VARYING TETHER LENGTHS FOR MODIFYING ORBITAL ECCENTRICITIES

by

SARAH A. GAVIT

B.S., Massachusetts Institute of Technology (1983)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE
DEGREE OF

MASTER OF SCIENCE

IN AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 18, 1985

c Massachusetts Institute of Technology 1985

Signature	of	Author	 Department	of	Aeron	nautics	and	Astronautics
Certified	рÀ	- -,	P	rof	essor			tinez-Sanchez is Supervisor

Accepted by Professor Harold Y. Wachman Chairman, Departmental Graduate Committee

ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEB 1 4 1985

LIBRARIES

VARYING TETHER LENGTHS FOR MODIFYING ORBITAL ECCENTRICITIES

by

SARAH A. GAVIT

Submitted to the Department of
Aeronautics and Astronautics on January 18, 1985
in partial fulfillment of the requirements for
the degree of Master of Science.

ABSTRACT

The purpose of this thesis was to derive linearized equations describing the variations in the orbital parameters resulting from the resonance between a periodically length varying tether system and its orbital frequency. A controlled periodic tether variation was assumed, from which the corresponding tether libration angle history was derived. This allowed the calculation of the radial and tangential accelerations acting on the tether system, and thus the changes in the orbital elements using the variational equations. The theoretical variations in the orbital elements were then compared to the results obtained by numerically integrating the equations of motion, with favorable results. The numerical analysis was extended to investigate cases not covered by the theory, as well as the tether tension profile and power requirements of the system.

Thesis Supervisor: Manuel Martinez-Sanchez
Title: Associate Professor of Aeronautical
and Astronautical Engineering

ACKNOWLEDGEMENTS

First of all, I'd like to thank Martin Marietta Corporation for funding my thesis, an act they may regret as they put up with me for the next several years as a real employee.

Second, I would like to thank Professor Manuel Martinez-Sanchez. Of all the professors I've met, I've never met one I'd rather work for, or that is more patient. I think Dan Heimerdinger put it well in the acknowledgements of his master's thesis when he said, "thanks for letting me take the credit for all your work".

Speaking of Dan Heimerdinger, and Dan Cousins for that matter, I'd like to thank them for helping me keep some form of sanity over the years. The SSL as a whole, especially Gearge Sarver, should be acknowledged for bearing with my growing pains at this wonderful place appropriately named the "institution". Special thanks to Professor Dave Akin and Javier DeLuis for helping in the production of this thesis.

Finally, I'd like to thank Professor Rene Miller, to whom I dedicate my thesis. His constant optimism and encouragement has helped me through many difficult times in the last six years.

Table of Contents

				Page			
I.	INTR	INTRODUCTION					
II.	THEORETICAL ANALYSIS						
	2.1	The Equ	ations of Motion	12			
	2.2		for the Tether Libration Angle Controlled Tether Length Variation	12			
	2.3	Determining the Average Change in the Orbital Elements Using the Variational Equations					
III.	THEORETICAL ANALYSIS vs. NUMERICAL ANALYSIS						
	3.1	Decreasing Orbital Eccentricity Using a Sine Variation of the Tether Length					
	3.2	Increasing Orbital Eccentricity Using a Sine Variation of the Tether Length					
	3.3	.3 Constant Orbital Eccentricity Using a Cosine Variation of the Tether Length					
IV.	CONC	LUSION		51			
	REFERENCES						
	FIGURES AND GRAPHS						
	APPENDIX A:		Conservation of Angular Momentum for a Dumbbell in Orbit About a Spherical Planet	74			
	APPE	NDIX B:	Derivation of the Tension in a Length Varying Tether	78			
	APPE	NDIX C:	Numerical Analysis Program	82			

I. Introduction

Tsiolkovsky, a Russian, first considered the use of two masses connected by a string in tension, for exploiting weak gravity gradient forces in space in 1895.(1) not until the 1960's, that V.V Beletskii, also a Russian, suggested that a tether system whose length varied at the orbital frequency, could induce a resonance, which could be used for maneuvering space vehicles.(2) In 1968, V.V Beletskii and M.E. Givertz wrote, "it is possible to control the geometry of a body such that variations which occur in the force of gravity over time lead to substantial deviations in the body's trajectory from the original".(3) Investigation into the use of tethers for this purpose was not pursued, however, since tether lengths of tens to hundreds of kilometers would have to be used to produce significant accelerations of a tether system. Not until the 1970's with the development of new lightweight synthetic fibers, such as Kevlar, were practical applications of tethers seriously considered.

A varying length tether system may be envisioned as a dumbbell, two masses connected by a tether, whose length is made to vary via a powered winch located at one or both of the masses. The reeling in and out of the tether, often referred to as tether "pumping", sets up Coriolis forces

which induce in plane librations of the tether system about its center of mass. If the reeling operation is driven such that a resonance occurs with the orbital frequency, it is possible to change the energy of the orbit, and thus the trajectory of the tether system. Total angular momentum must remain constant, however, since the external forces are all central (if the attracting body is assumed spherical). This is proved in Appendix I.

In 1983, Manuel Martinez-Sanchez, professor of aeronautical and astronautical engineering at M.I.T., was the first to attempt quantifying possible orbital variations of spacecraft using length varying tethers.(4) His original paper contained several errors, which have since then been revised but not formally published. The equations in this section represent his corrected results (to be published, together with the higher order results of this work).

Martinez's preliminary analysis considered second order resonance effects in ℓ/R , tether length over orbital radius, but only first order effects in \ll , the tether libration angle, for near circular orbits. For simplicity of calculations, the tether libration angle, \ll , was assumed to vary sinusoidally with constant amplitude. With this restriction, an equation for the tether length as a function of orbital position was derived from the equations of

motion. The tether libration angle and tether length were given by

$$\alpha = \alpha_0 \sin(\Omega t) \tag{1.1}$$

$$\ell = \overline{\ell} |\{1 + \alpha_0 \cos(\Omega t)\}| \qquad (1.2)$$

where,

 Ω = orbital frequency

 α = libration angle amplitude

 $\overline{\ell}$ = mean tether length

An illustration of the variations in the tether libration angle and length over one orbit are illustrated in Figure I.

The equations of motion were given by:

$$m(R - R\dot{\theta}^2) = \frac{-\mu m}{R^2} - \frac{3\mu m_{12}}{R^2} (\frac{\ell}{R})^2 [1 - \frac{3}{2} \sin^2 \alpha]$$

$$m \frac{d}{dt} (R^{2} \dot{\theta}) = \frac{3\mu}{3} m_{12} (\frac{\ell}{R})^{2} \sin\alpha \cos\alpha$$

$$mR^{2\theta} + m_{12}\ell^{2}(\alpha + \theta) = L$$

where,

m₁ = mass of the weight on the lower end of the tether

m2 = mass of the weight on the upper end of the
tether

$$^{m}_{12} = \frac{^{m_{1}^{m}_{2}}}{^{m_{1}^{m}} + ^{m_{2}^{m}}}$$

μ = earth's gravitational constant

R = center of mass orbital radius (measured from the center of the earth)

 θ = true anomaly

Equations (3) and (4) describe the conservation of the radial and tangential momentum of the tether system.

Equation (5) expresses conservation of total angular momentum which is the sum of the angular momentum of the center of mass, and the angular momentum of the tether system about its center of mass.

After perturbing the equations of motion, several useful first order approximations of the changes in apogee radius, $R_{\rm a}$, perigee radius, $R_{\rm p}$, and orbital eccentricity, e, were found as a function of the number of orbits over which the tether length had been perturbed, N.

$$R_a = R + 6 \frac{m_{12}}{m} \frac{\bar{k}^2}{R} \alpha_0 (\frac{3}{2} + 2N) \pi$$
 (1.6)

$$R_p = R - 6 \frac{m_{12}}{m} \frac{\bar{\ell}^2}{R} \alpha_0 (\frac{1}{2} + 2N) \pi$$
 (1.7)

$$e = 12N\pi \frac{m_{12}}{m} (\frac{\bar{k}}{R})^2 \alpha_0$$
 (1.8)

Successive apogee passages were found to be increasingly higher, developing 90° past θ = 0.0 (the point of maximum tether length), while successive perigee passages were found to be increasingly lower, developing 270° past θ = 0.0. The semimajor axis, a, and the orbital energy, E, were found to be constant to first order. Calculation of a possible rotation of the argument of pericenter, ω , was not attempted.

As an example, for a tether system with a center of mass radius of 6770 km, a mean tether length of 100 km, a lower mass of 100,000 kg, an upper mass of 10,000 kg, and a libration amplitude of .2 radians, the apogee will increase and the perigee will decrease by approximately 1.6 km/orbit, or, after one month, a circular orbit can develop to an orbit with eccentricity e = .064.

Martinez's analysis demonstrated that the first order variation in orbital eccentricity using a length varying tether was substantial enough to warrant further investigation into higher order perturbation effects of the orbital elements, as well as possible applications of this

orbital resonance technique.

The purpose of this thesis is to calculate the second order variations in libration angle and orbital eccentricity, of the orbital elements due to tether orbital resonance. Averaging these variations will result in an "ironed out" means of obtaining the changes in the orbital elements over an extended period of time. Of particular interest, will be the variations in the semimajor axis which had not been found in Martinez's first order analysis, and the rotation of the argument of perihelion, which was not accounted for. This paper will also extend the theory to include higher eccentric orbits.

Contrary to the former technique of picking a sinusoidal libration angle and then solving for a corresponding tether length variation, this analysis will select a simple tether length variation and solve for the natural angle of tether libration that results. This technique is considerably more difficult analytically, but seems more reasonable for practical applications, since it is easier to control tether length than tether angle. In fact, it may be impossible with only finite length control to impose an arbitrary libration time history against the combined action of natural gravity gradient oscillations and those imposed by orbital eccentricity.

Finally, possible applications of the tether orbital resonance technique will be considered. Orbital variations predicted by the second order perturbation theory will be compared to numerical results obtained by directly integrating the equations of motion. The numerical analysis will also be extended to include several cases not covered by the perturbation theory.

II. Theoretical Analysis

The following sections derive the second order variations in ℓ/R , e, and \ll , of the orbital elements that result from forced resonance between a length varying tether system and its orbital frequency. First Martinez's derivation of the equations of motion of a dumbell in orbit is briefly summarized in Section 2.1. Section 2.2 discusses a method for finding the tether libration angle as a function of orbital position, given a controlled tether length variation. This allows the calculation of the disturbing radial and tangential accelerations which act on the tether system in Section 2.3, which in turn yields the perturbation terms in the variational equations of the orbital elements. Finally, these equations are averaged to find the mean values of the orbital elements as a function of orbital position and time.

2.1 The Equations of Motion

Consider a body orbiting about its center of attraction at O. See Figure 2. The distance from O to the center of mass, c.m., is given by the parameter R, while the distance from O to a point mass in the body, P, is given by the parameter R'. Newton's differential equation for the two

body problem is,

$$\frac{d^2\bar{R}}{dt^2} + \frac{\mu}{R^3} \bar{R} = 0 \tag{2.1}$$

Using this equation and the geometry in Figure 2, the point mass radial and tangential gravitational accelerations may be described by the following equations:

$$a_{r} = \frac{-\mu}{\left(R'\right)^{2}} \cos \Delta \theta \tag{2.2}$$

$$a_{\theta} = \frac{-\mu}{(R')^2} \cos \Delta\theta \tag{2.3}$$

R' and $\ell/(R)^2$ are given to second order in x/R as follows:

$$\bar{R}' = x\bar{i}_{x} + (R+y)\bar{i}_{y}$$
 (2.4)

$$\frac{1}{(R')^2} \stackrel{?}{\sim} \frac{1}{R^2} \left[1 - 2 \frac{y}{R} + \frac{3y^2 - x^2}{R^2} \right]$$
 (2.5)

For small changes in θ , $\cos(\Delta\theta)$ and $\sin(\Delta\theta)$ may be approximated by their series expansions.

$$\cos \Delta \theta = 1 - 1/2 \left(\frac{x}{R}\right)^2$$
 (2.6)

$$\sin \Delta \theta \ \ \frac{x}{R} - \frac{xy}{R^2}$$
 (2.7)

Substituting equations (2.5), (2.6), and (2.7) into equations (2.2) and (2.3), one obtains the second order approximations in x/R of the radial and tangential gravitational accelerations:

$$a_{r} = \frac{-\mu}{R} \left[1 - 2 \frac{y}{R} + 3 \frac{y^{2} - 1/2 x^{2}}{R^{2}} \right]$$
 (2.8)

$$a_{\theta} = \frac{-\mu}{R^2} \frac{x}{R} \left[1 - 2 \frac{y}{R} \right]$$
 (2.9)

The sum of the forces acting per unit mass on all point masses in the body may then be equated to the radial and tangential accelerations of the center of mass.

$$m(\ddot{R} - \ddot{R}\dot{\theta}^{2}) = \frac{-\mu m}{R^{2}} - \frac{3\mu}{R^{4}} \left[\sum_{i} m_{i} v_{i}^{2} - 1/2 \sum_{i} m_{i} x_{i}^{2} \right]$$
 (2.10)

$$\frac{m}{R} \frac{d}{dt} \left[R^2 \stackrel{\bullet}{\theta} \right] = \frac{3\mu}{R^4} \sum_{i} m_i x_i y_i$$
 (2.11)

Finally, total angular momentum about the attracting center may be written as the sum of the angular momentum of the center of mass about the center of attraction, and the

angular momentum of the point masses about the center of mass.

$$mR^{2\theta} + \left[\sum_{i=1}^{\infty} (x_i^2 + y_i^2)\right](\alpha + \theta) = L = const$$
 (2.12)

Equations (2.10), (2.11), and (2.12) may now be specialized to describe an orbiting body with a dumbbell configuration. Using the geometry of Figure 3, one may write the following equations:

$$\sum_{i}^{\Sigma} m_{i} x_{i}^{2} = m_{i} x_{i}^{2} + m_{2} x_{2}^{2} = m_{12} x_{2}^{2} \sin^{2} \alpha$$
 (2.13)

$$\sum_{i}^{\Sigma} m_{i} y_{i}^{2} = m_{1} y_{1}^{2} + m_{2} y_{2}^{2} = m_{12} \ell^{2} \cos^{2}$$
 (2.14)

$$\sum_{i} x_{i} y_{i} = m_{1} x_{1} y_{1} + m_{2} x_{2} y_{2} = m_{12} \ell^{2} \sin\alpha \cos\alpha$$
 (2.15)

where,

$$m = m_1 + m_2$$
 (2.16)

$$m_{12} = \frac{m_1 m_2}{m} \tag{2.17}$$

Substituting equations (2.13), (2.14), and (2.15), into equations (2.10), (2.11) and (2.12), the equations of motion may be written as follows:

$$m(\ddot{R} - R\dot{\theta}^2) = \frac{-\mu m}{R^2} - \frac{3\mu m_{12}}{R^2} (\frac{\ell}{R})^2 \left[1 - \frac{3}{2} \sin^2 \alpha\right]$$
 (2.18)

$$m \frac{d}{dt}(R^2 \mathring{\theta}) = \frac{3\mu}{R} m_{12} \left(\frac{\ell}{R}\right)^2 \sin\alpha \cos\alpha \qquad (2.19)$$

$$mR^{2\theta} + m_{12}\ell^{2} (\alpha + \theta) = L$$
 (2.20)

Combining equations (2.19) and (2.20), results in the useful gravity gradient oscillation equation.

$$\frac{d}{dt} \left[\mathcal{L}^{2}(\dot{\alpha} + \dot{\theta}) \right] = \frac{-3\mu}{R} \left(\frac{\ell}{R} \right)^{2} \operatorname{Sin}\alpha \operatorname{Cos}\alpha$$
 (2.21)

2.2 Solving for the Tether Libration Angle given a Controlled Tether Length Variation

In this section, the libration angle, \propto , will be determined as a function of orbital position using the gravity gradient oscillation equation, (2.21).

First, solving for $\dot{\theta}$ from equation (2.20) and linearizing to second order in ℓ/R , one finds,

$$\frac{1}{\theta} = \frac{h}{R^2} \left[1 - \frac{m_{12}}{m} \left(\frac{\ell}{R} \right)^2 \left(\frac{d\alpha}{d\theta} + 1 \right) \right]$$
(2.22)

This equation may be used to rewrite the oscillation equation, (2.21), in terms of θ as follows:

$$\frac{d}{d\theta} \left[\left(\frac{k}{R} \right)^2 \left(1 + \frac{d\alpha}{d\theta} \right) \right] = \frac{-3\mu}{h^2} \frac{k^2}{R} \operatorname{Sin\alpha} \operatorname{Cos\alpha}$$
 (2.23)

Notice that the form $\dot{\theta} \approx h/R^2$ of equation (2.22) has been used, since the right hand side of equation (2.21) is itself already of second order in ℓ/R . Now, assume a tether length control law, (2.24), and near Keplarian motion over one orbit, (2.25). The latter approximation results from the fact that tether-induced perturbations of the center of mass orbit are also quadratic in ℓ/R , and would only introduce higher order libration perturbations through equation (2.21).

$$\ell = \overline{\ell} \left(1 + \lambda_{c} \cos \theta + \lambda_{s} \sin \theta \right) \tag{2.24}$$

$$R = \frac{p}{1 + e \cos \theta} \tag{2.25}$$

For perturbation analysis, the orders of smallness of e, and $\[\[\] \]$ are not independent, because, even without length variations, the tether will librate due to the orbital eccentricity with an amplitude approximately equal to e. Similarly, libration angles due to length variation are of the order of λ_c , λ_s . We here retain up to and including quadratic terms in e, $\[\] \]$, $\[\] \]$ Notice that this is the

highest order which still makes the problem linear in \propto $(\sin \propto \cos \propto \approx \sim +0 (\propto^3))$.

Expanding equation (2.23) to this order gives the result

$$\frac{d}{d\theta} \left[F(\theta) \frac{d\alpha}{d\theta} \right] + 3G(\theta) \alpha = H(\theta)$$
 (2.26)

which can be recognized as a linear, second order, inhomogenious, differential equation for \propto with respect to the independent variable θ . Here we have

$$F(\theta) = 1 + 2(e^{\epsilon} + \lambda_c) \cos \theta + 2\lambda_s \sin \theta$$
 (2.27)

$$G(\theta) = 1 + (e + 2\frac{\lambda}{c}) \cos\theta + 2\frac{\lambda}{s} \sin\theta \qquad (2.28)$$

$$H(\theta) = 2(e + \lambda_c) \sin \theta - 2\lambda_s \cos \theta$$

$$- (4\lambda_s e + 2\lambda_s \lambda_c)(\cos^2 \theta - \sin^2 \theta)$$

$$+ 2(e^2 + 4\lambda_c e + \lambda_c^2 - \lambda_s^2) \sin \theta \cos \theta \qquad (2.29)$$

It can be seen that the equation has periodic coefficients in θ . Expanding the derivative term in (2.26) and dividing by $F(\theta)$ one obtains,

$$\frac{d^{2}\alpha}{d\theta^{2}} + \frac{d\alpha}{d\theta} \frac{F_{\theta}}{F} + \frac{3G(\theta)}{F} \alpha = \frac{H(\theta)}{F}$$
 (2.30)

 $F(\theta)$ is now written as F, and F_{θ} and $F_{\theta\theta}$ represent the first and second derivatives of F. Using the transformation,

$$\alpha = e^{-1/2} \int \frac{F_{\theta}}{F} d\theta U = \frac{U}{\sqrt{F}}$$
 (2.31)

gives an equation with no first derivative term:

$$U_{\theta\theta} + U \left[\frac{1/4F_{\theta}^{2} - 1/2F_{\theta\theta}F}{F^{2}} + \frac{3G}{F} \right] = \frac{H(\theta)}{\sqrt{F}}$$
 (2.32)

Using equations (2.27), (2.28) and (2.29), to expand the coefficients of (2.32) to second order in e, λ_c and λ_s , one obtains the following result:

$$U_{\theta\theta} + U[3 + (\lambda_{c} - 2e) \cos\theta + \lambda_{s} \sin\theta]$$

$$= 2(e + \lambda_{c}) \sin\theta - 2\lambda_{s} \cos\theta$$

$$+ 4\lambda_{c} e \cos\theta \sin\theta + 2\lambda_{s} e (\sin^{2}\theta - \cos^{2}\theta) \qquad (2.33)$$

This equation may be rewritten as

$$U_{\theta\theta} + U \left[3 - \sqrt{\lambda_{g}^{2} + (2e - \lambda_{c})^{2}} \cos \beta\right]$$

$$= 2(e + \lambda_{c})\sin \theta - 2\lambda_{g}\cos \theta + 4\lambda_{c}e\cos \theta \sin \theta$$

$$+ 2\lambda_{g}e \left(\sin^{2}\theta - \cos^{2}\theta\right) \tag{2.34}$$

where,

$$\beta = \theta + \tan^{-1} \left[\frac{\lambda_s}{2e - \lambda_c} \right]$$
 (2.35)

Now, define ϕ to be,

$$\phi = 1/2 \beta \tag{2.36}$$

Transforming equation (2.34) into ϕ coordinates gives the following second order differential equation with nonconstant coefficients, easily recognized as Mathieu's equation.

$$U_{\phi\phi} + U \left[12 + 4\sqrt{\lambda_{s}^{2} + (2e - \lambda_{c})^{2}} - 8\sqrt{\lambda_{s}^{2} + (2e - \lambda_{c})^{2}} \cos^{2}\phi\right]$$

$$= 8 \left[(e + \lambda_{c})\sin\theta - \lambda_{s}\cos\theta + 2\lambda_{c}e\cos\theta \sin\theta + \lambda_{s}e(\sin^{2}\theta - \cos^{2}\theta)\right]$$

$$+ \lambda_{s}e(\sin^{2}\theta - \cos^{2}\theta)\right]$$
(2.37)

The solution to this equation, along with equation (2.31) will yield the desired expression for the libration angle, \propto , as a function of orbital position.

First, a homogeneous solution to equation (2.37) will be found using the techniques for solving Mathieu's equation in Reference 5.

Let parameters b and h be described by the following equations:

$$b = 12 + 4 \sqrt{\lambda_s^2 + (2e - \lambda_c)^2}$$
 (2.38)

$$h^{2} = 8 \sqrt{\lambda_{s}^{2} + (2e - \lambda_{c})^{2}}$$
 (2.39)

According to Figure 4, equation (2.37) falls well within the stable region for Mathieu's equation. Thus, (2.37) has two homogeneous solutions, one even and one odd, neither of which is periodic in ϕ . These solutions truncated at the level which is consistent with second-order accuracy in e, λ_c , and λ_s , are given by,

$$S_{e}(b, h; z) = \sum_{n=-\infty}^{\infty} a_{n} \cos [(S + 2n)\phi]$$

$$\approx a_{-2} \cos [(S - 4)\phi] + a_{-1} \cos [(S - 2)\phi]$$

$$+ a_{o} \cos [S\theta] + a_{1} \cos [(S + 2)\phi]$$

$$+ a_{2} \cos [(S + 4)\phi] \qquad (2.40)$$

$$S_{o} (b, h; z) = \sum_{n=-\infty}^{\infty} a_{n} \sin [(S + 2n)\phi]$$

$$= a_{-2} \sin [(S - 4)\phi] + a_{-1}^{'} \sin [(S - 2)\phi]$$

$$+ a_{o} \sin [S\theta] + a_{1} \sin [(S + 2)\theta]$$

$$+ a_{2} \sin [(S + 4)\phi]$$
(2.41)

where, using

$$Z = Cos \phi \qquad (2.42)$$

$$S = \sqrt{b} \left[1 - \frac{h^2}{4b} - \frac{h^4}{64b^2} \left(\frac{2 - 3b}{1 - b} \right) \right]$$

gives,

$$a_0 = 1$$
 (2.44)

$$a_1 = \frac{-h^2}{16(1 + S/2)^2 + 2h^2 - 4b - h^4(...}$$

$$^{\sim} \frac{-h^2}{16(1+2\sqrt{3})}$$
(2.45)

$$a_{2} = \frac{-a_{1}h^{2}}{16(S/2+2)^{2}+2h^{2}-4b-h^{4}(...)}$$

$$\frac{h^{4}}{1024(7+3\sqrt{3})}$$
(2.46)

$$a_{-1} = \frac{-h^{2}}{16(1 - S/2)^{2} + 2h^{2} - 4b - h^{4}(...)}$$

$$\frac{2}{16(1 - 2\sqrt{3})}$$
(2.47)

$$a_2 = \frac{-a_{-1}h^2}{16(S/2 - 2)^2 + 2h^2 - 4b + h^4(...}$$

Substituting equations (2.43) through (2.48) into equatons (2.40) and (2.41) one obtains,

$$S_{e} = Cos[\sqrt{12}(1 - \frac{h^{4}}{8448})\phi] + \frac{h^{4}}{1024}[\frac{Cos(\sqrt{12} - 4)\phi}{(7 - 3\sqrt{3})} + \frac{Cos(\sqrt{12} + 4)\phi}{(7 + 3\sqrt{3})}]$$

$$-\frac{h^{2}}{16}\left[\frac{\cos(\sqrt{12}-2)\phi}{(1-2\sqrt{3})}+\frac{\cos(\sqrt{12}+2)\phi}{(1+2\sqrt{3})}\right]$$
(2.49)

$$S_{o} = Sin \left[\sqrt{12} \left(1 - \frac{h^{4}}{8448}\right)\phi\right] + \frac{h^{4}}{1024} \left[\frac{Sin(\sqrt{12} - 4)\phi}{(7 - 3\sqrt{3})} + \frac{Sin(\sqrt{12} + 4)\phi}{(7 + 3\sqrt{3})}\right]$$

$$-\frac{h^{2}}{16}\left[\frac{\sin(\sqrt{12}-2\phi)}{(1-2\sqrt{3})} + \frac{\sin(\sqrt{12}+2)\phi}{(1+2\sqrt{3})}\right]$$
 (2.50)

Define ϕ and λ to be the following:

$$\phi = 1/2 (\theta + \lambda)$$
 (2.51)

$$\lambda = \tan^{-1} \left[\frac{\lambda_s}{2_e - \lambda_c} \right]$$
 (2.52)

To calculate the particular solution of equation (2.37), only the first order terms in e, λ_c and λ_s , of the homogeneous solutions, (2.49) and (2.50), are required, since the forcing term in (2.37) if of first or higher order itself. Therefore, using equations (2.51) and (2.52), the homogeneous solutions (up to arbitrary multiplicative constants) may be written to first order as ,

$$S_{e} = \cos \sqrt{3}(\theta + \lambda) - \frac{h^{2}}{16} \left[\frac{\cos (\sqrt{3} - 1)(\theta + \lambda)}{(1 - 2\sqrt{3})} + \frac{\cos (\sqrt{3} + 1)(\theta + \lambda)}{(1 + 2\sqrt{3})} \right]$$
(2.53)

$$S_{0} = \sin \sqrt{3}(\theta + \lambda) - \frac{h^{2}}{16} \left[\frac{\sin (\sqrt{3} - 1)(\theta + \lambda)}{(1 - 2\sqrt{3})} + \frac{\sin (\sqrt{3} + 1)(\theta + \lambda)}{(1 + 2\sqrt{3})} \right]$$

$$(2.54)$$

The particular solution of equation (2.37) will be determined below by variation of parameters as described in Reference 6. For our case, the particular solution is given as follows:

$$y = \frac{1}{W} \int_{0}^{\Phi} Q(\xi)[S_{e}(\xi)S_{o}(\phi) - S_{o}(\xi)S_{k}(\phi)]d\xi + C_{1}S_{e}(\phi) + C_{o}S_{o}(\phi)$$
 (2.55)

where ξ is a dummy argument of integration, Q is the forcing term of equation (2.37), and W is the Wronskian given by,

$$W = S_e \left(\frac{dS_o}{d\phi}\right) - S_o \left(\frac{dS_e}{d\phi}\right) = 2\sqrt{3}$$
 (2.56)

The Wronskian must be constant since the homogeneous part of equation (2.37) is of the form,

$$\frac{\mathrm{d}^2 U}{\mathrm{d}\phi^2} + r \frac{\mathrm{d}U}{\mathrm{d}\phi} = 0 \tag{2.57}$$

Substituting equations (2.53), (2.54) and (2.56) as well as the right hand side of equation (2.37) into equation (2.55), expanding to second order in e, λ_c and λ_s , integrating, and collecting terms, one obtains the following second order particular solution:

$$Y_{p} = \frac{4}{\sqrt{3}} \left[C_{1} \cos(\theta + \phi_{1}) + C_{8} \cos(\sqrt{3}\theta + \phi_{8}) + C_{11} \cos(2\theta - \phi_{11}) \right]$$

$$+ C_{12} \cos(\lambda + \phi_{12}) + C_{15} \cos((\sqrt{3} - 1)\theta + \phi_{15})$$

$$+ C_{18} \cos((\sqrt{3} + 1)\theta + \phi_{18}) \right]$$
(2.58)

where,

$$K_1 = \sqrt{(e + \lambda_c)^2 + \lambda_s^2}$$

$$K_2 = \sqrt{\lambda_c^2 + \lambda_s^2}$$

$$C_1 = \frac{-\sqrt{3} K_1}{4}$$

$$C_2 = \frac{\left[528 - 352\sqrt{3} + h^2(20 - 8\sqrt{3})\right]}{6336 - 3520\sqrt{3}} K_1$$

$$C_3 = \frac{[528 + 352\sqrt{3} + h^2(20 + 8\sqrt{3})]}{-6336 - 3520\sqrt{3}} K_1$$

$$C_{4} = \frac{eK_{2}}{-8 + 4\sqrt{3}}$$

$$C_{5} = \frac{eK_{2}}{8 + 4\sqrt{3}}$$

$$C_6 = \sqrt{C_2^2 + C_3^2 + 2C_2C_3 \cos(\phi_2 - \phi_3)}$$

$$C_7 = \sqrt{C_4^2 + C_5^2 + 2C_4C_5 \cos (\phi_4 - \phi_5)}$$

$$C_8 = \sqrt{C_6^2 + C_7^2 + 2C_6C_7 \cos(\phi_6 - \phi_7)}$$

$$C_9 = \frac{\sqrt{3} e K_2}{2}$$

$$c_{10} = \frac{\sqrt{3}}{64} h^2 \kappa_1$$

$$C_{11} = \sqrt{C_9^2 + C_{10}^2 + 2C_9C_{10}Cos(\phi_9 - \phi_{10})}$$

$$C_{12} = \frac{-h^2 K_1}{64\sqrt{3}}$$

$$C_{13} = \frac{h^2 K_1}{448 - 192\sqrt{3}}$$

$$C_{14} = \frac{h^2 K_1}{320 + 64\sqrt{3}}$$

$$C_{15} = \sqrt{C_{13}^2 + C_{14}^2 + 2C_{13}C_{14} \cos (\phi_{13} - \phi_{14})}$$

$$C_{16} = \frac{h^2 K_1}{-320 + 64\sqrt{3}}$$

$$C_{17} = \frac{-h^2 \sqrt{K_1}}{448 + 192 \sqrt{3}}$$

$$C_{18} = \sqrt{C_{16}^2 + C_{17}^2 + 2C_{16}^2 C_{17}^2 \cos(\phi_{16} - \phi_{17}^2)}$$

$$\psi_1 = \psi_2 = \psi_{10} = \psi_{13} = \psi_{16} = \tan^{-1} \left[\frac{e + \lambda_c}{\lambda_s} \right]$$

$$\psi_3 = \psi_{12} = \psi_{14} = \psi_{17} = \tan^{-1} \left[-\frac{e^{-\lambda}c}{\lambda_s} \right]$$

$$\psi_4 = \psi_9 = \tan^{-1} \left[\frac{\lambda_c}{\lambda_s} \right]$$

$$\psi_5 = \tan^{-1} \left[-\frac{\lambda_c}{\lambda_s} \right]$$

$$\phi_1 = \psi_1$$

$$\phi_2 = (\sqrt{3} - 1)\lambda + \psi_2$$

$$\phi_3 = (\sqrt{3} + 1)\lambda + \psi_3$$

$$\phi_4 = (\sqrt{3} - 2)\lambda + \psi_4$$

$$\phi_5 = (\sqrt{3} + 2)\lambda + \Psi_5$$

$$\phi_6 = \tan^{-1} \left[\frac{C_2 \sin \phi_2 + C_3 \sin \phi_3}{C_2 \cos \phi_2 + C_3 \cos \phi_3} \right]$$

$$\phi_7 = \tan^{-1} \left[\frac{C_4 \sin \phi_4 + C_5 \sin \phi_5}{C_4 \cos \phi_4 + C_5 \cos \phi_5} \right]$$

$$\phi_8 = \tan^{-1} \left[\frac{C_6 \sin \phi_6 + C_7 \sin \phi_7}{C_6 \cos \phi_6 + C_7 \cos \phi_7} \right]$$

$$\phi_9 = \psi_9$$

$$\phi_{10} = \lambda + \psi_{10}$$

$$\phi_{11} = \tan^{-1} \left[\frac{C_9 \sin \phi_9 + C_{10} \sin \phi_{10}}{C_9 \cos \phi_9 + C_{10} \cos \phi_{10}} \right]$$

$$\phi_{12} = \psi_{12}$$

$$\phi_{13} = (\sqrt{3} - 2)\lambda + \psi_{13}$$

$$\phi_{14} = \sqrt{3} \lambda + \psi_{14}$$

$$\phi_{15} = \tan^{-1} \left[\frac{C_{13} \sin \phi_{13} + C_{14} \sin \phi_{14}}{C_{13} \cos \phi_{13} + C_{14} \cos \phi_{14}} \right]$$

$$\phi_{16} = \sqrt{3} \lambda + \psi_{16}$$

$$\phi_{17} = (\sqrt{3} + 2)\lambda + \psi_{17}$$

$$\phi_{18} = \tan^{-1} \left[\frac{C_{16} \sin \phi_{16} + C_{17} \sin \phi_{17}}{C_{16} \cos \phi_{16} + C_{17} \cos \phi_{17}} \right]$$

The complete solution of equation (2.37) is simply the sum of the homogeneous and particular solutions

$$U = S_e + S_o + Y_p$$
 (2.59)

The constants A and B of the homogeneous solutions will henceforth be considered to be the same order as e, λ_c and λ_s , which is permissible since A and B are simply determined by initial conditions on α and α_θ , themselves presumably small.

By substituting (2.59) into (2.31), the libration angle, \propto , may be determined as a function of orbital position, to second order in ℓ/R as well as e, λ_c , λ_s , A and B.

$$\alpha = ACos\sqrt{3}(\theta+\lambda) + BSin\sqrt{3}(\theta+\lambda) + \frac{4}{\sqrt{3}} C_1Cos(\theta+\phi_1)$$

$$+ \frac{4}{\sqrt{3}} C_8Cos(\sqrt{3}\theta+\phi_8) - \frac{Ah^2}{16} \left[\frac{Cos(\sqrt{3}-1)(\theta+\lambda)}{(1-2\sqrt{3})} + \frac{Cos(\sqrt{3}+1)(\theta+\lambda)}{(1+2\sqrt{3})} \right]$$

$$- \frac{Bh^2}{16} \left[\frac{Sin(\sqrt{3}-1)(\theta+\lambda)}{(1-2\sqrt{3})} + \frac{Sin(\sqrt{3}+1)(\theta+\lambda)}{(1+2\sqrt{3})} \right]$$

$$+\frac{4}{\sqrt{3}} C_{11} \cos(2\theta + \phi_{11}) + \frac{4}{\sqrt{3}} C_{12} \cos(\lambda + \phi_{12})$$

$$+\frac{4}{\sqrt{3}}C_{15}Cos[(\sqrt{3}-1)\theta+\phi_{15}] + \frac{4}{\sqrt{3}}C_{18}Cos[(\sqrt{3}-1)\theta+\phi_{18}]$$

-
$$A(e+\lambda_c)$$
Cos θ Cos $\sqrt{3}(\theta+\lambda)$ - $B(e+\lambda_c)$ Cos θ Sin $\sqrt{3}(\theta+\lambda)$

$$-\frac{4}{\sqrt{3}}C_{1}(e+\lambda_{c})Cos\thetaCos(\theta+\phi_{1}) - \frac{4}{\sqrt{3}}C_{8}(e+\lambda_{c})Cos\thetaCos(\sqrt{3}\theta+\phi_{8})$$

-
$$A\lambda_s \sin\theta \cos\sqrt{3}(\theta+\lambda)$$
 - $B\lambda_s \sin\theta \sin\sqrt{3}(\theta+\lambda)$

$$-\frac{4}{\sqrt{3}}C_1^{\lambda}S^{\sin\theta\cos(\theta+\phi_1)} - \frac{4}{\sqrt{3}}C_8^{\lambda}S^{\sin\theta\cos(\sqrt{3}\theta+\phi_8)}$$
 (2.60)

2.3 <u>Determining the Average Change in the Orbital Elements</u> <u>Using the Variational Equations</u>

The derivation of the equation for the libration angle, α , as a function of orbital position in Section 2.2, now permits the calculation of the radial and tangential acceleration acting on a tether system whose length varies periodically. According to equations (2.18) and (2.19), the perturbing radial and tangential accelerations acting on an orbiting dumbbell are given by,

$$a_{r} = \frac{-3\mu}{R^{2}} \frac{m_{12}}{m} \left(\frac{\ell}{R}\right)^{2} \left(1 - \frac{3}{2} \sin^{2} \alpha\right)$$
 (2.61)

$$a_{\theta} = \frac{3\mu}{R^2} \frac{m_{12}}{m} \left(\frac{\ell}{R}\right)^2 \operatorname{Sin}\alpha \operatorname{Cos}\alpha$$
 (2.62)

Assuming a small pproximation, and substituting equations (2.24) and (2.60) into equations (2.61) and (2.62), one obtains the following approximations of the perturbing radial and tangential accelerations to second order in ℓ /R as well as in e, λ_c , λ_s , A and B.

$$a_{r} = 3\mu \frac{m_{12}}{m} \frac{\bar{k}^{2}}{a^{4}} \int_{-1-(2\lambda_{c}+4e)\cos\theta - 2\lambda_{s}\sin\theta}$$

$$+ \frac{3}{2} A^{2} \cos^{2}\sqrt{3}(\theta+\lambda) + 3AB\cos\sqrt{3}(\theta+\lambda)\sin\sqrt{3}(\theta+\lambda)$$

$$+ \frac{12}{\sqrt{3}} AC_{1}\cos\sqrt{3}(\theta+\lambda)\cos(\theta+\phi_{1})$$

$$+ \frac{12}{\sqrt{3}} AC_{8}\cos\sqrt{3}(\theta+\lambda)\cos(\sqrt{3}+\phi_{8}) + \frac{3}{2}B^{2}\sin^{2}\sqrt{3}(\theta+\lambda)$$

$$+ \frac{12}{\sqrt{3}}BC_{1}\sin\sqrt{3}(\theta+\lambda)\cos(\theta+\phi_{1}) + \frac{12}{\sqrt{3}}BC_{8}\sin\sqrt{3}(\theta+\lambda)\cos(\sqrt{3}\theta+\phi_{8})$$

$$+ 16C_{1}C_{8}\cos(\theta+\phi_{1})\cos(\sqrt{3}\theta+\phi_{8}) + 8C_{1}^{2}\cos^{2}(\theta+\phi_{1})$$

$$+ 8C_{8}^{2}\cos^{2}(\sqrt{3}\theta+\phi_{8}) - (2\lambda_{c}\lambda_{s} + 8e\lambda_{s})\sin\theta\cos\theta$$

$$- (\lambda_{c}^{2} + 8e\lambda_{c} + 6e^{2})\cos^{2}\theta - \lambda_{s}^{2}\sin^{2}\theta - 4e^{2}]$$
(2.63)

$$a_{\theta} = 3\mu \frac{m_{12}}{m} \frac{\bar{k}^{2}}{4} \left[A \cos \sqrt{3} (\theta + \lambda) + B \sin \sqrt{3} (\theta + \lambda) + \frac{4}{\sqrt{3}} C_{1} \cos (\theta + \phi_{1}) \right]$$

$$+ \frac{4}{\sqrt{3}} C_{8} \cos (\sqrt{3}\theta + \phi_{8}) - \frac{Ah^{2}}{16} \frac{\cos (\sqrt{3} - 1)(\theta + \lambda)}{(1 - 2\sqrt{3})} + \frac{\cos (\sqrt{3} + 1)(\theta + \lambda)}{(1 + 2\sqrt{3})}$$

$$- \frac{Bh^{2}}{16} \frac{\sin (\sqrt{3} - 1)(\theta + \lambda)}{(1 - 2\sqrt{3})} + \frac{\sin (\sqrt{2} + 1)(\theta + \lambda)}{(1 + 2\sqrt{3})}$$

$$+ \frac{4}{\sqrt{3}} C_{11} \cos (2\theta + \phi_{11}) + \frac{4}{\sqrt{3}} C_{12} \cos (\lambda + \phi_{12}) + \frac{4}{\sqrt{3}} C_{15} \cos (\sqrt{3} - 1)\theta + \phi_{15})$$

$$+ \frac{4}{\sqrt{3}} C_{18} \cos ((\sqrt{3} + 1)\theta + \phi_{18}) + A(3\theta + \lambda_{c}) \cos \theta \cos \sqrt{3} (\theta + \lambda)$$

$$+ B(3\theta + \lambda_{c}) \cos \theta \sin \sqrt{3} (\theta + \lambda) + \frac{4}{\sqrt{3}} C_{1} (3\theta + \lambda_{c}) \cos \theta \cos (\theta + \phi_{1})$$

$$+ \frac{4}{\sqrt{3}} C_{8} (3\theta + \lambda_{c}) \cos \theta \cos (\sqrt{3}\theta + \phi_{8}) + A \lambda_{s} \sin \theta \cos \sqrt{3} (\theta + \lambda)$$

$$+ B \lambda_{s} \sin \theta \sin \sqrt{3} (\theta + \lambda) + \frac{4}{\sqrt{3}} C_{1} \lambda_{s} \sin \theta \cos (\theta + \phi_{1})$$

$$+ \frac{4}{\sqrt{3}} C_{8} \lambda_{s} \sin \theta \cos (\sqrt{3}\theta + \phi_{8}) \right] (2.64)$$

The variational equations for the total angular momentum L, the orbital eccentricity, e, the semimajor axis, a, and the argument of pericenter, ω , may be written in terms of the φ -rturbing radial and tangential accelerations as (Ref 7),

$$\frac{dL}{d\theta} = \frac{R^3}{L} a_{\theta}$$
 (2.65)

$$\frac{de}{d\theta} = \frac{R^2 p}{L^2} \left[\sin \theta \right]_{a_r} + \left[\cos \theta + \frac{R}{p} (e + \cos \theta) \right]_{\theta}$$
 (2.66)

$$\frac{da}{d\theta} = \frac{2R^2a^2}{L^2} \left[e(\sin\theta) a_r - \frac{P}{R} a_\theta \right]$$
 (2.67)

$$\frac{d\omega}{d\theta} = \frac{-R^2}{eL^2} \left[p(\cos\theta) a_{\theta} - (p+R)(\sin\theta) a_{\theta} \right]$$
 (2.68)

By substituting equations (2.63) and (2.64) into equations (2.65), (2.66), (2.67) and (2.68), and linearizing to second order in ℓ/R as well as in e, λ_c , λ_s , A and B, one obtains a set of nonperiodic variational equations which can not be averaged directly over one orbit. Each term in these equations, however, may be written in terms of first powers of sine and cosine, and thus may be averaged separately according to its particular frequency. Using this technique of averaging, results in the following equations describing

the average changes in the orbital elements due to tether orbital resonance.

$$\frac{dL}{d\theta} = 0 \tag{2.69}$$

$$\frac{de}{d\theta} = -6 \frac{m_{12}}{m} \left(\frac{\bar{k}}{a}\right)^2 \lambda_s \qquad (2.70)$$

$$\frac{da}{d\theta} = -12 \frac{m_{12}}{m} \left(\frac{\overline{k}}{a}\right)^2 e_{\lambda} s \qquad (2.71)$$

$$\frac{d\omega}{d\theta}_{avg} = 6 \frac{\ln 12}{m} \left(\frac{\bar{k}}{a}\right)^2 \left(1 + \frac{\lambda_c}{e}\right)$$
 (2.72)

Equation (2.69) states that the total angular momentum of the center of mass must be conserved on average. This is consistent with the fact that the overall angular momentum is strictly constant due to the central nature of the external forces (Appendix A), while the angular momentum with respect to the center of mass remains bounded. Of course, the angular momentum of the center of mass does fluctuate in the course of each orbit, in response to the corresponding fluctuations of the libration angle.

The average rate of change in orbital eccentricity,

described in equation (2.70), agrees with Martinez's result given in equation (8). This change is directly proportional to λ_i , the constant of the sine term of the tether length equation (2.23). Therefore, only the variation of the tether length in spacial quadrature with the radius vector magnitude contributes to the change in eccentricity. If λ_i is positive (in the direction of the true anomaly), a decrease in orbital eccentricity will result and vice versa. Thus, an orbit can be gradually circularized by "paying out" tether during perigee passage, i.e., so as to have maximum deployed length 90° past the perigee. Notice the absence of quadratic terms in equation (2.70) and (2.72). These results are accurate to second order, though, and the error involved is cubic in α_i , e, λ_i , and λ_i .

Since the average angular momentum is constant, a decrease in orbital eccentricity will correspondingly yield a decrease in the semimajor axis. Equation (2.71) describes how the semimajor axis varies to second order with both the eccentricity and the constant λ_s . Here we note the absence of first order terms in e, α , λ_s and λ_s . Indeed, small eccentricity changes in a near-circular will not affect the orbit's energy or semimajor axis. This follows from the Keplarian relationship given in equation (2.75), which is

satisfied to second order in e by equation (2.69), (2.70), and (2.71).

The cosine term of the tether length equation (which produces a maximum tether length at perigee and a minimum tether length at apogee) yields a positive rotation in the argument of perihelion as described in equation (2.72). This rotation is also inversely proportional to the eccentricity. The constant term in equation (2.72), describes a constant rate of change of the argument of perihelion due to the fact that the tether system is a very elongated mass whose forced libration due to orbital eccentricity alone (even with no tether length changes) is in resonance with the orbital motion.

By integrating equations (2.69), (2.70), (2.71) and (2.72), it is now possible to find closed form solutions for these parameters in terms of θ .

Equation (2.70) may be written as follows:

$$\frac{d}{d\theta} = -C \left(\frac{1}{2}\right) \tag{2.73}$$

where,

$$C = 6 \frac{m_{12}}{m} (\frac{\bar{k}}{p})^2 p^2 \lambda_s$$
 (2.74)

C is constant on average, since angular momentum and therefore the orbital parameter, p, are constant on average. Now, consider the relationship between the total angular momentum, the semimajor axis, and the orbital eccentricity.

$$L^2 = \mu a(1-e^2) \tag{2.75}$$

Solving for "a" in terms of "e", substituting into equation (2.73), and separating variables yields an integrable equation for the eccentricity. Using the initial conditions at θ = 0.0, e = e_o, one obtains the following closed form solution for the eccentricity:

$$e = \frac{\sqrt{2}}{2} \tanh \left[-\frac{N}{N^{*}} + \tanh^{-1}(\sqrt{2}e_{0}) \right]$$
 (2.76)

where,

$$N = \frac{\theta}{2\pi} = \# \text{ of orbits completed}$$
 (2.77)

$$\frac{1}{N^{\frac{1}{N}}} = 12\sqrt{2}\pi \frac{m_{12}}{m} (\frac{\bar{k}}{p})^2 \lambda_{s}$$
 (2.78)

This equation describes the eccentricity as a monotonically decreasing function of N/N*, starting at e_o and reaching a minimum limit at e=-.7071. The eccentricity must be positive, however, giving a real minimum limit of e=0.0. A

graph of equation (2.76) for a positive λ_{ς} is shown in Figure 5. Note that N* is negative if λ_{ς} is (thus yielding an increase of e with θ). Of course the quadratic approximation and other aspects of the theory, such as the boundedness of α fail for large values of e.

By substituting equation (2.75) into equation (2.73) and integrating, one obtains a similar expression for the semimajor axis divided by the parameter.

$$\frac{a}{p} = 1 + 1/2 \tanh^{2} \left[-\frac{N}{N^{*}} + \tanh^{-1}(\sqrt{2} \mathcal{E}_{0}) \right]$$
 (2.79)

This ratio is a monotonically decreasing function of N/N*, originating at a/p=1+e $_{\circ}^{\lambda}$ and reaching a minimum at a/p=1.0 (since e must remain positive). A plot of this equation for a positive λ_{s} is given in Figure 6.

Finally, one can obtain a closed form solution for the argument of pericenter, ω , by first writing equation (2.72) as

$$\frac{d\omega}{d\theta} = \frac{D}{a^2} \left(1 + \frac{\lambda_c}{e}\right)$$
 (2.80)

where,

$$D = 6 \frac{m_{12}}{m} \left(\frac{\bar{k}}{p}\right)^2 p^2$$
 (2.81)

Dividing equation (2.80) by equation (2.73) and integrating subject to the initial condition at ω =0.0, e=e, one obtains the following result.

$$\omega = -\frac{1}{\lambda_{s}} \left[\frac{\sqrt{2}}{2} \tanh \left(-\frac{N}{N^{\frac{1}{N}}} + \tanh^{-1} \left[\sqrt{2} e_{o} \right] \right) - e_{o} \right]$$

$$-\lambda_{c} \ln \left(\frac{\sqrt{2}}{2e_{o}} \tanh \left[-\frac{N}{N^{\frac{1}{N}}} + \tanh^{-1} \left(\sqrt{2} e_{o} \right] \right) \right] \qquad (2.82)$$

A plot of this equation for a positive λ_{s} and λ_{c} =0.0, is given in Figure 7.

III. Theoretical Analysis versus Numerical Analysis

In this section, the theoretical variations of the orbital parameters derived in Section II, will be compared to purely numerical results obtained by integrating the equations of motion of the center of mass of the tether system (equations (2.18), (2.19) and (2.20)).

As mentioned in Section II, it is the sine variation of the tether length that produces a change in the orbital eccentricity. A positive λ_s will result in a decreasing orbital eccentricity, and a negative λ_s will result in an increasing orbital eccentricity. A cosine variation of the tether length will simply effect the rotation of the argument of perihelion. A positive λ_s will result in a positive rotation of the argument of perihelion. A negative λ_s will result in either a positive or a negative rotation in the argument of perihelion depending on the ratio λ_s/e (positive, if $|\lambda_s/e|$ is less than or equal to 1, negative otherwise).

Three potential tether missions will be considered:

- 1) A decrease in orbital eccentricity using a sine variation of the tether length (λ_s positive, λ_c =0.0, a maximum tether length 90° past perigee and a minimum tether length 90° before perigee)
- 2) An increase in orbital eccentricity using a sine variation of the tether length (λ_s negative, $\lambda_c=0.0$, a minimum tether length 90° past perigee and a maximum tether length 90° before perigee)

3) A constant orbital eccentricity using a cosine variation of the tether length (λ_c positive, $\lambda_s = 0.0$, a maximum tether length at perigee and a minimum tether length at apogee)

Tether velocity, tether tension, and the power required for the tether reeling operation will be considered for the first case. The instantaneous tether tension for a length varying tether is derived in Appendix B and is given by

$$T = -\frac{\mu}{R^3} m_{12} \ell \left[-2 + 3 \sin^2 \alpha \right]$$

$$-\frac{3\mu}{R^4} \ell^2 \cos \alpha \left[1 - \frac{5}{2} \sin^2 \alpha \right] \frac{m_{12}}{m} \left[m_1 - m_2 \right]$$

$$-\ell m_{12} + \ell m_{12} (\mathring{\alpha} + \mathring{\theta})^2$$
(3.1)

The instantaneous power is simply the product of the tether tension and velocity.

$$P = T \left(\frac{d\ell}{dr}\right) \tag{3.2}$$

$$\frac{d\ell}{dt} = \overline{\ell}(\alpha_{s}\cos\theta - \alpha_{c}\sin\theta) \frac{d\theta}{dt}$$
 (3.3)

For all cases considered, the following initial conditions were used:

 $m_1 = 100,000 \text{ kg}$

 $m_2 = 10,000 \text{ kg}$

 $\ell = 100 \text{ km}$

 $R_{p} = 6770 \text{ km}$

 $\mu = 398778 \text{ km}^3/\text{sec}^2$

 $\theta = 0.0$

A = 0.0

B = 0.0

A copy of the program used to calculate the following results is given in Appendix C. Numerical integration of the equations of motion was executed using fourth order Runge Kutta, with a 10° step size. Double precission accuracy was used to minimize roundoff errors.

3.1 <u>Decreasing Orbital Eccentricity Using a Sine Variation of the Tether Length</u>

As a first example, consider $\lambda_s = 0.2$, $\lambda_c = 0.0$, and an initial eccentricity e=0.1. For $\lambda_s = .2$, a sinusoidal length variation between 80 and 120 kilometers results, with a maximum tether length 90° past perigee and a minimum tether length 90° prior to perigee. A graph of the tether length versus the true anomaly is given in Figures 8 and 9.

Figures 10 and 11, show the changes in the Coriolis induced in-plane libration angle as a function of the number

of orbits completed. The libration angle is a nonperiodic, bounded function with a maximum value of 24°.

The analytical and numerical eccentricity, semimajor axis, and argument of perihelion, are plotted versus the number of orbits completed in Figures 12, 13, and 14. As seen in Figure 12, the orbital eccentricity can be decreased from 0.1 to 0.0773 in 200 orbits or approximately 15 days. theoretical eccentricity falls within 0.76 % of the numerical eccentricity, and the theoretical semimajor axis falls within 0.02 % of the numerical semimajor axis. Thus, the analytical expressions derived in Section II for both the eccentricity and the semimajor axis are very good approximations describing the variations of these elements. In Figure 14, the numerical argument of perihelion increases by 9.7°, while the theoretical argument of perihelion predicts only a 6.5° change after 200 orbits (within 33 % of the numerical value). For better accuracy, one would have to consider third and higher order terms not kept in the theoretical analysis.

Next, consider the tether velocity, tension and power requirements given in Figures 15 through 20. In Figures 15 and 16, the tether velocity is seen as a near sinusoidal variation, with a 24 m/s maximum speed. A positive velocity signifies an increasing tether length, while a negative velocity signifies a decreasing tether length. Note, the

tether velocity has a larger magnitude for an increasing tether length than a decreasing tether length. This may be explained by the fact that the center of mass angular velocity, $d\theta/d\epsilon$, in equation (3.2) is maximum at perigee and a negative libration angle (or a rotation of the tether about the system c.m., opposite to the rotation of the tether system in its orbit) and minimum at apogee and a positive libration angle. The above is consistent with equation (2.20), describing the conservation of total angular momentum.

The instantaneous tether tension, described by equation (3.1), is plotted as a function of the number of orbits completed in Figures 17 and 18. The maximum and minimum tensions which occur during the mission are approximately 4000 and 1500 Newtons respectively. Note, the minimum tether tension is sufficiently high, far from the danger of a zero tension tether. The average tether tension is approximately 2750 N.

In Figures 19 and 20, the power required for the tether reeling operation is given as a function of the number of orbits completed. A positive power corresponds to a power consumption (tether length decreasing by reeling process), and a negative power corresponds to a power dissipation or storage (tether length increasing due to external forces). The power comsumed exceeds the power dissipated or stored by a factor of

2.6, which is a desirable result since it is best to have a minimum amount of power to be dissipated.

The peak power required is approximately 90 kilowatts and occurs when the product of the tether velocity and tension is maximum, according to equation (3.3). The maximum power to be dissipated and the average power are approximately 30 and 15 kilowatts respectively. A means of measuring the relative inefficiency of designing a 90 kilowatt power supply for operating the tether system is to ensider the average to peak power ratio which is approximately 0.17, compared to an ideal ratio of unity. Of course the maximum power required can be significantly decreased by using a shorter tether, having the effect that it will take a longer operation time to obtain the same variations in the orbital parameters.

Finally, it is important to consider the range of values of the initial eccentricity, and λ_i for which the tether libration angle remains bounded. In Figure 21, the maximum libration angle encountered during a mission is plotted versus the initial eccentricity (this assumes $\lambda_i = 0.2$, $\lambda_c = 0.0$). For values of the original eccentricity greater than 0.16, the tether angle is unbounded, and the tether system starts to spin. In Figure 22, the maximum libration angle encountered during a mission is plotted versus the constant λ_i (this assumes an initial eccentricity e=0.1, and $\lambda_i = 0.0$). For

values of λ_{i} greater than 0.27, the tether angle is again unbounded, and the tether system starts to spin. A graph demonstrating the maximum initial eccentricity and λ_{i} combinations possible before an instability in the tether libration angle occurs is given in Figure 23. The area below the curve represents a tether system with a bounded libration angle, while the area above the curve represents a spinning tether system.

3.2 <u>Increasing Orbital Eccentricity Using a Sine Variation of the Tether Length</u>

This section will verify that the tether scheme of section 3.1 is reversible, i.e. that the eccentricity of the orbit may be increased using tether orbital resonance. For this mission, let $\lambda_{\delta} = -0.2$, $\lambda_{c} = 0.0$ and the initial eccentricity be e=0.0773 (this was the final eccentricity obtained after 200 orbits in section 3.1). With $\lambda_{\delta} = -0.2$, the tether length will reach a minimum value 90° after perigee, and a maximum value 90° prior to perigee. The variations in the tether length and libration angle are given in Figures 24 and 25.

As seen in Figures 26 and 27, after 200 orbits, the eccentricity and semimajor axis have increased to the

eccentricity and semimajor axis values used as initial conditions in section 3.1 (e = 0.1, and a = 7521 km). Thus, the eccentricity and semimajor axis are directly reversible. Again, the analytical eccentricity and semimajor axis are within 0.16 % and 0.004 % of their numerical values.

In Figure 28, both the theoretical and numerical analysis show a positive rotation in the argument of perihelion. After 200 orbits, the numerical analysis yields a 5.2° rotation of the argument of perihelion, while the theoretical analysis predicts a 6.3° rotation of the argument of perihelion (within 21% of the numerical value). Again, the theoretical model must consider third and higher order terms in equation (2.82) to predict the variation in the argument of perihelion more accurately.

3.3 <u>Constant Orbital Eccentricity Using a Cosine Variation of the Tether Length</u>

As a final example, let $\lambda_s = 0.0$, $\lambda_c = 0.2$ and the initial eccentricity be equal to e=0.1. Under these conditions, the tether length will reach a maximum value at perigee and a minimum value at apogee. The variations in tether length and libration angle for this mission may be seen in Figures 29 and 30.

According to equations (2.70) and (2.71), setting λ_s =0.0 (i.e. no sine term in the tether length equation) will result in a zero net change in the orbital eccentricity and semimajor axis. The numerical results verify this in Figures 31 and 32. In fact, the final eccentricity and semimajor axis are within 0.04 % and 0.12 % of their original values (therefore, any deviation in the numerical results may be regarded as noise).

Looking at equation (2.72) a positive λ_c value should result in an additional positive rotation of the argument of perihelion compared to the rotation if λ_c =0.0 (as in Section 3.1). This theoretical variation in the argument of perihelion is shown in Figure 33, and reaches 18.93° after 200 orbits (compared to 6.5° for λ_c =0.0). The numerical value of the argument of perihelion reaches 20.02° after 200 orbits (compared to 9.7° for λ_c =0.0). For this example, the theory is able to predict the argument of perihelion to within 6 % of its actual value.

IV. Conclusion

Linearized approximations (to second order in ℓ/R , e, λ_3 , and λ_c) for the variations of the orbital elements due to tether orbital resonance were derived in Section II. In Section III these approximations were compared to the variations obtained by integrating the equations of motion. The theoretical variations of both the orbital eccentricity and semimajor axis were found to be very close to the numerical results (within 1 % after 200 orbits or 15 days). Although the theoretical estimate for the variation in the argument of perihelion was significantly less accurate than for the eccentricity and semimajor axis, it was still within 33 % of the numerical value in the best case examined.

The numerical analysis was extended to identify the range of values of the eccentricity and tether length parameter λ_i for which the libration angle remains bounded for a sinusoidal variation in tether length. The instantaneous tether tension equation derived in Appendix B allowed for the calculation of both the tether tension and the powered required for operation of the tether system.

The derivation and verification of the linearized, second order variations in the orbital elements due to tether orbital resonance, increases the confidence with which potential

missions may be studied. It has been shown that significant changes in eccentricity may be obtained using a sinusoidal, length varying tether system within a reasonable period of time and varying power demands. Due to the relatively large power requirement necessary to make the resonance scheme competative with other orbital maneuver techniques, a space station application seems the most likely candidate (since a large power source would be present for other station requirements). A space platform could change orbits at virtually no expense simply by deploying a length varying tether in times of off-peak power requirements. Of course, not all possible orbital changes could be conducted using a tether system, since the total angular momentum must remain constant. Several practical applications of the resonance technique are possible, however, especially in cooperation with other potential tether applications. For example, the elliptic orbit that results after a station deploys a satellite or deboosts the shuttle using a tether, could be recircularized using the same tether system by periodically varying the tether length. Several examples of this technique for various satellite masses and tether lengths were investigated in Reference 8. A cosine variation of the tether length, opens a new door in the potential use of a tether system for controlled rotation the argument of perihelion.

REFERENCES

- 1. Tsiolkovsky, K. E., 1895, Grezy O. Zemie i nebe (i) Na Veste (Speculations between earth and sky, and on Vesta; science fiction works). Moscow, izd-vo AN SSSR, 1959, p. 35.
- 2. Beletskii, V. V., "The Motion of an Artificial Satellite in Relation to the Center of Masses ", in "Science ", 1968.
- 3. Beletskii, V. V., Givertz, M.E., Space Research, Vol VI, 1968, USSR.
- 4. Martinez-Sanchez, Manuel, "Modification of Orbital Energy by Control of Tether Length", in Applications of Tethers in Space, Workshop Proceedings, Vol II, June 15-17, Williamsburg, VA.
- 5. Morse, P. M., and Feshbach, H., <u>Methods</u> of <u>Theoretical</u> Physics, New York, McGraw-Hill, Vol I, 1953.
- 6. Hildebrand, F. B., <u>Advanced Calculus for Applications</u>, Second Edition, Prentice-Hall Inc., New Jersey, 1976, pgs. 26-27.
- 7. Battin, R. H., <u>Astronautical Guidance</u>, New York, McGraw-Hill, 1964.
- 8. Martinez-Sanchez, M., Gavit, S. A., "Transportation Applications of Space Tethers", Presented at the A.I.A./NASA Space Systems Technology Conference, Costa Mesa, CA, June 1984.

Figure 1. Sinusoidal Tether Libration Angle and Corresponding Length Variation Over One Orbit

Figure 2. Geometry of an Orbiting Body

Figure 3. Geometry of an Orbiting Dumbbell

Figure 4. Mathieu's Stability Region

Figure 5. Eccentricity vs. N/N*

Figure 6. A/P vs. N/N*

Figure 7. Arg. of Perihellon vs. N/N*

Figure 8. Tether Length vs. True Anomaly
Over Two Orbits

Tether Length (km)

Figure 9. Tether Length vs. No. of Orbits
Over Eleven Orbits

Figure 10. Tether Lib. Angle vs. True Anomaly
Over Two Orbits

Figure 11. Tether Lib. Angle vs. No. of Orbits
Over Twenty Orbits

Figure 12. Eccentricities vs. No. of Orbits

Analytical and Numerical

Figure 13. Semimajor Axis vs. No. of Orbits

Analytical and Numerical

Figure 14. Arg. of Perihelion vs. No. of Orbits

Analytical vs. Numerical

Figure 15. Tether Velocity vs. True Anomaly
Over Two Orbits

Figure 16. Tether Velocity vs. No. of Orbits
Over Twee/vz Orbits

Figure 17. Tension vs. True Anomaly
Over Two Orbits

Figure 18. Tension vs. No. or Orbits
Over Twenty Orbits

Figure 19. Power vs. True Anomaly
Over Two Orbits

Figure 20. Power vs. No. or Orbits
Over Twenty Orbits

Figure 21. Max. Lib. Angle vs. Init. Eccentricity

Figure 22. Max. Lib. Angle vs. λ_r

Figure 23. Max. Lib. Angle vs. Init. Eccentricity

Figure 24. Tether Length vs. No. of Orbits
Over Twenty Orbits

Tether Lib. Angle (deg)

Figure 25. Tether Lib. Angle vs. No. of Orbits

Over Twenty Orbits

Figure 26. Eccentricities vs No. of Orbits
Analytical and Numerical

Figure 27. Semimajor Axis vs. No. of Orbits
Analytical and Numerical

Figure 28. Arg. of Perihelion vs. No. or Orbits
Analytical and Numerical

Figure 29. Tether Length vs. No. of Orbits
Over Trenty Orbits

Tether Ubration Angle (deg)

Figure 30. Tether Lib. Angle vs. No. of Orbits
Over Twenty Orbits

Figure 31. Eccentricities vs. No. or Orbits
Analytical and Numerical

Figure 32. Semimajor Axis vs. No. of Orbits

Analytical vs. Numerical

Figure 33. Arg. of Perihelion vs. No. of Orbits
Analytical vs. Numerical

APPENDIX A

CONSERVATION OF ANGULAR MOMENTUM FOR A DUMBBELL IN ORBIT ABOUT A SPHERICAL PLANET

Consider the geometry and forces action on an orbiting dumbbell, two masses connected by a tether, in Figure A1 and Figure A2. The total angular momentum of a dumbbell, may be written as follows:

$$\vec{L} = m_1 \vec{r}_1 \times \vec{v}_1 + m_2 \vec{r}_2 \times \vec{v}_2 \tag{A.1}$$

Differentiating the angular momentum with respect to time, one obtains,

$$\frac{dL}{dt} = \vec{r}_1 \times m_1 \frac{d\vec{v}_1}{dt} + m_1 \frac{d\vec{r}_1}{dt} \times \vec{v}_1 + \vec{r}_2 \times m_2 \frac{d\vec{v}_2}{dt} + m_2 \frac{d\vec{r}_2}{dt} \times \vec{v}_2$$
 (A.2)

The second and fourth terms of this equation are equal to zero since

$$\vec{v}_1 = \frac{d\vec{r}_1}{dt} \tag{A.3}$$

$$\vec{v}_2 = \frac{d\vec{r}_2}{dt} \tag{A.4}$$

Let F_{TOT} , F_{INT} and F_{ext} be the total sum of the forces, the internal forces and the external forces acting on a mass respectively. Equation A.2 may then be written,

$$\frac{dL}{dt} = \vec{r}_{1} \times \vec{F}_{1(TOT)} + \vec{r}_{2} \times \vec{F}_{2(TOT)} = \vec{r}_{1} \times [\vec{F}_{1(INT)} + \vec{F}_{1(EXT)}] + \vec{r}_{2} \times [\vec{F}_{2(INT)} + \vec{F}_{2(FXT)}]$$
(A.5)

Figure Al. Geometry of an Orbiting Dumbbell

Figure A2. Forces Acting on an Orbiting Dumbbell

But the external forces are the gravity forces, and $\vec{r}_{1(EXT)}$ is aligned with \vec{r}_{1} , and $\vec{r}_{2(EXT)}$ is aligned with \vec{r}_{2} . Therefore

$$\vec{r}_1 \times \vec{F}_{1(EXT)} = \vec{r}_2 \times \vec{F}_{2(EXT)} = 0$$
 (A.6)

Equation A.5 may now be written as,

$$\frac{dL}{dt} = \vec{r}_1 \times \vec{\bar{r}}_1(EXT) = \vec{r}_2 \times \vec{\bar{r}}_2(EXT) = 0$$
 (A.7)

Let \vec{r}_1 and \vec{r}_2 be written in terms of the distance from the center of earth to the center of gravity of the dumbbell, \vec{r}_G , and the distance from the c.g. of the dumbbell to the two masses at the end of the tether, ρ_1 and ρ_2 :

$$\vec{r}_1 = \vec{r}_G + \vec{\rho}_1 \tag{A.8}$$

$$\vec{r}_2 = \vec{r}_6 + \vec{\rho}_2 \tag{A.9}$$

Substituting into equation A.7, one obtains,

$$\frac{dL}{dt} = (\vec{r}_{G} + \vec{\rho}_{1}) \times \vec{F}_{1} (INT) + (\vec{r}_{G} + \vec{\rho}_{2}) \times \vec{F}_{2} (INT)$$

$$= \vec{r}_{G} \times (\vec{F}_{1} (INT) + \vec{F}_{2} (INT)) + \vec{\rho}_{1} \times \vec{F}_{1} (INT) + \vec{\rho}_{2} \times \vec{F}_{2} (INT)$$
(A.10)

The sum of the internal faces in the first term of equation 9, must be equal to zero for the system to be in equilibrium. For a dumbbell, these forces are just the tension forces in the tether which must be

equal and opposite. The second and third terms of equation A.10 must also be equal to zero since the internal tension forces are aligned along the tether and are therefore, parallel to ρ_1 adn ρ_2 . Equation A.10, may be rewritten as follows,

$$\frac{dL}{dt} = 0 ag{A.11}$$

Therefore, total angular momentum must be conserved for an orbiting dumbbell. Note: the above proof is independent of tether length.

Thus, total angular momentum must still be conserved for a dumbbell whose tether length is made to vary periodically.

APPENDIX B

DERIVATION OF THE TENSION IN A LENGTH VARYING TETHER

To calculate the tension in a length varying tetner, consider the free body diagram of the forces acting on one of the masses at the end see Figure 61. of the tether, say m_2 . Using equations 2.8 and 2.9, the radial and tangential accelerations acting on m_2 are given by,

$$\frac{(F_r)_2}{m_2} = (a_r)_2 = \frac{-\mu}{r_G^2} \left[1 - \frac{2y_2}{r_G} + 3 \frac{y_2^2 - 1/2x_2^2}{r_G^2}\right] - \frac{T \cos\alpha}{m_2}$$
 (B.1)

$$\frac{(F_{\theta})_{2}}{m_{2}} = (a_{\theta})_{2} = \frac{-\mu}{r_{G}^{2}} \frac{\chi^{2}}{r_{G}} [1 - 3 \frac{y^{2}}{r_{G}}] - \frac{T \sin\alpha}{m_{2}}$$
 (B.2)

Equations B.1 and B.2 may be combined and written in terms of the total acceleration of mass m_2 as,

$$a_{2} = \frac{-T}{m_{2}} - \frac{\mu}{r_{G}^{2}} \cos \alpha$$

$$- \frac{\mu}{r_{G}^{2}} \left[\frac{k_{2}}{r_{G}} (-2 + 3 \sin^{2} \alpha) + 3 \left(\frac{k_{2}}{r_{G}} \right)^{2} \cos \alpha (1 - \frac{5}{2} \sin^{2} \alpha) \right]$$
 (B.3)

where,

$$\cos\alpha = \frac{y^2}{x^2} \tag{B.4}$$

Figure Bl. Geometry and Forces Acting on A Dumbbell Mass

$$Sin\alpha = \frac{\chi^2}{2}$$
 (B.5)

The total acceleration of mass m_2 may also be written in terms of the center of mass, the relative, the centifical and the *Coriolis* accelerations.

$$\vec{a}_2 = \vec{a}_{cm} + \vec{a}_{m_2/c.m.} + \vec{a}_{cor} + \vec{a}_{rel}$$
 (B.6)

The center of mass acceleration is the sum of the radial and tangential center of mass accelerations which are given by the right hand sides of equations 2.18 and 2.19. The relative, centificial and Coriolis accelerations may be found using the following expressions for the angular velocity and distance ℓ_2 :

$$\vec{w} = -\vec{\theta}\vec{K}$$
 (B.7)

$$\vec{z}_2 = \chi \vec{i} + y \vec{j}$$
 (B.8)

Equation B.6 may now be written as,

$$a_{r} = \frac{-\mu}{r_{G}^{2}} \cos \alpha - \frac{3\mu}{r_{G}^{2}} \frac{m_{12}}{m} \left(\frac{\ell}{r_{G}}\right)^{2} (1 - \frac{5}{2} \sin^{2}\alpha) \cos \alpha$$

$$+ \ddot{\ell}_{2} - \ell_{2} (\dot{\alpha} + \dot{\theta})^{2}$$
(B.9)

The distance from mass m_2 to the center of mass of the dumbbell, ℓ_2 , can be written in terms of the total tether length ℓ , and the two masses m_1 and m_2 .

$$\ell_2 = \frac{m_1}{m_1 + m_2} \ell \tag{B.10}$$

Using equation B.10, equations B.3 and B.7 may be equated and solved for the instantaneous tether tension.

$$T = \frac{-\mu}{r_{G}^{3}} m_{12} \ell(-2 + 3 \sin^{2}\alpha)$$

$$- 3 \frac{\mu}{r_{G}^{4}} \ell^{2} \cos\alpha(1 - \frac{5}{2} \sin^{2}\alpha) \frac{m_{12}}{m} (m_{1} - m_{2})$$

$$- i m_{12} + \ell m_{12} (i + i)^{2}$$
(B.11)

APPENDIX C: NUMERICL ANALYSIS PROGRAM

PROGRAM NOTATION

THE = MAIN PROGRAM

```
= SUBROUTINE, CALCULATES RUNGE KUTTA VALUES
SIS
    = SUBROUTINE, CALCULATES LIBRATION ANGLE INITIAL CONDITIONS (CONSTANTS AND PHASE ANGLES).
CON
INHY = SUBROUTINE, CALCULATES THE INVERSE HYPERBOLIC
       TANGENT.
     = SEMIMAJOR AXIS (KM).
     = CONSTANT OF COSINE TERM IN TETHER LENGTH EQUATION.
AC
    = TETHER LIBRATION ANGLE (RADIANS).
= TETHER LIBRATION ANGLE (DEGREES).
A!
ALD
    = MAXIUM TETHER LIBRATION ANGLE IN ORBIT COMPLETED
AMX
       (RADIANS).
AMXD = MAXIUM TETHER LIBRATION ANGLE IN ORBIT COMPLETED
       (DEGREES).
     = DERIVATIVE OF THE ORBITAL RADIUS WITH RESPECT TO TIME
AR
       (KM/SEC).
    = "AR" AT LAST RUNGE KUTTA ITERATION (KM/SEC).
ARF
     = CONSTANT OF SINE TERM IN TETHER LENGTH EQUATION.
ATH = SEMIMAJOR AXIS THEORETICAL VALUE (KM)
     = DERIVATIVE OF "AL" WITH RESPECT TO TIME (RADIANS).
= DERIVATIVE OF "AL" WITH RESPECT TO TIME (DEGREES).
DATH = DERIVATIVE OF THE TETHER LIBRATION ANGLE WITH
       RESPECT TO THETA AT T=0.0 (RADIANS).
     = DERIVATIVE OF THE TETHER LENGTH WITH RESPECT
DL
       TO TIME (KM/SEC)
    = SECOND DERIVATIVE OF THE TETHER LENGTH WITH
DDL
       RESPECT TO TIME (KM/SEC).
     = DERIVATIVE OF THETA WITH RESPECT TO TIME
DT
       (RADIANS/SEC).
     = DERIVATIVE OF THE LIBRATION ANGLE WITH RESPECT
       TO TIME AT T=0.0 (RADIANS/SEC).
ECC = ECCENTRICITY.
ECCO = ECCENTRICITY AT T=0.0.
ECTH = THEORETICAL ECCENTRICITY VALUE.
     = EARTH GRAVITATIONAL CONSTANT (KM**3.0/SEC**2.0)
GR
     = RUNGE KUTTA STEP SIZE (RADIANS).
     = RUNGE KUTTA STEP SIZE (DEGREES).
HD
     = ANGULAR MOMENTUM OF THE CENTER OF MASS (KM**2.0/SEC)
LPM = TOTAL ANGULAR MOMENTUM
     = MASS AT END OF TETHER, NEAREST EARTH (KG).
M 1
     = MASS AT END OF TETHER, FARTHEST FROM EARTH (KG).
M2
     = NUMBER OF ORBITS COMPLETED.
ORC
PAR = ORBITAL PARAMETER.
PER = ORBITAL PERIOD (SEC).
      ORBITAL PERIOD (HOURS).
PFRH
PERHO= ORBITAL PERIOD AT LAST RUNGE KUTTA ITERATION
         (HOURS).
POW = POWER REQUIRED FOR REELING OPERATION (WATTS)
POWK = POWER REQUIRED FOR REELING OPERATION (KWATTS).
POWX = MAXIMUM POWER REQUIRED FOR REELING OPERATION IN
        LAST ORBIT COMPLETED.
      = TETHER LENTH (KM).
RA
     = APOGEE RADIUS (KM)
     = MEAN TETHER LENTH (KM)
= ORBITAL RADIUS AT LAST RUNGE KUTTA ITERATION (KM)
RB
RF
RG
     = ORBITAL RADIUS (CENTER OF EARTH TO CENTER OF MASS)
RP
      PERIGEE RADIUS
TEN = TETHER TENSION (NEWTONS/1000.0)
TENN = TETHER TENSION (NEWTONS).
     = TRUE ANOMOLY (RADIANS).
TH
THD = TRUE ANOMOLY (DEGREES).
     = "THD" AT LAST RUNGE KUTTA ITERATION (DEGREES).
THE
TIMH = TETHER OPERATION TIME (HOURS)
    = ARGUMENT OF PERIHELION (DEGREES).
WD
WLD = ARGUMENT OF PERIHELION LINEARIZED THEORETICAL VALUE
        (DEGREES).
WTH = ARGUMENT OF PERIHELION THEORETICAL VALUE (RADIANS).
WTHD = ARGUMENT OF PERIHELION THEORETICAL VALUE (DEGREES).
```

MAIN PROGRAM

```
THE00010
      IMPLICIT REAL+16 (A-H, K-Z)
                                                                           THE00020
С
                                                                           THE00030
      COMMON /ALL/ K(4), N(4), P(4), Q(4),
                                                                           THE00040
          H, LPM, GR, MR, R, M12,
                                                                           THE00050
          RGT, LT, ART, ALT,
     8
                                                                           THE00060
          ECC, TH, AS, AC,
     &
                                                                           THE00070
          C1, C8, P1, P8, RR, QR, I
                                                                           THE00080
С
                                                                           THE00090
      SET INITIAL CONDITIONS.
C
                                                                           THEOO 100
С
                                                                           THE00110
          ECC = .10 DO
                                                                           THE00120
          ECCO = ECC
                                                                           THE00130
          TH = 0.0 DO
                                                                           THE00140
          THD = 0.0 DO
                                                                           THE00150
          AC =0.0 DO
                                                                           THE00160
          AS = 0.2 DO
                                                                           THE00170
          CALL CON
                                                                           THE00180
          RP = 6770.0 DO
                                                                           THE00190
          A = 7491.36115 DO
С
                                                                           THE00200
          RP = A*(1.0 - ECC)
С
                                                                           THE00210
          A = RP/(1.0-ECC)
                                                                           THE00220
          RA = A * (1.0+ECC)
                                                                           THE00230
          PAR = A * (1.0 - ECC**2.0)
                                                                           THE00240
          RG = RP
                                                                           THE00250
          GR = 398778.0 DO
                                                                           THE00260
          RB = 100.0 D0
          R = RB * (1.0 + AC*COS(TH) + AS*SIN(TH))
                                                                           THE00270
                                                                           THE00280
          PER = (6.283185308 DO) * SQRT(A**3.0/GR)
                                                                           THF00290
          PERHO = PER/3600.0
                                                                           THE00300
          ORC = 0.0
                                                                           THEO0310
          SIGN = 1.0
                                                                           THE00320
          X = 0.0
                                                                           THE00330
          X10 = 10.0
                                                                           THE00340
          X1 = 1.0
                                                                           THE00350
          M1 = 100000.0
                                                                           THE00360
          M2 = 10000.0
                                                                           THE00370
          M = M1 + M2
                                                                           THE00380
          MM = M1 - M2
                                                                           THE00390
          M12 = (M1*M2)/M
                                                                           THE00400
          MR = M12/M
                                                                           THE00410
          LPM = SQRT(GR*PAR)
                                                                           THE00420
          MS3 = SQRT(3.0)
                                                                           THE00430
          AL = (4.0/MS3) * (C1*COS(P1) + C8*COS(P8))
                                                                           THEO0440
          AMX = AL
          DATH = (4.0/MS3) * (0.0 - C1*SIN(P1) - MS3*C8*SIN(P8))
                                                                           THE00450
          DT = (LPM/RG**2.0) * (1.0 - MR*((R/RG)**2.0) * (DATH + 1.0))
                                                                           THE00460
                                                                           THE00470
          DA = DT * DATH
                                                                           THE00480
          L = (RG**2.0)*DT
          AR =(DTGD * ECC * PAR* SIN(TH))/(1.0 + ECC * COS(TH))**2.0
                                                                           THE00490
                                                                           THE00500
С
          H = .10471976 DO
                                                                           THEO0510
          HD = 6.0 DO
C
                                                                           THE00520
          H = .17453293 DO
                                                                           THE00530
          HD = 10.0
                                                                           THE00540
          TIMH = 0.0 DO
                                                                           THE00550
          TW = SQRT(2.0)
```

```
THE01110
          LT = L + .5 * N(2)
                                                                           THE01120
          ART = AR + .5 * P(2)
                                                                           THE01130
          ALT = AL + .5 * Q(2)
                                                                           THE01140
          CALL SIS
                                                                           THE01150
С
                                                                           THE01160
CC
      FIND K4, N4, P4, Q4:
                                                                           THE01170
                                                                           THE01180
                                                                           THE01190
          RGT = RG + K(3)
                                                                           THE01200
          LT = L + N(3)
                                                                           THE01210
          ART = AR + P(3)
                                                                           THE01220
          ALT = AL + Q(3)
                                                                           THE01230
          CALL SIS
                                                                           THE01240
С
                                                                           THE01250
      FIND NEW VALUES FOR RG, L, AR, AL :
С
                                                                           THE01260
С
                                                                           THE01270
          RG = RG + (K(1) + 2*K(2) + 2*K(3) + K(4))/6.0
                                                                           THE01280
          L = L + (N(1) + 2*N(2) + 2*N(3) + N(4))/6.0
                                                                           THE01290
          AR = AR + (P(1) + 2*P(2) + 2*P(3) + P(4))/6.0
                                                                           THE01300
          AL = AL + (Q(1) + 2*Q(2) + 2*Q(3) + Q(4))/6.0
                                                                           THE01310
С
      FIND AL IN DEGREES, AND THE DERIVATIVE OF AL WITH RESPECT
                                                                           THE01320
С
                                                                           THE01330
C
      TO TIME.
                                                                           THE01340
С
                                                                           THE01350
           ALD = AL * (57.2957795 DO)
                                                                           THE01360
C
                                                                           THE01370
           I = 1
                                                                           THE01380
           RGT = RG
                                                                           THE01390
           LT = L
                                                                           THE01400
           ART = AR
                                                                           THE01410
           ALT = AL
                                                                           THE01420
           CALL SIS
                                                                           THE01430
           DT = L/RG**2.0
                                                                           THE01440
           DA = Q(1) * DT
                                                                           THEO1450
           DAD = DA * (57.2957795)
                                                                           THE01460
С
                                                                           THE01470
C
      UPDATE RA AND RP, WD, ORC, PER: NEED TO START PROGRAM AT
                                                                           THE01480
Ċ
                                                                           THE01490
C
      PERIGEE, TH = 0.0.
                                                                           THEO 1500
С
                                                                           THE01510
            M11= SIGN * AR
                                                                           THE01520
            IF (M11 .GE. O.O) GO TO 180
                IF (AR .GE. 0.0) GO TO 170
                                                                           THE01530
                                                                           THE01540
                    A92 = (AR-ARF)/AR
                                                                           THE01550
                    RA = RG-(RG-RF)/A92
                                                                           THE01560
                    SIGN = 0.0 - SIGN
                                                                           THE01570
                    GO TO 180
                                                                           THE01580
   170 -
                    A92 = (AR-ARF)/AR
                                                                           THE01590
                    RP = RG-(RG-RF)/A92
                                                                           THEQ1600
                    SIGN = 0.0 - SIGN
                                                                           THE01610
                    AMX = AL
                                                                           THEO 1620
                    ORC = ORC + 1.0
                                                                           THF01630
                    TIMH = TIMH + .5*(PERH + PERHO)
                                                                           THEO1640
                    PERHO = PERH
                                                                           THE01650
                    WD = THD-(THD-THF)/A92 - ORC*360.0
```

```
THE01660
  180
           RF = RG
                                                                           THE01670
           ARF = AR
                                                                           THE01680
           THF = THD
                                                                           THE01690
С
                                                                           THE01700
С
      FIND THE ECCENTRICITY :
                                                                           THEO1710
С
                                                                           THE01720
          ECC = (RA-RP)/(RA+RP)
                                                                           THE01730
          A = .5*(RA+RP)
          PER = (6.283185308 DO) * SQRT(A**3.0/GR)
                                                                           THEO1740
          PERH = PER/3600.0
                                                                           THE01750
                                                                           THE01760
С
С
      CALCULATE THE MAXIMUM POWER REQUIRED.
                                                                           THE01770
                                                                           THE01780
С
          DL = RB * (AS*COS(TH) - AC*SIN(TH)) * DT
                                                                           THE01790
                                                                           THE01800
C
                                                                           THE01810
          D4 = -2.0*ECC*AS*COS(TH)*SIN(TH)
                                                                           THE01820
          D5 = 2.0*ECC*AC*SIN(TH)**2
          D6 = 0.0 - AS*SIN(TH) - AC*COS(TH)
                                                                           THEO 1830
                                                                           THE01840
          DDL = RB*(DT**2) * (D4+D5+D6)
                                                                           THEO 1850
C
          T4 = 0.-GR*M12*R*(0.0-2.0+3.0*SIN(AL)**2)/(RG**3)
                                                                           THE01860
                                                                           THEO 1870
          T5 = 0.0-3.0*GR*(R**2)*COS(AL)/(RG**4)
                                                                           THE01880
          T6 =SIN(AL) **2
          T66 = (1.0-2.5*T6)*MR*MM
                                                                           THEO 1890
                                                                           THEO 1900
          T7 = 0.0-DDL*M12 + R*M12*(DT+DA)**2
                                                                           THEO 1910
          TEN = T4 + T5*T66 + T7
          TENN = TEN * 1000.0
                                                                           THE01920
                                                                           THE01930
          ALF = AL
          POW = TEN*DL
                                                                           THE01940
                                                                           THEO 1950
          POWK = POW + 1000.0
                                                                           THEO 1960
С
                                                                           THE01970
С
                                                                           THE01980
C
      UPDATE THE MAXIMUM LIBRATION ANGLE PER ORBIT.
      AMXD IS THE MAXIMUM LIBRATION ANGLE PER ORBIT.
                                                                           THE01990
С
С
      IF ONLY PRINTING AFTER FINISHIG AN ORBIT, AMXD IS
                                                                           THE02000
      THE MAXIMUM LIBRATION ANGLE THAT OCCURED IN THE LAST ORBIT.
                                                                           THE02010
С
       LIKEWISE, POWX IS THE PEAK POWER REQUIRED PER ORBIT.
                                                                           THE02020
С
                                                                           THE02030
С
                                                                           THE02040
          M90 = ABS(AL)
          IF (M90 .LE. ABS(AMX)) GO TO 181
                                                                           THE02050
                                                                           THE02060
              AMX = AL
                                                                           THE02070
               AMXD = AL*(57.2957795 DO)
              AXXD = AMXD
                                                                           THE02080
                                                                           THE02090
C
                                                                           THE02 100
          M91 = AbS(POW)
                                                                           THE02110
          IF (M91 .LE. ABS(FOWX)) GO TO 182
  131
              POWX = POW
                                                                           THE02120
                                                                           THE02130
С
                                                                           THE02140
С
      CALCULATE THE THEORETICAL VALUES.
                                                                           THE02150
  182 N7 = 12.0*TW*PI*MR*((RB/PAR)**2)
                                                                           THE02160
                                                                           THE02170
      NN = N7 * AS
      RR = TW + ECCO
                                                                           THE02180
                                                                           THE02190
      CALL INHY
                                                                           THE02200
      D32 = QR - ORC*NN
```

```
ECTH = (TW/2.0) * TANH(D32)
                                                                                         THF02210
        ATH = PAR * (1.0 + .5*(TANH(D32))**2)
                                                                                          THE02220
C
        WTH = -(ECC-ECCO + AC*LOG(ECC/ECCO))/AS
                                                                                          THE02230
        WTHD = WTH *(57.29577951 DO)
                                                                                         THE02240
        WL = (N7/TW) * (1.0 - 2.0*ECCO**2)*(1.0*AC/ECCO)*ORC
                                                                                         THE02250
        WLD = WL * (57.29577951 DO)
                                                                                          THE02260
        GO TO 190
                                                                                         THE02270
С
        WRITE (6,188) NN, RR, QR, D32
                                                                                         THE02280
   188 FORMAT(' NN = ', F14.6, ' RR = ', F14.6, ' QR = ', F14.6, & ' D32 = ', F14.6,//)
С
                                                                                         THE02290
C
                                                                                          THE02300
С
                                                                                          THE02310
C
                                                                                         THE02320
С
                                                                                         THE02330
С
        PRINT ONLY FOR EVERY 10 ORBITS
                                                                                         THE02340
C
                                                                                          THE02350
C
  190
             C4 = ORC/X10
                                                                                         THE02360
С
             IF (C4 .GE. 1.0) GO TO 200
                                                                                         THE02370
С
                                                                                         THE02380
С
             GO TO 220
                                                                                         THE02390
С
                                                                                         THE02400
C
        PRINT FOR EVERY ORBIT
                                                                                         THE02410
                                                                                         THE02420
   190
             C5 = ORC/X1
                                                                                         THE02430
             IF (C5 .GE. 1.0) GO TO 200
                                                                                         THF02440
             GO TO 220
                                                                                         THE02450
С
                                                                                         THE02460
       PRINT FOR EVERY ITERATION
C
                                                                                         THE02470
С
                                                                                         THE02480
  190 GO TO 200
C
                                                                                         THE02490
                                                                                         THE02500
С
                                                                                         THE02510
       PRINT THE RESULTS
С
                                                                                         THE02520
C
                                                                                         THE02530
С
  200 WRITE(6,210) ORC, ECC, TH, THD, RG, AL, LPM, L, AR, TIMH, R,
                                                                                         THE02540
C
              RA, RP, A, PERH, AMXD, ECTH, ATH, WTHD, WD, POWX,
                                                                                         THE02550
С
                                                                                         THE02560
C
  210 FORMAT( ' ORC = ', F14.6, ' ECC = ', F14.6, ' TH = ', F14.6,/
                                                                                         THE02570
           'THD = ', F14.6, ' RG = ', F14.6, ' AL = ', F14.6, '
'LPM = ', F14.6, ' L = ', F14.6, ' AR = ', F14.6, '
'TIMH = ', F14.6, ' R = ', F14.6, ' RA = ', F14.6, '
'RP = ', F14.6, ' A = ', F14.6, ' PERH = ', F14.6, '
С
      &
                                                                                         THE02580
С
                                                                                         THE02590
С
      &
                                                                                         THE02600
С
                                                                                         THE02610
           ' AMXD = ', F14.6,' ECTH = ', F14.6, ' ATH = ', F14.6,/
' WTHD = ', F14.6,' WD = ', F14.6,' POWX = ', F14.6,/
С
      &
                                                                                         THE02620
С
      &
                                                                                         THE02630
           ' DAD = ', F14.6,//)
С
                                                                                         THE02640
                                                                                         THE02650
C 211 WRITE (6,212) DL, DDL, TEN, POW
C 212 FORMAT( 'DL = ', F14.6, 'DDL = ', F14.6,/
C & 'TEN = ', F14.6, 'POW = ', F14.6,//)
                                                                                         THE02660
                                                                                         THE02670
                                                                                         THE02680
C
                                                                                         THE02690
С
                                                                                         THE02700
  200 WRITE (6,214) DRC, ECTH, ECC, WLD, WD
                                                                                         THE02710
  214 FORMAT( F10.1, F14.6, F14.6, F14.6, F14.6)
                                                                                         THE02720
                                                                                         THE02730
       X10=X10 + 10.0
                                                                                         THE02740
       X1 = X1 + 1.0
                                                                                         THE02750
```

```
THE00560
             PI = 3.14159265 DO
                                                                                               THE00570
C
                                                                                               THE00580
        PRINT INITIAL CONDITIONS:
C
                                                                                               THE00590
С
        WRITE (6,90) A, ECC, RP, RA, RG, TH, THD, AL, RB, AC, AS,
                                                                                               THE00600
С
   80
                 R, ORC, M1, M2, M12, PAR, LPM, L, DT, AR, PER,
                                                                                               THE00610
С
                                                                                               THE00620
C & H, HD
C 90 FORMAT ('A = ', F12.4, 'ECC = ', F12.4, 'RP = ', F12.4, /
C & 'RA = ', F12.4, 'RG = ', F12.4, 'TH = ', F12.4, /
C & 'THD = ', F12.4, 'AL = ', F12.4, 'RB = ', F12.4, /
C & 'AC = ', F12.4, 'AS = ', F12.4, 'R = ', F12.4, /
C & 'ORC = ', F12.4, 'M1 = ', F12.4, 'M2 = ', F12.4, /
C & 'M12 = ', F12.4, 'PAR = ', F12.4, 'LPM = ', F12.4, /
C & 'L = ', F12.4, 'DT = ', F12.4, 'AR = ', F12.4, /
C & 'PER = ', F12.4, 'H = ', F12.4, 'HD = ', F12.4, ///)
                 H, HD
С
                                                                                               THE00630
                                                                                               THE00640
                                                                                               THE00650
                                                                                               THE00660
                                                                                               THEOC670
                                                                                               THE00680
                                                                                               THE00690
                                                                                               THE00700
                                                                                               THE00710
C
                                                                                               THE00720
С
        WRITE (6, 94)
FORMAT ( 'AS = .2, AC = 0.0, ECCO = .1 ',/)
                                                                                               THE00730
С
                                                                                               THE00740
C 94
        WRITE (6,95)
                                                                                               THE00750
                                                                                               THE00760
        FORMAT( ' PROGRAM : ORC, ECTH, ECC, WLD, WD, ' ///)
   95
         WRITE (6,96) THD, R, ALD
                                                                                               THE00770
C
                                                                                               THE00780
С
        FORMAT( F8.2, F14.6, F14.6)
                                                                                               THE00790
С
                                                                                               THE00800
С
                                                                                               THE00810
С
        CALCULATE THE NEW R AND TH:
                                                                                               THE00820
С
                                                                                               THE00830
   100
             TH = TH + H
                                                                                               THE00840
             THD = THD + HD
             R = RB * (1.0 + AC*COS(TH) + AS*SIN(TH))
                                                                                               THE00850
                                                                                               THE00860
С
                                                                                               THE00870
        START THE RUNGE KUTTA APPROXIMATION
С
                                                                                               THE00880
С
                                                                                               THE00890
С
        FIND K1, N1, P1, Q1:
                                                                                               THE00900
С
                                                                                               THE00910
              I = 1
                                                                                               THE00920
             RGT = RG
                                                                                               THE00930
             LT = L
                                                                                               THE00940
             ART = AR
                                                                                               THE00950
             ALT = AL
                                                                                               THE00960
             CALL SIS
                                                                                               THE00970
С
                                                                                               THE00980
        FIND K2, N2, P2, Q2 :
С
                                                                                               THE00990
C
                                                                                               THE01000
              I = 2
                                                                                               THE01010
             RGT = RG + .5 * K(1)
                                                                                               THE01020
             LT = L + .5 * N(1)
              ART = AR + .5 * P(1)
                                                                                               THEO 1030
                                                                                               THE01040
              ALT = AL + .5 * Q(1)
                                                                                               THEO 1050
             CALL SIS
                                                                                               THE01060
С
                                                                                               THE01070
C
        FIND K3, N3, P3, Q3:
                                                                                               THE01080
C
                                                                                               THE01090
                                                                                                THEO 1 100
             RGT = RG+.5 * K(2)
                                                                                                THE02760
         IF (ORC .GE. 200.0) GO TO 250
                                                                                                THE02770
         IF (ORC .EQ. 100.0) GO TO 250
                                                                                                THE02780
         IF (X .GE. 2.0) GO TO 250
                                                                                                THE02790
C
                                                                                                THE02800
   220 X = X+1.0
        IF (ORC .GE. 200.0) GO TO 200
                                                                                                THE02810
                                                                                                THE02820
С
                                                                                                THE02830
        GO TO 100
                                                                                                THE02840
                                                                                                THE02850
   250 STOP
                                                                                                THE02860
         END
```

SUBROUTINE SIS

```
SIS00010
      SUBROUTINE SIS
                                                                       $1500020
      IMPLICIT REAL * 16 (A-H, K-Z)
                                                                       SIS00030
C
                                                                       SIS00040
      COMMON /ALL/ K(4), N(4), P(4), Q(4),
                                                                       S1S00050
         H, LPM, GR, MR, R, M12, RGT, LT, ART, ALT,
                                                                       SIS00060
    &
                                                                       $1500070
          ECC, TH, AS, AC,
    Ŗ.
                                                                       $1500080
          C1, C8, P1, P8, RR, QR, I
                                                                       $1500090
С
                                                                       SIS00100
         TT = (RGT**2.0)/LT
                                                                       SIS00110
С
                                                                       SIS00120
      FIND THE NEW RUNGE KUTTA VALUES
С
                                                                       SIS00130
С
                                                                       SIS00140
          K(I) = H * ART * TT
          N(I)=(H*3.0*GR*MR/RGT)*TT* ((R/RGT)**2)* SIN(ALT) * COS(ALT) SISOO150
            A = RGT * (ABS(LT/(RGT**2)))**2 - GR/(RGT**2)
                                                                       51500160
                                                                       SIS00170
            B1=(-3.0*GR*MR/(RGT**2))*((R/RGT)**2)
                                                                        SIS00180
            B2=1.0-1.5*(ABS(SIN(ALT)))**2
                                                                        SIS00190
          P(I) = H * (A + B1*B2) * TT
                                                                       SIS00200
            C1 = -LT/(RGT**2)
                                                                        SIS00210
            C2 = -LT/(MR*R**2)
                                                                       S1S00220
            D = LPM/(MR*(R**2.0))
                                                                        51500230
          Q(I) = H * (C1+C2+D) * TT
                                                                       S1S00240
      WRITE (6,50) K(I), N(I), P(I), Q(I),
С
            RGT, R, LT, ART, ALT, A, B1, B2,
                                                                        SIS00250
С
                                                                        SIS00260
   С
                                                                        SIS00270
С
                                                                        SIS00280
С
                                                                        SIS00290
С
                                                                        51500300
С
                                                                        SIS00310
С
                                                                        $1500320
C
                                                                        $1500330
            ' TT = ', F14.6.//)
С
                                                                        SIS00340
                                                                        SIS00350
      RETURN
                                                                        SIS00360
      END
```

SUBROUTINE INHY

```
SUBROUTINE INHY
                                                                                INH00010
                                                                                INH00020
       IMPLICIT REAL * 16 (A-H, K-Z)
                                                                                INH00030
С
                                                                                INH00040
С
                                                                                INH00050
      COMMON /ALL/ K(4), N(4), P(4), Q(4).
           H, LPM, GR, MR, R, M12, RGT, LT, ART, ALT,
                                                                                INH00060
                                                                                INH00070
     R.
                                                                                1NH00080
           ECC, TH, AS, AC,
           C1, C8, P1, P8, RR, QR, I
                                                                                INH00090
                                                                                INH00100
C
      YR = (RR+1.0)/(1.0-RR)
                                                                                INH00110
                                                                                INH00120
      QR = .5 * LOG(YR)
                                                                                 INH00130
С
                                                                                INH00140
       RETURN
                                                                                INH00150
      END
```

SUBROUTINE CON

```
SUBROUTINE CON
                                                                             C0N00010
       IMPLICIT REAL * 16 (A-H, K-Z)
                                                                             C0N00020
С
                                                                             CDN00030
      COMMON /ALL/ K(4), N(4), P(4), O(4),
H, LPM, GR, MR, R, M12,
                                                                             C0N00040
                                                                             C0N00050
           RGT, LT, ART, ALT,
                                                                             C0N00060
           ECC, TH, AS, AC,
                                                                             C0N00070
           C1, C8, P1, P8, RR, QR, I
                                                                             C0N00080
С
                                                                             C0N00090
С
                                                                             C0N00100
С
                                                                             C0N00110
С
                                                                             C0N00120
      X = AS/(2.0*ECC-AC)
                                                                             C0N00130
      L = ATAN(X)
                                                                             C0N00140
С
                                                                             C0N00150
      IF (AS .NE. O.O) GO TO 1
                                                                             CDN00160
      S! = 1.570796327 DO
                                                                             C0N00170
      52 = 51
                                                                             C0N00180
      S4 = S1
                                                                             C0N00190
      S9 = S1
                                                                             C0N00200
      S10 = S1
                                                                             C0N00210
      513 = 51
                                                                             C0N00220
      S16 = S1
                                                                             C0N00230
      S3 = -S1
                                                                             C0N00240
      S5 = S3
                                                                             C0N00250
      S12 = S3
                                                                             C0N00260
      $14 = $3
                                                                             C0N00270
      S17 = S3
                                                                             CDN00280
      GO TO 2
                                                                             C0N00290
      B1 = (ECC + AC)/AS
                                                                             C0N00300
      X = B1
                                                                             C0N00310
      PQ = ATAN(X)
                                                                             C0N00320
      S1 = F0
                                                                             C0N00330
      S2 = S1
                                                                             C0N00340
      $10 = $1
                                                                             C0N00350
      S13 = S1
                                                                             CDN00360
      $16 = $1
                                                                             CON00370
      X = -B1
                                                                             CON00380
      PQ = ATAN(X)
                                                                            C0N00390
      S3 = PQ
                                                                            C0N00400
      S12 = S3
                                                                            C0N00410
      S14 = S3
                                                                            C0N00420
      $17 = $3
                                                                            C0N00430
С
                                                                            C0N00440
      B2 = AC/AS
                                                                            C0N00450
      X = B2
                                                                            C0N00460
      PQ = ATAN(X)
                                                                            C0N00470
      S4 = PQ
                                                                            C0N00480
      S9 = S4
                                                                            C0N00490
С
                                                                            C0N00500
      X = -B2
                                                                            C0N00510
      PQ = ATAN(X)
                                                                            C0N00520
      $5 = PQ
                                                                            C0N00530
                                                                            C0N00540
      NOW CALCULATE THE PHI'S AND C'S SIMULTANEOUSLY.
C
                                                                            CON:00550
```

```
C0N00560
                                                                           C0N00570
      HS = 8.0*SORT((ABS(AS))**2*(ABS(2*ECC-AC))**2)
                                                                           C0N0058C.
      SK = SQRT((ECC+AC)**2 + AS**2)
                                                                           C0N00590
      G1 = 3.0
                                                                           C0N00600
      SR3 = SQRT(G1)
                                                                           C0N00610
      SM = SQRT (AC**2 + AS**2)
                                                                           C0N00620
С
                                                                           C0N00630
С
      WRITE (6,3)
Ċ
   3 FORMAT (' MARK 1 ',/)
                                                                           C0N0064C
                                                                           C0N00650
С
                                                                           C0N00660
C
                                                                           C0N00670
      AC1 = (ECC+AC)*SR3/4.0
                                                                           C0N00680
      BC1 = -AS*SR3/4.0
                                                                           C0N00690
      BB= 0.0
      C1 = ABS((SR3*SK)/4.0)
                                                                           C0N00700
      C11= SQRT((ABS(AC1))**2 +( ABS(BC1))**2)
                                                                           C0N00710
                                                                           C0N00720
      SIG = AC1*SIN(BB) + BC1*COS(BB)
                                                                           C0N00730
      IF (SIG .GT. 0.0) C1= C1
      IF (SIG .LT. 0.0) C1 =-C1
                                                                           CON00740
                                                                           C0N00750
С
      Y1 = 528.0 - 352.0*SR3 + HS*(20.0 - 8.0*SR3)
                                                                           C0N00760
      Y2 = 6336.0 - 3520.0*SR3
                                                                           C0N00770
      AC1 = (ECC+AC) + Y1/Y2
                                                                           C0N00780
                                                                           C0N00790
      BC1 = -AS*Y1/Y2
                                                                           CON00800
      88 = (SR3 - 1.0)*L
                                                                           C0N00810
      C2 = ABS(Y1*SK/Y2)
      C22= SQRT((ABS(AC1))**2 + (ABS(BC1))**2)
                                                                           C0N00820
                                                                           C0N00830
      SIG = AC1*SIN(BB) + BC1*COS(BB)
                                                                           CON00840
      IF (SIG .GT. 0.0) C2= C2
                                                                           C0N00850
      IF (SIG .LT. 0.0) C2 = -C2
                                                                           CDN00860
C
                                                                           C0N00870
c
c
      WRITE (6,4)
                                                                           C0N00880
   4 FORMAT ( ' MARK 2 '. /)
                                                                           C0N00890
С
                                                                           C0N00900
С
                                                                           C0N00910
      Y1 = 528.0 + 352.0*SR3 + HS*(20.0+8.0*SR3)
                                                                           C0N00920
      Y2 = -6336.0 - 3520.0*SR3
                                                                           C0N00930
      AC1 = -(ECC+AC)*Y1/Y2
                                                                           C0N00940
      BC1 = -AS*Y1/Y2
                                                                           C0N00950
      BB = (SR3+1.0)*L
                                                                           C0N00960
      C3 = ABS(Y1*SK/Y2)
                                                                           C0N00970
      C33= SQRT(ABS(AC1)**2 + ABS(BC1)**2)
      SIG = AC1*SIN(BB) + BC1*COS(BB)
                                                                           C0N00980
                                                                           C0N00990
      IF (SIG .GT. 0.0) C3= C3
                                                                           C000100CJ
      IF (SIG .LT. 0.0) C3 =-C3
                                                                           C0N01010
С
                                                                           C0N01020
      Y1 = -8.0 + 4.0*SR3
                                                                           CONO 1030
      AC1 = -AC + ECC/Y1
                                                                           C0NO 1040
      BC1 =AS*ECC/Y1
                                                                           CONO 1050
      BB = (5R3-2.0)*L
                                                                           C0N01060
      C4 = ABS(ECC+SM/Y1)
                                                                           CONO 1070
      C44 = SQRT((ABS(AC1))**2 + (ABS(BC1))**2)
                                                                           CONO 1080
      SIG = AC1*SIN(BB) + BC1*COS(BB)
      IF (SIG .GT. 0.0) C4= C4
IF (SIG .LT. 0.0) C4 =-C4
                                                                           CDNO 1090
                                                                           CONO 1 100
```

```
C0N01110
С
                                                                                CONO1120
       Y1 = 8.0 + 4.0*SR3
                                                                                CONO 1130
       AC1 = AC*ECC/Y1
       BC1 = AS*ECC/Y1
                                                                                C0NO1140
                                                                                C0N01150
       BB = (SR3 + 2.0)*L
                                                                                CONO 1160
       C5 = ABS(ECC*SM/Y1)
       C55= SORT((ABS(AC1))**2 + (ABS(BC1))**2)
                                                                                C0N01170
       SIG = AC1*SIN(BB) + BC1*COS(BB)
                                                                                CONO 1180
                                                                                C0N01190
       IF (SIG .GT. 0.0) C5= C5
                                                                                C0N01200
       IF (SIG .LT. 0.0) C5 = -C5
                                                                                C0N01210
C
       P1 = S1
                                                                                CONO1220
       P2 = (SR3-1.0)*L + S2
                                                                                CONO 1230
                                                                                CONO 1240
       P3 = (SR3+1.0)*L +S3
       P4 = (SR3 - 2.0)*L + S4
                                                                                CONO1250
      P5 = (SR3 + 2.0)*L + S5
                                                                                CONO1260
       Y1 = C2*SIN(P2) + C3*SIN(P3)
                                                                                CONO1270
       Y2 = C2*COS(P2) + C3*COS(P3)
                                                                                CONO 1280
       X = Y1/Y2
                                                                                C0N01290
                                                                                CONO 1300
       PQ = ATAN(X)
       P6 = PQ
                                                                                C0N01310
       Y1 = C4*SIN(P4) + C5*SIN(P5)
                                                                                CONO1320
       Y2 = C4*COS(P4) + C5*COS(P5)
                                                                                C0N01330
                                                                                CONO 1340
      X = Y1/Y2
       PQ = ATAN(X)
                                                                                CONO 1350
                                                                                CONO 1360
      P7 = PQ
C
                                                                                CONO 1370
      C6 = SQRT((ABS(C2))**2 + (ABS(C3))**2 + 2.0*C2*C3*COS(P2-P3))
                                                                                C0N01380
       SIG = C2*COS(P2) + C3*COS(P3)
                                                                                CDN01390
                                                                                CONO 1400
       IF (SIG .GT. 0.0) C6= C6
       IF (SIG .LT. 0.0) C6 =-C6
                                                                                CON01410
                                                                                C0N01420
С
       C7 = SQRT((ABS(C4))**2 + (ABS(C5))**2 + 2.0*C4*C5*COS(P4-P5))
                                                                                CONO1430
       SIG = C4*COS(P4) + C5*COS(P5)
                                                                                C0N01440
      IF (SIG .GT. 0.0) C7= C7
IF (SIG .LT. 0.0) C7 =-C7
                                                                                CONO1450
                                                                                CONO1460
                                                                                CONO1470
C
      C8 = SQRT((ABS(C6))**2 + (ABS(C7))**2 + 2.0*C6*C7*COS(P6-P7))
                                                                                C0N01480
       SIG = C6 * COS(P6) + C7*COS(P7)
                                                                                CONO1490
                                                                                C0N01500
       IF (SIG .GT. 0.0) C8= C8
                                                                                CONO 15 10
C
                                                                                C0NO1520
      Y1 = C6*SIN(P6) + C7*SIN(P7)
                                                                                CONO1530
      Y2 = C6*COS(P6) + C7*COS(P7)
      X = Y1/Y2
                                                                                C0N01540
      PO = ATAN(X)
                                                                                CONO 1550
      P8 = PQ
                                                                                C0N01560
                                                                                CONO1570
С
C
       WRITE (6, 200) S1, S3, S4, S5, P1, P2, P3, P4, P5, P6, P7, P8
                                                                                C0N01580
                                                                                CONO1590
С
  200 FORMAT (' S1 = ', F14.8, ' S3 = ', F14.8, ' S4 = ', F14.8,/
С
                                                                                CONO 1600
          ' S5 = ', F14.8, ' P1 = ', F14.8, ' P2 = ', F14.8, ' P3 = ', F14.8, ' P4 = ', F14.8, ' P5 = ', F14.8, '
С
                                                                                CONO 16 10
     ጼ
                                                                                CONO1620
C
     &
          ' P6 = ', F14.8, ' P7 = ', F14.8, ' P8 = ', F14.8,//)
                                                                                C0N01630
C
                                                                                C0N01640
С
      WRITE (6,300) C1, C2, C3, C4, C5, C6, C7, C8
                                                                                CONO1650
C
C
                                                                                C0N01660
С
  300 FORMAT ( ' C1 = ', F14.8, ' C2 = ', F14.8, ' C3 = ', F14.8,/
                                                                                CONO 1670
          ' C4 = ', F14.8, ' C5 = ', F14.8, ' C6 = ', F14.8,/
' C7 = ', F14.8, ' C8 = ', F14.8,//)
C
                                                                                CONO 1680
C
                                                                                CONO 1690
С
                                                                                C0N01700
       RETURN
                                                                                CONO 17 10
                                                                                C0N01720
       END
```