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ABSTRACT

The optimal control of the 3rd order positioning system
with a saturated rate~type drive subject to a step input is in-

vestigated. Jinear analysis is done assuming the performance
index PI = J, (e? + P*ul) dt which defines the optimality. The
optimal system behaviors are evaluated and a bridge to the con-
ventional control approach is developed, Stability of the non-
linear system with the feedback gains which is optimal for a
linear system, is investigated, A limit cycle criterion is
developed by applying the single=-valued describing function method
for saturation non-linearity.

Thesis Supervisor: Dr, Herbert H, Richardson
Title: Professor of Mechanical Engineering



ACKNOWLEDGMENT

The author wishes to recognize and to thank his thesis

supervisor, Professor Herbert H, Richardson, for his encouragement

and insightful suggestions. The author also thanks Professors

Michael Athans, Devendra P, Garg, Robert P, Rafuse, Daniel Whitney

and David N, Wormley, and Mr. Ronald Rothchild for their suggestions.

Mr, Richard S, Sidell is gratefully acknowledged not only for his

consultation on the computers but also for his advice.

In addition the author wishes to thank Mr, Evodio Llevada for

his drafting work, and Misses Ann Iversen and Emily Wise for their

ypewriting,



LIST OF CONTENTS

Chapter 1.

Chapter 2,

Chapter 3.

INTRODUCTION

L.1 System Investigated

L.2 Objective of Study

Ll.3 Scope and Organization of Thesis

l.3.1 Outline of Problem

1.3.2 Organization of Thesis

ANALYTICAL PROCEDURES AND RESULTS

2.1 Linear Analysis

2.1.1 Normalized Open-loop System

2.1,2 Closed-loop System (Control System) and
Design Criteria

2.1,3 Zero Steady-state Error

2,1,4 Controllability and Observability

2.1.5 Criterion of Optimality and Stability

2.1.6 Method to Find Optimal Control Law

2.1.7 Control System to be Simulated

2,1,8 Simulation

2,1.9 Optimal Control Svstem

2.1.10 Conclusion

Non-linear Analysis

2,2,1 Non=linear Open=-loon System

2,2,2 Non-linear Closed~loop System

2,2,3 Control System Behaviors

2,2.4 Simulation

2,2.5 Limit Cycle Determination by Describing
Function Method

2.2.6 Results

2.2.7 Conclusions

 Zz

CONCLUSIONS AND RECOMMENDATIONS

3,1 System Studied

3,2 Conclusions

3.3 Recommendations

0

1

 2 3

13

8

23

D4

26

26

27

28

10

33

34

38



Pages

LIST OF FIGURES 39

FTGURE S 10

APPENDIX I (Modeling and Formulation of a Saturated Valwve=Controlled
Rate-type Fluid Motor Connected to a Load-mass
throuah a Spring) 58

APPENDIX ITI (Computational Procedures for Analvsis 5,5

APPENDIX IIT {Analytical Evaluations of Asymptotes of the g - +
curves)

REFERENCES



Chapter 1

[INTRODUCTION

iel System Investigated

The position control of a simple mass driven by a rate-

ype motor through an undamped shaft (Fig. 1) is proposed,

A piston=type fluidic motor is considered here as a typical

rate-type drive, Analysis for rate-type servo has been developed

12,13 ,14]. Linearized system equation with saturation is given

0 ww, 0

TAREE.; x) | 0 ~-Wa -26,W,

i | (uw)
SAT4 0| a

(1-1)

vhere

r ooJ[ ©
“

| |

= non-dimensionalized position of mass

= non-dimensionalized velocity of mass

= non=-dimensionalized acceleration of mass

J . = natural frequency of open-loop system (rad/sec)

= damping ratio in open-loop system

= non-dimensionalized open-loop gain

= input to open-loop system

3AT(.) = saturation function defined by Equation (1-3)

= time (sec)

= output of system



then valves are fully open, there is no additional input to the

ram even with more command signal to the valve. This is the

saturation to be considered and is defined

Jul21
SAT A

[A] &gt;
-

(1- 2)

Input-output relation between u and x could be given by

(5) = ky SAT( )| J us)

Ss (s? . 2%S(L, + E2s+ 1) (1-3)

where s = Laplace variable.

The modeling and mathematical formulation of this system is in

Appendix I. A typical application could be azuma control of a

radar antenna (Fig. 3, 4).

J
 Al Objective of Study

The problem proposed ig the optimal control of the position

of the mass to a step input. The studies for the svstem with and

without saturation are done for reasonably wide ranges of general-

ized system parameters.

for linear system, a bridge between modern optimal and

conventional controls is developed,

L.3 Scope and Organization of Thesis

L.3.1 Outline of Problem and Study

Dutline is listed below.



1) Problem is optimal position control of 3rd-order system

Fig. 2, 5) ®

2) Study is deterministic and classified as an Initial Condition

broblem or a State Regulator Problem [3] which is developed

for a step input only.

3) All the states are fedback in both linear and non-linear

studies (Fig, 6a, 14a),

4) Linear Analysis is developed by considering that:

To2 2
(a) Optimal criterion used is PI = J (e“ + pu”) at

oO

(b) Optimal control law u(x(t),t) is obtained by solving

rhe matrix Riccati Equation or Hamilton-Jacobi Equation.

'o) A bridge (Fig.12) to conventional control method should

be developed; i.e., once a desired response is chosen

for a given system from one of the charts about system

response [Clark pp, 140-145], optimal feedback gains are

immediately found by using Fig, 7, 8, and 12.

4d) Also system performance is evaluated and given in

Fig. 11. The analytical study on the asymptotical

oehaviors of evaluated system performance curve shows

-hat once a typical point is computed, the curve is

ready to be drawn,

QQ, Non-linear study is an extension of the linear study.

(a) The non-linearity is saturation at the motor valve

(Fig, 1) and characterized as in Fig, 15,

5) Normalized step input size R_ to give saturation in

~ontrol u is obtained (Fig, 18).



2) Step input size R, to give an unstable limit cycle

is obtained both graphically by the single-valued describing

Function method and by direct digital simulations (Fig. 17

ind 18).

Le Ddad Organization of Thesis

(1) Linear and non-linear analyses are given in Chapter 2,

(2) Overall conclusions and recommendations are given in

Chapter 3,

3

4}

&lt;n
wr

Modeling and mathematical formulation of the proposed

ohysical system are given in Appendix I for interested

readers.

Computational Procedures for Anelvsis is given in

Appendix ITI.

Analytical solutions for the asymptotes of system=

ser formance-evaluation plot are given in appendix III,



Chapter 2

ANALYTICAL PROCEDURES AND RESULTS

2.1 Linear Analysis

2.1.1 Normalized Ormen=~loop System

Modeling and mathematical formulation are done in

Appendix I as mentioned in Chapter 1, In linear case,

spen=loop system has no saturation, By replacing SAT (u)

in Eg. (1=1), open=loop system is given by

d
It

[xX | 0

z= 0 wa sr o |ux. 0 ~Wag 2400) % k,

3 = (| o 0]
*

iy

(2=1)

|

In order to non-dimensionalize the equation with respect

-0 time, dimensionless time t' is defined by

tl) a A

3y noting

d _ 1.4d
J’ w, dt

defining
/

Ry
oy = ly

he open~loop system is written as

(2D 2)

(23)

2 4J



A ag

4 Ya = Oo 0
dt’ | =.

x 0 - 1

9 Shey
d x = px +
it’ =

y = ¢ xX

0

2+] |: 42-5)LY x le,

orWig

b

(2-0)

vhere

x =X} =x

= x.
Xj 5

rhe open=loop transfer function G(s) is given by

 es = XE ok — (2-7)

where s' is Laplace variable corresponds to the dimension-

less time variable t',

In order to avoid complexitv on variables, dimension-

less t' and s' drop their dashes.

The open-loop system equation and its transfer function

‘between input u and state xX) now rewritten as

d = AX
 LZ = ax

—
v J

(2 .8)

y = cx

G(s) = X (3) — key

us) SCs*+2€.S+1)
(2-9)

2,1,2 Closed=loop System (Control System) and Design Criteria

System Configuration (Fig, 5)



All the state variables should be fedback according to

the Modern Control Theory. The system is in the form of

phase variables which contain all the necessary information to

control it, The closed-loop system equation is given by

d —
2% = Ax + bu

y= cx
or

n= Vr —Kx 2-10)

WCCO) = o

where r_ = step input to closed system applied at t=0

k= [k., k.. k | = feedback gain vector

ig, (2-10) can be written as

 Oo
d z=hz =o

C co) = 0

I 0 Oo

0 | xX + 5 | n
~C 1+, )=(28,+k;) ky (2-=11)

Closed=loop transfer function between xr and x,is given by

le. ley
25 - ( YtkikyCrs) = Ro(S) cds SCE. + ky) +S tk, \ (2-12)

Design Criteria Specified

(a) Zero steady-state error

(b) Stability of the system

.c) Possible minimum transient square Error

jefined by Eq. (2-18). The error e is defined by

= ¥, - x

‘p 3)

2.1,3 Zero Steady-State Error

From the closed-loop transfer function in Eq, (2-12),



ry

bygivenis)x(s

XS) = (x.¢S): 2 (2=14)

where R, = magnitude of step input r (t) to the closed-loop

system,

By applying the Final-=value Theory,

[im XE) = Rp =r (tt &gt;0%)
Ea.00

Since error e(t) is defined by:E.(2-13), the steady-state

AarroYy is zero.

Zo dat Controllability and Observability

The closed-loop system is the 3rd-order single input-~

&gt;utput system and from Eg. (2-11),

A =[0 |
~C ° °

—k, ~Cltk,) -@ 8, +k;)

=

.b, / D

y el
Oo

(2-15)

Controllability
By the Cont ollobility Theorem, the system is con-

-rollable because 3 x 3 composite matrix

AL b]Ab, -CBN. (2=16)

is non=sinqular,

observability

By the Observability Theorem, the system is observable

oecause 3 x 3 composite matrix,



[¢™ ATC @r)cT] (2-17)

is non~singular.

2.1.5 Criterion of Optimality and Stability

Criterion of Optimality

Optimality of the system is derired Tb be Jefined as

vhe re

i 3 T

[(e,:) dt &lt; f ect) dt

€ opt (t) = error in optimal system

“2D L3)

= time gives the steady-state response

[n order to solve the problem, a quadratic verformance index

PI is defined by

[ (2-19)

vhere P = weighting constant

Stability

General performance index in quadratic form is given by

PT = [([ ax + uT Pu]dt (2= 20)

Kalman (1964) has shown that in order to ensure stability,

the pair [ A rr must be completely observable, where is

defined by

Q =r"
'n this problem,

Jhere

{ Oo Oo

d=|o ccO O°

CA

Oo

“Tv
I corresponds to c¢ in Eq. (2-06).

(2-22)



ny.

Since

[Tar @myr) (2=23)

is non-singular, the controlled linear system is stable with

rhe performance index of Ea. (2-19).

2.1.6 Method to Find Optimal Control Law

Optimal Control Law

Optimal control law W(x,,t) for the open-loop system
T

of Eq. (2-5) with the performance criterion PI = (e+ pPu*)dt

is given by

L°( x. tt) = —P ~~
—

20 x,t ) = -K' =

Ks X '2=24)

(2=25)

vhere R, is the steadv~ctate solution of the matrix Riccati

aquation,

R(t) + Q ~RWbP 'b Rt) + RHA +ATR@H) = 0 (2-26)

A numerical solution for R(t) can be obtained on a digital

computer, by integrating the Riccati equation backward in

time from the known terminal condition over the time interval

of interest [3]. The matrix K is referred to as the set of

"he optimal feedback gains or the coefficients.

Modification on b Matrix of Open~loop System
 EETTTRE

In order to reduce one of the parameters for simulation,

p* is defined as



 1 1~

b = ky BX = ev [o]
/

(2=27)

aq. (2=26) can be rewritten as

'

. Re) ky B* b* RG) + RA + ATR) =0,_s5Ret) +Q — =——————=—

oy also considering D 1S ki scalar. By defining a new cost

ratio P* as

&gt;)
1 _ ke

px = To
ren

 &amp;o 29)

na, (2-28) becomes,

: RE) B* b*RE)
Ret) + @ = ——————+ RWA+ ATRU)= 0 (2-30)

2.1./ Control System to be Simulated

Now the optimal control problem is stated as a state-

regulator problem of

where

d
TL TAZ +bhu

A = Ve - KkSL x=2}
_BBsS

=r x

X(0) = Oo

oF

»—"
“a

hd Xo

&gt;T = [Tier + P*u? dt

=)
a r. --  MW

0 { ©

a-=o o | ]
0 -) -2%, v=[2]

4 2 a9 of

(2=31a)

(2=31b)

(2=31c)

(2=314d)

(2=31e)

(2=31f)

(2-319)

2=-31h)
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xX z position of mass
 2 = = pa = velocity of mass

Xx x acceleration of mass.)

(2-311)

a = control

c= step input of magnitude Rs applied at t =0,

K = a set of optimal feedback gains

p* = cost ratio

R = steady-state solution of

T
. RO b¥b* R(H)

RW + Te RWA+ATR(I=0 (2-313)
y = output

PI = performance index

e = grror

&gt; = damping ratio in the open-loop system

lhe system is non-dimensionalized (Appendix I) and dimensionless

time wt is used (Eq, 2-2), where Ww is the natural frequency

of the open-loop system, This is the last form of the closed-

loop system (control system) to be simulated. The configuration

is given in Fig, 6a, where the transfer function G(s) between

a and x, is given by

Ts) = Xils&gt; BR i——5——————

Us) S(s*+23,5+1)

The optimal closed-loop system transfer function G_(s) r

os

Ye (2-12), should be rewritten as

" +k,2s ) +k)= 34 s2(2Gutky)+S(== "Ro(8) STe

(2=32)

(2-33)



{9 ——

2.1.8 Simulation

Simulation

The word "simulation" is used here as an estimation of

system behaviors on either digital or analog computer.

Computational Procedures

The diagram of computational procedures to obtain the

results of interest is given in Fig. 19. The computer techniques

ased are briefly discussed in Appendix II,

i
- a &gt; Optimal Control System

The transfer function, Eg. (2-33), of the optimal control

system can also be written as

6 coy = Xu) _ of ws |
Cc t— OE ———— om Et A

Ros) (S+d)(s2+ 285 WsS + wl)

where, as snown in Fig. 12,

(2-34)

0 = real root of the optimal control system

Ce = damping ratio of the optimal control system

w_ = frequency of the optimal control system

A system parameter £ is defined by

_ x

F - fe Ws (2=35)

The results of computation are given in Fig. 7 through

fig. 12.

The step response of the system is given by [i]

 AX, (Ss) Sn
—

Ro ® ws
(s+) (S2+2F,WsS + wg?)

'2= 36)



2 ~t “Sut .

&lt;= R, | | - — +mE (2-37)at~2f,w a+ wd [1-42 [«*- 28s w, 0 + wi

Niea

we = wy [1—82

1)

om) - tan [Ze=)

[ tan Jig ~8-T
S

-t J7°FF| tan Ah - 6

Optimal Feedback Gains (Fig. 7)

“4 B20

3 &lt;0

Fig. 7 is the plot of K (vs, P*) which is obtained by

solving the matrix Riccati equation, Eq. (2-31j), K = P* plot

shows that:

(la) Kye kyr 38 increases monotonically as P* decreases.

(Ib) K is larger for the system whose ¢ is larger.

=

1c) k, NE for any IN
(2-38)

2d) k, is almost identical for any . if p* &lt; 1072, For

any Cv the asymptote of k, as P* approaches zero, is

yiven by

,¥X —2rE i Pr&lt;u? (2-39)

(le) kj is almost identical for any Cn if p* &lt; 107°

Asymtote of k, as P* goes to zero, for any Cr is

given bv

,

R; =
2

( PE)E
~~

OD
5 (2=40)



(S-

'1Z7) By knowing the relation between (5 and P* which is to

be given by Fig, 8, Eq, (2-38) through Eg. (3-40) are

rewritten as

(2)

&lt; N

- 4

2sOOF 2
Q

if P* &lt; 10°

&gt;

x 2w,_ if )% 107°

Natural Frequency (Fig, 8)

(2-41)

(2-42)

(2=43)

"ig, 8 is the plot of w_(vs, P*) which is obtained by

finding the roots of the characteristic equation of the system,

(Eq. (2-33))., The plot shows that:

(2a) Ww, increases monotonically as P* approaches zero and

w_'s are almost identical for any on if px* : 10”

Approximation, for any Cr can be as

w &amp;
(P*Y¢ :if pP* A AT

&lt;..)  Ww is larger for the system whose GC is larger.

3) Root Locus (Fig, 9)

2=44)

The root locus of the system for each Cy with P* as

narameter, is plotted by knowing the characteristic roots of

“he system, Eq, (2-33), The root loci show that:

(3a) As Ww_ goes larger (or P* approaches zero), the optimal

system for any Z becomes identical, This is true if

W_ 2 416 (or equivalently P* &lt; 1074).



ri Ha

3b) For any Cy the optimal system approaches to have,

a

3

=a  x

’

(2-45)

(2=406)

(3c) The system is stable apparently,

(3d) For on = 1,0, the optimal system has 3 real roots if

Pk  f_

‘4 ) A Typical Step Response (Fig. 10)

The open-loop system in this example has en = 0 with
-4

2% = 10 and R. = 0,008, The resultant optimal system has

r 99,9 |

41,7

 9,13|

p

- = 0,488 Ww
Q

—
— 4 28 Bg = 2,00

The plot shows that:

43)
 x 8]=|xct) for oSt=sT

whlzju +) For ofctcsT

'5) Evaluation of Performance Index (Fig, 11)

(2-47)

(2-48)

Evaluation of performance index for each optimal system

. . . ~2 ~2 ,

t0 a unit step input is plotted as e vs. u , with P* as

parameter,
~2 -

where e’ = [le 3
0

=»
-d = (us

(2=49)

2-50)
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'ne plot shows that:

~2 ¥ ~Z

(5a) e decreases monotonically as u increases, for any 5,

r ~2

5b) As Ww, goes larger (or P* approaches zero), e decreases

~v2
and u 1ncreases.

(5c) For a fixed value of ¥, system with smaller &amp;n

~2
has smaller e ,

-4
For pP* &lt; 10 (or w

ww. XxX A
ST (pe

ind

po 3

2 ~ 5 | =~ 5 +5&amp; = 3 wG TF

~2 A | 5 5

uw = 3 Ws Fut L(p¥)%

and 30,

_ +

22 2(3%)

For p¥* &gt; p% (or ws = 1.0 for Bn = Oo)

ot x ZX (or = ~LPP, if Ta=l.)

~ 2
wo = xX (or  - fio Wf Pa=1)

(2-51)

(2-52)

re vy 3)

(2-54)

{2=55)

and so,

ty
G ~2 2-36)

[n Appendix III, the results (5d) and (5e) are obtained

analytically,

(6) A Bridge to a Conventional Control (Fig, 12)

The plot is Lvs, B for § = 0 ~ 1,0 with P* as parameter,

I[t shows that:



mf He-

(6a) The optimal system for any Gs

on)

37 for P* &lt;« 104 (2-57)
,
-

¥ 0.5 for P* &lt; 1074 (2-58)

Once designer specifies 5s and B about given open-loop

system (fixed &amp;,) , Fig, 12 tells proper P* with which

optimal feedback gains are obtained,

2.1.10 Conclusions

Conclusions are made from the results simulated on the

control system stated by Eg. (2-3la) through (2-313). The

Jesign criteria specified in 2,1l.2 are repeated here for

ronvenience; i,e.,

(a) Zero steady-state error

(b) Stability of the system

(c) Possible minimum transient square error defined by

T T 5

f. Ec Ct dt &lt; [e ¢t) dt (Eq. (2-18)

Conclusion (1) Optimal System defined with the performance

index criterion ( PI = [7 e? + p*ud)dt ) approaches the minimum

square error system ( fo Cop ¢t &lt; [[ezdt ) as P* becomes

small, Actually, Fig, 12 shows that for an open-loop system

with any Cr the resultant optimal closed-loop system becomes

identical and its system characteristics are given by

De

Lo = 0,5
g

3 = 2.0

1Y  wo

(Eq. (2-45))



10a

where W_ can be well approximated by Eq. (2-44) as

~
Ms = oF

he condition P* &lt; 10” ¢

J  4.0 (rad)

che:-2fore, can be replaced by

of
w_

vhich may be referred to Eq. (2-2),

The reason why the closed-loop system can have %, = 0,5

and BS 2,0 only if P* &lt; 1074 is that the permissible amount

of control u for shifting the poles of the original open-loop

system to the optimal location, is limited unless P* is.small

enough. The result, in Fig, 11 (2-7), which shows that at

&gt;k = 1

~ 2~2

22 &lt; e, cos &lt; Comin“Rawo "

~a &gt;a ~ 2

Ugueo &lt; Ue =os &lt; Uy, wio

is explained by the same reason; i,e., a large control u is

required to shift heavily damped system's poles compared to

slightly damped case.

Conclusion (2) From the Conclusion (1) optimal control system

* 9 v » 9 qT . -4

satisfies the design criteria srecified only if P* &lt; 10

Naturally, the closed-loop system is optimal in the sense

i
A hy PHWal will



7To

put not in the sense of

T 2 T

[epedt &lt; ( e*trdt
unless P* &lt; 1074.

Conclusion (3) K can be approximated by

?
3 ry:

2 = 2 W, D %
—

Ry=~ &lt;2 We —2 1D, AL &gt; "KR

3)

~ 4
ry

(2-59)

(2=60)

(2=061)

These equations are simply obtained by equating Eq. (2-33)

and Eq. (2-34) and by noticing

g 2,0

r= |W,

-iy .
for the optimal system with P* &lt; 10 °, This is the identical

result as when the Butterworth Polynomials Method is used,

re 4 3Conclusion (4) Estimations of lel 4 and (wl,

optimal system can be easily made,

For the

From Fig, 0a,

A (+) ° e (ft) - wa X, t) - ks Ky (¢) (2-62)

[t is clear that

2 cot] == |e (t)]

uot 2 uw

St LT =T

o¥t&lt; + .T

(2-63)

.

 Zo 04)



AP

ing

e(o*) = Ro (2-065)

rrovided the system is stable, Therefore,

CU pay = k 1 € 4 ope 2=0606)

vhe re

&gt; ke,

el max = © (oh) Ls

Al aay [ wteh)] == k, =,

and u(t) are linearly dependent on

2-267)

2=58)

R (step input size) as

Q(t) =&gt; cc e(+H)
as Ro— C Ro

w(t) &gt; C
(2-0 J

where C is a constant. Since the step size R which gives

1 : ; : 4

| = 1,0 is shown (for each § ) in Fig. 18 by a line
max n

named "saturation", |e] and ju for anv step input size
max max

of interest can be easily estimated by using Eq, (2-67)

through Eq. (2-69), provided ky is known, The lel and

wl can also be evaluated by directly computing Eg. (2-37)

~ ~2conclusion(5) Method to evaluate gt and u is developed (Fig, 11)

From result (54), 2° is given by Eg. (2-51) as

* 5 1 w &gt; 4.6
= 25 a

vhere Ww is approximated by Eq, (2-44) as

1)  —_—=
i =nh

Toye P* &lt; 1



or

and the asymptote as w_ goes larger is given by Eq. (2-53) as

5 -F
g§4 = (373?) ws&gt;«.6(rad)

Prom result (5e), 22 is given bv Ea. (2=54) as

v2 LL
» KX

o* ~ 10% 2. #0

and the asymptote as P* approaches zero is given by Eq. (2-56) as

zt 1 PY = 10%  4.%#0
[Rey

Therefore, after knewing these asymptotes, the region of P¥*

left to be investigated to evaluate its corresponding £ and

Sy
1 18

~ % FD) 710)

However, once one point in the middle of the region is evaluated,

a rough plotting can be made by using the asymptotes, The above

results are obtained only for step input size R, = 1. For any

. ~ ~2 . ,

size of Rv the corresponding 7 and u are easily obtained by

&lt;nowing

~2
o
 -—

~ 2

A — =

-

-&gt;
»

! as Ro - » C Ro (2-71)

where C is a constant.

Conclusion (6) A bridge between modern (optimal) and con-

ventional controls is developed (Fig, 13).

Suppose _ is specified in the given open-loop system,

R | (size of step input) is given. The desired §_ and B are

specified by referring to step response charts in conventional

control literatures [Clark pp. 140-145]. At this stage the
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combination of Gg and PB must satisfy the curve given in Fig, 12

for hn specified. Then, by the procedure shown in Fig, 13, the

optimal closed-loop system (K) and the estimations of its

behaviors, (lel lr E and % are ready to be obtained,

provided w_ (or equivalently P*) is properly chosen, The

resultant closed-loop system is the realization of the system

specifications 5g and B., If the minimum error cost system

(fT Cpe dt &lt; fTe*dt ) is required, then the specifications

must be 5g = 0,5 and B =2,0, Now Ww, must be larger than 4.6

(or equivalently P* &lt; 1074 and w_ should be chosen by consider-

ing the values of &amp; and 7 which are estimated by using Fig, 11

and Ea, (2-71).

2,2 Non-linear Analysis

2.2,1 Non-linear Open=-loop System

Configuration

The open-loop system to be controlled consists of a

non-linear element and the linear open-loop transfer function

(Fig. 5), The linear open-loop system is the same as that

in the linear analysis and its transfer function G(s) between

xy (8) and Ugat (5) (instead of X,(s) and U(s)) is given by

~ X (5) |
F(s) = term ——
7 Ur (s) SCS2+29,5+1)

Fhe input-output relation of the non-linear open-loop system is

yjiven by

¥' 3) = o_o.
SCS24+ 2LaS +1) SAT (Ute) Dem[3)



Saturation in Physical Model

The saturation concerned here is one of the non-linearities

that the physical system has. The saturation is one of the

valve characteristics in the fluidic motor used. Suppose the

valve is closed. Assume that the pressure drop between the ram

chambers increases linearly as the valve opens until it opens

fully. Once the valve opens fully, no additional flow is

available, regardless of the command input to the valve increases.

Definition of SAT (u)

The mathematical model of the saturation is given by

av i$ Jul&lt;!
= SAT = 2=74)hgnp SAT(U) { PR (

rhis is shown in Fig, 15, where u and Uo,q are the input and

the output to the saturation element respectively,

2,2.,2 Non-linear Closed-loop System

System Configuration (Fig, 14a)

The control system configuration is identical to the

linear case except the saturation element, All the state

variables (phase variables) are fedback through the K obtained

For the linear optimal control system,

System Equations

The control problem is again a ar ate~regulator problem and

the control system is given bv

xX = + L* sAT&lt;&lt; AXi+ - (u) (2=75a)



dll

A

SAT(W) =

l

-

F- &lt;

KX (0) = a}

1 &lt; Y,

had

Sy
~

 on

-

otal &lt;

wf jul 21
(2=75b)

(2=75¢)

(2=754)

(2=-75e)

(2=T75F)

vhere

A

0 { [

. -[: o { J
o =~ =2%, pv=f]

ay

m— . y &gt;]

x, x position of wmass

= |=] -%| = velocity of wmass
Xs x accalaration of massJ

(2-759)

(2 ~ 4 211)

(Dw 21)

1 = control

= step=input of magnitude R applied at T = 0

K = a set of optimal feedback gains obtained by solving the

linear optimal control problem defined by Eq,'s (2-3la)

through (2-31j), where the performance criterion is

defined by Eq, (2=3le) as
T

PX =|; (e? + P¥* 2) dt
P* = cost ratio

y = output

a2 = [YOY

- = damping ratio in the given open-loop system
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2,2,3 Control System Behaviors

The only structural difference between the linear and

the non-linear control systems is the saturation element.

However, this gives important differences between their system

behaviors.

Saturation and Optimality

The optimal feedback gains K for the linear control

system are used for the non-linear control system, where these

feedback gains are not optimal any more because of the

saturation if the control u saturates. However, if the control

nu does not saturate too much or too often, the control

system can be considered an approximately optimal svstem.

Because the optimal control feedback gains devend upon the

35ize of step=-input in a much saturating case, the control

system is called sub-optimal.

Limit Cycle and Stability

The characteristics of the saturation (Fig. 15) may

cause limit cycles depending upon the size of step-inputs [9].

There may exist two kinds of limit cycles, stable and unstable

(Fig, 17), However, the limit cycle of interest here is the

anstable one which occurs with smaller step-input size than for

he stable one, if anv.

)
- 2,4 Simulation

Normalization of Step-input Size to Saturation Level

As mentioned in Saturation and Optimality of the previous

section, the relative size of a step=input to the saturation
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level is essential, For this reason, the characteristics of

the saturation is defined by Eq, (2-74) where it has the unit

slope and the unit saturation levels (Fig, 15). Therefore,

any size of a step~input is considered as normalized to the

saturation levels,

Purpose of Simulation

From the linear analysis and Eq. (2-76), it is ready to

obtain the minimum R, which makes the control u saturate,

The purpose of simulation here is to obtain the minimum

R which makes the system unstable with a limit cycle. There

are two methods for it. First an approximate solution is

obtained graphically with a single-valued describing function

for the saturation [9], Then, by using this result as a ref-

arence, the exact solution is found by a direct simulation,

When Non-linear System Behaves as Linear System

If control u is small enough so that it never saturates,

then the non-linear control system is actually the linear

control system and it is optimal, provided the non-linear

system has the optimal feedback gains obtained for the linear

system, This happens if

Rk, Ra —— (2-76)

which should be clear from the Conclusion (4) of the linear

analvsis.,

2,2,5 Limit Cycle Determination by Describing Function Method

The system (Fig, 1l4b) is equivalent to the closed-loop

system (Fig, 14a). In Fig, 14b the input and the initial
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conditions are defined by

re
_.

A

X,t0) = ~ Ro

Xa)= K(0) = O

’ (2-77)

The characteristic equation of this system is

vhere

4 (2-78)

G(R) = a single-valued describing function of the

satura tion.

GgR)= &amp; [sin (L [= (1)2 [sn (£) +) -GF
G (s)= —_

N S Cs%*+ 28nS +1)

(2-1/9)

(2-80)

On the Nyquist plane, the chara’ ~tic equation is realized

ov the crossing point (s) between the 2 curves defined by

J &lt;n = 00 (2=81)
)[-]x (R

F (Guy) HG we) 9 ~J, ~ XO  J — 52)

These 2 points give the stable and the unstable limit cycles

For the specified closed-loop svstem (Fia, l4a)., The existence

of crossing points depends upon R_ as well as Gr Hey (Fig, 16),

2.4.0 Results

1) Reat = minimum step-input size RS which makes control u

saturate (Fig. 18).

Equation (2~76) with the value of ky obtained in the

linear analysis gives the minimum R_ which makes u saturate.



1a) R_.¢ increases monotonically as w, approaches unity

{or equivalently as P* approaches infinity) for any

ld

6
To

1p) System with larger S, has larger Ro_¢ at a fixed w_

(or P*),

12) Roat is approximately identical for any &amp;n if w - 4.6

{rad) (or equivalently if P* &lt; 1074

1d) As w_ increases, Ral - wy plot approaches an asymptote

characterized bv

= »Rsar = 3 JP

le) As w_ approaches unity, Rea

(2-83)

- w_ plot approaches an

asymptote characterized by

2)

a

Rsar - JP*

R,, = Approximate solution obtained by
lim, approx,

(2-84)

describing function method, The minimum RJ which makes

system unstable with a limit cycle, (Fig. 18),

2a) R,, increases monotonically as W approaches
lim, approx, Ss

nity (or equivalently as P* approaches infinity) for

any 5.
) 4

'2b) System with larger §, has larger Ryim, approx. at same

*w_ (ox P*),

2c)

2.

As increases, R.. - ot approaches anwg lncreases, lim, approx, Ws pl PP

asvmptote characterized bv

2 =

 = oF JXlim , approx (2-
.

v3)

No limit cycle exists with any = For 2% }



S$.

(2e) No limit cycle exists with [ = 0.5 for P* &gt; 107%.

'2f) No limit cvcle exists with c. = 1,0 for P* &gt; 1074

'3) R = gimulated result. The minimum R which makes
lim, sim o

the system unstable with a limit cycle (Fig, 18).

'3a) Simulations are made for P* = 1074 and P* = 107° with

3b)

5 = 0 and ch = 0,5,

R., increases monotonically as Wwlim, sim 3

equivalently as P* increases).

decreases (OX

3c) System with ¢ = 0,5 has larger R_, , than with
n lim, sim

L =0 at a fixed w (or P*),
n a

4 i *(4) Comparison between Resim, sim and Rim, 2pPrOX.
R,. is smaller than R_, .
lim, approx lim, sim.

 oo L + / Conclusions

The definitions of R , R and R_, .
sat lim, approx. lim,sim

are re-stated here for convenience,

Rat = minimum step-input size R which makes control

u saturate,

By im, APDYOX. = approximate solution obtained by using

describing function method, The minimum R, which makes

system unstable with a limit cycle.

R . = simulated result, The minimum R which makes
lim, sim o

system unstable with a limit cycle,

“onclusion (1) Qualitatively speaking, the system with smaller

- is easier to have saturation in control u with same P*,
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Conclusion (2) For a fixed 5a the system is easier to have

saturation in control u when P* is smaller (or w_ is larger),

Conclusion (3) For P* &lt;107%, Reat becomes approximately

identical for any Sn and Rat” w plot approaches an asymptote

jefined by Eq. (2-83) as

R gat = JP
vhich can be written by Ea. (2-83) as

Rsar ZL
Sat wg

from the Conclusion (1) of the linear analysis,

“onclusion (4) For P* &gt; 10%, Rat becomes approximately identical

for any oh (except 5 = 1,0) and Rat” w plot approaches an

asymptote defined by Eq. (2-84) as

Rup=~—LC= Te

“onclusion (5) The system with smaller b. is easier to have a

limit cvcle with a fixed P*

Conclusion (6) For a fixed LN the system is easier to have a

limit cycle when P* is smaller (or wW_ is larger).

Conclusion (7) With P* py system never has a limit cycle for

any%.

Conclusion (8) Byim, APEOR, wg plot implies that it

approaches an asymptote approximated by Eq, (2-85) as

hs *X = 2[pClim, approx
ba D¥ wo ¥



&lt;

which can be rewritten by

R 8 L
im, opprox =

w,3
for Wg &gt; 4.6 (rad) (2-86)

from the Conclusion (1) of the linear analysis,

Conclusion (9) The criterion for existence of a limit cycle by

using describing function is conservative; i.e., even if this

approximation method shows the existence of a limit cycle, there

nay not exist any. It is not accurate to state how it is conser-

vative compared to the simulation, because of limited numbers of

jata.
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CHAPTER 3

CONCLUSIONS AND RECOMMENDATIONS

Joa System Studied

The linear and the non-linear systems investigated are

defined by Eg,'s (2-31) and (2-75) respec tively, Their configu-

rations are given in Fig.'s 6a and 14a. The only difference

between them is the saturation which is defined by Eq, (2-74)

The time t in these non-dimensionalized equations is defined

pw:  WV x{dimentional time) (red)

where Ww, = natural frequency of system to be controlled

‘rads/sec)
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3,2 Conclusions

An open-loop system with smaller 5 has a smaller

5s in its closed-loop system constructed by applying the
T

optimal control theory with Pr = | (e® + p¥ur) dt

because u is finite with finite P* (P* # 0).

(8 pax = | e cot

En - J | may = | utohl = R, Ro (Eq. (2-67) and (2-68))

from Conclusion (4) of the linear analysis

 er Sui for the linear systems,

3 ~~
5 &lt;
Bas0 = €

 ~~ ¢
Ay = =

£ =0

»

&lt; ¢
An=1.0

“
Lak:

~~ 2

Ug =10

vith fixed P* and R_. (From Conclusion (1) of the linear

analvsis.)

For the linear system, the optimal feedback gains K

obtained with

T

ox = [ (e? + p¥ w=) J1 (Eq, (2=31e) )

approximately satisfy

T
[eo dt == { e? dt

from Conclusion (2) of the iinear analysis)

(Ed, (2-18) )
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where Wy, is approximated by

A)=
_ 1

 (pr
(from Conclusion (1) of the linear analysis)

and the optimal control system has

v.

ha?Std

$. ££ o.%

3 = 2.0

from Conclusion {l1) of the linear analysis,

for the linear system,

2 ~~2
 ge — ce

~~ 2 TT ~Av2
A = CC Uu

[ as Re =&gt;cR,

(Eq. (2-45))

(Eq, (2=46))

from Conclusion (5) of the linear analvsis)

od, . .

For the linear system, e = 3° plot (Fig. 11) has the

agsymptotes defined by

 =

4a?
-L _

3° = 2(3 az) 5 for P* &lt;10°%

from Conclusion (5) of the linear analysis)

(Ea. (2=50))

A bridge between the modern (optimal) and the conventional

controls is developed, Once the desired system response is

specified, the optimal feedback gains K for the linear system

are immediately obtained, (Fig, 12), (from Conclusion (6) of

the linear analvsis.
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} For a specified R the minimum P* which ensures no

saturation is given bv

p* &gt; r_° if p* &lt; 107°

from Eq, (2-83), If p* &gt; 107%, the Re at - w_ plot (Fig. 18)

should be referred, (From Conclusion (3) of the non-linear

analysis).

[f P* is specified, the maximum R_ which ensures no

saturation is given by

EY:&lt; * x &lt;R J P if P 10 (2 » 2)

(from Eq. (2-83). If P* &gt; 10°, the R _. = w_ plot (Fig. 18)

should be referred, (From Conclusion (3) of the non-linear

analvsis).

For a fixed Cn? the system with larger w (or smaller

P*) is easier to have the saturation in u and a limit cycle

(if any), because it has the larger feedback gains K.

(From Conclusion (2) of the non-linear analvsis.,)

“1 9 The criterion with the describing function which

jetermines the existence of a limit cycle is conservative

compared to the direct simulation, (From Conclusion (9) of

he non-linear analvsis).

odd For a fixed value of P*, the system with smaller Ch is

casier to have the saturation in u and a limit cycle (if any),



because smaller G5 corresponds smaller Co as mentioned in

Zl. (From Conclusion (5) of the non-linear analysis.)

Rat - ¢) plot approaches an asymptote defined by

I ¢ -4
; = — * &lt;&lt;

sat 3 if P 10
&lt;

(Eq, (2-83)

‘From Conclusion (3) of the non=li-ear analv-is)

Riim, approx, m Wg P dot {rox L,

asymptote characterized by

- J) approaches an

2 x 2 if p*
lim, approx w3

(Eq. (2-806) )

From Conclusion (8) of the non-linear analysis,)

» adhe . By considering C9 through C13, a ctc'ilitv criterion

is defined bv

Rim, o.pprox. &lt; 2
Rsat

vhere

for any P* and Cn (3=3)

Ar wd}
Le = = if P* &lt; 10 from C12

(From Conclusion (8) of the non~linear analysis), This

criterion says that no limit cycle exists for

-

~ AL
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3.3 Recommendations

By im, gin = Ww plot should be completed by referring

to the R - w_ plot done. This could be done
lim, approx. Ss

hy developing a simulation program on a digital computer.

4 - ¥ plot for R such that

R R RR. .,
sat &lt;« oO ‘4 lim,sim

should be made so that the effect of increasing R on

22. %% could be studied.

Once R2 was done, the behavior of a slightly saturating

system (which may be considered as an almost optimal system)

could be estimated,
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APPENDIX I

Modeling and Formulation of a Saturated Valve-Controlled

Rate-~type Fluid Motor Connected to a Load-mass through a Spring

oy Introduction

Analysis of a valve~controlled rate-type fluid motor has

been developed [12, 13]. The following analysis is essentially

the development for a non-linear case, from the linear case study

poy Richardson [13], The valve considered here is open=centered

and underlapped. The system configuration is given by Fig, la and

the valve characteristics by Fig. lb,

'2) Linearized Dynamic Behavior of a Fluid Motor

The behavior is studied in the wvicinity of the steady-state

operating points,

Definitions: Pio FP, = the pressures of the ram chambers i and Z,

respectively.

P_ = the supply pressure

: &lt;Assumption (1) Poy P, &lt; P_ A-1)

definitions: u = the valve displacement

"max = the maximum displacement of the valve,

AL1 = the flow into the ram~chamber 1

U2 = the flow out of the ram~chamber 2

Ap., AP,, Au, LCE Aq, = the differential changes

in these wariables,

3 - 3 ( 3: J Snsn) 7 =
9( wu / max )

(A=  3



Ee

. — 3 ( %: SFwar) . (A=3)
 = SCR JR) ben?

he linearized valve equations are given by,

— Se—— + —— C¢ S— be U max? max
=

 -— 4 (A=1

definitions: vy 5 = the volumes of the ram~chambers 1 and 2

respectively.

Vo = V10 T V20

= vy 5 when the ram is at the center position

3 = the bulk modulus of the fluid

A = the area of the ram

lv = the differential change in the velocity of

Fhe ram

Assumption (2): ( 7., Ye = ST ——— ]

The linearized ram—-chamber equations are given oV

Aq,. = ap 4 + Ar 2Y, i= { ’
- (A=6)

"or a symmetrical pair of three-way valves,

) —4
a—

1 mf

lhe differential

= 2
%

—
eM a

operator is defined by

(A=7)

A=)

[D=9)



By substituting for Eq. (A=6) into Eq, (A=-4), and subfrututing

Eq.s (A=~6) for i = 1 and 2, the linearized valve-ram equation is

1iven bv

ab _ 2b aU _ ZAR D(ay): T D —+ | ) “RB — x Umax X Umax (A-10)

vhere

 Vo Fs
B Uma XK

LA 1)

the time constant of the ram=chambers

\P - AP =~ Ap, 'DA=12)

Assumption: the saturation of wu, which is given by

Alu) =
 lal F |Au[&lt; Umax

Umax WF [aul=Upax
(A=-13)

zg. (A=S) becomes,

3)

/
I
\ ah _ 2b sATCOW)|2An )  (a=14)LD+1) == x Umax x U max Jr

Dynamic Load Characteristics

definitions: Ys * the position of the ram

v. = the position of the load-mass

7. = the accelerations qf the load-mass

k = the connection-spring constant

m. = the load-mass

F(t) = the load force on the mass

rhe load equation connected to the motor is given by



- ry

(BR -RJ)Ar = PAR = kR CYg — YJ (A-15)

and is linearized as

AF Ar = k (aYs-ay. J (A=16)

Jn the other hand, the dynamics of the load is given by

mn. DF Y, ) +k (y  = Ir ) + Fu (6)
My,

———
-
J (A=17)

5g, (A=17) is linearized as

a tay, )+ k (ay,—ay.)+aFu(¥)=o0

A Ya = = (mM. D* +k) ay, + + aFuw 18)

(A=18)

(A=19)

"rom Eq, (A-16) and Eq. (A-18)

% J

D — 1 2 7A A
&gt; 7 An m,D" (ay,)+ Aa AF (+)

Overall Open~loop System Equation

'A=20)

Substituting for Eq,s (A-192) and (A=20) into Eg, (A-14), the

&gt;verall system equation with y. only is given by

m 2ARr ] &gt;ce 0( Tem, 2AR ie) Dp? + or )D + Tome y (A=21)Ps Ar &amp; Fmax LS s AR

(t)2p SAT(au) -[ (5 + LT= oC Umax PAn % Zmax

vhich can be written as,

®

(2 + Dupo) ae
w* "

—
— Ry SAT(aU’) [Cis Xo +1 | aFy

'A=22)



where the non-dimensionalized constants and variables are defined by,

2A (1 _ =2Pshs (-L) 'A J } )

4 —- [Ze nee +s — [me ( — 1)
Un 2 Bs Ag

(A=24)

p — i] mg R sin nm, Wh
Ya Te Rs(k+k) 2ks Te

'A=~25)

4, = 208 p (ay)
eT Th (A~26)

. ra
(A=27)

Aly au
U max

. ‘ au’ lac
and SAT’ (4u’) ={ 1 aux (A=28)

AF
ELS Ps Ar ‘'A=29)

5) Block Diagram

The block diagram of this system is given by Fig, 2b,

vith a possible state~variables feedback,

6) Open-loop System to be Investigated in Thesis
/’

Assumption: AF, = o (A=30)

Nith this assumption, Eq, (a=22) becomes

Dp? 21 * s
ox toD +1) a3. =k, sat (au i) (A=31)

[n order to avoid the complexi:iy on variables, new notations

ire defined by

A=32)

And sar (uy = { 4  1 FP A[&lt;
 BD - 3)



5] $a

Then Eq. (A-31) becomes

/( D°_w.2 + 2—— D+1) 4, = le, S AT (uw ) (A=-34)

fhe input-output relation of the system is given by

J, = ol A )
— semsa————— SAT(u
pe se 20m D + |
wl « wa

(A=~35)

7) State-Variables Representation of Open-~Loop System

[Introducing dimensionless variables,

J i = Ww, y

5! == aly)

i. = py— Cy)

(A=30)

(A=37)

(A~38)

2g. (A=34) can be represented, in dimensionless state-

sariables form, bv

J

i
i |=| ¢i“ | a

Ww, o Jo

o wi, | + 2
~wW, ~2f.w } 47 Rk’}

'saT(u) (2-39)

_ d :

where D TT as in Eq, (A=9).

Redefining a set of state-variables as,

HeIN

x * 3c

“| - ; _ 5]{xy x y,

(~=39) is written 1s

2 Ww, 2

DL) = J  Oo Ww, 5 nD

‘A=~40)

| SATCU) (a-41)
0 ~Wy Hf, Wn



(8) An Example: Position Control of Radar Antenna

The position control of a radar antenna can be a typical

axample of this thesis. The schematic diagram of a position control

system is shown in Fig, 3a. The Schematic diagram of its idealized

model is given by Fig, 4, In order to apply directly the results

of this thesis to the example, it is necessary to assume that,

5 = mass of the base = 0

by = friction constant of the base = py

by = friction constant of the antenna with air = 0

? = external force on the antenna bv wind gust = 0

and A includes the gear ratio,



nH

\PPENDIX II

Computational Procedures for Analysis

The diagram for the computational procedures is given in Fig, 19,

A brief description on each computer program is given below.

MRMKS This is the modification of MRM [16]. The optimal feedback

gains of a linear system defined bv

K = AX 4 2 A

T

ro o= [ cx'@x+ JP uy dt

(A=42)

[(A=473)

is obtained bv solving the matrix Riccati equation,

R = RA+AR -RBP'B™R + @ {(A=~44)

for negative time by the forth order Runge-Kutta method,

ACCESE (Phase II)

Svstem ACCESS can handle many kinds of linear matrix

operations [17]. For this thesis, ACCESS is used for obtaining

PART

the optimal feedback gains for the system defined by Eq. (A-42)

and (A=43) by solving the Hamilton-Jacobi equation. ACCESS is

also used for finding the eigen values of the [A = BK'] matrix

of an optimal control system obtained,

For 7 = 1 and P* = 7, the optimal control system has distinct

roots. The step response of the 3rd order system is given hy

x +) = | + 4, e Bt + Aa e Mt + QA; Bt (A~-45)

instead of Eq. (2-37). PART is to obtain these partitioning



20 =

coefficients a, a, and Qa.

SIMKS This is the program to simulate the linear optimal control system,

2 2 .
- Ws o, B, X, e, u, e , and 4° are obtained and punched out,

~2 ~2 : '
2a and u are computed by the Simpson's Rule,

SK3RD SK3RD is the proaram to read the data from the cards punched

sut by SIMKS and to plot them,

DYSYS After obtaining the optimal feedback gains, DYSYS can simulate

“he linear or non-linear svstem concerned by solving up to ten

simultaneous. lst-order differential equations bv the 4th-order

Runge-Kutta method, Plotting is also available. [18]
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APPENDIX IIT

Analytical Evaluations of Asymptotes of the 52 - = Curves

1) Introduction

1% « §* ouneve is plotted from the simulation results for

“he linear control system, Conclusion (5) of the linear analysis

shows that this curve approaches one asymptote as P* approaches

zero and the other as P* approaches infinity, The following

proofs show analytically that these asymptotes are given by

-L
im €° = (3h
* 30

Ar &amp;
Jim € 2 ~
"300 *™

h or hu #0

{A=46)

(A=47)

vhere

Ld

LA

wet)Ce? (wet) d (Lf
00

= [ute det)

(A-48)

(A=49)

't should be restated that in the analysis

(A=50)

JH tt

- - Ww

&gt;(4) = _ee “t x @ Fs st sin (Wot + §)

~ = 2_ &amp; 2 wrane xa

re

(A=51)

2 foo = ws J I~ BF

— ~4 We
B = tau T- ew,

tau | i-22
| 5,» dr-%

-0 -m

 3

EY

-

6 &gt;0

&gt; &lt; 0



gC)

a3
 ey

 lL A) = k.© (t) = lk, X06) ~— ky X3¢) (A=52)

vhere

= a
Gey = 5 (- ew)

dx,(¢)Ly (+) = 1c

~onclusions to be referred to in this Appendix are all made in

rhe linear analysis,

be } Asymptote as P* approaches zero

Eq. (A-46) is to proved by showing

[im ha ~~ 5| —_— —ait

3 Wg&gt;% 50

lim YY x| So

0

(A=53)

(A=54)

"rom conclusion (1) of the linear analysis,

im —

ASE) p -

P¥_oa
5

(A=55)

'A=56)

Therefore,

lim ol = a
&gt;¥ 390

Ji wm bs = |
P*0 | -32 3

lim g = Or

Ii w Y —_
oD

mye

(A=57)

(A~58)

(A=59)

 A~060)



For simplicity, let

w.t (A=61)

3y using Eq. (A=55) through Eq, (A=-61),

im €2(t)
-2T -1.&gt;T— Smt a 1e +=¢ sinfons T + = € sin" fons T (A=62)

ig. (A=52) is evaluated as

im 2c) _ _L ("Lim e?(wst) d (wt)
hoa D Loe ° P¥so0

2.
w&gt;

vy

Next, Eq, (A~54) is to be proved,

| ~ A

eg, = a

Ro, x 2 wo

te. = 2 ws —27%

From Conclusion (3)

{A=63)

(A=04)

(A=65)

3y using Eqg's (A-55) through (A-61) and Eg's. (A-63) through

'A=65) ,

. -— 2
Lim wilt) = eC [ wd-2%, ws ~uw]
so

-08T 2 3 2 {
+ € sinfo1s T[-Zw “+ &amp; Wwe 5 | (A=66)

-05T 2

te *Cos fom T| 26m Wy =
lim Wis exactly evaluated as,
p¥ po
~ 2 oa

ws; J, Pe st) d Cwst)
3 qo= +w’ + ( - $.) wd t( + - That ur) bg (A=67)

 (FT) wre Low

[herefore

fim
o% oo

-t
for P* &lt; 10 , (orw ~ 4,6), Ea, (A=67) can be approximated by



70

&lt;q. ( A=54) as

jon ~2 | 4Wiley x 4 ow
_g ) —_— 3 We

Substituting for Eg. (A-54) into Eq. (A-53), Eg, (A=-46) is

sbtained,

-ry Asymptote as P* approaches infinity (5 # 0)
n

=g CA-47) is to be proved by showing

[im eT 2 =
p¥%_,00

2X

Aryim G2 x X
¥ 00 2

(A=68)

(A=069)

for OS W

and

‘or

lim 2 |
Ya00 = 2 P

fim wr x PB
2% = 2

A) = 1a

(A=70)

'A=/1)

he linear analysis shows that as P* approaches infinity,

“he control system approaches the original system to be controlled,

 Ee

lim Wg
™ sop

- —
nas  20

| iW
CLAEN

~v

[im Bs = an
p¥500

{A=72)

(2=73)

(A=T74)



For 0 &lt; ¢  -

&lt;

Lim e” is calculated by applying Eq.'s (A=72) and (A-74)
 &gt;00

Eq, (A=51) as=O

 ~ a+

im eih= (ee
 &gt; ao (A=-75)

iq. (A=48) is evaluated as

Jim :? = —k

Tener lly kk, Ky and x are given by

X LAS

2, re
“min 2P, Wa + (WW=1)

? ol 4 2%, Wa —-24%,)

As 2" approaches infinity, Fr - - and k are approximated by

1sing Eq, (A-=72; 19

oo

Q z fH.

&lt;

'A=70)

(A=77)

(A=78)

!A=79)

{A=80)

(A=-81)

(A=~82)

5ince from Eq. (A-52) u(t) is generally given by
 4

UAT)=(lk, ~ kX + kyo?) pp
me 1 T 3 oz — 28, Wed + W2

2 2 ~3sT . li-tzElli eats, + ky (Huwf~ 28,0) w) | ELsind/- ITT
 a HR GE es)

FR,ky285 ws) mmm [T=&lt;% ~3 Ys J aT stoma: cos I-%; T

Sq. (A=49) 1s evaluated as

im ha
— « = 42 o¢

(A=-84)

substituting for Eg, (A-83) into Eq. (A=76), Eq. (A=47) is obtained.



rorbh = 1
n

As P* approaches infinity, x, (+) is given by

- Pt ~-Bt -Btcy=I|+a.e“raea0,e
(A=-85)

here

™ )
» = poles of characteristics equation of the control

system.

n

n pre

P. Py
(Pr =PYCPR-7)

_ PR

Cp, -mY(P-Pa)

 PhP

(P - R(P-Py)

(A=86)

(A=87)

A=-38)

Since

fim Fr.
"300

[im Pa
P¥* 200

lim P,
oe

(A=89)

(A~90)

(A=91]1)

LS

iw e is approximately evaluated as
»_y00

lim gf zr
3.00 2p (A=92)

For the distinct roots case the transfer function of the control

system is given by

oe PP Py
YCS +P) CS +P, = Gen

(A=-93)

Equating Eq, (A=93) to (2-33) in the linear analysis,



4

I ¥

S—

— P, Px Ps

R. =z PP.+ PPo+ BE

- Ry = Pp. A

(A-94)

(A=95)

(A=96)

and as P* approaches infinity, by using Eq.'s (A=-89) through

(A=91) ’

iim k, ==
2% 5 mm

Jim Ra ££ 2P
2% avo

lim ky =
PY&gt;

(A=97)

(A~98)

(A=09)

2 4

hus, hw is evaluated as
p¥ a

IM
ad

 ER JX

hs
Benne
—

(A=1060)

By substituting for Eg, (A-100) into (A=-92), Eq, (A=47) is

&gt;btained.
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