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Abstract

Variational inference (VI) seeks to approximate a target distribution π by an element of a tractable
family of distributions. Of key interest in statistics and machine learning is Gaussian VI, which
approximates π by minimizing the Kullback–Leibler (KL) divergence to π over the space of Gaus-
sians. In this work, we develop the (Stochastic) Forward-Backward Gaussian Variational Inference
(FB–GVI) algorithm to solve Gaussian VI. Our approach exploits the composite structure of the KL
divergence, which can be written as the sum of a smooth term (the potential) and a non-smooth
term (the entropy) over the Bures–Wasserstein (BW) space of Gaussians endowed with the Wasser-
stein distance. For our proposed algorithm, we obtain state-of-the-art convergence guarantees
when π is log-smooth and log-concave, as well as the first convergence guarantees to first-order
stationary solutions when π is only log-smooth. Additionally, in the setting where the potential
admits a representation as the average of many smooth component functionals, we develop and
analyze a variance-reduced extension to (Stochastic) FB–GVI with improved complexity guaran-
tees.
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Chapter 1

Introduction

Sampling from a target distribution π ∝ exp(−V) on Rd is a problem of fundamental statistical

interest, serving as an algorithmic primitive that powers generative machine learning [82, 38, 83],

Bayesian inference [66], and differential privacy [33], among other fields of contemporary impor-

tance.

Lately, a surge of recent work has illuminated a deep connection between sampling and the

better-understood field of Euclidean optimization [94, 25]. By endowing the space of probability

measures with the right geometry — the Wasserstein geometry — a rich dictionary between sam-

pling and optimization emerges: concepts like the “proximal operator” in Euclidean space admit

synonyms like the “JKO operator” in the space of probability measures. In turn, this dictionary

facilitates the design of algorithms for sampling by way of direct analogy, inspired by classical

techniques in Euclidean optimization.

This thesis aims to expand this dictionary. We endeavor to further our understanding of what

analogies we might be able to draw, and to see what gets lost in translation. We do this through

the lens of a motivating case study with considerable practical relevance: Gaussian variational

inference (VI). The fruit of our analysis is a suite of implementable, computationally efficient al-

gorithms for Gaussian VI, with state-of-the-art convergence guarantees to boot.
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1.1 Outline of the thesis

The rest of the thesis is organized as follows. In Section 1.2, we present background on the prob-

lem of Gaussian VI and place our work in the context of the larger literature on sampling and

variational inference in Section 1.4. We outline our approach to solving Gaussian VI in Section 1.3

and clarify the notation used throughout the rest of the thesis in Section 1.5.

In Section 2.1, we recall and present core concepts in Euclidean optimization. We proceed

to define the Wasserstein geometry and introduce the Bures–Wasserstein space of Gaussian prob-

ability measures in Section 2.2. The rich geometric structure of this space allows us to perform

calculus and hence optimization. Then, in Section 2.3, we will articulate precise mappings between

tools in Euclidean optimization versus Bures–Wasserstein optimization, laying the groundwork

for our development of algorithms for Gaussian VI. We organize these analogies in Table 2.1.

In Section 3.1, we recall classical algorithms for Euclidean optimization, and provide crisp

analyses of their convergence. Using the dictionary developed in Table 2.1, we translate these al-

gorithms and analyses to the setting of the Bures–Wasserstein space in order to solve Gaussian VI.

The result is the development and complexity analysis of (Stochastic) Forward–Backward Gaus-

sian Variational Inference (FB–GVI) (based on the joint work [29]) as well as a variance-reduced

version (VRFB–GVI). In our analysis, we encounter several complications owing to the “curved”

structure of the BW space, and find that we must take care in handling key details not present in

the Euclidean setting. We highlight these difficulties and elaborate on how to fix them, while de-

ferring the details of technical proofs to Appendix A. Preliminary simulation results are provided

in Appendix B, and a Jupyter notebook containing code for our experiments can be found at

https://github.com/mzydiao/FBGVI/blob/main/FBGVI-Experiments.ipynb.

Finally, we conclude in Chapter 4 and raise a number of questions and directions for future

study.

1.2 Background

Suppose we wish to devise an algorithm to output a sample from a target probability distribu-

tion π ∝ exp(−V), where V : Rd → R is a smooth function. To do this, we might imagine one
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approach. Perhaps we don’t know how to directly generate a sample from π, but we instead

know:

1. how to generate a sample from a different distribution µ0, and

2. how to apply an iterative procedure to update any sample so that its distribution eventually

approaches π.

Then we could simply proceed by drawing a sample from µ0 and repeatedly updating it according

to the iterative procedure in (2). This is the idea of the Monte Carlo Markov Chain (MCMC)

method [62, 63], which accomplishes (2) by forming a reversible Markov chain with stationary

distribution π, and updating a sample by running one step of that Markov chain. As the number

of iterations tends to infinity, the law of the iterate converges in distribution to π.

However, there is an issue: in the real world, we cannot simply send the number of iterations

to infinity. We need to stop at some point. In order to know if our samples are any good, we

need quantitative, non-asymptotic guarantees that bound the discrepancy between the target dis-

tribution and the distribution of our samples. And if convergence is slow, in order to draw many

approximate samples from our target distribution, we would need to run this iterative procedure

many times, leading to a blowup in computational complexity.

However, there is another approach. What if instead of taking a tractable distribution µ0 and

iteratively updating its samples to fit the shape of π, we simply found a tractable distribution µ0

that was close to π in the first place? Then we could just directly draw samples from µ0 and avoid

running MCMC altogether. This is the fundamental idea of variational inference (VI) [14, 47]. Of

particular interest is the problem of Gaussian VI, in which we approximate π by the solution to

arg min
µ∈BW(Rd)

KL (µ ∥π) , (1.1)

where KL denotes the Kullback–Leibler divergence and BW(Rd) the set of Gaussian distributions

over Rd (see Section 3.2.1 for formal definitions). Gaussian VI has demonstrated favorable per-

formance to MCMC in important settings of practical interest, especially in the presence of large

datasets: see, for example, Barber and Bishop [9], Seeger [80], Honkela and Valpola [39], Opper

and Archambeau [68], and Quiroz, Nott, and Kohn [74].
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Why focus on Gaussians? For one, they are indeed easy to sample from [16]. And in the litera-

ture on Gaussian VI, recent works have demonstrated strong statistical properties for the solutions

to Problem (1.1): see, for example, Chérief-Abdellatif, Alquier, and Khan [24], Alquier and Ridg-

way [2], and Katsevich and Rigollet [45]. As further justification, consider the case where π repre-

sents the posterior distribution of a sufficiently regular Bayesian model. Then, the Bernstein–von

Mises theorem (see Vaart [89, Chapter 10] and recent non-asymptotic results [44, 85]) state that π

is well-approximated by a Gaussian distribution, with mean given by any asymptotically efficient

estimator of the true parameter, and covariance matrix given by the inverse Fisher information

matrix.

With abundant motivation in mind for efficiently computing the best Gaussian approxima-

tion of π, we seek to develop a principled approach for solving Problem (1.1). Several other

existing methods have been proposed, which we summarize in the related works (Section 1.4).

Of particular note is the approach of Lambert et al. [51], who recently proposed an algorithm for

Gaussian VI that can be seen as an analog of stochastic gradient descent for Problem (1.1) over the

space BW(Rd) endowed with the Wasserstein distance, called the Bures–Wasserstein (BW) space.

This viewpoint takes inspiration from the theory of gradient flows over the Wasserstein space of

probability measures [43, 5], the machinery of which has been instrumental for many problems in

probabilistic inference (see Section 1.4 for a discussion of related works).

However, from an optimization standpoint, the gradient descent-inspired approach of Lam-

bert et al. [51] is not the most natural. Indeed, the objective functional KL (· ∥π) is composite: it

can be canonically decomposed as the sum of a “smooth” term called the potential and a “non-

smooth” term called the entropy. This key observation has given rise to more than two decades of

research on forward-backward methods on the Wasserstein space [see, for example, 43, 11, 94, 77].

In Euclidean optimization, the correct approach for optimizing a composite objective consisting

of a smooth term and a non-smooth term is not gradient descent, but rather the proximal gradi-

ent algorithm [71], which crucially relies on the use of the proximal operator in Euclidean space.

In Wasserstein space, the natural analogue of the proximal operator is the so-called JKO opera-

tor [43], but unfortunately this operator is computationally intractable in general, hampering the

implementation of analogous proximal gradient algorithms in Wasserstein space.
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1.3 Our approach

In this thesis, we develop an approach to Gaussian VI that resolves the aforementioned issues

faced by previous works, namely non-smoothness and non-implementability. The result is a

novel, implementable and efficient algorithm called (Stochastic) Forward-Backward Gaussian Vari-

ational Inference (FB–GVI). In the same vein as Lambert et al. [51], the rich differential and ge-

ometric structure of the BW space comprises the linchpin of our approach, but we are able to

fully exploit optimization tools tailored to handling the composite nature of the KL divergence,

whereas previous approaches fail. A key insight in this work is that the JKO operator for the

entropy, when restricted to the BW space, admits a closed form [94], and hence leads to a truly

implementable (stochastic) forward-backward (or proximal gradient) algorithm for Gaussian VI.

In turn, it yields new state-of-the-art computational guarantees for Gaussian VI under a variety of

standard assumptions. In addition, we demonstrate that our approach is extensible to the setting

where the potential admits a representation as the average of many component functions, a com-

mon scenario in machine learning [36]. Leveraging tools from the literature on variance reduction

in stochastic optimization in Euclidean space [42, 95], we devise a variance-reduced version of

(Stochastic) FB–GVI that comes with significantly improved complexity guarantees.

In summary, we highlight our contributions below.

• We propose a new (stochastic) forward-backward algorithm, (Stochastic) FB–GVI, to solve

Problem (1.1). The algorithm relies on a closed-form formula for the JKO operator of the

entropy over the BW space.

• We prove state-of-the-art convergence rates for Gaussian VI via our algorithm, leveraging

recent techniques of optimization over the space of probability measures [5].

• We devise a variance-reduction method for (stochastic) FB–GVI that enjoys favorable com-

plexity guarantees.

1.4 Related work

We now contextualize our work in the setting of the larger literature on sampling and variational

inference, and discuss closely related streams of research.
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Optimization algorithms for Gaussian VI. Algorithms for solving Gaussian VI have been con-

sidered in Paisley, Blei, and Jordan [70], Ranganath, Gerrish, and Blei [75], and Lambert, Bonnabel,

and Bach [50]. The general approach is to parametrize the set of Gaussian distributions and to ap-

ply Euclidean optimization. In particular, Alquier and Ridgway [2] noticed that when π is the

posterior distribution in a Bayesian logistic regression, Problem (1.1) becomes convex with a cer-

tain choice of parametrization. In this case, they also characterized the statistical properties of the

iterates of gradient descent. Other settings in which the corresponding optimization problem is

convex are provided in Challis and Barber [20] and Domke [30]. In particular, [30] showed un-

der the parameterization of [2], the Euclidean smoothness/convexity properties of the negative

log-density of the model give rise to the same smoothness/convexity properties on the parameter

space. However, to obtain convergence rates in the stochastic setting, one needs to control the

variance of the stochastic gradient. This non-trivial task is not carried out in [30]. In our work, the

required variance control is established in Lemma 3.3.5, and forms a crucial step in obtaining our

convergence rates.

Algorithms based on natural gradient methods [99, 54, 55] and normalizing flows [76, 46,

19] have also been proposed for variational inference. However, to the best of our knowledge,

convergence results for such methods are lacking in the literature.

Finally, the closest related work to ours in this literature is that of Lambert et al. [51], who sim-

ilarly proposed an optimization algorithm over the BW space, called Bures–Wasserstein Stochastic

Gradient Descent (BW–SGD), to solve Problem (1.1). Their algorithm relies on taking the gradient

of the non-smooth entropy, and in particular they were only able to provide a (suboptimal) rate

of convergence when π is strongly log-concave. In this work, we not only improve upon their

convergence rate in the strongly log-concave case, but also demonstrate a convergence rate for the

log-concave case as well.

Minimization of KL over the Wasserstein space. As mentioned previously, our approach has

roots in the recent literature on viewing sampling methods as optimization algorithms over the

Wasserstein space.

For example, the Langevin Monte Carlo (LMC) algorithm [28] is an MCMC algorithm to

sample from the target distribution π. The theory of Wasserstein gradient flows [5] provides

20



the mathematical tools to view LMC (and its many variants) as an optimization algorithm over

Wasserstein space. In the case of LMC, the objective to minimize is KL (· ∥π). Therefore, one can

use optimization analysis (over the Wasserstein space) to show convergence bounds for LMC [94,

32, 8, 23, 25].

Stein Variational Gradient Descent [57, 56] is another method that can be seen as an opti-

mization algorithm for minimizing KL (· ∥π). SVGD is a deterministic algorithm that drives the

empirical distribution of a set of particles to fit π. The iterations of SVGD are computed by iterat-

ing a well-chosen map T such that T − I belongs to a Reproducing Kernel Hilbert Space (RKHS).

Little is known about the convergence rates of SVGD [31, 58, 27, 48, 78, 37, 81]. However, there is

an interesting connection between SVGD and BW–GD [51]: when the number of particles of SVGD

tends to infinity (the “mean-field” limit), the iterations of BW–GD are equivalent to the iterations

of SVGD if the RKHS is the set of affine functions with symmetric linear part. We also remark

that other heuristic algorithms for particle-based optimization over Wasserstein spaces have been

proposed, for example, in [18, 4, 7, 92, 96] without any non-asymptotic convergence guarantees.

Another closely related work to ours is that of Salim, Korba, and Luise [77]. In the same

vein as our work, they view the objective KL (· ∥π) as a composite functional over the Wasser-

stein space. They propose a forward-backward algorithm, involving the JKO of the entropy, with

strong convergence properties. However, they do not address the fact that the JKO of the entropy

is not implementable in general: hence, to our knowledge, their algorithm as a whole is not im-

plementable. On the contrary, our algorithm relies on the JKO of the entropy over the BW space,

which is shown to admit a closed form.

(Non–smooth) manifold optimization. Our work is also related to recent works developing

efficient algorithms for solving non-smooth optimization problems over certain manifolds. For

example, in the deterministic setting over manifolds, Li et al. [53] analyzed the sub-gradient

method, Chen et al. [22] and Huang and Wei [41] analyzed the proximal gradient method, Chen

et al. [21] analyzed the proximal point method, and Wang et al. [93] analyzed the proximal linear

method. Stochastic versions were considered in Li, Balasubramanian, and Ma [52] and Wang et al.

[93]. We also refer to Zhang, Chen, and Ma [97], Hu et al. [40], Peng et al. [72], and Zhang and

Davanloo Tajbakhsh [98] for other recent advances in non–smooth manifold optimization. Several
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of the above works consider the general setting of a Riemannian manifold. While the BW space is

a Riemannian manifold, it is also a subset of the Wasserstein space, a structure we leverage in our

work to prove our convergence results.

The geometry of the BW space was investigated in Modin [64], Malagò, Montrucchio, and

Pistone [60], and Bhatia, Jain, and Lim [12], and optimization over this space has proven to be

fruitful for various applications, see, for example, Chewi et al. [26], Altschuler et al. [3], Han et al.

[35], Lambert et al. [51], Luo and Trillos [59], and Maunu, Le Gouic, and Rigollet [61].

1.5 Notation

We will make use of standard complexity notation. We write an ≲ bn, or alternatively an = O(bn),

to indicate that an ≤ Cbn for a universal constant C > 0. Similarly, an ≳ bn and an = Ω(bn)

indicate that an ≥ cbn for some constant c > 0, and an ≍ bn and an = Θ(bn) indicate that both

an ≲ bn and an ≳ bn hold. The notation a ∧ b and a ∨ b are shorthand for min(a, b) and max(a, b),

respectively.

We will denote the space of real symmetric d× d matrices by Sd and the space of real positive

definite d× d matrices by Sd
++. Additionally, we denote the d× d dimensional identity matrix by

I. Throughout, P2(Rd) is the set of probability measures µ over Rd with finite second moment∫
∥x∥2 dµ(x) < ∞. Let µ ∈ P2(Rd). The space L2(µ) is the Hilbert space of Borel functions

f : Rd → Rd such that

Eµ∥ f ∥2 =
∫
∥ f (x)∥2 dµ(x) < ∞ ,

endowed with the inner product

⟨ f , g⟩µ :=
∫
⟨ f (x), g(x)⟩dµ(x)

and the associated norm ∥ f ∥µ =
√
⟨ f , f ⟩µ. In particular, the identity map id : Rd → Rd belongs

to L2(µ). If µ ∈ P2(Rd) and T ∈ L2(µ), the pushforward measure of µ by T is denoted by T#µ.

This pushforward measure satisfies
∫

φ dT#µ =
∫

φ(T(x))dµ(x) for any measurable function

φ : Rd → R+. The subset of P2(Rd) of all Gaussian distributions with positive definite covariance

matrix is denoted by BW(Rd). For an element µ ∈ BW(Rd), we denote its mean by mµ and its
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covariance matrix by Σµ. The notation N (m, Σ) refers to the Gaussian distribution with mean

m ∈ Rd and covariance matrix Σ ∈ Sd
++. Finally, the notation κ denotes the condition number β

α .
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Chapter 2

Sampling and Optimization

In this chapter, our aim is to provide exposition on stochastic and non-smooth composite opti-

mization, and to explicitly draw parallels between Euclidean optimization and optimization over

the Bures–Wasserstein (BW) space.

We first consider the setting of optimization over Euclidean space in Section 2.1, defining the

key terms and tools used. With the Euclidean setting as a methodological anchor, in Section 2.2

we proceed to define the BW space — the primary object of our study — and describe its rich

geometric and differential structure, which is key for performing optimization. Finally, we make

explicit the relations between optimization-related concepts in Euclidean space and those in BW

space, collecting them into a brief “dictionary” in Section 2.3. This dictionary lays the groundwork

for the translation of Euclidean optimization algorithms to the setting of the BW space.

2.1 Euclidean optimization

Before delving into optimization on the space of probability measures, we review some details

of stochastic and convex non-smooth optimization over the Euclidean space Rd. First, a func-

tion V : Rd → R is β-smooth if V is twice continuously differentiable and its Hessian ∇2V(x) is

bounded by β in the operator norm, for every x ∈ Rd. In particular, V is differentiable and its

gradient ∇V is β-Lipschitz. In addition, for any h ∈ Rd, V satisfies the Taylor inequality

|V(x + h)−V(x)− ⟨∇V(x), h⟩| ≤ β

2
∥h∥2 . (2.1)
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Equivalently, for any x0, x1 ∈ Rd, we have that

V(x1) ≤ V(x0) + ⟨∇V(x0), x1 − x0⟩+
β

2
∥x1 − x0∥2 . (2.2)

Consider the optimization problem

min
x∈Rd
{V(x)} , (2.3)

where V : Rd → R is β-smooth. Given an initial point x0 ∈ Rd and a step size η > 0, the classical

algorithm of gradient descent proceeds by iteratively applying the following update rule for k =

0, . . . , N − 1:

xk+1 = xk − η∇V(xk) . (2.4)

In machine learning applications, the user often does not have direct access to ∇V(xk) because

computing the gradient of V is expensive. Instead, the user has access to a cheaper stochastic

estimator ĝk of ∇V(xk). In this scenario, the stochastic gradient descent algorithm uses ĝk in lieu

of ∇V(xk) in Equation (2.4), resulting in the update rule

xk+1 = xk − η ĝk . (2.5)

Gradient descent and its stochastic variant enjoy a number of favorable convergence guarantees

in the setting where the step size η is sufficiently small and when the variance of the gradient

estimate ĝk is controlled. In fact, in the setting when V is α-strongly convex, meaning that:

1. 0 ≺ α ⪯ ∇2V, or equivalently,

2. for any x0, x1 ∈ Rd we have

V(x1) ≥ V(x0) + ⟨∇V(x0), x1 − x0⟩+
α

2
∥x1 − x0∥2 , (2.6)

gradient descent in fact converges at a linear rate to the minimizer of the objective. We elaborate

on these guarantees and provide crisp and concise proofs of convergence in Section 3.1.

Unfortunately, smoothness can be a restrictive condition. Not all relevant objectives are
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smooth over the entire Euclidean space, meaning that we cannot naively apply the gradient de-

scent algorithm to solve Problem (2.3). However, in a variety of practical problems, the objective

has a special composite structure that may be exploited. In particular, consider the optimization

problem

min
x∈Rd
{V(x) + H(x)} , (2.7)

where V : Rd → R is β-smooth and H : Rd → R is convex but potentially non-smooth. This

setting arises naturally in constrained optimization and classical problems such as LASSO [86,

71]. Because of the non-smoothness of H, the gradient descent algorithm applied to Problem (2.7)

may not converge. But there is a fix. We introduce the proximal operator of H, defined by

proxH(x) := arg min
y∈Rd

{
H(y) +

1
2
∥x− y∥2

}
. (2.8)

In many situations of interest, there exist computationally tractable closed-form expressions for

the proximal operator.1 And given access to this proximal operator as well as the gradient of V,

the proximal gradient (also called forward-backward) algorithm [10] provides a canonical approach

to solve Problem (2.7). Starting with an initial point x0 ∈ Rd and a step size η > 0, the proximal

gradient algorithm computes the following iterative updates for k = 0, . . . , N − 1:

xk+1 = proxηH(xk − η∇V(xk)) . (2.9)

Analogously to gradient descent, the proximal gradient algorithm admits a stochastic variant

based on access to a stochastic estimator ĝk of ∇V(xk). In this case, ĝk is again substituted for

∇V(xk) in Equation (2.9), resulting in the following update rule:

xk+1 = proxηH(xk − η ĝk) . (2.10)

Similarly to gradient descent, the proximal gradient algorithm and its stochastic variant en-

joy favorable convergence guarantees when η is sufficiently small and when the variance of the

gradient estimate ĝk is controlled [6, 13, 34]. When V is additionally α-convex, proximal gradient

1See proximity-operator.net.
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also obtains a linear rate of convergence to the minimizer of Problem (2.7). Furthermore, proximal

gradient descent is applicable to a strictly larger class of optimization problems, as it is able to

handle non-smooth objectives with composite structure as discussed above.

We consider one more extension. In many settings of relevance in contemporary machine

learning [36], V is more naturally expressed as the average of many other simpler smooth func-

tions Vi. Specifically, for i = 1, . . . , m, we have that Vi : Rd → R is a β-smooth and α-strongly

convex function, and are given that V can be expressed as

V(x) =
1
m

m

∑
i=1

Vi(x).

If m is large, the update equations of gradient descent (2.4) and proximal gradient (2.9) may be

computationally expensive, as computing the gradient of V requires evaluating ∇Vi for each i =

1, . . . , m.

One might imagine applying the stochastic versions of gradient descent or proximal gradient

using the unbiased estimator ĝk = ∇Vik for a randomly selected index ik ∼ Unif[m]. Although

this method is cheap to compute as it now only requires 1 rather than m gradient evaluation per

iteration, it suffers from a slow convergence rate, owing to the fact that the stochastic estimate ĝk

has a large variance.

Instead, the approach of Stochastic Variance Reduced Gradient (SVRG) [42] and its proximal

analogue prox-SVRG [95] seeks to leverage the best of both worlds: low variance of the gradient

estimate, as well as cheap iteration complexity. It achieves this by introducing a centering step,

wherein the gradient estimate is instead taken to be

ĝk = ∇Vik(xk)−∇Vik(y) +∇V(y).

This is again an unbiased estimator of ∇V when ik ∼ Unif[m]. The key benefit of this alternative

estimator is that its variance can be controlled: intuitively as xk and y both approach the opti-

mum of V, the values ∇V(y) and ∇Vik(xk)−∇Vik(y) both shrink to zero. The centering point y is

updated less frequently than at every step of the algorithm, so even though the gradient ∇V(y)

is expensive to compute, its value can be reused for many iterations before y is updated, signifi-
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cantly reducing the amortized iteration complexity compared to exact gradient descent. Combin-

ing these properties, SVRG and prox-SVRG achieve a significantly improved convergence rate per

gradient evaluation, especially in the setting when m is large.

Having laid the foundational groundwork of optimization over Euclidean space, we now

turn to the BW space, where the elements are no longer real-valued random vectors but rather

Gaussian probability measures. Despite the fact that the BW space is not a Euclidean space, its inher-

ent structure still enables us to perform optimization. We will define this structure — specifically,

the geometry and calculus over the BW space. And in so doing, we will set the stage for the adap-

tation of gradient descent and proximal gradient to the BW space.

2.2 The Bures–Wasserstein space

A detailed presentation of the Wasserstein space and its geometry, which in turn enables optimiza-

tion, can be found in Ambrosio, Gigli, and Savaré [5]. In this section, we provide an overview of

the Bures–Wasserstein (BW) space and its geometry, hence providing the requisite tools to perform

optimization over the BW space and solve Problem (1.1). We start with formal definitions of the

Wasserstein and BW spaces.

2.2.1 Geometry of the BW space

The Wasserstein space is the metric space P2(Rd) endowed with the 2-Wasserstein distance W2

(which we simply refer to as the Wasserstein distance). We recall that the Wasserstein distance is

defined for every µ, ν ∈ P2(Rd) by

W2
2 (µ, ν) = inf

γ∈C(µ,ν)

∫
∥x− y∥2 dγ(x, y) , (2.11)

where C(µ, ν) is the set of couplings between µ and ν. The BW space is the metric space BW(Rd)

endowed with the Wasserstein distance W2. In other words, the BW space is the subset of the

Wasserstein space consisting of all Gaussian distributions with positive definite covariance matrix.

Given µ, ν ∈ BW(Rd), there exists a unique optimal transport map from µ to ν: that is, a map
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T : Rd → Rd such that T#µ = ν and

W2
2 (µ, ν) =

∫
∥x− T(x)∥2 dµ(x) . (2.12)

In other words, the coupling (id, T)#µ belongs to C(µ, ν) and attains the infimum in (2.11). More-

over, since µ and ν are both Gaussian measures, T is in fact an affine map with symmetric linear

part, meaning that it can be written as T(x) = Sx + b, where S ∈ Sd and b ∈ Rd [67]. In par-

ticular, the BW space is a genuine Riemannian manifold where at each µ ∈ BW(Rd), the tangent

space TµBW(Rd) corresponds to the space of d-dimensional affine maps with symmetric linear

part. Using the fact that µ ∈ P2(Rd), we can deduce that T#µ ∈ P2(Rd) implies T ∈ L2(µ).

Therefore, TµBW(Rd) is naturally endowed with the L2(µ) inner product, making TµBW(Rd) a

finite-dimensional subspace of L2(µ).

2.2.2 Optimization over the BW space

In this section, we review the differential structure of the BW space. Further background on dif-

ferential calculus over the BW space is provided in Section 2.2.3.

Smoothness over BW space

Consider a functional F : BW(Rd) → R. We say that F is differentiable at µ if there exists gµ ∈
TµBW(Rd) such that for every affine map h : Rd → Rd,

F ((id + th)#µ) = F (µ) + t ⟨gµ, h⟩µ + o(t) . (2.13)

In this case, gµ is unique, and called the Bures–Wasserstein gradient of F at µ. We denote this

gradient by ∇BWF (µ) = gµ.

Given a β-smooth function V : Rd → R, the potential energy functional (or simply potential)

V : BW(Rd)→ R is defined by

V(µ) :=
∫

V dµ (2.14)

for every µ ∈ BW(Rd). The potential is a prototypical example of a differentiable functional over

the BW space. Lemma 2.2.1 verifies that the potential is differentiable and gives a formula for its
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BW gradient. The formula for the BW gradient can be obtained by a straightforward adaptation

of Lambert et al. [51, Section C.1], but we give a self-contained derivation in Section 2.2.3. Notably,

the differentiability of V is well-established in the literature on Wasserstein space [5, Theorem

10.4.13]; we adapt this result to the BW space.

Lemma 2.2.1 (BW gradient of the potential). Consider the potential V defined by (2.14) where V is β-

smooth. Then, V is differentiable at µ ∈ BW(Rd) and the following Taylor inequality holds: for h : Rd →
Rd affine, ∣∣V((id + h)#µ)− V(µ)− ⟨∇BWV(µ), h⟩µ

∣∣ ≤ β

2
∥h∥2

µ . (2.15)

Moreover, the BW gradient of V is known in closed form:

∇BWV(µ) : x 7→ Eµ∇V + (Eµ∇2V)(x−mµ) , (2.16)

where mµ =
∫

x dµ(x) is the mean of µ.

Proof. We defer these proofs to the next section, which give greater detail on the calculus of the BW

space. The proof of Equation (2.16) can be found in Section 2.2.3, and the proof of Inequality (2.15)

can be found in Section 2.2.4.

Essentially, the potential V inherits the smoothness properties from V. Note the analogy with

Inequality (2.1). Inequality (2.15) is stronger than differentiability and can be interpreted as the

potential V being β-smooth over the BW space, giving a BW analogue of Euclidean smoothness.

Convexity over BW space

We say that F is geodesically convex if for all µ0, µ1 ∈ BW(Rd),

F (µ0) + ⟨∇BWF (µ0), T − id⟩µ0 ≤ F (µ1) , (2.17)

where T is the optimal transport map from µ0 to µ1. In this case, we can introduce an analog of

the proximal operator of F over the BW space, called the BW JKO operator of F [43].2 The BW JKO

2In Jordan, Kinderlehrer, and Otto [43] the authors define the JKO operator as an analog of the proximal operator
over the entire Wasserstein space. In our work, we define the JKO operator over the BW space, and we call it the BW JKO
operator.
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operator is defined by

BWJKOF (µ) := arg min
ν∈BW(Rd)

{
F (ν) + 1

2
W2

2 (µ, ν)
}

. (2.18)

This definition is exactly analogous to (2.8), but with W2
2 (µ, ν) in the BW JKO operator taking the

role of the squared Euclidean distance in the proximal operator.

The entropy functional (or simply “entropy”) H is a crucial example of a geodesically convex

functional over the BW space. More precisely, the entropy is defined by

H(µ) =
∫

log µ(x)dµ(x) , (2.19)

for every µ ∈ BW(Rd), where we identify µ with its density w.r.t. Lebesgue measure.3

Lemma 2.2.2 verifies that the entropy is geodesically convex and gives a formula for its

BW JKO. The formula for the BW JKO operator can be obtained by a straightforward adaptation

of Wibisono [94, Example 7], although we replicate the argument here. Notably, the geodesic con-

vexity of H is also well-established in the literature on the Wasserstein space [5, Remark 9.3.10];

we adapt this result to the BW space.

Lemma 2.2.2 (BW JKO of the entropy). Consider the entropy functional H defined in (2.19). Then, H
is geodesically convex and the following stronger inequality holds: for all ν, µ0, µ1 ∈ BW(Rd),

H(µ0) + ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν ≤ H(µ1) , (2.20)

where T0 (resp. T1) is the optimal transport map from ν to µ0 (resp. µ1).

Moreover, for µ ∈ BW(Rd), the BW JKO operator ofH is known in closed form: with η > 0, we have

that BWJKOηH(µ) = N (mµ, Σ⋆), where mµ is the mean of µ, and the covariance matrix Σ⋆ is given by

Σ⋆ =
1
2
(
Σµ + 2η I +

[
Σµ (Σµ + 4η I)

]1/2) , (2.21)

3To avoid possible confusion, note that this definition differs from contexts such as information theory, where the
entropy is typically defined as the expectation of the negative log-density. This is an intentional matter of convention,
since in our scenario H remains a convex functional rather than a concave functional (as it would be in the information
theoretic context).

32



where Σµ is the covariance matrix of µ.

Proof. We defer the proofs of Equation (2.21) and Inequality (2.20) to Section 2.2.4, after a detailed

discussion of calculus over the BW space.

Inequality (2.20) is stronger than geodesic convexity and is a consequence of the so-called

generalized geodesic convexity of the entropy [5, Remark 9.3.10]. We elaborate on this property in

our detailed discussion of calculus in the BW space (Section 2.2.3). It is remarkable that we can

compute the BW JKO of the entropy in closed form, as the JKO operator of the entropy over all

of Wasserstein space is intractable in general [43]. The ability to compute the BW JKO in closed

form is key to our approach to solving Gaussian VI. As a comparison, Salim, Korba, and Luise

[77] proposed a proximal gradient algorithm relying on the JKO of the entropy over the whole

Wasserstein space, but due to the intractability of the JKO, their algorithm is not implementable.

2.2.3 Calculus over the BW space

In this section, we describe a calculus over the BW space, deriving a formula for the BW gradient

of a generic functional. In doing so, we demonstrate computation rules for differentiating a func-

tional F : BW(Rd) → R along a curve of measures (µt)t≥0 ⊆ BW(Rd), which will be essential for

our proofs of smoothness and convexity inequalities later on. Our derivation relies on specializing

Otto calculus [69], which deals with the Wasserstein space P2(Rd), to the BW space BW(Rd).

Background on Otto calculus

We first give an informal overview of the computation rules of Otto calculus [69], which endows

the Wasserstein space P2(Rd) with a formal Riemannian structure. We refer to Ambrosio, Gigli,

and Savaré [5] for a more rigorous development of the mathematical theory.

Let µ be an arbitrary element of P2(Rd) admitting a density w.r.t. Lebesgue measure. The

tangent space TµP2(Rd) is identified as the space of gradients of scalar functions on Rd, i.e.,

TµP2(R
d) = {∇ψ | ψ ∈ C∞

c (Rd)}L2(µ)
.

For a functional F : P2(Rd) → R, we can formally define its W2 gradient at µ as the mapping
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∇W2F (µ) ∈ TµP2(Rd) satisfying

∂t|t=0F (µt) = ⟨∇W2F (µ), v0⟩µ ,

for any sufficiently regular curve of measures (µt)t∈R ⊆ P2(Rd) with µ0 = µ and velocity vector

fields (vt)t∈R with vt ∈ L2(µt) for a.e. t satisfying the continuity equation

∂tµt + div(µtvt) = 0 . (2.22)

In fact, we can compute this W2 gradient via direct identification. Let δF (µ) : Rd → R denote a

first variation of F at µ [see 79, Chapter 7], for which

∂t|t=0F (µt) =
∫

δF (µ) ∂t|t=0µt .

Then, by Equation (2.22) and integration by parts,

∂t|t=0F (µt) =
∫

δF (µ) ∂t|t=0µt = −
∫

δF (µ)div(µv0) =
∫
⟨∇δF (µ), v0⟩dµ = ⟨∇δF (µ), v0⟩µ .

Hence, we conclude that

∇W2F (µ) ≡ ∇δF (µ) . (2.23)

Now we turn our attention to the BW space. The BW space BW(Rd) is a submanifold of

P2(Rd) [69, 51], and hence inherits the formal Riemannian structure described above.

Let µ be an arbitrary element of BW(Rd). The tangent space TµBW(Rd) is identified as the

space of affine functions on Rd with symmetric linear term, i.e.,

TµBW(Rd) = {x 7→ b + S (x−mµ) | b ∈ Rd, S ∈ Sd} .

In analogy to the above, for a functional F : BW(Rd)→ R, we can formally define its BW gradient
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at µ as the element ∇BWF (µ) ∈ TµBW(Rd) satisfying

∂t|t=0F (µt) = ⟨∇BWF (µ), v0⟩µ ,

for any curve of measures (µt)t∈R ⊆ BW(Rd) with µ0 = µ and velocity vector fields (vt)t∈R, with

each vt an affine map, satisfying Equation (2.22). Using Equation (2.23) and integration by parts,

we compute an expression for the BW gradient of F in the following subsection.

BW gradient calculation

The BW gradient of a functional F : BW(Rd) → R can be derived analogously to Lambert et

al. [51, Section C.1]. We present a self-contained derivation here for completeness, and in doing

so we obtain a formula for the rate of change of F along a curve of Gaussians for which the

corresponding velocity vector fields are affine maps with linear parts which are not necessarily

symmetric; this will play an important role in later proofs. The key idea is to use integration by

parts repeatedly, exploiting the fact that the gradient of a Gaussian density is simply that same

density multiplied by an affine term.

Lemma 2.2.3. Let F : P2(Rd) → R be a functional on the Wasserstein space with first variation δF .

Then, for µ ∈ BW(Rd), we have that ∇BWF (µ) is given by

∇BWF (µ) : x 7→ (Eµ∇2δF )(x−mµ) + Eµ∇δF .

Proof. Let (µt)t∈R ⊆ BW(Rd) be a regular curve of Gaussians with µ0 = µ and (vt)t∈R be a family

of affine maps satisfying Equation (2.22). Furthermore, suppose that v0 is given by

v0 : x 7→ a + M (x−mµ) , (a, M) ∈ Rd ×Rd×d ,

and that ∇BWF (µ) ∈ TµBW(Rd) is given by

∇BWF (µ) : x 7→ bF + SF (x−mµ) , (bF , SF ) ∈ Rd × Sd .

35



Letting X ∼ µ, we find that

⟨∇BWF (µ), v0⟩µ = E
〈
bF + SF (X−mµ), a + M (X−mµ)

〉
= ⟨bF , a⟩+ E

〈
SF (X−mµ), M (X−mµ)

〉
= ⟨bF , a⟩+ E⟨SF , M (X−mµ)(X−mµ)

T⟩

= ⟨bF , a⟩+
〈
SF , MΣµ

〉
= ⟨bF , a⟩+ ⟨SF , Σµ MT⟩ . (since SF = ST

F and ⟨A, B⟩ = ⟨AT, BT⟩)

On the other hand, from the definition of the W2 gradient, we obtain that

∂t|t=0F (µt) = ⟨∇W2F (µ), v0⟩µ (definition of ∇W2F )

= ⟨∇δF (µ), v0⟩µ (by Equation (2.23))

= E ⟨∇δF (X), a + M (X−EX)⟩

= E ⟨∇δF (X), a⟩+ E⟨Σµ MT∇δF (X), Σ−1
µ (X−EX)⟩

= ⟨E∇δF (X), a⟩ −
∫
⟨Σµ MT∇δF ,∇µ⟩ (since ∇µ(x) = −µ(x)Σµ (x−EX))

= ⟨E∇δF (X), a⟩+ E[div(Σµ MT∇δF )(X)] (integration by parts)

= ⟨E∇δF (X), a⟩+ ⟨Eµ∇2δF (X), Σµ MT⟩ .

Hence, by direct identification, we conclude that

(bF , SF ) = (Eµ∇δF , Eµ∇2δF ) ,

proving our desired result.

Examples of BW gradients and stationary condition for Problem (1.1)

Consider the functional F = V +H defined by the sum of the potential (associated to the function

V) and the entropy, and recall that Problem (1.1) is equivalent to minimizing F over the BW

space, i.e., solving Problem (3.11). Using the result of Lambert et al. [51, Section C.1], we have the
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following formulas for the BW gradients of V andH:

∇BWV(µ) : x 7→ Eµ∇V + (Eµ∇2V)(x−mµ) ,

∇BWH(µ) : x 7→ −Σ−1
µ (x−mµ) .

(2.24)

We can also derive the above formulas from Lemma 2.2.3.

Moreover, by the proof of Lemma 2.2.3, we can compute ∂tF (µt) = ⟨∇BWF (µt), vt⟩µt along

any curve of Gaussians (µt)t∈R and any family of affine maps (vt)t∈R which together satisfy the

continuity equation.

In particular, if π̂ is a minimizer of (1.1), the first-order stationary condition ∇BWF (π̂) = 0

for Problem (1.1) reads:

Eπ̂∇V = 0 and Eπ̂∇2V = Σ̂−1 , (2.25)

where Σ̂ is the covariance matrix corresponding to the distribution π̂.

2.2.4 Convexity and smoothness inequalities in the BW space for the potential and

the entropy

Having derived a formula for the BW gradient of a generic functional F : BW(Rd) → R in Sec-

tion 2.2.3, we may now proceed to prove Lemma 2.2.1 (for the potential) and Lemma 2.2.2 (for the

entropy).

For both lemmas, the key idea is to differentiate a functional F : BW(Rd)→ R along a curve

(µt)t∈[0,1] with velocity vector fields (vt)t∈[0,1] satisfying the continuity equation (2.22), utilizing

our calculation rules laid out in Section 2.2.3. In particular, we will use that

F (µ1)−F (µ0) =
∫ 1

0
∂tF (µt)dt

= ∂t|t=0F (µt) +
∫ 1

0

∫ t

0
∂2

s F(µs)ds dt

= ⟨∇BWF (µ0), v0⟩µ0
+

∫ 1

0
(1− t) ∂2

tF (µt)dt , (2.26)

for both the entropy and the potential.
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Proof of Lemma 2.2.1: smoothness of the potential

We prove the following result for the potential. This result is stronger than Lemma 2.2.1, and will

be useful in our subsequent analysis.

Lemma 2.2.4. Suppose that αI ⪯ ∇2V ⪯ βI. Let µ ∈ BW(Rd) and let h : Rd → Rd be an affine map.

Then the following inequalities hold:

V((id + h)#µ)− V(µ) ≥ ⟨∇BWV(µ), h⟩µ +
α

2
∥h∥2

µ ,

V((id + h)#µ)− V(µ) ≤ ⟨∇BWV(µ), h⟩µ +
β

2
∥h∥2

µ .

Proof. Let X ∼ µ. Note that regardless of µ, we have that δV(µ) = V. Hence, ∇W2V(µ) = ∇V.

We thus compute that

V((id + h)#µ)− V(µ) = E[V(X + h(X))−V(X)]

≥ E
[
⟨∇V(X), h(X)⟩+ α

2
∥h(X)∥2] (since ∇2V ⪰ αI)

= ⟨∇W2V(µ), h⟩µ +
α

2
∥h∥2

µ

= ⟨∇BWV(µ), h⟩µ +
α

2
∥h∥2

µ ,

proving the first inequality. The second inequality follows similarly, using the fact that ∇2V ⪯
βI.

Lemma 2.2.1 then follows as a corollary of the above lemma.

Proof of Lemma 2.2.1. Note that if V is β-smooth, then we have by definition that−βI ⪯ ∇2V ⪯ βI.

Hence, applying Lemma 2.2.4 with α = −β, we obtain that

∣∣V((id + h)#µ)− V(µ)− ⟨∇BWV(µ), h⟩µ
∣∣ ≤ β

2
∥h∥2

µ .

Moreover, we have shown in Section 2.2.3 that ∇BWV(µ) is given by

∇BWV(µ) : x 7→ Eµ∇V + (Eµ∇2V)(x−mµ) ,

38



completing the proof of our desired result.

Proof of Lemma 2.2.2: convexity of the entropy

For the entropy, we follow the same strategy as in the previous proof, differentiating the entropyH
along a particular curve. This time, we will differentiate along the generalized geodesic (µν

t )t∈[0,1] ⊆
BW(Rd), which we define as follows:

Definition 2.2.5. Let T0, T1 be the optimal transport maps for which T0 − id, T1 − id ∈ TνBW(Rd)

and (T0)#ν = µ0 and (T1)#ν = µ1, respectively. Defining Tt := (1− t) T0 + t T1, the generalized

geodesic with basepoint ν and endpoints µ0, µ1 is then the curve of measures (µν
t )t∈[0,1] ⊆ BW(Rd)

with µν
t = (Tt)#ν.

We note that µν
0 = µ0 and µν

1 = µ1, and that (µν
t )t∈[0,1] solves the continuity equation

∂tµ
ν
t + div(µν

t vt) = 0, where vt = (T1 − T0) ◦ T−1
t .

Generalized geodesics were used in the work of Ambrosio, Gigli, and Savaré [5] to study

gradient flows in the Wasserstein space, and have since been useful for various applications of the

theory of Wasserstein gradient flows (see, for instance, Chewi et al. [26], Ahn and Chewi [1], and

Altschuler et al. [3]).

Proof of Lemma 2.2.2. First, we remark that the JKO operator of H over the Wasserstein space

P2(Rd) is derived in Wibisono [94, Example 7] for a Gaussian measure µ = N (µ, Σ), and takes the

form µ′ = N (µ, Σ⋆) where Σ⋆ is defined in the same manner as Equation (2.21). Since µ′ is also an

element of BW(Rd), we conclude that µ′ is also the result of applying the BW JKO operator to µ,

proving our desired closed form. Alternatively, we can consider the following derivation, taking

advantage of the BW calculus we have just defined:

Let ν ∈ BW(Rd) be an arbitrary element of the BW space, and let Tν→µ : Rd → Rd be the

optimal transport map taking ν to µ. The result of Villani [90, Theorem 23.9] states that

[∇W2W2
2 (·, µ)](ν) = 2(id− Tν→µ). (2.27)

Since µ, ν ∈ BW(Rd), we know that Tν→µ is in fact an affine map with positive semidefinite linear
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term, so we can express it in the form

Tν→µ(x) = Sν→µ(x−mν) + bν→µ

for some Sν→µ ∈ Sd
++ and bν→µ ∈ Rd. Hence, we can identify the BW gradient of W2

2 (·, µ) as an

element of TνBW(Rd) as follows:

[∇BWW2
2 (·, µ)](ν) ≡ (Eν∇[δW2

2 (·, µ)](ν), Eν∇2[δW2
2 (·, µ)](ν)) (by Lemma 2.2.3)

=
(
Eν

[
[∇W2W2

2 (·, µ)](ν)
]

, Eν

[
∇[∇W2W2

2 (·, µ)](ν)
])

(by Equation (2.23))

=
(
2Eν

[
id− Tν→µ

]
, 2Eν

[
∇(id− Tν→µ)

])
(by Equation (2.27))

=
(
2(mν −mµ), 2(I − Sν→µ)

)
.

Define

ν⋆ := BWJKOηH(µ) = arg min
ν∈BW(Rd)

{
H(ν) +

1
2η

W2
2 (µ, ν)

}
.

Since ν⋆ attains optimality in the above objective, it satisfies the stationarity condition

∇BW

(
H(ν) +

1
2η

W2
2 (µ, ν)

) ∣∣∣∣
ν=ν⋆

= 0.

Hence, using the formulas for BW gradients we have just derived, we have that

(0, 0) ≡ ∇BWH(ν⋆) +
1

2η

[
∇BWW2

2 (·, µ)
]
(ν⋆)

= (0,−Σ−1
ν⋆ ) +

1
η
(mν⋆ −mµ, I − Sν⋆→µ).

Rearranging, we find that

mν⋆ = mµ

Sν⋆→µ = I − ηΣ−1
ν⋆ .

On the other hand, we have that Σµ = Sν⋆→µΣν⋆Sν⋆→µ , so combining this with the above we obtain
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that

Σµ = (I − ηΣ−1
ν⋆ )

2Σν⋆ .

Solving for Σν⋆ , we find that

Σν⋆ =
1
2
(
Σµ + 2η I +

[
Σµ (Σµ + 4η I)

]1/2) ,

which precisely matches Equation (2.21). Having shown that ν⋆ = N (mµ, Σ⋆), we conclude our

proof of the desired formula for the BW JKO.

Now we demonstrate the desired generalized geodesic convexity inequality for the entropy.

In fact, this claim follows from general results on the Wasserstein space [see, e.g., 5, §9.4], but we

give a proof here for completeness. As mentioned above, to do so we will differentiate H along

the generalized geodesic (µν
t )t∈[0,1] defined above. Abusing notation, we identify a distribution µ

with its density with respect to Lebesgue measure. We then have that

∂2
tH(µν

t ) = ∂2
t

∫
µν

t ln µν
t = ∂2

t

∫
ν ln(µν

t ◦ Tt) = ∂2
t

∫
ν ln

ν

det∇Tt

(since (Tt)#ν = µν
t , change of variable)

= −
∫
(∂2

t ln det∇Tt)dν = −
∫

∂t

〈
[∇Tt]

−1, ∂t∇Tt

〉
dν

= −
∫

∂t

〈
[∇Tt]

−1,∇T1 −∇T0

〉
dν =

∫ 〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉dν

=
〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉 ,

where the last line follows since Tt is an affine map, meaning that ∇Tt is constant on Rd. In

addition, by Brenier’s theorem [91, Theorem 2.12], Tt is the gradient of a convex function for all

t ∈ [0, 1]. Hence, we know that∇Tt ⪰ 0 for all t ∈ [0, 1], meaning that
〈
[∇Tt]−2, (∇T1 −∇T0)2〉 ≥

0. Hence, using Equation (2.26) applied toH, we obtain that

H(µ1)−H(µ0) = ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +
∫ 1

0
(1− t)

〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉dt

≥ ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν .
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This proves the desired inequality for the entropy, and we conclude our proof.

Remark 2.2.6. In fact, we can show a strong convexity inequality for the entropy along generalized

geodesics connecting distributions µ0, µ1 ∈ BW(Rd) with the same mean. Let m0, m1 be the means

of µ0, µ1 respectively, and suppose that Σµ0 , Σµ1 ⪯ λI. We compute that

〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉 = 〈

I, [∇Tt]
−1 (∇T1 −∇T0)

2 [∇Tt]
−1

〉
≥ 1∥∥Σµν

t

∥∥
op

〈
Σν

µt
, [∇Tt]

−1 (∇T1 −∇T0)
2 [∇Tt]

−1
〉

=
1∥∥Σµν
t

∥∥
op

〈
[∇Tt]

−1 Σµν
t
[∇Tt]

−1, (∇T1 −∇T0)
2
〉

=
1∥∥Σµν
t

∥∥
op

〈
Σν, (∇T1 −∇T0)

2〉 .

Since T0 is an affine map, we know that T0(x) − (∇T0) x is a constant for all x ∈ Rd, and

similarly for T1. Hence, we find that if Y ∼ ν, then

∥T1 − T0∥2
ν = Tr(Covν[T1 − T0, T1 − T0]) + ∥Eν[T1 − T0]∥2 (by bias-variance decomposition)

= Tr(Cov[(∇T1 −∇T0)(Y), (∇T1 −∇T0)(Y)]) + ∥m1 −m0∥2 (since T0, T1 are affine)

=
〈
Σν, (∇T1 −∇T0)

2〉+ ∥m1 −m0∥2 . (2.28)

In addition, from Chewi et al. [26, Lemma 10], we know that the operator norm of the covariance

matrix is convex along generalized geodesics in BW(Rd), implying that Σµν
t
⪯ λI for all t ∈ [0, 1].

Thus, we obtain

〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉 ≤ 1∥∥Σµν

t

∥∥
op

〈
Σν, (∇T1 −∇T0)

2〉
=

1∥∥Σµν
t

∥∥
op

(
∥T1 − T0∥2

ν − ∥m1 −m0∥2) (by Equation (2.28))

≥ 1
λ

(
∥T1 − T0∥2

ν − ∥m1 −m0∥2) . (by Chewi et al. [26, Lemma 10])
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Hence, using Equation (2.26) applied toH, we obtain that

H(µ1)−H(µ0) = ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +
∫ 1

0
(1− t)

〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉dt

≥ ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +
1

2λ

(
∥T1 − T0∥2

ν − ∥m1 −m0∥2) .

This implies that the entropy is strongly convex along generalized geodesics between two Gaus-

sians µ0, µ1 ∈ BW(Rd) with the same mean. Similarly, the same computation can be used to show

a smoothness inequality for the entropy along geodesics. As before, we compute that

〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉 = 〈

I, [∇Tt]
−1 (∇T1 −∇T0)

2 [∇Tt]
−1

〉
≤ 1

λmin(Σµν
t
)

〈
Σν

µt
, [∇Tt]

−1 (∇T1 −∇T0)
2 [∇Tt]

−1
〉

=
1

λmin(Σµν
t
)

〈
[∇Tt]

−1 Σµν
t
[∇Tt]

−1, (∇T1 −∇T0)
2
〉

=
1

λmin(Σµν
t
)

〈
Σν, (∇T1 −∇T0)

2〉
=

1
λmin(Σµν

t
)

(
∥T1 − T0∥2

ν − ∥m1 −m0∥2)
≤ 1

λmin(Σµν
t
)
∥T1 − T0∥2

ν .

Once again using Equation (2.26) applied toH, we obtain that

H(µ1)−H(µ0) = ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +
∫ 1

0
(1− t)

〈
[∇Tt]

−2, (∇T1 −∇T0)
2〉dt

≤ ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +
∫ 1

0

1− t
λmin(Σµν

t
)
∥T1 − T0∥2

ν dt . (2.29)

As a corollary of Inequality 2.29, we obtain a smoothness inequality for the entropy along

geodesics, which will be useful for our subsequent analysis.

Lemma 2.2.7 (Smoothness of entropy along geodesics). Suppose that µ0, µ1 ∈ BW(Rd) satisfy

Σ−1
µ0

, Σ−1
µ1
⪯ γI. Then if T is the optimal transport map from µ0 to µ1, we have that

H(µ1)−H(µ0) ≤ ⟨∇BWH(µ0), T − id⟩µ0
+

γ

2
∥T − id∥2

µ0
.
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Proof. We apply Inequality 2.29 with ν = µ0, noting in this case that T1 = T and T0 = id, and

that (µν
t )t∈[0,1] is precisely the constant-speed geodesic (µt)t∈[0,1] connecting µ0, µ1. Furthermore,

by Altschuler et al. [3, Appendix B], we know that λmin is concave along geodesics, so λmin(Σµt) ≥
γ−1 I for all t. Hence, we obtain

H(µ1)−H(µ0) ≤ ⟨∇BWH(µ0), T − id⟩µ0
+

∫ 1

0

1− t
λmin(Σµt)

∥T − id∥2
µ0

dt

≤ ⟨∇BWH(µ0), T − id⟩µ0
+

∫ 1

0

1− t
γ−1 ∥T − id∥2

µ0
dt

= ⟨∇BWH(µ0), T − id⟩µ0
+

γ

2
∥T − id∥2

µ0
,

proving the desired result.

2.3 From Euclidean to Bures–Wasserstein

Having defined the core vocabulary of optimization, we are now well-positioned to translate the

Euclidean optimization toolkit to the setting of the BW space. Here in Table 2.1, we collect the

relations between key concepts covered in Sections 2.1 and 2.2, comprising a “dictionary” between

the Euclidean and Bures–Wasserstein spaces.
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Concept Euclidean space BW space
squared
distance

vectors x, y ∈ Rn

squared Euclidean dist ∥x− y∥2
measures µ, ν ∈ BW(Rd)
squared W2 dist W2

2 (µ, ν)

geodesic
Section 2.2.2

curve (xt)t∈[0,1] ⊆ Rd

xt = tx1 + (1− t)x0

curve (µt)t∈[0,1] ⊆ BW(Rd)

endpoints µ0, µ1 ∈ BW(Rd)
T is OT map from µ0 to µ1

µt = (Tt)#µ0, where Tt := (1− t) id + t T

generalized
geodesic

Section 2.2.4
same as above

curve (µν
t )t∈[0,1] ⊆ BW(Rd)

basepoint ν ∈ BW(Rd), endpoints µ0, µ1 ∈ BW(Rd)
T0, T1 are OT maps from ν to µ0, µ1

µν
t = (Tt)#ν, where Tt := (1− t) T0 + t T1

constant-speed
curve

Section 2.2.4
same as above

curve (µt)t∈[0,1] ⊆ BW(Rd)

endpoints µ0, µ1 ∈ BW(Rd)
h is affine map, h#µ0 = µ1

µt = (ht)#µ0, where ht := (1− t) id + t h

β-smoothness
Equation (2.1)

Equation (2.15)
Lemma 2.2.7

V : Rd → R diff’able

Equivalent forms:

−βI ⪯ ∇2V ⪯ βI

for all x, h ∈ Rd,
|V(x + h)−V(x)− ⟨∇V(x), h⟩| ≤ β

2 ∥h∥2

for all x0, x1 ∈ Rd,
V(x1) ≤ V(x0) + ⟨∇V(x0), x1 − x0⟩+ β

2 ∥x1 − x0∥2

V : BW(Rd)→ R diff’able

Over constant-speed curves:∣∣V((id + h)#µ)− V(µ)− ⟨∇BWV(µ), h⟩µ
∣∣ ≤ β

2 ∥h∥2
µ

for all µ ∈ BW(Rd) and h ∈ Rd → Rd affine

Over geodesics (µt)t∈[0,1]:
V(µ1) ≤ V(µ0) + ⟨∇BWV(µ0), T − id⟩µ0

+ β
2 ∥T − id∥2

µ0
where T is the OT map from µ0 to µ1

Over generalized geodesics (µν
t )t∈[0,1]:

V(µ1) ≤ V(µ0) + ⟨∇BWV(µ0) ◦ T0, T1 − T0⟩ν +
β
2 ∥T1 − T0∥2

ν
where T0, T1 are the OT maps from ν to µ0 to µ1

α-convexity
Equation (2.6)
Lemma 2.2.2
Lemma 2.2.4
Remark 2.2.6

V : Rd → R diff’able

Equivalent forms:

αI ⪯ ∇2V
(α-strongly convex if α > 0)

for all x0, x1 ∈ Rd,
V(x1) ≥ V(x0) + ⟨∇V(x0), x1 − x0⟩+ α

2 ∥x1 − x0∥2

V : BW(Rd)→ R diff’able

Over constant-speed curves:
V((id + h)#µ) ≥ V(µ) + ⟨∇BWV(µ), h⟩µ + α

2 ∥h∥2
µ

for all µ ∈ BW(Rd) and h ∈ Rd → Rd affine

Over geodesics (µt)t∈[0,1]:
V(µ1) ≥ V(µ0) + ⟨∇BWV(µ0), T − id⟩µ0

+ α
2 ∥T − id∥2

µ0
where T is the OT map from µ0 to µ1

Over generalized geodesics (µν
t )t∈[0,1]:

V(µ1) ≥ V(µ0) + ⟨∇BWV(µ0) ◦ T0, T1 − T0⟩ν + α
2 ∥T1 − T0∥2

ν
where T0, T1 are the OT maps from ν to µ0 to µ1

gradient
Section 2.2.2

diff’able f : Rd → R

∇ f (x) : Rd → Rd
diff’able F : BW(Rd)→ R

∇BWF (µ) : x 7→ (Eµ∇2δF )(x−mµ) + Eµ∇δF
gradient

step
Equation (2.4)

step size η > 0, xk ∈ Rd,
function f : Rd → R

xk+1 = xk − η∇ f (xk)

step size η > 0, µk ∈ BW(Rd),
functional F : BW(Rd)→ R

µk+1 = expµk
(−η∇BWF (µk))

proximal
operator

Equation (2.8)
Equation (2.18)

step size η > 0, x ∈ Rd,
function f : Rd → R

proxη f (x) := arg miny∈Rd

{
f (y) + 1

2η ∥x− y∥2
} step size η > 0, µk ∈ BW(Rd),

functional F : BW(Rd)→ R

BWJKOηF (µ) := arg minν∈BW(Rd)

{
F (ν) + 1

2η W2
2 (µ, ν)

}

Table 2.1: The dictionary between Euclidean space and Bures–Wasserstein space.
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Chapter 3

Algorithms and Guarantees

In this chapter, we will translate classical algorithms and proofs in Euclidean optimization to the

BW setting, making extensive use of the Euclidean-BW dictionary laid out in Table 2.1. Our work

culminates in the development of a suite of implementable algorithms for Gaussian VI (Algo-

rithms 4 and 5) with state-of-the-art convergence guarantees.

3.1 Algorithms for Euclidean optimization

We begin by considering classical algorithms for optimization of a function f : Rd → R over Eu-

clidean space, and present crisp proofs of their convergence guarantees via a unifying analytical

tool which we call a one-step inequality, which is found in the literature on analyses of stochas-

tic forward-backward methods [34]. For the iterates {xk}N
k=0 of our optimization algorithms of

interest, this inequality takes the generic form of a guarantee

∥xk+1 − y∥2 ≤ (1− αη) ∥xk − y∥2 − 2η( f (xk+1)− f (y)) + η2σ2
k ,

where y ∈ Rd is arbitrary, η > 0 denotes a chosen step size, α is a strong convexity parameter,

and σ2
k denotes a bound on the variance of a gradient estimate at iteration k. As we demonstrate,

the one-step inequality is obtainable for our optimization algorithms of interest under appropriate

conditions on f . Furthermore, the desirable convergence properties of these algorithms all arise as

a consequence of satisfying this inequality. The gift of this analysis is that it allows for translation,
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Algorithm 1 Gradient descent (GD) and stochastic gradient descent (SGD)

Require: Step size η > 0; iteration count N; initial point x0 ∈ Rd

for k = 0 to N − 1 do
if gradient descent then

vk ← ∇ f (xk)
else if stochastic gradient descent then

query unbiased gradient oracle for an estimate ĝk of ∇ f (xk)
vk ← ĝk

end if
xk+1 ← xk − ηvk

end for
output xN

via Table 2.1, to the setting of the BW space, hence presenting a direct link between the analysis of

Euclidean and BW optimization.

3.1.1 (Stochastic) gradient descent

We revisit the setting of Equation (2.3), where we are given a β-smooth function f : Rd → R

(meaning that −βI ⪯ ∇2 f ⪯ βI) and seek to optimize the objective

min
x∈Rd
{ f (x)} . (3.1)

In this case, we can apply the method of gradient descent, which is detailed in Algorithm 1.

We denote by x⋆ a minimizer of the objective function, and we let Fk denote the σ-algebra

generated up to iteration k.

We can study the convergence of gradient descent under a variety of different settings, de-

pending on the properties of f . Additional assumptions on f strengthen the guarantees obtained.

Given α ∈ R, f is α-convex if αI ⪯ ∇2 f . If α = 0, then f is said to be convex, and if α > 0, then f

is said to be α-strongly convex.

For either algorithm (GD or SGD), define the (random) error term ek as equal to ek = vk −
∇ f (xk), where vk is defined in Algorithm 1, and denote its expected squared norm by σ2

k :=

E[∥ek∥2 | Fk]. The expectation is taken over the randomness of the gradient oracle (which is exact

in the case of GD).

Since the gradient oracle is unbiased by assumption, we have E[ek | Fk] = 0, so σ2
k rep-
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resents the conditional variance of the gradient estimate at iteration k. For GD, we have that

ek = ∇ f (xk)−∇ f (xk) = 0, and hence σk = 0.

Our analysis of (S)GD hinges on the following one-step inequality:

Lemma 3.1.1 (One-step inequality for (S)GD). Suppose that f : Rd → R is α-convex and β-smooth,

so that αI ⪯ ∇2 f ⪯ βI. Let (xk)k∈N be the iterates of gradient descent or stochastic gradient descent

(Algorithm 1). Let η be such that 0 < η ≤ 1
β . Then, for all y ∈ Rd, we have that

E ∥xk+1 − y∥2 ≤ (1− αη)E ∥xk − y∥2 − 2η E[ f (xk+1)− f (y)] + 2η2 Eσ2
k . (3.2)

The key idea of this proof is to decompose the difference f (xk+1)− f (y) as the sum of two

terms:

f (xk+1)− f (y) = [ f (xk)− f (y)] + [ f (xk+1)− f (xk)].

These individual terms may then be controlled using the α-convexity and β-smoothness of f ,

respectively.

Proof. Using the above decomposition, we have that

E[ f (xk+1)− f (y)] = E[ f (xk)− f (y)] + E[ f (xk+1)− f (xk)]

≤ E[⟨∇ f (xk), xk − y⟩]− α

2
E ∥xk − y∥2 (by α-convexity)

+ E[⟨∇ f (xk), xk+1 − xk⟩] +
β

2
E ∥xk+1 − xk∥2 (by β-smoothness)

= −α

2
E ∥xk − y∥2 + E ⟨∇ f (xk), xk+1 − y⟩+ β

2
E ∥xk+1 − xk∥2

= −α

2
E ∥xk − y∥2 −E ⟨ek, xk+1 − y⟩ − 1

η
E ⟨xk+1 − xk, xk+1 − y⟩

+
β

2
E ∥xk+1 − xk∥2 (by Algorithm 1 and defn of ek)

=
1

2η
(1− αη)E ∥xk − y∥2 + ηE ∥ek∥2 (rearranging, defn of ek, Eek = 0)

+
1

2η
E
[

βη ∥xk+1 − xk∥2 − ∥xk − y∥2 − 2 ⟨xk+1 − xk, xk+1 − y⟩
]

≤ 1
2η

(1− αη)E ∥xk − y∥2 + ηEσ2
k +

1
2η

E ∥xk − y∥2 . (βη ≤ 1, defn of σk)
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Multiplying both sides of the inequality by 2η and rearranging, we obtain the desired result.

The one-step inequality is a powerful analytical tool which unifies convergence analysis.

Through this single inequality, we can already deduce the key convergence properties of (S)GD

under different sets of assumptions on f , as we do in the sequel.

3.1.2 Convergence guarantees for (S)GD

Guarantees for GD

By setting σk = 0 in Lemma 3.1.1, we obtain a number of convergence guarantees for GD. We first

consider the case where f is also convex.

Theorem 3.1.2 (Convex case, GD). Suppose that f : Rd → R is convex and β-smooth and that 0 < η ≤
1
β . Then for any N ∈N, we have that

f (xN)− f (x⋆) ≤
∥x0 − x⋆∥2

2Nη
.

In particular, when η = 1
β and N ≳ β∥x0−x⋆∥2

ε2 , we obtain the guarantee

f (xN)− f (x⋆) ≤ ε2.

Proof. Since f is convex, Equation (3.2) holds with the choice α = 0. Furthermore, we may drop the

expectations, since in this case the algorithm is deterministic. Applying the resulting inequality

with y = xk, we obtain that

f (xk+1)− f (xk) ≤ −
∥xk+1 − xk∥2

2η
≤ 0. (3.3)

On the other hand, choosing y = x⋆, we have

f (xk+1)− f (x⋆) ≤
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

2η
.

50



Telescoping this inequality, we deduce that

f (xN)− f (x⋆) ≤
1
N

N

∑
k=1

[ f (xk)− f (x⋆)] ≤
1

2ηN

N−1

∑
k=0

[∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2] ≤ ∥x0 − x⋆∥2

2ηN
,

where the first inequality holds by Inequality 3.3. Hence, with the choice

η =
1
β

, and N ≳
β ∥x0 − x⋆∥2

ε2 ,

we obtain the guarantee f (xN)− f (x⋆) ≤ ε2, proving our desired result.

When the objective is α-strongly convex, we in fact obtain a linear rate of convergence:

Theorem 3.1.3 (Strongly convex case, GD). Suppose that f is α-strongly convex and β-smooth, and that

0 < η ≤ 1
β . Then,

∥xN − x⋆∥2 ≤ exp(−Nαη) ∥x0 − x⋆∥2 .

In particular, when η = 1
β and N ≳ β

α log
√

α∥x0−x⋆∥2

ε2 , we obtain the guarantees

α ∥xN − x⋆∥2 ≤ ε2, and f (x2N)− f (x⋆) ≤ ε2.

Proof. Since f (x⋆) ≤ f (xk+1) as x⋆ is the minimizer of f , we may iterate Equation (3.2) to obtain

∥xN − x⋆∥2 ≤ exp(−Nαη) ∥x0 − x⋆∥2 .

Hence, with the choice

η =
1
β

, and N ≳
1

αη
log

α ∥x0 − x⋆∥2

ε2 ≍ β

α
log

α ∥x0 − x⋆∥2

ε2 ,

we obtain the guarantee α ∥xN − x⋆∥2 ≤ ε2.

Now, for the guarantee in objective gap, we “reinitialize” the algorithm at xN and apply the

result of Theorem 3.1.2. This argument is inspired by Durmus, Majewski, and Miasojedow [32].

With the same choice of N and η and assuming ε is sufficiently small, we can apply Theorem 3.1.2
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to obtain the guarantee

f (x2N)− f (x⋆) ≤
∥xN − x⋆∥2

2ηN
≤ ε2

2αηN
≲

ε2

log α∥x0−x⋆∥2

ε2

≲ ε2 ,

proving our desired result.

When f is non-convex, we cannot guarantee convergence to the global minimizer x⋆ in gen-

eral. However, from the one-step inequality, we can obtain a stationary point guarantee which

states that the norm of ∇ f (xN) grows small with the number of iterations. This is the canonical

“convergence” metric for optimization of non-convex functions [65].

Theorem 3.1.4 (Non-convex case, GD). Suppose that f is β-smooth and that 0 < η ≤ 1
β . Let ∆ :=

f (x0)− f (x⋆). Then,

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ 2∆
ηN

.

In particular, when η = 1
β and N ≳ β∆

ε2 , we obtain the guarantee

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ ε2 . (3.4)

Proof. Applying Lemma 3.1.1 with the choice α = −β and y = xk, we obtain that

∥xk+1 − xk∥2 ≤ −2η[ f (xk+1)− f (xk)].

Telescoping this inequality, we find that

min
k∈{0,...,N−1}

∥xk+1 − xk∥2 ≤ 1
N

N−1

∑
k=0
∥xk+1 − xk∥2

≤ −2η

N

N−1

∑
k=0

[ f (xk+1)− f (xk)]

= −2η

N
[ f (xN)− f (x0)]

≤ 2η∆
N

.

52



Hence, we conclude that

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 = min
k∈{0,...,N−1}

1
η2 ∥xk+1 − xk∥2 ≤ 2∆

Nη
.

Finally, taking η = 1
β and N ≥ 2β∆

ε2 , we obtain that

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ ε2 ,

as desired.

3.1.3 Guarantees for SGD

In the setting of SGD, the additional noise term σ2
k arising from the variance of the gradient es-

timate significantly affects the convergence analysis. We must assume some bound on the noise,

say σ2
k ≤ σ2, in order to have any hope of bounding the distance to the minimizer or the objective

gap. This bound need not be uniform in general, but to simplify the presentation we consider the

case where σ2 uniformly bounds σ2
k for all k. Given this noise bound, we can obtain guarantees in

expectation for the iterates. First, we consider the convex case.

Theorem 3.1.5 (Convex case, SGD). Suppose that f is convex and β-smooth and that 0 < η ≤ 1
β . If

σ2
k ≤ σ2 for all k, then

E

[
min

k∈{1,...,N}
f (xk)

]
− f (x⋆) ≤

2 ∥x0 − x⋆∥2

Nη
+ ησ2.

In particular, with

η ≍ ε2

σ2 ∧
1
β

, and N ≳
∥x0 − x⋆∥2

ε2

(
σ2

ε2 ∨ β

)
,

we obtain the guarantee

E

[
min

k∈{1,...,N}
f (xk)

]
− f (x⋆) ≤ ε2.

Proof. Since f is convex, Equation (3.2) holds with the choice α = 0. Assuming also that we have

53



the uniform bound σ2
k ≤ σ2, we may apply the resulting inequality with y = x⋆ to obtain that

E[ f (xk+1)]− f (x⋆) ≤
E[∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2] + 2η2σ2

2η
.

Telescoping this inequality, we deduce that

E

[
min

k∈{1,...,N}
f (xk)

]
− f (x⋆) ≤

1
N

N

∑
k=1

E[ f (xk)− f (x⋆)]

≤ 1
2ηN

N−1

∑
k=0

[E[∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2] + 2η2σ2]

≤ ∥x0 − x⋆∥2

2ηN
+ ησ2.

Hence, with the choice

η =
ε2

2σ2 ∧
1
β

, and N ≳
∥x0 − x⋆∥2

ηε2 ≍ ∥x0 − x⋆∥2

ε2

(
σ2

ε2 ∨ β

)
,

we obtain the guarantee

E

[
min

k∈{1,...,N}
f (xk)

]
− f (x⋆) ≤ ε2,

proving our desired result.

Similarly to GD, we obtain faster rates when f is α-strongly convex:

Theorem 3.1.6 (Strongly convex case, SGD). Suppose that f is α-strongly convex and β-smooth, and

that 0 < η ≤ 1
β . If σ2

k ≤ σ2 for all k, then

E ∥xN − x⋆∥2 ≤ exp (−Nαη) ∥x0 − x⋆∥2 + 2
ησ2

α
.

In particular, with

η ≍ ε2

σ2 ∧
1
β

, and N ≳
σ2

αε2 log
α ∥x0 − x⋆∥2

ε2 ,
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we obtain the guarantees

αE ∥xN − x⋆∥2 ≤ ε2, and E

[
min

k∈{1,...,2N}
f (xk)

]
− f (x⋆) ≤ ε2 .

Proof. Since f (x⋆) ≤ f (xk+1) as x⋆ is the minimizer of f , we may iterate Equation (3.2) to obtain

E ∥xN − x⋆∥2 ≤ exp(−Nαη) ∥x0 − x⋆∥2 + 2
ησ2

α
.

Hence, with the choice

η =
ε2

4σ2 ∧
1
β

, and N ≳
1

αη
log

α ∥x0 − x⋆∥2

ε2 ≍ σ2

αε2 log
α ∥x0 − x⋆∥2

ε2 ,

we obtain the guarantee αE ∥xN − x⋆∥2 ≤ ε2.

Now, for the guarantee in objective gap, we “reinitialize” the algorithm at xN and apply the

result of Theorem 3.1.5. With the same choice of N and η and assuming ε is sufficiently small, we

can apply Theorem 3.1.5 to obtain the guarantee

E

[
min

k∈{1,...,2N}
f (xk)

]
− f (x⋆) ≤ E

[
min

k∈{N+1,...,2N}
f (xk)

]
− f (x⋆)

≤ E ∥xN − x⋆∥2

2ηN
+ ησ2

≲ ε2 ,

proving our desired result.

Gradient descent and its stochastic variant are only able to handle the case when f is β-

smooth. Intuitively, if f is not β-smooth, then in some regions of space the gradient may fluctuate

too wildly for a gradient evaluation at a single point to give any information about the objective

function in a non-vanishing neighborhood. However, as we alluded to in Section 2.1, the (stochas-

tic) proximal gradient algorithm provides a remedy in the case where the objective has a composite

structure. We detail the algorithm and its guarantees below.
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Algorithm 2 Proximal gradient (PG) and stochastic proximal gradient (SPG)

Require: Step size η > 0; iteration count N; initial point x0 ∈ Rd

for k = 0 to N − 1 do
if proximal gradient then

vk ← ∇V(xk)
else if stochastic proximal gradient then

query unbiased gradient oracle for an estimate ĝk of ∇V(xk)
vk ← ĝk

end if
xk+ 1

2
← xk − ηvk

xk+1 ← proxηH(xk+ 1
2
)

end for
output xN

3.1.4 (Stochastic) proximal gradient

We revisit the setting of Equation (2.7), where we are given a composite objective function f =

V + H, where V : Rd → R is β-smooth and H : Rd → R is convex but potentially non-smooth:

min
x∈Rd
{ f (x)} = min

x∈Rd
{V(x) + H(x)} . (3.5)

Suppose we have access to the proximal operator of ηH, defined in Equation (2.8) by

proxηH(x) := arg min
y∈Rd

{
H(y) +

1
2η
∥x− y∥2

}
.

Given access to this operator along with a gradient oracle for V, we can apply the proximal gradient

algorithm, which is detailed in Algorithm 2.

Analogously to the setting of (S)GD, we denote by x⋆ a minimizer of the objective function f ,

and we let Fk denote the σ-algebra generated up to iteration k. We can study the convergence of

gradient descent under a variety of different settings, this time depending on the properties of V.

For either algorithm (PG and SPG), define the (random) error term ek as equal to ek = vk −
∇V(xk), where vk is defined in Algorithm 2, and denote its expected squared norm by σ2

k :=

E[∥ek∥2 | Fk]. The expectation is taken over the randomness of the gradient oracle for V (which

is exact in the case of PG). As in the setting of (S)GD, we have E[ek | Fk] = 0, so σ2
k represents the

conditional variance of the gradient estimate at iteration k. For PG, we have that ek = ∇V(xk)−
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∇V(xk) = 0, and hence σk = 0.

Once again, our analysis of (S)PG hinges on proving a one-step inequality:

Lemma 3.1.7 (One-step inequality for (S)PG). Suppose that f = V + H where V : Rd → R is α-convex

and β-smooth, so that αI ⪯ ∇2V ⪯ βI, and where H : Rd → R is convex (but not necessarily smooth).

Let (xk)k∈N be the iterates of proximal gradient or stochastic proximal gradient (Algorithm 1). Let η be

such that 0 < η ≤ 1
β . Then, for all y ∈ Rd, we have that

E ∥xk+1 − y∥2 ≤ (1− αη)E ∥xk − y∥2 − 2η E[ f (xk+1)− f (y)] + 2η2 Eσ2
k . (3.6)

The key idea of this proof is analogous to that of Lemma 3.1.1, except we now decompose the

difference f (xk+1)− f (y) as the sum of three terms:

f (xk+1)− f (y) = [V(xk)−V(y)] + [V(xk+1)−V(xk)] + [H(xk+1)− H(y)].

These individual terms may then be controlled using the α-convexity and β-smoothness of V and

the convexity of H, respectively.

Proof. First, we consider the term V(xk+1)−V(y). We have that

E[V(xk+1)−V(y)] = E[V(xk)−V(y)] + E[V(xk+1)−V(xk)]

= E[⟨∇V(xk), xk − y⟩]− α

2
E ∥xk − y∥2 (by α-convexity)

+ E[⟨∇V(xk), xk+1 − xk⟩] +
β

2
E ∥xk+1 − xk∥2 (by β-smoothness)

= −α

2
E ∥xk − y∥2 + E ⟨∇V(xk), xk+1 − y⟩+ β

2
E ∥xk+1 − xk∥2

= −α

2
E ∥xk − y∥2 −E ⟨ek, xk+1 − y⟩ − 1

η
E
〈

xk+ 1
2
− xk, xk+1 − y

〉
+

β

2
E ∥xk+1 − xk∥2 (by Algorithm 2 and defn of ek)

=
1

2η
(1− αη)E ∥xk − y∥2 −E ⟨ek, xk+1 − y⟩ (rearranging)

+
1

2η
E
[

βη ∥xk+1 − xk∥2 − ∥xk − y∥2 − 2
〈

xk+ 1
2
− xk, xk+1 − y

〉]
≤ 1

2η
(1− αη)E ∥xk − y∥2 −E ⟨ek, xk+1 − y⟩

57



+
1

2η
E
[
∥xk+1 − xk∥2 − ∥xk − y∥2 − 2

〈
xk+ 1

2
− xk, xk+1 − y

〉]
.

(βη ≤ 1, defn of σk)

Now we bound the difference in H. We have that

E[H(xk+1)− H(y)] ≤ E ⟨∇H(xk+1), xk+1 − y⟩ (convexity of H)

= − 1
η

E
〈

xk+1 − xk+ 1
2
, xk+1 − y

〉
(by proximal step in Algorithm 2)

=
1

2η
E

[∥∥∥xk+ 1
2
− y

∥∥∥2
−

∥∥∥xk+1 − xk+ 1
2

∥∥∥2
− ∥xk+1 − y∥2

]
.

Now, we sum the above inequalities to obtain our desired bound on E[ f (xk+1)− f (y)]. We obtain

that

E[ f (xk+1)− f (y)] = E[V(xk+1)−V(y)] + E[H(xk+1)− H(y)]

≤ 1
2η

E[(1− αη) ∥xk − y∥2 − ∥xk+1 − y∥2]

+
1

2η
E[∥xk+1 − xk∥2 − ∥xk − y∥2 +

∥∥∥xk+ 1
2
− y

∥∥∥2
−

∥∥∥xk+1 − xk+ 1
2

∥∥∥2
]

− 1
η

E
〈

xk+ 1
2
− xk, xk+1 − y

〉
−E ⟨ek, xk+1 − y⟩

=
1

2η
E[(1− αη) ∥xk − y∥2 − ∥xk+1 − y∥2]−E ⟨ek, xk+1 − y⟩ .

Finally, it remains to bound the error term on the last line. To do this, we define auxiliary variables

xk+ 1
2
, xk+1, which keep track of the “ideal” iterates generated using a noiseless gradient oracle:

xk+ 1
2

:= xk − η∇V(xk), xk+1 := proxηH(xk+ 1
2
).

A classical fact property of the proximal operator is that it is nonexpansive [71], meaning that for

any u, v ∈ Rd, we have

∥u− v∥2 ≥
〈

u− v, proxηH(u)− proxηH(v)
〉

.
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Hence, combining this with the fact that

ηek = η(vk −∇V(xk)) = xk+ 1
2
− xk+ 1

2
,

we deduce that

η ∥ek∥2 =
1
η

∥∥∥xk+ 1
2
− xk+ 1

2

∥∥∥2
≥ 1

η

〈
xk+ 1

2
− xk+ 1

2
, xk+1 − xk+1

〉
= − ⟨ek, xk+1 − xk+1⟩ .

Now, this implies that

E ⟨ek, xk+1 − y⟩ = E [E [⟨ek, xk+1 − y⟩ | xk]]

= E [E [⟨ek, xk+1 − xk+1⟩ | xk]] (since ek ⊥⊥ (xk+1, y) | xk)

= E ⟨ek, xk+1 − xk+1⟩

≥ −ηE ∥ek∥2

≥ −ησ2
k .

Hence, we conclude that

E[ f (xk+1)− f (y)] ≤ 1
2η

E[(1− αη) ∥xk − y∥2 − ∥xk+1 − y∥2]−E ⟨ek, xk+1 − y⟩

≤ 1
2η

E[(1− αη) ∥xk − y∥2 − ∥xk+1 − y∥2] + ησ2,

and rearranging proves the desired result.

Having shown a one-step inequality for f along the iterates of Algorithm 2, we automatically

obtain a variety of convergence guarantees depending on the properties of V. Since nothing be-

yond the one-step inequality was assumed for the proofs of Theorem 3.1.2 and Theorem 3.1.3 (for

GD), Theorem 3.1.5 and Theorem 3.1.6 (for SGD), we immediately attain analogous convergence

guarantees for (S)PG with no additional work. And with only a slight change in the analysis, we

will also be able to prove a stationary point guarantee in terms of bounding the squared norm of

the gradient for PG, as we do in the sequel.
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3.1.5 Convergence guarantees for (S)PG

Guarantees for PG

By setting σk = 0 in Lemma 3.1.7, we obtain convergence guarantees for proximal gradient analo-

gous to those for gradient descent.

Lemma 3.1.8 (Convex case, PG). Suppose that f = V + H where V : Rd → R is convex and β-smooth,

and where H : Rd → R is convex (but not necessarily smooth). Suppose that 0 < η ≤ 1
β . Then for any

N ∈N, we have that

f (xN)− f (x⋆) ≤
∥x0 − x⋆∥2

2Nη
.

In particular, when η = 1
β and N ≳ β∥x0−x⋆∥2

ε2 , we obtain the guarantee

f (xN)− f (x⋆) ≤ ε2.

Proof. Given that the one step inequality Lemma 3.1.7 holds with α = 0, the proof is entirely

identical to the one for gradient descent (Theorem 3.1.2).

When V is α-strongly convex, we once again obtain a linear rate of convergence:

Theorem 3.1.9 (Strongly convex case, PG). Suppose that f = V + H where V : Rd → R is α-strongly

convex and β-smooth, and where H : Rd → R is convex (but not necessarily smooth). Suppose that

0 < η ≤ 1
β . Then for any N ∈N, we have that

∥xN − x⋆∥2 ≤ exp(−Nαη) ∥x0 − x⋆∥2 .

In particular, when η = 1
β and N ≳ β

α log ∥x0−x⋆∥
ε , we obtain the guarantees

α ∥xN − x⋆∥2 ≤ ε2, and f (x2N)− f (x⋆) ≤ ε2.

Proof. Given that the one step inequality Lemma 3.1.7 holds with convexity parameter α, the proof

is entirely identical to the one for gradient descent (Theorem 3.1.3).
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When V is non-convex, we once again cannot guarantee convergence to the global minimizer

x⋆. But we can hope to still obtain a “stationary point” guarantee: if the step size η is sufficiently

small, Algorithm 2 ought to converge to something, so intuitively ∥xk+1 − xk∥2 should converge to

0 as the number of iterations k is sent to infinity. However, unlike in the case of gradient descent

where xk+1 − xk is directly interpretable in terms of ∇ f (xk), such a relation is no longer true for

Algorithm 2 due to the additional proximal step. In general, if H is non-smooth, we cannot hope

to bound ∥∇ f (xk)∥ in terms of ∥xk+1 − xk∥ in Algorithm 2. However, if we additionally assume

that H is smooth, then we can indeed obtain a stationary point guarantee for PG from the one-step

inequality.

Theorem 3.1.10 (Non-convex case, PG). Suppose that f = V + H where V : Rd → R is β-smooth, and

where H : Rd → R is convex and also β-smooth. Suppose that 0 < η ≤ 1
β , and define ∆ := f (x0)− f (x⋆).

Then for any N ∈N, we have that

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ 8∆
ηN

.

In particular, when η = 1
β and N ≳ β∆

ε2 , we obtain the guarantee

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ ε2 . (3.7)

Proof. We proceed identically to the analysis in Theorem 3.1.4, obtaining the inequality

min
k∈{0,...,N−1}

1
η2 ∥xk+1 − xk∥2 ≤ 2∆

Nη
.

Now, we have that

1
2
∥∇ f (xk)∥2 =

1
2
∥∇V(xk) +∇H(xk)∥2

≤ ∥∇V(xk) +∇H(xk+1)∥2 + ∥∇H(xk+1)−∇H(xk)∥2

(by triangle inequality and Cauchy-Schwarz)

≤ ∥∇V(xk) +∇H(xk+1)∥2 + β2 ∥xk+1 − xk∥2

(since β-smoothness implies ∇H is β-Lipschitz)
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=

(
1
η2 + β2

)
∥xk+1 − xk∥2 . (since xk − xk+1 = η(∇V(xk) +∇H(xk+1)) for PG)

Hence, we conclude that

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ min
k∈{0,...,N−1}

4
η2 ∥xk+1 − xk∥2 ≤ 8∆

Nη
.

Finally, taking η = 1
β and N ≥ 8β∆

ε2 , we obtain that

min
k∈{0,...,N−1}

∥∇ f (xk)∥2 ≤ ε2 ,

as desired.

Guarantees for SPG

Just as in the setting of SGD, given some bound on the noise, say σ2
k ≤ σ2, we can obtain guarantees

in expectation for the iterates. First, we consider the convex case.

Theorem 3.1.11 (Convex case, SPG). Suppose that f = V + H where V : Rd → R is convex and β-

smooth, and where H : Rd → R is convex (but not necessarily smooth). Suppose that 0 < η ≤ 1
β . If

σ2
k ≤ σ2 for all k, then for any N ∈N, we have that

E

[
min

k∈{1,...,N}
f (xk)

]
− f (x⋆) ≤

2 ∥x0 − x⋆∥2

Nη
+ 2ησ2.

In particular, with

η ≍ ε2

σ2 ∧
1
β

, and N ≳
∥x0 − x⋆∥2

ε2

(
σ2

ε2 ∨ β

)
,

we obtain the guarantee

E

[
min

k∈{1,...,N}
f (xk)

]
− f (x⋆) ≤ ε2.

Proof. Given that the one step inequality Lemma 3.1.7 holds with α = 0, the proof is entirely

identical to the one for stochastic gradient descent (Theorem 3.1.5).
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Similarly, we obtain faster rates when V is α-strongly convex:

Theorem 3.1.12 (Strongly convex case, SPG). Suppose that f = V + H where V : Rd → R is α-

strongly convex and β-smooth, and where H : Rd → R is convex (but not necessarily smooth). Suppose

that 0 < η ≤ 1
β . If σ2

k ≤ σ2 for all k, then

E ∥xN − x⋆∥2 ≤ exp (−Nαη) ∥x0 − x⋆∥2 + 2
ησ2

α
.

In particular, with

η ≍ ε2

σ2 ∧
1
β

, and N ≳
σ2

α
log

α ∥x0 − x⋆∥
ε

,

we obtain the guarantees

α E ∥xN − x⋆∥2 ≤ ε2, and E

[
min

k∈{1,...,2N}
f (xk)

]
− f (x⋆) ≤ ε2 .

Proof. Given that the one step inequality Lemma 3.1.7 holds with convexity parameter α, the proof

is entirely identical to the one for gradient descent (Theorem 3.1.6).

Finally, we consider an extension of Algorithms 1 and 2 to the setting of variance reduction,

as introduced in Section 2.1. In this case, f (resp. V) admits a representation as the average of

many component functions fi : Rd → R (resp. Vi), which are each strongly convex and smooth.

If m is large, the update equations of gradient descent (2.4) and proximal gradient (2.9) may be

computationally expensive, as computing the gradient of f requires evaluating ∇ fi for each i =

1, . . . , m. On the other hand, taking the unbiased gradient estimate to equal ∇ fi with i ∈ Unif[m]

results in cheap iteration complexity but high variance of the gradient estimate, resulting in a slow

rate of convergence. The approach of Stochastic Variance Reduced Gradient (SVRG) [42] and its

proximal analogue Prox-SVRG [95] performs a slight modification of Algorithms 1 and 2 using a

centering sequence that is updated infrequently and yet reduces variance of the gradient estimate,

hence leveraging the best of both worlds and obtaining an improved complexity guarantee. To

simplify the presentation, we will restrict our attention to Prox-SVRG. SVRG can be thought of as

a special case of Prox-SVRG by taking H ≡ 0.
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3.1.6 Prox-SVRG

We once again revisit the setting of Equation (2.7), where we are given a composite objective func-

tion f = V + H, where V : Rd → R is β-smooth and H : Rd → R is convex but potentially

non-smooth:

min
x∈Rd
{ f (x)} = min

x∈Rd
{V(x) + H(x)} . (3.8)

In addition, we assume that V is α-strongly convex and can be written as the mean of m convex

component functions Vi : Rd → R, so that

V(x) =
1
m

m

∑
i=1

Vi(x).

Given access to the proximal operator for H along with gradient oracles for each component func-

tion Vi, we can apply the Proximal Stochastic Variance Reduced Gradient (Prox-SVRG) algorithm [95],

which is detailed in Algorithm 3. The centering procedure gives rise to an “inner-outer” loop

structure of the algorithm. In this paradigm, a centering sequence is computed in the outer loop

and its gradient is evaluated exactly, requiring m calls to the gradient for each iteration of the

outer loop. This computed gradient is then reshared throughout the iterations of the inner loop,

where at each iteration a cheap unbiased gradient estimate is computed. Overall, the total number

of calls to a gradient oracle for a component function Vi is equal to (2N + m)M, where N is the

number of iterations of the inner loop and M is the number of iterations of the outer loop.

3.1.7 Convergence guarantees for Prox-SVRG

Once again, we denote by x⋆ a minimizer of the objective function f , and we let F
(j)
k denote the σ-

algebra generated up to iteration k of the inner loop on iteration j of the outer loop. We also define

the (random) error term e(j)
k as equal to e(j)

k = v(j)
k −∇V(x(j)

k ), where v(j)
k is defined in Algorithm 3,

and denote its expected squared norm by σ2
k,j := E[∥e(j)

k ∥2 | F (j)
k ]. The expectation is taken over the

randomness of the chosen indices i ∈ Unif[m]. Our gradient estimate is unbiased by construction,

so we have E[e(j)
k | F

(j)
k ] = 0, so σ2

k,j represents the conditional variance of the gradient estimate at

inner iteration k of outer iteration j. For PG, we have that ek = ∇V(xk)−∇V(xk) = 0, and hence

σk = 0.
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Algorithm 3 Proximal Stochastic Variance Reduced Gradient (Prox-SVRG)
Require: Step size η > 0; inner loop iteration count N; outer loop iteration count M; initial point

x0 ∈ Rd

x(0)0 ← x0
for j = 0 to M− 1 do

compute ∇V(x(j)
0 )

for k = 0 to N − 1 do
randomly draw i ∼ Unif[m]

v(j)
k ← ∇Vi(x(j)

k )−∇Vi(x(j)
0 ) +∇V(x(j)

0 )

x(j)
k+ 1

2
← x(j)

k − ηv(j)
k

x(j)
k+1 ← proxηH(x(j)

k+ 1
2
)

end for
randomly draw ℓ ∼ Unif[N]

x(j+1)
0 ← x(j)

ℓ
end for
output x(M)

0

We can once again prove a one-step inequality for Algorithm 3:

Lemma 3.1.13 (One-step inequality for Prox-SVRG). Suppose that f = V + H where V : Rd → R is

α-convex and β-smooth, so that αI ⪯ ∇2V ⪯ βI, and where H : Rd → R is convex (but not necessarily

smooth). Let (x(j)
k )j∈N,k∈N be the iterates of Prox-SVRG (Algorithm 1). Let η be such that 0 < η ≤ 1

β .

Then, for all y ∈ Rd, we have that

E∥x(j)
k+1 − y∥2 ≤ (1− αη)E∥x(j)

k − y∥2 − 2η E[ f (x(j)
k+1)− f (y)] + 2η2 Eσ2

k,j . (3.9)

Proof. For notational convenience, we will drop the dependence on j. In this setting, note that

Prox-SVRG is simply an instantiation of stochastic proximal gradient (Algorithm 2) with unbiased

stochastic gradient estimator given by

ĝk = ∇Vi(xk)−∇Vi(x0) +∇V(x0), i ∼ Unif[m].

Hence, the desired result follows as a direct consequence of Lemma 3.1.7; the only difference is

the addition of a superscript x(j)
k .

As we just noted, Prox-SVRG is simply a special case of SPG with a particular choice of

gradient oracle. The fundamental reason why Prox-SVRG is a useful algorithm is because we can
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get a bound on the noise σ2
k,j in terms of an objective gap. As x(j)

k approaches x⋆, this objective

gap shrinks and hence so does the variance of the gradient estimate. The particular form of the

variance bound allows us to iterate the one-step inequality Lemma 3.1.13 in a particular way to

obtain linear convergence.

We proceed to demonstrate the variance bound and convergence guarantees for Prox-SVRG.

First, we introduce a key lemma:

Lemma 3.1.14. Suppose that f = V + H where H : Rd → R is convex, and V : Rd → R can be written

as the average of convex and β-smooth component functions Vi : Rd → R for i ∈ [m], so that

V(x) =
1
m

m

∑
i=1

Vi(x).

Let x⋆ be a minimizer of f . Then

1
m

m

∑
i=1
∥∇Vi(x)−∇Vi(x⋆)∥2 ≤ 2β[ f (x)− f (x⋆)].

Proof. We follow the proof of Xiao and Zhang [95, Lemma 1]. For each i, we can consider the

Vi-Bregman divergence with respect to x⋆, which we define as the function

φi(x) := Vi(x)−Vi(x⋆)− ⟨∇Vi(x⋆), x− x⋆⟩ .

This is a convex function, and since ∇φi(x⋆) = 0, we deduce that x⋆ is a minimizer of φi. Also,

since Vi is β-smooth and φi is equal to an affine shift of Vi, φi is also β-smooth, implying that

1
2β
∥∇φi(x)∥2 ≤ φi(x)− φi

(
x− 1

β
∇φi(x)

)
≤ φi(x)− φi(x⋆) = φi(x).

Hence, we obtain that

1
m

m

∑
i=1
∥∇Vi(x)−∇Vi(x⋆)∥2 =

1
m

m

∑
i=1
∥∇φi(x)∥2

≤ 1
m

m

∑
i=1

2β[Vi(x)−Vi(x⋆)− ⟨∇Vi(x⋆), x− x⋆⟩]

= 2β[V(x)−V(x⋆)− ⟨∇V(x⋆), x− x⋆⟩]

66



≤ 2β[V(x)−V(x⋆) + ⟨∇H(x⋆), x− x⋆⟩]
(since 0 = ∇ f (x⋆) = ∇V(x⋆) +∇H(x⋆))

≤ 2β[V(x)−V(x⋆) + H(x)− H(x⋆)] (by convexity of H)

= 2β[ f (x)− f (x⋆)],

as desired.

With this key lemma in mind, we are ready to prove the desired variance bound for the

iterates.

Lemma 3.1.15 (Variance bound for Prox-SVRG). For the iterates of Prox-SVRG (Algorithm 3), we have

that

σ2
k,j ≤ 4β[ f (x(j)

k )− f (x⋆) + f (x(j)
0 )− f (x⋆)].

Proof. We will drop the dependence on j. We have that

E ∥ek∥2 = E ∥vk −∇V(xk)∥2

= E ∥∇Vi(xk)−∇Vi(x0) +∇V(x0)−∇V(xk)∥2 (with i ∼ Unif[m])

≤ E ∥∇Vi(xk)−∇Vi(x0)∥2 (since Ei[∇Vi(xk)−∇Vi(x0)] = ∇V(xk)−∇V(x0))

≤ 2E
[
∥∇Vi(xk)−∇Vi(x⋆)∥2 + ∥∇Vi(x0)−∇Vi(x⋆)∥2

]
(by triangle ineq and Cauchy-Schwarz)

≤ 4β[ f (xk)− f (x⋆) + f (x0)− f (x⋆)], (by Lemma 3.1.14)

proving the desired result.

By combining the variance bound of Lemma 3.1.15 with the one-step inequality Lemma 3.1.13

and telescoping, we obtain the following convergence guarantee:

Theorem 3.1.16 (Strongly convex guarantee, Prox-SVRG). Suppose that f = V + H where H : Rd →
R is convex, and V : Rd → R is α-convex and can be written as the average of convex and β-smooth
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component functions Vi : Rd → R for i ∈ [m], so that

V(x) =
1
m

m

∑
i=1

Vi(x).

Then Algorithm 3 run with step size η = 1
32β and inner loop iteration count N = 256β

α satisfies

E[ f (x(M)
0 )− f (x⋆)] ≤ exp

(
−M

4

)
[ f (x0)− f (x⋆)].

In particular, with M ≳ log f (x0)− f (x⋆)
ε2 , we obtain the guarantee

E[ f (x(M)
0 )− f (x⋆)] ≤ ε2.

Proof. First, we consider a fixed value of the outer loop iteration number j, so we drop the depen-

dence on j in the superscript of the iterates. For notational convenience, let F(x) := f (x)− f (x⋆).

Combining the variance bound of Lemma 3.1.15 with the one-step inequality Lemma 3.1.13 and

taking y = x⋆, we obtain that

E∥xk+1 − x⋆∥2 ≤ E∥xk − x⋆∥2 − 2ηE[F(xk+1)] + 8βη2E[F(xk) + F(x0)].

Let x be chosen from among {x1, . . . , xN} uniformly at random. Summing the above inequality

for k = {0, . . . , N − 1} and rearranging, we obtain

2Nη(1− 4βη)E[F(x)] + 8η2βE[F(xN)] + E∥xN − x⋆∥2 ≤ E∥x0 − x⋆∥2 + 8(N + 1)βη2EF(x0)

≤ E∥x0 − x⋆∥2 + 16Nβη2EF(x0).

Since F(xN) ≥ 0 and ∥xN − x⋆∥2 ≥ 0, we find that

2η(1− 4βη)E[F(x)] ≤ 1
N

E∥x0 − x⋆∥2 + 16βη2EF(x0) ≤
(

2
Nα

+ 16βη2
)

EF(x0).
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Hence, with the choice η = 1
32β and N = 256 β

α , we obtain that

1
32β

E[F(x)] ≤ 2η(1− 4βη)E[F(x)] =
(

2
Nα

+
1

64β

)
E[F(x0)] =

(
3

128β

)
E[F(x0)].

Translating this back into the language of the original algorithm, we obtain that

E[ f (x(j+1)
0 )− f (x⋆)] ≤

3
4

E[ f (x(j)
0 )− f (x⋆)] ≤ e−1/4E[ f (x(j)

0 )− f (x⋆)]

Iterating this, we obtain that

E[ f (x(M)
0 )− f (x⋆)] ≤ e−M/4[ f (x0)− f (x⋆)].

Finally, this implies that with M ≳ log f (x0)− f (x⋆)
ε2 , we have the guarantee

E[ f (x(M)
0 )− f (x⋆)] ≤ ε2,

as desired.

Hence, Prox-SVRG significantly improves the total number of gradient calls made to attain

an objective gap of ≤ ε2:

• Proximal gradient requires m calls to a gradient oracle to evaluate each ∇Vi for every it-

eration. As the total number of iterations required to obtain an objective gap of ≤ ε2 is

O(κ log(1/ε)), the total query complexity of the algorithm is O(mκ log(1/ε)).

• On the other hand, Prox-SVRG makes m gradient calls per outer iteration and 2 gradient

calls per inner iteration, resulting in a total of O((m + 2κ) log(1/ε)) = O((m + κ) log(1/ε))

gradient calls throughout the algorithm, hence providing a strict improvement.

With these algorithms and their corresponding analyses in mind, we are now ready to return

to our main goal: developing Euclidean optimization-inspired algorithms for Gaussian VI.
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3.2 (Stochastic) Forward-backward Gaussian variational inference

Using Table 2.1 as a roadmap, we are able to translate both Euclidean algorithms and guarantees

to the BW setting, culminating in the development of Forward-Backward Gaussian Variational

Inference (FB–GVI), an algorithm for Gaussian VI with state-of-the-art convergence guarantees.

3.2.1 Revisiting Gaussian VI

We return to the setting of Problem (1.1), and state it more formally. We assume that the target

distribution π admits a positive density w.r.t. Lebesgue measure, denoted π as well in an abuse of

notation. We write π in the form π ∝ exp(−V). Moreover, we assume that the function V : Rd →
R is β-smooth. Recall that the KL divergence is defined for every µ ∈ BW(Rd) as

KL (µ ∥π) =
∫

log
µ(x)
π(x)

dµ(x) . (3.10)

We denote F := V +H as the sum of the potential (associated to the function V) and the entropy.

Then, a quick calculation reveals that F (µ)− F (π) = KL (µ ∥π). Since F (π) is a constant (i.e.,

does not depend on µ), Problem (1.1) is equivalent to

min
µ∈BW(Rd)

{V(µ) +H(µ)} . (3.11)

3.2.2 Proposed algorithm

Recall that the potential V is “smooth” over the BW space and that the BW gradient of V admits

a closed form (Lemma 2.2.1). Recall also that the entropy H is “convex” over the BW space and

that the BW JKO of H admits a closed form (Lemma 2.2.2). Hence, the objective in problem (3.11)

admits a composite structure as the sum of a smooth term and a non-smooth term, and as we have

seen in Section 3.1.4, the canonical algorithm for solving such a problem in Euclidean space is

the (stochastic) proximal gradient algorithm. Thus, we seek to adapt the proximal gradient (or

“forward-backward”) algorithm to the BW space. Inspired by the Euclidean-BW dictionary we

previously defined in Table 2.1, this leads to the following Forward-Backward Gaussian Varia-
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tional Inference (FB–GVI) algorithm (note the analogy with (2.9)):

pk+ 1
2
= (id− η∇BWV(pk))# pk , (3.12)

pk+1 = JKOηH(pk+ 1
2
) . (3.13)

The backward step (3.13) is tractable using (2.21). Although the forward step (3.12) also admits

a closed form, the forward step involves computing integrals of ∇V and ∇2V with respect to pk

(see (2.16)). These integrals can be intractable. In order to make the algorithm implementable, we

also propose an unbiased stochastic gradient estimator ĝk of ∇BWV(pk), computed by drawing a

random sample from pk. The resulting algorithm is called Stochastic FB–GVI, and can be written

as:

pk+ 1
2
= (id− η ĝk)# pk ,

pk+1 = JKOηH(pk+ 1
2
) , (3.14)

where ĝk is the random affine function defined by

ĝk : x 7→ ∇V(X̂k) +∇2V(X̂k) (x−mk) , (3.15)

where X̂k ∼ pk and mk =
∫

x dpk(x) denotes the mean of pk.

(Stochastic) FB–GVI is precisely an analogue over BW space of the Euclidean (stochastic)

proximal gradient algorithm (Algorithm 2). In this setting, the iterates (pk)k∈N defined by (3.14)

are a sequence of random Gaussian distributions, i.e. random variables taking values in BW(Rd). We

denote the mean (resp. covariance matrix) of pk by mk (resp. Σk). FB–GVI and Stochastic FB–GVI

can be implemented by keeping track of the means and the covariance matrices of the iterates pk.

The iterations of FB–GVI and Stochastic FB–GVI in terms of mk and Σk are given in Algorithm 4.

Efficient algorithms developed for computing the matrix square-root (see, for example, Pleiss et al.

[73] and Song, Sebe, and Wang [84]) can be leveraged to improve the per-iteration complexity.
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Algorithm 4 FB–GVI and Stochastic FB–GVI
Require: Step size η > 0; Iteration count N; Initial distribution p0 = N (m0, Σ0)

for k = 0 to N − 1 do
if FB–GVI then

bk ← Epk∇V, Sk ← Epk∇2V
else if Stochastic FB–GVI then

draw X̂k ∼ N (mk, Σk)
bk ← ∇V(X̂k), Sk ← ∇2V(X̂k)

end if
mk+1 ← mk − η bk
Mk+1 ← I − η Sk
Σk+ 1

2
← Mk+1Σk Mk+1

Σk+1 ← 1
2 (Σk+ 1

2
+ 2η I + [Σk+ 1

2
(Σk+ 1

2
+ 4η I)]1/2)

end for
output pN = N (mN , ΣN)

3.2.3 Variance reduction

Just as stochastic proximal gradient admits a variance-reduced extension (Prox-SVRG, Algorithm 3)

in the setting when V can be written as the average of many smooth, convex component functions,

we can also develop a variant of Algorithm 4 for the analogous setting in BW space.

Specifically, we consider the setting where π ∝ exp(−V), where V is an α-strongly convex

function that can be written as the average of m convex, β-smooth component functions Vi : Rd →
R. In this setting, Equation (3.11) is equivalent to

min
µ∈BW(Rd)

{V(µ) +H(µ)} = min
µ∈BW(Rd)

{
1
m

m

∑
i=1
Vi(µ) +H(µ)

}
,

where the functional Vi : BW(Rd) → R is defined by Vi(µ) := EµVi. By adapting Algorithm 3 for

the setting of FB–GVI, we obtain Variance-Reduced FB–GVI (VRFB–GVI), detailed in Algorithm 5.

Just like in the setting of Prox-SVRG, (stochastic) VRFB–GVI employs an inner loop/outer loop

structure wherein a “centering sequence” is updated less frequently than at every iteration. As

such, we will denote the kth inner-loop iterate of the jth outer-loop iteration by p(j)
k . Through this

centering procedure, VRFB–GVI attains lower gradient oracle query complexity than FB–GVI in

the setting where the number m of component functions is large. We make precise statements of

the complexity guarantees of VRFB–GVI in Section 3.3.3.
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Algorithm 5 Variance-Reduced FB–GVI and Stochastic Variance-Reduced FB–GVI
Require: Step size η > 0; Inner loop iteration count N; Outer loop iteration count M; Initial

distribution p0 = N (m0, Σ0)

p(0)0 ← p0
for j = 0 to M− 1 do

if Variance-Reduced FB–GVI then
precompute E

p(j)
0
[∇V], E

p(j)
0
[∇2V]

else if Variance-Reduced Stochastic FB–GVI then
draw X̂(j)

0 ∼ p(j)
0

precompute ∇V(X̂(j)
0 ), ∇2(X̂(j)

0 )
end if
for k = 0 to N − 1 do

randomly draw i ∼ Unif[m]
if Variance-Reduced FB–GVI then

b(j)
k ← E

p(j)
k
∇Vi −E

p(j)
0
∇Vi + E

p(j)
0
∇V

S(j)
k ← E

p(j)
k
∇2Vi −E

p(j)
0
∇2Vi + E

p(j)
0
∇2V

else if Stochastic FB–GVI then
draw X̂(j)

k ∼ p(j)
k

b(j)
k ← ∇Vi(X̂(j)

k )−∇Vi(X̂(j)
0 ) +∇V(X̂(j)

0 )

S(j)
k ← ∇2Vi(X̂(j)

k )−∇2Vi(X̂(j)
0 ) +∇2V(X̂(j)

0 )
end if
m(j)

k+1 ← m(j)
k − η b(j)

k

M(j)
k+1 ← I − η S(j)

k

Σ(j)
k+ 1

2
← M(j)

k+1Σ(j)
k M(j)

k+1

Σ(j)
k+1 ← 1

2 (Σ
(j)
k+ 1

2
+ 2η I + [Σ(j)

k+ 1
2
(Σ(j)

k+ 1
2
+ 4η I)]1/2)

end for
p(j+1)

0 ← p(j)
N

end for
output p(M)

0 = N (m(M)
0 , Σ(M)

0 )

3.3 Convergence theory

In this section, we study the convergence of FB–GVI and Stochastic FB–GVI using their equivalent

forms (3.12)–(3.13) and (3.14). We also denote by π̂ = N (m̂, Σ̂) a solution of Problem (1.1) (i.e.,

a minimizer of the KL objective), and we let Fk denote the σ-algebra generated up to iteration k

(but not including the random sample X̂k ∼ pk in Stochastic FB–GVI).

We consider several assumptions on V. Given α ∈ R, V is α-convex if αI ⪯ ∇2V. If α = 0, V

is said to be convex, and if α > 0, V is said to be (α-)strongly convex. For either algorithm, define
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the (random) error function (see the definitions of bk and Sk in Algorithm 4) as

ek : x 7→ (Sk −Epk∇2V)(x−mk) + (bk −Epk∇V) ,

and denote its expected L2(pk) norm by σ2
k := E[∥ek∥2

pk
| Fk]. The expectation is taken over

the possible randomness of (bk, Sk) (i.e., over the randomness of X̂k). For Stochastic FB–GVI,

ek = ĝk −∇BWV(pk), where ĝk is defined by (3.15). Since E[ek | Fk] = 0 (i.e., the BW stochastic

gradient is unbiased), σ2
k is the conditional variance of the BW stochastic gradient at iteration

k. For FB–GVI, ek = ∇BWV(pk) −∇BWV(pk) = 0, hence σk = 0. Our analysis of FB–GVI and

Stochastic FB–GVI relies on the following unified one-step-inequality for the iterates (pk)k∈N of

both (3.12)–(3.13) and (3.14).

Lemma 3.3.1 (One-step inequality for FB–GVI). Suppose that V is α-convex and β-smooth. Let (pk)k∈N

be the iterates of FB–GVI (3.12)–(3.13) or Stochastic FB–GVI (3.14). Let η > 0 be such that

η ≤


1
β if σk = 0 (FB–GVI) ,

1
2β else .

Then, for all ν ∈ BW(Rd),

EW2
2 (pk+1, ν) ≤ (1− αη)EW2

2 (pk, ν)− 2η E[F (pk+1)−F (ν)] + 2η2 Eσ2
k . (3.16)

Proof. The proof is given in Appendix A.1.

This one-step inequality is precisely the analogue of Lemma 3.1.1, obtained by translat-

ing squared Euclidean distance to squared Wasserstein distance, as per Table 2.1. Our proof of

Lemma 3.3.1 heavily employs the differential and geometric structure of the BW space presented

in Section 2.2.

3.3.1 Convergence of FB–GVI

In this section, (pk)k∈N is the sequence of iterates defined by FB–GVI ((3.12)–(3.13)). We obtain

corollaries of Lemma 3.3.1 by setting σk = 0 in (3.16), when V is convex or strongly convex.
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Theorem 3.3.2 (Convex case, FB–GVI). Suppose that V is convex and β-smooth and that 0 < η ≤ 1
β .

Then,

F (pN)−F (π̂) ≤ W2
2 (p0, π̂)

2Nη
.

In particular, when η = 1
β and N ≳ βW2

2 (p0,π̂)
ε2 , we obtain the guarantee

F (pN)−F (π̂) ≤ ε2 .

Proof. The proof is given in Appendix A.3.1.

Theorem 3.3.3 (Strongly convex case, FB–GVI). Suppose that V is α-strongly convex and β-smooth,

and that 0 < η ≤ 1
β . Then,

W2
2 (pN , π̂) ≤ exp (−Nαη) W2

2 (p0, π̂) .

In particular, when η = 1
β and N ≳ β

α log W2(p0,π̂)
ε , we obtain the guarantees

α W2
2 (µN , π̂) ≤ ε2 , and F (p2N)−F (π̂) ≤ ε2 .

Proof. The proof is given in Appendix A.3.2.

Theorem 3.3.2 demonstrates a sublinear rate of convergence of FB–GVI for a convex V (in

terms of objective gap) and Theorem 3.3.3 demonstrates a linear rate of convergence of FB–GVI for

a strongly convex V. The convergence rates we obtain are of the same order as the convergence

rates of the proximal gradient algorithm [34] (see also Section 3.1.4); hence, the convergence prop-

erties of FB–GVI can be seen as inherited from those of the Euclidean proximal gradient algorithm

applied to V.

Finally, we also extend our results to the non-convex case, where we obtain a stationary point

guarantee, analogously to Theorem 3.1.10.

Theorem 3.3.4 (Non-convex case, FB–GVI). Suppose that V is β-smooth, and that 0 < η ≤ 1
β . Let
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∆ := F (p0)−F (π̂). Then,

min
k∈{0,...,N−1}

∥∇BWF (pk)∥2
pk
≤ 150∆

ηN
.

In particular, when η = 1
β and N ≳ β∆

ε2 , we obtain the guarantee

min
k∈{0,...,N−1}

∥∇BWF (pk)∥2
pk
≤ ε2 . (3.17)

Proof. The proof is given in Appendix A.3.3.

To the best of our knowledge, this is the first stationary point guarantee for Gaussian VI. The

relevance of this result is that according to Katsevich and Rigollet [45], the favorable statistical

properties of Gaussian VI arise, not due to the global minimization of the objective in (1.1), but

rather from the first-order optimality (3.17). Hence, Theorem 3.3.4 can be viewed as an algorithmic

result for posterior approximation, even in the non-log-concave setting.

We also emphasize that although we assume that V is smooth, it does not follow that the

objective F is smooth over the Bures–Wasserstein space, due to the presence of the entropy term

H. In fact, the entropy term is only smooth when constrained to a set of Gaussians with covariance

matrices having lower-bounded eigenvalues. Hence, the proof of Theorem 3.3.4 requires careful

control of the eigenvalues of the iterates of FB–GVI.

3.3.2 Convergence of Stochastic FB–GVI

In this section, (pk)k∈N is the sequence of iterates defined by (3.14). To use Lemma 3.3.1, we first

prove a bound on σ2
k , the variance of the BW stochastic gradient.

Lemma 3.3.5. If V is convex and β-smooth, then

σ2
k ≤ 6βd + 12β3λmax(Σ̂)W2

2 (pk, π̂) .

Moreover, if V is α-strongly convex, the bound above becomes

σ2
k ≤ 6βd +

12β3

α
W2

2 (pk, π̂) .
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Proof. See Appendix A.4.1.

The bound on σ2
k is reminiscent of the common assumption made in the literature on stochas-

tic gradient algorithms over Rd, that the stochastic gradient has sublinear growth [49, 15]. We em-

phasize that we do not assume this sublinear growth. Instead, Lemma 3.3.5 proves the sublinear

growth for the BW stochastic gradient used in Stochastic FB–GVI. Next, we obtain corollaries of

Lemma 3.3.1 for Stochastic FB–GVI by controlling σ2
k with Lemma 3.3.5.

Theorem 3.3.6 (Convex case, Stochastic FB–GVI). Suppose that V is convex and β-smooth and that

0 < η ≤ 1
2β . Define c := 24β3λmax(Σ̂). Then,

E

[
min

k∈{1,...,N}
F (pk)

]
−F (π̂) ≤ 2W2

2 (p0, π̂)

Nη
+ 2cη W2

2 (p0, π̂) + 12βηd .

In particular, for sufficiently small values of ε2/d and with

η ≍ ε2

cW2
2 (p0, π̂) ∨ βd

, and N ≳
W2

2 (p0, π̂)

ε4

(
cW2

2 (p0, π̂) ∨ βd
)

,

we obtain the guarantee

E

[
min

k∈{1,...,N}
F (pk)

]
−F (π̂) ≤ ε2 .

Proof. See Appendix A.4.3.

Theorem 3.3.7 (Strongly convex case, Stochastic FB–GVI). Suppose that V is α-strongly convex and

β-smooth, and that η ≤ α2

48β3 . Then,

EW2
2 (pN , π̂) ≤ exp

(
−Nαη

2

)
W2

2 (p0, π̂) +
24βηd

α
.

In particular, for sufficiently small values of ε2/d and with

η ≍ ε2

βd
, and N ≳

βd
αε2 log

αW2
2 (p0, π̂)

ε2 ,
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we obtain the guarantees

α EW2
2 (pN , π̂) ≤ ε2 , and E

[
min

k∈{1,...,2N}
F (pk)

]
−F (π̂) ≤ ε2 .

Proof. See Appendix A.4.4.

To our knowledge, Theorem 3.3.6 is the first result to provide a complexity result in terms

of the objective gap in Problem (1.1), for log-smooth log-concave target distributions. Moreover,

Theorem 3.3.7 improves upon the state-of-the-art obtained in [51] for strongly log-concave target

distributions. In particular, ignoring logarithmic factors, their iteration complexity (when written

in a scale-invariant way) reads Õ( β2d
α2ε2 ), whereas ours reads Õ( βd

αε2 ). Note that the linear depen-

dence on the condition number β/α is to be expected for gradient descent methods. We remark

that our analysis crucially makes use of the proximal operator (the BW JKO) on the non-smooth

entropy in order to obtain our improved rates.

3.3.3 Convergence of Variance-Reduced FB–GVI

In this section, we denote by (p(j)
k )j,k∈N the sequence of iterates defined by Algorithm 5. We define

e(j)
k , F (j)

k analogously to Section 3.3, and define σ2
k,j := E[∥e(j)

k ∥2 | F (j)
k ]. Then Equation (3.16) holds

identically for Algorithm 5 for all j, k ∈N and ν ∈ BW(Rd) with the following relabelling:

EW2
2 (p(j)

k+1, ν) ≤ (1− αη)EW2
2 (p(j)

k , ν)− 2ηE[F (p(j)
k+1)−F (ν)] + 2η2Eσ2

k,j. (3.18)

In order to prove rates of convergence for (stochastic) VRFB–GVI, we require the following

bounds on the variance of the gradient estimate:

Lemma 3.3.8 (Variance bound for VRFB–GVI). Suppose that each Vi is convex and β-smooth. Then for

VRFB–GVI, we have that

σ2
k,j ≤ 6β[F (p(j)

k )−F (π̂) +F (p(j)
0 )−F (π̂)] + 3β2W2

2 (p(j)
k , p(j)

0 ).

Proof. The proof is deferred to Appendix A.5.1.
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Lemma 3.3.9 (Variance bound for stochastic VRFB–GVI). Suppose that each Vi is convex and β-

smooth. Then for VRFB–GVI, we have that

σ2
k,j ≤ 72βd +

120β3

α
[W2

2 (p(j)
k , π̂) + W2

2 (p(j)
0 , π̂)] + 6β[F (p(j)

k )−F (π̂) +F (p(j)
0 )−F (π̂)].

Proof. The proof is deferred to Appendix A.5.2.

Using these variance bounds in conjunction with the one-step inequality, we are able to obtain

rates of convergence for (stochastic) VRFB–GVI.

Theorem 3.3.10 (Strongly convex guarantee, VRFB–GVI). Suppose V : Rd → R is α-convex and can

be written as the average of convex and β-smooth component functions Vi : Rd → R for i ∈ [m], so that

V(x) =
1
m

m

∑
i=1

Vi(x).

Suppose that VRFB–GVI (Algorithm 5) is initialized at p0 with Σ−1
0 ⪯ 2βI, and run with step size

η = 1
288βκ and inner loop iteration count N = κ2

144 . Then

EW2
2 (p(M)

0 , π̂) ≤ exp
(
−M

4

)
W2

2 (p0, π̂).

In particular, with M ≳ log αW2
2 (p0,π̂)

ε2 , we obtain the guarantee

αEW2
2 (p(M)

0 , π̂) ≤ ε2.

Proof. The proof is deferred to Appendix A.5.3.

An analogous result holds for Stochastic VRFB–GVI.

Theorem 3.3.11 (Strongly convex guarantee, Stochastic VRFB–GVI). Suppose V : Rd → R is α-

convex and can be written as the average of convex and β-smooth component functions Vi : Rd → R for

i ∈ [m], so that

V(x) =
1
m

m

∑
i=1

Vi(x).
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Suppose that stochastic VRFB–GVI (Algorithm 5) is initialized at p0 with Σ−1
0 ⪯ 2βI, and run with step

size η = 1
2400 (

ε2

βd ∧ 1
βκ2 ) and inner loop iteration count N = 2

αη ≍ κ( d
ε2 ∨ κ2). Then

EW2
2 (p(M)

0 , π̂) ≤ exp
(
−M

4

)
W2

2 (p0, π̂) +
ε2

2α
.

In particular, with M ≳ log αW2
2 (p0,π̂)

ε2 , we obtain the guarantee

αEW2
2 (p(M)

0 , π̂) ≤ ε2.

Proof. The proof is deferred to Appendix A.5.4.

Putting the pieces together, VRFB–GVI attains a αW2
2 distance to the minimizer of order ε2

with O((m + κ2) log W2
2 (p0,π̂)

ε ) calls to a gradient oracle for ∇BWVi, whereas FB–GVI requires a

total of O(mκ log W2
2 (p0,π̂)

ε ) calls since it must query the gradient oracle for Vi for all i ∈ [m] at

each iteration. Unfortunately, the guarantee given in Theorem 3.3.10 is not ideal, as the number

of inner loop iterations is given by O(κ2) rather than O(κ) as in Theorem 3.1.16. The reason for

this discrepancy is because our bound on the variance of the stochastic gradient introduces a

dependence on W2
2 (p(j)

0 , π̂), whereas no corresponding dependence on ∥x(j)
0 − x⋆∥2 exists in the

analysis of the error term in Prox-SVRG. We hypothesize that this dependence on W2
2 (p(j)

0 , π̂)

prevents iteration of the one-step inequality unless the step size is of order O( 1
βκ ) (rather than

O( 1
β ) for Prox-SVRG), which in turn results in an inner-loop iteration complexity of O(κ2) rather

than O(κ). However, in the setting where m ≫ κ, VRFB–GVI outperforms FB–GVI in terms of

gradient oracle query complexity.

On the other hand, Stochastic VRFB–GVI does obtain a better oracle complexity guarantee

than Stochastic FB–GVI. Overall,

• Stochastic VRFB–GVI requires O((m + κd
ε2 + κ3) log W2(p0,π̂)

ε ) queries to a gradient oracle,

while

• Stochastic FB–GVI requires O(m( κd
ε2 + κ3) log W2(p0,π̂)

ε ) such calls in total.

Here, the dependence on κ3 arises from the constraint η ≲ 1
βκ2 for both Stochastic VRFB–GVI and

Stochastic FB–GVI.
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Since Stochastic VRFB–GVI is implementable, this constitutes a genuine practical improve-

ment over the naive implementation of Stochastic FB–GVI in the setting where the potential V is

the average of many component functionals!
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Chapter 4

Conclusion

We proposed a novel optimization algorithm, (Stochastic) FB–GVI, for solving the Gaussian VI

problem in (1.1). In the setting where the potential admits a representation as the average of many

other component potentials, we provide a variance-reduced extension to FB–GVI with improved

complexity guarantees.

We view FB–GVI as performing optimization over the Bures–Wasserstein space, echoing a

stream of successful works on optimization-inspired design and analysis of sampling and vari-

ational inference algorithms. Using this perspective, we also provided new or state-of-the-art

convergence rates for solving (1.1), depending on the regularity assumptions on π. As immediate

future work, it is intriguing to study the statistical properties (consistency, normal approxima-

tion bounds, moment estimation bounds, and robustness properties) of the proposed (Stochastic)

FG–GVI algorithm on various specific practical problems of interest. From a technical standpoint,

it would also be of interest to either sharpen the analysis of Variance-Reduced FB–GVI to avoid

quadratic complexity dependence on the condition number κ, or to devise a new variance reduc-

tion technique altogether which is tailored to the Bures–Wasserstein space.

At a broader level, our work opens the door to the following question: Can we develop a

rigorous algorithmic framework for general VI, i.e., Problem (1.1) where BW(Rd) is replaced by a

different or larger set of distributions (for example, mixtures of Gaussians)? We believe that this

paper provides a concrete step toward this general goal.
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Appendix A

Technical Proofs

A.1 Proof of the one-step inequality (Lemma 3.3.1)

The key idea of this proof is to decompose the difference F (pk+1) − F (ν) as the sum of three

terms,

F (pk+1)−F (ν) = [V(pk+1)− V(pk)] + [V(pk)− V(ν)] + [H(pk+1)−H(ν)] ,

where each individual term may be controlled using the inequalities in Lemmas 2.2.2 and 2.2.4.

Recalling that Lemma 2.2.2 applies only to generalized geodesics, we must take care in defining

couplings between pk, pk+ 1
2
, pk+1 and ν. We detail the argument in the following proof.

Proof of Lemma 3.3.1. Recall from Section 3.3 that we defined Fk as the σ-algebra generated up to

iteration k (but not including the random sample X̂k ∼ pk in Stochastic FB–GVI)). We also have

ek : x 7→ (Sk −Epk∇2V)(x−mk) + (bk −Epk∇V)

to be defined as the (random) error of the gradient estimate at iteration k of (stochastic) FB–GVI,

for which E[ek | Fk] = 0. Conditioned on the filtration Fk, we construct the following random

variables Xk, Xk+ 1
2
, Xk+1, YV and YH.

Let (Xk, YV ) ∼ (pk, ν) be optimally coupled for the W2 distance, and let (Xk, YV ) ⊥⊥ ek. Since

85



η ≤ 1
β by assumption, we have that

I − ηSk ⪰ (1− ηβ) I ⪰ 0 .

Recall that by Brenier’s theorem [91, Theorem 2.12], if Y = ∇φ(X) for a convex, proper, and

lower-semicontinuous function φ : Rd → R ∪ {∞}, then (X, Y) is an optimal coupling for the

2-Wasserstein distance. The condition I − ηSk ⪰ 0 above therefore ensures that (Xk, Xk+ 1
2
) ∼

(pk, pk+ 1
2
) is an optimal coupling for the W2 distance, where we define

Xk+ 1
2

:= (I − ηSk)(Xk −mk) + mk − ηbk .

On the other hand, defining Xk+1 such that

Xk+1 := Xk+ 1
2
− η∇BWH(pk+1)[Xk+1]

= (I − η Σ−1
k+1)

−1(Xk+ 1
2
−mk+1) + mk+1 ,

we also get that (Xk+ 1
2
, Xk+1) ∼ (pk+ 1

2
, pk+1) are optimally coupled. Finally, we construct the

random variable YH ∼ ν for which (Xk+ 1
2
, YH) are optimally coupled for the W2 distance.

First, we bound the difference in energy. From Brenier’s theorem, we know that YH and

Xk+1 can both be expressed as an affine functions of Xk, thereby enabling the application of

Lemma 2.2.4. Doing so, we obtain that

E[V(pk+1)− V(ν)] = E[V(pk+1)− V(pk)] + E[V(pk)− V(ν)]

≤ E ⟨∇BWV(pk)(Xk), Xk −YV ⟩ −
α

2
E ∥Xk −YV∥2

+ E ⟨∇BWV(pk)(Xk), Xk+1 − Xk⟩+
β

2
E ∥Xk+1 − Xk∥2 (by Lemma 2.2.4)

= −α

2
E ∥Xk −YV∥2 + E ⟨∇BWV(pk)(Xk), Xk+1 −YV ⟩

+
1

2η
E ∥Xk+1 − Xk∥2 −

( 1
2η
− β

2

)
E ∥Xk+1 − Xk∥2

= −α

2
E ∥Xk −YV∥2 −E ⟨ek(Xk), Xk+1 −YV ⟩ −

1
η

E⟨Xk+ 1
2
− Xk, Xk+1 −YV ⟩

+
1

2η
E ∥Xk+1 − Xk∥2 −

( 1
2η
− β

2

)
E ∥Xk+1 − Xk∥2
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=
1

2η
(1− αη) E ∥Xk −YV∥2 −E ⟨ek(Xk), Xk+1 −YV ⟩ −

( 1
2η
− β

2

)
E ∥Xk+1 − Xk∥2

+
1

2η
E
[
∥Xk+1 − Xk∥2 − ∥Xk −YV∥2 − 2 ⟨Xk+ 1

2
− Xk, Xk+1 −YV ⟩

]
.

Now we bound the difference in entropy. Since YH and Xk+1 are both optimally coupled with

Xk+ 1
2
, we know that (YH, Xk+1) are coupled along a generalized geodesic. Hence, we can apply

Lemma 2.2.2 to obtain that

E[H(pk+1)−H(ν)] ≤ E ⟨∇BWH(pk+1)[Xk+1], Xk+1 −YH⟩

= − 1
η

E⟨Xk+1 − Xk+ 1
2
, Xk+1 −YH⟩

=
1

2η
E
[
∥Xk+ 1

2
−YH∥2 − ∥Xk+1 − Xk+ 1

2
∥2 − ∥Xk+1 −YH∥2]

≤ 1
2η

E
[
∥Xk+ 1

2
−YV∥2 − ∥Xk+1 − Xk+ 1

2
∥2 − ∥Xk+1 −YH∥2] .

(since (Xk+ 1
2
, YH) are optimally coupled)

Now, we sum the above inequalities to obtain our desired bound on E[F (pk+1) − F (ν)]. We

obtain that

E[F (pk+1)−F (ν)] = E[V(pk+1)− V(ν)] + E[H(pk+1)−H(ν)]

≤ 1
2η

E
[
(1− αη) ∥Xk −YV∥2 − ∥Xk+1 −YH∥2]

+
1

2η
E
[
∥Xk+1 − Xk∥2 − ∥Xk −YV∥2 + ∥Xk+ 1

2
−YV∥2 − ∥Xk+1 − Xk+ 1

2
∥2]

− 1
2η

E
[
2 ⟨Xk+ 1

2
− Xk, Xk+1 −YV ⟩

]
−E ⟨ek(Xk), Xk+1 −YV ⟩ −

( 1
2η
− β

2

)
E ∥Xk+1 − Xk∥2

=
1

2η
E
[
(1− αη) ∥Xk −YV∥2 − ∥Xk+1 −YH∥2]

−E ⟨ek(Xk), Xk+1 −YV ⟩ −
( 1

2η
− β

2

)
E ∥Xk+1 − Xk∥2 . (A.1)

Finally, it remains to bound the error term on the last line. For this, we consider two cases based

on whether or not the error term ek is identically zero:

• In the case of FB–GVI where we have access to the exact gradient ∇BWV(pk), we have that
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ek ≡ 0, so

−E ⟨ek(Xk), Xk+1 −YV ⟩ = 0 .

Combining this with Inequality A.1, we obtain that with η ≤ 1
β ,

E[F (pk+1)−F (ν)] ≤
1

2η
E
[
(1− αη) ∥Xk −YV∥2 − ∥Xk+1 −YH∥2]− ( 1

2η
− β

2

)
E ∥Xk+1 − Xk∥2

≤ 1
2η

E
[
(1− αη) ∥Xk −YV∥2 − ∥Xk+1 −YH∥2] .

Rearranging, we conclude that if ek ≡ 0 and η ≤ 1
β ,

EW2
2 (pk+1, ν) ≤ E ∥Xk+1 −YH∥2 (A.2)

≤ (1− αη)E ∥Xk −YV∥2 − 2η E[F (pk+1)−F (ν)] (A.3)

= (1− αη)EW2
2 (pk, ν)− 2η E[F (pk+1)−F (ν)] .

(since conditioned on Fk, (Xk, YV ) are optimally coupled)

• Otherwise, if ek is not necessarily identically 0, we can still compute

−E ⟨ek(Xk), Xk+1 −YV ⟩ = −E ⟨ek(Xk), Xk+1 − Xk⟩ (since ek ⊥⊥ (Xk, YV ) by construction)

≤ η E ∥ek(Xk)∥2 +
1

4η
E ∥Xk+1 − Xk∥2 .

(Cauchy–Schwarz and Young’s inequality)

Hence, combining this with Inequality A.1, we obtain that for η ≤ 1
2β ,

E[F (pk+1)−F (ν)] ≤
1

2η
E
[
(1− αη) ∥Xk −YV∥2 − ∥Xk+1 −YH∥2]+ η E ∥ek(Xk)∥2

−
( 1

4η
− β

2

)
E ∥Xk+1 − Xk∥2

≤ 1
2η

E
[
(1− αη) ∥Xk −YV∥2 − ∥Xk+1 −YH∥2]+ η Eσ2

k .
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Rearranging, we conclude that as long as η ≤ 1
2β ,

EW2
2 (pk+1, ν) ≤ E ∥Xk+1 −YH∥2

≤ (1− αη)E ∥Xk −YV∥2 − 2η E[F (pk+1)−F (ν)] + 2η2 Eσ2
k

= (1− αη)EW2
2 (pk, ν)− 2η E[F (pk+1)−F (ν)] + 2η2 Eσ2

k .

(since (Xk, YV ) are optimally coupled)

Combining these two cases, we have demonstrated our desired inequality.

Remark A.1.1. Consider specializing the above proof to the case where ν = pk, for which YV =

YH = Xk, so that (Xk, Xk+ 1
2
) ∼ (pk, pk+ 1

2
) and (Xk+ 1

2
, Xk+1) ∼ (pk+ 1

2
, pk+1) are optimally coupled

for the W2 distance. Then from Inequality A.3, we obtain that

E ∥Xk+1 −YH∥2 ≤ (1− αη)E ∥Xk −YV∥2 − 2η E[F (pk+1)−F (ν)] (Inequality A.3)

=⇒ E ∥Xk+1 − Xk∥2 ≤ −2η E[F (pk+1)−F (pk)] . (since ν = pk and YV = YH = Xk)

As a corollary, we obtain the following lemma, which will be useful in subsequent analysis.

Lemma A.1.2. Suppose that V is β-smooth. Let (pk)k∈N be the iterates of FB–GVI (3.12)–(3.13). Let

η > 0 be such that η ≤ 1
β . Let (Xk, Xk+ 1

2
) ∼ (pk, pk+ 1

2
) and (Xk+ 1

2
, Xk+1) ∼ (pk+ 1

2
, pk) be optimally

coupled for the W2 distance. Then,

E ∥Xk+1 − Xk∥2 ≤ −2η E[F (pk+1)−F (pk)] .

A.2 Eigenvalue control of the iterates

We will show the following eigenvalue bound result:

Lemma A.2.1. At the k-th iteration of Algorithm 4, suppose that we have γ0 I ⪯ Σ−1
k ⪯ γ1 I. As long as

0 ≤ η ≤ 1
γ1

and γ0 I ⪯ Sk ⪯ γ1 I, we then have that

γ−1
1 I ⪯ Σk+1 ⪯ γ−1

0 I .
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Proof. Define the monotonically increasing function fη : R≥0 → R≥0 such that

fη(x) =
1
2
(
x + 2η +

√
x (x + 4η)

)
.

First, we make note of the following algebraic identity. Define xγ := (1− ηγ)2/γ. Then we have

that

fη(xγ) =
1
2

(
(1− ηγ)2

γ
+ 2η +

√( (1− ηγ)2

γ

) ( (1− ηγ)2

γ
+ 4η

))
=

1
2γ

(
1 + η2γ2 +

√
(1− ηγ)2 (1 + ηγ)2

)
=

1
2γ

(
1 + η2γ2 + (1− ηγ) (1 + ηγ)

)
=

1
γ

. (A.4)

Now, let λmin(M), λmax(M) denote the minimum and maximum eigenvalues of a matrix M ∈ Sd.

The conditions η ≤ γ−1
1 and Sk ⪯ γ1 I then imply that I − ηSk ⪰ 0. Hence, we then have that

λmin(Σk+ 1
2
) = λmin

(
(I − ηSk)Σk (I − ηSk)

)
≥ λ2

min(I − ηSk) λmin(Σk)

≥ (1− ηγ1)
2 λmin(Σk)

≥ (1− ηγ1)
2

γ1

= xγ1 .

Now, we also note that Σk+ 1
2

and Σk+1 commute by construction, so since fη is a monotonically

increasing function,

λmin(Σk+1) = fη

(
λmin(Σk+ 1

2
)
)
≥ fη(xγ1) =

1
γ1

,

where the last equality follows from Equation (A.4).
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Similarly, for the upper bound, we have that

λmax(Σk+ 1
2
) = λmax

(
(I − ηSk)Σk (I − ηSk)

)
≤ λ2

max(I − ηSk) λmax(Σk) (since I − ηSk ⪰ 0)

≤ (1− ηγ0)
2 λmax(Σk)

≤ (1− ηγ0)2

γ0
.

Thus, we similarly obtain

λmax(Σk+1) = fη

(
λmax(Σk+ 1

2
)
)
≤ fη(xγ0) =

1
γ0

.

Combining the above results, this proves that γ−1
1 I ⪯ Σk+1 ⪯ γ−1

0 I which is what we set out to

show.

Note that for (stochastic) FB–GVI, we have αI ⪯ Sk ⪯ βI, so Lemma A.2.1 holds with γ0 = α

and γ1 = β. Hence, we obtain the following corollary:

Corollary A.2.2. Suppose that Algorithm 4 is initialized with a matrix Σ0 such that β−1 I ⪯ Σ0, that V is

β-smooth, and that the step size satisfies η ≤ 1
β . Then β−1 I ⪯ Σk for all k.

A.3 Proofs of the noiseless algorithm convergence rates

We obtain the desired convergence rates for FB–GVI by rearranging and iterating the one-step

inequality of Lemma 3.3.1. First, we derive inequalities that hold for both the convex and strongly

convex cases.

For FB–GVI, we can apply Lemma 3.3.1 with ν = π̂, η ≤ 1
β and σk = 0. Furthermore, FB–GVI

is deterministic, so we may remove the expectations in Lemma 3.3.1. In this case, the inequality in

Lemma 3.3.1 implies that for all k,

W2
2 (pk+1, π̂) ≤ (1− αη)W2

2 (pk, π̂)− 2η (F (pk+1)−F (π̂)) (by Lemma 3.3.1)

≤ exp (−αη) W2
2 (pk, π̂)− 2η (F (pk+1)−F (π̂)) . (A.5)
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Rearranging eq. (A.5), we obtain

F (pk+1)−F (π̂) ≤ exp (−αη) W2
2 (pk, π̂)−W2

2 (pk+1, π̂)

2η
. (A.6)

On the other hand, we can also apply Lemma 3.3.1 with ν = pk, η ≤ 1
β and σ2

k = 0 to obtain that

W2
2 (pk+1, pk) ≤ (1− αη)W2

2 (pk, pk)− 2η (F (pk+1)−F (pk)) = −2η (F (pk+1)−F (pk)) .

Hence, rearranging this inequality, we obtain that

F (pk+1)−F (pk) ≤ −
W2

2 (pk+1, pk)

2η
≤ 0 , (A.7)

meaning that the objective value decreases with each iteration of the algorithm.

A.3.1 Proof of Theorem 3.3.2

Proof. Since V is convex, Inequality A.6 holds with the choice α = 0, from which we obtain that

F (pk+1)−F (π̂) ≤ W2
2 (pk, π̂)−W2

2 (pk+1, π̂)

2η
.

Telescoping this inequality, we obtain that

F (pN)−F (π̂) ≤ 1
N

N

∑
k=1

[F (pk)−F (π̂)] ≤ 1
2ηN

N−1

∑
k=0

[W2
2 (pk, π̂)−W2

2 (pk+1, π̂)] ≤ W2
2 (p0, π̂)

2ηN
,

where the first inequality holds by Inequality A.7. Hence, with the choice

η =
1
β

, and N ≳
βW2

2 (p0, π̂)

ε2 ,

we obtain the guarantee F (pN)−F (π̂) ≤ ε2, proving our desired result.
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A.3.2 Proof of Theorem 3.3.3

Proof. Since F (π̂) ≤ F (pk+1) as π̂ achieves the minimum of F among Gaussians, we may iterate

Inequality A.6 to obtain

W2
2 (pN , π̂) ≤ exp (−Nαη) W2

2 (p0, π̂) .

Hence, with the choice

η =
1
β

, and N ≳
1

αη
log

αW2
2 (p0, π̂)

ε2 ≍ β

α
log

αW2
2 (p0, π̂)

ε2 ,

we obtain the guarantee αW2
2 (pN , π̂) ≤ ε2.

Now, for the guarantee in KL divergence, we “reinitialize” the algorithm with distribution

pN and apply the convex result of Theorem 3.3.2. With the same choice of N and η and assuming

ε is sufficiently small, we can apply Theorem 3.3.2 to obtain the guarantee

F (p2N)−F (π̂) ≤ W2
2 (pN , π̂)

2ηN
≤ ε2

2αηN
≲

ε2

log αW2
2 (p0,π̂)

ε2

≲ ε2 ,

proving our desired result.

A.3.3 Proof of Theorem 3.3.4

First, we need a lemma.

Lemma A.3.1. Let µ0, µ1 ∈ BW(Rd) be such that Σµ0 , Σµ1 ⪰ β−1 I. Then if (X0, X1) ∼ (µ0, µ1) are

optimally coupled for the W2 distance, we have that

E ∥∇BWH(µ1)[X1]−∇BWH(µ0)[X0]∥2 ≤ 20β2 W2
2 (µ0, µ1) .

The proof proceeds as follows. First, we apply the triangle inequality and the Cauchy–

Schwarz inequality to decompose the LHS into two terms which we will control separately. For

the first term, we appeal to the Lipschitzness of ∇BWH(µ1), which is possible since Σ−1
µ1
⪯ βI.

Then for the second term, we will utilize Lemma 2.2.4 and Lemma 2.2.7 to derive a bound in
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terms of KL (µ0 ∥ µ1), which we can then further bound in terms of W2
2 (µ0, µ1). Combining these

bounds, we obtain our desired result.

Proof. Applying the triangle inequality and Cauchy–Schwarz, we obtain that

1
2

E ∥∇BWH(µ1)[X1]−∇BWH(µ0)[X0]∥2 ≤ E ∥∇BWH(µ1)[X1]−∇BWH(µ1)[X0]∥2

+ E ∥∇BWH(µ1)[X0]−∇BWH(µ0)[X0]∥2 .

For the first term, we note that since Σ−1
µ1
⪯ βI by assumption, we have that

E ∥∇BWH(µ1)[X1]−∇BWH(µ1)[X0]∥2 = E∥Σ−1
µ1
(X1 − X0)∥2 (by Equation (2.24))

≤ β2 E ∥X1 − X0∥2 (since Σ−1
µ1
⪯ βI)

= β2 W2
2 (µ0, µ1) , (A.8)

where the last equality holds since (X0, X1) ∼ (µ0, µ1) are optimally coupled by assumption. Now,

we bound the second term. Define the functionals V1,F1 : BW(Rd)→ R such that

V1(µ) := −
∫

log µ1(x)dµ(x) ,

F1(µ) := V1(µ) +H(µ) .

Note that by Equation (2.24), ∇BWV1(µ) = −∇ log µ1 = −∇BWH(µ1), so that

∇BWF1(µ) = ∇BWV1(µ) +∇BWH(µ) = ∇BWH(µ)−∇BWH(µ1) .

Furthermore, we also note that

KL (µ ∥ µ1) = F1(µ)−F1(µ1) . (A.9)

Therefore, the second term that we want to control above can be interpreted as the squared norm

of∇BWF1(µ0). We will show thatF1 is smooth, which will allow us to bound the squared gradient

norm by a multiple of F1(µ0)−F1(µ1) = KL (µ0 ∥ µ1) by the descent lemma from optimization.
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Let γ := c−1β, where c ∈ (0, 1) is chosen to satisfy c ≤ (1− c)2. Define the random variable

X′0 as follows:

X′0 := X0 −
1
γ
∇BWF1(µ0)[X0]

= X0 −
1
γ
(∇BWH(µ0)−∇BWH(µ1))[X0]

= X0 −
1
γ

(
−Σ−1

µ0
(X0 −mµ0) + Σ−1

µ1
(X0 −mµ1)

)
(by Equation (2.24))

=
(

I +
1
γ

Σ−1
µ0
− 1

γ
Σ−1

µ1

)
︸ ︷︷ ︸

:=M0

X0 +
1
γ
(−Σ−1

µ0
mµ0 + Σ−1

µ1
mµ1) .

Let µ′0 := law(X′0). Since we have 0 ⪯ Σ−1
µ0

, Σ−1
µ1
⪯ βI = cγI by assumption, we have that

M0 = I +
1
γ

Σ−1
µ0
− 1

γ
Σ−1

µ1
⪰ I − 1

γ
Σ−1

µ1
⪰ (1− c) I ⪰ 0 ,

so X′0 is equal to the gradient of a convex function of X0. Hence, by Brenier’s theorem, we conclude

that (X0, X′0) ∼ (µ0, µ′0) are optimally coupled for the W2 distance. Thus, by Lemma 2.2.4 applied

to the potential V1, we find that

V1(µ
′
0)− V1(µ0) ≤ E

〈
∇BWV1(µ0)[X0], X′0 − X0

〉
+

β

2
E
∥∥X′0 − X0

∥∥2 (since −∇2 log µ0 ⪯ βI)

= −E
〈
∇BWH(µ1)[X0], X′0 − X0

〉
+

β

2
E
∥∥X′0 − X0

∥∥2 . (A.10)

Additionally, we note that since β = cγ ≤ (1− c)2 γ, we have that

Σµ′0
= M0Σµ0 M0 ⪰ (1− c)2 Σµ0 ⪰

(1− c)2

β
I ⪰ 1

γ
I .

This implies that Σ−1
µ′0

, Σ−1
µ0
⪯ γI. Hence, we can also apply the geodesic smoothness inequality of

Lemma 2.2.7 to obtain

H(µ′0)−H(µ0) ≤ E
〈
∇BWH(µ0)[X0], X′0 − X0

〉
+

γ

2
E
∥∥X′0 − X0

∥∥2 . (A.11)
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Hence, combining Equation (A.9) with Inequality A.10 and Inequality A.11, we obtain that

−KL (µ0 ∥ µ1) ≤ KL
(
µ′0 ∥ µ1

)
−KL (µ0 ∥ µ1) (since KL (µ′0 ∥ µ1) ≥ 0)

= F1(µ
′
0)−F1(µ0) (by Equation (A.9))

= [V1(µ
′
0)− V1(µ0)] + [H(µ′0)−H(µ0)]

≤ −E
〈
∇BWH(µ1)[X0], X′0 − X0

〉
+

β

2
E
∥∥X′0 − X0

∥∥2 (by Inequality A.10)

+ E
〈
∇BWH(µ0)[X0], X′0 − X0

〉
+

γ

2
E
∥∥X′0 − X0

∥∥2 (by Inequality A.11)

=
(
− 1

γ
+

β

2γ2 +
1

2γ

)
E ∥∇BWH(µ0)[X0]−∇BWH(µ1)[X0]∥2 (definition of X′0)

= −1− c
2γ

E ∥∇BWH(µ0)[X0]−∇BWH(µ1)[X0]∥2 . (A.12)

To bound the LHS of this inequality, we again apply Lemma 2.2.4 to the potential V1 as well as

Lemma 2.2.7 toH to obtain

KL (µ0 ∥ µ1) = F1(µ0)−F1(µ1)

= [V1(µ0)− V1(µ1)] + [H(µ0)−H(µ1)]

≤ E ⟨∇BWV(µ1)[X1], X0 − X1⟩+
β

2
E ∥X0 − X1∥2

(by Lemma 2.2.4 since −∇2 log µ1 ⪯ βI)

+ E ⟨∇BWH(µ1)[X1], X0 − X1⟩+
β

2
E ∥X0 − X1∥2

(by Lemma 2.2.7 since Σ−1
µ0

, Σ−1
µ1
⪯ βI)

= β E ∥X0 − X1∥2 (since ∇BWV1(µ1) +∇BWH(µ1) = ∇BWF1(µ1) = 0)

= β W2
2 (µ0, µ1) . (A.13)

Finally, choosing c = 1
3 so that c ≤ (1− c)2 and combining our above inequalities, we find that

1
2

E ∥∇BWH(µ1)[X1]−∇BWH(µ0)[X0]∥2 ≤ E ∥∇BWH(µ1)[X1]−∇BWH(µ1)[X0]∥2

+ E ∥∇BWH(µ0)[X0]−∇BWH(µ1)[X0]∥2

≤ β2 W2
2 (µ0, µ1) +

2γ

1− c
KL (µ0 ∥ µ1)

(by Inequality A.8 and Inequality A.12)
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≤ 10β2 W2
2 (µ0, µ1) . (by Inequality A.13)

Rearranging, we obtain our desired result.

With this result in mind, we are ready to prove our desired stationary point guarantee.

Proof. Let (Xk, Xk+ 1
2
) ∼ (pk, pk+ 1

2
) and (Xk+ 1

2
, Xk+1) ∼ (pk+ 1

2
, pk) be optimally coupled for the W2

distance, noting as in the proof of Lemma 3.3.1 that by construction,

Xk − Xk+1

η
= ∇BWV(pk)[Xk] +∇BWH(pk+1)[Xk+1] .

Applying Lemma A.1.2, we obtain that

E ∥Xk+1 − Xk∥2 ≤ −2η E[F (pk+1)−F (pk)] .

Telescoping this inequality, we find that

min
k∈{0,...,N−1}

E ∥Xk+1 − Xk∥2 ≤ 1
N

N−1

∑
k=0

E ∥Xk+1 − Xk∥2

≤ −2η

N

N−1

∑
k=0

E[F (pk+1)−F (pk)]

= −2η

N
E[F (pN)−F (p0)]

≤ 2η∆
N

. (A.14)

Now, let (Xk, X⋆
k+1) ∼ (pk, pk+1) be optimally coupled for the W2 distance. By Corollary A.2.2, we

have that Σ−1
k ⪯ βI for all k, meaning that we can apply Lemma A.3.1 with µ0 = pk and µ1 = pk+1

to obtain that

E
∥∥∇BWH(pk)[Xk]−∇BWH(pk+1)[X⋆

k+1]
∥∥2 ≤ 20β2 W2

2 (pk, pk+1) . (A.15)

Furthermore, we have that

E
∥∥∇BWH(pk+1)[X⋆

k+1]−∇BWH(pk+1)[Xk+1]
∥∥2

= E

∥∥∥Σ−1
k+1 (X⋆

k+1 − Xk+1)
∥∥∥2
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≤ β2 E
∥∥X⋆

k+1 − Xk+1
∥∥2

≤ 2β2 E
∥∥X⋆

k+1 − Xk
∥∥2

+ 2β2 E ∥Xk+1 − Xk∥2

= 2β2 W2
2 (pk, pk+1) + 2β2 E ∥Xk+1 − Xk∥2 .

(A.16)

With these inequalities in mind, we obtain that

1
3
∥∇BWF (pk)∥2

pk
=

1
3

E ∥∇BWV(pk)[Xk] +∇BWH(pk)[Xk]∥2

≤ E ∥∇BWV(pk)[Xk] +∇BWH(pk+1)[Xk+1]∥2 + E
∥∥∇BWH(pk)[Xk]−∇BWH(pk+1)[X⋆

k+1]
∥∥2

+ E
∥∥∇BWH(pk+1)[X⋆

k+1]−∇BWH(pk+1)[Xk+1]
∥∥2

(by triangle inequality)

≤ 1
η2 E ∥Xk+1 − Xk∥2 + 22 β2W2

2 (pk, pk+1) + 2β2 E ∥Xk+1 − Xk∥2

(by Inequality A.15 and Inequality A.16)

≤
( 1

η2 + 24β2
)

E ∥Xk+1 − Xk∥2 (since (Xk, Xk+1) is a coupling of (pk, pk+1))

≤ 25
η2 E ∥Xk+1 − Xk∥2 . (since β ≤ η−1)

Combining the above with Inequality A.14, we obtain that

min
k∈{0,...,N−1}

∥∇BWF (pk)∥2
pk
≤ min

k∈{0,...,N−1}
75
η2 E ∥Xk+1 − Xk∥2 ≤ 150∆

ηN
.

Finally, taking η = 1
β and N ≥ 150β∆

ε2 , we obtain that

min
k∈{0,...,N−1}

∥∇BWF (pk)∥2
pk
≤ ε2 ,

as desired.

A.4 Proofs of the noisy algorithm convergence rates

We once again utilize Lemma 3.3.1 to obtain our desired rates of convergence. First, we must

prove the bound on σk for Stochastic FB–GVI given in Lemma 3.3.5.
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A.4.1 Proof of Lemma 3.3.5

Proof. Let µ = N (m, Σ) be an element of BW(Rd). We first note that if X ∼ µ, then by integration

by parts,

Σ E∇2V(X) = Σ
∫
∇2V dµ

= −Σ
∫
∇µ⊗∇V (integration by parts)

= −Σ
∫
∇ ln µ⊗∇V dµ

=
∫
(x−m)⊗∇V dµ(x) (since −Σ∇ ln µ(x) = x−m)

= E[(X−m)⊗∇V(X)] . (A.17)

Hence,

⟨E∇2V(X), Σ⟩ = ⟨E[Σ−1 (X−m)⊗∇V(X)], Σ⟩ (by Equation (A.17))

= E⟨Σ−1 (X−m)⊗∇V(X), Σ⟩ (linearity of expectation and trace)

= E⟨∇V(X), X−m⟩ . (cyclicity of trace)

Now, let (Xk, Z) ∼ (pk, π̂) be optimally coupled for the W2 distance and independent of X̂k. Recall

also the Brascamp–Lieb inequality [17]: if µ is a measure on Rd with density µ ∝ exp(−W),

where W is twice continuously differentiable and strictly convex, then for any smooth test function

f : Rd → R it holds that Varµ( f ) ≤ E⟨∇ f , (∇2W)−1∇ f ⟩. In particular, if we take f = ⟨∇V, e⟩ for

a unit vector e and µ = pk, it follows that Varpk ⟨∇V, e⟩ ≤ Epk⟨e,∇2V Σk∇2V e⟩. Summing this

inequality as e ranges over an orthonormal basis of Rd, we obtain

Epk∥∇V −Epk∇V∥2 ≤ Epk⟨[∇2V]2, Σk⟩ .

Thus, we get that

1
2

σ2
k ≤ E∥(∇2V(X̂k)−Epk∇2V)(Xk −mk)∥2 + E∥∇V(X̂k)−Epk∇V∥2 (by triangle inequality)

=
〈
Epk [(∇2V −Epk∇2V)2], Σk

〉
+ Epk

∥∥∇V −Epk∇V
∥∥2 (since Xk ⊥⊥ X̂k)
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= Epk⟨∇2V, Σk∇2V⟩ − ⟨Epk [∇2V]2, Σk⟩+ Epk

∥∥∇V −Epk∇V
∥∥2

≤ Epk⟨∇2V, Σk∇2V⟩+ Epk

∥∥∇V −Epk∇V
∥∥2 (since ⟨Epk [(∇2V)2], Σk⟩ ≥ 0)

≤ 2 Epk⟨∇2V, Σk∇2V⟩ (by Brascamp–Lieb)

≤ 2β Epk⟨∇2V, Σk⟩ (since ∇2V ⪯ βI and ∇2V, Σk ⪰ 0)

= 2β E ⟨∇V(Xk), Xk −mk⟩ (by Equation (A.17))

= 2β E ⟨∇V(Z), Z− m̂⟩︸ ︷︷ ︸
err1

+ 2β E ⟨∇V(Xk)−∇V(Z), (Xk −mk)− (Z− m̂)⟩︸ ︷︷ ︸
err2

+ 2β E ⟨∇V(Z), (Xk −mk)− (Z− m̂)⟩︸ ︷︷ ︸
err3

+ 2β E ⟨∇V(Xk)−∇V(Z), Z− m̂⟩︸ ︷︷ ︸
err4

.

Now, we have the following:

err1 = E ⟨∇V(Z), Z− m̂⟩ = ⟨E∇2V(Z), Σ̂⟩ = Tr(I)

(by Equation (A.17) and the stationarity conditions in (2.25))

= d ,

err2 = E ⟨∇V(Xk)−∇V(Z), (Xk −mk)− (Z− m̂)⟩

≤ 1
2β

E ∥∇V(Xk)−∇V(Z)∥2 +
β

2
E ∥(Xk −mk)− (Z− m̂)∥2 (Young’s inequality)

≤ β E ∥Xk − Z∥2 (since ∇V is β-Lipschitz)

= β W2
2 (µk, π̂) , (since (Xk, Z) are optimally coupled)

err3 = E ⟨∇V(Z), (Xk −mk)− (Z− m̂)⟩

≤ 1
4β

E ∥∇V(Z)∥2 + β E ∥(Xk −mk)− (Z− m̂)∥2 (Young’s inequality)

≤ 1
4β

E⟨∇2V(Z)2, Σ̂⟩+ β W2
2 (µk, π̂) (Brascamp–Lieb, optimal coupling of (Xk, Z))

≤ d
4
+ β W2

2 (µk, π̂) , (since Eπ̂∇2V = Σ̂−1 by Equation (2.25) and ∇2V ⪯ βI)

err4 = E ⟨∇V(Xk)−∇V(Z), Z− m̂⟩

≤ Tr(Σ̂)
d

E ∥∇V(Xk)−∇V(Z)∥2 +
d

4 Tr(Σ̂)
E ∥Z− m̂∥2 (Young’s inequality)

≤ β2 Tr(Σ̂)
d

E ∥Xk − Z∥2 +
d

4 Tr(Σ̂)
Tr(Σ̂) (since ∇V is β-Lipschitz)

100



≤ β2 Tr(Σ̂)
d

W2
2 (µk, π̂) +

d
4

.

Combining these, we obtain that

σ2
k ≤ 4β

4

∑
i=1

erri ≤ 6βd +
(

8β2 +
4β3 Tr(Σ̂)

d

)
W2

2 (µk, π̂) ≤ 6βd + 12β3λmax(Σ̂)W2
2 (µk, π̂) .

(since Σ̂−1 = Eπ̂∇2V ⪯ βI so λmax(Σ̂) ≥ 1/β)

Note that in the strongly convex case, by Equation (2.25), we obtain that

λmax(Σ̂) = λmax(Eπ̂[∇2V]−1) ≤ 1
α

,

so this bound simplifies to

σ2
k ≤ 6βd +

12β3

α
W2

2 (µk, π̂) .

This concludes our proof.

A.4.2 One-step inequality using the bound on σk

We apply the error bound in Lemma 3.3.5 along with the one-step inequality of Lemma 3.3.1 with

ν = π̂ and η ≤ 1
2β . This gives us the inequality

EW2
2 (pk+1, π̂) ≤ (1− αη)EW2

2 (pk, π̂)− 2η (EF (pk+1)−F (π̂)) + 2η2 Eσ2
k

≤
(
1− αη + 24β3η2λmax(Σ̂)

)
EW2

2 (pk, π̂)− 2η (EF (pk+1)−F (π̂)) + 12βη2d

≤ exp
(
−αη + 24β3η2λmax(Σ̂)

)
EW2

2 (pk, π̂)− 2η (EF (pk+1)−F (π̂)) + 12βη2d .

(A.18)

A.4.3 Proof of Theorem 3.3.6

Proof. Define c := 24β3λmax(Σ̂). Since V is convex by assumption, we may take α = 0 in Inequal-

ity A.18 to obtain that

2η (EF (pk+1)−F (π̂)) ≤ ecη2
EW2

2 (pk, π̂)−EW2
2 (pk+1, π̂) + 12βη2d .
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Define SN(η) := ∑N
k=1 e−kcη2

. We then find that

N−1

∑
k=0

2η e−(k+1)cη2
(EF (pk+1)−F (π̂)) ≤

N−1

∑
k=0

e−(k+1)cη2 (
ecη2

EW2
2 (pk, π̂)−EW2

2 (pk+1, π̂) + 12βη2d
)

= W2
2 (p0, π̂)− e−Ncη2

EW2
2 (pN , π̂) + 12βη2d

N−1

∑
k=0

e−(k+1)cη2

≤W2
2 (p0, π̂) + 12βη2dSN(η) .

Let p be drawn randomly from among {pk}N
k=1, with probability of choosing pk proportional to

e−kcη2
. Then we have that

EF (p)−F (π̂) =
1

2ηSN(η)

N−1

∑
k=0

2η e−(k+1)cη2
(EF (pk+1)−F (π̂))

≤ 1
2ηSN(η)

(
W2

2 (p0, π̂) + 12βη2dSN(η)
)

=
W2

2 (p0, π̂)

2ηSN(η)
+ 6βηd .

Now, we note that

SN(η) =
N

∑
k=1

e−kcη2 ≥
N∧(cη2)−1

∑
k=1

e−kcη2 ≥
N∧(cη2)−1

∑
k=1

e−1 ≥ N ∧ ⌊(cη2)−1⌋
e

.

Thus, we obtain the inequality

E
[

min
k∈{1,...,N}

F (pk)
]
−F (π̂) ≤ EF (p)−F (π̂)

≤ W2
2 (p0, π̂)

2ηSN(η)
+ 6βηd

≤ 2W2
2 (p0, π̂)

η (N ∧ ⌊(cη2)−1⌋) + 6βηd

≲
W2

2 (p0, π̂)

ηN
+ cηW2

2 (p0, π̂) + βηd .

Hence, taking

η ≍ ε2

cW2
2 (p0, π̂) ∨ βd

≍ ε2

β3λmax(Σ̂)W2
2 (p0, π̂) ∨ βd

,
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N ≳
W2

2 (p0, π̂)

ηε2 ≍ W2
2 (p0, π̂)

ε4

(
β3λmax(Σ̂)W2

2 (p0, π̂) ∨ βd
)

,

we get the guarantee E
[
mink∈{1,...,N} F (pk)

]
−F (π̂) ≤ ε2 .

A.4.4 Proof of Theorem 3.3.7

Proof. In the strongly convex case where 0 ≺ αI ⪯ ∇2V, we have the eigenvalue guarantee

λmax(Σ̂) ≤ 1
α I, since Eπ∇2V = Σ̂−1 by (2.25). Hence, under the assumption that η ≤ α2

48β3 , In-

equality A.18 implies that

EW2
2 (pk+1, π̂) ≤ exp

(
−αη +

24β3η2

α

)
EW2

2 (pk, π̂)− 2η (EF (pk+1)−F (π̂)) + 12βη2d

≤ exp
(
−αη

2

)
EW2

2 (pk, π̂)− 2η (EF (pk+1)−F (π̂)) + 12βη2d .

Since F (π̂) ≤ F (pk+1), we may iterate this inequality to obtain that

EW2
2 (pN , π̂) ≤ exp

(
−Nαη

2

)
W2

2 (p0, π̂) +
24βηd

α
.

Hence, with the choice

η ≍ ε2

βd
, and N ≳

1
αη

log
αW2

2 (p0, π̂)

ε2 ≍ βd
αε2 log

αW2
2 (p0, π̂)

ε2 ,

we obtain the guarantee α EW2
2 (pN , π̂) ≤ ε2 . Now, for the guarantee in KL divergence, we “reini-

tialize” the algorithm with distribution pN and apply the convex result of Theorem 3.3.6. Assum-

ing ε is sufficiently small, we get that

c EW2
2 (pN , π̂) ≤ cε2

α
≤ βd ,

meaning that for the above choice of η, we have

η ≍ ε2

βd
≍ ε2

c EW2
2 (pN , π̂) ∨ βd

.
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Furthermore, for our choice of N, we have that

EW2
2 (pN , π̂)

ε4

(
cW2

2 (p0, π̂) ∨ βd
)
≤ βd

αε2 ≲ N .

Thus, applying Theorem 3.3.6 with our choice of step size η and iteration count N, we obtain that

E
[

min
k∈{1,...,2N}

F (pk)
]
−F (π̂) ≤ E

[
min

k∈{N+1,...,2N}
F (pk)

]
−F (π̂)

≲ E
[W2

2 (pN , π̂)

ηN
+ cη W2

2 (pN , π̂) + βηd
]

≲ ε2 ,

proving our desired result.

A.5 Proofs for VRFB–GVI

A.5.1 Proof of Lemma 3.3.8

Recall that in the setting of Prox-SVRG, the inequality Lemma 3.1.14 was key to deriving a variance

bound. Hence, our first goal is to translate this inequality to the setting of the BW space.

Lemma A.5.1. Suppose that Vi : Rd → R are convex and β-smooth for all i ∈ [m]. Let µ ∈ BW(Rd),

and suppose that (X, Z) ∼ (µ, π̂) are coupled along a generalized geodesic, so that Z = R(X) where

R : Rd → Rd is the composition of at most two optimal transport maps. Then

1
m

m

∑
i=1

E ∥∇BWVi(µ)[X]−∇BWVi(π̂)[Z]∥2 ≤ 2β[F (µ)−F (π̂)].

Proof. To begin, we show that

E ∥∇BWVi(µ)[X]−∇BWVi(π̂)[Z]∥2 ≤ E ∥∇W2Vi(µ)[X]−∇W2Vi(π̂)[Z]∥2 . (A.19)

Since ∇W2Vi(µ) = ∇V independently of µ, the right-hand side can then be bounded analogously

to the Euclidean case (Lemma 3.1.14).
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For shorthand, define the function perpi such that

perpi(µ) := ∇W2Vi(µ)−∇BWVi(µ).

Note that by the definition of the BW gradient in Section 2.2.3, we have that for any affine function

h : Rd → Rd,

⟨perpi(µ), h⟩µ = ⟨∇W2Vi(µ), h⟩µ − ⟨∇BWVi(µ), h⟩µ = 0.

Now, we have that

E ∥∇W2Vi(µ)[X]−∇W2Vi(π̂)[Z]∥2 = ∥∇W2Vi(µ)−∇W2Vi(π̂) ◦ R∥2
µ (defn of R)

= ∥∇BWVi(µ)−∇BWVi(π̂) ◦ R∥2
µ + ∥perpi(µ)− perpi(π̂) ◦ R∥2

µ

+ 2 ⟨∇BWVi(µ)−∇BWVi(π̂) ◦ R, perpi(µ)− perpi(π̂) ◦ R⟩µ .

Now, since by assumption (X, Z) are coupled along a generalized geodesic, R is an affine function,

meaning that ∇BWVi(µ) ◦ R is an affine function as well. Hence, we find that

⟨∇BWVi(µ)−∇BWVi(π̂) ◦ R, perpi(µ)⟩µ = 0.

Similarly, we have that R−1 is an affine function, meaning that ∇BWVi(µ) ◦ R−1 −∇BWVi(π̂) is

affine as well. Thus, we also find that

⟨∇BWVi(µ)−∇BWVi(π̂) ◦ R, perpi(π̂) ◦ R⟩µ =
〈
∇BWVi(µ) ◦ R−1 −∇BWVi(π̂), perpi(π̂)

〉
π̂
= 0.

Thus, we deduce that

E ∥∇W2Vi(µ)[X]−∇W2Vi(π̂)[Z]∥2 = ∥∇BWVi(µ)−∇BWVi(π̂) ◦ R∥2
µ + ∥perpi(µ)− perpi(π̂) ◦ R∥2

µ

≥ ∥∇BWVi(µ)−∇BWVi(π̂) ◦ R∥2
µ

= E ∥∇BWVi(µ)[X]−∇BWVi(π̂)[Z]∥2 ,
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proving Inequality A.19.

With Inequality A.19 in mind, we proceed to prove the desired claim. We have that

1
m

m

∑
i=1

E ∥∇W2Vi(µ)[X]−∇W2Vi(π̂)[Z]∥2 =
1
m

m

∑
i=1

E ∥∇Vi(X)−∇Vi(Z)∥2

≤ 1
m

m

∑
i=1

2βE[Vi(X)−Vi(Z)− ⟨∇Vi(Z), X− Z⟩]

(by Lemma 3.1.14)

= 2β[V(µ)− V(π̂)− ⟨∇W2V(π̂), R−1 − id⟩π̂]

= 2β[V(µ)− V(π̂)− ⟨∇BWV(π̂), R−1 − id⟩π̂]
(since R−1 − id is affine)

= 2β[V(µ)− V(π̂) + ⟨∇BWH(π̂), R−1 − id⟩π̂]
(since ∇BWV(π̂) +∇BWH(π̂) = 0)

≤ 2β[V(µ)− V(π̂) +H(µ)−H(π̂)] (by Lemma 2.2.2)

= 2β[F (µ)−F (π̂)].

Note that the last inequality was where we crucially used the fact that (X, Z) ∼ (µ, π̂) are coupled

along a generalized geodesic: it is only in this case that we can invoke the convexity of entropy.

Combining this inequality with Inequality A.19, we obtain that

1
m

m

∑
i=1

E ∥∇BWVi(µ)[X]−∇BWVi(π̂)[Z]∥2 ≤ 1
m

m

∑
i=1

E ∥∇W2Vi(µ)[X]−∇W2Vi(π̂)[Z]∥2

= 2β[F (µ)−F (π̂)],

as desired.

With this result in mind, we are ready to prove our desired variance bound.

Proof. For notational convenience, we drop the dependence on j. Let (Xk, X0) ∼ (pk, p0) and

(Xk, Z) ∼ (pk, π̂) be optimally coupled for the W2 distance. Importantly, we note that (X0, Z) are

coupled along a generalized geodesic. We have that

1
3

σ2
k =

1
3

E ∥ek∥2
pk
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=
1
3

E ∥∇BWVi(pk)−∇BWVi(p0) +∇BWV(p0)−∇BWV(pk)∥2
pk

≤ 1
3

E ∥∇BWVi(pk)−∇BWVi(p0)∥2
pk

(since unbiased estimate)

≤ E ∥∇BWVi(pk)[Xk]−∇BWVi(π̂)[Z]∥2

+
1
2

E ∥∇BWVi(p0)[Xk]−∇BWVi(π̂)[Z]∥2 (by triangle ineq and Cauchy-Schwarz)

≤ E ∥∇BWVi(pk)[Xk]−∇BWVi(π̂)[Z]∥2

+ E ∥∇BWVi(p0)[Xk]−∇BWVi(p0)[X0]∥2 + E ∥∇BWVi(p0)[X0]−∇BWVi(π̂)[Z]∥2

(triangle ineq and C-S again)

≤ 2β[F (pk)−F (π̂)] (by Lemma A.5.1)

+ β2E ∥Xk − X0∥2 + 2β[F (p0)−F (π̂)] (since ∇2Vi ⪯ βI and by Lemma A.5.1)

≤ 2β[F (pk)−F (π̂) +F (p0)−F (π̂)] + β2W2
2 (pk, p0). (since (Xk, X0) are opt. coupled)

Rescaling both sides of the inequality and adding back in the dependence on j, we obtain our

desired result.

A.5.2 Proof of Lemma 3.3.8

The proof of this variance bound is essentially a combination of the arguments laid out in Ap-

pendix A.5.1 and Appendix A.4.1.

Proof. For notational convenience, we again drop the dependence on j. Let i ∈ Unif[m] be the

random index chosen at iteration k. Then we have that

E[ek | i] = ∇BWVi(pk)−∇BWVi(p0) +∇BWV(p0)−∇BWV(pk).

Hence, letting Ei denote expectation with respect to i, we have that

σ2
k = E ∥ek∥2

pk

= EiE
[
∥ek −E[ek | i]∥2

pk
| i
]
+ Ei

[
∥E[ek | i]∥2

pk

]
≤ E ∥ek −E[ek | i]∥2

pk

+ 6β[F (pk)−F (π̂) +F (p0)−F (π̂)] + 3β2W2
2 (pk, p0). (by Lemma 3.3.8)
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Hence, it remains to bound E ∥ek −E[ek | i]∥2
pk

. Letting X̂0, X̂k be defined as in Algorithm 5 and

writing

ĝ(k)i : x 7→ (∇2Vi(X̂k))(x−mk) +∇Vi(X̂k)

ĝ(0)i : x 7→ (∇2Vi(X̂0))(x−m0) +∇Vi(X̂0)

ĝ(0) : x 7→ (∇2V(X̂0))(x−m0) +∇V(X̂0),

we have that

Ei[ek −E[ek | i]] = Ei[(ĝ(k)i − ĝ(0)i + ĝ(0))− (∇BWVi(pk)−∇BWVi(p0) +∇BWV(p0))]

= (ĝ(k)i −∇BWVi(pk) + (ĝ(0)i −∇BWVi(p0)).

Hence, we have that

E ∥ek −E[ek | i]∥2
pk
≤ E

∥∥∥ĝ(k)i −∇BWVi(pk) + ĝ(0)i −∇BWVi(p0)
∥∥∥2

pk

≤ 2 E

∥∥∥ĝ(k)i −∇BWVi(pk)
∥∥∥2

pk︸ ︷︷ ︸
var1

+2 E

∥∥∥ĝ(0)i −∇BWVi(p0)
∥∥∥2

pk︸ ︷︷ ︸
var2

.

It remains to bound var1 and var2, which can be done using nearly identical techniques as the proof

of Lemma 3.3.5 in Appendix A.4.1. For var1, we can follow the proof of Lemma 3.3.5 identically to

obtain that

var1 = E

∥∥∥ĝ(k)i −∇BWVi(pk)
∥∥∥2

pk

≤ 4Ei
〈
∇2Vi, Σk∇2Vi

〉
≤ 4βEiEpk

〈
∇2Vi, Σk

〉
≤ 4βEpk

〈
∇2V, Σk

〉
≤ 12βd +

24β3

α
W2

2 (pk, π̂).
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On the other hand, let (X0, Xk) ∼ (p0, pk) be optimally coupled. We have that

var2 = E

∥∥∥ĝ(0)i −∇BWVi(p0)
∥∥∥2

pk

≤ 2E

∥∥∥ĝ(0)i −∇BWVi(p0)
∥∥∥2

p0
+ 2E

∥∥∥(ĝ(0)i −∇BWVi(p0))[Xk]− (ĝ(0)i −∇BWVi(p0))[X0]
∥∥∥2

(triangle ineq and Cauchy-Schwarz)

≤ 2E

∥∥∥ĝ(0)i −∇BWVi(p0)
∥∥∥2

p0
+ 2E

∥∥∥ĝ(0)i [Xk]− ĝ(0)i [X0]
∥∥∥2

≤ 2E

∥∥∥ĝ(0)i −∇BWVi(p0)
∥∥∥2

p0
+ 2β2E ∥Xk − X0∥2 (since ∇2Vi(X̂0) ⪯ βI)

= 2E

∥∥∥ĝ(0)i −∇BWVi(p0)
∥∥∥2

p0
+ 2β2W2

2 (pk, p0)

≤ 24βd +
48β3

α
W2

2 (p0, π̂) + 2β2W2
2 (pk, p0). (analogously to var1)

Combining all of the results above, we conclude that

σ2
k ≤ 72βd +

48β3

α
W2

2 (pk, π̂) +
96β3

α
W2

2 (p0, π̂) + 4β2W2
2 (pk, p0)

+ 6β[F (pk)−F (π̂) +F (p0)−F (π̂)] + 3β2W2
2 (pk, p0)

≤ 72βd +
120β3

α
[W2

2 (pk, π̂) + W2
2 (p0, π̂)] + 6β[F (pk)−F (π̂) +F (p0)−F (π̂)].

(triangle ineq and Cauchy-Schwarz)

Reintroducing the dependence on j, we obtain the desired result.

A.5.3 Proof of Theorem 3.3.10

Once again, the idea is to combine the variance bound obtained from Lemma 3.3.8 with the one-

step inequality of Inequality 3.18, following the structure of the corresponding proof in Euclidean

space for Theorem 3.1.16.

Proof. First, we consider a fixed value of the outer loop iteration number j, so we drop the depen-

dence on j in the superscript of the iterates. Combining the variance bound of Lemma 3.3.8 with

the one-step inequality Inequality 3.18, we obtain that

EW2
2 (pk+1, ν) ≤ (1− αη)EW2

2 (pk, ν)− 2ηE[F (pk+1)−F (ν)]
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+ 6βη2 (2[F (pk)−F (π̂) +F (p0)−F (π̂)] + βW2
2 (pk, p0)

)
.

First, we note that

Sk = Epk∇2Vi −Ep0∇2Vi + Ep0∇2V ⪯ 2βI,

so by Lemma A.2.1, we have that Σ−1
k ⪯ 2βI. Hence, by Lemma 2.2.1 and Lemma 2.2.7, we have

that

F (pk)−F (π̂) = [V(pk)− V(π̂)] + [H(pk)−H(π̂)] ≤ β

2
W2

2 (pk, π̂) + βW2
2 (pk, π̂) < 2βW2

2 (pk, π̂).

Thus, we find that

EW2
2 (pk+1, ν) ≤ (1− αη)EW2

2 (pk, ν)− 2ηE[F (pk+1)−F (ν)]

+ 6β2η2 (4W2
2 (pk, π̂) + 4W2

2 (p0, π̂) + W2
2 (p0, pk)

)
≤ (1− αη)EW2

2 (pk, ν)− 2ηE[F (pk+1)−F (ν)]

+ 36β2η2 (W2
2 (pk, π̂) + W2

2 (p0, π̂)
)

(triangle ineq and Cauchy-Schwarz)

Taking ν = π̂ and noting that 36β2η2 ≤ αη
2 by assumption, we find that

EW2
2 (pk, π̂) ≤

(
1− αη

2

)
EW2

2 (pk, ν) + 36β2η2W2
2 (p0, π̂).

Iterating this inequality, we find that

EW2
2 (pk, π̂) ≤ exp

(
−Nαη

2

)
W2

2 (p0, π̂) + 72βκηW2
2 (p0, π̂).

Hence, with the choice

η =
1

288βκ
, and N =

2
αη

=
κ2

144
,
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we obtain the guarantee

EW2
2 (pN , π̂) ≤

(
1
e
+

1
4

)
EW2

2 (p0, π̂) ≤ 3
4

EW2
2 (p0, π̂)

Hence, reintroducing the dependence on M, we obtain that

EW2
2 (p(M)

0 , π̂) ≤ exp
(
−M

4

)
W2

2 (p0, π̂).

Finally, with M ≥ 4 log αW2
2 (p0,π̂)

ε2 , we obtain the guarantee

αEW2
2 (p(M)

0 , π̂) ≤ ε2,

as desired.

A.5.4 Proof of Theorem 3.3.11

Once again, the blueprint is the same as what we have encountered before: combine the variance

bound of Lemma 3.3.9 with the one-step inequality of Inequality 3.18.

Proof. First, we consider a fixed value of the outer loop iteration number j, so we drop the depen-

dence on j in the superscript of the iterates. Combining the variance bound of Lemma 3.3.9 with

the one-step inequality Inequality 3.18, we obtain that

EW2
2 (pk+1, ν) ≤ (1− αη)EW2

2 (pk, ν)− 2ηE[F (pk+1)−F (ν)]

+ 12βη2 (12d + 20βκ[W2
2 (pk, π̂) + W2

2 (p0, π̂)] + β[F (pk)−F (π̂) +F (p0)−F (π̂)]
)

.

Just as in the proof of Theorem 3.3.10, we note that

Sk = Epk∇2Vi −Ep0∇2Vi + Ep0∇2V ⪯ 2βI,

so by Lemma A.2.1, we have that Σ−1
k ⪯ 2βI. Hence, by Lemma 2.2.1 and Lemma 2.2.7, we again
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have that

F (pk)−F (π̂) ≤ 2βW2
2 (pk, π̂).

Thus, we find that

EW2
2 (pk+1, ν) ≤ (1− αη)EW2

2 (pk, ν)− 2ηE[F (pk+1)−F (ν)]

+ 144βη2 (d + 2βκ[W2
2 (pk, π̂) + W2

2 (p0, π̂)]
)

.

Taking ν = π̂ and noting that 288β2κη2 ≤ αη
2 by assumption, we obtain that

EW2
2 (pk, π̂) ≤

(
1− αη

2

)
EW2

2 (pk, ν) + 288β2κη2W2
2 (p0, π̂) + 144βdη2.

Iterating this inequality, we find that

EW2
2 (pk, π̂) ≤ exp

(
−Nαη

2

)
W2

2 (p0, π̂) + 576βκ2ηW2
2 (p0, π̂) + 288κdη

≤ exp
(
−Nαη

2

)
W2

2 (p0, π̂) + 600βκ2ηW2
2 (p0, π̂) + 300κdη.

Hence, with the choice

η =
1

2400

(
ε2

βd
∧ 1

βκ2

)
, and N =

2
αη

=
4800

α

(
βd
ε2 ∨ βκ2

)
,

we obtain the guarantee

EW2
2 (pN , π̂) ≤

(
1
e
+

1
4

)
EW2

2 (p0, π̂) +
ε2

8α
≤ 3

4
EW2

2 (p0, π̂) +
ε2

8α
.

Hence, reintroducing the dependence on M, and iterating this inequality, we obtain that

EW2
2 (p(M)

0 , π̂) ≤
(

3
4

)M

EW2
2 (p0, π̂) +

ε2

2α
≤ exp

(
−M

4

)
EW2

2 (p0, π̂) +
ε2

2α
.
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Finally, with M ≥ 4 log 2αW2
2 (p0,π̂)
ε2 , we obtain the guarantee

αEW2
2 (p(M)

0 , π̂) ≤ ε2,

as desired.
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Appendix B

Simulations

In this section, via elementary simulations1, we demonstrate that FBGVI is implementable, prac-

tical and competitive with the Bures–Wasserstein gradient descent (BWGD) method of [51]. We

consider two examples:

1. Gaussian targets. For the first experiment, we consider a scenario where the target density

is

π(x) ∝ exp
(
−1

2
⟨(x− µ), Σ−1 (x− µ)⟩

)
,

where µ ∼ Unif([0, 1]10) and Σ−1 = U diag
[

10−9 10−8 · · · 1

]
UT, with U ∈ R10×10

chosen as a uniformly random orthogonal matrix. In this case, we have that π ∈ BW(R10),

so the solution to Problem (1.1) is precisely π, and furthermore we have that π is 10−9-

strongly log-concave and 1-log-smooth.

We run FB–GVI and stochastic FB–GVI with target potential π ∝ exp(−V) initialized at

p0 = N (0, I10), where I10 is the 10× 10 identity matrix. The step size η is varied, and the

resulting plots of log KL (pk ∥π) for different choices of η are displayed in Figure B-1.

2. Bayesian logistic regression. We consider the following generative model: given a parame-

ter θ ∈ Rd, we draw i.i.d. samples {(Xi, Yi)}n
i=1 ∈ (Rd × {0, 1})n with

Xi
i.i.d.∼ N (0, Id) , Yi | Xi ∼ Bern(e⟨θ,Xi⟩) .

1Code for our experiments can be found at https://github.com/mzydiao/FBGVI/blob/main/FBGVI-Experiments.
ipynb.
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Figure B-1: Gaussian target experiment: results for FB–GVI (top) and stochastic FB–GVI (bottom).
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Given these samples {(Xi, Yi)}n
i=1 and a uniform (improper) prior on θ, the posterior on θ is

given by

V(θ) =
n

∑
i=1

[
ln(1 + e⟨θ,Xi⟩)−Yi ⟨θ, Xi⟩

]
.

We run stochastic FB–GVI with π ∝ exp(−V) initialized at p0 = N (0, Id) with varying

step sizes η. Since in this scenario we do not know the true minimizer π̂ nor the normal-

ization constant of π, we cannot directly compute KL (pk ∥π) nor W2
2 (pk, π̂). However, we

can still estimate the objective function F (pk) as well as the squared BW gradient norm

Epk ∥∇BWF (pk)∥2 empirically by drawing samples from pk. For each choice of step size η,

we plot our empirical estimates of F (pk) and Epk ∥∇BWF (pk)∥2 over iterations in Figure B-

2.

Our results are provided in Figure B-1 and Figure B-2. Based on the plots, we make the following

observations:

1. (Stochastic) FB–GVI performs as well as BWGD, if not better. In addition, for sufficiently

small η, both FB–GVI and BWGD attain lower objective than the Laplace approximation as

seen in Figure B-2. This observation was also made in [45] for BWGD.

2. FB–GVI is stable up to much larger step sizes than BWGD, mirroring the comparative sta-

bility of proximal gradient methods versus gradient descent methods in Euclidean space,

especially when the step size is large (see, e.g., [88, 87]).

Our empirical results, combined with our theoretical guarantees, lend convincing evidence in

support of using FB–GVI for Gaussian variational inference.
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