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ABSTRACT

The optimal control of the 3rd order positioning system
with a saturated rate~type drive subject to a step input is in-
vestigated. Linear ana1y51s is done assuming the performance
index PI = f(e2 + P*u?)dt which defines the optimality, The
optimal system behaviors are evaluated and a bridge to the con-
ventional control approach is dewveloped, Stability of the non-
linear system with the feedback gains which is optimal for a
linear system, is investigated. A limit cycle criterion is

developed by applying the single=valued describing function method
for saturation non-linearity,

Thesis Supervisor: Dr, Herbert H, Richardson
Title:; Professor of Mechanical Engineering



ACKNOWLEDGMENT

The author wishes to recognize and to thank his thesis
supervisor, Professor Herbert H, Richardson, for his encouragement
and insightful suggestions. The author also thanks Professors
Michael Athans, Devendra P, Garg, Robert P, Rafuse, Daniel Whitney
and David N, Wormley, and Mr., Ronald Rothchild for their suggestions,
Mr, Richard S, Sidell is gratefully acknowledged not only for his
consultation on the computers but also for his advice.

In addition the author wishes to thank Mr, Evodio Llevada for
his drafting work, and Misses Ann Iversen and Emily Wise for their

typewriting,



LIST OF CONTENTS

Chapter 1. INTRODUCTION

l.1 System Investigated i
1.2 Objective of Study 2
1.3 Scope and Organization of Thesis 2
1.,3.1 Outline of Problem 2
1.3.2 Organization of Thesis 3
Chapter 2, ANALYTICAL PROCEDURES AND RESULTS
2.1 Linear Analysis 5
2,1.1 HNormalized Open-loop System B
2,1.2 Closed-loop System (Control System) and
Design Criteria 6
2,1.3 Zero Steady-state Error 7
2,1,4 Controllability and Cbservability 8
2.1.,5 Criterion of Optimality and stability 9
2,1.6 Method to Find Optimal Control Law 10
2.1.7 Control System to be Simulated 1l
2,1.,8 Simulation 13
2,1.9 Optimal Control System 13
2.1.10 Conclusion 18
2,2 HNon=linear Analysis
2,2,1 Non=linear Open-loop System 23
2,2,2 Non=linear Closed-loop System 24
2,2,3 Control System Behaviors 26
2,2.4 Simulation 26
2,2,5 Limit Cycle Determination by Describing
Function Method 27
2,2,6 Results 28
2.2,7 Conclusions 30
Chapter 3, CONCLUSIONS AND RECOMMENDATIONS
3.1 System Studied 33
3.2 Conclusions 34

3.3 Recommendations 38



Pages

LIST OF FIGURES 39

FIGURES 40

APPENDIX I (Modeling and Formulation of a Saturated Valve-Controlled
Rate-type Fluid Motor Connected to a Load-mass

through a Spring) 58

APPENDIX II (Computational Procedures for Analysis) 65
APPENDIX III (Analytical Evaluations of Asymptotes of the '52 - %«2

Curves) 67

REFERENCES



Il

System Investigated
The position control of a simple mass driven by a rate-
type motor through an undamped shaft (Fig., 1) is proposed.
A piston-type fluidic motor is considered here as a typical
rate-type drive, Analysis for rate-type servo has been developed
[tz,12 ,14], Linearized system equation with saturation is given
by
4 X ¢ w. 0 % 0
e X|{=lo o0 < | +| o0 |SAT (w)
x 0 -w, ‘Z'gmu-)v\ Q.é l@;
(1-1)
y = Liove 1 =
x
s
where x = non-dimensionalized position of mass
X = non~dimensionalized velocity of mass
® = non-dimensionalized acceleration of mass
wn = natural frequency of open-loop system (rad/sec)
Cn = damping ratio in open-loop system
k; = non-dimensionalized open-loop gain
u = input to open-loop system
SAT (u) = saturation function defined by Equation (1-3)
t = time (sec)
vy = output of system

Chapter 1

INTRODUCTION



=

wWhen valves are fully open, there is no additional input to the
ram even with more command signal to the valve. This is the

saturation to be considered and is defined

“u for  |u| <1
SAT (u) = (1-2)
1 for (k| > 1

Input-output relation between u and x could be given by

k/

X(s) = .SAT (U(s))
S 2 2% 3
EJ‘..\(“S@‘*ESJ") (1-3)

where s = Laplace variable,

The modeling and mathematical formulation of this system is in

Appendix I, A typical application could be azuma control of a

radar antenna (Fig, 3, 4).

1.2 Objective of Study
The problem proposed i§ the optimal control of the position
of the mass to a step input. The studies for the system with and
without saturation are done for reasonably wide ranges of general-
ized system parameters.
For linear system, a bridge between modern optimal and

conventional controls is developed,

1,3 Scope and Organization of Thesis
1.3.1 Outline of Problem and Study

Outline is listed below.



(1)

(2)

e)

(4)

Problem is optimal position control of 3rd-order system

E‘igo 2' 5)0

Study is deterministic and classified as an Initial Condition

Problem or a State Regulator Problem [3] which is developed

for a step input only.

All the states are fedback in both linear and non-linear

studies (Fig, 6a, l4a),

Linear Analysis is developed by considering that:

(a)

(b)

(c)

(d)

(e)

-

Optimal criterion used is PI = .J;(ez + ﬁhz) dt

Optimal control law u(x(t),t) is obtained by solving

the matrix Riccati Equation or Hamilton-Jacobi Egquation.

A bridge (Fig, i2) to conventional control method should

be developed; i.e., once a desired response is chosen

for a given system from one of the charts about system

response [Clark pp, 140-145], optimal feedback gains are

immediately found by using Fig, 7, 8, and 12,

Also system performance 1is evaluated and given in

Fig. 11, The analytical study on the asymptotical

behaviors of evaluated system performance curve shows

that once a typical point is computed, the curve is

ready to be drawn,

Non-linear study is an extension of the linear study.

(a) The non-linearity is saturation at the motor valve
(Fig, 1) and characterized as in Fig. 15,

(b) Normalized step input size R0 to give saturation in

control u is obtained (Fig, 18).



(c)

1.3.2

Step input size R to give an unstable limit cycle

is obtained both graphically by the single-valued describing

function method and by direct digital simulations (Fig. 17

and 18),

Organization of Thesis

(1)

(2)

(3)

(4)

(3)

Linear and non=-linear analyses are given in Chapter 2,
Overall conclusions and recommendations are given in
Chapter 3,

Modeling and mathematical formulation of the proposed
physical system are given in Appendix I for interested
readers.

Computational Procedures for Analysis is given in
Appendix II.

Analytical solutions for the asymptotes of system-

performance-evaluation plot are given in aAppendix III,



Chapter 2

ANALYTICAL PROCEDURES AND RESULTS

2.1 Linear Analysis
2.1.1 Normalized Oren=loop System
Modeling and mathematical formulation are done in
Appendix I as mentioned in Chapter 1. In linear case,
open~loop system has no saturation, By replacing SAT (u)
in Eq. (1-1), open=loop system is given by

o Wy, o 5 & (8}

5 o) Wy x| +|lo | U
. ’
0 =~wa -2%.W,) x R,

d
gt

KR R
i

(2-1)

y =1 o 0]

.

x
ot

In order to non-dimensionalize the egquation with respect

to time, dimensionless time t' is defined by

= bt (2=2)
By noting

o kil i pnd

Jv T w.dt el

and defining
’
Ry

kb, =
v Wy,

the open-loop system is written as

(2-4)



P s

x (o] | o X
i[aa: = | o [ +]o |u (23
d‘ti X - o ?Ic-
% O = Sgefaliiog ky
y =[1 o o J[x
x
%
or
ft’)‘g = ﬁ 2 _‘2 w
= ¢ L
J s (2-6)
where
X =(X) =[x
Xz x
X3 -
The open-loop transfer function G(s) is given by
( XCS’) Ly kb‘
G(S Yy = " _— , . - (2__7)
U €s?) SCs'2+24, 5" +1)

where s' is Laplace variable corresponds to the dimension-

less time variable t',
In order to avoid complexity
less t' and s' drop their dashes.

The open-loop system equation and

(between input u and state x) now

on variables, dimension-

its transfer function

rewritten as

%% = AX + bu
(2-8)
y = ex%
Gisy= 2 k.
= — = (2-9)
ucs) SCs*+28,5 +1)

Closed=loop System (Control System) and Design Criteria

System Configuration (Fig, 6)
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All the state variables should be fedback according to
the Modern Control Theory, The system is in the form of
Phase variables which contain all the necessary information to

control it, The closed-loop system equation is given by

j%;ﬁ = Ax *bu

y = ¢x%
-

3_(__60) = 0

where r = step input to closed system appliedat t=0
K = [kl, k2, k3] = feedback gain vector
Eg, (2=10) can be written as
[v] 1 0 o
f& r = fo) 0 | L 4+ | p K,
—R, —C1+lk;)-(24,+k;) ky (2-11)

E(o): =

Closed~loop transfer function between r and x,is given by

|

Gels) = ISR 4
(= [N SZCZQ»."‘L',.) *Scl“fka)'fklkl/

(2-12)

Design Criteria Specified

(a) Zero steady-state error
(b) Stability of the system
(c) Possible minimum transient square error

defined by E%. (2-18). The error e is defined L3

€ = Yo - X
(2-13)

2,1,3 Zero Steady-State Error

From the closed=loop transfer function in Eq. (2-12),



x(s) is given by

Ro
X8 = (xCS)- - (2-14)

where RO = magnitude of step input ro(t) to the closed-loop
system,

By applying the Final-value Theory,

lim 2t = Ry = I (hi0*)
taoe

Since error e(t) is defineélby~E?i2—13), the steady-state

error is zero.

2,1,4 Controllability and Observability
The closed-loop system is the 3rd-order single input-

output system and from Egq. (2-11),

A,=[© | o b. = ©
! iy
o 0 ( @ (2-15)
—k, ~Cl4k,) 2 ¢,+k;) ke ky
Controllability

By the Controllability Theorem, the system is con-

trollable because 3 x 3 composite matrix

[ b &b, A2b] oy

is non-singular,

Observability

By the Observability Theorem, the system is observable

because 3 x 3 composite matrix,



2413

S0
[c7 ale @n)cT) (2-17)
is non-singular,

Criterion of Optimality and Stability

Criterion of Optimality

Optimality of the system is desired 1 be Jefined as

T s Z T 2
j;e"rf ) dt < f e%t)dt (i)

[=]

where e,?¢c+! error in optimal system

1) time gives the steady-state response
In order to solve the problem, a gquadratic performance index

PI is defined by
v

PE = J [?2({')"‘ P uZ(‘t'J] J‘t— (2-19)
2}

where P = weighling constant
Stability
General performance index in quadratic form is given by

e Iw[ :{_T@E " L_*T_'_PS_] dt (2-20)

(-]

Kalman (1964) has shown that in order to ensure stability,

the pair [ A Jfr] must be completely observable, where [7 is

defined by
o QR g 4 (2-21)
In this problem,
i~ 6o \
Q@ =|o oo r ‘-‘{o] (2-22)
- O oo )

~
where [' corresponds to ¢ in Eq, (2-6),



—10=
Since
[T & @mrr) (2-23)

is non-singular, the controlled linear system is stable with

the performance index of Eq, (2-19),

Method to Find Optimal Control Law

Optimal Control Law

Optimal control law wW(%,t) for the open-loop system
T
of Eq. (2-5) with the performance criterion PI ==j;(ez+-PLP)dt

is given by

W=, £1 - P _b_TEs x (2-24)

or

~ k" x (2-25)

wo(x +)

I

where Bs is the steady~-state solution of the matrix Riccati

equation,

Re)+ Q RGP 'D'RE) + RIDA+ATRH) = 0 (2-26)

A numerical solution for E(t) can be obtained on a digital
computer, by integrating the Riccati equation backward in
time from the known terminal condition over the time interwval
of interest [3]. The matrix K is referred to as the set of
the optimal feedback gains or the coefficients,

Modification on b Matrix of Open-loop System

In order to reduce one of the parameters for simulation,

Ef is defined as



-]l

o
b = k, b* = kv[O} (2=27)
/
Eg. (2-26) can be rewritten as
2 o
. _ R&Y ko BB R®) Ty _
Ret) + @ 2 + Rh A+ ATRE) =01,

by also considering p is a scalar. By defining a new cost

ratio P* as

| Ry

Rl (2-29)

Eg. (2=28) becomes,

Rt B* B¥R(H)
P*

RK) + @ — + R A+ ATRt)= 0 (2-30)

2,1,7 Control System to be Simulated
Now the optimal control problem is stated as a state-

regulator problem of

4. - ¥ 2-31
el o = AZ + b* u ( a)
"I-TB
w = - K% =k — hp: x (2-31b)
xX@®)= O
= == (2=31c)
\'j — _C._ x (2-3ld)
& 2
PT = [ (e?+ p*u)dt (2-31e)
E. = Koo =y (2-31f)
where
[a] i o (=]
A =‘[o o | J b = [a]
o -y -2%, - | (2-31q)

In
]

L1 o e] (2-31h)



-]12=-

x| 7 Posr‘Lian of wmass ;
x= {rz] = [XI == [ velocity of mass (2=314)
X3 x acceleration of mass
u = control
r = step input of magnitude Rb' apphedaf'f‘=0.
K = a set of optimal feedback gains

p* = cost ratio

% = steady-state solution of

RGH) b*b* R(H)

E(ﬂ ) e B + RWA + ﬂ"l_{_(f)-.: o (2=-313)
y = output
PI = performance index
e = error
L = damping ratio in the open-loop system

n

The system is non-dimensionalized (Appendix I) and dimensionless
time wnt is used (Eq, 2-2), where wn is the natural frequency

of the open-loop system, This is the last form of the closed-
loop system (control system) to be simulated. The configuration
is given in Fig, 6a, where the transfer function G(s) between

u and x. is given by

il
Xi(s) i
Gts) = = < (2-32)
U (s) S(s*+ 24,5 +1)
The optimal closed-loop system transfer function Gc(s),
Eq. (2-12), should be rewritten as
X, s) le
G =) = L - : (2-33)

Ro €5)’ S3+ s2( 264tk )+ SC+k )T K,
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Simulation
Simulation

The word "simulation" is used here as an estimation of
system behaviors on either digital or analog computer,

Computational Procedures

The diagram of computational procedures to obtain the
results of interest is given in Fig. 19, The computer techniques

used are briefly discussed in Appendix II,

Optimal Control System
The transfer function, Eg, (2=33), of the optimal control
system can also be written as

X(8) _ o Wi
Ro (5) (S+3)(s2+ 295 wsS + W) (2-34)

G s =

where, as shown in Fig, 12,

a = real root of the optimal control system
CS = damping ratio of the optimal control system
w = frequency of the optimal control system

s

A system parameter £ is defined by

ol
e (2-35)
Bs Ws

The results of computation are given in Fig, 7 through
Fig, 12,

The step response of the system is given by [l]

2
Ro % Wws (2=36)

X, (5) =
S (s+ ) (s2+2FwsS + o)

or



=1de

—— [l o wi ar, o e~ Suwt . (w,++qa)] (237
: v at~2f w0 o+ o} j;--\;‘a J ot 2t wo+ w}k
where
We = ws |t — 82
= % -
e tan [—L'u_gsw’]
r 182 5 o M @zo
ts
p =
a;'Jl_;Ss_ 6 4 ec<o

(1) Optimal Feedback Gains (Fig. 7)

Fig. 7 is the plot of K (vs, P*) which is obtained by
solving the matrix Riccati equation, Eg. (2-31j), K - P* plot
shows that:

(la) k k2, k3 increases monotonically as P* decreases.

l!

(1b) K is larger for the system whose ?;n is larger.

(1c) k, =J7"_7 for any B B
(1d) k2 is almost identical for any ?;n if P* < 10—1. For
any C’n’ the asymptote of k2 as P* approaches zero, is
given by
k, X (?*yr i ph e 6 (2-39)
(le) k3 is almost identical for any i;n if P* < 10-6.

Asymtote of k3 as P* goes to zero, for any Cn, is

given by

R 3 = -FP% if P*'( IO—-‘ (2-40)



=15=

(1f) By knowing the relation between ;s and P* which is to
be given by Fig, 8, Eq. (2-38) through Eg. (3-40) are

rewritten as

ol g
k1 = ms (2-41)
o 2 i 2 if P* < 1072 (2-42)

2 S

e . -6

k. = 2w if P* < 10 (2-43)
3 s

(2) Natural Frequency (Fig, 8)

Fig, 8 is the plot of ws(vs. P*) which is obtained by
finding the roots of the characteristic equation of the system,
(Eg. (2-33)). The plot shows that:

(2a) ws increases monotonically as P* approaches zero and
4

ws's are almost identical for any Cn' if P* < 10 .

Approximation, for any Cn' can be as

4

if P* < 10 (2=44)

= _._l_._
AT

(2b) ws is larger for the system whose Cn is larger,

(3) Root Locus (Fig, 9)

The root locus of the system for each Cn' with P* as
parameter, is plotted by knowing the characteristic roots of
the system, Eq, (2-=33)., The root loci show that:

(3a) As ms goes larger (or P* approaches zero), the optimal
system for any ;n becomes identical, This is true if

Y > 46 (or equivalently P* < 10—4).
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(3b) For any Cn the optimal system approaches to have,

}

C 0.5 (2-45)

S

B 2.0 (2-46)

(3c) The system is stable apparently,
(3d) For Cn = 1,0, the optimal system has 3 real roots if
pPE > 6,

(4) A Typical Step Response (Fig, 10)

The open-loop system in this example has ;n = 0 with

-4
P* = 10 and Ro = 0,008, The resultant optimal system has

K = [99.9
41,7
9,13
T = 0.488 w_ = 4,68 B = 2,00
S ]

The plot shows that:

(4a) .
Ix,(-b)ff lxp(f )l for O tTE (2-47)

fwHlz ju ¢+ for otetsT (2-48)

(5) Evaluation of Performance Index (Fig, 11)

Evaluation of performance index for each optimal system
! , . 2 ~2 .
to a unit step input is plotted as e vs, u , with P* as
parameter,

where ~ ITel dt (2-49)
(=

a = j: a4 (2-50)



g

The plot shows that:

) . ~2
(5a) e decreases monotonically as u increases, for any Cn
(5b) As ws goes larger (or P* approaches zero), 52 decreases

M2
and U increases,
‘ 2 ,

(5¢) For a fixed value of U°, system with smaller Cn

~2
has smaller e .,

(5d) For P* £ 107% (or w_ > 4.6),

e Es ——
T (pME
and
28 A 15 e S B
g = === = 2ipr)e (2-51)
za-i 2 __:ls_ m55 = _3"_(?_‘_)—{- (2-52)
and so,
e
2T Z(3T)7S (2-53)

(5e) For P¥ 2> i0% (or ws Z 1.0 for Bn =t 0)

S2 | .
e = S (OV' = E‘FJ;T if #u‘l-) (2=-54)
T & (v = B as) s
and so,
ez L (2-56)
i

In Appendix III, the results (5d) and (5e) are obtained

analytically,

(6) A Bridge to a Conventional Control (Fig. 12)

The plot is Cs vs, B for Cn =0 ~ 1,0 with P* as parameter.

It shows that:



2¢1s 10

=18

(6a) The optimal system for any Cn'

for p* < 1077 (2-57)

0.5 for p* < 1077 (2-58)

o]
R,
[ ]

Y
e,

(6b) Once designer specifies Cs and B about given open-loop

system (fixed ;n), Fig, 12 tells proper P* with which

optimal feedback gains are obtained,

Conclusions

Conclusions are made from the results simulated on the
control system stated by Eg. (2-31la) through (2-31j), The
design criteria specified in 2,1.2 are repeated here for
convenience; i,e.,

(a) Zero steady~state error

(b) Stability of the system

(c) Possible minimum transient square error defined by

T 2 7 2
dt < ) dt
Jo Gpe® e (Eg. (2-18))

Conclusion (1) Optimal System defined with the performance

index criterion ( PI =j:}e‘-+P*qut ) approaches the minimum
square error system ( j:eﬁ; 4t < j:ezdf ) as P* becomes

small. Actually, Fig, 12 shows that for an open-loop system
with any Cn’ the resultant optimal closed-loop system becomes

identical and its system characteristics are given by

0.5 . (Eq.(2-45))

]

CS
B = 2,0 (Eq. (2-46))

if p* < jot
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where w_ can be well approximated by Eq. (2-44) as

~ l
“s = (et

L -4
The condition P* < 10 ', therefore, can be replaced by

w > 4,6 (rad)
s

or

ws

- > 4,6

) (sec)

n

which may be referred to Eq. (2-2),

The reason why the closed-loop system can have zs'g 045

~r N -4. - . .
and B= 2,0 only if P* < 10 is that the permissible amount
of control u for shifting the poles of the original open-locp

system to the optimal location, is limited unless P* is small

enough., The result, in Fig, 11 (g’ ), which shows that at

~L

eﬁn_, < eg,.gc.g < eh_‘_u

¥ o ~ 2
“fu=° ~ u'ﬂ..'“-i < “'f“-l-n

is explained by the same reason; i.e., a large control u is
required to shift heavily damped system's poles compared to

slightly damped case.

Conclusion (2) From the Conclusion (1) optimal control system

i ; ; ] : -4
satisfies the design criteria specified only if P* < 10 .,

Naturally, the closed-loop system is optimal in the sense

of

PIDPt = P ‘or any P



=10=

but not in the sense of

T2 T
Leﬂﬂ(ﬂdt s [ erwdt

-4
unless P* < 10 -,

Conclusion (3) K can be approximated by

k2 = w/ : (2-59)
ke = zw! —1I W PR ot (2-60)
ks = 2 wg -2 T, i+ P*< (0f (2-61)

These equations are simply obtained by equating Eg. (2-33)

and Eqg. (2-34) and by noticing

gosl

ne
N

o

12
S

; . -4 s g ; ;
for the optimal system with P* < 10 ', This is the identical

result as when the Butterworth Polynomials Method is used,

Conclusion (4) Estimations of [e| and lugn for the
max ax

optimal system can be easily made.

From Fig, 6a,

U (t) = e, et) - R, x,#) — ky X3#) (2-62)
It is clear that

lecon] = |e (b)) Stet 2y (2-63)

lucoh| =2 |uw ots t =T (2-64)



o
and

provided the system is stable. Therefore,

l u Imax = ke, lel wmax (2-66)
where

lelmax = |ewen] = Re (2-67)
and

J""ww ol u.LoT), = k, R, (2-68)

e(f) and u(t) are linearly dependent on Rb (step input size) as

Q(t) — c &(d

as Roe=> ¢ Ro {2=69)
u(e)—=> C W)

where C is a constant, Since the step size RO which gives

J | = 1,0 is shown (for each { ) in Fig, 18 by a line
max n

named "saturation", {el and |WL| for anv step input size
max max

of interest can be easily estimated by using Eg, (2-67)

through Eq. (2-69), provided Ky is known, The Ielmax and

i“imax can also be evaluated by directly computing Eag. (2-37).

Conclusion(5) Method to evaluate 32 and 32 is developed (Fig, 11),

From result (54d), 52 is given by Eg. (2-51) as

CC RO W S e
3 Wy s

where ws is approximated by Eq, (2-44) as

4

R

[ 2 -
ms__(—?*—_z)_ P* < 10



=00

and the asymptote as w_ goes larger is given by Eg. (2-53) as

-
~ —~ ~ s'
gt 35.—(3 a?) ws > 4.6 (rad)

AL s .
From result (5e), e 1is given by Eg. (2-54) as

zX =

~ 2 %
et x Lo P* > o* , ha #0
and the asymptote as P* approaches zero is given by Eg, (2-56) as

~T
g = q.":;z PY Zotay Rut 0

Therefore, after knewing these asymptotes, the region of P*

: ; ; ; ~2
left to be investigated to evaluate its corresponding e and

A
U 1s

10% < p* < 1074 (2-70)

However, once one point in the middle of the region is evaluated,
a rough plotting can be made by using the asymptotes, The above
results are obtained only for step input size Ro = 1., For anvy
size of Rb' the corresponding 32 and 52 are easily obtained by

knowing

2

~ 2

e
} os Re = < Re (2=71)
ul

€

2 2

£

= e

where C is a constant.

Conclusion (6) A bridge between modern (optimal) and con=-

ventional controls is developed (Fig, 13).

Suppose Cn is specified in the given open-loop system,
RO (size of step input) is given. The desired CS and B are
specified by referring to step response charts in conventional

control literatures [Clark pp, 140-145], At this stage the
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combination of ES and B must satisfy the curve given in Fig, 12
for Cn specified., Then, by the procedure shown in Fig, 13, the
optimal closed-loop system (K) and the estimations of its
behaviors, (lelmax, qumax,‘ﬁz and ﬁz) are ready to be obtained,
provided ug (or equivalently P*) is properly chosen, The
resultant closed-loop system is the realization of the system
specifications CS and f, If the minimum error cost system

( LTq¥;dt S._gre‘df ) is required, then the specifications
must be Cs = 0,5 and B =2,0., Now w_ must be larger than 4.6

(or equivalently P* < 10-4) and ms should be chosen by consider-

: 2 - ; ; .
ing the values of 2° and u2 which are estimated by using Fig, 11

and Egq. (2-71).

2.2 DNon-linear Analysis
2,2,1 Non=linear Open~loop System

Configuration

The open-loop system to be controlled consists of a
non-linear element and the linear open=loop transfer function
(Fig, 5). The linear open-=loop system is the same as that
in the linear analysis and its transfer function G(s) between

Xl(sf and Us (s) (instead of Xl(s) and U(s)) is given by

at

X {5 |
(s) = L G -
G L o (5) S(stT+2%,5+1) fesie)

The input-output relation of the non-linear open-loop system is

given by

—_ I -
K SCs2+ 26,5 +1) > HTE) S
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Saturation in Physical Model

The saturation concerned here is one of the non-linearities
that the physical system has. The saturation is one of the
valve characteristics in the fluidic motor used. Suppose the
valve is closed. Assume that the pressure drop between the ram
chambers increases linearly as the valve opens until it opens
fully, Once the valve opens fully, no additional flow is
available, regardless of the command input to the valve increases,

Definition of SAT (u)

The mathematical model of the saturation is given by

U if Jul<
Uspr = SAT(U) = (2=74)
I if qufzi

This is shown in Fig, 15, where u and u are the input and

SAT

the output to the saturation element respectively,

Non=linear Closed-loop System

System Confiquration (Fig, 1l4a)

The control system configuration is identical to the
linear case except the saturation element, All the state
variables (phase variables) are fedback through the K obtained
for the linear optimal control system,

System Equations

The control problem is again a state~regulator problem and

the control system is given by

fg x =Ax +b* sat(w (2=75a)



SAT (W)

X (o)

where

H
|7 0

P*

|

%

control

|

o

lo

1N
IR

X
Ly
X3

4

x

=
%K

-25=

)|

oo lul <

$ o lul =1

1

“x
I
————
- o 0
———

positian of wmass
\Jzibc.itg of wmass
acceleration of mass

step-input of magnitude RO, applied at T =

I

0

(2=75b)

(2=75¢)

(2=754)

(2=75e)

(2=75€)

(2-759g)

(2=75h)

(2=751)

a set of optimal feedback gains obtained by solving the

linear optimal control problem defined by Eq,'s (2-3la)

through (2-31j), where the performance criterion is

defined by Eq,

= gost ratio

]

output

erxror

(2=31le) as
P =[T(e?+ p¥y2)dt

damping ratio in the given open-loop system
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2,2,3 Control System Behaviors

2t

The only structural difference between the linear and
the non-linear control systems is the saturation element.,
However, this gives important differences between their system
behaviors,

Saturation and Optimality

The optimal feedback gains K for the linear control
system are used for the non-linear control system, where these
feedback gains are not optimal any more because of the
saturation if the control u saturates, However, if the control
u does not saturate too much or too often, the control
system can be considered an approximately optimal system,
Because the optimal control feedback gains depend upon the
size of step-input in a much saturating case, the control
system is called sub-optimal,

Limit Cycle and Stability

The characteristics of the saturation (Fig. 15) may
cause limit cycles depending upon the size of step-inputs [9].
There may exist two kinds of limit cycles, stable and unstable
(Fig, 17), However, the limit cycle of interest here is the
unstable one which occurs with smaller step-input size than for

the stable one, if any,

Simulation

Normalization of Step-input Size to Saturation Level

As mentioned in Saturation and Optimality of the previous

section, the relative size of a step-input to the saturation



b

level is essential, For this reason, the characteristics of
the saturation is defined by Eq, (2-74) where it has the unit
slope and the unit saturation levels (Fig, 15). Therefore,
any size of a step-input is considered as normalized to the
saturation levels.

Purpose of Simulation

From the linear analysis and Eg, (2-76), it is ready to
obtain the minimum Rb which makes the control u saturate,

The purpose of simulation here is to obtain the minimum
Rb which makes the system unstable with a limit cycle. There
are two methods for it., First an approximate solution is
obtained graphically with a single-valued describing function
for the saturation [9], Then, by using this result as a ref-
erence, the exact solution is found by a direct simulation,

When Non-linear System Behaves as Linear System

If control u is small enough so that it never saturates,
then the non-linear control system is actually the linear
control system and it is optimal, provided the non-linear
system has the optimal feedback gains obtained for the linear

system, 'This happens if

Ry RS 1L (2=76)
which should be clear from the Conclusion (4) of the linear
analysis,

Limit Cycle Determination by Describing Function Method
The system (Fig, 14b) is equivalent to the closed-loocp

system (Fig, l4a). In Fig, 14b the input and the initial
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conditions are defined by

Fong =R
x,t0) = - Rg (2=77)
Xy (0) = Ia(o) = 0
The characteristic equation of this system is
I+ Gy &-HQs_:O (2-78)

Il

where Gd(Rb) a single-valued describing function of the

satura tion.

Grg CRo) = "T?'—r" [ sin” (—"z;) +(-é—.)j;_ 'E";)z (2-79)
I
=
? ¢ S (s2+ 28,5 +1)

(2-80)
H.,%(s)z Ry $2 + kS + k,

On the Nyguist plane, the characteristic equation is realized

by the crossing point (s) between the 2 curves defined by

|
Gry (Ro)

and

G Guy) H.ﬂg;,ws) 0 <Wsg oo (2-82)

These 2 points give the stable and the unstable limit cycles
for the specified closed-loop system (Fig, l4a). The existence

of crossing points depends upcn Ro as well as G H (Fig, 16},

b
Results

(1) RSat = minimum step-input size Rb which makes control u

saturate (Fig, 18).
Equation (2-76) with the value of kl obtained in the

linear analysis gives the minimum R.o which makes u saturate.
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(la) Rsat increases monotonically as ws approaches unity

(or equivalently as P* approaches infinity) for any

Cn-

(1b) System with larger Cn has larger Rsat at a fixed ws
{eax P*),

(Le} Rsat is approximately identical for any ﬁn AE ws>-4.b

(rad) (or equivalently if P* < 10-4)

(ld) As ws increases, R

ok " ws plot approaches an asymptote

characterized by

=il s~
RSAT = w_.) m (2~83)

5

(le) As W approaches unity, RSa = plot approaches an

asymptote characterized by

RS‘QT = ’ (2-84)
JF?

(2) = Approximate solution obtained by

R
lim, approx,

describing function method, The minimum Rb which makes

system unstable with a limit cycle, (Fig. 18).

(2a) R., increases monotonically as W_ approaches
lim, approx, s
unity (or equivalently as P* approaches infinity) for
any Cn.
> .
(2b) System with larger Cn has larger Rlim, BT, at same

oxr P*),
w, (or )

(2c) As ws increases, - ws plot approaches an

R
lim, approx.

asymptote characterized by

~ 2 ~
le,a.opmx- o ‘-')53 = 2y P* (2-85)

(2d) No limit cycle exists with any Cn for P* > 1,
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(2e) No limit cycle exists with Cn = 0,5 for P* > 10 ~,

(2f) No limit cycle exists with Cn = 1,0 for P*.i JON 5

(3) = gimulated result. The minimum Ro which makes

R. ., :
lim, sim
the system unstable with a limit cycle (Fig, 18).

~

-] - .
(3a) Simulations are made for P* = 10 and P* = 10 ° with

Cn = 0 and Cn = 0,5,

(3b) R_. increases monotonically as w_ decreases (or
lim, sim s
equivalently as P* increases).
i = 0.5 . . tha ith
(3c) System with Cn has larger Rllm, sim n wi

L =0 at a fixed w_ (or P*),
n s

4 3 . R .
(4) Comparison between Rlim, e and 1im, approx,

(4a) R.. is smaller than R, . .
lim, approx lim, sim.

2.2,7 Conclusions

The definitions of R s R and R_., :
sat lim, approx. lim,sim

are re-stated here for convenience,

Rsat = minimum step-input size Rb which makes control

u saturate,

R _ ; ’ by g
lim, approx. approximate solution obtained by using
describing function method, The minimum RO which makes

system unstable with a limit cvcle.
R , = simulated result, The minimum R_which makes
lim, sim o

system unstable with a limit cycle,

Conclusion (1) Qualitatively speaking, the system with smaller

Cn is easier to have saturation in control u with same P¥*,
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Conclusion (2) For a fixed ;n, the system is easier to have

saturation in control u when P* is smaller (or ws is larger).

= .
Conclusion (3) For P* <10 Rsat becomes approximately

identical for any gn and RSa - w, plot approaches an asymptote

i}
defined by Eq. (2-83) as

Ree = [77

which can be written by Eq. (2-83) as

|
RSat = t—»;;

from the Conclusion (1) of the linear analysis.

; 4 z : ;
Conclusion (4) For P* > 10°, Rsat becomes approximately identical

for any 5n (except ?n = 1,0) and RS - qu plot approaches an

at

asymptote defined by Eq. (2-84) as

R jat- -'g '—L
I7*
Conclusion (5) The system with smaller‘gn is easier to have a

limit cycle with a fixed P¥*,

Conclusion (6) For a fixed ;n' the system is easier to have a

limit cycle when P* is smaller (ortos is larger).

Conclusion (7) With P* > 1, system never has a limit cycle for

any gh.

Conclusion (8) -w, plot implies that it

R, .
lim, approx,

approaches an asymptote approximated by Eq, (2-83) as

R o™~ f * * =4
lim, approx = 2 Fbr fE s
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which can be rewritten by

{'?hm, o.pprox = ia ‘FDY' W, > %.6 (Y‘dJ) (2=-86)
5

from the Conclusion (1) of the linear analysis,

Conclusion (9) The criterion for existence of a limit cycle by

using describing function is conservative; i.e., even if this
approximation method shows the existence of a limit cycle, there
may not exist any. It is not accurate to state how it is conser-
vative compared to the simulation, because of limited numbers of

data »
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CHAPTER 3
CONCLUSIONS AND RECOMMENDATIONS

3.1 System Studied
The linear and the non-linear systems investigated are
defined by Eq.'s (2-31) and (2-75) respec tively., Their configu-
rations are given in Fig,'s 6a and l4a. The only difference
between them is the saturation which is defined by Eq, (2-74),.
The time t in these non=-dimensionalized equations is defined

by Eg. (2-2) as
t = (% {dimentional time) (rad)

where W, = natural frequency of system to be controlled

(rad/sec)
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3.2 Conclusions

iy An open-loop system with smaller ‘fn has a smaller

ts in its closed-~loop system constructed by applying the
T
optimal control theory with P = f (e® + p*u*) dt

because u is finite with finite P* (P* # 0),

2. l eJ[.e)(Md.K = ’ e‘(_a'l')’ = RD

Ut ey = |utot)] = R Ry (Eq. (2-67) and (2-68))

(from Conclusion (4) of the linear analysis)

C3. For the linear systems,

2. < & < ¢
Ra= 0 - - fn=l.0
~ 2 A~ 2 A~
< <
u‘.g“'.:o = w = u‘-;”:.l.o

with fixed P* and Ro. (From Conclusion (1) of the linear

analysis.)

c4a, For the linear system, the optimal feedback gains K

obtained with

.
PT = J: (e? + p* y2) dt (Eq. (2=31e))

approximately satisfy

R a
L e dt < fa e? dt (Eq, (2-18))

(from Conclusion (2) of the linear analysis)
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where u% is approximated by

|
ws = Eq. (2=44
(P*)* (Eq. ( )
(from Conclusion (1) of the linear analysis)
and the optimal control system has
P, = o0.5% (Eq. (2-45))
£ = 2.0 (Eq. (2-46) )
(from Conclusion (1) of the linear analysis,
G For the linear system,
~ 2 z
e c?e
as Ro>cRe (Eq, (2=71))

—
U —

(from Conclusion (5) of the linear analysis)
: ~2 2 :
Ce, For the linear system, e = u plot (Fig, 1l1) has the

asymptotes defined by

?_:_"2 = I % for BP* >104 (Ea, (2=-56))
%

A2 e iy -~ 2 -k -4

€ =200 ° for P* <10 (Eq, (2=53))

(from Conclusion (5) of the linear analysis)

(il A bridge between the modern (optimal) and the conventional

controls is developed, Once the desired system response is

specified, the optimal feedback gains K for the linear system

are immediately obtained., (Fig,

the linear analysis,

12), (from Conclusion (6) of
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For a specified Rb' the minimum P* which ensures no

saturation is given by

P* > R if p* <1074 (3-1)

(from Eq, (2-83), If p* > 10-4, the R

a0 plot (Fig, 18}

should be referred, (From Conclusion (3) of the non-linear
analysis),
If P* is specified, the maximum R.0 which ensures no

saturation is given by

R. S Rt if p* < 107% (3-=2)
(from Eg. (2-83), If p* > 10-4, the RSat - W plot (Fig, 18)

should be referred, (From Conclusion (3) of the non-linear

analysis).

For a fixed Cn' the system with larger ws (or smaller
P*) is easier to have the saturation in u and a limit cycle
(if any), because it has the larger feedback gains K,

(From Conclusion (2) of the non-linear analysis,)

The criterion with the describing function which
determines the existence of a limit cyvcle is conservative
compared to the direct simulation, (From Conclusion (9) of

the non-linear analysis).

For a fixed wvalue of P*, the system with smaller ;n is

easier to have the saturation in u and a limit cycle (if any),
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because smaller gn corresponds smaller Qs as mentioned in

Cl., (From Conclusion (§) of the non-linear analysis,)

e el RSat - u}plot approaches an asymptote defined by
R = 1 4f px <1074 (Eq. (2-83))
sat w3
s
(From Conclusion (3) of the non-~linear analysis).
. . - t (£ =0 a
Ccl3 Rllm, e W plot (for (5 ) approaches an
asymptote characterized by
R . > 2 if p* <1077 (Eq, (2-86))
lim, approx %3
(From Conclusion (8) of the non-linear analysis,)
cl4, By considering C9 through C13, a stabilitv criterion

is defined by

M’ =< 2. for any P* and p  (3-3)
Rsar R
where
R = 1 if P* <107 from Cl2.
sat uf

(From Conclusion (8) of the non~linear analysis), This

criterion says that no limit cycle exists for

R € 2R (3=4)
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3.3 Recommendations

Rl.

R3,

T T ted £ i
Rlim,SLm W plot should be completed by referring

to the R - w_ plot done. This could be done
lim, approx, s

by developing a simulation program on a digital computer.

~ ~2
e2 - u plot for R.0 such that

Rsat < Rb < Rlim,sim

should be made so that the effect of increasing R.0 on

gz - 32 could be studied,

Once R2 was done, the behavior of a slightly saturating
system (which may be considered as an almost optimal svstem)

could be estimated.
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APPENDIX I

Modeling and Formulation of a Saturated Valwve-Controlled

Rate-type Fluid Motor Con nected to a Load-mass through a Spring

(1) Introduction
Analysis of a valve-controlled rate-type fluid motor has
been developed [12, 13]. The following analysis is essentially
the development for a non-linear case, from the linear case study
by Richardson [13]. The valve considered here is open-centered
and underlapped. The system configuration is given by Fig, la and
the valve characteristics by Fig. lb,
(2) Linearized Dynamic Behavior of a Fluid Motor
The behavior is studied in the wicinity of the steady-state

operating points,

Definitions: Pl' B, = the pressures of the ram chambers 1 and 2,
respectively.
Ps = the supply pressure
: << -
Assumption (1) Pl' P2 PS (a-1)
Definitions: u = the valve displacement

max = the maximum displacement of the valve.

Q
H
—

]

the flow into the ram-chamber 1
L2 = the flow out of the ram—chamber 2
AP2, Au, Aqu, Aqu = the differential changes

in these wvariables,

3( 3Li;/?mu)

Y

=1,2 (A=2)



el

_ 3 %t / 2wax) (a-3)
Y G A R :

The linearized valve equations are given by,

4 Foe Al AR
; = l?: U max g ls = iz

ZH“K

1

Definitions: V

1.2 the volumes of the ram-chambers 1 and 2,
r

respectively,

Yo * Y10 ™ Y90

= vl,2 when the ram is at the center position
B = the bulk modulus of the fluid
AR = the area of the ram
A§R = the differential change in the velocitv of
the ram
assumption (2): (3. )¢, = (§.,), =0 (A=5)

The linearized ram-chamber eguations are given by,

AZL; = AP;;':E—% S0 ARABR t=1 2 (A-6)

For a symmetrical pair of three-way valves,
b, =b, =b (A=7)
o, = o, = O (A-8)

The differential operator is defined by

d .
D= - (A-9)
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By substituting for Eq. (A-6) into Eq. (A-4), and subteututing

Eq.s (A~6) for i = 1 and 2, the linearized valve-ram equation is

given by,
‘P
(‘Z‘CD+|)A" = Eﬁ_bu -.Z_P'R_'D(ag) (A=10)
P.S X umx K U max ¥
where
o = s (A-11)
p Umay K

= the time constant of the ram—-chambers

APL = APl - AP2 (A=12)

Assumption: the saturation of u, which is given by

-

(A-13)

al F |AU[< Umax
SAT (aw) =

Umax i |aulz Upax

Eg. (A~9) becomes,

AP _ 2b sATCau)  2Ag
s o U max ® Umax

(TeD +1) D(ay,) (a-14)
Dynamic Load Characteristics
Definitions;: y._ = the position of the ram

y_ = the position of the load-mass

v. = the accelerations qof the load-mass

k = the connection-spring constant

mL = the load-mass

the load force on the mass

Fw(t)

The load equation connected to the motor is given by



(4)

Sl
(RP-RJAr= PAr = k (9 — Yy.) (A=15)

and is linearized as,

afh A = k (aYg - ay.) (A-16)

On the other hand, the dynamics cf the load is given by
m, DY) Fok LY = Yelar Fult) =0 (a-17)
Eg, (A=-17) is linearized as

m, D*Cay )+ k(aYy, —aY) + aFult) =0 (A-18)

or
o L ( 2 «
a4y = « (m, D +k)a‘_jk+—L—ame (A=19)
From Ea, (A-16) and Eq, (A-18)

8P = 4= m.D* (ay.) + A ARL ) (a-20)

Overall Open-loop System Equation
Substituting for Eq,s (A=-19) and (A=20) into Ea, (A-14), the

overall system equation with y,_ only is given by

[(Tcmk + 2Ar -&)Dz_{-(’m_ )D"‘ 2AR ]D(‘“j..]

Ps Ap o Pax Py Ar szqx (A=-21)
_ 2p SAT(au) __[ X o, 28r | L ]AF )
L Umax PeArn % Fmax R ) D PsAr e
which can be written as,
p* 2%, )
( 0 v th i (A-22)

== kvl SAT(AU") —[(|+ %-)T‘D +!] aF.
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where the non-dimensionalized constants and variables are defined by,

2 Z
1y . 2BAr/ 1y _ 2P A /4 =23
hs(k) = T (l'l] = _(_ng”‘(-h—) (A )
I_ — T(.ML“?MA\( 4 me — / _f_ ._f_ (A-24)
e \/ZPSA;‘ s i meet )
T il L i Wy (A=25)
§ T:. k;(k"'kg) stTc
ay, = L (ay.) (A=26)
“ z“lx
y
L el (A=27)
Wom A [
max =
’ =N aF,,
A ol £ S =29
Fw Ps An (A )

(5) Block Diagram
The block diagram of this system is given by Fig, 2b,

with a possible state-variables feedback.

(6) Open-loop System-to be Investigated in Thesis

’

Assumption: AF, = o (A=30)

With this assumption, Eq, (a-22) becomes

2t

Wi

-Dz .f L4 ’
("w—_; & D "'f) Ay = kR, sAT (au") (A=31)

In order to avoid the complexity on variables, new notations
are defined by

(A=32)

il
(=
o]

Yy,

A L T

[+
]
>
=

and SAT(u) = {

w2

=
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Then Eg. (A-31) becomes

L 'Zt .
(E’f - w:D+’) 5. = k’: SAT (u) (A=34)

The input-output relation of the system is given by

fj kv AT (u) (A=35)
L= SAT (u A
.9: + ﬁ.’.‘.D-i-l
w2 Wa

(7) sState-Variables Representation of Open-Loop System

Introducing dimensionless variables,

/

Jo = Wy (A-36)
. 2 I
de = e D) (A=37)
an ¢ » ’
Jo = w,_D"(jl_/) (A-38)

Eg. (A=34) can be represented, in dimensionless state-

variables form, by

Yo 0 W, o Yo
D| 4 |= 0 o w, | | + |o |sAT(u) (2=39)
51: O —w, -21,w, g7 R,

d ;
D = -
where 3 @ in Eq, (A-9),

Redefining a set of state~variables as,

X, x 3:
x =lx] = |%]| = 9. (A=-40)
x, % “:
Eq, (A=39) is written as
o w, o o
Dil ) = o o @, X + [0 |5AT(u) (a-41)

’

0 ~Wa 2w ks
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An Example: Position Control of Radar Antenna

The position control of a radar antenna can be a typical
example of this thesis. The schematic diagram of a position control
system is shown in Fiqg, 3a. The Schematic diagram of its idealized
model is given by Fig, 4, In order to apply directly the results
of this thesis to the example, it is necessary to assume that,

mass of the base = 0

o
i

bB = friction constant of the base = 0
bD = friction constant of the antenna with air = 0
Fw = external force on the antenna by wind gust = 0

and AR includes the gear ratio,
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APPENDIX II
Computational Procedures for Analysis

The diagram for the computational procedures is given in Fig., 19,

A brief description on each computer program is given below,

MRMKS This is the modification of MRM [16]. The optimal feedback

gains of a linear system defined by

X = A

[®

+

vy}

u (A=42)

-

pr o= [ <2 @x + uTPu) dt (a=43)

is obtained by solving the matrix Riccati equation,
-R = RA+ AR -RBP'BR + 8 (A-=44)

for negative time by the forth order Runge-Kutta method,

ACCESE (Phase II)

System ACCESS can handle many kinds of linear matrix
operations [17], For this thesis, ACCESS is used for obtaining
the optimal feedback gains for the system defined by Eq. (A-42)
and (A=43) by solving the Hamilton-Jacobi eguation, ACCESS is
also used for finding the eigen values of the [A - EE?] matrix
of an optimal control system obtained.

PART For ;n = 1 and P* = 7, the optimal control system has distinct

roots, The step response of the 3rd order system is given by

-t -Pat

> I S| +iaqy e + a2 € + a] e—ﬁt (A=-45)

instead of Eq. (2-37), PART is to obtain these partitioning



SIMKS

SK3RD

DYSYS

-66=

e a . .
coefficients 1’ a2 and a3

This is the program to simulate the linear optimal control system,

2 il :
Cs, ws, BBy X, €, U, & , and u are obtained and punched out,

~2 ~2
e and u are computed by the Simpson's Rule,

SK3RD is the program to read the data from the cards punched

out by SIMKS and to plot them.

After obtaining the optimal feedback gains, DYSYS can simulate
the linear or non-linear system concerned by solving up to ten
simultaneous . lst-order differential equations by the 4th-order

Runge-Kutta method, Plotting is also available, [18]
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APPENDIX III

A . 2 2
Analytical Evaluations of Asymptotes of the 8 -« u° curves

(1) Introduction

~2 ~ 2
e = 1y

curve is plotted from the simulation results for
the linear control system, Conclusion (5) of the linear analysis
shows that this curve approaches one asymptote as P* approaches

zero and the other as P* approaches infinity., The following

proofs show analytically that these asvmptotes are given by

=il
lm ' 2 B3 C (A-46)
p¥ 30
i € & for By +#0
‘a = por or " (A=47)
P00
where
Al ) =
& = L § et d(ut) (A=48)
~ 2 o %
=0 g of WGty d Gut) e

o

It should be restated that in the analysis

R =1 (A=50)
o
and
O ‘f;'-ll;f
We e « e sin ((Wet + @)
eu‘]:o{"-—zfuudﬂ-w‘ - - - (A=51)
s 2 j‘-‘;, Jxa—2fs“’s°(""“’sl
where

wo = quJ l""g;‘

== =l We
8, =, tan ot
Tan"—-—"——J';? -0 - £ B>0
= >
tow~ ———=% —8& W+ e <o

Bs
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and
U ) = kR.©(t) - ly X, ) - ky x;3) (A=52)
where
X, (¢ = 4 (- ew)
£ dt

Xy (¢) = f—{_ X, (t)

Conclusions to be referred to in this Appendix are all made in

the linear analysis,

(2) Asymptote as P* approaches zero

Eq. (A-46) is to proved by showing

lim 8% = _35 (A=53)
P¥s0 3wy

Iiw  20% oy | 5 -
?‘;o w — -5— ws (A=54)

From conclusion (1) of the linear analysis,

lim = 2. (A=55)
pX>o

|'{ —
P*‘-’q 'gs - o 5' (A 56)

Therefore,

e Wy ( )
lim _ 9s |

i — A=58
lim g - =
a0 3 (A=59)
|‘.m ,_P = —r (A-GO)
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For simplicity, let

G = U.)s‘t- (A=61)

By using Eg. (A=55) through Eag, (A=-6l),

[im €%(x)
p¥>0 = 15T o, ; —E
- @ +§—_e sinfons T +-:—'-E sin“fons T (A=62)
Eq., (A=52) is evaluated as
o3
fii 02 B N g lim €2 (wst) d (wst)
(¥8)
pr >0 C A &%)
= A 5
s 3

Next, Eq, (A=-54) is to be proved, From Conclusion (3)

kR, ¥ 2 (A=63)
R: ¥ 2wg -~ (A=64)
ky € zws —27, (A=65)

By using Eg's (A-55) through (A-61) and Eg's. (A-63) through
(A-65),

- 2
lim wltx) = e 'tfw"- 2%, wy ~uwy]

P¥s>o
~05T 2 3 2 [
+ € “sin aqrf[-—gws BT “’s} (A-66)
-0.5T 2
+e cos o."lE‘C[ 2%n Wy -ws]
Therefore |im ®° is exactly evaluated as,

prro

lim TTy — L (T 2
e “ = wsf. P*-:bu Cwst) 4 (wst)
= Fwl + =%y + (£ -5+t e (a-67)

= -;E"‘") w4+

-4 .
For P* < 10 , (or ws > 4,6), Eq, (A-67) can be approximated by
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Eq. ( A=54) as

5
Wg

[im T2ley = —;

Pfso
Substituting for Eg. (A-54) into Egq. (A=53), Eg, (A-46) is

obtained.

(3) Asymptote as P* approaches infinity (5; # 0)

Eg CA-47) 5 to be proved by showns

lim %42. = J—'

e 2 (A=-68)
. ~2 ~ o
[
for 0< wn = ]
and
lim &% = |
P00 - 2P, (r=70)
m W= R
* 2
P00 (a=71)

The linear analysis shows that as P* approaches infinity,

the control system approaches the original system to be controlled,

Beeiei
lim W, = w, = | (A=72)
Psop
lim o = ot (A=73)
P¥->00
lim 45 = ¢, (A-74)

p¥>00
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For 00< & < 1
n

lim e2
P00

to Eqg,

is calculated by applying Eg,'s (A-72) and (A=74)
(A=51) as

[im ezf't}z
f‘t-)nu

(e_dt )2

—

u'c
e Ws

(A=75)
Egq. (A=48) is evaluated as
[im ’él P
Prsem 20l (A=76)
Grenerally kl' k, and k3 are given by
k, = odwa (2=77)
k: = 2%, wn% + (W - 1) (A-78)
ky = o+ (2%, Wy —2%.) (A=79)
As P* approaches infinity, kl, k2 and k3 are approximated by
using Eq, (A-72) as
R, & (r-80)
kz & a2f.d (A-81)
ky £ ' (A-82)
Since from Egq. (A=52) u(t) is generally given by
UATY = (o~ e+ Rylt) —

2z
s

- 26, Wed + W
i-[l:. E.‘S,w,-‘-k,(uws‘-z-\;‘u:d_)]

e BT aanli- 1o
-5 T
Eq.

[1-35 [a® 28w o+ W
' (=1
+ (hl k 2%y W e ——— = 1
&Ny 5) LTI o cos J I- %, T
(A-49) is evaluated as

[+

(A-83)
ke ol
P*reo

2
Substituting for Eq,

(A-84)

(A=47) is obtained.



For b =1
St S

As P* approaches infinity, xl(t) is given by

Pt -Bt

Bt -
+ Q; & + Q,e

Xty =1 +~a, e
(A=85)

where

Pl' Pz, P3 = poles of characteristics equation of the control

system,
P: P}
= - A-86
% (Pe~P YCR-P) ¢ :
P P
a, = - - (A-87)
CP,-R) (Py=Pa)
P
6, =-——= (a-88)

(Pl = P;)CP;*P,)

Since
bm Poo= 0 (A-89)
P*500
[im P = 1 (A=-90)
P*>00
P e
i wa ?fz is approximately evaluated as
P*a00
lim &% = _L
?a’."m ZB (A"'92)

For the distinct roots case the transfer function of the control
system is given by

PP P)

Ge ¢ 5)
CS+RICS+RYC(S+PR) (A=93)

Equating Eqg, (A-93) to (2-33) in the linear analysis,
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k = PnP:PJ
(A-94)
| #* k2 = PIPI.+RPJ+PSP2
(r=95)
2.+ ky = P+ P + B
(A=-96)

and as P* approaches infinity, by using E?.'s (A-89) through

(A=921),
lim k, = R (A-97)
pP¥* 3> m
Jim Rz = 2P (A=98)
P* 3w
liw ks o F (A=99)
P> o
Thus, hmwm N°* is evaluated as
p¥acm
LA™ 2 (A~-100)

By substituting for Eq, (A-100) into (R=-92), Eq, (A-47) is

obtained,
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