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ABSTRACT 

This work presents a multi-echelon inventory optimization model for a manufacturing company 
to evaluate optimal inventory levels for a selection of products and their sub-components. The 
guaranteed service model is employed to identify potential improvements in inventory allocation 
while maintaining service levels. The model's results are compared with the company's current 
inventory policies to provide insights into the effectiveness of the proposed approach. First, 
demand forecasting was conducted for the selected products, and the results showed a close 
match with the company's existing forecasts. Next, a multi-echelon inventory optimization model 
was formulated using bill of materials, component lead times and standard costs. The model 
was optimized in Python to minimize total inventory holding cost, with constraints on service 
level, service time, and bounded demand. The model's output suggested an "all-or-nothing" type 
of inventory policy, wherein a stage either maintains zero safety stock or holds the maximum 
permissible safety stock. The results of the model revealed that 54% of the analyzed sub-
components do not require any safety stock to be held. Additionally, the model proposes pooling 
inventory in stage 0, which is the finished product stage. The true financial impact of the model's 
results is difficult to gauge, because only a small portion of the product portfolio was used in the 
optimization. Potential areas for future work include investigating the impact of phantom stock 
removal, applying the stochastic service model to this problem, and understanding the impact of 
multi-echelon modeling on supply chain resilience. The insights provided in this work can serve 
as a starting point for manufacturing companies aiming to optimize their inventory policies and 
better manage their supply chains.                                                                                                                                                  
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1. INTRODUCTION 

Inventory levels are critical to businesses trying to stay competitive in markets where 

affordable and timely order fulfillment is a basic expectation. Inventory shortages during the 

COVID pandemic resulted in long lead times and low fill rates for many businesses (Naughton, 

2020). In contrast, a surge in inventory due to the bullwhip effect caused by the pandemic has 

forced many retailers to offer deep discounts to offload excess goods and reduce warehouse 

expenses (Nassauer & Terlep, 2022). Clearly, it is challenging for companies to balance 

between customer service levels and inventory costs. Maintaining appropriate inventory levels is 

important because it serves as a buffer against uncertainty and disruptions - but this comes at a 

hefty price of increased holding costs and working capital. From a customer perspective, storing 

large amounts of finished product inventory at all times seems like the obvious choice. But the 

solution is not that simple, especially for companies that manage thousands of varied products 

and an even larger plethora of sub-components needed to manufacture those products. The 

stock of each component must be accounted for: a lack of any one of them could result in 

downstream delays that ultimately propagate to the customer. 

1.1 MOTIVATION  

Our project sponsor, Water Company Inc., manufactures and sells water measurement 

devices for industrial, process, and laboratory use (Water Company Website, 2022). Their sites 

produce and store a variety of water instrumentation products such as handheld thermometers 

and drinking water analyzers. Water Company is in the process of revamping its supply chain 

strategy to better meet customer needs. Currently, the company does not employ a quantitative 

model to justify the amount and selection of finished products and sub-components it stores on 

site; instead, it often relies on heuristics or enterprise resource planning systems to make this 

decision. The result of this strategy may be higher than necessary inventory levels for certain 
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products. High inventory levels occupy working capital and limit cash flow, causing poor return 

on assets.  

 Past State of S&OP 

Water Company exclusively used demand forecasts to push inventory through their 

supply chain. No other product or component feature was considered when making inventory 

decisions. For a business of this scale, such a strategy may result in sub-optimal inventory 

levels, which makes managing inventory much more challenging.  

Current and Future State of S&OP 

Water Company uses a cloud-based forecasting system to predict demand for its SKUs. 

If a particular SKU has highly volatile demand forecasts, managers manually remove any 

occurrences of extreme demand from the prediction. Once outliers are removed, the demand 

forecast data is transferred to an ERP program which calculates base stock levels for finished 

product and raw material, and makes production order decisions automatically based on 

customer demand. Additionally, SKUs are now classified based on certain features (discussed 

in section 4), allowing the company to have custom order fulfillment strategies for different 

products. While custom fulfillment strategies add complexity to supply chain decisions, the 

company’s ERP system is able to account for this when calculating inventory levels and placing 

production requests. However, the ERP system does not provide a quantifiable guideline for 

inventory levels of raw, finished and semi-finished goods: it is somewhat of a ‘black box’ system 

for supply chain planners. Therefore, the Water Company would like to determine whether the 

output from the program is optimal based on their cost and service level needs, and whether 

there is room to incorporate other variables that they have not considered yet. 
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1.2 PROBLEM STATEMENT AND RESEARCH QUESTIONS  

As discussed in section 1.1, the company uses product segmentation to manage its 

inventory. SKU’s are segmented based on economic impact and volatility, and corresponding 

inventory levels are assessed by managers at a frequency based on their criticality to the 

business. With thousands of complex SKUs, varied lead times and fluctuating demand to 

manage, Water Company’s key problem is determining optimal inventory levels at their sites to 

satisfy customer orders in a timely manner, while minimizing costs. 

Based on the business problem, our research question is “How can Water Company 

determine optimal inventory levels of raw, semi-finished, and finished inventory using a robust 

demand forecast?” To answer this question, we need to determine: 

1) What factors are critical in determining inventory holdings for Water Company’s SKUs?  

2) How can Water Company use these dynamic factors to quantitatively determine 

inventory levels for its SKUs? 

3) What is the impact of the new inventory policy on inventory cost and service level? 

1.3 SCOPE: PROJECT GOALS AND EXPECTED OUTCOMES   

The project’s overall goal is to provide Water Company with an assessment of their 

current inventory levels, using a quantifiable model. This model will be applicable to other sites 

and product lines outside of this case study. 

The success criteria for our project goals include:   

1) Determine whether current demand forecast accuracy has room for improvement, 

recommend a new forecasting approach if true 

2) Identify appropriate inventory modeling approach to handle raw, semi and finished 

goods 
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3) Quantify and optimize appropriate inventory levels using selected model and robust 

demand forecast 

Prudent inventory management relies on accurate demand forecasts, given that 

appropriate inventory policies are built upon these forecasts. Though a forecast is always 

incorrect to some degree, we can work on minimizing forecast bias to set a baseline to start 

with. One hypothesis is that the Water Company does not have a reliable demand forecast, 

especially for highly volatile SKUs. As a result, their corresponding inventory policy cannot 

generate a workable guideline for inventory levels. After verifying the demand forecast 

accuracy, we can optimize inventory levels for their product, sub-components and raw 

materials. Alternatively, it is possible that the company’s existing inventory policy accounts only 

for finished products and does not optimize for cost at the sub-component level. Another 

hypothesis is that the company treats each component as a single stage of inventory, thereby 

ignoring the implications of lead time and cost of components in neighboring stages.   

Our findings indicate that the alternative hypothesis was correct. The ERP system 

calculates safety stock for each component independently, which is inherently sub-optimal for 

total system cost. Additionally, while the company has documented inventory policies and 

segments even at the component level, safety stock levels are sometimes determined by 

heuristics. For example, one segment of products has a safety stock target of yearly demand 

divided by 12, which is an overly simplistic way to determine inventory levels since it ignores the 

impact of lead time and cost. The project scope covers a small segment of 29 SKUs. 

Expected outcomes of the project include:  

1) A replicable demand forecast model  

2) An inventory optimization model that provides optimal inventory levels for raw, semi and 

finished products 
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2. STATE OF THE ART 
To determine the best method for optimizing Water Company’s inventory levels, we 

focused our review of the literature on four core areas: 

1. Demand Forecasting  

2. Segmentation  

3. Inventory Policy  

4. Multi-Echelon Inventory Optimization (MEIO) 

2.1 Demand Forecasting  

Demand forecasting is a critical process in supply chain management that involves 

predicting the future demand for a product or service based on historical data, market trends, 

and other relevant factors. Accurate demand forecasting is essential for ensuring that a 

company maintains optimal inventory levels, minimizes waste, and meets customer demand in 

a timely and efficient manner. 

2.1.1 Forecasting and its Impact on Setting an Inventory Strategy 

To address Water Company’s inventory issues, we must investigate their demand 

forecast first, because a robust forecast is the most important input for inventory policy. Under 

the inventory policy of order-to-level (S), S is decided by average demand and demand 

fluctuation. Also, many studies have revealed demand’s impact on inventory investment and 

inventory cost. First, forecast accuracy has a significant impact on inventory investments 

(Bonney, 2009; Fisher, 2000). Second, low forecast accuracy is connected with overstock 

(Bonney, 2009). Third, whenever forecast error decreases, inventory cost always reduces (Jully 

Jeunet, 2005). 
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2.1.2 Model Selection 

The first key issue in demand forecasting is which forecast method to use. A proper 

forecast method is important given that demand misspecification can lead to higher inventory 

cost (Badinelli 1990). To find the best prediction models, we need to identify demand patterns 

for each SKU (Erjiang, 2022). We refer to Erijian’s model selection framework. First, we divide 

demand patterns into four categories: smooth, intermittent, erratic, and lumpy according to the 

squared coefficient of variation (CV2) and the average inter-demand interval (ADI). Second, we 

build a pool of models. Considering that Water Company’s project scope only includes SKU with 

relatively stable demand, time series and regression models might be good starting points. 

Detailed models might include naïve, seasonal naïve, single exponential smoothing (SES), 

Holt’s linear exponential smoothing, damped trend exponential smoothing, Theta, 4-Theta, and 

simple combination of univariate models. Third, we use the dynamics weighting strategies in the 

literature review to predict. Lastly, we review the effectiveness of each prediction model with 

Water Company’s historical data. 

2.1.3 Evaluating Forecast Accuracy 

The second key issue is how to minimize forecast error. We are interested in forecast 

accuracy not only because it is important to inventory cost as we mentioned above but also 

because historical performance can generate the description of future demand to make decision 

for resources allocation and help us improving the process (Silver et al., 2016) 

There are several ways to evaluate forecast accuracy, such as mean squared error (MSE), 

mean absolute deviation (MAD), and mean absolute percent error (MAPE). For our use case, 

MAD is less important given that there is no need for computational simplicity due to the limited 

number of SKUs. The benefit of MAPE is that it is a percentage and therefore not affected by 

demand magnitude, but MAPE is not suitable when demand is very small (Silver et al., 2016). In 

Water Company’s case, either MSE or MAPE may serve as a good matrix of forecast accuracy.  
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2.2 Product Segmentation 

Segmentation is a method used by companies to classify their products based on a 

business metric of their choosing. Segmenting products allows companies to devote more time 

to goods that are critical to the business. It also allows managers to create policies specific to 

each segment, without delving into details for each product. This ‘divide and conquer’ method is 

especially useful when companies manage thousands of commodities, making it time 

consuming to treat each product with the same level of diligence. (Lopez et al., 2013) 

Segmentation is based on the Pareto Principle, which states that roughly 80% of consequences 

are generated by roughly 20% of causes. Applied to the business domain, the Pareto Principle 

implies that most of the revenue generated by an operation comes from a small fraction of its 

products (Rungtusanatham et al., 2010, #). It is only logical that managers treat their most 

valuable few products differently than the rest. 

2.2.1 ABC Segmentation 

ABC is one of the most widely used segmentation strategies. It sorts products into three 

categories (ABC) based on their value to the business. Historical sales data is aggregated and 

sorted in descending order to obtain the revenue contribution of each SKU (Hoffmann et al., 

1991). This process can be performed during a fixed or dynamic review period depending on 

the business need. For example, a fashion company may want to redefine its segments at a 

higher frequency because of the seasonality of its products - a shirt that was popular last year 

may be out of fashion this year. It is important that only demand during the review period must 

be considered during segmentation, since demand can be dynamic, and SKUs can move 

across segments as a result. 

Next, SKUs that account for 70%-80% of revenue are grouped into segment ‘A’. This 

segment typically contains 15-20% of the total number of SKUs. Following the same process, 
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segment ‘B’ usually contains 30-40% of SKUs that account for 15-20% of revenue, and segment 

‘C’ contains the rest.  

2.2.2 ABC/XYZ Segmentation 

Water Company uses ABC/XYZ segmentation to classify their products. This grouping is 

simply a combination of ABC coupled with a similar classification based on demand volatility, 

resulting in nine different product segments. For example, segment AZ contains products that 

present the most financial value to the business, but also have volatile demand. Segment CX, 

on the other hand, represents products that do not generate much value for the business, but 

have stable demand. Figure 1 shows an example of the ABC/XYZ classification technique. 

Segmenting products using an ABC/XYZ system allows managers to get more granular with 

their decision making. In the supply chain domain, variables such as safety stock, order quantity 

and frequency can be set based on the segment a product belongs to.  

 

FIGURE 1:  

An example of ABC-XYZ segment thresholds (SAP, n.d.) 
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2.3 Inventory Policy  

Inventory is critical to companies trying to protect against uncertainty in demand and 

supply of its products. Excess inventory could result in high holding costs for the business, while 

inadequate inventory levels could result in unfilled customer orders and lost revenue. 

Companies therefore employ inventory management systems to reduce inventory costs while 

satisfying customer orders. An inventory policy comprises two essential elements: how much to 

order and when to order. The inputs that go into determining this policy can be as simple as 

average demand - or could extend to additional factors like lead time and service level. Below 

we review some commonly used inventory management policies. 

2.3.1 Economic Order Quantity (EOQ) 

EOQ is one of the most elementary inventory policies used to determine what the 

optimal order quantity for a product should be. Here, optimality is based on minimizing inventory 

holding and ordering costs (Harris, 1913). The formula for EOQ is the following: 

𝐸𝑂𝑄	 = 	&
2𝑘𝐷
ℎ
	

where k = ordering cost, D = demand and h = holding cost  

The EOQ model is simplistic because it assumes constant demand and lead time - both of 

which are unlikely to occur in a real operation.  

2.3.2 Periodic Review Model (R,S) 

Periodic review policies are ideal for businesses that order goods in regular intervals. In 

this case, the policy determines ‘S’ - which is the order up to level, while R is the review period 

already set by the company. The formula to calculate ‘S’ is as follows: 

𝑆	 = 	𝜇!"#$	 + 𝑘𝜎!"#$ 	
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where 𝜇!"#$	 is the expected demand over the lead time + review period, k = safety factor 

based on desired service level and 𝜎!"#$ = standard deviation of demand over lead time + 

review period (Silver et al., 2016). 

Increasing the lead time or review period will increase the average inventory costs for 

the company. This is because the average amount of inventory held will increase to account for 

longer wait times between replenishment, thus incurring additional costs to the business.  

2.3.3 Continuous Review Model (s,Q) 

Continuous review policies are ideal for businesses with systems that can constantly 

monitor inventory levels. In this model, an order of quantity ‘Q’ is placed every time inventory 

levels drop below a level ‘s’. Typically, ‘Q’ is calculated using the EOQ formula discussed 

above. 

To calculate the reorder point s, the following formula is used (Silver et al., 2016): 

𝑠 = 	𝜇!"	 + 𝑘𝜎!"	
This is very similar to the formula for order up to level in the periodic review model above. The 

only difference is review time = 0 since inventory levels are constantly monitored. 

Similar to the periodic review policy, increasing lead time will increase the reorder point to 

account for the higher average and standard deviation of demand during lead time. This in turn 

will increase inventory costs. Increasing the safety factor ‘k’ will have the same effect by 

increasing the safety stock held by the company to achieve a higher service level. Thus, these 

policies pose a trade-off for managers between customer service levels and cost of safety stock 

held. 

2.4 Multi-Echelon Inventory Optimization (MEIO) 

One of Water Company’s goals is to quantify and optimize appropriate inventory levels 

that balance raw materials, semi-finished materials, and finished goods. However, the inventory 
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policies mentioned in section 2.3 have limitations: they can only address one product or 

component at a time. To fix this limitation, we bring in multi-echelon inventory optimization 

(MEIO). 

MEIO is a supply chain management strategy that involves managing inventory across 

multiple levels or echelons of the supply chain. In a typical supply chain, inventory is held at 

various stages. These different stages can be raw materials, semi-finished materials, and 

finished goods within a BOM (bill-of-materials), or they could be the manufacturer, distributor, 

and retailer levels. MEIO aims to ensure that the right amount of safety stock is held at each 

echelon, to minimize inventory costs while ensuring that customer demand is met (Snyder et al., 

2019). 

Key questions to answer are which stages should hold safety stock, and how much to 

hold. It is not necessary for all stages to hold safety stock. The stages holding safety stock 

serve as buffers to absorb the demand uncertainty. Identifying which stages should hold safety 

stock is a strategic problem known as strategic safety stock placement problem (SSSPP), 

because it is expensive to change the design frequently.  

MEIO shares similar assumptions with the Periodic Review Model (R,S): that time is 

infinite-horizon and each echelon follows a base-stock policy. Each stage quotes a committed 

service time (CST) to its downstream echelon within which it will deliver orders from the 

downstream echelon. Each stage is required to offer 100% service to downstream stages, 

which means that each stage must satisfy orders within CST no matter what. The concept of 

CST is the key to connect each stage and to decide safety stock. As the base stock increases, 

the stage can offer a shorter CST to the next stage. The inbound service time of a downstream 

stage (close to finished products) equals the outbound service time of an upstream stage (close 

to raw materials). The time needed to finish whatever action needed in a stage is the lead time 

or the process time of the stage. A visualization of these times can be seen in figure 2. 
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FIGURE 2 

Depiction of service and process times of each stage 

 

 

 

 

 

The decision variable of the MEIO is the service time because service time decides the 

inventory level of a stage. Whenever we decide the outbound service time of a stage, we have 

the inbound service time of the following downstream stage too. Inbound service time of stage i 

𝑆𝐼& plus process time of stage i 𝑇& minus outbound service time of stage i 𝑆& is what we call net 

replenishment time. Net replenishment time is one of the factors deciding the inventory level.  In 

the MEIO model, safety stock at stage i is proportional to the net replenishment time of that 

stage. In an MEIO model, safety stock at stage i equals to ℎ& 	𝑧'𝜎&3𝑆𝐼& + 𝑇& − 𝑆& ,where 	𝑧'𝜎& is z 

standard deviations above the mean for some constant α, 𝜎& equals to standard deviation of 

demand in stage i, and ℎ& is the unit holding cost. 

In reality, it is challenging for companies to deal with highly volatile demand. Therefore, 

some MEIO models assume that demand is bounded in any time interval, meaning that demand 

fluctuates within certain ranges. We model the demand by assuming the demand is normally 

distributed and truncating the right tail of the demand, meaning that we ignore any demand 

greater than certain standard deviations above the mean, which is the 𝑧' we mentioned above. 

For realized demand above the bound, one possibility is that the company will handle them by 

other approaches such as outsourcing and overtime shifts.  

In terms of stage definition, a node will be considered a stage only if it can hold 

inventory. If one stage processes the materials and then passes to the next stage, such a stage 

    Process Time Inbound 
Service Time 

Outbound 
Service Time 
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should be combined with another stage that can hold inventory and be viewed as just one 

stage. 

Within MEIO, there are two primary models: guaranteed-service model and stochastic-

service model. The result of either model is a set of base stock levels, but the two models 

require different inputs to determine the base stock level (Snyder et al., 2019).  

Kimball introduced the guaranteed-service assumption in 1955, which was later reprinted as 

Kimball (1988). Simpson (1958) applied this assumption to serial systems, while Graves (1988) 

discussed the optimization of safety stock resulting from this assumption. Inderfurth (1991), 

Minner (1997), and Inderfurth and Minner (1998) developed dynamic programming (DP) 

approaches for distribution and assembly systems. Graves and Willems (2000) expanded on 

this by applying DP to tree systems, and Magnanti et al. (2006) and Humair and Willems (2011) 

extended DP to general networks that include undirected cycles.  

The structure of multi-echelon networks can vary, and their topology significantly impacts 

the analysis and optimization of the system. Topologies include serial systems, assembly 

systems, distribution systems, tree systems, and general systems. In serial systems, each 

echelon contains exactly one stage. Assembly systems mean that each stage has at most one 

successor. Tree systems combine features of both assembly and distribution systems, with 

each stage potentially having multiple predecessors and successors. However, tree systems 

are characterized by the absence of any undirected cycles. In Water Company’s case, even 

though the network of BOM (bill-of-materials) is typically described as assembly systems, it can 

also be viewed as one type of spanning tree whenever there are multiple predecessors and 

successors at each stage. To enhance the practicality of our research, we will use the dynamic 

programming algorithm from Graves and Willems (2000) for tree systems to find the optimal 

safety stocks.  

Graves and Willems (2000) proposed a model and algorithm for multi-echelon inventory 

optimization, which is known to run in pseudo polynomial time. However, in 2004, Lesnaia 
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devised an algorithm with a polynomial-time complexity of O(N3), where N corresponds to the 

quantity of stages comprising the network. For more general systems that include undirected 

cycles, the problem is NP-hard (non-deterministic polynomial-time hardness), as indicated by 

Chu and Shen (2003) and Lesnaia (2004). Magnanti et al. (2006) presented a solution method 

based on integer programming techniques to address multi-echelon inventory optimization 

problems in general systems. Humair and Willems (2011) developed exact and heuristic 

algorithms that extend the DP algorithm introduced by Graves and Willems (2000) to general 

systems. Additionally, Humair et al. (2013) extended the approach to account for stochastic lead 

times. Furthermore, Graves and Schoenmeyr (2016) studied the effects of capacity constraints 

in the context of multi-echelon inventory optimization.  

To summarize, our literature review covered demand forecasting, product segmentation, 

inventory policy, and inventory optimization. The most critical aspect of this review is multi-

echelon inventory optimization, since this will ultimately provide a quantifiable justification for 

inventory levels. Within MEIO, the guaranteed service model approach is most applicable to our 

sponsor's objective, because of their service level requirements. This choice of model will be 

explained in further detail in section 3.  

 

 

 
 
 
 
 
 



22 
 

3. METHODOLOGY 
The goal of this capstone is to provide the sponsor company with a quantifiable 

justification of inventory levels for raw, semi and finished products. In section 2, we discussed 

several viable methodologies to calculate base stock levels. Of these, we believe multi-echelon 

inventory optimization is most appropriate for the company’s problem, because the bill of 

materials provided to us closely resembles a tree system. Specifically, we will use the 

guaranteed service model to optimize safety stock levels at each raw, semi and finished product 

stage. The methodology for this capstone will be divided into four stages, as depicted in figure 3 

below. 

 

FIGURE 3 

Flowchart of methodology 

 

3.1 Data Collection 

To determine the optimal inventory levels for Water Company, we started by focusing on 

a small sample of their SKUs. The initial selection of SKUs has relatively stable demand 

patterns to allow us to build and test the model before scaling to SKUs with sporadic demand. 

To begin our assessment, we collected the following data: 

1. Real and forecasted monthly demand for selected SKUs starting from 2019 

      Data Collection  
Demand 
Forecast 

Verification  
Multi-Echelon 

Inventory 
Optimization  

Model 
Constraints and 

Scalability 
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2. Company’s service level requirements for its products 

3. Process time for production and delivery of raw/semi-finished/finished goods 

4. Bill of Materials for selected SKUs  

5. Historical inventory levels of selected SKUs 

3.2  Demand Forecast Verification 

We verified the accuracy of the company’s demand forecasts to ensure that their current 

forecasting software is performing optimally. We verified forecast accuracy by comparing the 

root mean square error (RMSE) of their forecasts with the RMSE of forecasts we generated 

using the modeling method chosen by their software. The forecasting software used by the 

company generates a new monthly forecast for each finished good at the beginning of every 

month. While the software displays which model was used to create predictions, the parameters 

used are auto generated for each forecast. To determine whether the accuracy of these 

predictions for each SKU could be improved, we trained the same models chosen by the 

software on 24 months of historical monthly demand data, and tested it on 12 months of 

predictions from September 2021 to September 2022. All the models chosen by the software 

were statistical. Model parameters were tuned to achieve lowest possible error - although these 

parameter values may not have matched those chosen by the software. In addition, we used a 

‘Prophet’ model with auto selected parameters as an alternative forecasting approach to the 

models selected by the software. While we could have used several other forecasting models, 

we chose to shift our focus to inventory optimization, since this is what will ultimately allow us to 

validate the company’s inventory levels. 
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3.3  Multi Echelon Inventory Optimization 

Once the demand forecast was verified, we developed an inventory optimization model 

to address the company’s challenge of justifying inventory levels at the raw, semi-finished and 

finished stage. A multistage model is a more accurate representation of the company’s value 

chain, since it accounts for intermediary production stages as opposed to a single stage model 

which considers only the finished product stage. We decided to proceed with the guaranteed 

service model, since it is commonly implemented in practice (Eruguz et al., 2016). 

3.3.1 Model Selection 

Within the scope of multi-echelon inventory optimization, there are two widely used 

approaches: guaranteed service and stochastic service. The stochastic service model (SSM) 

accounts for stock outs at each stage by applying a penalty for each time period there is no 

inventory available. In contrast, the guaranteed service model (GSM) assumes no stock outs 

can take place, since demand is bounded. While the guaranteed service approach employs less 

realistic assumptions because of this bound, it is easier to implement and closely matches our 

sponsor company’s needs, since it guarantees that the inventory positioning at each stage is 

enough to meet customer service level targets. Additionally, any realized demand over the 

demand bound can be met using other strategies, such as increasing production capacity. 

Further, Klosterhalfen and Minner (2010) found that the GSM base-stock policy is more cost-

effective than the SSM policy for systems with long lead times service levels - although this 

research was more specifically applied to warehouse systems. For the reasons stated above, 

we decided to proceed with using the guaranteed service approach to tackle this multi-echelon 

inventory problem. 
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3.3.2 Model Formulation 

To set up the model, we performed the following four steps: 

1. Removed irrelevant components in the BOM (bill of materials): 

The BOM includes irrelevant components including phantom components, irregular 

components, and components with zero accounting cost. Phantom components are virtual 

stages that do not physically exist or exist only during the assembly phase. These components 

are still created virtually to serve other purposes such as accounting. One concern about 

removing phantom stages is that they have zero stage time, yet a direct cost was added. That 

added cost is usually the overhead cost spread to the assembly. In our case, materials at levels 

closer to finished products are not phantom, so eventually these higher-level stages include all 

values added in lower level. Therefore, such a concern is not serious in our case. 

Irregular components such as water are not tracked in the inventory level. The MEIO model 

requires the cost of goods sold or values added to each stage as an input to minimize inventory 

holding cost, so if a component has zero cost, the model will naturally stock inventories at this 

stage. However, such a result does not reflect the true inventory holding cost.  

2. Structured the BOM   

Many materials such as screws are used multiple times at different levels of the BOM. 

We treated them as different materials and aggregated the result at the end. The reason we 

took this approach is because the topology of the BOM might have a circle. One key definition 

of the spinning tree system is N stages with N-1 arcs. If the topology contains circles, the 

algorithm for the tree system might not apply because the topology is no longer N stages with 

N-1 arcs. Figure 4 provides a visual representation of what one such BOM structure looks like. 

 

 

 



26 
 

FIGURE 4 

BOM structure of one of the SKUs under scope, created using networkX 

 

3. Re-labeled stages 

The DP (dynamic programming) algorithm requires stages following a labeling rule that 

each stage (other than stage N, where N is the number of stages) has exactly one adjacent 

stage with a higher index. In the topology of a BOM, it is fairly easy to label materials compared 

to other tree systems.  All we must do is label materials of higher steps with smaller indexes. If 

we look at the network displayed in Figure 5(a) and apply the process, we obtain the 

reorganized network shown in Figure 5(b). It is worth noting that in this network, except for 

stage 6, every stage has a single neighbor with a higher index, whether upstream or 

downstream.  
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FIGURE 5 

Relabeling the network 

 

(a) Original network. 

 

(b) Relabeled network. 

 

4. Input service time and review period based on segmentation  

Outbound service time for each finished product was then input into the model. This was 

unique to each finished product, based on the segment it belonged to. Similarly, the purchasing 

review period - also determined by segmentation, was added as a model input. This was added 

to the process time of each stage. Assumptions about these inputs will be discussed in section 

3.3.2. 

5. Formulated objective function as total holding cost across all stages      

What we want to know is how much inventory each stage should hold without changing 

the design of the network. Given that the network is unchanged, the cycle stock will not change 

with different configurations of the network, where ‘configuration’ means different safety stock 

allocation. Safety stock is what really changes under different scenarios. Therefore, our 

objective function is minimizing total inventory holding cost at every stage:  
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6. Formulated constraints for process time 

The first constraint is that net replenishment time, 3𝑆𝐼&+𝑇& − 𝑆& , must be greater or 

equal to zero. The second constraint is that whenever a stage has multiple upstream stages, the 

inbound service time of this stage must be the greatest value among outbound service time of 

all upstream stages. Except for the above two constraints, there are some given variables. First, 

the outbound service time of stage N is requested by customers, so it depends on what Water 

Company’s customers request. Second, the inbound service time of the most upstream stages, 

which are the materials, will be combined with the process time, meaning that we assume the 

lead time needed to obtain the materials is the process time of the stage and inbound service 

time equals zero. 

3.3.2 Model Assumptions 

Several key assumptions were made when formulating the raw data to fit our model. 

1. Manufacturing Process Time: Assembling process time is 1 day for each level. This 

assumption was made because the Python package requires the process time to be an 

integer. We understand that we might slightly overestimate the inventory level because 

actual manufacturing process time is less than one day for most components, but we 

think this overestimation is manageable because the gap is small, and it is better to have 

a conservative estimate. It should be noted however, that while the actual process time 

of production is approximately 1 day, company records maintain a 3-day process time 

for most assembled components, because most components are made in large batches 

to take advantage of economies of scale.  

Also, inventory review cycle is added to process time to cover the demand variety during 

the between the review periods. 

2. Substitution of Standard Deviation: We used RMSE of forecast error instead of demand 

standard deviation. The purpose of safety stock is to mitigate forecast error, which is 
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why the size of safety stock should be proportional to forecast error. We picked the 

monthly demand forecast in 2022 and converted the monthly RMSE into daily RMSE 

using the following formula: 

𝐷𝑎𝑖𝑙𝑦	𝑅𝑀𝑆𝐸	 = 	𝑀𝑜𝑛𝑡ℎ𝑙𝑦	𝑅𝑀𝑆𝐸	 ÷	&
365
12

	

3. RMSE of subcomponents: One piece of finished product might require multiple pieces of 

materials, so we needed to incorporate the ratio of finished goods to materials into the 

RMSE of each material into the model. Finished product RMSE was converted to the 

sub-component level using the formula below:  

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑅𝑀𝑆𝐸	 = 	𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑	𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝑅𝑀𝑆𝐸	 × 	𝑈𝑠𝑎𝑔𝑒	𝑅𝑎𝑡𝑖𝑜	
As an example, if 0.04 units of material A is required to produce 1 unit of finished   

product with forecast RMSE of 100, then the RMSE of material A is 100*0.04 = 4. 

4. Purchasing Review Cycle: The purchasing team reviews inventory and places orders for 

all purchased materials on a frequency based on the segment of the component. Each 

segment has a range of yearly review cycles, and the true frequency within this range is 

decided by purchasing managers. For our modeling, we chose to use the upper bound 

of this review range. For example, purchase orders for products in the AX segment are 

placed 12 - 24 times each year. We assumed that this frequency is 24 months, which 

would mean our review cycle = 365/24 = 15 days. Additionally, due to modeling 

constraints, we assumed that the review cycle of each component is the same as its 

parent finished product. 

5. External Outbound Service Time: Like the review cycle, service time to the customer is 

based on the segment a finished product belongs to. For example, if the product is in the 

AX segment, it has an external customer service time of 1-2 days. In this case, we chose 

to use the lower bound of these time ranges to provide a best-case estimate. 
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6. Capacity Constraints: For the purpose of this model, any capacity constraints faced by 

the company were ignored. An important assumption of the guaranteed service model is 

bounded external demand. If demand crosses this threshold, we assume that the 

company can meet this demand by expediting orders or increasing throughput. The 

same goes for storage capacity: if the model proposes an inventory increase, then we 

assume that the company has enough storage space to accommodate for this. 

3.3.3 Model Optimization 

After the model was formulated, it was optimized in Python to minimize total inventory 

holding cost. The resulting stage process times were then used to calculate optimal safety stock 

levels for each component in the BOM. We used an open-source python package called 

‘Stockpyl’ which embedded the algorithm introduced in Graves and Willems (2000) to assist with 

the optimization. The dynamic program iterates through every combination of potential outbound 

service time from the lower index to find the optimal solution that minimizes total system holding 

cost. 
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4. RESULTS 
In this section, we will present the results of our demand forecasting and inventory 

optimization models. The results will be benchmarked against the company's existing demand 

forecasts and inventory levels respectively. 

4.1 Demand Forecasting 

The error of our forecasting models conducted across all 29 selected SKUs was on 

average within 3% of the company’s forecast error. The relative model performance is depicted 

in Figure 6.  

With such closely matching forecasts, we do not believe there is much room for 

improvement in the company’s current modeling approach. However, this is an important initial 

verification, because an error-prone forecast could severely impact future inventory decisions. 

Substantiating the demand forecast allowed us to shift our focus to the next stage of our 

methodology: inventory modeling.  

 

FIGURE 6 

Comparison of our forecast and the company’s forecast 
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4.2 Multi Echelon Inventory Optimization 

The results of our model were committed service times for each stage. These were 

converted to proportional safety stock and cycle stock levels of each component, which were 

then used to estimate average inventory levels and benchmarked against the average inventory 

levels for that SKU over the past year.  

Out of the 522 subcomponents analyzed, the model estimates that 54% of these 

components do not require any inventory to be held at all. Additionally, the model proposes 

pooling inventory in stage 0. A more detailed analysis of these results will be presented in the 

sections below. 

4.2.1 All or Nothing Result 

Given the nature of the algorithm, the inventory policy employed at each stage is of the 

"all-or-nothing" type, wherein the stage either maintains zero safety stock and quotes the 

maximum achievable cycle service time (CST) or holds the maximum permissible safety stock 

and quotes zero CST. 

From our result, we can see that there are 285 materials holding zero safety stock 

among 522 materials and finished products, and the other stages serve as buffer stages to carry 

safety stock on behalf of the supply chain. Currently, the company only has 72 components that 

do not hold safety stock. Our solution will allow the company to reduce the complexity of 

managing safety stock across multiple SKUs. 

4.2.2 Inventory Positioning 

To interpret whether our model was pushing inventory upstream or downstream within 

the system's internal value chain, we calculated the total value of inventory in all component 

levels. Component levels numbered from 0 to 18, with 0 being the finished product, which is 

furthest downstream, and 18 being raw materials, which are furthest upstream. We then 
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calculated the percentage of total system value each level held. From our result, we found that 

the model pushes inventory downstream (Figure 7 and Figure 8): specifically, it consolidates 

inventory at level 0 (finished product). Looking at table 1, we can see that level 0 has a high net 

replenishment time of 52 days, which dictates how much safety stock is held at that stage. This 

is because the committed service time to customer is low for the segment of products under 

scope. To achieve these service time constraints, along with the 90% service level constraint 

while minimizing total system cost, the company must pool inventory at this stage. 
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TABLE 1 

Proposed Allocation of Inventory Value in Each Level 

Level % of total safety stock value Level Average Net Replenishment Time (day) 

0 67.97% 0 52 

1 2.83% 1 38 

2 8.13% 2 52 

3 1.77% 3 19 

4 14.38% 4 18 

5 0.87% 5 11 

6 2.65% 6 32 

7 0.05% 7 1 

8 0.02% 8 17 

9 0.05% 9 8 

10 0.33% 10 17 

11 0.10% 11 10 

12 0.17% 12 18 

13 0.10% 13 7 

14 0.01% 14 17 

15 0.40% 15 33 

16 0.02% 16 29 

17 0.05% 17 40 

18 0.10% 18 56 

Grand 
Total 

100% Average 11 
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FIGURE 7  

Safety Stock Allocation Across Echelons 

 

 

FIGURE 8 

Net Replenishment Time Allocation Across Echelons 
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TABLE 2 

Average Cost and Process Time for Each Sub-Component Level (process time includes review 
period) 

Level Standard Cost (USD) Process Time (Days) 

0 224 23 

1 141 27 

2 14 59 

3 5 58 

4 5 53 

5 10 48 

6 7 71 

7 2 43 

8 61 68 

9 43 47 

10 34 51 

11 51 45 

12 39 51 

13 32 40 

14 32 44 

15 2 35 

16 8 45 

17 39 49 

18 263 56 
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5. DISCUSSION 

In this section, we will derive business insights from our results, and discuss how 

managers can use these insights to make better business decisions. Additionally, we will 

discuss the limitations of our model results and the implications of these limitations on the value 

chain of the product segment under scope. 

5.1 Managerial Insights 

This section will cover the business implications of model implementation. The model 

results will reveal which components should hold safety stock to minimize total inventory value 

while meeting customer service requirements. Managers can then use these results to decide 

whether the financial impact of implementing new base stock policies across its product lines 

aligns with the company’s financial goals.  

5.1.1 Sensitivity of Process Time and Review Period 

Assuming a review cycle of seven days, table 3 illustrates the relationship between 

service time and inventory value. The second row indicates the inventory level as a percentage 

of the baseline, which is set to 0 days. While the review cycle may vary based on SKU 

segmentation, this table can serve as a reference point for Water Company in determining the 

optimal service time. For example, if the company wishes to move certain product families to 

segments with different service times, they can approximate the impact on working capital and 

holding cost using figure 9 and figure 10. Similarly, if the company wishes to adjust its service 

levels to meet changing customer expectations, table 4 can serve as an approximation of the 

financial impact. However, the model and sensitivity analysis must be performed on the entire 

selection of SKUs to accurately assess the impact of these changes. 
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TABLE 3 

Service Time Sensitivity 

Service Time(days) 0 7 14 21 28 35 42 

Inventory value as % 
of inventory value with 

a service time of 0 
days 

100 89% 72% 62% 58% 56% 54% 

 

 

TABLE 4 

Service Level Sensitivity 

CSL(%) 80 85 90 95 98 99 

Safety stock value as % 
of safety stock value with 

a CSL of 80% 

100% 123% 152% 195% 244% 276% 

Average inventory value 
as % of average inventory 
value with a CSL of 80% 

100% 109% 119% 135% 153% 165% 

 

5.1.2 Inventory Pooling 

Drawing from Section 4.2.2, "Inventory Positioning," it is evident that the proposed model 

recommends a consolidation of approximately 67.97% of the safety stock at level 0, 

corresponding to the finished product level. A comparative analysis between the model's 

projected inventory level and the actual inventory figures from 2022 in Table 5 suggests that the 

Water Company may need to augment its inventory levels for finished goods. 

This projected increase can be attributed to two possible factors. Firstly, the 

segmentation of the chosen SKU necessitates a minimum review cycle of 15 days and offers a 

low service time to the end customers. This, in turn, could potentially prolong the net 
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replenishment time. Despite upstream stages quoting a zero service time for finished products, 

the extended review period and the lower service time afforded to the end customers are 

immutable variables. In reality, existing finished product inventory levels may be too low to 

guarantee on time delivery to the customer.  

The second contributory factor relates to the service level. The model assumes a service 

level of 90, whereas the actual service level could potentially be lower. Unfortunately, we lack 

historical data on service levels, making it challenging to validate this assumption. However, it 

would be intriguing to investigate whether the Water Company consistently maintains this 

projected service level. 

 

TABLE 5 

Comparison between Actual Inventory and Model Output 

Level Actual Inventory 

in 2022 

MEIO Model 

Result 

Difference Difference in % 

Value (USD) $45,900 $130,058 +$84,159 +183% 

Quantity (Units) 262 671 +409 +156% 

 

5.1.3 Full-Scope Benchmarking 

One of the benefits of multi-echelon modeling is that it considers the relationship 

between materials when deciding committed service times for each stage. For this reason, it is 

important for managers to only implement the calculated base stock levels for components that 

are unique to the SKUs used as inputs when the model was run. For example, if a component is 

used across 100 different finished products, all those products must be used as model inputs 

before making inventory decisions for that component. This can be a challenge for components 
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that are standardized across all SKUs, since computation time will increase significantly. We 

recommend that the company run this model across all SKUs to get committed service times for 

each stage and use these CSTs to calculate base stock levels every time a new demand 

forecast is generated. The only time the model would need to be re-run is if any of the model 

inputs change. For example, new product introductions or lead time reductions would impact the 

model output. Here, managers can decide what frequency of model implementation makes most 

sense - based on the frequency of new product introductions, raw material alterations, cost 

savings projects, or any other changes that may significantly impact model inputs 

 

5.1.4 No Operationalizing Needed 

The output derived from our model is a series of base-stock levels. Notably, this occurs 

even though the decision variables within the guaranteed-service model are centered around 

cycle-service times (CSTs) as opposed to base-stock levels. Consequently, the applicability of 

the guaranteed-service model extends beyond scenarios where stages explicitly quote CSTs to 

each other, demonstrating its versatility in various operational contexts. 

In short, Water Company can refer to the model result even when stages do not actually quote 

service time to one another in real operation. If the company chooses to implement model 

results, the only change they would be required to make is base stock levels in their ERP 

system. 
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FIGURE 9 

Average Inventory Level Increase as a Function of Service Level (Baseline = 80%) 

 

 

FIGURE 10 

Average Safety Stock Level Increase as a Function of Service Level (Baseline = 80%) 
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5.2 Limitations 

The multi-echelon model utilized in our study exhibits several limitations that stem from 

underlying assumptions outlined in section 3.3.2, as well as its potential applicability within a 

business context. These limitations primarily arise because of the structure of BOM components 

and the model formulation itself, both of which are expounded upon within this section. 

5.2.1 Syncing Service Times Across Materials 

In many of the BOMs, the same material might be used in different semi-finished 

products. Whether we should treat the same material as different stages was a modeling 

challenge. If we treated them as the same stage and they all quoted the same outbound service 

time for different semi-finished products, then there is no problem. However, if they quoted 

different outbound service times for different semi-finished products, then it would be difficult to 

operationalize the result of the model, because the materials management team might not be 

able to set up different service times for the same materials. To fix this issue, we tried to sync 

the service time of the same material. We could either follow the largest or the smallest service 

time. If we synced with the largest service time among all service time quoted to next stages, it 

meant that we would be pushing safety stock downstream, because larger outbound service 

time reduces the net replenishment time and therefore reduces the safety stock of these 

particular materials. In contrast, if we synced with the smallest service time, we would be 

pushing safety stock upstream. In typical supply chain cases, stages keep adding value as we 

go downstream, so pushing safety stock upstream should create less inventory value and 

inventory holding cost. The issue with syncing service times is that the resulting changes in 

committed service times of neighboring nodes would not be captured in the model results. 

Consequently, the model would no longer guarantee optimality. Another possibility would be to 

pool duplicates into one stage. The drawback with this approach is that the BOM topology will 
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no longer be a spanning tree, and our dynamic programming approach would no longer be able 

to solve this. In our model, we chose to not sync service time across the materials, since this 

would not disturb the theoretically optimal result. In application, the model results will just be 

used to set new base stock levels of components. Therefore, the base stock levels of common 

components across the BOM can be aggregated. 

5.2.2 Lead Time Customization 

The Python package, Stockpyl, necessitates an integer value for process time, 

prompting us to designate the manufacturing process time as a single day. The presence of 

multiple stages may potentially result in an overall longer process duration. However, in 

practical scenarios, the Water Company is capable of completing the assembly within a day, 

assuming the absence of capacity constraints. Additionally, it should be noted that the Water 

Company often conducts assembly in distinct stages using a batch work approach. 

Consequently, the process time under such circumstances is contingent upon the specific 

arrangement of the batch work. 

To effectively operationalize this model, it may be prudent for the Water Company to 

consider a more granular assumption for process time, thereby enhancing the model's real-

world applicability and precision. 
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5.3 Future Work 

In this section, we consider ways in which our model results and applicability can be 

improved, based on limitations discussed in section 5.2. 

5.3.1 Scenario Planning for Cost Savings 

In the present model, the inbound service time for materials sourced from external 

suppliers is considered a constant variable. In prospective research, it would be beneficial to 

explore the financial implications of varying this inbound service time. Once materials that 

significantly impact the financial performance are identified, the Water Company could 

strategize to reduce the inbound service time through various methods. These could include 

negotiating with suppliers or revising shipping methodologies. 

However, it is important to note that this approach could require substantial 

computational resources to simulate and analyze a range of different scenarios. Therefore, the 

feasibility and practicality of such an approach should be assessed considering the available 

computational capacity. 

5.3.2 Alternative Algorithms for Synchronizing Service Time Across Materials 

As highlighted in Section 5.2.1, "Synchronizing Service Times Across Materials," we 

have approached identical materials as distinct stages in the model. A potential consolidation of 

these into a single stage would alter the topology of the Bill of Materials (BOM), preventing it 

from maintaining the structure of a spanning tree. By definition, a spanning tree comprises N 

stages with N-1 arcs, while the new topology could introduce a circular structure, thereby 

generating more than N-1 arcs. 

While there is existing research addressing general networks, the application of dynamic 

programming becomes significantly more complex within this context. The prospect of 

consolidating materials and applying algorithms designed for general networks as a method to 



45 
 

further decrease inventory costs presents a promising avenue for future exploration. It is, 

however, essential to consider the trade-off between potential cost savings and the increased 

computational complexity that such a strategy might entail. 

5.3.3 Phantom Stock Removal 

The repercussions of phantom stock elimination constitute a crucial yet under-

investigated area within existing literature. This can be largely attributed to its distinctive 

correlation with the execution of multi-echelon models within the framework of a Bill of Materials 

(BOM). While the deployment of phantom stock is a prevalent practice across various 

organizations for cost accounting purposes, it poses significant obstacles for optimization 

endeavors. This is largely since excising these stages influences the topology of the 

overarching structure. 

Moreover, the standard cost of phantom components frequently encompasses indirect 

labor costs, which might not be reflected in its child stages once the stage is removed. 

Nonetheless, these costs continue to be incorporated within any parent stages. This incongruity 

could conceivably distort the outcomes of the optimization process. 

Therefore, the formulation of an effective strategy to uphold the integrity of the BOM 

structure, whilst simultaneously excluding phantom stages, is integral to obtaining a more 

precise representation of optimal inventory levels. As such, this presents a fertile field for 

additional scholarly investigation. 

5.3.4 Impact on Supply Chain Resilience 

While the primary objective function of this model is focused on minimizing holding 

costs, it does not account for the overall resilience of the system. Adjusting the safety stock of 

certain components could potentially introduce vulnerabilities in the face of supply disruptions. 
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These could trigger delays that ripple through the company's value chain, ultimately affecting 

the customer service level. 

Therefore, it would be prudent to conduct an examination of the trade-off between 

reducing safety stock at specific stages and the prospective financial loss that could arise from a 

supply chain disruption at that stage. This analysis should ideally be carried out prior to 

implementing this model, to ensure that its application does not inadvertently undermine the 

system's robustness and reliability. This balancing act between cost optimization and supply 

chain resilience represents an important area of study for supply chain management. 
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6. CONCLUSION 
In this capstone project, we developed a multi-echelon inventory optimization model 

tailored specifically for our sponsor company. 

The model demonstrated the impact of inventory positioning on the overall inventory 

value. Notably, by consolidating approximately 67.97% of the safety stock value at the finished 

product level, the model presented a potential inventory allocation that would allow the company 

to achieve customer service levels while minimizing inventory holding costs. However, it is 

difficult to gauge the true financial impact of these results, because the model must be run with 

every SKU as an input to get a true picture of how much inventory to hold. Additionally, our 

sensitivity analysis revealed that varying customer service times and service levels could result 

in inventory cost reductions, providing managers with a flexible tool to adapt inventory policies 

according to changing business needs. 

Nevertheless, the model has several limitations, particularly in handling identical 

materials as distinct stages and the challenge of synchronizing service times across materials. 

The model's assumption of a single manufacturing process time across components also limited 

its real-world applicability and precision. Consequently, the study identified potential areas of 

future work, including exploring the financial implications of varying inbound service time, 

applying other methods to consolidate materials, eliminating phantom stock, and assessing the 

impact of safety stock adjustments on supply chain resilience. 

In summary, this work contributes to the Water Company's inventory management by 

providing a framework for inventory justification. It highlights the importance of multi-echelon 

inventory optimization models in managing complex value chains, informing strategic decisions, 

and enhancing financial performance. The ongoing development of these models will support 

adaptability and competitiveness in a dynamic business landscape. 
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