
Halide in Molecular Dynamics

by

Ricardo Gayle Jr.

B.S. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2022

Submitted to the Department of Electrical Engineering and Computer Science in

Partial Fulfillment of the Requirements for the Degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

©2023 Ricardo Gayle Jr. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release

the thesis under an open-access license.

Authored by: Ricardo Gayle Jr.

Department of Electrical Engineering and Computer Science

May 12, 2023

Certified by: Saman Amarasinghe

Professor, Thesis Supervisor

Accepted by: Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Halide in Molecular Dynamics

by

Ricardo Gayle Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In many fields, especially biology and chemistry, it is important to understand how a
collection of particles will interact with each other over some period of time. If only
managing a system of two particles, it is simple enough to calculate the final positions
of the atoms given their properties and the outside forces placed upon them. However,
it is often the case that the system’s size is several magnitudes larger; therefore, the
task is handed off to computers and simulators.

Molecular dynamics, or MD, simulations tend to be extremely expensive, taking
several weeks to compute less than a second’s worth of real time. Two significant
reasons MD simulations are time intensive are due to the complex loop structures
and math required to observe each time step. More tools and research are constantly
being developed to increase performance of these simulations.

In this thesis we introduce a tool from the image processing domain, Halide, and
argue that Halide is a qualified candidate to efficiently implement MD simulations
in the future. We rewrote a potential into Halide to achieve only a 20% slow down
serially, which we are certain can reach parity with minimal changes to the code, and
over 300% speed up when running in parallel. While it was challenging beginning to
work with Halide and its limitations, we are still able to accomplish this performance
and versatility writing 47% less code. Halide also makes the transformation to parallel
scheduling trivial, whereas this is not the case in the original implementation. Halide
was not able to represent all of the loop structures we wanted; however, we also
suggest several additions and changes to Halide to make it more suitable to MD.

.
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Chapter 1

Introduction and Background

1.1 Introduction

Molecular dynamics simulations are used to model how different atoms interact with

each other in a particular system. This is especially important in biology and chem-

istry when trying to study the properties of some organism or material. MD can be

used to determine how a system will react to some change or environment and even

to design new materials with desired properties of conductivity, flexibility, strength,

etc. Molecular dynamics simulations are an integral tool for many important chemical

and biological problems; however, there is currently no efficient way to run molecu-

lar dynamics simulations naively as they follow the classic n-body problem, growing

in complexity with n. Consequently, scientists implement molecular dynamics en-

ergy potentials of a specified body order, a finite n, to determine an estimate of the

changes, with higher bodies providing more accurate results but being more compute

and time intensive. Even with these approximations, molecular dynamics simulations

are still time intensive. While it is often necessary to view several milliseconds worth

of time steps, traditional technologies are only capable of computing time steps 9 to

12 orders of magnitude smaller. For example, a material might need to withstand

heat over the course of seconds or minutes, but a molecular dynamics simulation will

simulate a nanosecond in a day of real time.

Currently, the open-source C++ repository, LAMMPS, is widely used for molec-
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ular dynamics simulations [9]. LAMMPS is used because it is highly portable, free,

easily modifiable and extendable, and already comes loaded with a wide variety of dif-

ferent potentials. Within the pipeline of LAMMPS there are several compute-heavy

tasks which may be possible to optimize– most notably, computing the energies of

the particle system and computing the derivatives of those energies needed to evolve

the state. That is, computing the potential of the system and its derivative.

Halide is an open-source language created to easily manipulate image processing

algorithms by order in which a computation occurs [7]. In this work, we explore the

possibility of moving Halide to a different domain; we believe Halide can be used to

rewrite many of the potentials in LAMMPS to achieve higher performance. So far,

we have implemented a potential currently in LAMMPS called Fast POD (Principal

Orthogonal Description) in Halide with only a 20% slowdown serially, but with many

optimizations still on the table and within easy reach. When run in parallel over

the atoms, we see a greater than 350% speed up. We expect to reach parity serially

and improve upon the original fast POD while writing 47% less code that is more

understandable. Our parallel implementation requires less than five extra lines of code

to transform from serial to parallel, whereas the original C implementation would

require non-trivial transformations, including the careful application of atomics and

the reorganization of memory management. In fact, an author of the original code

remarked at the elegance of our implementation!

To showcase Halide’s possible success in this new domain, in this paper we will

(1) discuss the similarities and differences between image processing and molecular

dynamics and why Halide is a reasonable candidate to be applied to the MD domain,

(2) tackle the rewriting of Fast POD into Halide, (3) review the various scheduling

done to mimick the original implementation, and (4) review the results in comparison

to the current Fast POD implementation and an optimized Halide implementation.
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1.2 Background

1.2.1 Molecular Dynamics

Molecular dynamics simulations are prominent tools used to examine how a set group

of particles or atoms will interact with each other over a set period of time given some

model of governing physics, typically encoded in the form of one or more potentials.

Each potential describes how particles will interact with each other by assigning an

energy to a particle based on its neighbors. These potentials can be defined on 𝑛

particles; however, the ones used most in molecular dynamics are defined on pairs,

triplets, and quadruplets. The potential used in this thesis is a up to 7 body potential

called Fast Proper Orthogonal Descriptors (POD), further described in [5].

Molecular dynamics simulations consider the forces that each particle exerts on

one another using potentials to continuously find each particle’s new location and

velocity. This proves to be one of the most compute and time intensive processes. To

find the updated energy and force per atom, it is often necessary to perform expensive

computations consisting of trigonometry, linear algebra and stencils within even more

complicated loops with possible symmetries. A general potential follows the structure

shown in Figure 1-1.

en e r g i e s [ atoms ] = [ . . . ]
f o r c e s [ atoms ] [ dim ] = [ . . . ]
for atom in atoms :

for pa i r in pa i r s [ atom ] :
e n e r g i e s [ atom ] = ( ( ) => expensive_computation (atom , pa i r ) :

for x in non−r e c t angu l a r loop :
return t r i g_ l i n e a r_ s t e n c i l s (x , y )

f o r c e s [ atoms ] [ dim ] =
more_expensive_computation (atom , pa i r )

Figure 1-1: MD General Algorithm

The different forces and networks between particles can be so complex that neural

networks have recently been used to represent their states [3]. On top of their com-

plexity, the computational costs and time required to run these simulations have made
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it common for supercomputers to perform these simulations [2, 6]. Recent develop-

ments in GPUs, however, allow for powerful simulations to be run more modestly by

offloading compute-intensive work to the GPU; this has not solved the issue of how

long these simulations take, though [8], meaning even small performance improve-

ments are still valuable.

Other than physical/architectural improvements to reduce the time of running

molecular dynamics simulations, improvements have also arisen from creating new

and improving old potentials. It is possible to implement an optimized pipeline,

rather than a naive one, which can result in a difference of days to weeks for some

simulations.

1.2.2 LAMMPS

The most popular tool that performs these computations is Large-scale Atomic/-

Molecular Massively Parallel Simulator (LAMMPS), an open source molecular dy-

namics code base with a focus on materials modeling [9]. It has become a popular

tool for molecular dynamics as it provides a variety of interaction models for a mul-

titude of materials.

One reason it is popular is because LAAMPS has pre-stored potentials for solid-

state materials, soft matter, and coarse-grained systems to simulate interactions at the

atomic scale. These potentials include multiple kinds of pairwise, machine learning

and bond potentials. There are many other reasons for its popularity though; users

are able to control simulations with details ranging from using a single CPU vs. a

supercomputer, adding new custom potentials via input script, and more. The code’s

general ease to modify or extend is just another reason it continues to be such a

prominent tool. However, it still stands to question whether or not it is possible to

simply rewrite the potentials in LAMMPS more optimally. We argue that rewriting

these potentials with Halide can lead to simpler code that is more readily changeable

for optimizations.
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1.2.3 Halide

Many tools and frameworks exist to help build optimized image processing pipelines;

one of the most popular tools is Halide. Halide is an open-source domain-specific lan-

guage created to handle the compute-heavy processing pipelines used in today’s image

processing applications by keeping a separation between algorithm and scheduling.

Halide was created with the trade-offs between locality, parallelism and redundant

computation in mind; therefore, the language was made to allow for different sched-

ule representations to easily be compared to better understand the trade-offs. While

values do need to be computed before being used, Halide allows the user to determine

when and where the values of a coordinate are computed, where they are stored, and

how long a value is cached and reused vs being recomputed. Changing where, when,

and how these values are stored will not change the result of the algorithm; however,

it can drastically change the performance [7]. As long as Halide’s internal checks

assert the result of the algorithm does not change given the scheduling, Halide takes

the specified algorithm and schedule to generate LLVM assembly.

While Halide was designed with image processing in mind, many of its tools make

it possibly viable for other domains. Image processing tends to involve many struc-

tures somewhat similar to those in MD: there are many loops involving linear algebra,

stencils, and even a few irregular loops with much more complex input/output pat-

terns. Despite the big irregularity in MD computations (the loop over neighbors),

MD and image processing computations might sometimes have a lot in common.

Halide is somewhat capable of managing some variation of complex computations

over non-rectangular loop domains, loop domains with sizes that vary with some

variable, and loop domains determined by another function. The tool was not made

with MD in mind; therefore, it can not represent everything possibly wanted. We still

believe Halide can be used to rewrite potentials in molecular dynamics simulations

for significant improvements to run time in the near future.
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Chapter 2

Implementing Fast POD

In this chapter, we introduce fast POD as an example of how complex and compute

intensive potentials can be. Despite the complexities, we are able to rewrite fast POD

in Halide due to its various tools which manage complex loops and computations

relatively well.

2.1 Introduction to the Fast POD Potential

The Fast POD potential is a 𝑛 ≤ 7-body potential, which would imply a loop over

heptatuples, yet "scales linearly in complexity with the number of neighbors irrespec-

tive of the body orders" [5]. To achieve this, Fast POD first calculates one, two, and

three body potentials, and then cleverly combines these using the properties of certain

classes of polynomials to produce the higher body potentials. We will only lightly ref-

erence this math below, as motivation, but focus on understanding the organization

of the implementation to better understand the transformation into Halide.

Like any potential, Fast POD finds the energy and force of every atom in the

simulation per atom, as shown in Figure 1-1. At a high level, the work done per

atom, 𝑎, is as follows (pseudo code for fast POD is referenced and can be found at

the end of this section).

Bessel parameters, bessel degrees, and inverse degrees are given as inputs which

help model the physical two body interactions between any two atoms. For every
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neighbor in 𝑎’s region and for every set of specified bessel parameters, bessel degrees,

and inverse bessel degrees, a set of coefficients is created, rbft in Figure 2-5, using

multiple trig computations on the radial distances from 𝑎 to the neighbor. With

these coefficients, we can perform a matrix multiplication to obtain the radial basis

functions, as shown in Figure 2-1, where 𝐾𝑟 is the specified number of radial basis

functions, 𝑗 is the neighbor of 𝑎, 𝑄 is some pre-computed fitted process result, and 𝑅𝑘

is the radial basis function. rbf and its derivative is then used to initialize the energy

𝑅𝑘(𝑟𝑎𝑗) =
𝐿∑︁
𝑙=1

𝑄𝑙𝑘𝑟𝑏𝑓𝑡𝑙(𝑟𝑎𝑗), 𝑘 = 1, ..., 𝐾𝑟 (2.1)

Figure 2-1: Obtaining radial basis as stated in [5]

and force of 𝑎, as shown in Figure 2-6. As this is the energy and force calculated given

the distance between pairs of atoms, we consider this the 2-body update (Figure 2-2).

Figure 2-2: In this example, the center atom has 4 neighbors in its region.

Next, we derive an updated energy and force with respect to the 3-body instead

(Figure 2-3). Similarly to before, some set of polynomials, abf, will be created given

the angle between 𝑎 and any other 2 atoms in its defined neighborhood. While this

would naively be done in polynomial time with respect to number of neighbors, fast

POD recursively builds a set of polynomials from a set of pre-computed monomials
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Figure 2-3: 3-body considers the angle between every unique triple with 𝑎 at the
vertex.

(Figure 2-4), allowing abf to be computed in linear time with respect to number

of neighbors, as seen in Figure 2-16. Rather than updating energy and force with

0 1
1 �̂�𝑖𝑗, 𝑦𝑖𝑗, 𝑧𝑖𝑗

2 �̂�2
𝑖𝑗, 𝑦2𝑖𝑗, 𝑧2𝑖𝑗, �̂�𝑖𝑗𝑦𝑖𝑗, �̂�𝑖𝑗𝑧𝑖𝑗, 𝑦𝑖𝑗𝑧𝑖𝑗

3 �̂�3
𝑖𝑗, 𝑦3𝑖𝑗, 𝑧3𝑖𝑗, �̂�2

𝑖𝑗𝑦𝑖𝑗, �̂�2
𝑖𝑗𝑧𝑖𝑗, 𝑦2𝑖𝑗�̂�𝑖𝑗, 𝑦2𝑖𝑗𝑧𝑖𝑗,

𝑧2𝑖𝑗�̂�𝑖𝑗, 𝑧2𝑖𝑗𝑦𝑖𝑗, �̂�𝑖𝑗𝑦𝑖𝑗𝑧𝑖𝑗

4 �̂�4
𝑖𝑗, 𝑦4𝑖𝑗, 𝑧4𝑖𝑗, �̂�3

𝑖𝑗𝑦𝑖𝑗, �̂�3
𝑖𝑗𝑧𝑖𝑗, 𝑦3𝑖𝑗�̂�𝑖𝑗, 𝑦3𝑖𝑗𝑧𝑖𝑗, 𝑧3𝑖𝑗�̂�𝑖𝑗

𝑧3𝑖𝑗𝑦𝑖𝑗, �̂�2
𝑖𝑗𝑦

2
𝑖𝑗, �̂�2

𝑖𝑗𝑧
2
𝑖𝑗, 𝑦2𝑖𝑗𝑧

2
𝑖𝑗, �̂�2

𝑖𝑗𝑦𝑖𝑗𝑧𝑖𝑗 �̂�𝑖𝑗𝑦
2
𝑖𝑗𝑧𝑖𝑗

�̂�𝑖𝑗𝑦𝑖𝑗𝑧
2
𝑖𝑗

Figure 2-4: The basis set of angular monomials up to 4-body, as shown in [5]

abf, a tensor product of rbf and abf are stored, along with its summation, to be

cleverly used later for higher-body updates (Figure 2-7). Next, the 3-body energy is

finally updated, but not the force; instead, some set of coefficients are created from

the tensor products of abf and rbf (Figure 2-8) which are then used to update the

force (Figure 2-9).

If fast POD is being run as a 3-body potential, it ends here. However, if going

up to 3 < 𝑛 ≤ 7-body, then, we use the results of the 2 and 3 body potentials. Fast
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POD creates polynomial descriptors da and dda for all 1 < 𝑎 ≤ 𝑛 which are used

with the tensor products previously stored to update the energy and force for higher-

body updates. More specifically, d2 is created from summations of rbf while d3 is

created from some summations of the tensor products. The difference in complexity

from finding the two-body descriptors (Figure 2-10) vs the three-body descriptors

(Figure 2-11) is large; however, to reduce further growing complexity and work in

calculating 𝑛 > 3-body energy and force, finding the remaining polynomial descriptors

can be organized into products and computed hierarchically with dn = di * dj,

where 𝑖+ 𝑗 = 𝑛+ 1. Given that we have d2 and d3, d4 = d2 * d3, d5 = d3 * d3,

and we can now find d6 = d4 * d3 and d7 = d4 * d4. The energy and force are

then updated by using relevant descriptors (Figure 2-12) to compute the energy and

coefficients needed to compute the force. Though this sounds simple, each of these

products is typically four or five loop levels, involving indirect offsets and symmetric

matrices or tensors due to the structures of the monomials used to compute abf.
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2.1.1 Fast POD pseudo code

for each neighbor in ne ighbors [ atom ] :
for each besse lparam in besse lparams :

for each degree in b e s s e l d e g r e e s :
r b f t = expens ive_tr ig and s p h e r i c a l harmonics
d rb f t = d e r i v a t i v e s o f r b f t

for each degree in i nv e r s ed eg r e e :
r b f t = expens ive_tr ig and s p h e r i c a l harmonics
d rb f t = de r i v a t e s o f r b f t

Figure 2-5: radialbasis

e = 0
for each m in rb f :

for each n in ne ighbors [ atom ] :
e += c o e f f ∗ rb f (n , m)
f += c o e f f ∗ drbf (n , m)

Figure 2-6: tallytwobodylocalforce

for each m in rb f :
for each k in abf :

for each neighbor in ne ighbors [ atom ] :
U = some tenso r product o f rb f and abf
dU = de r i v a t e s o f U
sumU += some summation o f the t enso r products

Figure 2-7: radialangularbasis

19



for each m in rb f :
for each p in abf :

for . . . :
for type in element types :

for type in element types :
c o e f f = some func t i on o f sumU
e += some func t i on o f c o e f f
c o e f f += some func t i on o f c o e f f

return e

Figure 2-8: threebodycoeff

for each m in rb f :
for each k in abf :

for each neighbor in ne ighbors [ atom ] :
f i j += c o e f f ∗ dU

Figure 2-9: tallylocalforce

for each m in rb f :
for each neighbor in ne ighbors [ atom ] :

d2 += rb f
dd2 += drbf

Figure 2-10: two-body descriptors

for each m in rb f :
for each p in abf :

. . .
for each type in element types :

for each neighbor in ne ighbors [ atom ] :
d3 += some func t i on o f sumU
dd3 += some func t i on o f U

Figure 2-11: three-body descriptors

dn = di ∗ dj // where i + j = n + 1
e += dotproduct(& co e f f s , dn , n l23 )
f += some func t i on o f c o e f f s , di , and dj

Figure 2-12: 𝑛 > 3-body updates

2.2 Rewriting in Halide

In this section we will introduce the different components of Halide needed to write

different loop structures, especially those found in molecular dynamics. We also
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introduce several methods and strategies to transforming C code to Halide.

2.2.1 General Rewrite

In rewriting any algorithm in Halide, there are several classes in Halide to become

familiar with. The four classes we will use the most are Funcs1, Vars2, RDoms3 and

Exprs4. Funcs are the units that the pipelines in Halide are scheduled by, representing

a collection of regular loop nests to compute one output array. Vars are used to help

define Funcs by representing a domain to iterate over. By default, Funcs are expected

to be pure functions; however, RDoms are used to specify multi-dimensional domains

to iterate over. They are used to give Funcs update definitions, allow recursion, and

scattering. The dimensions to iterate over are defined by RVars5. Finally, Exprs

are immutable expressions that can be used to help define a Func with intermediate

computation. We will also note an essential function of RDoms. Halide’s RDom class

has a where method which attaches a predicate to a reduction domain in the form

of an Expr. Given a predicate, the computation in an RDom only occurs when the

predicate is true. It is able to handle Exprs containing the RDom’s own RVars, the

Func’s pure Vars, another Func, or a recursive call to the same Func 6.

We will explain how these classes are used together for a general rewrite of any

function.

1. First, we determine the loop structure needed to perform the stores/updates

and any possible reads. We create Vars for each level of the loop structure. If

there are non-rectangular loops, we also define the RDom and RVars needed.

2. Second, we determine where stores are happening in the algorithm. This can be

the intermediate computation that is temporarily stored or the final result. We

create Funcs for each of the stores. If the store consists of updates, recursion, or

1https://halide-lang.org/docs/class_halide_1_1_func.html#details
2https://halide-lang.org/docs/class_halide_1_1_var.html
3https://halide-lang.org/docs/class_halide_1_1_r_dom.html
4https://halide-lang.org/docs/struct_halide_1_1_expr.html
5https://halide-lang.org/docs/class_halide_1_1_r_var.html
6https://halide-lang.org/docs/class_halide_1_1_r_dom.html
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scattering, we must use a RVars from an RDom for the variables that are reduced,

scattered, or reused.

3. Create Funcs and/or Exprs for any intermediate calculations.

• If there is an intermediate read from an array, this will have to be a Func.

• Expensive calculations can be manually scheduled if written as a Func;

otherwise, an Expr is sufficient.

4. Rewrite.

While this is a basic algorithm to follow, this is only sufficient for algorithms with very

simple loop structures. Also, without proper scheduling, Halide promises to obtain

the same result, but may not perform the operations in the same order. For example,

any given Func may be pre-computed with respect to any of its given Vars depending

on the supplied schedule. Custom scheduling will be discussed in Chapter 3.

Within the next few sections, we will discuss rewriting specific parts of Fast POD

and the different strategies used to successfully do so.

2.3 Per Atom Energy/Force Calculations

In the Fast POD algorithm, there is a point which finds the energy and force in the

system per atom per time step. As stated before, this will be one of the most time

consuming processes within the MD simulation; therefore, it was the first part of the

potential to consider rewriting.

Due to the differing complexities of each function that makes up this part of the

potential, we will discuss the functions out of order; rather, we will discuss them

in order of complexity to allow for a better understanding of how to transform any

potential. We will also provide pseudo code for the c++ implementation to further

show Halide’s capabilities.
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2.3.1 Tallying Two-Body Local Force

Update Definitions and Indirect Read
One of the simpler functions we needed to rewrite was tallytwobodylocalforce

(Figure 2-6). As the name partially suggests, this function finds the total force and

energy for a given atom given each pair of atoms. The function is, roughly, as follows:

double e = 0 . 0 ;
for ( int m=0; m<M; m++)

for ( int n=0; n<N; n++) {
int nm = n + N∗m;
double c = c o e f f 2 [m + nbf ∗( t j [ n]−1) ] ;
e += c∗ rb f [nm ] ;
f i j [ 0 + 3∗n ] += c∗ rb fx [nm ] ;
f i j [ 1 + 3∗n ] += c∗ rb fy [nm ] ;
f i j [ 2 + 3∗n ] += c∗ rb f z [nm ] ;

}
return e ;

This function has two complexities which makes it different from a general Halide

function. Rather than being able to calculate fij or e all at once, both are repeatedly

updated. To accomplish this in Halide, we will use RDoms to specify a domain to iterate

over. We also will need to use Halide’s clamp7 function because of the indirect access

coeff2[m + nbf*(tj[n]-1)]. Specifically, the "indirect access" refers to indexing

into one array, coeff2, with an element of another array, tj. When using Halide’s

clamp function, Halide will generate extra assertions to ensure the indirect access is

safely within the correct memory bounds (however, if correctness is proven already,

unsafe_promise_clamp allows for indirect accesses without assertions). Clamps are

necessary for Halide to be certain of the bounds of an indirect access. Further, these

clamps allow Halide to occasionally pre-compute smaller regions in the case of indirect

reads. Despite these complexities, we begin the translation as normal.

First, we identify the loop structure. We will define this loop structure as a 2-

level loop over M and N. This will correspond to Vars 𝑚 and 𝑛. Next, we identify the

7https://halide-lang.org/docs/namespace_halide.html#a40b1c066344e4816e822a467522bb1f1
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important stores that occur: stores to e and fij. We will define two Funcs fij and

e. It is important to notice that 𝑚 and 𝑛 are not both necessary for storing neither

fij nor e. e is a scalar and does not need any Vars for its store. fij appears to be

a 1D array; however, upon further inspection fij is actually a flat 2D array where

each row is the vectored force by dimension. Therefore, we can create a new Var dim.

Note, we can apply a similar trick to rbfx, rbfy and rbfz. We will call this combined

array rbfd. We, then, bound the variables 𝑛 from [0,N) and dim from [0, 3). Finally,

we create an Expr for 𝑐. We do not need to create an Expr for nm because, similarly

to fij, coeff2 is a 2D array. As coeff2 and tj are arrays, it is assumed they are

both Funcs, as well. Fortunately, they are each indexed with Vars we have already

defined. We will also assume they were already bounded outside of this method’s

scope.

Given the above structure, we can begin the transformation. First, we define all

the Vars introduced above. We must also initialize fij and e to 0 because they are

being updated (we must give them an original state!). The updates occur over the

entire domain of the nested loops; therefore, we create an RDom with two dimensions

bounded from [0, 𝑁) and [0, 3), similarly to the pure Vars. The pure Vars will be

used in the initialization and the RDoms are used in the updates. When accessing tj,

we apply a clamp. Finally, we place explicit bounds on the pure Vars.

The Halide translation is shown in Figure 2-13.

2.3.2 Radial Angular Basis

Indirect Access to Write
The function radialangularbasis finds the tensor products needed to find higher

body energies and forces (Figure 2-7). radialangularbasis is very similar to

tallytwobodylocalforce structurally with some key differences which adds some

further complexity; therefore, we will examine this transformation next. First, let’s

look at the original code in Figure 2-14.

The key differences to note are:
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Expr zero = Expr ( ( double ) 0 . 0 ) ;
Func e ("e" ) , f i j ("fij" ) ;
Var n("n" ) , m("m" ) , dim("dim" ) ;
e ( ) = zero ;
f i j (n , dim) = zero ;

RDom r (0 , N, 0 , nbf ) ;
Expr c = c o e f f 2 ( clamp ( t j ( r . x ) , 1 , N − 1) − 1 , r . y ) ;
e ( ) += c ∗ rb f ( r . x , r . y ) ;
f i j ( r . x , dim) += c ∗ rb fd ( r . x , r . y , dim) ;

f i j . bound (n , 0 , N) ;
f i j . bound (dim , 0 , 3) ;

Figure 2-13: Halide tallytwobodylocalforce

for ( int m=0; m<Ne∗K∗M; m++)
sumU[m] = 0 . 0 ;

for ( int m=0; m<M; m++) {
for ( int k=0; k<K; k++) {

for ( int n=0; n<N; n++) {
int i a = n + N∗k ;
int ib = n + N∗m;
int i i = i a + N∗K∗m;
double c1 = rb f [ ib ] ;
double c2 = abf [ i a ] ;
U[ i i ] = c1∗ c2 ;
Ux [ i i ] = abfx [ i a ]∗ c1 + c2∗ rb fx [ ib ] ;
Uy [ i i ] = abfy [ i a ]∗ c1 + c2∗ rb fy [ ib ] ;
Uz [ i i ] = abfz [ i a ]∗ c1 + c2∗ rb f z [ ib ] ;
int in = atomtype [ n ] −1;
sumU[ in + Ne∗k + Ne∗K∗m] += c1∗ c2 ;

}
}

}

Figure 2-14: radialangularbasis code

• The indirect access now occurs within a store instead of a read.

– sumU[atomtype[n]-1 + Ne*k + Ne*K*m]

• The important stores occur between two different arrays instead of a single array

and a scalar.

25



A big similarity that will track throughout all of the following functions is noticing

seemingly flat arrays to actually be 𝑁D arrays (ii is equivalent to indexing into a

2D array at [𝑚][𝑛]). We will also find arrays that represent some data vectored out

(Ux, Uy, Uz). From this point forward, we will not be explicitly stating this. Now let’s

begin the translation.

The loop structure will be represented by three Vars 𝑚, 𝑘, and 𝑛. In terms of

stores, we have sumU, U and vectored out arrays we will call Ud. We will again add

a Var dim for Ud. Also notice, U and Ud have different dimensions from sumU. While

this may not always be necessary, we will create a new Var for ne. Between the four

Vars we have created, this is sufficient for our stores. We now bound the variables

𝑚 from [0,M), 𝑘 from [0,K), 𝑛 from [0,N), 𝑛𝑒 from [0,Ne) and dim from [0, 3). Finally,

we create Exprs for c1 c2 and in. Each of our Exprs are computed (or just are

reads) from arrays; therefore, these are each Funcs which we will again assume were

bounded outside of this method’s scope. We also make sure to clamp in during the

sumU store. Finally, place explicit bounds on the pure Vars.

The Halide translation is as shown in Figure 2-15.

2.3.3 Angular Basis

Recursive Updates
Next, we will translate a seemingly more complex loop structure, but use Halide’s

built-in tools to make the code much more readable. The function is angularbasis

(Figure 2-16). One of the two new complexities applied in this function is dealing

with conditionals. Halide comes with a select8 struct which works as Halide’s built-

in ternary operator. This function does not act exactly like a ternary though, as it

evaluates both sides of the expression regardless of the conditional’s result. The other

complexity is a recursively built array. In other words, an array where the element

at index 𝑖 is computed based on some previous index 𝑗 that was already computed.

At a high level, this might seem to be a problem that Halide can not solve due to

Halide’s internal scheduling; the order of computation is not guaranteed. However,
8https://halide-lang.org/docs/struct_halide_1_1_internal_1_1_select.html
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Expr zero = Expr ( ( double ) 0 . 0 ) ;
Var n("n" ) , k ("k" ) , m("m" ) , ne ("ne" ) , dim("dim" ) ;

sumU(ne , k , m) = zero ;
RDom r (0 , M, 0 , K, 0 , N) ;
Expr c1 = rb f ( r . z , r . x ) ;
Expr c2 = abf ( r . z , r . y ) ;
Expr in = atomtype ( r . z ) − 1 ;

U(m, k , n) = c1 ∗ c2 ;
Ud(m, k , n , dim) = abfd (k , n , dim) ∗ c1 + c2 ∗ rb fd (m, n , dim) ;
sumU( clamp ( in , 0 , Ne − 1) , r . y , r . x ) += rb f ( r . x , r . z ) ∗ abf ( r . y , r

. z ) ;

sumU. bound (m, 0 , M) ;
U. bound (m, 0 , M) ;
Ud. bound (m, 0 , M) ;
. . .
sumU. bound ( ne , 0 , Ne) ;
U. bound (n , 0 , N) ;
Ud . bound (n , 0 , N) ;
Ud . bound (dim , 0 , 3) ;

Figure 2-15: Halide radialangularbasis

we have already been bypassing this with Halide’s RDom. Because RDoms are used for

updates, Halide takes the time to apply these in sequential order rather than in any

order. Therefore, it is usually best to use pure definitions when possible, as we are

able to schedule "more flexibly"9. At a high level, recursion can also be viewed as

multiple update passes on the same array, updating later indices with values from

earlier ones on each update. Therefore, this can be rewritten in Halide using RDoms

in the same fashion as we have shown before.

Let us examine the original code on the following page, Figure 2-16.

We can break down the loop structure to be a 2-level loop across N and K and

represent them with Vars 𝑛 and 𝑘. The important stores occur in abf and abfd. We

add Var dim to handle the vectored arrays. We bound each variable appropriately;

𝑘 from [1,K), 𝑛 from [0,N) and dim from [0, 3). This function requires a lot of Exprs;

so much so that we have only included the code relevant to the new tactics discussed
9https://halide-lang.org/docs/class_halide_1_1_r_dom.html
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tm [ 0 ] = 1 . 0 ;
tmu [ 0 ] = 0 . 0 ; tmv [ 0 ] = 0 . 0 ; tmw [ 0 ] = 0 . 0 ;
for ( int j =0; j<N; j++) {

double x = r i j [0+3∗ j ] ;
double y = r i j [1+3∗ j ] ;
double z = r i j [2+3∗ j ] ;
. . .
double u = x/ d i j ;
double v = y/ d i j ;
double w = z/ d i j ;
. . .
double dudx = (yy+zz ) / d i j 3 ;
. . .
double dwdz = (xx+yy ) / d i j 3 ;

abf [ j ] = tm [ 0 ] ;
abfx [ j ] = 0 . 0 ; abfy [ j ] = 0 . 0 ; abfz [ j ] = 0 . 0 ;
for ( int n=1; n<K; n++) {

int m = pq [ n ] −1;
int d = pq [ n + K] ;
if (d==1) {

tm [ n ] = tm [m]∗u ;
tmu [ n ] = tmu [m]∗u + tm [m] ;
tmv [ n ] = tmv [m]∗u ;
tmw[ n ] = tmw[m]∗u ;

}
. . .
else if (d==3) {

tm [ n ] = tm [m]∗w;
tmu [ n ] = tmu [m]∗w;
tmv [ n ] = tmv [m]∗w;
tmw[ n ] = tmw[m]∗w + tm [m] ;

}
abf [ j + N∗n ] = tm [ n ] ;
abfx [ j + N∗n ] = tmu [ n ]∗ dudx + tmv [ n ]∗ dvdx + tmw[ n ]∗dwdx ;
abfy [ j + N∗n ] = tmu [ n ]∗ dudy + tmv [ n ]∗ dvdy + tmw[ n ]∗dwdy ;
abfz [ j + N∗n ] = tmu [ n ]∗ dudz + tmv [ n ]∗ dvdz + tmw[ n ]∗dwdz ;

}
}

Figure 2-16: angularbasis
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and any reads. We do not need to create any extra Vars for the Exprs or out-of-scope

Funcs.

Now, we can examine how to use select to simplify this code. We can rewrite

the updates to tm and tmd by noticing what is different in each of the conditions and

finding some symmetry. The difference lies in whether tm[m] and tmd[m][dim] are

multiplied by 𝑢, 𝑣 or 𝑤. Also, which dimension of tmd[m] will be added with tm[m].

We will then add a new Func to represent the choice between 𝑢, 𝑣 and 𝑤, called uvw.

Because the value of 𝑢, 𝑣 and 𝑤 rely on Var 𝑛, uvw will take 𝑛 as an argument, as

well as some new Var, selected, to represent which condition we are in. Applying

this idea, we can rewrite the updates to tm and tmd using select as shown in Figure

2-17.

Var s e l e c t e d ("selected" ) ;
Func uvw("uvw" ) ;
uvw(n , s e l e c t e d ) = select ( s e l e c t e d == 1 , u ,

select ( s e l e c t e d ==2, v ,
select ( s e l e c t e d ==3, w, Expr ( ( double ) 0 . 0 ) ) ) ) ;

tm(n , r . x ) = tm(n , m) ∗ uvw( pair , d ) ;
tmd(n , r . x , r . y ) = tmd(n , m, r . y ) ∗ uvw(n , r . y ) +

select ( r . y + 1 == d , tm(n , m) , Expr ( ( double ) 0 . 0 ) ) ;

Figure 2-17: select statement for uvw

In a somewhat similar fashion, we can rewrite the pure definition of abfd. We

create a Func that is computed based on nested select statements, as seen below in

Figure 2-18.

Given these rewrites, the rest of the Halide program will follow as shown in the

abbreviated version, Figure 2-19.

2.3.4 Three Body Coefficients

Irregular domains and Symmetry
In many potentials it is often that computation is done over some irregular domains.

One time this occurs within fast POD is when updating the 3-body energy and

creating the coefficients needed to update the force from the tensor products of the
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Func j a cob ian ("jacobian" ) , abf ("abf" ) , abfd ("abfd" ) ;
Var dim("dim" ) , dim_p("dim_p" ) ;
j a cob ian (n , dim , dim_p) =

select (dim == 0 ,
select (dim_p == 0 ,

dudx ,
select (dim_p == 1 ,

dvdx ,
select (dim_p == 2 ,

dwdx , zero ) ) ) ,
select (dim == 1 ,

select (dim_p == 0 ,
dudy ,

select (dim_p == 1 ,
dvdy ,

select (dim_p == 2 ,
dwdy , zero ) ) ) ,

select (dim == 2 ,
select (dim_p == 0 ,

dudz ,
select (dim_p == 1 ,

dvdz ,
select (dim_p == 2 ,

dwdz , ze ro ) ) ) , ze ro ) ) ) ;
abf (n , k ) = tm(n , k ) ;
abfd (n , k , d) = tmd(n , k , 0) ∗ j a cob ian (n , d , 0) +

tmd(n , k , 1) ∗ j a cob ian (n , d , 1) +
tmd(n , k , 2) ∗ j a cob ian (n , d , 2) ;

Figure 2-18: jacobian select statement

Expr zero = Expr ( ( double ) 0 . 0 ) ;
Var n("n" ) , k ("k" ) , dim("dim" ) ,

dim_p("dim_p" ) , s e l e c t e d ("selected" ) ;
. . .
tm(n) = 1 ;
tmd(n , dim) = 0 ;
. . .
RDom rn (1 , K + 1 , 0 , 3) ;
uvw(n , s e l e c t e d ) = . . .
tm(n , rn . x , rn . y ) = . . .
. . .
j a cob ian (n , dim , dim_p) = . . .
abf (n , k ) = . . .
abfd (n , k , d ) = . . .
. . .

Figure 2-19: Halide angularbasis
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radial and angular basis functions. 𝑝𝑐3 is the set of multinomials used to compute

the coefficients needed to update the force. Given all of this, it is no surprise the

function threebodycoeff is as shown in Figure 2-8 and in Figure 2-20.

for ( int m=0; m<nrbf3 ∗K3∗nelements ; m++)
cU [m] = 0 . 0 ;
double e = 0 . 0 ;

for ( int m=0; m<nrbf3 ; m++) {
for ( int p=0; p<nabf3 ; p++) {

int n1 = pn3 [ p ] ;
int n2 = pn3 [ p+1] ;
int nn = n2 − n1 ;
for ( int q=0; q<nn ; q++) {

int k = 0 ;
for ( int i 1 =0; i1<nelements ; i 1++) {

double t1 = pc3 [ n1+q ] ∗
sumU[ i 1 + nelements ∗( n1+q) + nelements ∗K3∗m] ;

for ( int i 2=i 1 ; i2<nelements ; i 2++) {
double c2 = sumU[ i 2 + nelements ∗( n1+q) + nelements ∗K3∗

m] ;
double c3 = c o e f f 3 [ p+nabf3∗m+nabf3∗nrbf3 ∗k ] ;
double t2 = c3∗ t1 ;
e += t2 ∗ c2 ;
cU [ i 2 + nelements ∗( n1+q) + nelements ∗K3∗m] += t2 ;
cU [ i 1 + nelements ∗( n1+q) + nelements ∗K3∗m] += pc3 [ n1+q

]∗ c2∗ c3 ;
k += 1 ;

} . . .
} return e ;

Figure 2-20: threebodycoeff code summary

We will discuss implementing for (int q=0; q<nn; q++), for (int i2=i1;

i2<nelements; i2++), and k.

Let us tackle for (int q=0; q<nn; q++) first. Notice that q is only used within

the expression n1 + q. Therefore, this loop is equivalent to a loop from n1 to n2.

Given some RDom, r where r.x is bounded to the greatest value in pn3, we can use the

where statement to achieve this loop with r.where((n1 <= r.x) && (r.x < n2)).

It is important to note that Halide may provide a conditional rather than producing

a linear looping structure if the bounds inference cannot determine a reasonable con-

servative interval. Different scheduling commands can change the bounds inference
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leading to Halide producing a conditional even if it didn’t produce one in the default

schedule. This will be discussed more in Chapter 3.

As for the next irregular loop, our RDom will need two different RVars both bounded

by nelements. If we imagine these are RVars r.z and r.w, our predicate would be

r.w >= r.z. This predicate could be added to the previous or added as a new line.

Finally, instead of continuously updating 𝑘 in such a linear way (forcing Halide’s

scheduling to run work linearly, as it is dependent on 𝑘), we can notice that 𝑘 is the

flat index of a symmetric array, i.e if we order (𝑥, 𝑦) such that 𝑥 ≤ 𝑦, k is the location

of (𝑥, 𝑦). This follows that we can rewrite 𝑘 as an Expr where

𝑘 = (2 * 𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠− 3− 𝑟.𝑧) * (𝑟.𝑧/2) + 𝑟.𝑤 − 1. (2.2)

Given this new definition, although it uses RDoms, each definition of 𝑘 is independent

of past iterations; Halide notices this and gives more flexibility in scheduling than if

we updated 𝑘 constantly.

In conclusion, the rest of the transformation occurs similarly as described in pre-

vious sections. The abbreviated transformation is shown in Figure 2-21.

. . .
cU( ne , k3 , rb f3 ) = zero ;
RDom r (0 , K3 , 0 , nabf3 , 0 , nelements ,

0 , nelements , 0 , nrbf3 ) ;
Expr n1 = pn3 ( r . y ) ;
Expr n2 = pn3 ( r . y + 1) ;
r . where ( ( n1 <= r . x ) && ( r . x < n2 ) && ( r .w >= r . z ) ) ;
Expr k = (2 ∗ nelements − 3 − r . z ) ∗ ( r . z/ 2) + r [ 3 ] − 1 ;
. . .
e ( ) += t2 ∗ c2 ;
cU( r [ 3 ] , r . x , r [ 4 ] ) += t2 ;
cU( r . z , r . x , r [ 4 ] ) += pc3 ( r . x ) ∗ c2 ∗ c3 ;
. . .

Figure 2-21: Halide threebodycoeff
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2.4 Outer Loop

Given the tools shown above, we were able to recreate the code that finds the energy

and force per atom. At this point in time, we have only recreated the work done

per atom in Halide. Therefore, our pipeline in LAMMPS consists of transforming all

the inputs into Halide’s per atom function within the original outer loop over atoms.

After completing this, we worked to manage the outer loop over all the atoms in

Halide.

To accomplish this, there were two main changes we made. The original im-

plementation uses a neighbor list that is created per atom. We rewrote this to be

a CSR matrix of the neighbor lists of all atoms where each row corresponds to an

atom and the columns correspond to neighbors10. Then, we added a new Var to

each necessary Func to represent the atom needed to access the appropriate offset

location in the matrix. Then, we wrote every access to input data to be of the form

pair + offsets(atom) where offsets is an input buffer that stores the CSR offsets.

Finally, we added a function to aggregate the outputs, which is outside the current

fastpod implementation, but a part of LAMMPs. The original implementation is

shown in Figure 2-22.

for ( int n=0; n<N; n++) {
int im = 3∗ a i [ n ] ;
int jm = 3∗ a j [ n ] ;
int nm = 3∗n ;
f o r c e [ 0 + im ] += f i j [ 0 + nm ] ;
f o r c e [ 1 + im ] += f i j [ 1 + nm ] ;
f o r c e [ 2 + im ] += f i j [ 2 + nm ] ;
f o r c e [ 0 + jm ] −= f i j [ 0 + nm ] ;
f o r c e [ 1 + jm ] −= f i j [ 1 + nm ] ;
f o r c e [ 2 + jm ] −= f i j [ 2 + nm ] ;

}

Figure 2-22: tallyforce

We implement a slightly more complex version of this function because it also

gathers all the energies together, allowing these two processes to be scheduled to-
10This is common in potentials similar to POD so we reused code from other parts of LAMMPs.
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gether, as will be discussed in the next section. Our transformation is as follows in

Figure 2-23, where oatom and rout, is the atom on the outer loop. Finally y of the

RDom corresponds to the 6 updates in the original and an energy update.

t a l l y f o r c e ( oatom , dim) = Expr ( ( double ) 0 . 0 ) ;
Expr l h s = t a l l y f o r c e (
select ( rout . y == 6 , rout . z ,

select ( rout . y > 2 && rout . y < 6 , app ,
. select ( rout . y <= 2 , rout . z , 0) ) ) ,

select ( rout . y == 6 , 3 , dimp) ) ;
t a l l y f o r c e (
select ( rout . y == 6 , rout . z ,

select ( rout . y > 2 && rout . y < 6 , app ,
select ( rout . y <= 2 , rout . z , 0) ) ) ,

select ( rout . y == 6 , 3 , dimp)
) = select ( rout . y == 6 , etemp ( rout . z ) ,

select ( rout . y > 2 && rout . y < 6 , l h s + −1 ∗
f i j (dimp , rout . x , rout . z ) ,

select ( rout . y <= 2 , l h s+ f i j (dimp ,
rout . x , rout . z ) , Expr ( ( double )
−1.0) ) ) ) ;

Figure 2-23: Halide tallyforce

2.5 Future Work in Implementation

Given the tools shown above, we were able to achieve consistency with fast POD’s

results on sufficiently complex systems.

The implementation, as it is currently stated above, is not the same algorithm

as fast POD, as Halide is performing on its default schedule. It is apparent Halide

can succeed in achieving correctness of the fast POD algorithm, but we will discuss

the possibilities and limitations to scheduling fast POD in Halide, as well as possible

improvements to the current schedule, in the next section.
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Chapter 3

Scheduling

Thus far, we have discussed different ways to implement many of the complex com-

putations that are common in MD potentials. However, as previously stated, Halide

promises the correct final result, but not a specific order of computation within the

generated code. By default, Halide produces each final consumer Func independently

while in-lining producer Funcs and Exprs, up to constraints created by reductions,

recursion, and scatters. For example, in the subsection Angular Basis, our two Funcs

abf and abfd are produced separately with tm and tmd being in-lined within both,

and is thus produced twice! This is costly behavior that results in Halide’s default

scheduling. There are ways to influence Halide to schedule differently. One example

that we have already discussed is RDoms, as updates are required to occur in some

specified order if changing the order will affect the result (e.g recursive updates). To

further influence Halide’s schedule, we can write our Halide code differently or ex-

plicitly write commands telling Halide what to do. Ideally, we would prefer to solely

use the commands, as that is the selling point of Halide: to separate the algorithm

from the schedule. First, we will discuss some of the most common commands we

used to mimic the current Fast POD implementation, as well as limitations we found.

Then, we discuss different steps and ideas we used to further optimize the Halide

implementation.
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3.1 Scheduling Commands and Tricks

3.1.1 Reorder

One of the first commands to become familiar with is Func.reorder1. This function

allows us to specify the loop order of the generated code for a given Func by listing the

Vars and/or RVars involved from innermost out. For pure definitions, any order of

relevant Vars can be used. For update definitions, any order of relevant Vars and/or

RVars can be used, as long as it does not change the outcome of the result. It is

possible that reordering RDoms where a predicate is used (where command is used)

can cause if statements to form where they are not needed, due to an overestimate

in bounds inference, leading to a surprising performance problem.

In subsection Angular Basis, we originally had a 2-level loop over k and n, inner-

most out. However, we also added a new dimension to loop over, dim. If trying to

mimic the original algorithm, then the loop structure must be dim, k and n, inner-

most out. We specify abf.reorder(dim, k, n). To reorder the loop structure of an

update, we use reorder on the Func’s update stage with Func.update(u).reorder

(x, y, z).

Similarly, we can use Halide’s Func.reorder_storage2 function to specify the

nesting order that the data is laid out in storage without changing how we refer to

the Func. We perform this on every Func to mimic the original implementation as

closely as possible. We were not able to perform this transformation on d2 and dd2

in the code shown in Figure 2-10. When the transformation was applied on either

of these Funcs, it drastically changed the force and energy outputs. While Halide

guarantees that the reorder_storage function should not affect computation, there

may be a bug or some structural reason why these two Funcs could not have their

storage reordered.

1https://halide-lang.org/docs/class_halide_1_1_func.html#a77a2bc9d4bb4dfab342f3f412f8e2927
2https://halidelang.org/docs/class_halide_1_1_func.html#ae91507761237f8f477fb190bcba1c779
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3.1.2 Specialize

While this was not included in our pseudo code, many of the functions in the original

implementation have specialized optimizations for specific scenarios. For example, in

tallyLocalForce, there is specialized code that reduces computation if there is only

one element in the simulation. Fortunately, to mimic this behavior in Halide, it is

not necessary to write a specialized block of code. Instead, we can use the command

specialize, which takes in a conditional in the form of an Expr to specialize on.

3.1.3 Computing in Same Loop

In many of the functions described above there are multiple arrays being written

to within the same loop structure. As stated before, Halide does not do this by

default. However, an intuitive trick to ensure Halide produces two Funcs together

is to combine them into a single Func. We have used this trick in defining the new

Var dim in many of the examples above. Instead of having 𝑥 vector array computed

separately from the 𝑦 vector array, we combined the vectored arrays into a single

multi-dimensional array so Halide would compute them together. We can take this

a step further by combining like-Funcs, such as U with Ud and abf with abfd, all of

which referenced in examples above. As neither of these pair of Funcs are ever read

from without the other, it may naturally make sense to combine them. However,

this trick only works well if the structures of the outputs match: if one has three

dimensions, but the other two then merging them will be awkward, even more so if

the two matching dimensions don’t match.

For other Funcs that we wish to compute together we use Halide’s compute_with

function3. This allows us to specify a loop level of a Func or update to compute

at the same time as another Func or update. However, the function is very limited

compared to the more robust scheduling commands that we have used so far. There

are several examples throughout where Halide was not able to compute two Funcs in

the same loop even though they were computed together in the original code.

3https://halide-lang.org/docs/class_halide_1_1_func.html#a8f1204939742d77c847c0928e865d318
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For example, in radialangularbasis, U and sumU are updated within the same

loops. To schedule Halide to produce both sumU and U together, we attempted to

add the scheduling command sumU.update(0).compute_with(U, n). The second

argument in compute_with tells Halide the inner-most loop to compute both Funcs

over. Unfortunately, Halide’s restrictions using associativity analysis are too strict

and prevent this from occurring, insisting there are cyclic dependencies between the

two. Halide’s compute_with method also can not be mixed with specializations.

It is also limited to the two Funcs sharing one or more Vars even if they are us-

ing the same loop structure (e.g. both must use the same RDom so the command

doesn’t work on two overlapping RDoms). Therefore, we are not able to replicate

computing the scalar e and the array fij within the same loop structure as is

done in tallytwobodylocalforce and tallylocalforce. A known problem with

compute_with is its inability to realize updates can occur at the same time, rather

than atomically. For example, in threebodycoeff, two different locations in cU are

written to within the same loop structure; however, Halide can not cleanly do this at

the moment (although a "hack" is mentioned here4 but was not used in our imple-

mentation).

The compute_with method is comparatively new in respects to other methods

we use in Halide and the tool is still prominently used and being improved; many

of the issues discussed have current GitHub issues open with responses for "hacks"

from Halide’s creators to achieve what compute_with can not while they work on the

method.

3.1.4 Compute as Needed

One of the more complicated functions to mimic schedule-wise is angularbasis.

In the original implementation, the arrays tm, tmu, tmv, and tmw are occupied as

the values are needed, rather than all at once beforehand. Assuming we have com-

bined Funcs tm with tmd and abf with abfd similarly to described above in sub-

section Combining Funcs, we will already produce tm and tmd within the same
4https://github.com/halide/Halide/issues/3943
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loops; therefore, tm is now produced once instead of twice. To further mimic the

original implementation, we will use Func.compute_at 5 to ensure tm is only com-

puted as needed by abf within the innermost loop. With the scheduling command

tm.compute_at(abf, k).store_in(MemoryType::Stack), we assert that Halide will

produce code similar to the code shown below while storing tm in the stack.

for ( int n=0; n<N; n++) {
for ( int k=1; k<K; k++) {

double tm [ x ] ;
tm [ k ] = . . . ;
. . .
abf [ . . . ] = . . . ;
. . .

}

It is important to note that compute_at may not utilize predicates (where state-

ments) or clamps (clamp statements), resulting in an unexpected performance decline

due to extra computation occurring.

Similarly, if we wanted to produce all of tm before abf, we could also call

tm.compute_root().

3.2 Mimicking Fast POD’s schedule

We use many of the scheduling tricks listed in the previous section to ensure the

generated code is similar to the original implementation. As can be seen from the

code snippets in Chapter 2, loop orders vary from outermost being the neighbors

of atom 𝑎 to being the radial basis functions; therefore, we use Halide’s reorder

function to match the loop structure of the computations. Next, we examine how

stores are handled for two reasons. First, we reorder the storage to match the original

implementation. Then, we realize throughout virtually all of fast POD’s per atom

calculations, stores are fully computed and stored to be used for later (with one of

the few exceptions being tm, Figure 2-16, as described in the previous section). To

follow this scheduling, we use Halide’s compute_root function in most places.
5https://halide-lang.org/docs/class_halide_1_1_func.html#af4aca8ca6331e64a6fdfd98fccf1757a
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Our original schedule mimicking the original implementation as much as possible

with Halide is as shown in Figure 3-1.

We also note that originally Halide was re-allocating space every time Halide is

entered; resolving in redundant work. LAMMPS keeps a scratch space of pre-allocated

memory, which we can tell Halide to use to avoid constant reallocation.

3.3 Outer Loop

Once we mimicked the original schedule per atom, we worked to recreate the outer

loop over all the atoms. To mimic the original schedule with the outer loop imple-

mented, we added the outer atom to the outermost of the loop orders and changed

many of the compute_root commands to compute_at to be computed at the outer

loop atom instead (Figure 3-2). Then, unlike the original implementation, we paral-

lelized the atom loop, using splits and atomics, though this required an override of

Halide’s associativity test.
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r b f t . s tore_root ( ) . compute_root ( ) ;
rb f . s tore_root ( ) . compute_root ( ) ;
f i j . bound (n , 0 , N) . bound (dim , 0 , 3) ;
f i j . r eorder_storage (dim , n) . update (0 )

. r eo rde r (dim , r . x , r . y ) . un r o l l ( dim) . compute_root ( ) ;
e . compute_root ( ) ;
tm . reorder_storage ( c , m, n) . s tore_root ( ) . compute_at ( abf , m)

. update (1 ) . r e o rde r (n , r . x , r . y ) . un r o l l ( r . y ) ;
abf . r eorder_storage ( c , n , m) . s tore_root ( ) . compute_root ( ) ;
U. reorder_storage ( c , n , k , m) . r eo rde r ( c , n , k , m) . s tore_root ( )

. compute_root ( ) . un r o l l ( c , 4) . s p e c i a l i z e (Ne == 1) ;
sumU. reorder_storage (n , k , m) . s tore_root ( ) . compute_root ( )

. update (0 ) . r e o rde r ( r . z , r . y , r . x ) . s p e c i a l i z e (Ne == 1) ;
d2 . compute_root ( ) . update (0 ) . r eo rde r ( r . x , r . y ) ;
dd2 . compute_root ( ) . update (0 ) . r eo rde r (dim , r . x , r . y )

. un r o l l ( dim) . compute_with ( d2 . update (0 ) , r . y ) ;
// Note: we could not compute over r.x because of a

compute_with limitation
d3 . reorder_storage (k , m, km) . compute_root ( ) . update (0 )

. r eo rde r ( r .w, r . z , r . y , m) . s p e c i a l i z e (Ne == 1) ;
dd3 . reorder_storage (dim , n , k , m, km) . compute_root ( )

. update (0 ) . r e o rde r (dim , r .w, r . z , r . y , r . x , m)

. un r o l l ( dim) . s p e c i a l i z e (Ne == 1) ;
cU . reorder_storage ( ne , k , m) . update (0 )

. r eo rde r ( r .w, r . z , r . y , r [ 4 ] ) . update (1 )

. r eo rde r ( r .w, r . z , r . y , r [ 4 ] ) ;
e . update ( ) . r e o rde r ( r .w, r . z , r . y , r [ 4 ] ) . compute_root ( ) ;
f i j . update (1 ) . r e o rde r (dim , r . z , r . y , r . z ) . un r o l l ( dim)

. s p e c i a l i z e (Ne == 1) ;
d23 . reorder_storage ( d23i , d23j ) . r e o rde r ( d23i , d23j )

. compute_root ( ) ;
e23 . compute_root ( ) ;
c f 1 . compute_root ( ) . update ( ) . r e o rde r ( r1 . x , j ) ;
f i j . compute_root ( ) . update (2 ) . r eo rde r (dim , n , r2 . x ) ;
c f 2 . compute_root ( ) . update ( ) . r e o rde r ( r2 . x , i ) ;
f i j . compute_root ( ) . update (3 ) . r eo rde r (dim , n , r1 . x ) ;
d33 . compute_root ( ) . update (0 ) . r e o rde r ( r . x , r . y ) ;
e33 . compute_root ( ) ;
c f 13 . compute_root ( ) . update (0 ) . r eo rde r ( r . x , r . y ) ;
f i j . compute_root ( ) . update (4 ) . r eo rde r (dim , n , r1 . x ) ;
c f 23 . compute_root ( ) . update (0 ) . r eo rde r ( r . x , r . y ) ;
f i j . compute_root ( ) . update (5 ) . r eo rde r (dim , n , r2 . x ) ;
f i j . update (6 ) . r e o rde r (dim , r . z , r . y , r . x ) . un r o l l ( dim)

. s p e c i a l i z e (Ne == 1) ;

Figure 3-1: mimicked schedule
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. . .
dd2 . r eo rde r (dim , ne , m, n , oatom)
. . .
tm . compute_at ( t a l l y f o r c e , rout . z ) ;
f i j . compute_at ( t a l l y f o r c e , rout . z ) ;
cu4 . compute_at ( t a l l y f o r c e , rout . z ) ;
cU . compute_at ( t a l l y f o r c e , rout . z ) ;
sumU. compute_at ( t a l l y f o r c e , rout . z ) ;
d33 . compute_at ( t a l l y f o r c e , rout . z ) ;
d23 . compute_at ( t a l l y f o r c e , rout . z ) ;
d3 . compute_at ( f i j , oatom) ;
d3 . compute_at ( t a l l y f o r c e , rout . z ) ;
dd3 . compute_at ( t a l l y f o r c e , rout . z ) ;
dd2 . compute_at ( t a l l y f o r c e , rout . z ) ;
d2 . compute_at ( t a l l y f o r c e , rout . z ) ;
. . .

Figure 3-2: Outer loop scheduling changes
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Chapter 4

Results

The Halide version of fast POD, as it stands, is currently 20% slower than the original

when run serially and over 300% faster when run in parallel over the atoms in the

outer loop. The simulation was conducted on an Intel Macbook Pro 2020 with a 2.4

GHz 8-Core Intel Core i9 processor and 32 Gigabytes of RAM. The simulation was

conducted on 16000 atoms for 20 time steps. There were an average of 50 neighbors

per atom except at the first time step where there was an average of a thousand

neighbors per atom. There were also 3 bessel degrees, 6 inverse degrees, 6 two-body

radial basis functions, 5 three-body radial basis functions and 5 three-body angular

basis functions. In this section, we will show the scheduling commands we used to

approach closer to parity in serial, the command needed to run in parallel, examples

of Halide’s ease of implementation in the molecular dynamics domain, and possible

future work.

4.1 Changing the Schedule

The mimicked schedule (Figure 3-1) gave a two times slow down. Profiling revealed

that producing tm in angularbasis, Figure 2-16, was the most expensive compu-

tation. We experimented with different schedules and found that the most effective

option was to compute all of tm at once. The next obvious target was U; we found

Halide’s default schedule, inlining the computation, proved better than computing
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and storing it, as is done in radialangularbasis (Figure 2-7). Combined, these two

optimizations allowed for a 100% speed up in performance. These two optimizations

required changing two lines of our schedule, as shown in Figure 4-1.

tm . reorder_storage ( c , m, n) . s tore_root ( ) . compute_root ( )
. update (1 ) . r e o rde r (n , r . x , r . y ) . un r o l l ( r . y ) ;

U. reorder_storage ( c , n , k , m) . r eo rde r ( c , n , k , m)
. s tore_root ( ) . un r o l l ( c , 4) . s p e c i a l i z e (Ne == 1) ;

Figure 4-1: optimized schedule

As we approached closer to parity, we noticed that we were spending a lot of time

allocating memory. Given that we did not have the outer loop implemented at the

time, memory was continuously reallocated every time the program entered Halide.

When one allocation occurred and the memory was reused per atom, we sped up the

computation by 11%, bringing the Halide version to only 20% slower than the original

(Figure 4-2). This turns out to be an element of the original schedule in LAMMPs

that we missed as it was outside of the code we examined. Although, this can’t be

accomplished with Halide schedules if we do not represent the outer loop, it can be

accomplished via pre-allocating memory for the Halide run time.

After reaching this run time, we implemented the outer loop with the motivation

of computing the force and energies of atoms in parallel. While this would be a

challenging optimization in the original implementation, due to the tallying of forces

and energy between all atoms (Figure 2-22) among other factors, this optimization is

trivial once the outer loop is implemented. With the scheduling changes used in Figure

3-2 and the extra command tallyforce.update(0).atomic(true).parallel(rout

.z), Halide successfully parallelizes over the outer loop atoms, applying necessary

atomic operations where needed. All the combined scheduling changes results in

a 350% speedup! It is important to note that we did not replicate the allocation

optimization in the parallel implementation, as we would need to implement our own

parallel allocator. Despite this, we still manage an impressive speedup.

There are several parts of the implementation that we could not replicate, as

discussed in Chapter 3. It is possible these differences are the reason for the slow
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down in the serial implementations. We have also not used any vectorization beyond

the LLVM defaults. Finally, we have not optimized the matrix multiplies in this code

where as the original manipulates the data to call BLAS.

Original Halide Mimick Halide Optimized Halide Preallocate Halide Parallel
.09 ns/day .03 ns/day .063 ns/day .075 ns/day .34 ns/day

Figure 4-2: Simulation computes x ns/day of Halide solution vs original fast POD.
The first step of the simulation featured a much faster original, .114 ns/day whereas
the Halide implementations performed consistently across all time steps.

While we have not reached parity serially, we have been able to reach 20% within

the goal with minimal scheduling changes and without parallelism– both of which we

are able to accomplish and experiment with by changing single commands.

4.2 Simplicity of implementation and code

Using the translation and schedule we have shown above, the Halide code consists

of roughly 335 lines of code while the corresponding C code is roughly 526 lines (see

table 4-3). To be fair in assessment, we removed white space but included extra

lines used for readability. Further, we only compare with the methods of fast POD

that were directly translated, the kernels, rather than the wiring and infrastructure

around them. On average, enforcing the original schedule consisted of about two to

three extra lines per method.

Halide accomplishes this because of its elegance in handling reductions and mul-

tiple loop levels. In angularbasis a recursive array is built as shown in figure 4-4.

In Halide, we accomplished this in 3 lines, figure 4-5. Even an author of the original

code remarked at how "clean" and "succint" the recursive implementation was.

In threebodydesc there is a loop structure which requires accesses based on an

offset, as shown in figure 4-6. We accomplish this by implementing the generalized

algorithm using where predicates and the specialize command, as shown in figure

4-7, where r.x is equivalent to q in the original.

Halide especially shines in the example of the matrix multiplication that occurs
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Original Halide Halide w/Scheduling
rbft ∼130 ∼75 +3
matrix multiply ∼30 ∼3 +2
tally two body local force ∼10 ∼7 +3
angularbasis ∼70 ∼65 +4
radial angular basis ∼40 ∼15 +3
two body desc deriv ∼10 ∼7 +3
three body desc ∼30 ∼20 +3
three body desc deriv ∼40 ∼12 +3
three body coeff ∼20 ∼17 +3
tally local force ∼25 ∼4 +1
four body desc ∼3 ∼2 +1
four body coeff ∼45 ∼32 +3
dot product ∼4 ∼3 +1
four body fij ∼20 ∼15 +5
window accessing ∼15 ∼2 +0
five body desc ∼5 ∼5 +1
five body fij ∼25 ∼15 +3
total: ∼526 ∼292 +43
avg: ∼31 ∼17 +2

Figure 4-3: Line numbers of original fast POD vs Halide fast POD

to obtain rbf, as shown in figure 2-1. The original implementation performs four

separate matrix multiplications. Instead, in Halide we are able to perform this, and

any matrix multiplication, in as little as 4-6 lines, regardless of dimension and schedule

it to perform the multiplication in any way we may wish (Figure 4-8).

Overall, potentials in molecular dynamics consists of expensive computations con-

sisting of linear algebra and trigonometry over complex loop structures. Halide is able

to represent these computations as either a Func or Expr, giving us freedom to com-

pute these in-lined, parallel, or any specified schedule. The size of our program also

does not grow linearly with number of loop levels or increasing complexity of loop

structures as we may only need to create a new Var, RVar, or predicate with where.

Finally, as important it is for potentials to be computed efficiently, Halide is a great

tool for quickly and safely experimenting with different scheduling, also without in-

creasing complexity of the program.
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for ( int n=1; n<K; n++) {
if (d==1) {

tm [ n ] = tm [m]∗u ;
tmu [ n ] = tmu [m]∗u + tm [m] ;
tmv [ n ] = tmv [m]∗u ;
tmw[ n ] = tmw[m]∗u ;

}
else if (d==2) {

tm [ n ] = tm [m]∗ v ;
tmu [ n ] = tmu [m]∗ v ;
tmv [ n ] = tmv [m]∗ v + tm [m] ;
tmw[ n ] = tmw[m]∗ v ;

}
else if (d==3) {

tm [ n ] = tm [m]∗w;
tmu [ n ] = tmu [m]∗w;
tmv [ n ] = tmv [m]∗w;
tmw[ n ] = tmw[m]∗w + tm [m] ;

}
}

Figure 4-4: Recursive array

Func uvw("uvw" ) ;
uvw( pair , s e l e c t e d ) = select ( s e l e c t e d == 1 , u ,

select ( s e l e c t e d ==2, v ,
select ( s e l e c t e d ==3, w, Expr ( ( double ) 0 . 0 ) ) ) ) ;

tm( pair , rn . x , rn . y ) = tm( pair , m, rn . y ) ∗ uvw( pair , d ) + select (d
== rn . y , tm( pair , m, 0) , ze ro ) ;

Figure 4-5: Halide recursive array

4.3 Future Work

Improving HalideFastPod: The next natural step in this work is improving per-

formance. Also, fast POD is a 𝑛 ≤ 7-body potential, we only implemented up to

5-body in Halide; however, we can use the same tools and strategies from this the-

sis to implement the entire fast POD algorithm. There are also different scheduling

strategies to be experimented with to reach parity and further increase performance.

It may be advantageous to parallelize over a set of atoms. There may also be com-

putation that is repeated often enough that is worth storing between iterations. For
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if (Ne == 1) { . . . s im i l a r code to below . . . } else {
for ( int m=0; m<M; m++)

for ( int p=0; p<K; p++) {
int n1 = pn3 [ p ] ;
int n2 = pn3 [ p+1] ;
int nn = n2 − n1 ;
for ( int q=0; q<nn ; q++) {

k = 0 ;
for ( int i 1 =0; i1<Ne ; i 1++) {

double t1 = pc3 [ n1+q ]∗
sumU[ i 1 + Ne∗( n1+q) + Ne∗K∗m] ;

for ( int i 2=i 1 ; i2<Ne ; i 2++) {
d3 [ p + K∗m + K∗M∗k ] . . . ; k += 1 ;

} . . . }

Figure 4-6: Three body descriptors

RDom r (0 , k , 0 , K, 0 , Ne , 0 , Ne) ;
Expr n1 = pn3 ( r . y ) ;
Expr n2 = pn3 ( r . y + 1) ;
r . where ( n1 <= r . x && r . x < n2 && r . z <= r .w) ;
t1 = . . . ; k = . . . ; t2 = . . . ; d3 ( . . . ) = . . . ;
d3 . update ( ) . . . s p e c i a l i z e (Ne == 1) ;

Figure 4-7: Halide three body descriptors

Func prod ("prod" ) , r b f ("rbf" ) ;
prod ( c , k , i , j ) = Phi (k , i ) ∗ r b f t ( j , k , c ) ;
r b f ( j , i , c ) = Expr ( ( double ) 0 . 0 ) ;
RDom r (0 , ns ) ;
rb f ( j , i , c ) += prod ( c , r , i , j ) ;
r b f . { schedule_here }

Figure 4-8: Halide Matrix Multiplication

example, U from radialangularbasis (Figure 2-7), is only read from 3 times in the

potential; therefore, it is currently advantageous to in-line its computation. However,

if up to 7-body is implemented, we would read from U 6 times, possibly making it

better to compute_root as we had in the mimicked schedule (Figure 3-1). These are

only a few of the possible next steps to improving fast POD, without even considering
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vectorization1 and tiling2; both of which Halide has methods to easily apply to Funcs

when scheduling.

Improving Halide’s ability to implement MD potentials: While Halide can

implement molecular dynamics codes, there are still limitations as shown in Chap-

ter 3. First, work can be done to improve Halide to be more capable of managing

arrays of irregular sizes. Much work can also be done to make compute_with more

robust, specifically allowing for Funcs sharing loop levels to be computed together,

regardless of a specialization or less than exactly shared dimensions. Similarly, Halide

could add support for functions that store mixed sized sub-arrays (e.g. an array of

3 by 3 matricies paired with by vectors of size 8; this can be done, but not without

the programmer managing it themselves). Second, improvements can be made to

compute_at to always utilize predicates and clamps as the current bounds inference

algorithm is not robust enough to using predicates and scheduling commands. Lastly,

we can also investigate why reordering the storage of d2 or dd2 changed the result

of the program. More generally, Halide’s ability to implement MD programs and

various other domains would improve if it could better manage programs that deal

with mostly regular but still technically irregular arrays, such as those with symmetry

or irregular sizes defined by some other array or simply a few different sizes. These

almost work currently, but can break when a few extra complications are added.

Other DSLs and Molecular Dynamics: Extended future work may consist of

rewriting many potentials in Halide, as well as initially writing potentials in Halide.

Halide has proven to be a competent tool in accomplishing many of the tasks required

in molecular dynamics; however, it is still not perfect and requires additional support

to accomplish everything one would expect. It may be possible that another domain

specific language, such as Tiramisu [1] and Taichi [4] would be better suited to the

task.

1https://halide-lang.org/docs/class_halide_1_1_func.html#a13ad9bed80565d85f2cc6d09c607fdfb
2https://halide-lang.org/docs/class_halide_1_1_func.html#a5413c606618e7c4257a1129666922fb5
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Chapter 5

Conclusion

Although Halide is a tool created to improve image processing pipelines, we believed

image processing shared enough of a resemblance to molecular dynamics that Halide

might prove capable in both domains. Although we focus on fast POD throughout

the thesis, fast POD is only an example of how complex potentials in LAMMPS can

be. We showcase Halide’s simplistic style in representing complex loop structures and

its ability to allow the user to choose and change a program’s scheduling. This proves

to be useful when optimizing algorithms, as changing a loop order of a computation,

the storage of an array, or even how much of an array is computed at a time each can

be modified with a single command.

We mimicked the fast POD potential in Halide, achieving the same results but

not scheduling; therefore, Halide was not a perfect tool for mimicking the original

implementation. With the closest mimick easily possible with Halide’s built-in meth-

ods, we were able to achieve a performance within two times parity. However, with

only three iterations of profiling and another three lines of scheduling changes, we are

able to reach within 20% of parity. With a few commands, we are able to compute

in parallel over the outer loop atoms, boosting performance to a 350% speedup.

We believe that with more improvements to the schedule, the Halide fast POD

can out perform the original implementation serially and we can continue to improve

the parallel implementation. Furthermore, we believe that Halide is a great tool that,

if improved to better manage common patterns found in MD, can be used to improve
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many other MD potentials.
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