experiment (155-165 db.). Calibration to the volume controls is achieved

by measuring sound pressure level of the fundamental and the first two har-

monics by means of the microphone-wave analyser unit. This measurement is

made at intervals corresponding to every one decibel change in incoming

voltage. Logarythmic interpolation is used to get the values between the

points measured. The calibration is performedatthefour resonant fre-

quencies used, also generating distortion graphs which appeal in Appendix IV.
These curves show the first and second harmonics as a fraction of the fun-

damental as a function of the decibel level of the fundamental. All sound

level data in this experiment is measured at the fundamental.

-

 Ny Experimental Procedure

With the tube in a horizontal position the spheroid is placed

in the cavity and the top secured. The wave generator is adjusted to one

of the fbur resonance frequencies used and the sound turned up to beyond

that expected to be needed to suspend the sphere. The sphere is observed

to spin and move in the tube over the space of half a wavelength until it

is "caught"... It is then held rigidly in one svot.
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Since the sphere is not exactly spherical, and the mass not

exactly evenly distributed, the orientation of the ball in the tube is im-

portant. In general, the spheres are most stable when their largest cross

section is presented to the speaker. This is true with the tube both in

horizontal and vertical positions. Thus, when the sphere is caught in po-

sition, the point closest to the speaker is noted, the ball removed, and

the point marked. From then on, all data ié§ taken with the marked point*

facing the speaker, to insure against error due to change in orientation.

With the spheroid caught, the tube is slowly and gently raised

up to a vertical position with the speaker at the bottom. This must be

done very carefully because any jolt will cause the sphere to become un-—

stuck from its position. This is especially true when using the lower

frequencies because the potential gradient is not as steep as that of the

higher frequencies.
In this suspended position the ball rests in contact with

the tube walls, from which it cannot be moved. This indicates a non-

zero time average radial force outward from the center. In addition, the

sphere executes an angular motion, revolving about the central axis of

the tube against the walls. This reveals the presence of a non-zero time

average component of force in the tangential direction. The sphere's

angular speed appears to be a function, not monotonic,ofthe sound level.

Both the angular speed and direction of the motion are very sensitive

to the vertical position of the sphere in the tube.

With the sphere suspended the volume is turned down in steps

of one division on the one-tenth decibel knob. As the sound pressure

approaches the minimum which can support it, the sphere is observed to

begin to oscillate about its equilibrium position. This oscillation is

probably initiated by the impulse of the transient response to the

change in decibel level.

The volume is reduced until the sphere drops. This volume is

then recorded and the procedure repeated until a reasonably consistent

figure is arrived at. This usually takes about five runs. Data is then

taken at the other resonance frequehoies used. All datd ik taken.with the

sphere in the node closest to the top of the tube.

After these data points are taken the sphere is removed from

the cavity and to it is glued a piece of metal cut from a straight pin. The

weight of this pin is known from previous weighing. The pin is glued on the

spot marked as facing the speaker to insure that the sphere's orientation is
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maintained. This effectively heavier sphere is returned to the cavity and

new data taken.

The mass is varied by repeating this procedure. The metal pieces

are glued alternately on the bottom and. topoof the ball to try to maintain.the

center of gravity close to the geometric center, while not introducing any

torques tending to change the sphere's orientation.

In this way the minimum supporting sound level as a function of mass

for a sphere of fixed radius is measured at several different frequencies. This

experiment is performed with four spheroids of different diameter. The data

is shown in Appendix III C.

5 fxperimental Limitations

le Limits on Parameter Ranges

Parameter ranges are limited by consideration of various physical

aspects of the system.

The upper limit on the frequency used is restricted by the behavior

of the speaker above 1000 cps. in the sound level range used. Distortion in the

operating region is high and voice coil burnouts are frequent. The lower limit

is determined by the ability of the field to consistently trap and hold the

sphere. At frequencies lower than those used the potential gradient is not

steep enough to keep the ball aloft during the course of the experiment.

The sound level is limited by speaker distortion and breakdown.

Breakdown occurs at 165-170 dbs.

The limits on spheroid masses are imposed by consideration of the

Dalon material of which the spheres are made. In construeting these spheroids,

a compromise must be made between low mass and wall strength. While low mass

is desired to increase the range of the experiment, a thin shelled spheroid

can be blown apart in the field. This effectively limits the mass lower limit

to 125-175 milligrams, depending on the size of the sphere. All the spheres are

used until they get blown apart, this determining the upper mass limit.

Disintegrationaf the shell in the field is due not only to the strength of the

material alone, but also due to the cement used to glue the pins to the shell,

an acetone based glue which interacts with the eccofoan and weakens the wall

where it is applied. This weakening is helped along by the vibration of the

metal pieces when they are in contact with the vibrating tube walls.
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The ranges of sizes and shapes of the spheroids are completely

determined by the available building materials. Though the surface of these

balls is not smooth, they are, on the average, regular ellipsoids of

eccentricity between .2 and .5 with major axes of length between 2 and 3.5 cm.

2. Experimental Difficulties - Sources of Error

Errors due to change in orientation of the spheroid in the tube are

considerably decreased by the precautions taken against them which are described

above. As a result, the possible error is insignificant acmpared to other

experimental difficulties.

A significant problem is caused by changing the speaker sound volume.

The resulting transient response, as discussed briefly above, tends to push

the sphere from its equilibrium position. As the volume approaches minimum

suspending volume this push from equilibrium may become great enough to knock

the sphere from the node. This effect becomes very pronounced at the low

frequencies where the gradient is not steep. The resulting error at the low

frequency, 383 cps., is on the order of one half of a decibel,;and at the next

frequency, 574 cps., is about one third of a decibel. The error due to this

effect also becomes significant with data on the unweighted sphere due to the

fact that there is not.as much favoring of a specific orientation-oftheball.

The transient in this case serves to start the ball spinning. As a result,

the sphere falls. Thus the problem of volume change results in measurement of

minimum suspending volume higher than the real value, the magnitude of this

error being accentuated in low frequency and low mass measurements,

Errors resulting in measurement of minimum suspending volume lower

than the real value are due to various frictional problems.
fact that the

Due to the, suspended eccofoam ball is in contact with the plexiglass
wall, there is a tendency for the buildup of static electric charge, result-

ing in a force of attraction between wall and ball. This effect can be quite

pronounced, as the ball has been observed to remain suspended, sticking to

the wall, after the driving speaker has been completely turned off. The

commercial laundry ingredient, Cling Free, an anti-static fluid spray, is

applied to the surface of the sphere before every experimental run as a pre-

caution against this static buildup. The problem with the Cling Free is

that it is a greasy substance which also serves to increase the ball-wall

friction.

Seratches on the inner wall of the tube also serve to impede the
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free motion of the sphere.

There is a small uncertainty in the mass of the sphere deriving

from the fact that in the course of the experiment small pieces of the ecco-

foam wall become dislodged and fly off from the sphere, leaving it slightly

lighter than it weighed. On the other hand the weight of the glue, which

makes the sphere heavier, is also unaccounted for. This error could have been

avoided completely by weighing the sphere often in the course of the experiment,

but the unavailability of a sensitive scale made this infeasible. Spot

checks, however, give the possible mass uncertainty on the order of three

milligrams,
 "Occasional tests, about every fifteen minutes, during thé experiment,

are made to determine any departure of the speaker behavior from the response

measured in the volume calibration. Small changes are observed in the speaker

after it has been operated at high volume continuously for over five minutes.

The possible error introduced by this variation is about one-tenthofadecibel.
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VIII. Departures from Theory and Expected Theoretical Sources of Error

The most obvious point of difference between prediction and

observation is that thezplanes are not equipotential surfaces. The sphere

always remains in contact with the tube wall, from which it cannot be moved,

rather than be allowed anywhere in the plane.

The existenceofradialforces.onnodale=antinodalplaneshas

already been discussed with respect to small particles. The circulation

current in this case exists because the walls of the tube are not frictionless

as implicitly assumed. Referencetothefigures in Section VI, however,

shows that the circulation tends to push particles into the center at the

velocity antinodes where the sphere is stably held. This suggests that

there may be some kind of equilibrium point at the center of the tube.

This could be investigated by an experiment designed for that purpose.

Probably the major reason for this behavior is due to the fact,

which was ignored in theory, that the presence of the sphere itself causes a

ma jor perturbation of the field around it. The scattering effects are

calculated by inserting the boundary céndition that the component of velocity

normal to the ball wall at the ball wall must be zero. The magnitude of the

scattering effects is strongly dependant on the size of the ball compared to

2 wavelength, With a perfect sphere at the exact center, a symmetry situation

should exist, again leading to the possibility of stability along the central
axis. A slight attraction to the tube wall or a slight irregularity in the

shape of the sphere, thus destroying the symmetry, might be responsible for

the observed behavior. In the asymmetrical situation, the scattering boundary

condition, giving rise to spherical harmonics, will probably result in a

net tangential force component. This probably contributes to the tangential

forces observed.

In.:addition to scattering, there .is another possible contri«:-

butien:to #ke’ other force’components.Theassumptionofan infinitesmally
small frequency bandwidth in the theoretical developement contributes to the

inability to compute these effects. From equation (12), it is seen that the

cylindrical (1,myn) mode is excited by the frequency “1,m,n" It was assumed

that a driver at frequency “ 0,0,n could be introduced. It is more realistic

to assume that a small frequency interval around this frequency is introduced

in the driving signal. Between “9.0.n and Aw there may be several “y men”
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which can excite (1l,myn) modes so that the pressure field in the tube must be

expressed in the general form of eguation (11) where the coefficients A mon

are determinedbythespectrum of the incoming signal, the enercy available

in the system, scattering perturbations, etc, Hitherto it has been assumed

that 20, 04n is non-zero and all the other A's are zero. If another Ay n,m is,
in fact, appreéiably non-zero, then the modes will mix non-linearly by

equation (3d), and time average radial and tangential currents will exist in

the fluid.
The presence of distortion in the system is another departure from

the theoretical model. Though the resonant frequencies associated with the

smallest wave numbers constitute the most important contribution to the

predicted force by equation (17), the harmonics may get to be large enough

to noticeably affect the behavior of the system. The effects of each harmonic

cannotbe accounted for by simple superposition due to the non-linearity of

the second order, .but the complete first order expression, ou By tn? Con
be inserted into eguation (3d) to get &amp; second order expression. ’

The ‘theory also differs from the actual experiment in the:fact that

the balls used are not exactly spherical. The asymmetry introduced by this

condition has already been discussed. It is possible of course, to solve for

the force due to field pressure on any shape obstacle by numerical means. A

better approximation to the experiment, for example,might be to integrate over

the surface of an ellipsoid. The integrals in this calculation are not

readily calculable in exact form, but may be done by these means,

Finally, the assumption of a rigid walled cavity is not realized

due, for the most party to the presence of the speaker, which is set into the

tube wall. This causes small eddy current disturbances which die out far from

the speaker. For this reason, the data is taken in the topmost node, as far from

the speaker as possible.
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IX. Results and Discussion

The aim of this experiment is, in part, to check the validityof

the expression for the force on a sphere given by equation (17). At the

minimum suspending volume, we expect the condition

&lt;F2V mas = mq 9)x

wheremis the mass of the sphere and g, the acceleration due to gravity. The

maximum value of {FY occurs at those values of z such that sin” 2p =t],

The condition for stability, CFR)! 140, (primes signify differentiation with
respect to z), is met for sin 22 41. Thus, if {FY max is greater than the

gravitational force on the sphere, mg, then there will be stable points of

suspension at adistanceapartofonehalfofthewavelengthatsociatedwiththe
linear wave. This prediction is verified by the data of Appendix III B.

More quantatively, at minimum suspending volume, Agi in the
notation of equation (17), the suspension condition is

2, oo

m= Anni |i on 20Te eos Zora |
290° L

The experimental data pertaining to equation (20) is given in Appendix III C

in graph form. For each sphere used, there are three graphs plotted:

1. Minimum suspending R.lM.3. voltage vs. sphere mass

2, Minimum suspending decibel level vs. logy q sphere mass

3. Minimum suspending R.M.5. voltage vs. wave number,n

i

‘

A. The Mass-Pressure D2pendence

Since there is a linear microphone relationship between voltage

of the output signal and the sound pressure amplitude, 4 , graph (1) for

each sphere should, by equation (20), have a quadratic form at each resonance

freguency. The exponential dependence of the plots in graphs (1) is seen in

the log-log graphs (2).

In graphs (2)
A

- n . - -4 2L (db) = 20 tog, (52 | 3 Pq = 2 x 10 dynes/cn
log, m = log z

210 "re 100 mg 10 my 3 my = 100 milligrams

Writing a general exponential relationship



vo

z= (2)0 Ps
ty1)

and taking the log of both sides

The

A
m* oa _nlogy (5) = loz, 4 K + Se

straight lines of graphs (2) are of the form

CO)‘2

A 2 m

20 log ~ n\-= J log (2 )+ bo( 52) 10 Pry
where Jj is the slope of the line and b the y intercept. Combining (21) and

27) b/3 ]
&lt;= 10 i: os = 20/3 (23a,b)

Values of 20/j and b/j are given in graphs (2) for each line plotted.

The error bars in graphs (2) represent roughly the spread of the

four or five values taken for each point around the mean of these values. The

ma jor sources of these errors are those discussed under the heading of ex-

perimental difficulties.

If expression (20) is an accurate description,sshould egual

two. This value is seen to be well within the rangs of possible values as

determined by the limited accuracy of measurement in most of the plots. The

fact thats=2 is approached closely in the most consistent, lowest error,

graphs of spheres (1) and (3) gives credibility to the possible significance

of that value.

B. Pressure- Wave Number Dependence

In the experiment the sphere r:dii used are less than or equal

to 1.7 cm. Thus, the quantity 2n a , n is small enough to allow an
2-2 4

sxpansion of the sines and cosinBs in 18 ation (20) to give
z 2 3

mg= RR, TT &amp; 2q aM 0c
For a constant mass, equation (24) shows a linear relationship between

the scuare of the pressure amplitude and the reciprocal of the wave number.

Graphs (3) bear out this linear dependence for the small number

of points plotted. The ordinate of these graphs is the ratio of the pressure

amplitude at the at resonance tb that of the n=10 resonence, quantity squared.

The points are determined by the mean decibel difference between the lines

of graphs (2) where

AL (AR) LL 20 log An. 10log (B=)Aq a,
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siving:

1

Bin /1oAo)’ — |o(Bx
The error bars in graphs (3) are found by the possible error in

ue to the errors in graphs (2).

Ce The Magnitude of the Force

As a further test for the validity of equation (20), we compare

the measured magnitude of the force to that predicted. Using equation (24),

the small sphere approximation to (20), and equations (21) and (23a) gives
’ -bfy ; 2 3 Tp : 2.

K= 10 = Lwa w ¥ [el 0c My,
 © 5) Zz

= log |g me / Zn 7]
Using parameter values which represent the average experimental situation, a=l cm,

n= 6, L = 200 cm, b/j, computed from (25) is 15.72 . which compares very

favorably to the data of Appendix III C.

JD. Pressure-Diameter Dependence

In graph (4) of Appendix III €, the log of the pressure (decibel

level) is plotted against the log of the average radius of the spheroid. The

points on this graph are gotten by plotting the y intercepts of graphs (2)

against the log of the spheroid average radius divided by 1.025 cm,., the
average radius of the smallest spheroid. |

Equation (24) predicts that at constant mass, A 23/2 From this

dependence the slope of the lor-log line is expected to be-30. The experimental

values, given in graph (4),ddé. not agree very well with prediction. Further,

the points cannot be well approximated by a straight line fit of any kind.

This disagreement indicates that there is another parameter

involved in this relationship. This is not surprising due to the fact that the

spheroids are actually ellipsoids of different eccentricities, a situation

unlike the theoretical assumption behind equation (24). Thus, it is reasonable

to assume that the pressure is a function of both size (1ength of axes) and

also shape (eccentricity).
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Appendix II

Patterns Made by Particles in Cavity

#1. Tube horizontal

573 cps., 152 db

#2. Tube Horizontal

955 c¢ps.,..157 db



#3, Tube Horizontal

573 cpse., 160 db.

#4. Tube Horizontal

055 cps., 163 db

#5, Tube Horizontal

955 eps., 163 db

Close-up on Nodal

: ye



#6; .Tube Horizantal
764 cps., 164 db

Sphere and Particles

#7. Tube Vertical

764 cps., 164 db.

8. Tube Vertical

764 cps., 164 ab

Close-up of Node

from Top



#9, Tube Vertical

764 cps., 164 db

Close-up of Node

from Side

#10. Tube Vertical

764 cps., 164 db

Suspended Sphere
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Appendix III A

Resonant Frequencies of the Resonant Cavity

F

107
(cps) B Af = ff

V4

287
83

178
573

569
764

359
955

1050

26

25
~

26

25

95
26

15

£, = W/2w = nc/2L
Af =c¢/2L 95.5 L =1T74 cm

4

J)

10

11

Direct Measurement = 1753 3
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Appendix III B

Location of Nodes in the Cavity

“
§ Linear wavelength A = 43.3 cm.

A11 measurements from the top of the tube

z (vertical displacement from top) bz = B01Node #

r 7
5 21

38
50

22

31

103

21

22

22

20

22

125

145

167

 Ff = 573 n = 6 Linear Wavelength A= 57.8 cm,

A411 measurements from the top of the tube

z (vertical displacement from top) bz =2-2Node #

&gt;9

53

81

110

138
166

31

28

29

28

28

3



tppendix III C

Experimental Data
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FOOTNOTES
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Physics, M,I.T., 1972

2. Ross, J.A. Jr.,Non-Linear Interaction between Sound Field and
Fluid Surface, M.S. Thesis, Physics, M.I.T., 1969

Andrade, E,, On Solid Particles Under the Influence of Air
Vibrations in Tubes, Philosophical Transactions of the Royal
Society, A230, London, 1932

3,

5. Rayleigh, J., On the Cirulation of Air Qbserved.inKundt's
Tube and Some Allied Acoustical Problems, Philesophical
Transactions of the Royal Society, A175, London, 1883

5 Bruel and Kjaer Microphone Instruction Manual, Denmark, 1963
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