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INVESTIGATION OF ACOUSTIC FIELD NON-LINEARITIES BY SUSPENSION
OF PARTICLES IN A CYLINDRICAL RESOWATING CAVITY

I. Abstract

Non-linear behavior of high amplitude acoustic waves
is investigated by observation of non-zero time average
forces predicted by a second order perturbation theory
analysis, A theoretical description is given of the force
on a sphere in a cylindrical cavity driven at resonance.
due to field non-linearities.

These forces are observed in a cylindrical cavity
driven at resonance at 155-165 dbs. A qualitive description
of these effects is given for particles of millimeter order.
Quantitive measurement of non-linear forces is made by
suspension of spheroids of diameters of centimeter order.
The behavior of the forces with respect to experimental
variables is found to be in substantial agreement with
prediction within the limits of experimental accuracy.
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ITII. Introduction

Expressions for the acoustic variables, fluid density, fluid
velocity, and fluid pressure can be obtained by linearizing the equations
governing fluid motion, neglecting the internal energy loss terms. These
expressions are valid for low sound pressure levels below 145 db. The
accuracy of the first order decreases as the sound level is raised, due
to the contribution of second order effects which increase as the square
of the pressure amplitude of the first order. In the range between 145
and 160 dbs., the second order effects become non-negligeable but still
small compared to the total function. In this region a perturbation
approximation is a valid description of the physical situation. As the
sound level is raised to above 165 db., the higher orders become so large
that it mzkes no sense to use the perturbation analysis. In this case, .
the medium is said to be "shocked."

In the first order, the time dependence of the fluid variables is
sinuosoidal, giving time averages which equal zero. The second order is,
however, non-linear, and will include terms which are products of two
first order variables, giving rise to sin2 and 0052 terms in the time
dependence. In the second order, .then, the acoustic variables have a
definite non-zero time average value,

In particular, the non-zero time average pressure field gives
" rise to definite steady state forces. The nature of these forces in a
cavity at resonance have bcen the subject of investigation for some time.
Investigation has been carried out by observation of fluid deformation
in rectangular geometr§:2by observation of dust particle patterns? etc.,

In the present experiment the magnitude of the non-linear forces
is measured by balanéing it against a constant, known force, that of
gravity. This is done by using the non-linear forces to keep a small,
light spheroid in suspension in a cylindrical cavity driven at its
purely longitudinal resonance modes. The sound pressure level needed
to sustain this suspension is measured as a function of varying sphere mass,
resonant frequency, and sphere size, and the results compared to theoretical

prediction.
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IV. Theory

A, General

The findamental'equations governing fluid flow are expressions of
mass and momentum conservation and the ideal gas law. In these equations
P(rt) = +otal Flid densﬁ1
rlet) = Total  flad  veloeity
Ph, ¥ = Tkl Huid pressvre

These equations are partial differential equations, the partial

derivative operator indicating that these equations are written in the Eulerian
frame of reference, in which the change in a fluid function is measured at a

fixed point as the fluid streams past.

1. Eguation of Continuity

D, g () o) = Q )
ot

This equation states that the rate of change of material in a region
is equal to the net flow of material into that region plus the net rate of
creation in the region. @ is the creation term, determined by the placement of

mzterial sources and sinks. If there are no sources or sinks, Q is zero and
equation (1) becomes

QSE?\&\ _ n R (2)
a = = V- (0GR v (ox))

?. Newton's Second Law

?(;-;tj[%\)‘(r,’\:\ r ovle )V u-(r)t%: - VF’(‘",*-W (3)

3. The Ideal Gas Law

The thermodynamic variable, the bulk compressibility }{, is’
defined by the relation

'K'=%~( D?/3?35 ; (M

The differentiation is for an adiabatic process because the pressure changes

are so rapid that there is no heat exchange 'from ohe pari of the fiuwid to
another.

The eqﬁation of state for adiabatic processes in an ideal gas is

P =7 (B 7

where V represent the ambient conditions in the absence of sound
‘PD)O)Q ;
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and\Y is equal to the ratio of the specific.heat of the gas at constant pressure
to that at constant wvolume.

If AP , the difference between the pressure.in a region and the
ambient pressure To s is small, then Af , the difference in density from

ambient conditions, is given by equation (4) as

AD - 7{330 Np (6)

Equations (1), (3), and (6) constitute three eguations in three
unknowns which, in principle, may be solved exactly. Approximate solutions

may be obtained by writing the acoustic variables as:

208 N .

U =90 ‘t'x_:‘f‘ ~»XLGL_ s e

A FP:?O'*}\?| T)\z?ﬁ‘,---,_
where N is a "hookkeeping" variable, the zero subscripted variables are the

values in the absenee of a disturbance, and the integer subscripted variables
are the corrections to the ambient values due to a disturbance. In this
perturbation analysis fn<<'fn_1. ( £ any acoustic variable e

Inserting these solutions into a frame of reference where vo=o,

and in a situation where there are no sources or sinks of material gives

2 (506 480, ) - V(g Nga OTNEI 0 0

(QAF, +X'¢.. 3[% (N NS YOV NS, ) T (NG )3&‘,% (3a)
"-V('F,_\'\' AP, + )\z??_*-. )
W0 % +Npy o N = (NG« NGa ) (62)

l. First Order Solutions

Equating coefficients of A in equations (2a), (3a), and (6a):

ks (2p)
g% A V?O W\:O '

DI T = (3b)
?o St"’ = VP- o

?\ = X?a?\ , (6v)



Combining these equations gives the classical linear wave equation

for the acoustic variables.

f L g2t =0 (7)
= W6, ‘

Thus, to the first order, a wave disturbance may be propagated

} -V
through the fluid medium with the speed (XR).? From equations (4) and (5)

e |(30) 1 R E RN (8)
i

€ << §, Equation (7) must be solved with respect to the boundary conditions
imposed by the specific geometry. This gives the form of the spatial part

of the solution. The time dependence of the solution is always sinuosoidal

E = Wy, 2, x) ™" (9)

givings

The time average of -F‘ ’ <¥,>, is given by

t t
P N P W | R (10)
' . T " -
Thus, none of the first order acoustic variables have non-zero

time averages.
2. Second Order Solutions

7
Equating coefficients of A in equations (2a), (3a), and (6a)

gives:

:%%' + V. (?D\r,_*r Qo) =0 (20)
l\?o =T V?L (BG)
(6c)

j‘lgzdPl - gk

Again, three equations in three unknowns can be solved for the

second order correction factor. In general it is not easy to solve these
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equations. This difficulty czn be circumvented for the present, since the time
average of the second order pressure field is the quantity of interest. Operating
on eguation (3c) with the time average operator gives

(<0 VoY T - 34

The time average pressure calculated in (3d) is an average over
terms like sin2 and cos2 due to the non—linear-(u;ﬁhl? term. The time average
of these terms is non-zero, so that there will be a non-zero pressure field

and therefore non-zero forces in the second order.
B. Application to Experiment

Using this theoretical machinery, we try to find the time average
force on a sphere in a cylindrical cavity. We are given a sphere of radius a
placed in a rigid walled cylinder length L, radius Toe such that the center
¥ the sphere lies on the.central axis of the eylinder. (See Fig. 1)

1

& 0
™
—_— '

It is assumed that there is no scattering interaction between the svhere and
the pressure field.
The pressure and velocity fields are given to the first order
by wave equation (7) withthe boundary requirements that the radial velocity
be zero at r=r.y that the axial velocity be zerozat z=0 and z=L, and that FG&3§¥0¥2“),

0
The form of the first order pressure field is then givenl.by:

(11)
.P':z ’P.-Q)m)n_
s h ,n‘\ﬁ.—t & cumEy
o= R 0 1 (% 0) 0y

L
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where l is the pressure amplitude at 1 m, n? J is a Bessel function
7
of the m—th order. The values of k are restrlcted to those which satisfy the

boundary condition on the radial veloclty. Further, there is the recuirement

that

Z 2 Fa
‘( T N Trl - wh,.ﬂ,m. (12)
C

where ¢ is the speed of sound.

Since the system is symmetric about the central axis, f(r,&,z)
is equal to f(r,z). Thus only pI,O,n terms are included in the sum of equation
(11). If the tube is driven at the resonance frequency, uh?c(%I), then k, =0
and the pressure field is given by

- vk .
?O,D)\f\ = A“ 0 (13)

cos aWZ
L

Thus, at tube resonance, the pressure field is a longitudinal,
compressional standing wave, a function of z alone. It is identical to the
expression for the (0,0,n) resonance mode of a rectangular cavity.

For the general pressure field in a cylindrical cavity the calc-
ulation of the time average second order pressure is not simple. For the
resonange pressure field, equation (13), the mathematics is considerably
simplified. The solution, obtained by getting v, from p; by equation (3b),
substituting into equation (3b), and integrating in rectangular coordinates

to.solve (3b), can be expressed exactly as

<-PZ (E§> [-i cas Lo W E]
%

This expression can be used to calculate the net force on the

(14)

sphere., Integration of the pressure over the sphere surface is performed by
surming of infinitesmal zones at angle § to the tube axis. (See Fig. 1)

This gives

<F—- > S _P(E a.cos @bzwa swnd cosP 01@ (15)
Inserting the expression from equation (14)

<F » Tl'o. A ‘srcoa 2007 (bo.ws&\ 5m§ QD%@ o\§ (16)
z?o 5 L

This integral can be done exactly by integration by parts. The solution is

given by
2 (17)
< “:'Ev - Af\ Q S\ ,2‘;“—2 [L S\ Zn.ﬂ'g_ _ oS Zn'\Ta
Zalla | = [

2f < n b
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V. Design of Experiment

A schematic of the experiment is given in Figure 1.
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A. Resonant Cavity

_ The cavity is a cylindrical plexiglass tube of radius 5.7 cm. with
walls of thickness .63 cm. It is stopped at one end by a removable plexiglass
cap so that the length of the tube is 175 cm. At the other end, the speaker,
an Atlas Sound PD-60T driver with a radius of 1.12 cm, is set into a 2.2 cm.
thick aluminum plate which is secured by screws flush against the inner wals of

the tube. The speaker is operated at 16 ohms impedence.,
B, Signal Production

A 5 volt peak to peak sinuosoidal signai is produced by a Wavetech
#110 Function Generator. The frequency of the signal is monitored by a
Hewlett Packard #5221B Digital Electronic Counter., The signal is then passed
through = scaled variable voltage attenuator which is used as a volume control.
Finally, the signal is amplified by a Dynaco Mark III Amplifier by a factor
of 28 db. The signal from the amplifier is displayed on a Tektronix #5454

Oscilloscope for the purpose of observing the onset of amplifier clipping or
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any other signal distortion.
Ce Sound Level Detection

A Bruel and Kjaer #4135 quarter inch condenser microphone is inserted
into a2 hole in the tube wall exactly half'#ay along the length of the tube for
the purpose of measuring the sound pressure level of standing waves of
integer number of wavelengths in the cavity. The condenser microphone is operated
with a Bruel and Kjaer #2615 Cathode Follower and #2801 Power Supply. This
microphone is characterized by a flat pressure response over the frequency range
from 80-10,000 cps., when operated between 64 and 174 db. The harmonic
distortion due to the microphone system is less thah 1% over this sound
pressure range; Variation of sensitivity and response is also insignificant
over the rangeé of temperature, ambient pressure, and humidity encountered
in the experiment. Microphone characteristic graphs may be found in Appendix I.

The microphone output is monitored by the oscilloscope for distortion
indicative of impending speaker breakdown. The root mean square voltage of this

signal ean be measured at any frequency %o within 5% by.a Hewlett Packard Wave .

Analyser #£302A.
D. Particle Obstacles

K11 of the particles used in the experiment are made from a low
density eccofoam material called Dalon. This substance is widely used as packing
material., The Dalon material is in the form of small hemispherical shells of
varying sizes in the range of one to two centimeters in radius. The spheroids
used are constructed by glueing two hemispheres of the same size together with
Duco cement after shaving them down with a penknife’in order to make them as light
as possible. These spheroids are weighed with a high precision Mettler Type
HP 6 balance.

Small particles of millimeter order are made from Dalon by grinding

the hemispheres with an ordinary kitchen grater.
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VI. Qualitative Observation of Small Particles in the Cavity

A resonant cavity with fine particles in it is usually called
a2 Kundt's tube after the man who first reported his observations of such a
system in the 1870's. An excellent account af Kundt's tube characteristics
using cork dust is given over a wide range of sound pressure level and freguency
by Andradéh The observations described below were all made by Andrade and his
descriptive language is used in this account. Photograﬁhs of the phenomenae
describad appear in Appendix II.

We expect the particles, a millimeter or less in size, to more or
less behave like the fluid medium. At resonance these particles are observed
to clump in regular intervals of one half of the linear wavelength. In addition
little ridges appear in regular intervals between these clusters. (Photo 1,2)
Particles are observed to fly off these ridges and be pushed in the air toward
the nodal clumps. As the sound level is increased, these ridges migrate from
the inter-nodal areas (Photo 3,4), a condition called clearance, and gather
around the clumps to give a nodal eye structure. (Photo 5)

The particles clump in the mpinima of the field potential, which
occur at the pressure maxima or velocity nodes, occurring at values of z such
that cos E%E =1. This means that the stable position for a sphere, according
to equation (17), should be halfway between two particle clumps. This is
observed to be the case. (Photo 6)

The transport mechanism for the particles was first explained by
Rayleigh5in 1883 by assuming a force of friction between the fluid and the
tube walls. He calculated the second order time average velocity at resonance
to be

CM,Y = M s 2oz {%_, _ 4] (18)
dc L "

This gives rise to a circulation current in the tube that is sketched in Figure
1. '

HNA
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Anirade proposed a mechanism for explaining the wavelet formation
and structure due to the buildup of vortex currents due to scattering off
particles, causing additional particles to be sucked into the original

scattering point. The proposed fluid flow is sketched in Figure 2.

Figure 2

With the tube in the vertical position the particles are suspended
in equzally spaced layers. (Photo 7) The particles cluster along the tube walls,
with some particles seen:rising through the center of the tube and being
pushed outward in a fountainlike effect like that predicted by the circulation
currents of Figure 1. (Bhoto 8) As the sound level is decreased the larger

particles fall. All the particles have fallen by 148-150 dbs (at 764 cps.).
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VII. The Experiment
A. Procedure

1. Microphone Calibration

The calibration of the root mean square voltage of tihe microphone
output siznal to sound pressure level is achieved by means of a Bruel and
Kjaer #4220 Pistonphone. The pistonphone is a small battery driven chamber
driven at a known decibel level, 124 db., and frequency, 1000 cps. The micro-
phone is inserted into this chamber by means of coupling adaptors and the . .

R.M.S. output voltage is measured with a Bruel and Kjaer voltmeter.
2. Determination of Besonant Freguencies

The resonant frequencies of the cavity can be determined to within
15 eps..by listening for a loud "shriek" emitted from the tube. This shriek
is due to the vibration of the tube walls. By adjusting to the loudest
shriek the resonant frequencies can be excellently approximated. As discussed
previously, if dust particles are introduced into the cavity, nodal eye
structure and clearance occurs at resbnance. Determination by these means
cuts down the possible frequency error to about 5-8 eps. More exact
determination may be made for those resonances where the standing waves consist
of . integer numbers of wavelengths by using the microphone and observing
the voltage output on the oscilloéscope for maximim voltage.

A7table of the resonant frequencies determined by these means appears

in Appendix III A.
3. Determination of Nodes

A node, with regard to this experiment, is used to mean any region
where a spheroid may be stably suspended by the field. The positions of these
nodes are determined directiy and easily at any resonance frequency by sus-
pending a spheroid in the topmost node, turning down the volume to allow the
ball to drop, and then quickly increasing the volume again to trap the ball
in the next node down. This procedure is repeated to insure that all nodes
have been found. Data on the location of nodes in the tube at two resonant

frequencies is found in Appendix III B, "+



14.

4. Microphone Placement

In order to measure the pressure level of the standing waves
in the tube, the microphone is placed in a hole drilled halfway along its
length. The halfway point is determined by observing the clumping of the
small particles at the nodes at resonance, Determination by this means
agrees with direct measurement. The microphone is suspended in the ocavity
by means of an adaptor which comes in contact with it far from the sensitive
region. The :adaptor and microphone are puttied into place to reduce any pos—

sible error due to vibration of the tube walls.
5. Volume Control Calibration

The volume control consists of three knobs, each of ten divisions,
corresponding to voltage differences of one-tenth, one, and ten decibels.
Thus the voltage going into the speaker is calibrated to a tenth of a decibel.
This, however, cannot be used in pressure level calibration due to the fact
that the speaker behaves non-linearly in the decibel region used in the
experiment (155-165 db.). Calibration to the volume controls is achieved
by measuring sound pressure level of the fundamental and the first two har-
monics by means of the microphone-wave analyser unit. This measurement is
made at intervals corresponding to every one decibel change in incoming
voltage. Logarythmic interpolation is used to get the values between the
points measured. The calibration is performed at the four resonant fre-
guencies used, also generating distorition graphs which appeal in Appéndix IV.
These curves show the first and sécond harmonics as a fraction of the fun-
damental as a function of the decibel level of the fundamental. 411 sound

level data in this experiment is measured at the fundamental.
6. Experimental Procedure

With the tube in a horizontal position the spheroid is placed
in the cavity and the top secured. The wave generator is adjusted to one
of the fhur resonance frequencies used and the sound turned up to beyond -
thst expected to be needed to suspend the sphere. The sphere is observed

to spin and move in the tube over the space of half a wavelength until it )
is "caught".. It is then held rigidly in one spot.
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Since the sphere is not exactly spherical, and the mass not
exactly evenly distributed, the orientation of the ball in the tube is im-
portant., In general, the spheres are most stable when their largest cross
section is presented to the speaker. This is true with the tube both in
horizontal and vertical positions., Thus, when the sphere is caught in po-
sition, the point closest to the speaker is noted, the ball removed, and
the point marked. From then on, all data is taken with the marked point -
facing the speaker, to insure against error due to change in orientation.

With the spheroid caught, the tube is slowly and gently raised
up to a vertical position with the speaker at the bottom. This must be
done very carefully because any jolt will cause the sphere to become un-
stuck from its position. This is especially true when using the lower
frequencies because the potential gradient is not as steep as that of the
higher frequencies.

In this suspended position the ball rests in contact with
the tube walls, from which it cannot be moved. This indicates a non-
zero time average radial force outward from the center. In addition, the
sphere executes an angular motion, revolving about the central axis of
the tube against the walls. This reveals the presence of a2 non-zero time
average component of force in the tangential direction. The sphere's
angular speed appears to be a function, not monotonic, of the sound level.
Both the angular speed and direction of the motion are very sensitive
to the vertical position of the sphere in the tube.

With the sphere suspended the volume is turned down in steps
of one division on the one-tenth decibel knob. As the sound pressure
approaches the minimum which can support it, the sphere is observed to
begin to oscillate about its equilibrium position. This oscillation is
probably initiated by the impulse of the transient response to the
change in decibel level.

The volume is reduced until the sphere drops. This volume is
then recorded and the procedure repeated until a reasonably consistent
figure is arrived at. This usually takes about five runs. Data is then
taken at the other resonance frequehoies used. All datd ik taken.with the
sphere in the node closest to the top of the tube.

After these data points are taken the sphere is removed from
the cavity and to it is glued a piece of metal cut from a straight prin. The
weight of this pin is known from previous weighing. The pin is glued on the

spot marked as facing the speaker to insure that the sphere's orientation is
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maintained., This effectively heavier sphere is returned to the cavity and
new data taken.

The mass is varied by repeating this procedure. The metal pieces
are glued alternatély-on’ the botdom and.topoof the ball to try to maintain. the
center of gravity close to the geometric center, while not introducing any
torques tending to change the sphere's orientation.

In this way the minimum supporting sound level as a2 function of mass
for a sphere of fixed radius is measured at several different frequencies. This
experiment is performed with four sSpheroids of different diameter. The data

is shown in Appendix III C.

B. Experimental Limitations
l. Limits on Parameter Ranges

Parameter ranges are limited by consideration of various physical
aspects of the system.

The upper limit on the frequency used is restricted by the behavior
of the speaker above 1000 cps. in the sound level range used. Distortion in the
operating region is high and voice coil burnouts are frequent. The lower limit
is determined by the ability of the field to consistently trap and hold the
sphere. At frequencies lower than those used the potential gradient is not
steep enough to keep the ball aloft during the course of the experiment.

The sound level is limited by speaker distortion and breakdown.,
Breakdown occurs at 165-170 dbs.

The limits on spheroid masses are imposed by consideration of the
Dalon material of which the spheres are made. In construeting these spheroids,
a compromise must be made between low mass and wall strength. While low mass
is desired to increase the range of the experiment, a thin shelled spheroid
can be blown apart in the field. This effectively limits the mass lower limit
to 125-175 milligrams, depending on the size of the sphere. All the spheres are
used until they get blown apart, this determining the upper mass limit.
Disintegrationaf the shell in the field is due not only to the strength of the
material alone, but also due to the cement used to glue the pins to the shell,
an acetone based glue which interacts with the eccofoam and weakens the wall
where it is applied. This weakening is helped along by the vibration of the

metal pieces when they are in contact with the vibrating tube walls.
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The ranges of sizes and shapes of the spheroids are completely
determined by the available building materials. Though the surface of these
balls is not smooth, they are, on the average, regular ellipsoids of

eccentricity between .2 and .5 with major axes of length between 2 and 3.5 cm.
2. Experimental Difficulties — Sources of Error

Errors due to change in orientation of the spheroid in the tube are
considerably decreased by the precautions taken against them which are described
above. As a result, the possible error is insignificant compared to other
experimental difficulties.

A significant problem is caused by changing the speaker sound volume.
The resulting transient response, as discussed briefly above, tends to push
the sphere from its equilibrium positisn. As the volume approaches minimum
suspending volume this push from equilibrium may become great enough to knock
the sphere from the node. This effect becomes very pronounced at the low
frequencies where the gradient is not steep. The resulting error at the low
frequency, 383 cps., is on the order of one half of a decibel,,and at the nexi
frequency, 574 cps., is about one third of a decibel. The error due to this
effect also becomes significant with data on the unweighted sphere due to the
fact that there is not.as much favoring of a specific orientation~of the ball,.
The transient in this case serves to start the ball spinning. As a result,
the sphere falls. Thus the problem of volume change results in measurement of
minimum suspending volume higher than the real value, the magnitude of this
error being accentuated in low frequency and low mass measurements,

Errors reéulting in measurement of minimum suspending volume lower
than the real value are due to various frictional problems.

fact that the

Due to thehsuépended eccofoam ball is in contact with the plexiglass
wall, there is a tendency for the buildup of static electric charge, result-
ing in a force of attraction between wall and ball. This effect can be quite
pronounced, as the ball has been observed to remain suspended, sticking to
the wall, after the driving speaker has been completely turned off. The
commercial laundry ingredient, Cling Free, an anti-static fluid spray, is
applied to the surface of the sphere before every experimental run as a pre-—
caution against this static buildup. The problem with the Cling Free is
that it is a greasy substance which also serves to increase the ball-wall
friction.

Seratches on the inner wall of the tube z2lso serve to impede the
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frze motion of the sphere.

There is a small uncertainty in the mass of the sphere deriving
from the fact that in the course of the experiment small pieces of the ecco-
foam wall become dislodged and fly off from the sphere, leaving it slightly
lighter than it weighed. On the other hand the weight of the glue, which
makes the sphere heavier, is also unaccounted for. This error could have been
avoided completely by weighing the sphere often in the course of the experiment,
but the unavailability of a sensitive scale made this infeasible. Spot
checks, however, give the possible mass uncertainty on the order of three
milligrams.,

‘Occasional tests, about every fifteen minutes, during thé experiment,
are made to determine any departure of the speaker behavior from the response
measured in the volume calibration. Small changes are observed in the speaker
after it has been operated at high volume continuously for over five minutes.

The possible error introduced by this variation is about one-tenth of a decibvel.
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VIII. Departures from Theory and Expected Theoretical Sources of Error

The most obvious point of difference between prediction and
observation is that the z planes are not equipotential surfaces. The sphere
always remains in contact with the tube wall, from which it cannot be moved,
rather than be allowed anywhere in the plane.

The existence of radial forces .on nodal=antincdal planes has
alrzady been discussed with respect to small particles. The circulation
current in this case exists because the walls of the tube are not frictionless
as implieitly assumed. Reference to the figures in Section VI, however,
shows that the circulation tends to push particles into the center at the
velocity antinodes where the sphere is stably held. This suggests that
there may be some kind of equilibrium point at the center of the tube.

This could be investigated by an experiment designed for that purpose.

Probably the major reason for this behavior is due to the fact,
which was ignored in theory, that the presence of the sphere itself causes a
ma jor perturbation of the field around it. The scattering effects are
calculated by inserting the boundary condition that the component of velocity
normal to the bzall wall at the ball wall must be zero. The magnitude of the
scattering effects is strongly dependant on the size of the ball compared to
a wavelength. With a perfect sphere at the exact center, a symnetry situation
shquld exist, again leading to the possibility of stability along the central
axis. A slight attraction to the tube wall or a slight irregularity in the
shape of the sphere, thus destroying the symmetry, might be responsible for
the observed behavior. In the asymmetrical situation, the scattering boundary
condition, gziving rise to spherical harmonics, will probably result in a
net tangential force component. This probably contributes to the tangential
forces observed.

In:addition to scattering, there is anether possible contri-:-
bution:to the’ other forte components. The assumption of an infinitesmally
small frequency bandwidth in the theoretical devélopement contributes to the
inability to compute these effects. From eguation (12), it is seen that the
cylindrical (1,myn) mode is excited by the frequency w o It was assumed

ly,myn

that a driver at frequency w5 0. could be introduced. It is more realistic
#eyy -

to assume that a small frequency interval around this frequency is introduced

in the driving signal. Between and &Aw there may be several 's
0,0,n l,myn.
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which can exeite (1l,m,n) modes so that the pre~sure field in the tube must be

expressed in the general form of eguation (11) where the coefficients Al o
b R |

are determined by the spectrum of the incoming signal, the enersy available
in the system, scattering perturbations, etc. Hitherto it has been assumed
that AO ,03n is non-zero and all the other A's are mero., If another Al,n,m is,
in fact, appreéiably non-zero, then the modes will mix non-linearly by
equation (3d), and time average radial and tangential currents will exist in-
fhe fluid.

The presence of distortion in the system is another departure from
the theoretical model. Though the resonant freguencies associated with the
smallest wave numbers constitute the most important contribution to the
predicted force by equation (17), the harmonics may get to be large enough
to noticeably affect the behavior of the system. The effects of each harmonic
cannotbe accounted for by simple superposition due to the non-linearity of
the second order,.but the complete first order expres31on,éz;b 0, tn’ can
be inseried into equation (3d) to get a2 second order expression.

The theory also differs from the actual experimenht in the fact that
the balls used are not exactly spherical. The asymmetry introduced by this
condition has already been discussed. It is possible of course, to solve for
the force due to field preesure on any shape obstacle by numerical means. A
better approximation to the experiment, for example,might be to integrate over
the surface of an ellipsoid. The integrals in this calculation are not
readily calculable in exact form, but may be done by these means.,

Finally, the assumption of a rigid walled cavity is not realized
due, for the most partato the presence of the speaker, which is set into the
tube wall. This causes small eddy current disturbances which die out far from

the speaker. For this reason, the data is taken in the topmost node, as far from

the speaker as possible.
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IX. Results and Discussion

The aim of this experiment is, in part, to check the wvalidity of
the expression for the force on a sphere given by equation (17). At the

minimum suspending volume, we expect the condition
< - (19)
<:r;\7WMi - rng

where m is the mass of the sphere and g, the acceleration due to gravitiy. The
maximum value oi“(Fé} occurs at those values of z such that singﬂj?E =t],

The condition for stabilitv, (Fzﬁ"éo, (primes signify differentiation with
respect to z), is met for sin E%Ezn +1. Thus, if<<Fé7 nay 1S greater than the
gravitational force on the sphere, mg, then there will be stable points of
suspension at & distance apart of one half of the wavelength absoeiated with the
linear wave. This prediction is verified by the data of Appendix III B.

More quantatively, at minimum suspending volume, An - in the
P ?
notation of equation (17), the suspension condition is
- ‘ 20
“‘\S: Pﬂ,\m;n Lo AWa. . o5 ZaTia ( )
e Zf\—'ITQ. L T‘

2 ?"’c."(\
The experimental data pertaining to equation (20) is given in Appendix III C

in graph form. For each sphere used, there are three graphs plotted:
1. Minimum suspending R.l.3. voltage vs. sphere mass
2. Minimum suspending decibel level vs. 1oglO sphere mass

3. Minimum suspending R.M.S. voltage vs. wave number, n

A. The Mass-Pressure Dapendence

Since there is a linear microphone relationship between voltage
of the output signal and the sound pressure amplitude, An, graph (1) for
each sphere should, by equation (20), have a quadratic form at each resonance
frequency. The exponential dependence of the plofs in graphs (1) is seen in
the log-log graphs (2).

In graphs (2)
Ay -4 2
L (db) = 20 log, Pa 5 Py = 2 x 10 dynes/cm

m
108145 Mre 100 ng = %810 (ﬁo) 5 my, = 100 nilligrams

Writing a general exponential relationship
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m AN® ;
2 . K ( n) (21)
0 F,
and taking the log of both sides
: A
m" o n
log;, (ﬁo) = log 5 K + SIOgIO(fa) (22)

The straight lines of graphs (2) are of the form

A e m
20 log,, n\ = J log (— ) + b
where j is the slope of the line and b the y intercept. Combining (21) and

(22)’ b/j
K = 10~ s s = 20/3 (23a,b)
Values of 20/j and b/j are given in graphs (2) for each line plotted.

The error bars in graphs (2) represent roughly the spread of the
four or five wvalues taken for each point around the mean of these values. The
ma jor sources of these errors are those discussed under the heading of ex-
perimental difficulties.

If expression (20) is an accurate description, s should =qual
two. This value is seen to be well within the rangs of possible values as
determined by the limited accuracy of measurement in most of the plots. The
fact that s = 2 is approached closely in the most consistent, lowest error,
graphs of spheres (1) and (3) gives credibility to the possible significance

of that value.
B. Pressure- Wave Number Dependence

In the experiment the sphere ridii used are less than or egual
to 1.7 cm. Thus, the gquantity 2n a , n is small enough to allow an

~ 18
expansion of the sines and cosin€s in &cuation (20} to give

mq = 2{)1 Trio:bn-// E
37T L Qo

(24)

For a constant mass,equation (24) shows a linear relationship between
the square of the pressure amplitude and the reciprocal of the wave number,

Graphs (3) bear out this linear dependence for the small number
of points plotted. The ordinate of these graphe is the ratio of the pressure
amplitude at the nth resonance tb that of the n=10 resonence, quantity squared.
The points are determined by the mean decibel difference befween the lines
of graphs (2) whore

AL, (4B L -L = 201q An | 16 g (%f
Ao A

1Q
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giving: (An\z = Iom""/:o .
AIO

The error bars in graphs (3) are found by the possible error in

L due to the errors in graphs (2).
C. The Magnitude of the Force

As a further test for the validity of equation (20), we compare
the measured magnitude of the force to that predicted. Using equation (24),

the small sphere approximation to (20), and equations (21) and (23a) gives

K'—‘\O«b[“ ZWQYLP /j g

l’/s = og {‘31*?0“1'“" / Znita .f(?o";j

Using parameter values which represent the average experimental situation, a=l cm,
£ 6, L = 200 emy, b/j, computed from (25) is 15,72 . which compares very
favorably to the data of Appendix III C.

(25)

D. Pressure-Diameter Dependence

In graph (4) of Appendix III C, the log of the pressure (decibel
level) is plotted against the log of the average radius of the spheroid. The
points on this graph are gotten by plotting the y intercepts of graphs (2)
against the log of the spheroid average radius divided by 1.025 cm., the
average radius of the smallest spheroid. |

Equation (24) predicts that at constant mass, A a-3/? From this
dependence the slope of the lor-log line is expected to be-30. The experimental
values, given in graph (4),dé.not agree very well with prediction. Further,
the points cannot be well approximated by a straight line fit of any kind.

This disagreement indicates that there is another parameter
involved in this relationship. This is not surprising due to the fact that the
spheroids are actually ellipsoids of different eccentricities, a situation
unlike the theoretical assumption behind equation (24). Thus, it is reasonable
to assume that the pressure is a function of both size (iength of axes) and

also shape (eccentricity).
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Microphone Characteristics
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Appendix IT

Patterns Made by Particles in Cavity

#1. Tube horizontal
573 cps., 152 db

#2. Tube Horizontal

; ‘;’13‘“*'“ IHHMV“ ot} ; 955 cps.., 157 db




#3, Tube Horizontal
573 cps., 160 db.

#4. Tube Horizontal

955 CPSey 163 db

#5, Tube Horizontal
955 cps., 163 db
Close-up on Nodal

Bye
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#6. Tube Horizaental
764 cps., 164 db

Sphere and Particles

#7. Tube Vertical
764 cps., 164 db.

‘8. Tube Vertical
764 cps., 164 db
Close-up of Node
from Top
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#9. Tube Vertical
764 cps., 164 db
Close—-up of Node

from Side

#10. Tube Vertical
764 cps., 164 db

Suspended Sphere
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Appendix IITI A

Resonant Frequencies of the Resonant Cavity

f (cps) Af = f-f 5 n
191 9 2
287 9% 3
383 95 4
478 95 5
573 96 6
669 95 7
a % °
859 96 9
955 95 10
1050 11

£ = L%/E‘rr = nc/2L
Af =c¢/2L  95.5 L =174 em Direct Measurement = 175 3
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Appendix IIT B

Location of Nodes in the Cavity

£ = 764 n=28 Linear wavelength M = 43.3 cm.
Al1]1 measurements from the top of the tube
Node # z (vertical displacement from top) bz = 2,72,
1 17 01
2 38 22
3 60 1
% 81 22
5 103 20
6 125 0
7 145 22
8 167
£ =573 na6b Linear Wavelength X = 57.8 om.
All measurements from the top of the tube
Node # 2z (vertical displacement from top) Dz =2z .
1 22 31
2 53 8
3 81 29
4. 110 8
5 138 . 28
6 166



Appendix IITI C

Experimental Data

Ball #1
4.4 Graph (1)
Ave Diam = 3.20 cm.

kM3
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Graph (1)
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Graph (4)
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