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Abstract

A ROBUST DESIGN METHOD FOR IMPEDANCE CONTROL
OF CONSTRAINED DYNAMIC SYSTEMS

by
Homayoon Kazerooni

Submitted to the Department of Mechanical
Engineering on February 13, 1985, in partial
fulfillment of the requirements for the degree of
DOCTOR OF SCIENCE in Mechanical Engineering

The goal is to develop a method for design of controllers of constrained dynamic
systems in the presence of model uncertainties. The controller must carry out fine maneuvers
when the dynamic system is not constrained, and compliant motions, with or without
interaction-force measurcment when the system is constrained. At the same time stability

must be preserved if bounded uncertainties are allowed in modelling the system.

Dynamic systems such as manipulators are subject to interaction loads (forces and
torques) when they maneuver in a constrained work-space. If we define compliansy as a
measure of the ability of a dynamic system to react to interaction loads, we can state our
object as assuring compliant motion in the global cartesian coordinate frame for the class of
dynamic systems that must maneuver in constrained environments. Examples of these systems
are manipulators interacting with the environment or underwater vehicles maneuvering while

they are tied to structures by cables.

Stability of the system and environment as a whole and the preservation of stability in
vhe face of changes are two fundamecntal issues that have been considered in the design
method. We start with conventional controller-design specifications concerning the treatment
of external loads when the system is not constrained. Generalizing this concept to include
cases when the system is constrained, we state a set of design specifications to assure the
desired compliant motion in the cartesian coordinate frame and stability in the presence of
bounded uncertainties. This will lead us to select a time-invariant stable target impedance
that both assures the global stability of the system and its environment and fulfils the design
specifications. The target impedance is specified in terms of certain second order matrix

polynomials.
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In general, the closed-loop behavior of a system cannot be shuped arbitrarily over an
arbitrarily wide frequency range. We prove, however, that a special class of impedances that
fepresent our set of performance specifications are mathematically achievable asympt. ally
through state-feedback and interaction-force feedforward ac actuator bandwidths become large,
and we offer a geometrical design method for achieving them in the presence of model
uncertainties. Simple closed-form expressions for the required feedforward and feedback gains
are obtained as the solution to an eigenstructure assignment. This design method reveals a
classical trade-off between 2 system's performance and its stability relative to model
uncertainties. We deal with two classes of such uncertainties. While the first class of model
uncertainties is formed from the uncertainties in the parameters of the modelled dynamics,
- the high frequency unmodelled dynamics form the second class of model uncertainties. The
multivariable Nyquist criterion is used to examine trade-offs in stability robustness against
approximation of desired target impedances over bounded frequency ranges. Whex only
output feedback is available, an observer is derived. By exploiting the eigenstructure of the
observer, when loop transfer recovery takes place, direct eigenstructure assignmeut {dual to
the impedance control synthesis) can be used to compute the desired “‘observer” gains.
Finally, the theoretical results and methodology are illustrated by applications to problems in
planar manipulators and underwater vehicles.
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Chapter 1
Introduction

For a broad class of mechanical systems under clozed-loop coatrol, fundamental
differences in behavior and coatroller desiga complexity can be attributed tu two iypes of
maneuvers: unconstrained and constrained. In the Iirst case, the dynamic system (e.g., a
manipulater or an underwater vehicle) is driven in its work-space without contact with the
environment. Note that the environment might exist in the syetem twork-space without
imposing any constraint on the system motion. In the constrained maneuvers, the system is
driven in its work-space so the environment continuously exerts a dymamic cr kinematic
constraint on the system’s motion. A dynamic maneuver such as leading a manipulator in a
free environment toward a metal surface and then grinding the surface may consist of both

types of maneuvers.

Spray painting by a manipulator is an example of the first class of maneuver. The
erd-point of the manipulator travels through certain points in its work-space without any
restriction. Other examples of systems with unconstrained mzneuvers are space or underwater
vehicles that can be driven to various points without coming in contact with the
environment. On the other hand, inserting a computer board in a slot (i.e., the peg-in-hole
problem) or turning a crank by means of a manipulator are examples of constrained
maneuvers; the end-point of the manipulator is in contact with the environment and cannot
move in all directions. An underwater vehicle that is connected to a structure via cables (or
flexible connectors or mechanical arms) is an example of a constrained system. Although
such a system will remain unconstrained as long as the cables are not tenmsioned, its motion
will become constrained if the vehicle is driven in its work-space suck that the cables are
tensioned.  (See Section 2.4.1 for further details.) Our classification of mameuvers as
unconstrained and constrained is similar to the classification introduced by Whitney [55|, who
categorized manipulations into ‘‘rearrangement’ tasks and ‘‘force” tasks. Another slightly
different classification is given by Hogan [22|, who classified the manipulations into ‘‘non-

energetic”’ and ‘‘energetic” interactions. This thesis deals with ccnstrained maneuvering.

The rejection of external loads is an important design specification when the dymamic
system is not constrained. Once the system crosses the boundary of the unconstrained

environment (i.e., the dynamic system interacts with the environment), the dynamics of the
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system will change and stability will no longer be guaranteed with the same controller. The

compensator tries to reject the interaction loads, causing more interaction forces and torques.
Saturation, large and undesirable contact forces, limit cycles in the motion of the system, and
possible instability are the result of this type of maneuvering. Figure 6-14 in Chapter 6 is
the result of a simulation of such behavior. Plot b in Figure 6-14 in Cbapter 6 shows the
position of an underwater vehicle in a constrained maneuver using a position controller
designed for maneuvering in an unconstrained environment. Plot a is the reference input
position to the controlled system. Region 1 in plot b shows the successful maneuver of the
system when the vehicle is not constrained, while region 2 exhibits the position of the vehicle
when the system encounters the environment. The limit cycle evident in this region shows
that controllers that guarantee positioning capabilities in unconstrained maneuvering do not,

in general, permit desirable behavior in constrained maneuvering.

In constrained maneuvering, the interaction loads must be accommodated rather than

resisted. If we define ‘‘compliancy” as a measure of the ability of 2 dynamic system to react

to interaction forces and torques, we can state our object as assuring compliant motion in the

global cartesian coordinate frame for dynamic systems that must maneuver in constrained
environments. Previous researchers have suggested two approaches for assuring compliant
motion for dynamic systems. The first approach is aimed at controlling force (torque) and
position (orientation) in a non-conflicting way. In this method, force (torque) is commanded
along (about) those directions constrained by the envirenmeat, while position (orientation) is
commanded along (about) those directions in which the system is unconstrained and free to
move. The second approach is aimed at developing a relationship between interaction loads
(forces and torques} and system motion (position and orientation). By controlling the position
and orientation of the dynamic system and specifying this relationship, a designer can ensure
that a system will be able to maneuver in a constrained environment while maintaining

appropriate contact forces and torques.

The first approach was motivated by several studies. Paul and Shimano [43] partitioned
the motion of a system into position- and force-control i a global carfesian coordinate f'rame.
Then, with the help of a decision-making ‘“logic’” hidden in a supervisory computer program,
they arrived at the two sets of actuators that could best contribute to the pasition control
loop and the force control loop. Railbert and Craig [46] also partitioned the motion of the
system in a global cartesian coordinate frame. They used a position controller to move the
system in unconstrained directions and a force controller to push the system against the

environment with the desired contact force. They then arrived at input values for the
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actuators (without assuring stability) such that all actuators would contribute to both
partitions. Whitney [55] arrived at a single-loop velocity-control scheme with the net effect of
controlling the contact force. Similar work in the generation of compliant motion has been
done by Mason [38] and Wu and Paul [61]. Common to all such methods for ensuring
compliant motion is' the dependence of the controller’s structure on both the kinematics and
dynamics of the system and of its environment. For example, if the end-point of a
manipulator travels from one constrained point to another such that the environment at the
new point exerts constraints that differ from the constraints at the first point, then a new

controller with a different structure must be designed to accommodate the new constraints.

In the second approach toward generating compliant motion, a2 relationship is defined
between the motion (position and orientation) of the system and the interaction loads.
Salisbury [50] started by defining a linear static function that relates interaction forces and
torques to end-point position and orientation via a stiffness matrix in a cartesian coordinate
frame. Monitoring this relationship by means of a computer program ensures that the system
will be able to maneuver successfully in a constrained environment. In his seminal work,
Salisbury justified the stiffness matrix as the representative of a behavior that manipulators
must exhibit while they are used as positioning systems. The method of stiffness control
offers neither assurance of global dynamic stability nor a guarantee of a specified frequency

range of operation.

This thesis addresses the prbblem of closed-loop control of dynamic systems such as
manipulators that operate in constrained environments, with or without interaction force
measurement, in the presence of bounded model uncertainties. Central to the approach is the
notion of mechanical impedance as a parametrization of a rational set of performance
specifications to generate the compliant motion while preserving stability in the presence of
bounded model uncertainties. Preservation of the stability of the dynamic system and the
environment taken together as a whole is also a2 fundamental issue in constrained

maneuvering. The proposed impedance guarantees this global stability also.

In Chapter 2 of this thesis, we explain (without getting involved in mathematics and
design methodologies) points of practical importance in generating the compliant motion of a
dynamic system. We start with conventional controller design specifications concerning the
accommodation of interaction loads wher the system is not constrained. Then we generalize
this concept to apply to situations in which the system is constrained. Next, we parametrize
the necessary performance specifications in a simple mathematical form. 7Tnis will take us to

an “impedance control” strategy for generating compliant motion. The concept of impedance
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control is defined by Hogan [17, 18, 19, 20, 21, 22| iadependent of any specific design
methodology. Impedance ccntrol is an in-depth approach of Salisbury'’s stiffness control;
therefore, it is considered to be part of the second approach toward developing compliant
motion.  After defining and justifying impedance comtrol in Chapter 2, we derive the
eigenstructure properties of the proposed impedance in Chapter 3. We also address the
stability of the target dynamics and their global stability with the environment in Chapter
3 and Appendix A. In Chapter 4, we present a dynamic model for a manipulator with
actuators suitable for impedance control. We consider two classes of uncertainties in the
modelling of the dynamic system. While the first class of model uncertainties involves the
uncertainties in the parameters of the modelled dynamics, the high frequency unmodelled
dynamics form the second class of model uncertainties. We deal with both uncertainties in

the design method.

Chapter 5 explains the design methodology for impedance control. The design method
is simply a computation of state-feedback and force-feedforward gain based on the
eigenstructure assignment of the closed-loop system. The achievement of the target dynamics
and preservation of the stability robustness in presence of bounded model uncertainties are
the key issues in the design method. State-feedback and force-feedforward gains are chosen
to guarantee the achievement of the target dynamics while preserving stability in the presence
of model uncertainties. In Chapter 6 we give examples, simulations and some experimental
results of the design methodology. Chapter 7 stands by itself as a technical paper; this
chapter is not necessarily a part of the design technique for impedance control, but provides
a new geometrical method for designing an observer for estimating the unmeasurable states of
a system. Using the material of Chapter 7, an output feedback controller can be designed to
achieve the target dynamics. The work presented in this document makes extensive use of
the concepts and methods of control theory. While every effort has been made to explain
the application of this material to impedance control, this document (except Chapter 7) is not

an exposition of control theory generally.

Throughout this thesis, we take our dynamic system to be a serial-link manipulator.
The theory of impedance control can equally be applied to constrained underwater or space
vehicles. A vehicle can dynamically be assumed to be a one-link manipulator with 6 degrees

of freedom.
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Chapter 2

Fundamentals

2.1 Background

For the classes of dynamic systems that are used as positioning systems, control
compensators traditionally have been designed so that the system's outputs (position and
orientation) follow the commands, while rejecting the external loads (forces and torques). The
two specifications (command-following and external-load rejection) typically require large open-
loop gains for the frequency range in which the command inputs and the external loads
contain the most power. Since commands and external loads usually contain low-frequency
signals, command-following and external-load rejection properties taken together establish a
design specification at low frequencies. To achieve the above properties over a large frequency
range is not trivial; loop gains cannot be made arbitrarily large over an arbitrarily wide
frequency range. A designer is always faced with certain performance trade-offs; these involve
command-following and external-load rejection versus stability robustness to high-frequency
unmodelled dynamics. The conflict between these two sets of objectives is evident in most

positioning systems.

If the above controller design procedure were successful for constrained dynamic systems,
such as manipulators that must cope with the environment or underwater vehicles connected
to structures by cables, there would be little to complain about. In general, manipulation
may fall into one of two categories. In the first category, the manipulator end-point is free
to move in all directions, as in spray painting. In the second, the manipulator end-point
interacts mechanically with the environment. Most assembly operations and underwater
manipulations require mechanical interactions with the environment or with the object being
manipulated. Such interactions imply constraints on the system’s states. At this stage, the
nature of the environmental constraint (which is the result of the interaction between the
dynamic system and the environment) does not matter. The environment could exert a

kinematic or a dynamic constraint on the system.

If one designs a model-based compensator for an unconstrained dynamic system, bearing

in mind the objectives of disturbance rejection and robustness to model uncertainties, then
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the closed-loop system will operate according to the specified criteria as long as the system
travels inside the unconstrained emvironment. The system will try to reject all external loads
and reach the assigned reference inputs. However, once the system crosses the boundary of
the unconstrained environment (i.e., the dynamic system interacts with the environment), the
dynamics of the system will change and stability will no longer be guaranteed. In fact, the
system is now likely to become unstable. Even if stability is preserved, large contact forces
may result. (See Reference [55] for a design method in which stability depends on the

characteristics of the environment.)

In tiraditional controller-design methodology, external-load rejection is an important
-consequence of the design specifications. This property is useful as long as the system is
unconstrained. Once the system is constrained, the compensator treats the interaciion loads
as disturbances and tries to reject them, thus causing more interaction forces and torques.
Saturation, instability, and physical failure are the consequences of this type of interaction.

But, in many applications such exteraal loads should be accommodated rather than resisted.

An alternative to external-load rejection arises if it is possible to specify the interaction

loads generated in _response to imposed motion. The design objective is to provide a

stabilizing dynamic compensator for the system such that the ratio of the motion of the
closed-loop system to an interaction load is constant within a given operating frequency range.

The above statement can be mathematically expressed by equation (2.1).

AD(jw) = K AY(jw) for all 0<w<w, (2.1)
where:

AD(jw) = nX1 vector of deviation of the interaction load (forces and torques)
from equilibrium value in the global coordinate frame

AY(jw) = nX1 vector of deviation of the interaction-port position and orientation
from an equilibrium point in the global coordinate frame

K = nXn real-valued non-singular stiffness matrix with constant members
W, = frequency range of operation
i = complex number notation, V-1

The stiffness matrix [50] is the designer's choice that, depending on the application, contains
different values for each direction. By specilying K, the designer governs the behavior of the

system in constrained maneuvers. Large members of the K-matrix imply large interaction
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forces and torques.” Small members of the K-matrix allow a considerable motion of the
system to interaction forces and torques. Stiflness values, in one sense, represent the type of
behavior a designer may wish a stable positioning system to exhibit. For example, if the
system is expected to encounter some physical constraint in a particular direction, a stiffness
value must be selected such that the desired contact force is ensured in that direction; in
directions in which the system is not likely to meet any physical constraints, a stiffness value
with a proper position set-point must be selected such that the system follows the desired
reference inputs. Therefore, a K-matrix can be formed to contain stiffness values appropriate
for different directions. Even though a diagonal stiffness matrix is appealing for the purpose
of static uncoupling, the K-matrix is not restricted to any structure at this stage. Selection

of the K-matrix is considered as the first item of the set of performance specifications.

The system must also reject the disturbances (if there are any). If disturbances (e.g.,
force measurement noise) and interaction loads both contain the same frequency range (or
even if the frequency spectra of both signals overlap), then the system in general cannot
differentiate between the disturbances and the interaction loads. Here we assume that the
disturbances and force measurement ncise act on the system at frequencies greater than w,
(see Section 2.4.2 for an example). An analogy can be observed in tracking systems; if
measurement noise and reference inputs share some frequency spectrum, the system will follow
the noise as well as the reference inputs. The reference inputs must contain components with

frequency spectra much smaller than the spectrum of the measurement noise.

Mechanical systems are not generally responsive to external loads at high frequencies; as
the frequency increases, the effect of the feedback disappears gradually, depending on the
type of controller used, until the inertia of the system dominates its overall motion.
Therefore, depending on the dynamics of the sysiem, equation {2.1) may not hold for a wide
frequency range. It is necessary to consider the specificaticn of w_ as the secend item of the
set of performance specifications. In other words, two independent issues are addressed by
equation (2.1): first, a simple relationship between AD(jw) and AY(jw); second, the frequency

range of operation, w_, such that equation (2.1) holds true.

Besides choosing an appropriate stiffness matrix, K, and a viable w, a designer 'must
also guaraniee the stability of the closed-loop system. Therefore, stability is considered to be

the third item of the performance specifications.

The stiffoess matrix, K, the frequency range of operation, w , and the stability of the

closed-loop system form the set of performance specifications. Note that this set of
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performance specifications (stiffness, frequency range of operation, and stability) is just a
contemporary and practical way of formulating the properties that will enable the closed-loop

system to handle constrained maneuvers.

The achievement of the set of performance specifications is not trivial;, the stiffness of
the system cannot be shaped arbitrarily over an arbitrary frequency range. A designer must
accept a certain trade-off between performance specifications and stability robustness to model
uncertainties. The conflict between the performance specifications and stability robustness
specifications is evident in most closed-loop control systems. The sets of performance
specifications and stability robustness specifications taken together establish a complete set of

controller design specifications. Figure 2-1 shows how this set is categorized.

1) Stiffness matrix, K
1) Performance Specifications { 2) Frequency range of operation, w,

Controller Design 3) Closed-loop stability
Specifications

2) Stability Robustness Specifications

Flgure 2-1: Controller Design Specifications

Establishing the set of performance specifications (K, w, and stability) gives designers a
chance to express (at least to themselves) what they wish to have happen during a
constrained manipulation via a manipulator. Note that the set of performance spccifications
does not imply any choice of control techniques. We have not even said how ome might
achieve the set of performance specifications. Such a set only allows designers to translate
their objectives (after understanding the mechanics of the problem) into a form that is

meaningful from the standpoint of control theory.
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2.2 Performance Specifications

We are looking for a mathematical model that will erable us to parametrize the three
items of the set of performance specifications (K, w, and stability). The parametrization must
allow the designer to specify the stiffress matrix, K, and the frequency range of operation,
Wos independently, while guaranteeing stability. All such performance specifications can be

mathematically expressed by equation (2.2).

AD(s) = [K + Cs + J %] AY(s), s=juw for all O<w<w, (2-2)

[ K + Cs + Js®] = impedance

K, C and J are nXn real-valued non-singular matrices. Note that it is still necessary to
achieve equation (2.2} for all 0<w<w,. Since equation (2.2) can give a stable eigenstructure
for the closed-loop behavior, it is preferable to equation (2.1). We use the Laplace operators
in equation (2.2), to emphasize that the entire set of performance specifications can be shown

by a linear dynamic equation in the time domain. (See Section 2.5.) Proper selection of the

K-matrix allows the designer to express the desired stiffness, while judicious choice of the

inertia matrix, J, and_the dainping matrix, C, assures the achievement of w_ and stability of

the system. To clarify the contribution of J, C and K, consider Figure 2-2, the plot of
AY(jw)/AD(jw) from equation (2.2) when n=1 and the system is slightly underdamped.

1
10 F T T T T v | T T T
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VK| |

-3
10
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S
-6 NS BT | R B
L] -
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Figure 2-2: Plot of AY(jw)/AD(jw) when n=1

AY(jw)/AD(jw) remains very close to 1/K for some bounded frequency range. In other
words, the plot of AY(jw)/AD(jw) approximately exhibits the relationship in equation (2.1) for
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some bounded frequency range. Therefore, K in equatior (2.2) parametrizes the first item of
the set of performance specifications. Let the frequency racge for which inequality (2.3) is

true be Wy
|32+ Cs | < B | K| 8 = jw (2.3)

where § is a positive number less than one which measures how close the proposed impedance
is to K. Note that our only purpose for introducing B is to say that for the bounded
frequency range (0, w ), the impedance in equation (2.2) behaves approximataly like the
K-matrix. f represents this approximation and is not a design parameter. If K is given,
then w  and the stability of the system (the second and third items of the set of performance
specifications, as given by equation (2.2)) depend on J and C. In other words, a designer can
change either J or C to affect w  and the stability of the system. For example, for a given
K and C, decreasing J causes the corner frequency, \/l-(Tl-, and consequently W, to increase.
Changing J also moves the eigenvalues of the system. For a given positive set of K and C, a
negative J locates one eigenvalue in the right half complex plane, while a positive J
guarantees that both eigenvalues always stay in the left half complex plane. The dependence
of w, and the stability of the system on C can be investigated in a similar way. Because of
the dependence of w  and the stability of equation (2.2) on J and C, it can be shown that
for a given K, there exist many J and C such that two eigenvalues of the system are always
in the left half complex plane and AY(jw)/AD(jw) remains arbitrarily close to 1/K for all
0<w<uw,. .We consider J and C as two faciors that parametrize the second and third items
of the performance specifications. If we consider C as a parameter that only guarantees a
stable and slightly over-damped (or slightly under-damped) system, then we can claim that J
is the only effective parameter in increasing or decreasing the frequency range of operation,
w,, for a given K. Since a heavy system is always slower than a light system, a large target
inertia, J, implies a slow system (narrow uo), while a small target inertia implies a fast

system (wide w ).

The parametrization of the set of performance specifications in the case of more than
one dimension is similar to the case when n=1. Matrix K in equation {2.2) models the first
item of the set of performance specifications because the behavior of |Js2 + C s + K]
approximates that of K for some bounded frequency range. In other words, for some

bounded frequency range, inequality

|jijsz+cijs | < B;; |k 8 = jw (2.4)
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is true, where 0, j is a positive number less than one which measures how close
[Js® + Cs + K| is to K. Here again, the only purpose of introducing aij is to say that
for the bounded frequency range of (0, wo), the impedance in equation (2.2) behaves
approximately like the K-matrix. We call this frequency range w

¢. . and kij are

or Ji i
members of J, C and K. w  and the stability of the system depend on“ matiices J and C.
It can be shown that for a given matrix K, there exist many J and C matrices such that the
2n eigenvalues of equation (2.2) are in the left half complex plane and [ J s> + Cs + K | is
close to K for all 0Kw<w_ . For example, if J and C are selected to be y K and 1K (where
q, and v, are scalars), then the characteristic equation of equation (2.2) yields n uncoupled
second-order equations for the eigenvalues of the system. ~; and ~, can be selected such
that all eigenvalues are in the ieft hall complex plane. The smaller v, is selected to be, the
wider w_ will be. Of course, this may not be the best way of choosing J and C, but it does
show that there exist many J and C matrices such that with a proper K, equation
(2.2) models all three items of the set of performance specifications. Again, if we consider
matrix C as a parameter that only guarantees a stable and slightly over-damped (or slightly
under-damped) system, then we can claim that matrix J is the only effective parameter in
increasing or decreasing the frequency range of operation, W for a given K-matrix. The

following is a summary of the parametrization of the set of performance specifications:

stiffness matrix ...........ccceeeeenee. > K;
Wy seornamseremsmanasmamasasastarsssnmsnasssnasase > I
171,11 115 2 > C.

At this stage, we do not restrain matrices J, C and K to any structure. The only restriction

is that J, C and K be non-singular matrices.

Equation (2.2) is not the only possible parametrization of the performance specifications.
Similarity of the natural behavior of manipulators to the form introduced by equation (2.2) is
one reason for the choice of the second-order impedance. Within some bounded frequency
range, manipulator dynamics are governed by Newtoun's equations, which are of second order
for each degree of freedom. Practitioners tend to observe an attenuation in frequency
response tests on manipulators for some bounded frequency range which can be approximated
40db per decade. At high frequencies, other dynamics contribute to the dynamic behavior of
manipulators. We chose a second-order impedance because of this dynamic similarity.
Chapter 3 and Appendices A and B explain some properties of the second-order impedances.
Throughout this thesis, equation (2.2) is referred to as the target dynamice. Other forms of

this equation are presented in Section 2.5.
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Wichout any justification at this stage, we claim that AY(jw) and AD(jw) must be small
in magnitude. This restriction does not mean that this theory cannot be applied when large
contact forces are involved. A large contact force (torque) can be produced by many
incremental forces, AD(jw), where AD(jw) is very small at each stage. This restriction on the

size of these variables is clarified in Chapter 4.

Here, we use an example to illustrate a potential difficulty with matrix J. Consider a
diagonal K-matrix. If K is chosen so that K = diag(k;,, k, .. k), then
J = diag(j,, jp .- Jj,) and C = diag(c,, ¢y - €,) can be selected to guarantee that each
channel has the desired frequency range of operation. J need not, however, be a diagonal
matrix to guarantee the uncoupling of motion in the desired operating frequency range. Even
though K is selected to be a diagonal matrix to ensure uncoupling, there exist an infinite
number of J-matrices (not necessarily diagonal) that can guarantee this uncoupling for the
desired frequency range of operation. This is true because Js2 is effective only at high
frequencies (w>w°); for all 0<w<w, K plays the most important role in determining the
response of the system. The size of J is important, not its structure. Of course, the
diagonal structure for J makes its selection much easier. As stated earlier,
[ J 2+ Cs + K ] remains very close to K for some bounded frequeacy range, 0<w<w,.
For all 0<w<uw,, [ s 24+Cs+K | behaves approximately like K, and the contact loads
that are generated in response to those components of the imposed motior AY(jw) that live
in the operating region 0<w<uw, is approximately equal to K AY{jw), which is nearly
independent of J. (Of course, the response of the system outside the frequency range of
operation (w°<w<oo) depends on J.) On the other hand, w, establishes the frequency range
in which the size of K is much larger than Jw2. Dependence of w, on the size of J and the
independence of the system's response from J, show that the size of J is important and not
its structure. (One can consider the size of the J-matrix in terms of its singular values.) A
diagonal or a non-diagonal J is equally suitable for an impedance as long as the size of the
matrix guarantees that AD(jw) ~ K AY(jw) for all 0Kw<w_. In Chapter 5 we will arrive at
a non-diagonal J, which can guarantee an uncoupled stiffness for 0<w<w, without any force

measurements. See Section 5.3.4 for a discussion of the selection of the J-matrix.

By specifying the matrices J, C and K, a designer can modulate the impedance of the
system. If a dynamic system is in contact with its environment and a new reference point is
commanded: (e.g., by a supervisor program), then, since the parameters of the impedance in
equation (2.2) are under control, the resulting interaction load on the system will also be

under control. This means that the controlled dynamic system will behave like a system that
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accepts a set of position and orientation commands and reflects a set of forces and torques as
output. This is the fundamental characteristic of impedance conlrol that cannot be attributed
to admitiance control. In other words, impedance control always allows for closed-loop
positioning capabilities.  Stiffness cont.rol.[50] also offers this characteristic. By assigning
different position and orientation commands and by maintaining complete controi in equation

(2.2), a designer can achieve the desired contact forces and torques.

Impedance control can be contrasted with the two conventional modes of controlling a
dypamic system:  position control and force control. Position contrel works well for
unconstrained space, but causes difficulty when environmental constraints exist. In contrast,
force control is desirable for manipulations in constrained space. Position control and force
control are two extreme cases of impedance control. The former implies very high impedance,

while the latter implies very low impedance.

2.3 Stabllity Robustness Specifications

The stability robustness specifications arise from the existence of model uncertainties
[49, 33]. The model uncertainties fall into two ciasses. Lack of exact knowledge about the
parameters of the modelled dynamics (e.g., the inertia :natrix) constitutes the first class of
model uncertainties. High-frequency unmodelled dynamics (such as bending or torsion
dynamics of the members) form the second class of unmodelled dynamics. Note that the
model uncertainties of the second class gemerally give rise to modelling error only at high
frequencies, while the model uncertainties of the first class can contribute to modelling error
at all frequencies. If the compensated system does not satisfy the stability robustness
specifications, the system may not become unstable. This is true because our robustness test
is a sufficient condition for stability. Satisfaction of the robustness test guarantees stability,
while the failure of the robustness test does not necessarily imply instability. 1f one cannot
mcet the stability robustness specifications at high frequencies, it is necessary to consider the
higher-order dynamics (if at all possible) when modelling the system. Adding the higher-order
dynamics to the system allows for weaker stability robustness specifications at high
frequencies. If higher-order dynamics cannot be determined, it is mecessary to compromise on
the set of performance specifications. A small w, will allow designers to meet strong sets of
stability robustness specifications at high frequencies. On the other hand, with a very small

w,, stability robustness to parameter uncertainties may not be satisfied. This is true because
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stability robustness to parameter uncertainties assigns a lower bound on w,. To achieve a
wide w, a designer should have a good model of the system at high frequencies (and
consequently, a weak set of stability robustness specifications at high frequencies). Because of
the conflict between desired w, and stability robustness to high frequency dynamics, it is a
struggle to meet both sets of specifications for a given model uncertainty. The frequency
range of operation, w , cannot be selected to be arbitrarily wide if a good model of the
system does not exist at high frequencies, while a good model of the system at high
frequencies makes it possible to retain the target dynamics for a wide w,. The relation
between w, and stability robustness will be presented in Chapter 5. Even though w, is the
major candidate that can be used to compromise against stability robustness specifications,
there are other freedoms in design technique that sometimes can be used for the same

purpose. This will be clarified in Chapter 5.

2.4 Examples

The foilowing ‘examples illustrate some applications of impedance control. For the
purpose of understanding the application of this theory, the problems in these examples are

simplified.

2.4.1 Underwater Vehicle with Cables

Most deep underwater operations are done by underwater vehicles equipped with
manipulators. Because of the large inertia of these vehicles (relative to the manipulator
inertia) and their uncontrollability in some directions, it is not trivial to maneuver these
vehicles during a manipulative task. In performing a task (e.g., opening a valve), it is
preferable to keep the vehicle as a stable platform and maneuver the manipuiator. An
underwater vehicle is always subject to external forces resulting from water motion,
manipulator reactions and power/communications tethers. = These external forces on the
vehicle act over a wide frequency range. Rejection of all external loads on the vehicle and
maintenance of the position and orientation of the vehicle over a wide frequency range of
operation by feedback is not trivial. This is true because uncertainties in the model (e.g.,
hydraulic actuator system) will assign an upper bound for the bandwidth of the compensated

loop transfer function. Low-frequency external loads on the vehicle can be rejected by
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feedback, and high-frequency loads do noi affect the vehicle motion. On the other hand,
there exist external loads with a frequency range of operation too large to be compensated by
feedback, but small enough to affect the vehicle's motion. This frequency range is near the
cross-over frequency of the compensated open-loop transfer function. In other words, when
most of a vehicle’s external loads that are deep inside the bandwidtk of the compensated
open-loop can be rejected by feedback, external loads that are far outside the bandwidth
cannot affect the vehicle motion. But external loads that lie between these two frequency
ranges can affect the vehicle motion. (The analogy can be observed iu airplanes. Passengers
always feel some disturbances. These disturbances act over a frequency range that cannot be
compensated completely by feedback.) To overcome this problem, the vehicle can be
connected to the structure by cables. This can be done by the manipulator on the vehicle.
The cables’ end-points can be equipped with magnets, suckers or hooks, and the cables can
be tensioned by using the vehicle's thrusters in the necessary directions. Figure 2-3-a shows

this arrangement.

a b

Figure 2-3: Constrained Ocean Vehicle

Maintaining the tension of the cables between the structure and the vehicle will give the
vehicle a more definite position and orientation. If the cables are stiff, their dynamics may
overcome the vehicle's inertia for some bounded frequency range. The stiffnesses of the

cables will dominante the dynamics of the system of vehicle and cables over a wide frequency

range. This frequency range can be approximated by Vcables stiffness/vehicle inertia.
Throughout this frequency range, the system of the vehicle and its cables behaves like a very

stiff spring, and external loads in this frequenc’ range do not affect the vehicle.

The above procedure for positioning the vehicle implies the existence of significant

interaction forces between the vehicle and its environment via the cables. The cables impose
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dynamic constraints or the vehicle’s motion. In any mission, it is desirable to control the
position and orientation of the vehicle and the tension of the cables, even though the number
of cables and the locations of their attachments to the structure may not be known in
advance. Here we can see the application of impedance control to this type of constrained
maneuvering in which the existence and general character of the constraint is certain, but the

exact nature of the dynamics and geometry of the constraint is not known in advance.

Consider the case in which there is just one cable between the vehicle and the structure
in Figure 2-3-b. There is no constraint on the vehicle's motion in direction T; therefore, it is
necessary to consider a closed-loop positioning system with a large stiffness for the vehicle
along direction T. A large stiffness in direction T guarantees a good closed-loop positicning
system in that direction. There is a constraint on the vehicle’s motion in direction R because
of the cable. It is necessary to consider a small stiffness for the vehicle in direction R
guaranteeing only a slight tension in the cabie when the vehicle is commzanded to move from
unconstrained space to constrained space. Of course, once the vehicle is moving on the circle,
one can increase the stiffness in direction R to produce more cable tension. The frequency
content of the command input implies a proper value for w_ . Stiffness values in various
directions, a suitable value for w, and the requirement of stability imply proper values for K,

J and C .

2.4.2 Grlndlng"

Consider the grinding of a surface by a manipulator, as shown in Figure 2-4. The
object is to use the manipulator to smooth the surface down to the dashed line [30]. Here
we give an approach in which this task is performed by 2 manipulator. It is intuitive to
design a closed-loop positioning system for the manipulator with a large stiffness value in
direction R and a low stiffness value in direction T. In many tasks, it is beneficial to
preduce the compliant motion in an active end-effector with a few degrees of freedom instead
of producing the compliant motion for the entire arm. A large stiffness value in direction R
causes the end point of the manipulator to reject the external loads and stay very close to
the commanded trajectory (dashed line). The larger the stiffness of the manipulator in

direction R, the smoother the surface will be. Given the volume of the metal to be removed,

*Secl.ion 2.4.2 was shaped from discussions with Bruce Kramer, Reginald Gott and John Bausch.
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Flgure 2-4: Grinding a Surface via a Manipulator

the desired tolerance in direction R prescribes an approximate value for stiffness in direction

R.

The force necessary to cut in direction T at a constant traverse speed is approximately
proportional to the volume of the metal to be removed [3]. Therefore, the larger the
“bumps” on the surface, the slower the manipulator's end-point must move in direction T.
This is necessary because a slower speed of the end-point aleng the surface implies less
volume of the metal to be removed per unit of time, and consequently, less force in direction
T. To remove the metal from the surface, the manipulator should slow down in response to
external loads resulting from large ‘‘bumps.” The above explanation means that it is
necessary for the manipulator to accommodate the external loads along direction T, which
directly implies a small stiffness value in direction T. If a designer does not accommodate
the external loads by specifying a small stiffness value in direction T, then large “bumps” on
the surface will produce large contact forces in direction T. Two problems are associated

with large contact forces in direction T:

- the cutting tool may stall (if it does not break);

- a slight motion may develop in the manipulator’s end-point motion along direction
R, which might exceed the desired tolerance.
A small value for stiffness in direction T (relative to the stiffness in direction R) guarantees
the desired contact forces in direction T. The larger the roughness of the surface, the
smaller K must be in direction T. The frequency spectrum of the roughness of the surface
and the desired translational speed of the manipulator end-point along the surface determine
the frequency range of operation, w,. Given the stiffness in both directions, a designer can

arrive at proper values for J and C to guarantee w, and stability. At each point on the
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trajectory, a controller must be redesigned in the joint-angle coordinate frame such that the
desired target impedance of the form (2.2) is achieved in the global coordinate frame. The
rotation of the cutter causes some high-frequercy disturbances in the manipulator. The
contact force measurement is also noisy. w, must be selected to be lower than the frequency
range of the cutter disturbances and the force measurement noise. The satisfaction of
equation (2.2) prevents the system from responding tc these disturbances and noises. (See

page 15 for a short discussion on disturbances.)

2.4.3 Turning a Crank

Consider the case in which a manipulator turns a crank or opens a valve, as shown in

Figure 2-5-a.

a b

Figure 2-5: a: Manipulator Turning a Crank
b: Peg and Hole
The objective is to design a closed-loop positioning system so the manipulator will have a
large stiffness in direction T; this will cause the manipulator to turn the crank by overcoming
the external loads (friction). It is necessary to consider a small stiffness in direction R,
because if there is any discrepancy between the real trajectory of the crank handle and the
commanded trajectory, no large contact force in direction R will result. Note that the crank
handle cannnot move in direction R and a small disagreement with the prescribed trajectory
of the crank handle will cause a large force if the stiffness in direction R is large. The
frequency content in the command signal requires a proper value for w,. The stiffness values

in different directions, a suitable value for w,  and the desire for stability imply proper values

for K, J and C.
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2.4.4 Peg-ln-Hole

The peg-in-hole task is generic to many assembly operations such as inserting a rod into
2 hole or a computer board into a slot. There are many strategies for this task (see for
example [57]); most assume that the manipulators are capable of producing compliant motion.
We are not giving a complete solution to the peg-in-hole problem. This is just a simplified
example to illustrate the use of this method in such maneuvers. Once the peg is located at
the position shown in Figure 2-5-b, then a small stiffness in direction X must be selected. If
there is any misalignment between the peg axis and the hole axis, a small stiffness in
direction X causes the manipulator end-point to align itself with the axis of the hole. If the
stiffness in direction X is large, the manipulator end-point will not move in direction X, and
large contact forces will result. A large stiffness must be selected for direction Y to
guarantee a positioning system that will reject the friction forces in direction Y and insert the

peg into the hole.

2.5 Representations of Tsrget Dynamics

This section represents other forms of the target dynamics. Equation (2.2} in the time

domain can be described by equation (2.5).

J AY(t) + C AY(t) + K AY(t) = AD(Y) (25)

J, K and C are non-singular matrices.

AY(t) and AD(t) are nX1 vectors. Even though we use the time-domain representation of
the target dynamics in our design method, we plan to guarantee the achievement of the
target dynamics in the frequency domain. We also select the parameters of equation (2.2) to
guarantee the design specifications in the frequency domain. Selection of J, C and K t»
represent a frequency-domain design specification implies shaping the steady-state behavior of
the system in response to all frequency componests of the imposed motion command. An
alternative approach is to specify J, C and K to represent some design specifications in the
time-domain [20]. The target dynamics (2.2) in state-space are shown by equations (2.6) and
(2.7).
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0., I, AY(t)] 0.,
= . + AD(t)
JIK -Jic AY(t) Jt
N—— —_—
A, B,

AY(Y)

t

A, = 20X2n , B, = 2nXn, C, = nX2n

Rank B, and C, = n

(2.6)

(2.7)

The transfer function matrix thai relates interaction load to interaction-port motion is shown
by equations (2.8) and (2.9).

AY(jw) = Gy(jw) AD(jw)

where:

Giw) = C, (ju Ly - A, J* By

or

G) =[Js? +Cs+K|!' where s = ju

(2.8)

(2.9)

(2.10)



Chapter 3

Eigenstructure Analysis
of the Target Dynamics

Since a geometric approach is being considered for compensator design, it is necessary to
identify the eigenstructure properties of the target dynamics. Section 3.1 discusses this issue.
Section 3.2 explains the concept of seimplicity, which is the second condition for the
mathematical achievability of the target impedance. (The non-singularity of J, C and K is
the first condition.) Finally, in Section 3.3 we consider the stability analysis of the target

dynamics.

3.1 Geometric Properties

The target dynamics that correlate interaction loads (forces and torques) with system
motion (position and orientation) are given in state-space form by equations (2.6) and (2.7).
The advantage of this form is that it enables a designer to describe the target dynamics of a
system in geometrical terms. A, contains information concerning the modes (eigenvalues) and
the relative distribution of the modes (eigenvectors) among the states. A unique value for A,
can be determined by 2n eigenvalues and 2n right eigenvectors. B, represents a rank-n
matrix that transforms interaction load to system states; C, is a rank-n matrix that

transforms system states to system motion.

The target dynamics in equation (2.2) imply a closed-loop behavior for the dynamic
system. Our goal is to make the dynamic system (e.g., a manipulator) behave according to
equation (2.2) for all 0<w<w,. Note that in general the closed-loop behavior of a system
cannot be shaped arbitrarily over an arbitrary frequency range. The target dynamics in
equation (2.6) and (2.7) offer a set of eigenvalues and eigenvectors to model the internal
dynamic behavior of the target dynamics. Construction of the eigenstructure of the dynamic
system (e.g., a manipulator or an underwater vchicle) according to the eigenstructure of the
target dynamics is the first step in our design method. There are two issues of concern in
this step. The first issue addresses the achievement of the eigenstructure of the target

dynamics; there is no a-priori guarantee that the eigenstructure of the dynamic system can be



-30-

constructed according to the eigenstructure of the target dynamics. This limitation in the
construction of the eigenstructure is explained in Chapter 5. The second issue concerns the
achievement of the target dynamics for some bounded frequency range. Normally, the
copstruction of the eigenstructure of the dynamic system according to that of the target
dynamics does not guarantee that the closed-loop dynamic system behaves dynamically as
equation {2.2) for all 0Kw<w,. The above two issues are answered in Chapter 5. We will
prove that the eigenstructure of the target dynamics is achievable and we explain how this
achievement is interpreted. The achievement of the eigenstructure of the target dynamics is
because of appropriate choice of the target dynamics. We also prove that the achievement of
the eigenstructure of the target dynamics is required to guarantee that the closed-loop system
will behave dynamically like equation (2.2) for all 0<w<w, Knowing the eigenstructure of

the target dynamics is necessary for our design method.

Each eigenvalue of the target impedance, \;, and its corresponding right eigenvector, z;,

can be computed from equation (3.1).
(\i l2n2n - At ) y = 02n i=12 .,2 (3.1)
LA 7£ 02n

Substituting for A, from equation (2.6) in equation (3.1) results in equation (3.2), which can

be used to compute the eigenvalues and right eigenvectors of the target dynamics.

Nlan ln q; ]
=0, i=12.,2 (3.2)
JIK N +diC p; J
q; i
where: 7, = # 0,
P; U

q; and p; are nX1 vectors. To produce a non-zero solution for z;, equation (3.3) must be

satisfied [54].

)‘i]nn 'lnn
det =0 i=12 .., 2n (3-3)
JIK N +91C

Equation (3.3) yields the eigenvalues of the target dymamics. Equations (3.4) and (3.5), which

come from equation (3.2), result in vectors p; and gq; :
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Pi=Ng (34)
BX2+CX\ +K]gq =0 i=12 .., 2n (3.5)
qi # on

To produce a non-zero solution for q;, equation {3.8) must be satisfied.

det D(%, ) =0 i=12 .., 2 (3.6)

where: D(X\)=JX\ +CX\ +K

D(\) is the matriz polynomial {12, 11, 13] associated with the target dynamics of equation
(2.2). Equation (3.6) can also be produced by algebraic manipulation of equation (3.3). gq is
calied the right latent vector of D( )\; ) associated with X, . If J, C and K are symmetric
matrices, it can be verified that the right- and the left-latent vectors of D(\) are equal.
Therefore, for symmetric J, C and K:

nL=gq (3.7)

where: T D(%; ) =0T i=12 ., 20
T # onT .

We wish to design a model-based compensator Lo guarantee that the manipulator dynzmics
behave according to equation (2.2) for all 0<w<w, . Since dynamic models for manipulators
are often specified in the joint-angle coordinate frame, it is helpful to recast equations
(2.6) and (2.7) in the joint-angle coordinate frame. Equations (2.6) and (2.7) represent a
state-space relationship between end-point motion and interaction load in the global
coordinate frame. The transformation of end-point motion and interaction load from the
global coordinate frame to the joint-angle coordinate frame is given in reference [56]; it results

in the following equation:
AY(t) = J_  A8(t) (3.8)

where J_ is the Jacobian of the matrix that transforms joint-angle coordinates to global
coordinates. Equation (2.2) represents a dynamic behavior in the neighborhood of an
equilibrium point; AY(t) and AD(t) are small incrementals away from an equilibrium point (a

point with zero speed in space) Knowmg this, we can write:

}(( AY(t.) =1, Ae(t) ‘r j A@(J\ ) (3.9)

e —— ——
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Combining equations (3.8) and (3.9) results in equation (3.10).

AY(t) 3 0, ae(y)

(4

OM/JL Jc AB(t)

. (3.10)
AY(t)

Using equation (3.10), the target dymamics in the joint-angle coordinate frame can be written

[ Aé(t) ] 0, I, aA8(t) 0.,
. = [ . ] + [ ] AD(t) (3.11)
A6(t) [..l;'r'l(.le -.re'r'c.le] ae(t) b B

so) = [ 1, o, [Aem]

26(t)

AD(t) in equation (3.11) is still expressed in the global coordinate frame. If v, is the right

eigenvector of the target dynamics in the joint-angle coordinate frame, then:

J::l onn J-cl q;
v, = . z, = . (3.12)
onn Jc \i J; q;

where q; is the right latent vector ef D(\;). The 2n eigenvectors of equation (3.12) form a

2n X 2n matrix V:
V=1[v, v, .. vp]. (3.13)

V is a basis for the statespace representation of the target dynamics in the joint-angle
coordinate frame. V shows how the desired modes are coupled among the states of the
target dynamics. The 2n eigenvalues resulting from equation (3.3) are invariant under any
linear transformation and form a self-conjugate constant set A = { Nii=12 ., 20 }.

A and V taken together describe the eigenstructure of the desired impedance in the joint-
angle coordinate frame. The realization of the target dynamics in state-space form is not

unique; each representation offers a different V.



3.2 Simplicity of the Target Dynamlcs

Impedances that always yield 2 complete set of right eigenvectors are called simple.
Having a complete set of right eigenvectors is vital to our controller design methodology.
The requiréments for the completeness of the set of right eigenvectors are explained in
Chapter 5. Multiple eigenvalues in A are allowed, while V is restricted to be a full-rank
matrix. Distinct eigenvalues result in independent right eigcnvectors [40, 41], but multiple
eigenvalues in the target dynamics may not result in a complete set of right eigenvectors. If
the eigenvalues of the target dynamics are distinct, the requirement or the completeness of
the set of right eigenvectors will automatically be fullfilled. Suppose equation (3.3) results in
an eigenvalue with a multiplicity of a. For the sct of right eigenvectors to be complet., he
a right eigenvectors associated with the multiple eigenvalue must be independent. Equation
(3-12) shows that the independence of the a right latent vectors associated with an eigenvalue
of multiplicity a is a necessary and sufficient condition for the independence of the right
eigenvectors of the target dynamics. Appendix B identifies the class of impedances that
always yields a complete set of right eigenvectors for the target dynamics despite a
multiplicity of eigenvalues. These impedances are called eimple. The exact definition of the
simple impedances are given in Appendix B. Knowing the requirements for the independence
of the right eigenvectors of the target dynamics, we can write explicitly the only set of
form'al conditions that guarantees the structure of the target dynamics will be mathematically

achievable:

1. J, C and K must be non-singular matrices.

2. The target dynamics must be simple; all right eigenvectors of the target dynamics
must span the entire 2n-space.
The target dynamics in equation (2.2) imply a closed-loop behavior for the manipulator
dynamics. We plan to make the manipulator behave as equation (2.2) for 0<w<w,. Note
that in general one cannot ask a special closed-loop behavior for the system. This is an
inherent limitation of linear controller design theory. We will prove that if the target
dynamics of structure (2.2) satisfy the above two conditions, the target dynamics will always
be achievable. We will explain this concept of achievability in Chapter 5. These conditions
only guarantee that the target dynamics with the structure given by (2.2) are mathematically
achievable; they do not assure that a particular set of J, C and K is a good candidate for a

system. A target dynamics with the structure given by (2.2) and a particular set of J, C
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and K may not satisfy stability robustness, or even stability condition, even though it is

mathematically achievable.

3.3 Stability of the Target Dynamlics

We consider two issues of importance in analyzing the stability of a dynamic system
that interacts with the environment. The first issue concerns the condition under which
equation (2.2) offers a stable target dynamics. The stability of the target dynamics is not
enough to assure the stability of the dynamic system and its environment taken as a whole.
This brings up the second issue: the global stability of the dynmamic system aad its

environment.

The target dynamics of a system must be stable. Note that stability is not a condition
for achievability. We claim that unstable target dynamics are achievable as long as they are
simple and J, C and K are non-singular matrices. Stability of the target dynamics depends
on the values of J, C and K. One sufficient condition for the stability of the target
dynamics is explained in Appendix A. According to this condition, if J, C and K are
symmetric, positive definite matrices, then the eigenvalues of the target dynamics lie in the
left half complex plane. If K and/or C are symmetric, positive, semi-definite matrices, then

some or ali eigenvalues will be on the irnaginary axis. (These cases are considered umstable.)

If a dynamic system interacts with the environment while satisfying equation (2.5) with
symmetric, positive definite J, C and K, the overall system consisting of the environment and
the dynamic system will be stable. In other words, if the controller achieves the target
dynamics of (2.2) for all 0<w<oo, then the overall system (dynamic system and environment)
will be stable. This shows that the target impedance has desirable properties. The global
stability is proved in Appendix A. The glcbal stability is not a result of the design method,
but of the form that we chose for the target dynamics. If the controller does not guarantee
equation (2.2) for all 0<Kw<oo and yields a behavior “approximately” like the target
impedance for a bounded frequency range, then the global stability is not guaranteed.
Appendix A also gives a sufficient condition for global stability as a function of this

approximation.
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Chapter 4
Dynamic Behavior of the Manipulators

This chapter is devoted to the Lagrangian derivation of the dynamic model for
manipulators and their actuators suitable for impedance control. Section 4.1 presents the
steps toward this derivation, while Section 4.2 explains the restrictions and uncertainties
associated with the dynamic model. From the standpocint of formalism, some readers may
find our treatment superficial; references [23, 24, 53] offer more leisurely developments of this

derivation.

4.1 Mathematical Modelling

Dynamic equations that describe the behavior of manipulators are inherently non-linear.
Two classes of non-linearities are treated by the manipulator dynamics. One class is associated
with the change in the geometrical configuration of the manipulator, while the second is
associated with non-differentiable non-linearities, such as dry friction, backlash, etc. In this

derivation, we consider only the former, differentiable non-linearities.

Let the joint angles in the manipulator be the system’s coordinaies. These coordinates
vary arbitrarily and independently of each other without violating any constraints that might
act on the system. This simply implies that the ccordinates are generalized coordinates and
the manipulators are holonomic systems. If M(B) is the inertia matrix of a manipulator, then

the kinetic co-energy, T(G,é), can be expressed in quadratic form by equation (4.1).
. ) .
T(©8) = - 6T M(e) 6 (4.1)

‘where oft) = [ 0,(t), ,(t), ..., 8,(t) I is the vector of coordinates. M(O) is always a
symmetric, positive definite matrix. Lagrange's equations (4.2) are used to derive the dyaamic

equations [4].

() i=12 ., n (4.2)

4 [9T(0.0) aT(0,6) 9P(6) _
de | aar) | aafe) * ae)
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T(G,é) = kinetic co-energy

P(6) = potential energy from gravitational force
fi(t) == generalized force

0,(t) = generalized coordinate

Equations (4.3), (4.5) and (4.7) are derived to simplify the terms in the set of differential

equations represented by (4.2).

-
d a'r(e,é)] d [aT(e,é)] d [3T(6,6) el & el &
3?[ a6,(t) J' de L ane) ' E[ 3 (t) ] = Mie) &) +[<Tc ( )] o

d
where o M(O) is given by equation (4.4)
¢

M6l = aM(e) i aM(e) o aM(e) :
(E ( ) = ael ) 1( ) + a—oz(T) 2( )+ ..+ agn(t) n(t)
oT(06) T(6,9) 3T(0,6) 7" .
- [ 30,(t) " an(t) T 30 (t) ] = - Q(6,9) 6ft)

where Q(O,é) is an nXn matrix and is given by equation (4.6).

= 2 K r MO ]
Q(6.9) 5 6(t) 200
. o 3M(6)
o) 30,(t)
. aM(e)
T
o 20, (t) |

T
aP(@) dP(e)  aP(e)
[ . e

a0,(t) " a0,(t) T 30, (t)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

Substituting equations (4.3), (4.5) and (4.7) into equation (4.2) yieids the following set of

differential equations, (4.8), for the manipulators.
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. d .
M(6) 6(t) + [d_; M(®) - Q(e,e)] 6{t) + F(6) = F(t) (4.8)

. d
where Q(6,8) and m M(8) are given by equation (4.8) and (4.4). Vector F(t) in equation
t
(4.9) represents the generalized force.

F(t) = [f,(t), (), . () |T N (4.9)

d . .
The term [d_ M(e) - Q(O,G)] ©6{t) is associated with gyroscopic forces (e.g., Coriolis
t
forces or Lorentz forces).  The n-dimensional vector of F'(G) is associated with the

gravitational forces on the manipulators.

In most constrained manipulations, the motion of a manipulator is very slow; the system
operates at ‘‘near stall” conditions, mostly because of dynamic and kinematic constraints.
For example in grinding, arc welding and metal cutting, the state of the art of current
technology is the limiting factor in the speed of such operations. The orders of magnitude of
the gyroscopic terms are much smaller than the inertia and the gravity terms in constrained
maneuvers; this suggests the elimination of the gyroscopic terms from the differential
equations of the motion. This elimination is mathematically equivalent to the linearization of
the gyroscopic terms in the neighborhood of an equilibrium point (zero velocity). Tais point
is characterized by the vector ©_,. At this stage, the assumption that the manipulator moves
slowly does not imply any specific restraint on the inputs to the systemn. In general, there is
no unique characterization associated with the inputs that can generate large-velocity terms.
The above assumption rejects all inputs that could give rise to velocity terms. The
discussion on page 41 clarifies the conditions on the inputs that will guarantec small
velocities. At this stage, it is sufficient to assume that all velocity terms are close to zero.
This automatically ensures that the inputs will satisfly the conditions. Equation (4.10) is true

at equilibrium.
F'(Oo) =F, (4.10)

If A6(t) is the perturbation of the generalized coordinate from ©, and AF(t) is the

perturbation of the generalized force from F , then the linearized equation of motion is:
M(6,) A8(t) -+ GR(8) A6{t) = AF(t) /4.11)

where GR(OO) is an nXn matrix that can be computed from the following equatica:
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T
GR(9,) =[m m m] computed at 6=06_. (4.12)
0 30, (t) 30,(t) a0, (t) °

Since the velocity terms m[:—t M(e) - Q(G,é)]é(t) are of the form O.i(t.)2 or Oz(t)o;(t) , the
linearized form of the gyroscopic terms around the equilibrium point, 6, vanish from the
linearized equations. The linearized form of the gyroscopic term around the non-zero-velocity
operating point (6 = ©_, é = éo) in general is not zero. Since the target dynamics are
specified in the vicinity of the equilibrium point, 8,, we will continue the analysis with the

linearized model at the zero-velocity equilibrium point (equation (4.11)).

M(6,) and GR(8,) are functions of the configuration of the system, and once the
manipulator moves from one point to another point, they change. We plan to update M(6 )
and GR(8) as ©_  changes. Equation (4.11) represents the dynamic behavior of a
manipulator when its motion is slow. Gravity and the inertia of the system are two effects
that practitioners always observe in the behavior of the manipulators at low speeds; gravity
dominates the motion of the system at very low frequencies, while inertia affects the bekavior
of the system in the higher frequency range. The generalized force, AF(t), can be expressed

by equation (4.13).

AF(t) = T, AT(t) + AN(t) (4.13)

AN(t) = JT AD(t)
where:

AT(t) = [ 8,(t), Bty(t), ..., Bt (t) IT is the perturbation of the actuator
torques;

AN(t) = [ tn,(t), tn,(t), ..., bn_(t) |7 is the perturbation of the torque
loads on the actuators;

AD(t) = [ &d,(t), bd,(t), ..., &d (t) |7 is the perturbation of the interaction
load in the global coordinate frame; and

J . is the Jacobian.

T' is a non-singular square matrix which represents the effect of AT(t) on the coordinates. If
the coordinates are independently driven by actuators, then T, = I . Ar example of a non-
uaity T, arises when A6(t) is measured absolutely while some actuators are not driving the
joint angles from a stationary base. Substituting equation (4.13) in equation (4.11) yields

equation (4.14) for the linearized dynamics of the manipulators.
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M(©,) A6(t) + GR(8,) A6(t) = T, AT(t) + AN(Y) (4.14)

The form of equation (4.14) that describes the behavior of the manipulator in the
neighborhood of an equilibrium point in state-space is given by equation (4.15):

Aé(c) [ 0,0 L ] [Ae(t)] [0,
e |= . + AT(t)
[Ae(t)] -M'(6,)GR(8)) 0, | LA6(t) L MY(8,)T, ]

-ollll
AD(t 4.15
! LM-'(eo)J;"] . o

where AB(t) = [ 8,(t), 8,(t), ..., % _(t) | T expresses the perturbed joint-angles.

Equation (4.16) approximates the dynamic behavior of each actuator.

&;(t) )
+ Sti(t) = &li(t) i=12 .,n (4.16)
al
where:
\.i = bandwidth of each actuator

bu,(t)= input perturbation of each actuator
&;(t) = output-torque perturbation of each actuator

Note that equation (4.16) is scaled to produce one unit of torque for each unit of input at
equilibrium. Such scaling is common and can always be compensated for at the end of the
design procedure by adjusting the open-loop transfer function matrix. The set of differential

equations describing the actuation of the manipulator is approximated by equation (4.17).

A.T(t) = A, AT(t) + B, AU(t) (4.17)
where:
A, = diag( Nap o Na2 v N )

B, = diag( \,; , N s - N )

AU(t) = [ bu,(t), Buyt), ..., bu(t) |T

AT(t) = l 6"1(';)- &'g(t)- ) Rn(t) IT
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Combining equations (4.15) and (4.17) yields equation (4.18) for the dynamics of the

manipulator and the actuators.

f

sew] [o. e 0% |[2e0] [o..
aew) |= | Me,)GrRE) 0, MT, | |26 |+ |0, | auw
AT(t) 0 0, A, atw | |s,
L‘_v.,d ) —— N
AX(t) A AX(t) B

onll

+ | M6 )NT| aD() (4.18)
onll
L
X

C= (I, O, 0,1} then:
AX(t) = A AX(t) + B AU(t) + L AD(t) (4.19)
a6(t) = C AX(t) (4.20)

where: AX(t)ER?; AU(t), AD(t) and AS{t)ER®;

(A, B) is a controllable pair; and
(A, C) is an observable pair.

Loosely speaking, if the bandwidths of the actuators are much greater than w  in all

directions, then the actuator dynamics can be peglected in the dynamic equations (4.18).

Neglecting all actuator dynamics results in 2n-state differential equations for the manipulator.

Conversely, if an actuator bandwidth is smaller than w  in a given direction, then the

actuator dynamics cannot be neglected. Matrix A has 2n eigenvalues associated with “the

manipulator dynamics and n eigenvalues describing the actuator's bandwidth. If the transfer

function matrix that maps AU(jw) to A6(jw) is Gp(ju) and the transfer function matrix that

maps AD(jw) to AB{jw) is G;(jw) then the following equations are true:

A8(ju) = Gyfju) AU()
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a6(jw) = G(jw) AD(ju)

where:
G (iw) = C ( july,y, - A)'B (4.21)
G (iw) = C ( julyyy, - A V'L . (4.22)

Pair (A, L) is not controllable. In forming G;(ju), the modes in the uncontrollable space

(actuator modes) are cancelled out, so G;(ju) becomes a 2n-order system.

The mathematical model given by equation (4.18) is a fair approximation of the non-
linear dynamics represented by equation (4.8) as long as AD(t) and AU(t) are bounded in
magnitude and frequency. Equation (4.18) is the linearized version of a set of non-linear
differential equations in the neighborhood of an arbitrary zero-velocity operating point. The
model is therefore valid as long as the velocity terms are close to zero. The smaller the
magnitude of the inputs, the closer the model will be to reality, because small inputs result
in small velocities as long as the frequency range of operation of the inputs is bounded. The
target behavior is specified as 'an impedance with AD(t) as the system's respomse to the
imposed motion. The block diagram in Figure 4-1 shows how the dynamic system and the
environment interact with each other in the ideal case when the target impedance is achieved

for all 0<wW<oo.

AY(s) AD(s)
commanded
incremental
motion

| Environment Dynamiché

Figure 4-1: The interaction of the dynamic system and environment
in the ideal case when the target impedance is achieved for
all 0<w<®

The imposed motion is equal to algebraic addition of the commanded incremental motion
from the operator and environmental motion. We assume that the environment czn be

modelled as a linear system; therefore, AD(t) will have bounded frequency range if the
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imposed motion from the operator is bounded in frequency range. A slightly more elaborate
block diagram is shown in Figure A-1 in Appendix A. Since AU(t) and AD(t) contain most
of their energy in the bounded frequency range 0<w<uw, (mo is introduced in Chapter 2),
ther by selecting inputs of small magnitude, a designer will never face large veiocities in the
manipulator dynamics. Note that by confining the frequency range of AU(t) and AD(t) to
all 0<w<w, and the magnitudes of AU(t); and AD(t) to very small values, a designer

eliminates all inputs that could give rise to significant joint-angle velocities.

4.2 Mode! Uncertalntles

Even though some mathematical models reliably represent the dyramics of a system, no
nominal model can imitate a dynamic system completely. No mathematical model is more
than an approximation of reality; nore is absolutely true. The mathematical model given by
equation (4.18) will yield a rational approximation of the dynamic system for a certain range
of AU(t) and AD(tj which is bounded in magnitude and frequency. Outside this
range, the model will depart from reality. The difference in behavior between the model and
the real system in various operating regions must be taken into account through a meaningful
matkematical method that allows for differences between ideal and real systems. Such

discrepancies are called model uncertainties.

Let G;[jw) represent the true dynamics of the system. Satisfying the condition on the
input magnitudes, equation (4.23) can be written to show the relationship between the
nominal model, Gp(jw), and the true dynamics, G;[jw), by means of E(jw) [33].

Gfiw) = Gyfj0) [ 1, + Ew) | (4.23)

Onasl E(iw) | < e(w) for all w>0 (4.24)

E(jw)* is called the unstructured model uncertainty because equation (4.23) does not imply

any mechanism or structure that gives rise to E(jw). e(.) is a positive scalar function which

The maximum singular value of E(ju) is defined as:
It Blw) x |l
=1

x %= 0, and ||| denotes the Fuclidean norm [12].

omaxl ElS) | = max
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confines G;(jw) to a neighborhood f Gp(ju) with magnitude e(w). Equation (4.23) is not the
only representation of-the true model. We assume that G;jw) in equation (4.23) remains a
strictly proper finite system. We also assume that G;‘jw) has the same number of unstable
modes as G (jw). The unstable modes of Gp(jw) and Gjw) need not be identical. Therefore,
E(jw) may be an unstable operator. The above condition implies that G (jw) must contain

unstable modes of the system (if there are any).

When equation (4.23) is used to represent various unmodelled dynamics of mapipulators,
the limiting function e(w) has the form shown in Figure 4-2. e(w) is a bound for
unstructured uncertainties. It is non-zero for all frequencies.

10: A\ |I|TﬁrﬁrlT1rrl T lll:
e

10

10

..,....,
£
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10
0 .
10 _/ p
’ ]
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Rad/sec

Figure 4-2: e{w) is a conservative and educated guess about the
difference between the model of the system and the real system.

¢(w) is usually smaller than unity at low frequencies and increases to unity and above
at high frequencies. High-frequency dynamics caused by time delays, electrical resonances,
structural dynamics, etc., aiways exist, but are neglected. This causes equation (4.18) to
significantly contradict reality at high frequencies. Lack of knowledge about the precise
inertia matrix, the size of the inputs, the effects of perturbations from operating points, non-
linearities such as saturation, etc., give rise to an e(w) at all frequencies, while high-frequency
unmodelled dynamics contribute significantly to the magnitude of e(w) at high frequencies.
Saturation is inherently non-linear but can be modelled as open-loop gain reduction for all

frequencies.

Since e(w) assumes a single worst-case miagnitude applicable in all directions, it is helpful
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to determine the slowest unmodelled mode in the manipulator. Let the frequency range
associated with this ‘'mede be w,. A good estimation of w_ allows the designer to determine
the frequency range for which the model is nearly valid. (No model is absolutely valid.) This
estimation is necessary because it is meaningless to consider equation (2.2) as expressing the
target dynamics for all 0<w<w, when the frequency range for which the mode! can be
trusted is unknown. Models must be nearly valid for the entire frequency range through
which the target dynamics are expected to occur, ie., w <w,. Figure 4-2 shows the relative

sizes of w, and w,. The upper bound for w, can be selected from equation (4.25):
W, =CcWw (4.25)

where ¢ is a constant number whose size depends on the damping of the unmodelled mode.
A well-damped unmodelled mode requires a small ¢ (perhaps somewhere between 5 and 10),
while an under-damped mode requires a large c (could be as large as 100). w, and 2
conservative guess for c assign an upper bound for w,. To meet stability robustness
specifications, it is necessary to have a conservative guess for e(w) for all 0<w<oo. This is
because our stability robustness test iz a sufficieat condition which must be satisfied for all
0<w<oo. (This is explained in Chapter 5 and Appendix E.) Experience, a good
understanding of the system, and high-performance experimental equipment will enable a
designer to make a good guess as to the magnitude for e(w) for a wide frequency range. e(w)
is an educated guess about the difference between the model of the system and the real
system which must be supplied by the designer. Here we assume that a conservative guess

for e(w) is given, along with equation (4.18), to represent the model nuncertainty in the

system.

To recapitulate, the model in equation (4.18) is considered nearly valid as long as the

following conditions are satisfied:

- AD(t) and AU(t) must contain components whose frequency spectra are within w,.
w, must be selecied so that w <w,; this is because of the significant difference
between the model and the reality of the system for w <w<oo.

- AD(t) aad AU{t) must be small enough in magnitude to meet the linearizatior
conditions. (In theory, AD(t) and AU(t) must approach zero.)
Note that most constrained manipulation is quite slow and that the system operates at
a near stall. (The slow motion does mot imply marrow range of frequencies.) The commands

are small in magnitude and they contain bounded frequency components. For example a slow
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transition from free to constrained motion (e.g., a manipulator encounters a wall) in principle
may contain large (but bounded) frequencies. The nature of constrained manipulations means
that the conditions on the magnitude and frequency of the inputs are spontaneously satisfied,
and equation (4.18) can be used as a model of the manipulator. (In fact, the natural
confinement of the inputs in magnitude and frequency is a strong motivation to linearize the
differential equations (4.8).) In unconstrained manipulations, the end-point moves quickly.
The inputs are not confined in magnitude and might contain high-frequency components. In
many unconstrained maneuvers, the speed of operation is ome of the most significant
specifications that must be met. The model represented by equation (4.18) is not valid for

these types of manipulations.
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Chapter 5

Compensator Design

This ¢':I:apter presents a controller design technique such that a manipulator that obeys
dynamic equation (4.18) behaves dynamically like equation (2.2) for all 0<w<w,. Since we
plan to shape a frequency domain relationship between AD(t) and AY(t), we must not
consider the dependence of AD(t) on the dynamics of the environment in this analysis. This
allows us to preserve AD(t) so we can arrive at a relationship between AD(t) and AY(t).
Theorem 2 in Appendix A considers the global stability of the manipulator and its
environment taken together, based on the dependence of AD(t) on the dynamics of the

environment.

Section 5.1 explains the overall design method, the first stage of which requires the
measurement of all states of the system, AX(t), and interaction loads, AD(t). Section
5.2 offers a geometric design method to achieve the state-feedback gain. In Section 5.3 we
consider the role of force-feedforward gain. Finally, in Section 5.4 we arrive at the design

parameters for stability robustness.

5.1 Background

Our analysis of the compensator design for impedance control consists of two stages.
During the first stage, it is assumed that all states, AX(t), and interaction loads, AD(t), in
equation (4.18) can be measured. The states of the system are joint-angles, joint-angle rates,
and actuator torques. There are no acceleration measurements. Suppose the control law in

equation (4.19) is chosen so that:

AU(t) = - G AX(t) + G, AD(t) (5.1)

G = nX3n Gy = nXn .
Substituting AU(t) in equation (4.19) yields equation (5.2).

A.X(t) =(A-BG)AaX(t) + (L + B G, ) AD(t) (5.2)
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A6(t) = C AX(t) (5.3)

AX(t)eR®®  AD(t) and A6(t)ER"

Figure 5-1 shows the closed-locp system. Equation (5.2) shows that G alters the
internal dynamics (eigenstructure) of the closed-loop system, while G, modifies the
transformation matrix that maps interaction-load space to state space. G, can be considered
as a feedforward gair and not feedback gain. This is true because in our treatment of force
measurement, Gd does not affect the stability of the closed-loop system. Even though AD(t)
can be expressed as a function of the dynamics of the environment, in this chapter we must
ignore this dependence so we can arrive at a relationship between AY(jw) and AD(jw) in the
frequency domain. (See theorem 2 in Appendix A for a treatment of the global stability of

the manipulator and its environment taken together.)

IAD

B [ S

Figure 6-1: Closed-loop System

The state-feedback gain, G, and the force-feedforward gain, G,, are designed to
guarantee that the three transformation matrices, (A - B G), (L + B Gy) and C in equations
(5.2) and (5.3) result in the same transfer-function matrix in the global coordinate frame as
the target impedance, which is expressed by equations (2.6) and (2.7). In other words, if
G,(jw) in equation (5.4) represents a mapping from the interaction load, AD(jw), to the joint
angles, Ae(jw), then the object is to design G and G, so that equation (5.6) is satisfied for
all 0<w<w, while the stability robustness specifications are also guaranteed. AD(jw) is

measured in the global coordinate frame.
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A8(jw) = Gjw) AD(jw) (5.4)
where:

Gyliw) = C (jw iy, -A+BG)' (L+BGy) (5.5)
J. Gyliw) = G(iw) (56)

J. G cl(jm) represents the tramsfer-function matrix that maps the interaction load, AD{jw), to

the end-point motion, AY(jw), in the global coordinate frame.

At the second stage of the design, it is assumed that only the first n states of AX(t)
(i.e., AS{t)) and all states of AD(t) are available for measurement. Even though we are not
obliged to make such an assumption, we feel more confident offering a final compensator
design for impedance control based on the most reliable and extensive set of available

measurements.

A new geometric method for full-state observer design is offered to recover the design of
the first stage. The geometric recovery procedure allows the designer to achieve the target
impedance using only the joint angles, AS(t), and the interaction load, AD(t). Chapter 5 is
devoted to the first design stage, while Chapter 7 expiains the second stage of the design.

5.2 State-Feedback Design

G is designed to guarantee the eigenstructure represented by V (given by equation
(3.13)) and A (given on page 32) and the stability robustness specification. The complex

number s, and the complex vector u; that satisfy equation (5.7) are the closed-loop eigenvalue

and the right closed-loop eigenvector of equation (5.2).

s;u,=(A- BG)y i=12 .., 30 , (5.7)
“i?‘oln

u; is 3nX1 vector. For convenience, matrix U is formed such that it contains all right
closed-loop cigenvectors, u;, as its columns, and self-conjugate set S is formed such that it

contains all clooed-lo'op eigenvalues as its members.

Us=[u uw, .. uy] (5.8)
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S={s : i=12.,30} (5.9)

The objeci is to design G so that (A - B G) contains the eigenstructure represented by
A and V. Aside from the case of a single input system, the specification of closed-loop
eigenvalues does not uniquely define G. The source of non-uniqueness is the freedom offered
by state feedback, beyond eigenvalue assignment, in selecting the associated right closed-loop
eigenvectors (or left closed-loop eigenvectors) and genmeralized eigenvectors from an allowable
space.  Arbitrary eigenvector assignment in genmeral is not possible. Each closed-loop
eigenvector is confined to an allowable sub-space. This allowable sub-space is giver in
Sections 5.2.1 and 5.2.2. The restriction on the construction of the closed-loop eigenvectors
simply implies that one cannot specify all members of each right eigenvector arbitrarily.
Only some partitions of each eigenvector in general can be constructed according to design
specifications. A unique value for G is determined by the arbitrary pole-placement of S and
by the eigenvector construction of U in the allowable sub-space [9, 10, 44, 45, 27, 39. In

other words, a unique value of G can be designed so thai :

- the 2n dominant closed-loop eigenvalues in S are placed at locations assigned by A.
The n remaining actuator eigenvalues are moved as far to the left as the stability
robustness specifications will allow. (This will be explained in Sectior 5.4.);

- U is constructed in the allowable sub-space, so thap the dominant partition of U
contains V.

Since u; and v, belong to different spaces, it is necessary to partition U. Here we describe
the dominant partition of U and explain how U can be constructed such that it contains V.

Partitioning U yields:

\ U
U= (5.10)
where : U" = 2nX2n Unz = 2nXn U,, = nX2n Uy,, = nXn .
Assume also that U = | U, U, | where :

Uy,

U! = , 02 =
Uzl

U, is the set of right closed-loop eigenvectors associated with the 2n dominant closed-

loop eigenvalues represented by A. U, is the set of right closed-loop eigenvectors associated
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with the n actuato: closed-loop eigenvalues. U, shows the contribution of the 2n dominant
closed-loop eigenvalues to the manipulator states (AB(t), A.G(t)), while U,, shows the effect of
the 2n dominant eigenvalues on the actuator states AT(t). We construct U, such that
U"=V. In general, because of limitations on eigenstructure construction, a designer cannot
form the closed-loop eigeuvectors arbitrarily. But in this case, it is possible to comstruct U,
so that U, =V. In other words, V, which is the set of the right eigenvectors of the target
dynamics of (2.6), is in the allowable sub-space determined by the open-loop dynamics. The
existence of the right eigenvectors of the target impedance in the allowable sub-space
determined by the open-loop dynamics given by equation (4.19) is a significant factor in
achieving the target impedance. If V were not in the allowable sub-space, the achievement of
V and A, and consequently, the targei dynamics of equation (2.6) would not be possible by
state-feedback design. This allowable subspace is given in Sections 5.2.1 and 5.2.2. Oance U,,

is constructed to be exactly like V, no choice will remain in constructing U,,.

U,, shows the effect of non-dominant closed-loop eigenvalues on the manipulator states.
U,, is the more significant partition of U, because it allows the achievement of the uncoupled
closed-loop dynamics for the actuators. Once Uy, is constructed to achieve the uncoupled
closed-loop behavior for the actuators, no choice will remain in construction of U,,. This
issue is explained in Section 5.2.2. Because of the mentioned limitation on construction of
eigenvectors, only some partitions of eigenvectors can be constructed arbitrarily. Designers
must construct those partitions of eigenvectors that have a more significant role in the closed-
loop behavior. In our case, U, and U,, are more significant partitions of U, and U,,
respectively. The exact comstruction of U,, and U,, and the placement of tke 3n poles of S

are the free choices that linear state-feedback control offers for achieving a unique gain, G.

Sections 5.2.1 and 5.2.2 explain how this freedom can be used.

5.2.1 Maanlpulator Eigenstructure

This section identifies how the manipulator eigenstructure can be constructed. Using
equation (5.7), equation (5.11) can be written to express the right closed-loop eigenvector, u,,

associated with the 2n dominant eigenvalues. From equation (5.7):

(8lygn -A)y; +BGu; =0, i=12.,2n. (5.11)

L1 ¥ oll
Since s, is selected from set A, then 5, = ), . Equation (5.11) can also be written as:
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[( Maasa - A ) - B ] [ Y, ] =0, i=12.,. (5.12)
-G v,

If m; = - G u; where m; is nX1 vector then:

[(xirm,,-A) -8 | [ui]

I
o

w i=12 ., 2. (5.13)

. T TIT : .
Equation (5.13) states that [u;" m;"}" is in the right null-space of [ (\],, - A) -B].
Since the dimension of the right null-space of [ ( N\, , - A ) -B | is at least n [54),
[uiT miT]T is confined in an n-dimensional sub-space spanned by null vectors of
[ (Nlypsn - A)  -B]. Because of this restriction on [u,T m,T|T, not all members of u,
can be selected arbitrarily. u; must be selected such that [u,T m,T|T lies in the null-space

of l ( \ilanzn
not belong to the spectrum of A, then equation (5.14) can be generated from equation (5.7):

-A) -B]. There is another way of arriving at this confinement. If 8, does

y =- (8l -A)J' BGy, i=12 ., 2. (5.14)

Since s; is selected from set A, then s, = )\; . u; can also be expressed by equation (5.15).

U = (Nlypan - AV B m, i=12 .,2 (5.15)
where : m;, = - Gy, m; is nX1 vector (5.16)
Let: N, = (XN, -A)'B i=12.,2; (5.17)
then : u; = N; m, i=12 .,2n. (5.18)

Equation (5.18) mathematically justifies the limitation on the conmstruction of the closed-loop
eigenvector mentioned previously [16]. Each closed-loop ecigenvector, u;, associat:d with X\,
must reside in the column space of N;, which is a function of the closed-loop eigenvalue N
and the open-loop dynamics of the manipulator (A,B). This is an important constraint on

the construction of the right closed-loop eigenvector, u., which is trapped in the n-

il
dimensional sub-space established by columns of N; .

Because of the confinement of u; in an n-dimensional subspace, in general, it can be
expected that only n members of u; can be selected arbitrzrily. But we are interested in
construction of u; such that its first 20 members are like v;. We show that a vector, u,,
T m,T|T

(along with an m;) exists such that |[u ; is in the null-space of
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[ ( MNlapsn - A)  -B] and its first 20 members are the same as v;. Consider u; and m;

given by equations (5.19) and (5.20).

I

u = | N\, [J;‘ qi] i=12 .,2n (5.19)

| T,' [ M(©,) \? + GR(®)) |

m=B"1(NI,-A)T'IM6)\*+GR@O,)]J'q i=12.,28 (520

The first 2n members of u; are the same as v, Form [ (8, , -A) -B]:
[ (8lgnsn -A) -B | =
i L I 0pn 0yn l
M{8,) GR(8,) 8 I, -M1e) T, 0., (5.21)
Lonn Opn ( sillm.'Ai) -B, )

Substituting for [ ( sly . - A) -B | ivom equation (5.21) when s, = X, and u; and m,

o3n
from equations (5.19) and (5.20) into equation (5.13), shows that [uiT m.T|T is in the null-

space of | ( Ny, - A} -B |. This substitution shows that u;, which is given by

n3n
equation (5.19), is achievable. Since u; (i=1,2,..20) must be in the right null space of

l ( \illnan
if the first 2n members of U; are constructed like v,.

-A) -B |, then no option would remain to construct tke last n members of u;,

5.2.2 Actuator Elgenstructure

We offer a similar treatment for the actuator eigenvalues and their right corresponding
eigenvectors. The actuators in the manipulators are dynamically uncoupled. It is a good
practice to preserve this uncoupling in the dynamics of the actuators in the closed-loop case,
too. The uncoupling of the closed-loop actuator dynamics allows the designers to achieve

different bandwidths for actuators such that they are consistent with their hardware.

It s already been mentioned that U,, is the significant partition of U,. To achieve
the uncoupling of the actuators, U,, is chosen to be an identity matrix. Since each right

closed-lo.p eigenvector is confined to an n-dimensional subspace in 3n-dimensional space,
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constructing U, such that U,, = 1 =~ is always possible. At this stage, we have not
mentioned where the n actuator closed-loop eigenvalues must be located. This will depend on
the stability robustness specifications. Section 5.4 is devoted to this matter. For continuity
in all material concerning the design of G, readers can assume that the closed-loop
eigenvalues of the actuators are located - deeper in the left half complex plane than any
comple* number offered by A. At this point, it does not matter how far from the origin
these eigenvalues are located. Section 5.4 clarifies how a designer can use this freedom as to

the closed-loop eigenvalues of the actuators to satisly the robustness specifications. If

m, = - G u;, equation (5.7) can be written as:
[ (813, - A) -B ] [ u, ] =0, i = 2n+1, 2042, .., 30 .  (5.22)
m;
Let: Uy =1[8, 8 - 8] (5.23)

If u; and m; are selected according to equations

where g is nX1 vector and Uy, = I .

(5.24) and (5.25),

[ M(8,) % + GR(B,) |'T,

u, = | [ M(8,) s? + GR(8,) | T, 5, [gi] i = 2n+1, 2042, .., 30 . (5.24)
lnn N

m =B [sl -A ]g i=2+] 2042 .., 30 (5.25)

then substituting u; and m; from equations (5.24) and (5.25) into equation (5.22) and
[ (8ly3, - A)  -B| from equation (5.21) into equation (5.22) shows that [u,T mT|T is
in the right nullspace of [ ( 5l,,,, -A) -B] This shows that u, which is given by
equation (5.24), is achievable. The last members of u; are like g, which guarantees the
uncoupling of the closed-loop actuator dynamics. Note that the inverse of
[ M(8,) si2 + GR(8,) | always exists as long as s, is not equal to any eigenvalues of A. One
can always multiply uw, by [ M(8 ) siz + GR(6,) | to ease this condition. Since u,
(i=20+1,20+2,..,3n) must be in the right null space of [ (5 I, - A) -B |, then no
option would remain to construct the first 2n members of u;, if the last n members of u; are

constructed like v;.
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5.2.3 Computation of G

Once the m;'s and u;’s are computed from equations (5.19), (5.20), (5.24) and (5.25),
then equation (5.16) can be used to derive equation (5.26) for G.

G=-[m my .. my|[u uy. uy]? (5.26)
Cr equivalently:

G=-|m m, .. my |U! (5.27)

Equation (5.27) requires that U (given by equation (5.10)) is a full rank matrix. Since the
target dynamics are simple, then U,,, which is equal to V, is a full rank matrix. This meaas
that U, is a 2o-rank matrix. Matrix U, must be constructed such that [U, U] is a full
rank matrix. We do not give a general procedure to construct U, such that |Ul U2] is a
full rank matrix. But since there is freedom in the selecticn of the eigenvalues and
eigenvectors of the actuators, one can always use this freedom to modify U, such that
[Uy U] is a full rank matrix. Here we prove that if all closed-ioop eigenvalues of the
actuators approach infinity at any angle in the left half complex plane, then U is a full rank
matrix. It can be verified that as actuator eigenvalues approach negative large numbers, each
of the upper 2n members of each right eigenvector in equation (5.24) approaches a small
number, while the last n members stay comstant. This implies thgt the members of U,, of
matrix U in equation (5.10) will be much smaller than U,,. Suppose [U, U, is not a full
rank matrix. Then there exists at least one column in U, which belongs to the column space
of U (U, is a full rank matrix) as eigenvalues of the actuators approach infinity at any
angles in the left half complex plane. Since, in the limit, all members of U,, are almost
zero, this leads to the dependence of the columms of U,,. This is a contradiction because
U" is a full rank matrix. The above discussion proves the existence of Ul only when all
the eigenvalues of the actuators approach infinity in a stable sense. In practice, we plan to
locate the actuator eigenvalues deeper in the left half complex plane than any complex

number offered by A If Uis a full rank matrix, then U! can be computed as:

[Uy; - UpUp, Uy I Uy '0p, Uy, - U, Uy M0l (5.28)
'Uzszzx [Uu - UmUzz—lell-l lez - Ule""Ulzl"

Note that we do not consider the independence of the columns of U as a condition for the

achievability of the target impedance. This is because one can always use the freedom in
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choosing the eigenvalues of the actuators to construct U, such that [U, U, is full rank as
long as U, is a full rank matrix, which will be true if the target impedance is simple. Since

U and S are self conjugate, the G will always be a real matrix [39].

5.3 Force-Feedforward Design

Section 5.2 provides a method for designing the state-feedback gain, G, to guarantee the
eigenstructure of the target dynamics given by A and V. Assuring that the eigenstructure of
the target dynamics is achievable does not imply that the target dynamics given by equation
(2.2) can be achieved. The foillowing theorem formally states the conditions under which 2
designer can guarantee that the system will foillow the target < .-_. .cs, given by equation
(2.2), governing the closed-loop behavior of the manipulaiv.o 1or all 0<w<w,. (0, wy) is the

bounded frequency range in which the system may operate.

8.5.i Theorem

The state-space representation of the dynamic system given by equation (4.18), with state-

feedback gain G and force-feedforward gain G, is given by equations (5.29) and (5.30).

AX(t) = (A -B G ) AX(t) + (L + B G, ) AD(Y) (5.29)
A6ft) = C AX(t) (5.30)

G =0nx3n , Gy =nXxn , A6(t) and AD(t) € R"

The closed-loop transfer-function matriz that maps AD(jw) to AS(jw) is given by equalion
(5.31).

G,(jw) = C (juwly,, - A +BG)! (L + BGy ) (5.31)

where : A6(jw) = G, (jw) AD(jw)
Suppose all actuator closed-loop eigenvalues are selected to satisfy inequality (5.32):
[ >0 real (s,)<0 i = 2n+1, 20+2, ..., 3n , (5-32)

where p 8 a posilive scalar.



- If p approaches oo,

- and if G is designed according lo Section 5.2 to guarantee the target eigenstruclure
V and A for the closed-loop system,

then o unique value for G, can be obtained such that limit (5.33) i true for all w in the

bounded interval (0, w,).
im  J, G (iw) = G(jw) (5.33)
p —

Comment

This theorem does not prescribe any value for G;. It justifies the conditions under

which limit (5.33) is true for all 0<w<w, without regard to stability robustness. According to

this theorem, the satisfaction of inequality (5.32) when p approaches co and the selection of G
such that V and A are guaranteed, ensure a unique value for G, that leads to Lmit

(5.33) for all N<w<w,. The proof is given in Appendix D.

5.3.2 Computation of G,

Theorem 5.3.1 can be used to compute G,. Since, for fast actuator eigenvalues a unique
value for G, guarantees that limit (5.33) is true for all 0<w<uw,, limit (5.33) can be used to
compute G, at some frequency in the bounded interval (0, w;). Assume w = 0 and all
eigenvalues of the actuators are located in the left half complex plane farther than any

complex number given by A. Ther from limit (5.33):

where  J_ G_(0) = G(0) ; (5.34)
Gy0) =C(-A+BG)'L,; and (5.35)
G,(0) = K1!. (5.36)

K is non-singular and Lp is given by equation (D.2) in Appendix D. Substituting for G «(0)
and G,(0) in equation (5.34) results in equation (5.37).
JJC(-A+BG)'L =K' (5.37)

Assume that:
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G = | Gl G2 G3]

where: G, = nXn , G, = nXn , G; = nXn .

Compute { - A + B G )! as follows:

i 00 'Inn
(-A+BG)= M"(OO)GR(OO) 0.,
B,G, B‘G2
[ =z g,
(-A+BG)! = I,

T, GR(8,) E G,

=[G+, ) T, M(8,)
0

-Gy, Gy E [Gy+I, ] T, M(8,)

where:

= =[(G +1,) T, GR(®,) + G, I'* .

0

-M(8,). T,

BlGS - Al

=B

0

T,! GR(8,) £ B

Substituting equation (5.39) in equation (5.37) and eolving for G, produces:

Gy=| (G, + I,,) T, GR(8)) + G, | J! I.? - (Gy+1,) T,! T

5.3.2 Summary of the Design Method

i

-

(5.38)

(5.39)

(5.40)

The four following steps can be used to design the feedback and feedforward gains for a

given O .

1- Use equation (5.19) to compute 2n closed-loop eigenvector, u;, associated with the

dominant modes. Use equation (5.20) to compute m,, (i = 1, 2, ... ,2n) which identifies the
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location of u; in its allowable sub-space. q; and \; are given by equations (3.2) or (3.5). The
first 2n members of u, are like v, so one can aiso use equations (3.1) and (3.12) to compute

the first 2n members of u,. This terminates the construction of dominant modes.

2- Use equation (5.24) to compute n closed-loop eigenvector, u;, associated with the
actuators. Use equation (5.25) to compute m;, (i = 2n+1, 20+2, ..., 3n) which identifies the
location of u; in its allowable sub-space. This terminates the comstruction of non-dominant

modes.

3- Use equation (5.26) to compute the state-feedback gain G. The first nXn partition
of G is the jointf-an'gle feedback-gain while the second and the third nXn partition of G are
the velocity and torque feedback-gains.

4- Use equation (5.40) to compute the force-feedforward gain.

5.3.4 Selection of the J-Matrix

If the conditions of the theorem are satisfied, a unique value for G; can be found such
that limit (D.23) is true for all 0Kw<w,. Even though Section 5.3.2 offers a better equation
for G,, one can use equation (D.23) to compute G,. Equation (D.23) shows another

interesting result. If the desired inertia, J, is selected according to equation (5.41):
J=1TMe@,)J! (5.41)

then substituting equation (5.41) in equation (D.23) results in G, = O . This simply means
that if the target inertia, J, is chosen according to equation (5.41), then no force
measurement is needed to achieve the target dynamics (2.2). This result is significant, since
force measurements are not available for many commerciai manipulators. The force
measurement can be eliminated if the desired frequency range of operation, w,, is small

enough that it can be parametrized by choosing J according to equation (5.41).

We do not prescribe a unique value for the J-matrix to parametrize w,. In fact, there
exist an infinite number of matrices that can be selected for J to parametrize w,. The size
of J is important, not its structure. (One can comsider the size of the J-matrix in terms of
its singular values.) Here, we summarize some options for the J-matrix. One method is
given on page 19 by conmsidering J = 4, K. A designer can also choose the J-matrix to be
Al Where ~ is a positive scalar. Equation (5.41) motivates us to use equation (5.42) to select

matrix J.
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I =~13TMe)J,!* (5.42)

where 4 is a positive scalar. Choosing J according to equation (5.42) kas the advantage of
consistency with the natural behavior of the manipulator because Jc’T M(e,) Jc" is the
manipulator inertia matrix in the global coordinate frame. -~ in equation (5.42) scales the
natural inertia of the manipulator the same way in all directions. Note that when ~ is not

unity in equation (5.42), G, will not be zero.

6.4 Stabllity Robustness and the Elgenstructure of the Actuators

In this section we arrive at a design paramneter for stability robustness. Given a
nominal model, Gp(jw), in equation (4.21), an error function, E(jw), is given according to
equation (4.23) to represent the uncertainties in the system. If the state-feedback gain, G, is
used to stabilize the nominal model, Gp(jw), then the real model, G;jjw), will also be stable if
inequality (5.43) is satisfied.

o [Gyiw) ] > efw) for all 0<wW< oo (5.43)

min
where: G (jw) = I, + [ G(jwl -1 )'B ]!

and  e(w)>o [ E(jw) |

References [49, 33] leisurely explain this concept in greater depth. Appendix

E gives a summary of the derivation of inequality (5.43).

The object is to design G so that inequality [5.43) is satisfied. Figure 6-6-b shows a
case in which inequality (5.43) is satisfied. The closed-loop eigenstructure of the n actuators
is the only freedom left in the design of G. Theorem 5.3.1 states that if all the closed-loop
eigenvalues of the target dynamics approach -oco, then the target dynamics represented by
equation (2.2) can be achieved for all 0<w<w,. Placement of the closed-loop actuator

eigenvalues deep in the left half complex plane is not trivial. A trade-off must occur between

’The minimum singular value of Go(ju) is defined as:
il Goliw) x ||
=1l

x 0 and ||.|| denotes the Euclidean norm [12].
n

ominl Goliw) | = min
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performance through a wide frequency range and stability robustness.

Suppose the closed-loop eigenvalues of the actuators are located at ok ,, ah,, ..., o\, .
Scaling all closed-loop  actuator eigenvalues to one number preserves bandwith ratios for the
actuators that are consistent with the hardware. The farther from the origin the n closed-
loop eigenvalues of the actuators are located, the larger will be G ( jwl - I )! B .
Figure 5-2 shows how G ( jwl - I _ J! B is affected by the locations of the closed-loop

eigenvalues. We show that two design factors contribute in stability robustness; w  and a.

-3 Y I PR e

10! 102 10
Rad/sec

Figure 5-2: o 2nd o, of G (juwl -1 )! B for Various
Actuator Closed-Loop Eigenvalues
Note that the closed-loop actuator eigenvalues that are far from the origin act as gains for
G (jwl, - I, )! B. Large values for these eigenvalues shift G ( jwl,, - I, J' B up. This
is true only when the closed-loop actuator eigenvalues are located much farther from the
origin than any complex number offered by A. Since closed-loop actuator eigemvalues that
are far from the origin result in a large G ( jwl - I . J! B for a wide frequency range,
inequality (5.43) may not be satisfied for all 0<Kw<oo. This is true bacause a large
G ( jwl, -1, )" B for a wide frequency range allows Go(jw) to remain very close to unity
for a wide frequency range, which may, in return, cause a violation of inequality (5.43) if e(w)
does not also remain close to unity for a wide frequency range. Figure 6-5-b shows a case in
which inequality (5.43) is not satisfied. On the other hand, according to theorem 5.3.1, the
larger o is selected to be, the closer J G (jw) will be to G(jw) for all 0<w<w,. So the

closed-loop actuator eigenvalues must be placed in the left half complex plane as far as
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possible without violating the stability robustness specification. In selecting o, Go(jw) must
preserve stability robustness specifications at all frequencies. We do not offer any value for
a; it is the designer's choice. Selecting a good value for o requires experience and an
understanding of the system. o must be large enough to guarantee that the performance
specifications will be met, but small enpough to guarantee that the stability robustness
specifications will also be fulfilled. Theorem 5.3.1 clarifies how a large a can guarantee the

performance specifications for a bounded frequency range.

Given J, C and K, the locations of the eigenvalues of the actuators can be altered to
meet the stability robustness specifications. If the designer can meet neither stability
robustness nor performance specifications with only one set of actuator closed-loop dynamics,
then the designer must compromise on the set of performance specifications or model the
high-frequency dynamics for the manipulators. Ia other words, if the actuator closed-loop
eigenvalues are required to be in the neighborhood of the complex numbers of A to meet the
stability robustness specifications at high frequencies, then it is necessary to model the
manipulator more precisely at high frequencies or to reconsider the set of performance
specifications. The parameter in the set of performance specifications that can be altered
most effectively to meet the stability robustness specifications is w, the frequency range in
which the relationship between interaction load and displacement is approximately independent
of frequency: AD(jw)~KAY(jw). Shaping the loop transfer function G (sl - A)! B for all
0<w<uw, is the requirement to produce this frequency-independent relationship. On the other
band, one cannot shape G (s - A)! B arbitrarily for an arbitrary frequency range because
inequality (5.43) must be satisfied for all 0<w<oo. Satisfying inequality (5.43) at low
frequencies is trivial because of the small size of e(w). At larger frequencies, G (sI - A)'B
must become small to satisfy inequality (5.43). Therefore, the smaller w, iv selected to be,
the more robustness to high-frequency uamodelled dynamics can be achieved. Since w  is
parametrized by J, it is necessary to ccnsider a larger J (and consequently a smaller wo) as a
compromise to meet, the stability robustness specifications at high frequencies. Of course, the
K-matrix can alsc be altered to change w . The following summarizes the effects of w, and

o on stability robustness.

More stability Less stability
Increasing w, or a ................ > robustness in @@ ... > robustness in
uncertainties of the high frequency

medelled dynamics unmodelled dynamics
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Less stability More stability
Decreasing w, oF a ...ccveeeneee > robustness in @ ... > robustness in
uncertainties of the high frequency

modelled dynamics enmodelled dynamics



Chapter 6
Examples

6.1 Example 1

Consider the planar manipulator with two degrees of freedom shown in Figure 6-1.
Both of its joint angles are powered from the stationary base. The second link is driven by
an actuator on the base via a relatively stiff chain. The mass, length and moment of inertia
of each link are represented by Bmi, &, and ii . The variables il and :2 are the moments of
inertia of the links relative to their end-points. b, locates the center of mass of the second

link.

tm, = .7464/32.2 Ibf.sec?/ft
x, =1ft
x, = .91667 ft
i, = .00403 Ibf.ft.sec?
i, = .0074381 Ibf.ft.cec®
0, = .34375 ft
9, = 30°
0, = 45°
Figure 6-1: Manipulator with Two Degrees of Freedom
The inertia matrix and Jacobian are:
" i, + bm, &2 tm, &, 8, cos(6, - 9,) -
M(®,) = | J .
_ Bm, &x, Bl cos(d, - 6,) 2
; - &, sin(0,) -tx, sin(0, ]
c — -
tx, cos(0;) tx, cos(6,)

Substituting the numerical values for each variable in the inertia matrix and the Jacobian

matrix gives:

2.7210D-02 7.6967D-03 -5.0000D-01 -6.4818D-01
M(Oo) = J =

7.6967D-03 7.4381D-03 8.6603D-01  6.4818D-01
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Since the manipulator is mounted horizontally, gravity does not affect it. The actuator
driving 6, has 3 bandwidth of 8 rad/sec, while the other actuator has a bandwidth of 10
rad/sec. The actuator dynamics can be expressed by matrices A, and B‘ according to
equation (4.17). Since 0, is not the relative angle between the two links and since the
actuators are powering the system from a stationary base, T,=I in equations (4.13) and

(4.15).

S I I

A, B and C in equations (4.19) and (4.20) can be written as :

6. 0. 1. oO. 0. 0.
0. 0. 0. 1. 0. 0.
A= 6. 0. 0. oO. 5.1959D+01 -5.3766D+01
0. 0. 0. oO. -5.3766D+01 1.9008D+02
0. 0. ©0. O. -8. 0.
Lo. 0. 0. o. 0. -10. 1
0. O. 0. 0. 7
0. 0. 0. 0.
B=|o. o. L=  8.870 10.148 1. 0. 0. 0. 0. O.
0. oO. -96.323 -10.143 c =[
8. O. 0. 0. 0. &. 0. 0. 0. ©
Lo. 10. 0. 0.

The designer must provide not only the nominal model for the manipulator, but also the
bound for the uncertainties, e(w) The model uncertainty for this example is given by e(w) in
Figures 4-2. e(w) takes the value of .4 at low frequencies and rises to 2 at 35 hertz. The
first unmodelled mode that represents a bending dynamic of the manipulator takes place at
35 hertz (220 rad/sec) with e(220)=2. The large magnitude of e(w) at 220 rad/sec shows
that the unmodelled mode is under-damped. Most space manipulators have under-damped
structural modes. The large values for e(w) at high frequencies for under-damped, unmodelled
modes force designers to design low-bandwidth systems to avoid possible instabilities.
According to this model uncertainty, the dynamic model is nearly valid for an approximate

range of 10 hertz.

We will now consider four different cases. In Cases 1 and 2, the actuator dynamics are

considered in modelling the manipulator, while in Cases 3 and 4, the actuators are fast
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enough to be neglected in the modelling of the system. Because of this approximation, the
feedback gains, G, are smaller in Cases 3 and 4 than in Cases 1 and 2. We show how the
smaller size of G in Cases 3 and 4 results in more robustness to high-frequency unmodelled

dynamics.

In Case 1, we examine the role of a, which is introduced on page 60. « measures the
location of the closéd-loop eigenvalues of the actuators. In Case 2, a smaller w, is desired,
which motivates us to use equation (5.41) for the target inertia matix. We have shown (page
58) that if equation (5.41) is used for the target inertia and if the actuator eigenvalues are
placed far in the left half complex plane, then force-feedforward can be eliminated. Cases 3
and 4 repeat the design specifications of Cases 1 and 2 with fast actuators. In Cases 3 and

4, we consider the role of G in stability robustness.

Case 1

The design specifications in the global cartesian coordinate frame are:

- stiffness in direction X = .615 Ibf/ft for 0<w<6.283 rad/sec (1 hertz);
- stiffness in direction Y = 12.3 Ibf/ft for 0<w<6.283 rad/sec.

Note that the desired frequency range of operation is selected within the range for which the
model is nearly valid. The stiffness ratio is about 20. The low stiffness in direction X
generates a ‘‘soft’” positioning system for the end-point along direction X, while a larger
stiffness in direction Y guarantees a relatively “stiff” positioning system in that direction.
Note that the natural behavior of the manipulator in the configuration shown in Figure
06-1 opposes the desired performance specification. In other words, the inertia of the
manipulator in the global cartesian frame, JC'T M(e ) Jc", makes it much easier to keep the
manipulator “softer” in direction Y than in direction X. The following diagonal target

dynamics are proposed to parametrize the design specifications.

K= [0.615 0.0 C = [7.99650-02 0.C000D+00} J =| 2.4725D-03 (0.0000D+00
0.000 12.3 0.0000D+00 1.2388D+0C 0.0000D+00 2.9670D-02

The diagonal inertia matrix and the diagonal damping matrix are selected such that the
stiffness value for each direction guarantees the desired behkavior within a frequency range of
6.283 rad/sec. Note that since we choose a diagonal target dynamics, selection of J- and
C- matrices for a given K-matrix i8 trivial. We choose each member of C and J such that,
at each direction, a slightly over-damped, stable, second-order impedance results. The transfer

function of the target dynamics G(s) is:
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1.6250 0
(s/1262 + 1)(s/19.72 + 1)

1
(s/16.2 + 1)(s/25.4+ 1)

0 0.0812

Figure 6-2-a shows how the equation that expresses the target dynamics of the system,

Gys) = | J 82 + C s + K |, represents the desired stiffness values and frequency range of

operation.
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Figure 8-2: a: The Target Dynamics, G,(jw), in Case 1
b: The Target Dynamics, G(jw), in Case 2
The numbers in the parentheses indicate the row and column
of each member of the matrix, respectively.
The eigenstructure of the target dypamics can be represented by V (equation (3.13)) and

by A which is defined on page 32:
A = { -12.621, -19.72, -16.294, -25.459 }

2.7321 2.7321 2.7321 2.7321
V=] -3.6502 -3,6502 -2,1075 -2.1075
-34.4812 -53.8768 -44.5150 -69.5547
46.0696 71.9837 34.3382 53.6535
For a=35, the closed-loop eigenvalues of the actuators are located at -40 and -50. This
preserves the bandwidth ratio of 8/10 for the actuators. The set of closed-loop eigenvalues,

S, is given by:

S = { -12.621, -10.72, -16.294, -25.459, -40., -50. }.
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Using equations (5.19) and (5.24) in Chapter 5, U can be computed to be:

2.7321 2.7321 2.7321 2.7321 3,2475D-02 -2,1506D-02
-3.6502 -3.6502 -2.1075 -2,1075 -3.3604D-02 7.6031D-02
U = |-34.4812 -53,8768 -44.5150 -69.5547 -1.2590 1.0753
46.0696 71.9837 34.3382 53.6535 11,3441 -3.8016
7.3663 17.9840 15,4295 37.6697 1.0000 0.0000
L-0.9753 -2.3812 1.4209 3.4690 0.0000 1.0000 J

Note that the first 4X4 members of U are identical to V. Equations (5.20) and (5.25) can
be used to compute m, (i=1,2, .. 6) as follows:

-4.2549 -26.3472 -15,9958 -82,2082 -4.0000 0,0000] .
0.2556 2.3146 -0.8943 -5.3627 0.0000 -4.0000

The state-feedback gain, G, can be computed via equation (5.26).

G =] 70.227¢ 36.2133 8.0851 3,5328 8.6901 3.4930
13.9391 12,4491 1.,7793 1.6355 0.0786 7.6573

The force-feedforward gain can be computed via equation (5.40).

G, = [104.0860 -1.2679]
-6.3087 -4.7171
The size of a is limited by the stability robustness specifications. Figure 6-3 shows that large
values for a will lead to a violation of the stability robustness specifications (inequality (5.43))
_at high frequencies. The system violates the stability robustness specifications for a=10, and
meets the stability robustness specifications for a=5. Large values of a result in large G
which leads to large values of G (sl - A)! B. Figuré 6-4 shows the closed-loop transfer
function J G (s) for various values of a. The larger o is selected to be, the closer the closed-
loop transfer function J G_(s) will be to G,(s) for a bounded frequency range. For small
values of o, the members of Jch(s) will exhibit strong coupling; therefore, satisfaction of the
performance specifications is not guaranteed at low frequencies. On the other hand, large
values of a result in a trivial coupling between the members of Jchl(s) at low frequencies (as
long as G (jw) = I, + [ G(jw I, - A )! B | does not violate the stability robustness

specifications). Even though a large o ensures better performance, it produces large values

for the state-feedback gain, G, and the force-feedforward gain, G,.

The transfer function matrix J G (s) is shown below for a=5.
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Figure 06-4: The Closed-Loop Transfer Fuction Matrix, J G (jw),

in Case 1
(8/310 + 1)(s/46 + 1) 449D.03 s(s/41 + 1)
(s/12.62 + 1)(s/19.72 + 1) (s/12.62 + 1)(s/19.72 + 1)
428D.03 5(s/65.8 + 1) 0812 (5/32 + 1)(s/37 + 1)
(8/16.2 + 1)(s/25.46 + 1) (8/16.2 + 1)(s/25.4+ 1) |
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The off-diagonal members of J G (jw) for a=5 are much smaller than the diagonal members
and therefore, the plot of Jch(jw) in Figure 6-4 resembles the target dynamics in Figure
6-2-a for all 0<w<uw,.

Note that the elemental zeros at the origin of the complex plane cause the off-diagonal
members of J G (s5) to be very small at low frequencies. The eiemental zeros are located
outside the operating frequency range and do not contribute to the dynamics in the frequency
range of operation. If a is selected to be large, then all non-zero elemental zeros will be very
large, and as o approaches oo, all non-zero elemental zeros will approach oo, all off-diagonal
terms will approach zero, and J G (s) will approach G(s). On the other hand, o cannot be
selected to be a large number since this would vipla.te the stability robustness specilications.
o must be selected to be large enough to insure that the performance specifications will be

met, but small enough so that Go(jw) will not violate the stability robustness specifications.

Case 2

Now éuppose the performance specifications have been changed as follows:

- stiffness in direction X = .61538 Ibf/ft for 0<w<.6283 rad/sec (0.1 hertz);
- stiffness in direction Y = 12.308 Ibf/ft for 0<w<.6283 rad/sec.

The stiffness values are the same as for Case 1, but the frequency range of operation is
smaller. In fact, this is almost the case of static stiffness. If we take J C'T M(8,) J.! to be
equal to the target inertia, then we might be able to achieve the target dynmamics without

any force-feedforward gain. Using equation (5.41) for the target inertia matrix results in:
= 1-T -1
J=1J7"M@®)J",

or:

J = 1.4869D-01  1.3925D-01
1.3925D-01  1,4750D-01

The following damping matrix is proposed to produce a stable impedance:
C= [0.55 0.9]
1.40 2.5 1.
C is not a symmetric, positive, definite matrix, but the target dynamics are stable. (See

Appendix A for the sufficient conditions for the stability of the target dynamics.) Figure
6-2-b shows how the plot of G(s) = [ J 82 + C s + K |? represents the desired stiffness
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values and frequency range of operation. As Figure 6-2-b shows, using JC'T M(Go) Jc" as
the target inertia matrix produces a very narrow frequency range of operation, about the size
required by the performance specifications. As explained on page 20, even though J and C
are not diagonal matrices, the target dynamics exhibit an approximate uncoupled behavior for
0<w<.6283 rad/sec. For all 0<w<w,, the off-diagonal members of G (jw) are much smaller

than the diagonal members. The eigenstructure of the proposed dynamics is represented by A

and V:

A= { -26.062, -20.427, -1,2812,-4.3664 },
-0.6205 -0,8052 18,0481  6,0533

V = |-1.0641 -0,9216 -23,9070 -6.5449
16,1711 16,4487 -24.4041 -26.4311
27,7331 18,3259 30.6292 28,5777

U cae be computed by equation (5.19) and (5.24) to achieve the target dynamics.

[ -0.6205 -0.8052 19,0481 6.0533 8,1187D-05 -5,3766D-05

-1.0641 -0.9216 ~23,9070 -6.5449 -8.4009D-05 1,9008D-04

U=\ 16.1711 16.4487 -24.4041 -26,4311 -6.4949D-02 5.3766D-02

27,7331 18.8259 30.6292 28,5777 6.7207D-02 -1,9008D-01

-17.0306 -12,1023 0.5487 2.1799 1.0000D+00 0.0000D+00
-8.6198 -5.4464 -0.0512 -0,0399 0,0000D+00 1.0000D*00J

The first 4X4 sub-matrix of U is identical to V. The smallest

the achievement of the desired stiffness for 0<w<.6283 rad/sec

value of a that guarantees
without a force-feedforward
gein is 100. This is the proposed value for J that causes G, to approach zero for large
values of a. J G (s) is shown in Figure 6-5a for a=100. Figure 6-5-b shows G (jw) for
a=100, which violates the stability robustness specification. Nor does Jchl(s) converge to
G‘(s) for smaller values of a. Since no o guarantees the stability robustness and performance
specifications at the same time, the design specifications cannot be met. If the structurai
unmodelled dynamics were to occur at higher frequencies, then the design specifications could
be met without force-feedback. Using the above target inertia matrix requires a large o to
meet the performance specifications without a force-feadforward gain. If a force-feedforward
gain is allowed, then the above performance specifications can be met by a small a which

will ensure the stability robustness specifications as well.

Case 3

In this case, the bandwidths of the actuators are about 40 hertz. The performance

specifications are similar to those of Case 1:
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Figure 6-5: a: The Closed-Loop Transfer Function Matrix, 3.G, (iw)

b: 0. .. and o ;. of G (jw) in Case 2

- stiffoess in direction X = .61538 Ibf/ft for 0<w<6.283 rad/sec;
- stiffness in direction Y = 12.308 Ibf/ft for 0<w<6.283 rad/sec.

Since the bLandwidths of the actuators are much larger than the frequency range of operation,
the dynamics of the actuators can be neglected. The manipulator is modelled according to

the equations given in Appendix C. A, B, L and C in equation (C.1) can be written as:

0. 0. 1. 0. 0. 0.

A =]0, 0. 0 1. L = 0. 0.
0. 0. 0. 0. 5.1959D+01  -5,3766D+01
0. 0. 0 0. -5.3766D+01 1.9008D+02

0.0000D+00  0.0000D+00
B =| 0.00000+00 0.0000D+00 ¢c=[1. 0. o. o.]

5.1959D+01 -5,3766D+01 [

-5.3766D+01  1.9008D+02

The target dynamics in Case 1 are selected to parametrize the performance specifications.
The eigenstructure of the target dynamics can be represented by V (Equation (3.13)) and by

A, whick is given on page 32:

A={-12.621 -19.720 -16.294 -25.459 },



0.2158
V= -0.2883
-2,7235

-4,8722
6.5097
96.0812

3,6388 -128.3721

0.1674
-0.1291
-2.7269

2.1035
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-4,8661
3.7537
123.8854
-95.5635

The set of closed-locp eigenvalues, S, is equal to A. Using equation (C.2) in Appendix C, U

can be computed to be:

0.2158
-0,2883
~2.7235

3.6388

~-4,8722
6.5097
96,0812

-128.3721

0.1674
-0.1291
-2.7269

2,1035

-4.8661
3,7537
123.8854
-95.5635

Note that U and V are identical. Equation (C.3) can be used to compute m;, (i=1,2,34):

0.5818
-0.0770

-32.0718
4.2465

0.9452
0.0870

-67.0943
-6.1788

The state-feedback gain, G, and the force-feedforward gain, G;, can be computed via
equations (C.4) and (C.5).

G = ]15,1237
2.6847

G, = [19.2034
-1.8282

8.1663
2,.4269

1.0928
-0.4678

1.3537
0.2925

The transfer function matrix J G (s) is:

1.6250

1

(s/12.62 + 1)(s/19.72 + 1)

0

0,6035
0.2732

1

2 (8/16.2 + 1)(s/25.4+ 1)

Jchl(s) is shown in Figure 6-6-a. Note that neglecting the actuator dynamics eliminates the

freedom to adjust G (jw), which is shown in Figure 6-6-b.

If G (jw) violates the stability

robustness specifications, then the target inertia matrix must be selected so that Go(jw) can

meet the stability robustness specifications.

A comparison of G (jw) in Figures 6-3 and 6-6-b reveals that the system in Figure 6-6-b

has more robustness to high-frequency uncertainties than the system in Figure 6-3. The

system in Figure 6-3, however, is more robust to low-frequency uncertainties than the one in

Figure 6-6-b. This difference is because of the size of the state-feedback gain, G. A large G

causes a larger bandwidth for G( juwl - A )!B, which allows G (jw) to remain close to unity
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Figure 8-6: a: The Closed-Loop Transfer Function, J, G (jw)

b: o ., and o, of G (jw) in Case 3

for a wider frequency range thus causing less robustness to high-frequency uncertainties and
more robustness to low-frequency uncertainties. In Case 1, G is selected to be large to move
the actuator eigenvalues deeper into the left half complex plane. In Case 3, since the

actuators are fast, G is no longer a large matrix. We consider the size of a matrix in terms

of its singular values.

Case 4

In this case, the actuators are very fast (40 hertz), and the dyramic equation presented

in Case 3 is valid. The performance specifications are those in Case 2:

- stiffness in direction X = .61538 Ibf/ft for 0<w<.6283 rad/sec;
- stiffness in direction Y = 12.308 Ibf/ft for 0<w<.6283 rad/sec.

It is suggested that the performance specifications be achieved without force-feedforward gain.
The target dynamics of Case 2 are used to parametrize the performance specifications. Using
equation (C.4) from Appendix C a designer can arrive at a state-feedback gain, G, and a
force-feedforward gain, G;. DBecause of the choice of target inertia matrix, G is zero while

G = [9.3846 7.1083 1.0166 0.5040
7.1083 5.4295 0.6227 0.3151

The closed-loop transfer function, J G (jw), and G (jw) are shown in Figure 6-7. Since w in
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b: o . and o of G(jw) in Case 4

Case 4 is less than w,  in Case 3, the system in Case 4 has more robustness at high
frequencies than the system in Case 3. Thus, if the actuators are fast and the model
uncertainties happen at frequencies much bigher than w,, it is possible to meet the design
specifications without a force-feedforward gain, as long as the desired frequency range of
operation is small enough to be parametrized by the target inertia represented by equation

(5.41).

The design specifications of Case 2 and 4 are the same. Since the actuators in Case 2
were not fast enough, we could not meet the performance specificaticns without violating the

performance specifications.

6.2 Example 2

Consider the parallelogram shown in Figure 6-8, which is mounted on the end-point of a
large manipulator. The mass, length and moment of inertia relative to the center of mass of
each link of the parallelogram are represented by bm,, &x; and i; . If the location of the
center of mass on each link is shown by Bli, then the members of the inertia matrix M(Go)

are.
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Figure 6-8: Parallelogram
MO, = bm, 8,2 + i, + bmy 8,% + i + tm, &,

M(8,)!? = ( bm, &, 8, - &m, &, B, )Cos(6, - 0,)

M(6,)*? = tm, 8,2 + iy + bm, 82 + i, + tm, &,° .

The Jacobian is :

¢

| [- &, Sin(6,) (b, - &, ) Sin(6,) :|
&x, Cos(®,) ~(&, - &, ) Cos(6,)

If the following equality [1] is satisfied:

tm, &, d; - bm, &, 8, =0,

then the inertia matrix is not only diagonal, but also independent of joint angles; the cross-

coupled velocity terms vanish from the equations of motion (4.8). With the following

) *
approximate data:

3.169/32.2 1bf.sec?/ft &, = 8in &,

o
"
n

2
bm, = 1.570/32.2 1bf sec?/ft  &x,

4in

6in 612 = 3in

0.42 1bf.sec?. ft

-
[
"

0.13 1bf.sec?. ft

»
Such a parallelogram has been built by 1. H. Ro and H. Asada st the Laboratory of Manufacturing and

Productivity, MIT.
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0.33 1bf .s0c?. ft

2.686/32.2 1bf.sec?/ft  &x; = 8in  bl, = 4in i,

o
»
(-]
]

1.68 1bf sec? ft

7.760/32.2 1bf sec?/ft  Ix, = 14in 81,

on
.
-
n
i
-
(S8
B
[¥]
-
]

8, = 40° 92 = 110°
the inertia matrix and Jacobian are:

M) = 1.5030D-01 0.0000D+00] J. =[-4.2853D-01  6.2646D-01
0.0000D+00 8,1000D-02 5.1070D-01  2.2801D-01

The bandwidths of the actuators are 12.8 and 16 rad/sec. The dynamics of the system
under the conditions expressed in Chapter 4 can be represented by A, B and C in equations
{(4.19) and (4.20):

[0. 0. 1. o. 0. 0. 7
0. 0. 0. 1. 0. 0.
A= Jo. o. o0. o. 6.6534 0.
0. 0. 0. oO. 0. 12.346
0. 0. 0. O. -12.8 0.
0. 0. 0. oO. 0. -16.0 |
. 0. 0. 0.
0. 0. 0. 0.
B=|o. 0. L = -2.8511 3.3978 1. 0. 0. 0. 0. O.
0. 0. 7.7341 2.8150 | C =
12.8 0. 0. 0. 0. 1. 0. 0. 0. 0
| 0. 16.0 0. 0. |

The uncertainty of the dynamic model given by e(w) is shown in Figure 6-10-b. We consider
two cases. The target stiffoess is the same in both cases, but w, is different. This example
shows the trade-off between w, and stability robustness to high-frequency unmodelled

dynamics.
Case 1

The design specifications in the global coordinate frame are:

- stiffness in direction X = .615 Ibf/ft for 0<w<6.283 rad/sec (1 hertz);
- stiffness in direction Y = 50 Ibf/ft for 0<w<6.283 rad/sec (1 hertz).

Note that the large stiffness in direction Y guarantees a very stiff positioning system in
direction Y (.02 ft deviation for 1 Ibf of the external force), while the low stiffness in

direction X allows the manipulator to accommodate the icteraction loads. The following
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target impedance is proposed to parametrize the design specifications:

K= 10.615 0.0] J =[4.9451D-03 0.0000D+00 C =[1.1309D-01 0.0000
0.000 50.0 0.0000D+00 2.4107D-01 0.0000D+00 7.1172 | .

The inertia matrix is selected to ensure the desired stiffness for a frequency range of 3.283

rad/sec. The damping matrix of the target dynamics is selected to guarantee the stability of

the target dynamics. The transfer function of the target dynamics, G (s), is:

1
1.62501 0
(s/8.924 + 1)(s/13.944 + 1)

1

0 0.02
(s/11.521 + 1)(s/18.002+ 1)

Figure 6-9-a shows the diagonal members of G(s) = | J 2+ Cs + K|
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Flgure 6-9: a: The Target Dynamics in Case 1
b: The Target Dynamics in Case 2

The eigenstructure of the target dynamics can be represented by V from equation (3.1) and

by A, which is given on page 32:
A = { -8.9244, -13.944, -11.521, -18.0021 }

-0.5460 -0.5460 1.5000 1.5000
V= 1.2228 1.2228 1.0261 1.0261
4.8723 7.6130 -17.2820 -27.0031
-10.9128 -17.0513 -11.8216 -18.4712
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For a = 3, the closed-loop eigenvalues of the actuators are located at -48 and -38.4. This

preserves the bandwidth ratio 16/12.8 for the actuators. The set of closed-loop cigenvalues is:
S = { -8.9244, -13.944, 11.521, -18.0021, -48, -38.4} .

Using equations (5.19) and (5.24) in Chapter 5, U can be computed to be:

" -0.5460 ~0.5460 1.5000 1.5000 4.5121D-03 0.0000D+00 |
1.2228 1.2228 1.0261 1.0261 0.0000D-00 5.3584D-00
U= 4.8723 7.6130 -17,2820 -27.0031 ~1.7326D-01 0.0000D+00
-10.9128 -17,0513 -11.8216 -18.4712 0.0000D+00 -2.5720D-01
-6.5354 -15.9555 29,9264 73.0625 i.0000D+00 0.0000D+00

| 7.8886 19,2593 11,0322 26,9341 0.0000D+00 1.0000D+00

The first 4X4 members of U are identical to V. Equations (5.20) and (5.25) can be used to

compute m;, (i = 1, 2, ..., 6) as follows:

-1.9788 1.4264 2.9896 -29.6934 -2.0000 0.0000
3.4885 2.4744 3.0881 -3.3702 0.0000 ~2.0000

The state-feedback gain G can be computed via equation {5.26).
G = 84.2459 11.7245 14.7614 1.1806 4.1775 0.2408
12.0022 35,2393 1.2800 6.6925 0.1676 3.5325

The force-feedforward gain can be computed via equation (5.40).

Gy = | -49.3760  0.0689
56.6071  -0.0359

The transfer function matrix J .G «(8) is shown below.

16250 (s/1520 + 1)(s/40.4 + 1) 1 17D 8(5/86.7 + 1)
(s/8.9244 + 1)(s/13.944 + 1) (8/8.9244 + 1)(s/13.944 + 1)
L17D-3 5(s/1423.9 + 1) 0.02 (s/44.95 + 1)(s/71.55 + 1)
 (8/18.002 + 1)(s/11.521 + 1)  (8/18.002 + 1)(s/11.521 + 1)
. .

chd(jw) aid G (jw) are shown in Figure 6-10 for a==3. Large values for a cause G, (iw) to
remain close to unity for a wide frequency range. This will bring less stability robustness to
high-frequency unmodeiled dynamics, but the closed-loop transfer function matrix J.G  (jw) will

be closer to G,(jw).
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Flgure 8-10: a: The Closed-Loop Transfer Function Matrix, J ch(jw)

b: 6., and o_; of G (jw) in Case 1

Case 2

In this case, an increase in the frequency range of operation to 15 rad/sec is desired.
Since we chose a diagonal target dynamics, selection of the J- and C-matrices for a given K-
matrix is trivial. The following target dynamics are proposed:

K= 10,615 0.0 J =[1,2363D-03 0.0000D+00 | C =| 5,6544D-02 0,0000
0.000 50.0 0.0000D<00 6,0268D-02 0.0000D+00 3.5586 | .
G(jw) in this cuse is shown in Figure 6-9-b. Figure 6-11-a shows the closed-loop transfer
function J G (jw) for a=3. Figure 6-11-b shows that the system in Case 2 is less robust to
high-frequency uncertainties than the system of Case 1. This is because w  in Case 2 is

selected to be wider than w_ in Case 1. A large target inertia matrix (which implies a narrow

o
w,) produces a narrow bandwidth for G ( jw - A )! B, which allows G,(jw) to become larger
than unity at lower frequencies. This will cause more robustness te high-frequency
uncertainties and less robustness to low-frequency uncertainties. On the other hand, a small
target-inertia matrix (which implies a large wo) produces a large bandwidth for
G (jw - A )' B, which in turn causes G (jw) to stay very close to unity for a wide frequency
range. This will cause a poor stability robustness to high-frequency uncertainties and stronger

stability robustness to low-frequency uncertainties.
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Figure 6-11: a: The Closed-Loop Transfer Function Matrix, Jchl(s)

b: 6., and o, of G (jw) in Case 2
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6.2 Simulation

As mentioqu earlier in Section 2.4.1, we provide a simple case of a simulated system in
which it is shown that conventional controller design specifications which work for the
unconstrained case, do not work for the constrained case. The proposed impedance control,
however, is shown .to work in both unconstrained and constrained cases, including the
transition from one to the other. The proposed impedance also allows for control of the
behavior of the system {e.g., monitoring the interaction force) by changing the parameters of
the impedance. In Section 2.4.1, we explained that if a submersible vehicle is connected to a
structure via some stiff cables or flexible connectors, the system of the vehicle and cables
may achieve large stiffness for a wide frequency range. If the cables are selected to be very
stiff, their stiffness will be dominant compared with the inertia of the vehicle. The stiffness of
the cables will be the only dominant dynamics in a wide frequency range. Throughout this
frequency range, the system of the vehicle and the cables will behave like a very stiff spring
and external loads from water motion, manipulator motion and other disturbances do not

affect the vehicle motion in this frequency range.

We conducted several dynamic/3D-graphic simulations of the constrained maneuvers of



-81-

underwater vehicles aud manipulators to observe the quality of maneuvers in which impedance
control and other controllers are employed. The simulation consists of the dynamics of a six
degree of freedom vehicle, cables (up to four cables), and environmental effects such as water
drag. A 3D-graphic representation of the vehicle with cables is depicted on a vector display
which is updated by the dynamic simulation at the rate of fifty hertz. The physical
characteristics of a particular submersible vehicle called Recon 5* (now being used at MIT
for control experiments) are used as physical parameters in this simulation. This vehicle has
five thrusters, weighs approximately 900 lbs., and is 6 feet long. Here we compare some time
domain results of a maneuver performance with two different controllers. We did not include
any model uncertainties in the simulation; the simulation was performed solely to observe the
behavior of the vehicle under different controllers. The first controller guarantees an
impedance control for the vehicle while the second controller allows a perfect positioning
system for the vehicle with two hertz bandwidth. The first controller was designed according
to the design method of Section 5.3.3 to guarantee the target impedance given in equation
(2.2). The second controller is a model-based compensator designed according to specifications
suitable for unconstrained maneuvers. This compensatcr contains integrators in each input
channel to reject the disturbances up to 2 hertz. The LQG/LTR method was used to achieve
this controller. Here we explain the result of the simple constrained maneuver shown in

Figure 6-12.

cable

=4

Figure 8-12: An Underwater Vehicle Connected with
2 Three-foot Cable to a Structure

The object is to move the vehicle in direction X to produce tension in the cable. First we

*
Recon 5 (Sea Grant 1) is an unmanned underwater vehicle given to MIT by the Perry family.
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consider a maneuver using impedance control. J is chosen according to equation (5.41) to
eliminate the need for force-feedforward. Because of the selection of J according to equation
(5.41), w, will be different depending on the orientation of the vehicle. C is modified by the
computer to guarantee a slightly over-damped system. The time history of the command
position in the X-direction is given by plot a in Figure 6-13. Plots b and ¢ in Figure
6-13 show the cable tension and vehicle position in direction X. The position reference inputs

and the members of the K-matrix are commanded via analog signals to the computers.

2 | s o4
| ' | d
| | T
12 18 24 sec
1 1 1
12 18 24 sec

6 C

ft
w

6 12 18 2'4 sec

Figure 6-13: Response of the vehicle under impedance control:
a: Input Command, b: Cable Tension,
¢: Vehicle Position
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Here is the summary of a simple one-dimensional maneuver:

Reglon 1: In this region, the vehicle slowily approaches along direction X. The high
feedback-gain allows the vehicle to follow the reference input. There is no cable tension in

this region. K in equation (2.2) is chosen to be 10 Ibf/ft.

Reglon 2: The vehicle encounters the cable. Since the cable is very stiff, a sudden
tension occurs upon impact. An overshoot in the cable temsion occurs becanse of the small
velocity of approach of the vehicle at the moment of contact. The slower the vehicle
approaches in direction X, the smaller the overshoot (at the very start of region 2) in the
cable tension will be. If the vehicle hits the cable with a large forward velocity and the
reference input is not large, then the undershoot (right after the overshoot) of the cable
tension might fall to zero. A similar situation occurs when a manipulator approaches a stiff
wall. That is, if a manipulator hits the wall with a large forward velocity and the reference
input is not large, then the undershoot of the contact force might fall to zero and the end-
point might separate from the wall. Since the command position is three feet beyond the
cable length at steady state, the cable tension is 30 Ibf. Region 2 shows how the impedance
control method allows for a relatively smooth transition period from the unconstrained to the

constrained situation.

Reglon 3: In ‘this region, K is increased slowly from 10lbf/ft to Z20lbf/ft by «n analcg
input to the computer while the reference input is kept constant. Because of ihe sclectivn of
J according to equation (5.41), w, will be different depencing or the orientatioc of the
vehicle. C is modified by the computer to gucrantee a slightly uver-dampsd system. Sinze
the command is kept constant, doubling K also doubles the cable teasion;
AD(jw) = K AY(jw). This region shows the significant capability that iinpedance controi
offers for monitoring the behavior of the vehicle at the interaction port. Ip tais rirsulation, .
human monitors the behavior of the vehicle by choosing the ‘right’” K via an aaaleg input
signal to the computer. A computer can also be used to moaitor K according te some
“hidden logic'. Having control of the impedance of tke vehicle at the intssraciion port
reveals the potential of using supervisory control [52] io monilor the vehicle behavior in

complicated tasks.

Reglon 4: In this region, the input reference-position is commanded to correspoud to

the cable length. This will give a zero cable tension in steady-state.

Figere 6-14 shows the behavior of the system when the second controller is used. The

time history of the command position in the X-direction is given by plot a in Figure 6-14.
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Plot b shows the vehicle position in direction X. The reference input is again commanded

via an analog signal to the computer.

Figure 6-14: Response of the vehicle under pure positioning sysiem
a: Input Command, b: Vehicle Position
Region 1: In this region, the vehicle slowly approaches along the direction X. The
high feedback-gain allows the vehicle to follow the reference input almost instantaneously.
There is no cable tension in this region. This region shows the successful maneuver of the

vcticle in an unconstrained environment.

Region 2: In this region, the vehicle encounters the cable. As soon as the vehicle
interacts with the cable, the dynamics of the system will change and stability will no longer
be guaranteed. The designer in this case has no control over the impedance of the vehicle.
The wundesirable behavior of the vehicle in this region depends on the dynamics and
characteristics of the environment and controller. Plot b in Figure 6-14 shows the limit cycle
developed in the vehicle motion. In some cases, depending on the orientation of the vehicle,

the limit cycle does not converge and instability results.

This simple simulation shows the superiority of the impedance control over a

conventional positioning system in constrained maneuvers. In the impedance control method,
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the designer guarantees not only the positioning capability for the vehicle, but also an ability
to monitor the internal dynamics of the vehicle. This ability allows the operator to govern
the behavior of the system on the interaction port. Figure 6-13 shows how the operator can
position the vehicle while the cable tension is also controlled. The above simulation simply
shows how control of the impedance of a system allows for monitoring the behavior of the

system in a structured way.

6.4 Experlment

A simple experiment was conducted on a planar positioning table (X-Y table) to verify
the application of impedance control to constrained maneuvers. The positioning table consists
of a platform driven by two DC motors via two lead-screw mechanisms |[Figure 6-15a.] The
goal of the overall project is to develop a positioning system with different stiffnessess and
different bandwidths along the two axes of a global cartesian coordinate frame by an or-line
computer. The axes of this global coordinate frame do pot necessarily coincide with the axes

of the motors.*

In this section, we are interested to observe the tranmsient behavior of the table from
unconstrained maneuvers to constrained maneuvers when equation (2.2) is guaranteed for the
system. To show this transient behavior, we just explain the result of an experiment when
only one axis is employed (one dimensional case). Figure 6-15b shows this simple set-up. A
wide bandwidth force sensor is mounted on the platform to measure the contact force along
two orthogonal directions [15]. A computer algorithm with .01 sec sampling time was
designed (according to the procedure given on page 57) and implemented on a microcomputer
to control the impedance of the tahle. I_.: controlier is able to accept the stiffness,
bandwidth and damping coefficient (three items of the set of performance specifications given
by Figure 2-1). The platform was comﬁmnded to move beyond a solid surface. Figure 6-16a
is the periedic ramp position command generated by the computer to the system. Figure
6-16b is the contact force. For this experiment, K is chosen to be 3.5 Ibf/in while the
bandwidth of the system is 4 hertz.

As long as the force sensor is not in touch with the stiff wall, the contact force is zero.

.Thil experiment is a small part of a greater project of the robotic deburring conducted by GE & MIT
under supervision of Professor Bruce Kramer.
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Figure 8-16: a: Command Position
b: Contact Force
After the force semsor touches the stiff wall, the contact force increases proportionally to the
commanded input (AD(t)=K AY(t)). Since the input position command is a ramp function,
the contact force is also a ramp function. Enhancement of the algorithm to include both
axes of the positioning table and sensitivity analysis of the system parameters are on-going

projects in Laboratory of Maneufacturing and Productivity at MIT.
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Chapter 7

An Approach to Loop Transfer Recovery
Using Eigenstructure Assignment

7.1 Introduction

This chapter stands by itself; it is not necessarily a part of a design technique for
impedance control, but it provides a new method for designing an observer that can estimate
the measurable states of the system. Section 7.7 explains how this chapter applies to
impedance control. This chapter is to be presented at the American Controi Conference in

Boston, June 1985.

One method of model-based compensator design for linear multivariable systems consists
of state-feedback design and observer design [2]. A key step in recent work in multivariable
synthesis involves selecting an observer gain go the final loop-transfer function is the same as
the state-feedback loop-transfer function (7], [14]. This is called Loop-Transfer Recovery
(LTR). This paper shows how identification of the eigenstructure of the compensators that
achieve LTR makes possible a design procedure for observer gain [35;. This procedure is
based on the eigenstructure assignment of the observers. The sufficient condition for LTR
and the stability of the clesed-loop system is that the plant be minimum-phase. The

limitation of this method might arise when the plant has multiple transmission zeros.

Historically, the LTR method is the consequence of attempts by Doyle and Stein to
improve the robustness of linear quadratic gaussian (LQG) regulators [8], [7]. However, the
method has more general applications than to the robustness of the LQG regulators [14]. In
their seminal work, Doyle and Stein address the problem of finding the steady-state observer
gain that assures the recovery of the loop transfer function resulting from full state feedback.
First, they demonstrate a key lemma that gives a sufficient condition for the steady-state
observer gain such that LTR takes place. To compute the gain, they show that the infinite
time-horizon Kalman filter formalism with ‘small"” white measurement-noise covariance yields
an observer gain that satisfies the sufficient condition for loop transfer recovery. In this
paper, we present a method for computing observer gain that obviates the need for Kalman

filter formalism. The goal of this paper is to analyze the eigenstructure properties of the
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LTR method for the general class of feedback control systems that use model-based
compensators. After examining the eigenstructure of LTR, a design methodology for LTR via

eigenstructure assignment will be given.

Nomenclature
A B C ... plant parameters
d&d, ... input and output disturbances
x‘t),u(t)&y(t) ... states, input and output of the system
X(6)&F(t) oeeee states and output of the observer
e(t) ........ error signal of the observer
Gp(s) ..... transfer function matrix of the plant
| Fyp—— eigenvalues of (A-BG)
(TP eigenvalues of (A-HC)
B rereuens transmission zeros of (A,B,C)
- transmission zeros of (A,B,G)
G ... state-feedback gain
K(s) ....... transfer function matrix of the compensator
| positive scalar
viT ......... left eigenvector of (A-HC)
| PR right eigenvector of (A-BG)
W ... square non-singular mXm matrix
ziT ......... zero direction of the transmission zero
-wiT ....... input direction of the transmission zero
| maximum number of the finite transmission zeros
xiT ......... left eigenvector of (A-BG-HC)
@ (5) ... open-loop characteristic equation of the plant
@, (s) - closed-loop characteristic equation of the observer
n ... ..... order of the system
m ... rank of matrices B and C
P(s) .....-. precompensator

7.2 Background

We will deal with the standard feedback configuration shown in Figure 7-1, which
consists of: plant model Gp(s); compensator K(s), forced by command r(t); measurement noise
n(t); and the disturbances d;(t) and d (t). The precompensator, P(s), is used to filter the
input for command following. Throughout this paper, we assume that the plant can be’

described by equations (7.1) and (7.2).

x(t) = A x(t) + B u(t) + B dt) (.1)
¥(t) = C x(t) + d (t) + n(t) (7.2)

where:
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Figure 7-1: Standard Closed-Loop System

x(t)ER®,  u(t)y(t).d,(t).d (t) and n(tj ER™
[A, B} is a stabilizable (controllable) pair
[A, C] is a detectable (observable) pair
rank (B) = rank (C) = m

Once we specify the plant model, Gp(s)) we must find K(s) so that: 1) the nominal
feedback design, y(s)=Gp(s)[l + K(s)GP(s)I" d;(s), is stable; 2) the perturbed system in
the presence of bounded unstructured uncertainties is stable; 3) application-dependent design
specifications are achieved. The design specifications can be expressed as frequency-dependent
constraints on the loop transfer function, K(s)Gp(s). The standard practice is to shape the
loop transfer function, K(s)Gp(s), so it does not violate the frequency-dependent constraints
(7).  The loop-shaping problem can be considered to be a design trade-off among
performance objectives, stability in the face of unstructured uncertainties [33, 49], and
performance limitations imposed by the gain/phase relationship. Here we assume that n(t) is
a noise signal thai operates over a frequency range beyond the frequency range of r(t), di(t)
and d (t). We also use a precompensator, P(s), to shape the input for command following.
Therefore, the performance objectives are considered as omly input disturbance rejection over
a bounded frequency range. The design specifications may be frequency-dependent constraints
on Gp(s)K(s), which is the loop transfer function broken at the output of the plant, rather
than on K(s)Gp(s), which is the loop transfer function broken at the input to the plant.
Applying the design specifications to Gp(s)K(s) implies rejection of output disturbances. Since
Doyle and Stein first applied LTR to the loop transfer function, K(s)Gp(s), for consistency
and continuity, we will also assume throughout this article that all design specifications apply

to K(s)Gp(s).

One method of designing K(s) consists of two stages. The first stage concerns state-

feedback design. A state-feedback gain, G, is designed so that the loop transfer function,
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G(sln-A)"B , which is shown in Figure 7-2, meets the frequency-dependent design

specifications and satisfies equation (7.3) to guarantee stability.

0 B Xt [

Flgure 7-2: State-Feedback Configuration

(Nipp-A+BG)uy =0, i=12.,n (7.3)

real (%, ) <0, vy #0

\; is the -closed-loop state-feedback eigenvalue, while u; is the nX1 right closed-loop
eigenvector of the system. Controllability of [A,B] guarantees the existence of G in equation
(7.3). At this stage, one can determine whether or not state-feedback desige can meet the
design specifications. In this paper, we assume that G is selected so that equation (7.3) is
satisfied and the loop tran<f-- fuaction, G(slnn-A)"B, which is shown in Figure 7-2 meets the
desired frequency-domain design specification. In the second stage of the compensator design,
an observer is designed to make the first stage realizable [34, 62]. The observer design is not
involved in meeting the epecifications for the iloop transfer function since all design
specifications have been met by the state feedback gain, G. The observer has the structure of
the Kalman filter. Combining the state-feedback and observer designs (Figure 7-3) yields the

unique compensator transfer-function matrix given by equation (7.4).
Kis) =G (sl -A+BG+HC)'H (7.4)

The idea behind observer design is to find the steady-state filter gain, H, such that the loop
transfer function, K(s)Gp(s) , in Figure 7-1 maintains the same loop shape (for a bounded
frequency range) that G(sl -A)'B achieved via state-feedback Jesign in the first stage. A
technique for designing H to meet this criterion was offered by Doyle and Stein [7]. Since by
this method, K(s)Gp(s) preserves the loop-shape achieved by G(sI ,-A)'B, the final design

in Figure 7-1 meets the specifications that were already met by state-feedback design. (The
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Figure 7-3: Closed-Loop System

title “‘loop transfer recovery” comes from this idea.) For stability of the observer, equation

(7.5) must also be satisfied.

vi(w1,-A+HC)=0T i=12 .,0n (7.5)

real(ui)<0, viTyéOnT

#; and v'ir are the observer eigenvalue and left eigenvector, respectively. Observability of [A,C)
guarantees the existence of H in equation (7.5). The following lemma, which is pro—ed by
Doyle and Stein [7], is central to the design of H:

If H i8 chosen such that limit (7.6) is rue as scalar p approaches infinity for any
non-gingular mXm W-malriz ,

H(p)

— — BW (7.6)
P

then K(s), as given by equation (7.4), approaches pointwise toward ezpression (7.7):
G (sl,,-A)' B [ C (sl -A)! B |, (7.7)

and since Gp(s) = C (sl'm-A)‘l B, (7.8)

then K(s) Gp(s) will approach G (sI,-A)' B pointwise.

The procedure requires only that H be stabilizing and have the asymptotic characteristic
of equation (7.6). Doyle and Stein suggested one way to meet this requirement: a steady-
state Kalman filter gain [31] with very small measurement-noise covariance. Now suppose we

choose H with the following structure:

H=pBW (7.9)
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where W is any non-singular mXm matrix and p is a scalar. It can be shown (by the
definition of the limit) that the structure of H chosen in equation (7.9) satisfies the limit ir
equation (7.6) as p approaches infinity. In other words, as p approaches infinity, ‘H —» pBW’
results in ‘H/fp — BW'. (The reverse is not true.) Since the structure of H given in
equation (7.9) satisfies the limit in (7.6), then if H is chosen to be pBW, K(s)Gv(s) will
approach G(sl“-A)"B pointwise, as p approaches infinity. Note that the structure of H given
by equation (7.9) does not necessarily yield a stable observer. We choose H to be pBW
throughout this paper. The asymptotic finite eigenstructures of beth forms given by
(7.9) and (7.6) are the same, while the asymptotic infinite eigenstructures are usually different.

The form in equation (7.9) usually yields an unstable infinite eigenstructure.

Although this paper is not an exposition of the properties of the transmission zeros of a
plant, before stating the theorem, we will remind readers of some definitions and concepts
about this matter. (For more information and properties of the tramsmission zeros, see
references [48, 6, 58, 28].) The transmission zeros of a square plant are defined to be the set

of complex numbers s; that satisfy inequality (7.10).

[silIm -A B :l (7.10)
rank < n+m

C 0

The necessary and sufficient condition for the truth of inequality (7.10) is given by equation

(7.11).

silnn -A B
det [ ] = 0 (7.11)
C 0

Equation (7.11) yields j finite transmission zeros {(j<n-m). The remaining (n-j) transmission
zeros are at infinity. For each finite transmission zero, there is one non-zero left null-vector

[ziT -wiT] {for i=1,2,...,j) such that:

(7.12)

n<+m

N
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where: [ziT : -wiT] # 0, +mT.

T

Tis an nX1 vector. z; is called left zero direction of the

w;ris an mX1 vector, and Z

transmissioa zeros of the plant. If the left eigeavector and left zero direction associated with
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a pair of equali-valued eigenvalue and transmission zero are equal, then s; is an uncontrollable
mode of the system. These transmission zeros are called “input decoupling zeros” [37].
Similarly, if the right eigenvector and the right zero direction associated with an equal-valued
eigenvalue and transmission zero are equal, then 8; is an unobservable mode of the system.
These transmission zeros are called ‘‘output decoupling zeros.” A similar definition for the
transmission zeros of a square plant is given by reference [31]; all complex mumbers that are
roots of W(s) in the equation:

¥(s)

q’ol(s)

are transmission zeros of the plant. ‘bol(s) is the nth-order open-loop characteristic equation.

det Gp(s) =

(7.13)

The maximum order of W(s) is j. All transmission zeros of the plant, including the ones that
are equal to the eigenvalues of the plant {(which may even be the input-decoupling and for
output-decoupling zeros of the system), are roots of ¥(s) and also satisfy inequality (7.10) and
equation (7.11). The equality of equations (7.13) and (7.11) can be shown by careful nse of
Schur's equality [26].

7.3 Asymptotic Elgenstructurs Properties of the LTR Method

We will now explore some eigenstructure properties for LTR when the observer gain
satisfies eqﬁation (7.9). Knowing the eigenstructure properties of the compensator, we will
develop a method for designing H via eigenstructure assignment of the observer. The
following theorem gives the eigenstructure properties of the observer when H is chosen
according to equation (7.9). Part 1 of the theorem is proved differently in reference [5] and
can also be considered to be a special result of the multivariable root locus given by
references (42, 51, 29, 28]. The second part of the theorem is the result we will use in the

design process.
Theorem

Consider the square linear observer in Figure 7-4:
I.\ A
x(t) = A x(t) + H e(t) + B u(t) (7.14)
A
e(t) = - C x(t) + y(t) (7.15)

;(t)GR" u(t) and y(t) ER™
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with rank (B) = rank (C) = m .
Then if H is chosen so that:
H=pBW (7.16)

where W 8 any non-singular sgquare matriz and p i8 a scelar approaching oo, then the

Jollouring statements are true:

1) The finite closed-loop eigenvalues of (A-HC), B approach finile transmission zeroe
of the plant, s, If the linear plant [AB,C| has j finite transmission zeros, (j<n-m), then
(A-HC) will have | finite eigenvalues. The remaining closed-loop eigenvalues approach infinity

al any angle.

2)  The left closed-loop eigenvector v'iI,' (i=1,2,...,j) associated with the finite closed-loop

etgenvalue p, approaches ziT, which selisfies equation (7.17).
[T -wl] [sl,-A B .
=0 .m (7.17)
C 0pm

T T
[2f W] # 0,n
w;ris an mX1 vector and z'iris an nX1 vector. If s, iz not equal lo any eigenvalue of A, then
z'ir can be compuled from equation (7.17), and the following ezpression for v;r(i=l,2,...,j) can
be obtained:

v;r= w'irl C(sl, -A)Y] (7.18)

where w'ir(i=l,2,...,j) can be calculated from equation (7.19).

wi[C(sI -A)'B|=0_T (7.19)

. T T
where: w, 7# 0

Interpretation. This theorem identifies the asymptotic locations of finite closed-loop
eigenvalues and left eigenvectors of the observer. As p approaches a large number, j (for
i<n-m) closed-loop eigenvalues will approach finite transmission zeros of the planl;, and (n-j)
closed-loop eigenvalues will approach infinity at any angle. Since conventional practice in
complex variable work is to regard a function as having an equal number of poles and zeros

when the zeros at infinity are included, one can claim that all closed-loop eigenvalues
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Figure 7-4: Closed-Loop Observer
approach the transmission zeros of the plant. Equation (7.17) states that | v;r -w'ir] is

confined in the left null space of the given matrix in equation (7.17) as p approaches infinity.
In other words, the left null space of the matrix given in equation (7.17) assigns a subspace

for limiting location of | v;r -w;r] when p approaches infinity. If s, is not equal to any

eigenvalues of A, the limiting location of v'ir can be interpreted differenily. Equation
(7.18) states that the left cigenvector, V;I,‘ is confined to a sub-space spanned by the rows of
[C(s;I

equal to the rank of C. Therefore, the number of independent output variables determines

“-A)"l if 5, is not equal to any eigenvalues of A. This sub-space is of dimension
how large the sub-space corresponding to the left closed-loop eigenvector can be. The
orientation of each sub-space associated with each left closed-lcop eigenvector, v;l,' depends on
the open-loop dynamics of the system [A,C| and the closed-loop observer eigenvalue, By
Construction of the left closed-loop eigenvectors in their allowable m-dimensional sub-space in
C® is the exact freedom that is offered by observer design beyord pcle placement
(27, 44, 45, 16]. The second part of the theorem identifies the asymptaotic m-dimensional

sub-space in C° that confines the left closed-loop eigenvector, vI The choice of w'ir in

i
equation (7.18) allows the designer to construct each n-dimensional left closed-loop eigenvector

in its allowable m-dimensional sub-space. As p approaches a large number, then w;r
approaches the left null vector of Gp(si) in equation (7.19); consequently, each left closed-loop

eigenvector v'ir approaches a final value in its allowable sub-space given by expression (7.18).
Proof:

Part 1: H is chosen according to eoquation (7.16). The block diagram of the closed-loop
observer is shown in Figure 7-5. The ioop transfer function at the plant output is given by

expression (7.20).
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C g(tl

Fligure 7-6: Closed-Loop Observer Configuration

C(sl -A)'pBW (7.20)
Equation (7.21) relates the open-loop and closed-loop characteristic equations [36, 47].

(s
det |1+ C (sl -A)'pBW]|= al®)

(7.21)
where: 'bo](s)

®_,(s) = closed-loop characteristic equation of
the system in Figure 7-5.

$_,(s) = open-loop characteristic equation of
the system in Figure 7-5.

From matrix theory, equality (7.22) is true [26].

det [1 .+ C (I -A'p EW]=1_ +

m

trace[C(sI -A)"' pBW|+ ... +def[C(sl -A)'pBW] (7.22)

As p approaches oo, the last term of equation (7.22) grows faster than the other terms.

Therefore, approximation (7.23) is true.
def| 1+ C(sl -A)" pBW|=sdeC(sl -A)" »BW| (7.23)

Considering approximation (7.23), equation (7.21) czu be written as:

°cl(s)

det [ C (sl -A)' p BW |~ (7.24)
®,,(s)
or equivalently:
‘bcl(s)
det [Gp(s)] det [p W] =~ (7.25)

®.(8)
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Since dei [p W] 5 0, comparing equations (7.13) and (7.25) shows that the roots of W(s) and
& (s) are the same. In other words, ®(s) produces all the transmission zeros of ihe plant,
including the ones that are equal to the eigenvalues of A, which can even be decoupling

Zeros.

Part 2: When H approaches its asymptotic value, the eigenvalues of (A-HC) can no
longer be moved via matrix C. This is true because the eigenvalues of (A-HC) are at their
limiting lccations (i.e., transmission zeros of the plant). Therefore, [(A-HC), B, C| must have
unobservable or uncontrollable modes. Since [(A-HC), C| is an observable pair and H is
expressed as pBW, [(A-HC), B] must be an uncontrollable pair. Since [(A-HC), B| is an
uncontrollable pair, equations (7.26) and (7.27) are true [37].

I(wl -A+HC)=0T i=1,2 .. 7.26
1 1 nn n

viB =0T (7.27)

T

u; is the closed-loop observer eigenvalue, and v; is the corresponding left eigenvector.

Equation (7.27) states that the left closed-loop eigenvector, V;I,‘ from equation (7.26) is in the

T

left null space of B and cannot be affected by the input. Each closed-loop eigenvector, Vi

(for i=1,2,...,j) can be expressed by equation (7.28).

T Teo—-—0nT ¢
vilwyl,-A)-w,C=0, {(7.28)
where: w'ir= . v;rH (7.29)

Combining equation (7.28) and equation (7.27) yields equation (7.30). (Note that s;=p..)

| v'ir -wl] sl - A B
] =0, m" (7.30)
C 0

where: [ v -wl] 5 0n+mT for i=1,2,...,j

If 5, is not equal to any eigenvalue of A, then from equation (7.30) we can find an expression

for the left closed-loop eigenvector of A:
vi=wiC (s, -A) i=12 .,j (7.31)
where w'ircan be computed from equation (7.32)

T - _— T P .
wifC(gl -A)IB]=0]T, i=12.. (7.32)
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w'ir 7# OmT

Equation (7.31) shows that the left eigenvectors achievable for the closed-loop observer are
confined to the m-dimensional sub-spaces determined by their associated eigenvalues and open-

loop dynamics |A, C|. &

Comment: As p approaches oo, the j eigenvalues of {(A-HC) cancel out the j finite
transmission zeros of the plant. A cancellation of an equal-valved closed-loop eigenvalue of
the system with a transmission zero happens if the left closed-lcop eigenvector of the system

T

is equal to the left zero direction, z,°, associated with the transmission zero in equation

(7.17). By cancelling [60] we mean they will not appear as poles in the closed-loop transfer
function matrix, C[sln-A+HC]"B . The transmission zeros of |A, B, C| are the same as
those of [(A-HC), B, C|, because transmission zeros do not change under feedback. As p
approaches infinity, the transmission zeros of [(A-HC), B, C| turn into input decoupling zeros,

because the system of [(A-HC), B, C] is not controllable at these modes [37].

Corollary 1: The finite transmission zeros of K(s) are the same as the finite transmission
zeros of G(slnn-A)°'B.

Proof: The transmission zeros of G(sI“-A)"B are the complex values o; that satisfy the

following inequality :

°ilnn -A B (7.33)
rank < n+m.
m

G 0

Post-multiplying the matrix in inequality (7.33) by the non-singular matrix:

lnn Onm ] (734)
[ G+pWC p W

will result in inequality (7.35) for the transmission zeros of G (sI -A)' B:

[oi I, - A+BG+BWC  BW ] (7.35)
rank < n+m

G 0

mm

Substituting H for (pBW) in inequality (7.35) results in inequality (7.36).
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g; | -A+BG+HC H
rank < n+m (7.36)

G 0

The complex number, o;, that satisfies inequality (7.36) is a transmission zero of K(s) as given -
by equation (7.4). Therefore, K(s) and G(sI -A)'B have equal transmission zeros. Iif
G(sl ,-A)'B does not have any finite transmission zeros, then K(s) will not have any finite

transmission zeros. @

Corollary 2: If p cpproachzs oo, then all the eigenvalues of the compensator K(s) will

approach the (ransmission zeros (including the ones at infinity) of the plant, and the left
eigenvectors of (A-BG-HC), x;l,‘ will approach z'il,' where z'ir and s; (i=1,2,...,j) satisfy equation
(7.37).

[T -wT] [l -A B
[ ] =0, T (1.37)

T T T
[ L W | # 0m+|:
In other words, the eigenvalues of the compensator cancel oul the transmission zeros of the
plant.

Proof: The transmission zeros of the plant are the set of complex numbers, 5, that
satisfy inequality (7.37). Post-multiplying the matrix in equation (7.37) by the non-singular

matrix:

[ L Oim (7.38)
G Im ]

will yield the following equation, which can then be solved to find the finite transmission

zeros of the plant:

[z -w]] [s],, -A+BG B
=0 T (7.39)
m

C 0

| P -w'ir] 7# On+mT for i=1, 2, ..., j.

We apply the result of the theorem to system |[(A-BG), B, C]. According to part 1 of
the theorem, if H=pBW, then as p approaches oo, the eigenvalues of (A-BG-HC) will
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approach the transmission zeros of [(A-BG), B, C| computed from equations (7.39). These are
also the transmission zeros of the plant given by equation (7.37).

According to part 2 of the thcorem, the left closed-loop eigenvectors, xg of the

compeasator given by equation (7.40):

x@ (u; I -A+BG+HC) = 0T, i=12,..j (7.40)

x'ir # OnT

approach z;rgiven by equation (7.39) or equation (7.37). @

7.4 Comments

1) According to corollary 2, as p approaches oo, the eigenvalues of K(s) will cancel
out the tiansmission zeros of the plant. According to corollary 1, as p approaches oo, the
transmission zeros of K(s) will approach the transmission zeros of G(sI ,-A)'B. Since the
number of transmission zeros of two cascaded systems (K(s) and Gg(s)) is the sum of the
number of transmission zeros of both systems, the transmission zeros of K(s)Gp(s) are the
same as the transmission zeros of G(slnn-A)'lB. Similar arguments can be given for the poles
of K(s)GP(s). The poles of K(s) cancel out the transmission zeros of the plant; therefore, the
poles of K(s)Gp(s) will be the same as poles of G(slnn-A)"B. This argument does not prove
the equality of G(slnn-A)‘lB and K(s)Gp(s) a8 p approaches co. Proof of the pointwise equality
of K(s)Gp(s) and G(sI -A)'B is best shown by Doyle and Stein in [7]. The above comment
concerning pole-zero cancellation explains the eigenstructure mechanism for LTR. Since pole
placement and eigenvector construction in the allowable sub-space prescribes a unique value
for H, we plan to design the observer gain for the LTR via pole placement and left

eigenvector constructioz .

2) The asymptotic finite eigenstructure for H in both equations (7.6) and (7.9) are
the same, but the asymptotic infinite eigenstructures are usually different. The form of H
given by equation (7.9) is rarely stabilizing. Since both forms guarantee the pointwise
approach of K(s)Gp(s) to G(sl -A)B, it can be deduced that the pointwise approach of
K(s)Gp(s) to G(sl  -A)B occurs whenever the asymptotic finite eigenstructure is the same as
that given by the theorem. Hence, combining any such finite eigenstructure with any stable

infinite eigenstructure will result in the approack of K(s)Gp(s) to G(sl -A)B in a stable sense.



-102-

3) Difficulty in using LTR will arise if the plant has some right half-plane zeros
(non-minimum phase plant). In our proposed procedure for LTR, one should place the
eigenvalues of (A-HC) at the transmission zeros of the plant. If the plant is pon-minimum
phase, one would place some eigenvalues of (A-HC) on the right half-plane. The closed-loop
system will not be stable if any cigenvalues of (A-HC) are on the right half-plane. According
to the separation theorem, the eigenvalues of (A-HC) are also the eigenvalues of the closed-
loop system. Therefore, the sufficient condition for LTR and the stability of the closed-loop
system is that the plant be minimum-phase. If the plant is non-minimum phase, one should
consider the mirror images of the right half-plane zeros as target locations for eigenvalues of
(A-HC). In such cases, loop transfer recovery is not guaranteed, but the closed-loop system

will be stable.

7.5 Deslgn Method

For observer design, we place j finite eigenvalues of (A-HC) at finite transmission zeros
of the plant. The left closed-loop eigenvector, viT, associated with the finite modes must be
constructed such that [vi'r -wiTl is in the left null space of the matrix given by equation
(7.17). The remaining (n-j) closed-loop eigenvalues should be placed far in the left half-plane.
Note that the farther the (n-j) infinite eigenvalues of (A-HC) are located from the imaginary
axis, the closer K(s)Gp(s) will be to G(sI  -A)B as shown in the example. The left closed-loop

eigenvectors associated with the infinite modes can be computed via equation (7.41).

vi=wlC (p I -A) i=j+l, j+2, ., n (7.41)

where: wl= - vIH (7.42)

The following steps will lead a designer toward observer design for the recovery

procedure:

1) Use equation (7.17) to compute the j target focations of the complex (finite

eigenvalues of the observer, 8, and j left null vectors of | z;r -w'ir] . i; must be selected to
T

 must be selected to be

be equal to 5. The left closed-loop eigenvector of the observer, v
equal to z'i[.' If 5 is pot equal to any eigenvalue of A, use equations (7.18) and (7.19) to
compute the j left closed-loop eigenvectors, v;r and w;r. w;r identifies the location of the left
closed-loop eigenvector in its allowable sub-space. This step terminates the construction of

the finite eigenstructure of the observer.
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2) Place the remaining (n-j) eigenvalues of (A-HC) at locations farther than the finjte
transmission zeros of the plant. Use equation (7.41) to achieve (n-j) values for v;r. The w;r

for infinite modes are arbitrary and have little importance because their corresponding

eigenvalues are selected far in the left half complex plane.

3) Since
v;rH = - w:lr c =12 .. n (7.43)
then:

Fv'lr 1H = - »-w'lrj (7.44)
oI wT
T T

-vn - _wn .

Use equation (7.45) to compute H.

-1 i}
H=-rvi 7 wr (7.45)
T T
V2 Wy
| vT i L wT .

T

i 18 2 necessary coadition to use

The independence of the n left closed-loop eigenvectors, v
eigenstructure assignment for LTR. If the left closed-loop eigenvectors are not independent,
our approach fails and one must use Doyle and Stein’s approach to recover the loop transfer
function. The dependency of the left eigenvectors might arise if multiple finite transmission
zeros resuit in equation (7.17). If degeneracy of the matrix in equation (7.17) is equal to the
multiplicity of a transmission zero, the existence of n independent, finite, left closed-loop

eigenvectors is guaranteed.

7.6 Example

Consider the following example:

0. 0. 1. 0 0.0 0.0
A= {0 0. 0. 1 B = 0.0 0.0
0. 0. 0. 0 76.0 -105.0
0. 0. 0. 0 -105.0 280.0
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c = [1. o. 1. o.]
0. 1. 0. 4.
Suppose we are given G such that the closed-loop poles are at -19.35, -1.76, -5.57 and -6.12 :

G = [4.7234 3.4265 0.9923 0.6631
1.1497 0.8579 0.2633 0.1952 j.

Using equation (7.19), the finite transmission zeros, 8 and the associated left null-vector
T

directions, w;', can be computed. p, and p, are selected to be equal to 8, and S,-
me=-1, pp=-.25, wy=1[1 0], w3=1[0 1]

Using equation (7.18), the left closed-loop eigenvector associated with the finite modes cap be

computed:
vI=1[-1.00 0.00 0.00 0.00]
vy = [ 0.00 -4.00 0.00 0.00]

We place the other two eigenvalues of (A-HC) in the left half-plane as far as possible. The
directions of waT and w‘T do not matter because the associated eigenvalues are far away.
Figure 7-6 shows that the farther away from the imaginary axis the two infinite eigenvalues
of (A-HC) are, the closer K(s)Gp(s) will be to G(sl“-A)"B. Assuming :

my = =30, p, = -36, w3 = [1 0], wl=1[0 1]

and using equation (7.41), the left eigenvectors associated with  nfinite modes can be

computed:
v; = [ -0.0333 0.0000 -0.0322 0.0000 ]
v: = [ 0.0000 -0.0278 0.0000 -0.1103 ]

Using equation {7.45), H can be computed:

1,0000 0.0000
H =] 0.0000 0.2500
30.0000 0.0000
0.0000 0.9000
The finite transmission zeros of G(sI“-A)'lB are located at -4.3270 and -1.3675 . Table
7-1 shows that the transmission zeros of K(s) approach the transmission zeros of G(slnn-A)"B

as p, and p, move farther into the left half complex plane (corollary 1). Table 7-I also

shows that the farther p, and p, are from the imaginary axis, the closer the eigenvalues of



Magnitude

Magniluce

Magnitude

-105-

T

By = 7 1
Ry = -.25
hy = -10
By = -12
-6 Y P Y SR | .
19 02 1071 10° 10! 102 103
w rad/scc
10
lo T T ]TT T "I T L 'll T L) Ill A ] T T
gy = -1
By = -.25
py = -30
Be = -36
-6 i ad 1 P | i | PRI A
19 1072 107} 109 10! 102 103
" w rad/sec
10 T T M B S T
by = -1
By = -.25
Hy = =90
pe = -108
-4 N N Y ol N
10 102 107} 10° Tk 102 103

w rad/scc

Figure 7-0:

Maximum and Minimum Si
Values of K(s)Gp(s)

ngular

Maximum and Minimum Singular

Values of G(sI_-A)'B




-106-

Closed loop Transmission Eigenvalues of‘\
eigenvalues zeros of X(s) K(s)
By = -1 -2.8097 -30.5672
o = -.25 -1.2652 -24.2387
ke = -10 =) -1.0000
B = -12 -00 -0.2500
By = -1 -3.€734 -49.4030 +10.4478i1
Bp = -.25 -1.3311 =49 .4030 -10.4478i
py = -30 =00 -1.0000
By = -36 -00 -0.2500
By = -1 -4.0855 -115.40 + 20.46i
By = -.25 -1.3551 -115.40 - 20.46i
kg = -90 -00 -1.0000

\ P4 * -108 -00 -0.25 )

Table 7-I: Poles and Zeros of K(s)

K(s) will be to the transmission zeros of the plant (corollary 2).

7.7 Conclusion

A key step in the recent work on the synthesis of model-based feedback compensators
for multivariable systems is the selection of the observer gain. The observer gain must be
selected so that the final loop-transfer function, K(s)Gp(s) in Figure 7-1, is the same as the
state-feedback loop transfer function, G(sI_ -A)'B (shown in Figure 7-2), for some bounded
frequency range. In LTR, the eigenvalues of the compensator, K(s), cancel the transmission
zeros of the plant. It is also true that the compensator, K\s), will share the same transmission
zeros as G(slnn-A)"B. By exploring the eigenstructure of the model-based compensator when
loop transfer recovery takes place, we provide an alternative design procedure which
eliminates the need for the Kalman filter mechanism via direct assignment of the eigenvalues
and left eigenvectors of the observers. The sufficient condition for LTR and the stability of
the closed-loop system is that the plant be minimum-phase. The limitation of this method
might arise when the plant has multiple finite transmission zeros, and n left independent

closed-loop eigenvector cannot be constructed.

In impedance control theory, the LTR method can be used to approximate K(s)Gp(s) by

G(slnn-A)"B. Since all transmission zeros of the system |A, B and C], given by equation
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(4.18) are at infinity [59], the eigenvalues of (A-HC) can be placed in the left half complex
plane to recover the loop transfer function. The farther the eigenvalues of (A-HC) are from

. . - -1
the origin, the closer K(s)Gp(s) will be to G(sl -A)'B.
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Chapter 8

Conclusion

We started with conventional controller design specifications concerning the treatment of
the interaction forces and torques when the system is not constrained. Generalizing this
treatment to include cases when the system is constrained, we stated a set of controller
design specifications to assure compliant motion with stability in the presence of bounded
uncertainties (Figure 2-1). One of the most important contributions of this thesis is the
formulation of the concept of compliant motion in terms of a meaningful set of controller
design specifications. This set (shown in Figure 2-1) is a proper definition of the compliant
motion. In Chapter 2, we show that Hogan's target impedance [20], given by equation (2.2),
can parametrize our set of performance specifications. The following is 2 summary of the

parametrization of the set of performance specifications:

stiffness matrix ...........cccccvveeeennens > K;
W e > J;
stability ......ccccociiiireeeeree > C.

We assume C to be a matrix that always produces a slightly damped or underdamped
stable system; therefore, for a given K-matrix, the J-matrix is the parameter that affects w,
the most and many J-matrices can parametrize w . In particular, we show how a wide w,
(or a small J-matrix) may cause instability in the presence of high frequency unmodelled
dynamics. In Section 5.3.4, we gave scme methods for arriving at a proper value for the

J-matrix.

The target impedance mandates a closed-ioop relationship between the interaction loads
and the motion of the system in the global cartesian coordinate frame. In general, the
closed-loop behavior of a system cannot be shaped arbitrarily over an arbitrary, bounded
frequency range, but we show that this target impedance is mathematically achievable, and in
Chapter 5 we offer a geometrical design method to achieve it. This is a fundamental result
which is proved in Appendix A. By considering the dynamics of the manipulators and its
actuators, continuous feedback and feedforward gains are given in closed form to guarantee

the achievement of the target dynamics in the presence of model uncertainties.

If a2 dynamic system behaves according to equation (A.2), then the dynamic system and

its environment taken as a whole will remain stable. Appendix A proves this, and it gives a
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sufficient condition for the stability of the target dynamics. The stability of the target
impedance and its global stability with the environment resuit from the appropriate choice of

the target dynamics and not the design methodology.

To achieve the target impedance given by equation (2.2), we need to measure the joint
angles, joint angle rates, actuator torques and interaction forces of the system. Most direct-
drive manipulators are not equipped with fast actuators, and it is necessary to consider their
dynamics and to measure the actuator torques (or motor currents) in the design process if a
wide frequency range of operation is needed. In Chapter 4 we develop a mathematical model
for manipulators and their actuators to represent their dynamic behavior during low-speed,
constrained maneuvers. When the actuators are fast (i.e., their bandwidths are much wider
than the desired frequency range of operation, wo), the dynamics of the actuators can be
neglected, which eliminates the need ior torque feedback (See Appendix C). If w, is small
enough to be parametrized by the target inertia matrix given by equation (5.41), then force
measurement can also be eliminated. In other words, if the target inertia is selected to be
the inertia of the manipulator in the global coordinate frame (given by equation (5.41)), then
it is not necessary to measure the interaction fcrces. @ We use force-feedforward only to
change the inertia of the system. If the actuators are fast and the frequency range of
operation is small enough that the target inertia can be chosen according to equation (5.41),

then it is necessary to measure only the joint angles and joint angle rates.

Stability in the presence of model uncertainties is another significant issue in our design
method. Large feedback gains produce poor robustness to high-frequency unmodelled
dynamics and good robustness to uncertainties within the modelled dynamics. Selecting a
wide w  will produce a large feedback gain, which means the system will be less robust to
high-frequency unmodelied dynamics and more robust to uncertainties in the modelled
dynamics. On the other hand, a narrow w, will result in a small state-feedback gain, which
will assure good robustness to high-frequency unmodelled dynarnics. Since w, is parametrized
by J, we can state that for a given K, a small J-matrix may cause instability in the presence
of high-frequency unmodelled dynamics, and a large J-matrix may cause instability if there

are uncertainties in the model at low frequencies.

The trade-off between the size of the target inertia and stability robustness relative to
high frequency unmodelled dynamics is another contribution of this thesis. Another factor in
the size of the state-feedback gain is «, which measures the locations of the closed-loop
eigenvalues of the actuators. The farther from the origin the n closed-loop eigenvalues of the

actuators are located, the larger the feedback gain matrix, G, will be. In other words, large
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closed-loop bandwidths of actuators result in less robustness to high frequency unmodelled

dynamics.

As mentioned in Chapter 1, there are two approaches for assuring the compliant motion
of a dynamic system, each with its own application. Their fundamental differences are

described as follows:

- In hybrid force/position control [43, 46, 55, 38, 61], force is controlled along those
directions constrained by the environment, while position is controlled along those
directions in which the system is free to move. This method allows the direct,
and therefore precise, control of the interaction forces. In impedance control, there
is. no direct closed loop around the interaction force. In fact, we sometimes do
not even measure the interaction force. The interaction force is controlled in an
open loop fashion. By controlling the position and orientation of the system and
assigning an appropriate impedance, we arrive at a reasonable range for the desired
interaction force (AD(jw) = K AY(jw)).

- Unlike hybrid force/position coutrol, impedance control never forfeits the
positicning capability of the system. Consider a maneuver such as approaching a
stiff wall, the positioning of the system and a low impedance allow the
manipulator to hit the environment with a light contact force. In hybrid
force/position control, such a maneuver can be done with two sets of ccntrollers:
-a pure positioning system to move the system in the free environment, and a
hybrid force/position control to move the system after it touches the environment.

- In hybrid force/position control, the structure of the controllers and the global
stability of the system depend heavily on the dynamic and geometrical properties

of the environment. We arrived at a controller structure which is independent of

environment characteristics.

Dynamic/graphic simulations were performed to illustrate differences. snother
contribution of this thesis is presented in Chapter 7. A key step in recent work in
multivariable synthesis involves selecting an observer gain so the final loop-transfer function is
the same as the state-feedback loop transfer function for a bounded frequency range. TLis is
called Loop Transfer Recovery (LTR). This chapter shows how identification of the
eigenstructure of the compensators that achieve LTR makes possible a design procedure for

observer gain. This procedure is based on eigenstructure assignment of the observers (dual to

the impedance control synthesis).
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Appendix A
Stability

If the J-matrix and K-matrix in equation (2.2) are selected arbitrarily (J is any non-
singular matrix) to parametrize the first and second items of the set of performance
specifications, a value for the C-matrix that assures the stability of the target dynamics is
not guaranteed. But for a non-singular K-matrix, there always exist many J- and C-matrices
such that the eigenvalues of the target dynamics are in the left half complex plane (e.g., the

J-matrix and C-matrix may be selected to be 4K and ~,K, as on page 19).

The selection of J, C and K will be much easier if they are restricted to some class of
matrices. Theorem 1 gives a sufficient condition for the stability of the target dynamics,
while Theorem 2 considers the stability of both the dynamic system and its environment.
Theorem 1, which expresses the essential concept of stability of this class of impedances, is

discussed in references [13, 11] and is given here only for continuity of the material.
Theorem 1

If J, C and K are real and symmelric, posilive definile matrices, then the system in
equation (2.2) is stable, cnd if C and K are symmileric, non-negalive definite matrices, then

the system: in equation (2.2) will be marginally stable.
Proof:

The eigenvalue problem associated with the target dynamics is expressed by equation

(3.5).

[IX?+C\, +K]gqg =0, 1,2 ., 2 (A1)
qi # on
Pre-multiplying equation (A.1) by qu results in equation (A.2).

gl [IN2+CN +K]gq =0 i=12 .,2n (A.2)

Where q-H is the complex conjugate transpose of q.. Since J is a symmetric positive definite
(] ]

matrix, then:



-112-

i = qi" Jq >0. (A.3)

Since J is a symmetric matrix, equality (A.3) is true for any vector in C", including the right

fatent vector q; . Similarly, ¢, = qi" Cq >0 2and k; = qu Kqg>0.

Equation (A.2) can be simplified to equation (A.4).
EXNT AN+ =0 i=12.,2 (A4)

where j., k; and c; are real, pesitive scalars. Any complex number \; that satisfies equation
(A.4) is in the left half complex plane. Equation (A.4) may result in complex roots on the
imaginary axis (and consequently a marginally stable solution) if c and /or k; vanish.
Absolute stability of the target dynamics results if J, C and K are symmetric, positive

definite matrices. The set of the eigenvalues that result from equation (A.4) is self-conjugate. @

Note that the conditions on J, C and K are sufficient for stability, but not necessary.
We might arrive at a set of J, C and K that assures stability without satisfying the theorem
condition. As long as matrices J, C and K are symmetric, positive definite, the eigenvalues

of the target dynamics given by equation (2.2) are in the left half complex plane.

The stability of the target dynamics is not enough to assure the stability of the overall
system of the dynamic system (manipulator) and its environment. In other words, the
followiug question cannot be answered by Theorem 1: If a manipulator with a stable
impedance as ezpressed by equation (2.2) is in contact with a stable environment, does the
system of the manipulator and its environment remain stable ¢ This is not clear; two stable
systems interacting with each other may result in an unstable system. Theorem 2 is needed
for the rigorous assurance of the overall stability of the manipulator and its environment; this

is given by Theorem 2.
Theorem 2

If the closed-loop dynamic behavior of the dynamic system i given by equation (A.5):

J AY() + C AY(t) + K AY(t) = AD(t) AD(t) and AY(t)ER® (A.5)

J=JT>0, K=KT>0 , ¢c=cT>o0;

and if the environment is a system with the dynamic behavior represented by equation (A.6):

I, AY,(t) + C, AY,(t) + K, AY,(t) = AD,(t) + AD3(t) (A6)
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AD,(t) , AD2(t) and AY, (t)ER™"

=T —w T — T .
Jy=J, >0 , K, =K >0 , C, =C >0;
where:

AD(t) = the load (force and lorque ) that the manipulator

ezerls on the environment,

ADS(t) = all other loads on the environment (uncorrelated with
manipulator states and environment slates); and

AD(t) = the environmental load on the manipulator,

then the overall system (manipulator and environment) is stable.
Proof:

Since the dynamic system is in contact with the environment, vectors AY(t) and AY,(t)
might have members in common. Form a p-dimensional vector AW(t) such that equation
(A.7) and equation (A.8) are satisfied (n + m > p). AW(t) is a vector that contains all
states of the manipulator and environment. Since the manipulator and environment are in
contact with each other, then AY (t) and AY(t) will have some common members. The first
(p-n) members of AW(t) are those states of the environment that are not states of the
dynamic system (manipulator). The last (p-m) members of AW(t) are those states of the

dynamic system that do not represent the environmental dynamics.

AY (t) = T, AW(t) (A7)

AY(t) = T, AW(t) (A.8)

T, and Ty are mXp and nXp matrices with 0 and 1 as their members. Substituting for
AY(t) and AY(t) in equations (A.5) and (A.6) resuits in equations (A.9) and (A.10).

JT, AW(Y) + C T, AW(t) + K T, AW(t) = AD(t) (A9)
J, T, AW(E) + C, T, AW(t) + K, T, AW(t) = AD,(t) + AD(t) (A.10)

Because of the interaction between the dynamic system and the environment, equation

(A.11) is also true. .
T,T aD{t) = - T,T AD,(t) e (A.11)

Omitting AD(t) and AD,(t) from equations (A.9) and (A.10) by means of equaiion
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(A.11) results in:

(T,T 3T, + T,TJ T, ) AW() + ( T,TCT, + TT C, T, ) AW(t) +

(T,TK T, + T,T K, T, ) AW(t) = T,T ADJ(t) . (A.12)
It can be verified that :

TyT J Ty + TeT J, T, = a symmetric, positive definiie matrix;
TyT C Ty + TeT C, T, = 2 symmetric, positive definite matrix; and

TyT K Ty + TeT K, T, = a symmetric, positive definite matrix.

According to Theorem 1, equation (A.12) (which shows the dynamics of the manipulator and

the environment) is stable.

According to this the~rem, if J, C and K are celected as symmetric, positive definite
matrices, the overall system of the manipulator and its environment taken together will yield

eigenvalues in the left complex plane. g

Note that, this theorem guarantees the global stability of the dynamic system and the
environment taken as a whole, if the dynamic system behaves according to equation (2.5).
The theorem in Chapter 5 shows that the target dynamics can be achicved for a bounded
frequency range. The examples in Chapter 6 show this matier. If the controller does not
achieve the target impedance exactly, but results in a controlled behavior ‘‘approximately’
like the target dynamics for a bounded frequency range, then the above theorem does not
guarantee the global stability. The importance of the theorem 2 is that it shows that the

target impedance has desirable properties.

The block diagram in Figure A-1 shows how the dynamic system and the environment
interact with each other in an ideal case when the target impedance is achievad for all
0<w<oo. AY(s) is the imposed motion on the manipulator which consists of the algebraic

addition of the commanded incremental motion and environmental motion.

Theorem 2 simply justifies the conditions under which the closed-loop system in Figure
A-1 is stable. The theorem in Chapter 5 shows that the target dynamics cannot be achieved
for all 0<w<oo. The examples in Chapter g also show this matter. According to the
theorem in Chpater 5, the controllers result in a behavior approximately like the target

impedance for a bounded frequency range. The resulting impedance can be shown as:
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AY(s) AD(s)

X

> [Je2+Cs+K]|] > T,T

=TT ADs)

Ty<

Figure A-1:

[TTJ T, ®#+TFC T,s+TTK.,T, ]!

The interaction of the dynamic system and environment

in the ideal case wben the target impedance is achieved for

all 0<€w<oo

[J?+Cs+ K| [I,+ E(s)]

(A.13)

where E'(s) shows the difference between the achievable target dynamics and the ideal target

dynamics. The closed-loop combination of the dynamic system and the environment,

considering expression (A.13), is shown in figure A-2.

AY(s)

commanded
incremental
motion

AD(s)

[, + E6) ] |—> [Jsz+Cs+K]‘_ﬁTy'r

Figure A-2:

(T T, 82+TTC, T, s+ TTK,T, ||

é%é-—'re'r ADY(s)

The interaction of the dynamic system and environment

when the target impedance is achieved for some bounded

frequency range

The global stability of the system in Figure A-2 is no lorger guaranteed by theorem 2.

Using the result of Appendix E, the closed-loop system in figure A-2 will be stable if the
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following inequality is satisfied for all 0<w< 0.

min

Omi [lnn +[Jd +Cs+K['[T, G o) T,T |"] > o, [E(®)]

where : G (s) =TT J T, + T,TC,T,s + TTK T, !
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Appendix B
Simple Impedances

In this appendix, we consider the properties of a special class of impedances that are
called simple. Simple impedances guarantee a complete set of right eigenvectors, V, despite
the multiplicity of their eigenvalues. Simplicity is a necessary condition for the achievability
of the target dynamics, but stability is a desired property (i.e., it is the third item of the set
of the performance specifications) and is not necessary for achievability. If we assume the
C-matrix is always selected such that it produces a slightly over-damped (or slightly
under-damped) stable system, then the J-matrix is the only parameter that parametrizes W,-
We are looking for a method to arrive at a C-matrix for a given K- and J- matrix such that
the target dynamics in equation (2.2) are always stable and simple. After an analysis of the
eigenstructure of the simple impedances, this appendix proceeds to the determination of a
bound for matrix C that guarantees the stability and simplicity of the target dynamics, given

symmetric, positive definite matrices for J and K.

Deflnition

Assume that the interaction load, AD(t), and the motion of the dynamic system, AY(t),
satisfy equation (B.1) in the global coordinate system.

J AY(t) + C AY(Y) + K AY(t) = AD(t)  AY(t) and AD(t) € R® (B.1)

J, C and K are non-singular matrices.
The eigenvalues \; and the right latent vectors q; satisfy equation (B.2).

D(%)g =0 i=12 .2 (B.2)

qi#on

where : D(X\)=JX +CX\ +K

If D( N\ ) has a degeneracy equal to the multiplicity of eigenvalue )\ _ in equation (B.2), then

JX 4+ C\ + K is a simple impedance. In other words, for simplicity of the target

dynamics expressed in equation (B.1), the right latent vectors, q; associated with the

eigenvalues, X\, with multiplicity o must be independent. If an impedance is not simple,
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then it is called defective. It is clear that all impedances with unequal eigenvalues are simple.
If J, C and K are symmetric, then the above definition will also be true for the left latent
vectors. This is true because equation (B.2) with symmetric J, C and K results in equal left
and right latent vectors.  The definition of simple impedances is borrowed from the.
terminology associated with simple matrix polynomials. We are going to use the definition of
simple impedances to arrive at a class of impedances that always yield a complete set of
right eigenvectors. We prove in Theorem 5 that over-damped and under-damped impedances
always have n independent right eigenvectors. Then for a given set of symmetric, positive
definite J- and K-matrices, we give a bound for matrix C to generate a stable and slightly
over-damped (and consequently simple) impedance. We need the result of theorems 3 and 4
to prove theorem 5. These theorems are proved in references [25, 32, 13, 11| in a leisurely

fashion for matrix polynomials of order n. Here we just mention the theorems.
Theorem 3

If the matriz polynomial given by (B.3) is simple:

IN+CX+K (B.3)
J=JT>0 , c=cT>0, K=KT>0,

then equality (B.4) iz true:

QT(2IN+C)Q, =1, (B.4)

where: Q, =1[q e .. q]. (B.5)
The q; (i=1, 2, ..., a) are the normalized right latent vectors associated with eigenvalue, £\, of
multiplicity * o, all of which salisfy equation (B.S).

D(\, )g=0 i=12 .« (B.6)

Theorem 4

The impedance (J s + C s + K) is defective if and only if there ezists an eigenvalue,
N, with the right latent vector, q;, such that l’iT (2J A\, + C ) q; = 0 for all left latent

veclors, riT, asgociated with \ .
Theorem §
Consider equation (2.2) when the following inequalities are satisfied:

J=JT>0,c=cT>0,K=KT>0.
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If equation (2.2) resulls in over-damped eigenvalues, then J 62 + C s + K is a simple

impedance.
Prooj:
By contradiction.

Consider the eigenvalue problem in equation (B.7).

[IN2+C\ +K]|q =0 i=12 .,2n (B.7)

J=JT>0 , c=cT>0, K=K'>0
Multiplying equation (B.7) by q? yields equation (B.8).

FIgr2+al Coy +afKg =0 i=12 ., 2 (B8)
or, equivalently: j; \iz +e\ +k =0
where:

ji=q|HJq|l c-=qrcqu k-’—'Q,HKCI,.

and j;, ¢; and k; are real non-negative numbers. The roots can be computed from equation
(B.9).

'Cii V ci2'4kiji

\ = . i=12.,2n (B.9)
2 j;
or, equivalently: 2 j N\ +¢ = =% v ciz -4k j;, i=12 .,2 (B.10)

If the impedance is over-damped, then inequality (B.11) is true.

¢?-4kj >0 i=12 .,2 (B.11)

If the impedance is not simple, according to theorem 4 there must be an eigenvalue, N, Wwith

right latent vector, q,, such that equation (B.12) is true.

e (2N, +C)q =0 (B.12)
or, equivalently: 2 j X\, + ¢, =0 (B.13)
where:

h=9e"Jq, ¢ =qMCq
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Equations (B.13) and (B.10) result in equation (B.14).
c?-4k j,=0 (B.14)
But equation (B.14) contradicts equation (B.11). Therefore, the over-damped impedances are
simple and result in a complete set of eigenvectors. The proof fails for critically damped

systems. This theorem is also true for under-damped impedances; proof is similar but needs

more elaboration. B
A bound for C to guarantee the simplicity of the target Impedance

Matrix C plays a significant role in assuring the simplicity of the target impedance. A
“small” C may result in imaginary eigenvalues, and consequently, under-damped target
dynamics. A “large” C may result in a slow and ill-conditioned impedance with eigenvalues
that are far apart. It is necessary to propose a bound for C in terms of J aud K so the
triplet {J, C and K) will result in a slightly over-damped (and consequently simple) impedance
for the target dynamics. Consider the conservative dynamics of equation (B.15) with real-

valued non-siugular matrices K and J.
JAY(t) + KAY() =0 , J=JT >0, K=KT >0 (B.15)

The eigenvalue problem associated with (B.15) is expressed by equation (B.16).
[Jw?+K]|r,=0 i=12 .,n (B.16)
' # 0,

Since J is symmetric, positive definite, equation (B.16) can be written as equation (B.17).

Viju i, +VI KVt [ Virer=0  i=12..,n (B.17)
where: J = \/T \/T and J!' =V J! V !

2
i

V JT KV J' is a real symmetric matrix and has n positive eigenvalues, w2, aod n
linearly independent eigenvectors, \/T r; . Since the latent vectors r'; are obtained from
these by a non-singular transformation \/J—, it follows that the latent vectors ', are also
linearly independent. Since J is non-singular and all latent vectors r', are independent,
equations (B.18) and (B.19) are true |11, 32, 12}.

RT K R = diag w2, W, ., w?) =02 B.18
. 1 2 B
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RTIJR=1_ (B.19)

where: R = [, r, .. 1 |
Choose a new coordinate, AZ(t), according to equation (B.20).

R AZ(t) = AY(t) (B.20)
Substitute for AY(t), Ai’(t) and A.\.((t) in equation (2.2).

RT J R AZ(t) + RT C R AZ(t) + RT K R AZ(t) = 0, (B.21)
Using equations (B.18) and (B.19) we arrive at equation (B.22).

A.é(t) +RTCR A.Z(t) + 0% AZ(t) = 0, (B.22)
Suppose C is chosen so that RT C R is a diagonal matrix with the following structure:

RT C R = disg (26,0, , 26,0, , .. , 26w ) (B.23)

where : €, > 1 i=12 .,n.

Then equation (B.22) results in b uncoupled second-order differential equations. The

polynomial matrix associated with equation (B.22) is given by expression (B.24).
2 T 2
L, ¥ +RTCRX + 0 (B.24)

Using equation (3.6) and expression (B.24), n second-order uncoupled equations can be
constructed to arrive at the eigenvalues of the target dynamics. Each equation results in two
eigenvalues. Since §,>1 (i = 1, 2, .., n), all eigenvalues are real. RTCR and RTKR are

both diagonal, and C can be computed from equality (B.25).
RTCR=2¢ V(RTKR) ' (B.25)
where : § = diag (§, , €, , .. , €, ). Thus, from equation (B.25):

C=2(RT)y'¢ V(RTKR)R!. (B.26)

Example

Suppose the target-inertia matrix and stiffness matrix are given as:



J = [.0368 .0343] K =[0.06 o.o}
.0343 .0509 0.0 0.6
Two independent, right latent vectors form matrix R:

R =[4.7696 -7.0931 ]
0.4666 7.2500

RT K R is a diagonal matrix:

RT K R = [1.4956 0.0 ]
0.0 34,5564

Considering £ as:
€ =[1.2 0.0 ]
0.0 1.2
results in a damping matrix with real eigenvalues for the target dynamics:

C = [0.1096 0.0833 ]
0.0833 0.3264

The eigenvalues of the target impedance are located at -10.9535, -.6563, -2.2787 and -3.1548 .
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Appendix C

This appendix arrives at feedback and feedforward gains when the actuators bandwidths
are much greater than w_. If the bandwidths of the actuators are much larger than the
desired frequency range of operation, w,, then it is possible to ignore the actuator dynﬁmics
from the dynamic equations of the manipulators. Eliminating the actuator dynamics, A, B, C

and L in equations (4.19) and (4.20) gives:

onn lnn onn ol:ln
A=[ ] =[ ] L=[ ] ©1)
-M'(8,)GR(®,) 0, M(e,)T, Me,)JT

C=|[1, ©

After some algebraic manipulation similar to that shown in Section 5.2.1, the achievable, right

closed-loop eigenvector is:
Ilq
v, = i=12 .., 2n. (C.2)
NI
m; can be calculated as follows:

m, = T,7 [ GR(6)) + M(8 ) \? ] J! q i=12 .., 2. (C.3)

Since J'c' exists in both equations (C.2) and (C.3), in forming G, J;‘ can be cancelled out to

ease the computations. The state-feedback gain, G, can be computed from equation (C.4).
G=[m m; .. mylfuy, uw .. u,|! (C.4)

Theorem 5.3.1 is also true since the eigenvalues of the actuators can be placed at -oo, which

allows G4 to be computed by a method similar to the one in Section 5.3.2.

Gy =T [GR@®) + T, G, | I} K!-JT (C.5)

where: G, = | G, G, |
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Since we do not assign any eigenstructure for the dynamics of actuators, the freedom to
adjust for the robustness specification does not exist. The only parameter that cam be
altered to meet the stability robustness specifications at high frequencies is w,. Selection of

the J-matrix according to equation (5.41) results in a value of zero for G,-
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Appendix D

Proof of the theorem in Section 5.3.1 on page 55 is given here. This theorem does not

prescribe any value for G,. It justifies the conditions under which limit (5.33) is true for all

0<w<w, without regard to stability robustness. Accor’.ag to this theorem, the satisfaction of
inequality (5.32) as p approaches co, and the selection of G such that V and A are
guaranteed, ensures a unique value for G; that leads to limit (5.33) for all 0<w<w,.

Proof:

Ir L,=L+BG, then: (D.1)
ollll

—_ - T

Lp = | M l(6..,') J; . (D.2)

Bl Gd
Assume:
G (iw) = G,(jw) + Gyiw) (D.3)

where G,(jw) and G,(jw) represent in diadic form |26] the contribution of the dominant modes
(represented by A) and the modes of the actuators of the closed-loop system, given by
equations (D.4) and (D.5).

20 gowl
G,(jw) = C[E — ]Lp (D.4)

3o u, wr
Gyfjw) = C [Z . ] L, (D.5)

jm2n41 ¥ " 8

u; and w;r are the right and left closed-loop ecigenvectors in c3® that satisly equations

(5.7) and (D.6).
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wls=wl(A-BG) i=12 .., 3 (D.6)

As the first step in the proof, limit (D.7) will be shown to be true.

lim G,(jw) = 0__ for all O0<w<w, (D.7)

P = X

The right closed-loop eigenvector associated with each actuator is given by equation (D.8).

This was aiready derived in equation (5.24).

[ [ M(@,) &2 + GR(®,) | T,
w=|[M@,)s?+GR®)]|"T,s [gi] i = 2041, 2042, .., 3n (D.8)
Inn

If inequality (5.32) is satisfied and p approaches oo, it car be verified thai each of the upper
2n members of each right eigenvector, u;, in equation (D.8) approaches a small number, while
the last n members stay constant. This implies that the members of Uy, of matrix U in
equation (5.10) will be much smaller than unity. If WT is the matrix of left closed-loop
eigenvectors, then WT = U . With the assumption that the members of U;, are much
smaller than wunity and with some algebraic manipulations, WT can be represented by
approximation (D.9) as p approaches a large number.

. - -1
Uu ! 'Uu ' Ulz Uzz

WT 1 l l (D.9)
'Uzz' U2l Uu' Uzz-

The n left closed-loop eigenvectors associated with the actuators form the lower partition of

matrix (D.9). In other words:

T _
[ Yon41

Wiz | = [‘ U Uy, Uyt Uzz'l] . (D.10)

L. w’n J
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Matrices Uzz' U2l and U" are independent of the closed-loop eigenvalues of the actuators.

This was observed in equations (5.24) and (5.19). Because of this independence, if the closed-
T

loop eigenvalues of the actuators become very large in magritude, all members of w;

(i = 20+1, 2042, ..., 3n) in equation (D.10) will stay bounded.

Consider the matrix with cgmplex members given by equation (D.11).

u; Wi .
. i = 2n+1, 2042, .., 3n (D.11)
jw - Bi

It the complex pumber, s, becomes very large in magnitude (with negative real parts for

i’
stability), then it is trivial to prove that the complex matrix in equation (D.11) will approach

an nXn complex matrix with very small members. This is true because matrix uiw;r
(i = 20+1, 2n+2, ..., 3n) will always have bounded elements, and because w is a bounded

variable (i.e., 0Kw<w,). The above limit can be formally stated by equation (D.12).

lim =0, i = 2n+1, 2042, ..., 3n (D.12)
jw - si

p — o

where: 0<m<wb

Since G,(jw) in equation (D.5) consists of a finite summation, the limit in equation (D.13) is

also true.

lim  Gy(jw) = 0, for all 0<w<w, (D.13)

p — o

At the second step of the proof, limit (D.14) will be shown to be true.

lim Jc Gl(ju) = Gt(jw) for all 0<w<uwy {D.14)
p — 00

Since G is selected to guarantee the eigenstructure properties of the target dynamics for the

manipulator, then equation (D.15) is true.

J. Cl:ul u, .. “2n]= C, I:zl Z, .. zzn] (D.15)
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z, (i =1, 2 .. 2n) is given by equation (3.1). Equation (D.15) is true because the right
closed-loop eigenvectors of the target dynamics are achievable. We will use this equality

later.

Equation (D.16) is true because both sides are the left eigenvectors of the target

impedance.
4= [U.."] [fe' 0....] (D-16)
t;. ollﬂ ‘rel
.T
L t,, -

where t'ir is the left eigenvector of the target dymamics in the global ~oordinate frame and

satisfies the following equatior:
tT( Nlppon - A)=0,T i=12 .,2. (D.17)

Muitiplying both sides of equation (D.16) by B, from equation (2.6) results in equation (D.18).

K

of [B, = U“-'{o“ ] (D.18)
J-cl J-l

L by,

Equation (D.19) is also true because both sides show the left closed-loop eigenvectors

associated with modes selected from A when p approaches oo.

]
=~
]

=

= [U,! - Uy U, (D.19)

T
“‘Vzn -

Multiplying both sides of equation (D.19) by L, from equation (D.2) results in equation (D.20).
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T -
r wl onn
WA L, = [U," - Uyt U, Ut M(e )T (D.20)
BlGd
w3,

Considering that U,, = I, equation (D.19) can be simplified to equation (D.21).

[‘"'ll‘ 1 Lp = Ull.l onn
. — U, B, G, (D.21)
wy MY(e,)J]
T
;..wzllJ

U, is a2 20Xn matrix. As the closed-loop eigenvalues of the actuators become larger,
the upper nXn partition of U12 vanishes faster than the lower partition. The columas of
U,, are given by the 2n upper members of y; in equation (D.8). So as p approaches oo,

equation (D.21) can be written as approximation (D.22).

- wT -
i
T -1
w, Lp ~ U, 00
Mie,) JT - U, B,G, (D.22)
WT
L. w2n -

where Uw‘ is the nXn lower partition of U,- Consider equations (D.22) and (D.18). If the

following equality is true:
MYe )T - u,' B, G, = 5t 1, (D.23)

then the right-hand sides of equations (D.22) and (D.18) will also be equal. Therefore, the
left-hand sides of equations (D.22) and (D.18) will be equal.
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g w;r "l B t'lr 7
wp (L, =] ¢ B, (D.24)
WT eT
szn - \-tzn .
Approximation (D.24) and equality (D.15) taken together result in limit (D.25).
lim J_ G, (jw) = G(jw) for all 0<w<w, (D.25)
p — 0O
where:
™ u owrl
G(jw= Cc| Yy — L, (D.26)
. jw -~ 8,
1==1 1
) 2n I t.:r
Gfiw) =C, | 3. ——|B, (D.27)
T

Equation (D.23) can be used to compute a unique value for G;. This is true because the

inverse of Ulzl B, always exists.

Since G (jw) = G,(jw) + G,(jw),

(D.28)

im J_ G (iw) = G(jw) for all 0<w<w,

p — 00 .
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Appendix E
Stability Robustness

This appendix gives a summary of multivariable stability-robustness criteria. For more

details, refer to references [49, 33].

Fulfillment of the multivariable Nyquist Criterion is a frequency-domain condition for
stability. This criterion requires that the encirclement count of the map of
det| I, + K(jw)Gp(jw) | evaluated on the standard Nyquist D-contour, must equal the
negative number of unstable modes of K(jw)GP(jw). Gp(jw) is given by equation (4.23).

arnt)

- K(s) + Gpls) A

Figure E-1: Closed-Loop System

Similarly, for the stability of the perturbed system, the nﬁmber of encirclements of the map
of deff 1+ K(jw)G;jjw) | must equal the negative number of unstable modes of K(jw)G;(jw).
Under the assumptions governing G;ljw), this number is the same as for K(jw) Gp(jw).
Therefore, the perturbed system will be stable if and only if the number of encirclements of
detf I+ K(jw)Gfjw) | remains unchanged for all G fjw) permitted by equation (4.23). This
is guaranteed if and only if def| I A + K(jw)G;jjw) ] remains non-zero as Gp(jw) continuously

approaches G;(jw), or equivalently, if and only if:
det [Ilm + K(jw)G (iw)| 1,, + E(jw) ]] # 0 for all 0<w<oo . (E.1)

It [l“ + K(jw)Gp(jw)[ I, + E(jw) ]] is singular for at least one frequency, such as w,
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then there exists a mon-zero vector, anC", such that equation (E.2) is true.

[I“ + [ Kliw,) G (iw,) |‘] x, = - E{jw)) x x, # 0 (E.2)

If inequality (E.3) is satisfied, then equality (E.2) will never happen in all 0<w<oo and
[l“ + K(jw)Gp(jw) [ 1, + E(iw) ]] will always be non-singular.

Omin [1“ + [ K(jw) G,(jv) 1"] > o, | Eljw) | for all 0<w<co (E3)

Therefore, the sufficient condition for the closed-loop stability of the system using the
perturbed model is given by inequality (E.3). o_ () is defined on page 42. Chapter
7 explains how K(jw) Gp(jw) can be approximated by the state-feedback loop transfer function
G (jul, - I, J! B. In Chapter 7 we prove that K(jw) Gp(jw) converges pointwise to
G (jwl, - I, J! B if H is selected according to some criterion. Because of this
convergence, inequality (E.4) can be satisfied instead of inequality (E.3) to guarantee stability

robustness specifications.

o [ Goliw) ] > efw) for all 0<w<oo (E.4)

where: G (jw) = I, + [ G(jw-1_)"B]?
and  e(w)>a, .. | E(jw) ]

The object is to design G so that inequality (E.4) will be satisfied. Figure 6-6-b shows a case
in which inequality (E.4) is satisfied.
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