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ABSTRACT

The purpose of this thesis was to derive linearized
equations describing the variations in the orbital parameters
resulting from the resonance between a periodically length
varying tether system and its orkital frequency. A controlled
periodic tether variation was assumed, from which the corres-
ponding tether libration angle history was derived. This
allowed the calculation of the radial and tangential acceler-
ations acting on the tether system, and thus the changes in
the orbital elements using the variational equations. The
theoretical variations in the orbital elements were then
compared to the results obtained by numerically integrating
the equations of motion, with favorable results. The
numerical analysis was extended to investigate cases not
covered by the theory, as well as the tether tension profile
and power requirements of the system.
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I. Introduction

Tsiolkovsky, a Russian, first considered the use of
two masses connected by a string in tension, for exploiting
weak gravity gradient forces in space in 1895.(1) It was
not until the 1960's, that V.V Beletskii, also a Russian,
suggested that a tether system whose length varied at the
orbital frequency, could induce a resonance, which could be
used for maneuvering space vehicles.(2) 1In 1968,

V.V Beletskii and M.E. Givertz wrote, "it is possible to
control the geometry of a body such that variations which
occur in the force of gravity over time lead to substantial
deviations in the body's trajectory from the original". (3)
Investigation into the use of tethers for this purpose was
not pursued, however, since tether lengths of tens to
hundreds of kilometers would have to be used to produce
significant accelerations of a tether system. Not until the
1970's with the development of new lightweighﬁ synthetic
fibers, such as Kevlar, were practical applications of
tethers seriously considered.

A varying length tether system may be envisioned as a
dumbbell, two masses connected by a tether, whose length is
made to vary via a powered winch located at one or both of
the masses. The reeling in and out of the tether, often

referred to as tether "pumping", sets up Coriolis forces
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which induce in plane librations of the tether system about
its center of mass. If the reeling operation is driven such
that a resonance occurs with the orbital frequency, it is
possible to change the energy of the orbit, and thus the
trajectory of the tether system. Total angular momentum
must remain constant, however, since the external forces are
all central (if the attracting body is assumed spherical).
This is proved in Appendix I.

In 1983, Manuel Martinez-Sanchez, professor of
aeronautical and astronautical engineering at M.I.T., was the
first to attempt quantifying possible orbital variations of
spacecraft using length varying tethers.(4) His original
paper contained several errors, which have since then been
revised but not formally published. The equations in this
section represent his corrected results (to be published,
together with the higher order results of this work).

Martinez's preliminary analysis considered second
order resonance effects in ﬂ/R, tether length over orbital
radius, but only first order effects in o, the tether
libration angle, for near circular orbits. For simplicity
of calculations, the tether libration angle, o, was assuncd
to vary sinusoidally with constant amplitude. With this
restriction, an equation for the tether length as a function

of orbital position was derived from the equations of
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motion. The tether libration angle and tether length were

given by

o = dpsin(Qt) (1.1)

2 = 2 J{1 + aocos(Qt)}| (1.2)

where,

= orbital frequency

libration angle amplitude

= 2D
I

= mean tether length

An illustration of the variations in the tether libration
angle and length over one orbit are illustrated in Figure I.

The equations of motion were given by:

Jum, . .
] L 2 3
um _ 12 (_) l_]. _

2
> 5 2 5 sina]

m(ﬁ-—R;2)=

2 .
m (E) sina cosa

mR°® + m 2 (a + 6) =1L

where,




m; = mass of the weight on the lower end of the
tether

2 = mass of the weight on the upper end of the

tether
%

12 = 77 =
1 2
earth's gravitational constant
center of mass orbital radius (measured from
the center of the earth)
true anomaly

o RS
o

@
i

Equations (3) and (4) describe the conservation of the

radial and tangential momentum of the tether system.

Equation (5) expresses conservation of total angular momentum
which is the sum of the angular momentum of the center of
mass, and the angular momentum of the tether system about its
center of mass.

After perturbing the equations of motion, several useful
first order approximations of the changes in apogee radius,
Ry, perigee radius, R,, and orbital eccentricity, e, were
found as a function of the number of orbits over which the

tether length had been perturbed, N.

m =2
3
R, = R+ 6 ~%— % ao{z + 2N)m (1.6)
2
m -
- 12 ¢ 1
Rp = R - 6 T ﬁ ao(f + 2N)TW (1.7)
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o -
12 4,2
e = 12Nm o ('ﬁ') Qo (1.8)

Successive apogee passages were found to be increasingly
higher, developing 90° past 8 = 0.0 (the point of maximum
tether length), while successive perigee passages were found
to be increasingly lower, developing 270° past @ = 0.0. The
semimajor axis, a, and the orbital energy, E, were found to
be constant to first order. Calculation of a possible
rotation of the argument of pericenter, Wy, was not attempted.

As an example, for a tether system with a center of
mass radius of 6770 km, a mean tether length of 160 km, a
lower mass of 100,000 kg, an upper mass of 10,000 kg, and a
libration amplitude of .2 radians, the apogee will increase
and the perigee will decrease by approximately 1.6 km/orbit,
or, after one month, a circular orbit can develop to an orbit
with eccentricity e = .064.

Martinez's analysis demonstrated that the first order
variation in orbital eccentricity using a length varying
tether was substantial enough to warrant further
investigation into higher order perturbation effects of the

orbital elements, as well as possible applications of this




orbital resonance technique.

The purpose of this thesis is to calculate the second
order variations in libration angle and orbital eccentricity,
of the orbital elements due to tether orbital resonance.
Averaging these variations will result in an "ironed out"
means of obtaining the changes in the orbital elements over
an extended period of time. Of particular interest, will be
the variations in the semimajor axis which had not bheen
found in Martinez's first order analysis, and the rotation of
the argument of perihelion, which was not accounted for.

This paper will also extend the theory to include higher
eccentric orbits.

Contrary to the former technique of picking a sinusoidal
libration angle and then solving for a corresponding tether
length variation, this analysis will select a simple tether
length variation and solve for the natural angle of tether
libration that results. This technique is considerably more
difficult analytically, but seems more reasonable for
practical applications, since it is easier to control tether
length than tether angle. 1In fact, it may be impossible with
only finite length control to impose an arbitrary libration
time history against the combined action of natural gravity
gradient oscillations and those imposed by orbital

eccentricity.

=10~




Finally, possible applications of the tether orbital
resonance technique will be considered. Orbital variations
predicted by the second order perturbation theory will be
compared to numerical results obtained by directly
integrating the equations of motion. The numerical analysis
will also be extended to include several cases not covered by

the perturbation theory.

-11-




II. Theoretical Analysis

The following sections derive the second order
variations in /R, e, and o, of thé orbital elements that
result from forced resonance between a length varying tether
system and its orbital frequency. First Martinez's
derivation of the equations of motion of a dumbell in orbit
is briefly summarized in Section 2.1. Section 2.2 discusses
a method for finding the tether libration angle as a function
of orbital position, given a controlled tether length
variation. This allows the calculation of the disturbing
radial and tangential accelerations which act on the tether
system in Section 2.3, which in turn yields the perturbation
terms in the variational equations of the orbital elements.
Finally, these equations are averaged to find the mean values
of the orbital elements as a function of orbital position and

time.

2.1 The Equations of Motion

Consider a body orbiting about its center of attraction
at 0. See Figure 2. The distance from O to the center of
mass, c.m., is given by the parameter R, while the distance
from O to a point mass in the body, P, is given by the

parameter R’. Newton's differential equation for the two

-]12-




body' problenm is,

d2

de

%

N

+%§=O
R

(2.1)

Using this equation and the geometry in Figure 2, the point

mass radial and tangential gravitational

accelerations may be
described by the following equations:

- y
ar = > cosko

(R")* (2.2)

ae—

= S 7 cos A®
(R")

(2.3)

R’ and 4/(R )* are given to second order in X/R as follows:

R' = XIX + (R+y) .i.y (2.4)
1 A 1 y 322 - x2
2 L% —2‘ [1 -2 § + 2 ] (2‘5)
(R") R R
For small changes in @, cos(A@) and sin(AQH) may be
approximated by their series expansions.
Cosao %1 - 172 (X)2 (2.6)
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R~ _2 (2.7)

Substituting equations (2.5), (2.6); and (2.7) into equations
(2.2) and (2.3), one obtains the second order approximations

in x/R of the radial and tangential gravitational

accelerations:
2 2
—-u y - 1/2 x
a ==—=[1-224+3 y————————-—]
r R R R2 (2.8)
_ “H X y
a, = — = [1 -2 2]
] R2 R R (2.9)

The sum of the forces acting per unit mass on all point
masses in the body may then be equated to the radial and

tangential accelerations of the center of mass.

s .2 - 3
m(R - K6%) = —gﬂ - —% [z miyi2 - 1/2 m.x.z]
R R i i vt (2.10)
m d 2; 3u
- — [R8] = = I mx.y.
R dt R4 AR A (2.11)

Finally, total angular momentum about the attracting center
may be written as the sum of the angular momentum of the

center of mass about the center of attraction, and the

-14-




angular momentum of the point masses about the center of

mass.

° ') . .
mR26 [imi (xi2 +y,; )](a+9) =L = const (2.12)

Equations (2.10), (2.11), and (2.12) may now be
specialized to describe an orbiting body with a dumbbell

configuration. Using the geometry of Figure 3, one may write

the following equations:

2 2 .
I m.Xx = m,X + M,X = m, 2 sin &

; & i i"i 272 12 (2.13)
2 2 2 2 2

X - =

;oY —‘7)‘11y1 T My, = m, 2 cos ok (2.14)

z = = 2,2 ina cosa

imixiyi = MR Yyt MyXp¥y = Myt S (2.15)

where,
mEmorm (2.16)
m,m,

.

™2 % "m (2.17)

Substituting equations (2.13), (2.14), and (2.15), into
equations (2.10), (2.11) and (2.12). the equations of

motion may be written as follows:

~15-



m(R - Réz) = H 12 (’&)2 f1 - 3 sinza]
2 2 R 2
R R
5. .
m %E(Rze) = %E m, (E')2 sina cosa
oR%8 +m.. 2% (a + 8) =L

(2.18)

(2.19)

(2.20)

Combining equations (2.19) and (2.20), results in the useful

gravity gradient oscillation equation.

4 20 L sk B2
ac [L°(a+0)] = R (R) Sina Cosa

2.2 Solving for the Tether Libration Angle given a

Controlled Tether Length Variation

In this section, the libration angle, o, will be
determined as a function of orbital position using the
gravity gradient oscillation equation, (2.21).
First, solving for é_ from equation (2.20) and

linearizing to second order in Z/R, one finds,

2 ,da

) (33

D e
L}

m
[1__}_2.(

L
n (R ¢ D]

FUI:!‘
N
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This equation may be used to rewrite the oscillation

equation, (2.21), in terms of 6 as follows:

-2
FETIC IO PR P
a0 [(R) (1 + de)] = —- z~ Sina Cosa (2.23)

=

Notice that the form 6 = h/R* of equation (2.22) has been
used, since the right hand side of equation (2.21) is itself
already of second order in Z/R. Now, assume a tether length
control law, (2.24), and near Keplarian motion over one
orbit, (2.25). The latter approximation results from the
fact that tether-induced perturbations of the center of mass
orbit are also quadratic in £/R, and would only introduce

higher order libration perturbations through equation (2.21).

=
i}

L (1 + AC Cose-+As Sing) (2.24)

__p
R= 17 ¢ Cose (2.25)

For perturbation analysis, the orders of smallness of e, and
o« are not independent, because, even without length
variations, the tether will librate due to the orbital
eccentricity with an amplitude approximately equal to e.
Similarly, libration angles due to length variation are of
the order of A, As. We here retain up to gnd including

quadratic terms in e, o{, A, and A;. Notice that this is the
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highest order which still makes the problem linear in e

(sinecosex = xX+0(x?)).

Expanding equation (2.23) to this order gives the result

d da
Fr [F(e) 53] + 3G(8) o = H(8) (2.26)

which can be recognized as a linear, second order,
inhomogenious, differential equation for e with respect to

the independent variable £. Here we have

F(8) = 1 + 2(& + AC) Cos8 + ZAS Sin®

(2.27)
G(G) =1 + (e + ZXC) Cos® + ZXS Sin® (2-28)
H(e) = 2(e + XC) Sind ~ 2)g Cos®
2 . 2
- (41 e + 2X A )(Cos"8 - Sin"8)
s s C
2 2 2 .
+ 2(e” + axce + xc - Xs ) Sin® Cos® (2.29)

It can be seen that the equation has periodic coefficients in

©. Expanding the derivative term in (2.26) and dividing by
F(H) one obtains,

-18~-




dza N da
deZ de

)

_8, 36(8) H(®8)
F

O F F (2.30)

F(H) 1is now written as F, and F, and Fgy represent the first

and second derivatives of F. Using the transformation,

F

6
e—1/2 f‘l-:,—-deu___

u_
/5 (2.31)

gives an equation with no first derivative term:

2

1/“Fa - 1/ZFeeF 3G H(8)
Ugg + U [ 2 gl
F /F (2.32)

Using equations (2.27), (2.28) and (2.29), to expand the
coefficients of (2.32) to second order in e, ). and A4, one

obtains the following result:

Ugg + ul3 + (Ac - 2e) Cos® + A Siné]
= 2(e + A ) Sin® - 2X Cos®6
c s

+ Axce Cos® Sin6 + 2Ase (Sin29 - Cosze) (2.33)

This equation may be rewritten as

-19-




. 2 2
Uee + U [3.-J/xs + (2e - AC) CosB]

2(e + XC)Sine - 2stose + AACeCOSOSine

.2 2
+ ZASe (Sin"6 ~ Cos"#0) (2.34)

where,

A
s

Cresw xc] | (2.35)

B = 06 + tan-1

Now, define ¢ to be,

¢ =1/2 8 (2.36)
Transforming equation (2.34) into ¢ coordinates gives the
following second order differential equation with nonconstant

coefficients, easily recognized as Mathieu's equation.

2 2 2 2 2
U¢¢ + U [12 + L&JAS + (2e - )\c) - BJAS + (2 - XG) Cos o]

=8 [(e + X_)Sin6 — X Cos® + 2X eCos6 Siné
C S C

. 2
Ase (Sin"6 - Cosze)] (2.37)

+

The solution to this equation, along with equation (2.31)
will yield the desired expression for the libration angle,

«, as a function of orbital position.

-20~




First, a homogeneous solution to equation (2.37) will be
found using the techniques for solving Mathieu's equation in
Reference 5.

Let parameters b and h be described by the

following equations:

_ 2 2
b =12 + &4 JXS + (2e - Ac) (2.38)

2 7 7
h™ =8 v/"s v (2e - 0) (2.39)

According to Figure 4, equation (2.37) falls well within the
stable region for Mathieu's equation. Thus, (2.37) has two
homogeneous solutions, one even and one odd, neither of which
is periodic in ¢ . These solutions truncated at the level
which is consistent with second-order accuracy in e, Ac, and

Asr are given by,

@©

Se(b’ h; z) = z an Cos [(S + 2n)¢]

n=-—

it

a_, Cos [(S - 4)¢] + a_, Cos [(S - 2)0]

+

a_ Cos [se] + a,Cos [(S + 2)¢]

1

+

a, Cos [(s + 4)9] (2.40)

-21-




So (b, h; z) = b a Sin [(S + 2n)¢]

n=-

a_, Sin [(s - 4)¢] + a_, Sin [(S - 2)¢]

-2 1

Sin [(S + 2)8]

+

a_ Sin [se] + a,

+ a, Sin [((s + 4)o] (2.41)
where, using
Z = Cos ¢ (2.42)
2 4 ,
O e xi)
64b
n4
v LA
gives,
a =1
o (2.44)
a = -h2
1 16(1 + 3/2)2+ 2h2 T 4b - h"(...
~ ___-h
f\’ —
16(1 + 2 ¥3) (2.45)

-22=



2
—alh

a =
2
16(5/2+2)% 20% ~ 4b _ p* (...

h4

1024(7 + 3/3) (2.46)

:

16(1 - s/2)% + 202 _ 4b - n*(. ..

a_l =

_n?

16(1 - 2/3) (2.47)

ee

—a_lh2
a =
2 16(s/2 - )2 4 212

- 4b + ha(...

hh

1024(7 - 3/3) (2.48)

“v
v

Substituting equations (2.43) through (2.48) into equatons

(2.40) and (2.41) one obtains,

4 4
h h Cos(/12 - 4)¢. Cos (V12 + 4)¢
S. = Cos[/12 (1 - ——=)0] + [ + ]
e = Cosl 8448 1026 = 5 _ 3/3) (7 + 3/3)

h2 Cos (/12 - 2)o Cos (/12 + 2)¢
15 L + ]
(1 - 2/3) (1 + 2/3) (2.49)

-23=




4 4 .
. — h h Sin(/12 - 4)¢ Sin (/12 + 4)¢
5, = Sin [12. (1 - 7o) + 1577 | -

(7 - 3/3) (7 + 3/3)
b (sin (/2 - 2 0 Sin (/17 + 2)e
16 ° (1 _ 2/3) (1 + 2/3) (2.50)

Define ¢ and )\ to be the following:

1/2 (8 + 1) (2.51)

©
1]

(2.52)

To calculate the particular solution of equation (2.37),
only the first order terms in e, Ae and As, of the
homogeneous solutions, (2.49) and (2.50), are required, since
the forcing term in (2.37) if of first or higher order
itself. Therefore, using equations (2.51) and (2.52), the
homogeneous solutions (up to arbitrary multiplicative

constants) may be written to first order as ,

2
Se = Cos /3(6 + 1) - _lil_g [Cos (/3 - 1)(8 + 1)
(1 - 2/3)
, Cos (/3 + 1)(0 + A)]
(1 + 2/3) (2.53)




2 ..
S = Sin /3(6 + 1) - %_ (Sin (/3 - 1)(8 + 1)

° (16 (1 - 2/3)

, Sin (/3 + 1)(8 « x)]
(1 + 2/3) (2.54)

The particular solution of equation (2.37) will be
determined below by variation of parameters as described in
Reference 6. For our case, the particular solution is given

as follows:

O e

y =5 L AES,(8)S () -5 (£)S,(8)]dE + €S (8) + C S (8) (2.55)

where § is a dummy argument of integration, Q is the forcing

term of equation (2.37), and W is the Wronskian given by,

ds ds

) e =
W= Se (F) -5, (EE’—) = 2/3 (2.56)

The Wronskian must be constant since the homogeneous part of

equation (2.37) is of the form,

—5 *rge =0 (2.57)




Substituting equations (2.53), (2.54) and (2.56) as well as
the right hand side of equation (2.37) into equation (2.55),
expanding to second order in e, A. and A, integrating, and
coilecting terms, one obtains the following second order

particular solution:

4 _
Yp = ;% [CICos(e + ¢1) + C8Cos(/36 + ¢8) + C11COS(29 - ¢11)
+ CIZCos(A + ¢12) + ClsCos((/g - 1)8 + q>15)
+ C18COS((/§ + 1)e + ¢18)] (2.58)
where,
2 2
K1=/(e+>\c) + A
2 2
KZ = A(_‘, + )‘S
-3 K
c - L
1 4

[528 - 352/3 + h2(20 - 8/3)] «
6336 - 3520/3

C, = .
1

o _ [528 + 352/3 + h2(20 + 8/3)] "
1

-6336 - 3520/3

-26=



eK2

-8 + &3

&

8 + 4/3

2

2
JCZ + C3 + 2C2C3 Cos(¢2 - ¢3)

10

11

12

13

14

2

2
#%} + c5 + 20405 Cos (¢4 - ¢5)

2 2
Jbé + C,7 + 2C,C Cos(o, - ¢ )

677

7

2 2 .
/59 + C10 + ZLQCIOCOS (¢9

2
-h K1

64/3

2
h K1

448 - 192/3

2
h Kl

320 + 64/3

D] -

- 90)



18

0]

=JC2+C2+2CC Cos(¢13—¢)

13 14 13714 14

2
h Kl

-320 + 64/3

-n/R]

448 + 192/3

7 )
= /616 + Cpq + 20, ,C  Cos(0 ~ 0))

-1 e +AC

by = ¥ig = ¥y3 T ¥y = tan o [5—]
_ e + AC
Vg = ¥y, = ¥y =tan - [- ——]

A
- C
by = tan [x ]
S
A
-1 C
tan = [ - A]
S
1
(/3 - DA+ ¥y
-28~




= (/3 + )X+ $3

=(/3-—2))\+‘b4

¢5=(/§+2)x+w

5
. - tan_l [C281n¢2 + C3Sin¢3]
6 C2Cos¢2 + C3Cos¢3

CASin¢4 CsSin¢5

+

+

¢7 = tan

[ ]
C C05¢4 C Cosq:S

C6$in¢6 + C Sin¢7
C Cos¢7

= tan

+

[C Coscb6

©
]
>
+

<

CQSimp9 + CIOSind)10

]

-1
¢,, = tan = [
11 C9Cos¢9 + CloCos¢10

=20 =



%12

®3

15

*6

17

®8

Yi2

(/3 - 2)x + Vs
/3 A+ ll)l4

_, G 4Sine 4 + C,,Sind
can ]

(
C13Cos¢13 + C14C05¢14

/§X+w16

(/3 + 2)x + v,
i7

¢
2!

Sing Sin¢1?

16 * C17

Coscp16 + C17Cos¢

6
6

-1
tan

]
17

The complete solution of equation (2.37) is simply the

sum of the homogeneous and particular solutions

U=S,+5 +Y (2.59)
o p




The constants A and B of the pomogeneous solutions will
henceforth be considered to be the same order as e, A and
): which is permissible since A and B are simply determined
by initial conditions on o« and ¢&j, themselves
presumably small.

By substituting (2.59) into (2.31), the libration angle,
oK, may be determined as a function of orbital position, to

second order in 4/R as well as e, Ac, As, A and B.

@ = ACos/3(8+1) + BSin/3(6+1) + — ¢ Cos(6+0,)

/3 1
2
+ b CSCOS(/§9+¢8) _ ?2 [COS(/E—I)(9+X) ' Cos(/3+1)(8+))
/3 (1-2/3) (1+2/3)

N

_ Bh [Sin(/§-1)(e+x) , 8in(/3+1)(8+\),
(1-2/3) (1+2/3)

4
C11Cos(29+¢11) + ;g CIQCos(A+¢12)

Si |
Wl | &

4
CISCOS[(/§—1)6+¢15] + ;§C18COS[(/§—1)G+¢18]

;llb

- A(e+Ac)C059COS/§(9+X) - B(e+xC)COSGSin/§(6+A)

=31~



- . C.(e+X )C059C05(9+¢ ) - —4'C (e+X )CosBCos(V36+¢,)
Vel 1 c 1 /3 8 c 8

- AASSineCos/§(9+A) - BASSineSin/5(9+x)

b\ . 4 ;
- ;§C1X551n9C05(9+¢1) - /§C3*531“°C°5(/§e*¢8) (2.60)

2.3 Determining the Average Change in the Orbital Elements
Using the Variational Equations

The derivation of the equation for the libration angle,
o, as a function of orbital position in Section 2.2, now
permits the calculation of the radial and tangential
acceleration acting on a tether system whose length varies
periodically. According to equations (2.18) and (2.19), the
perturbing radial and tangential accelerations acting on an

orbiting dumbbell are given by,

“3p ™2 2.2 3 o2
a_ = —R2 = (E) (1 - 5 Sin a) (2.61)
_wl2 o m2 o -
ag = 2 m (R) Sina Cosa (2.62)
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Assuming a small « approximation, and substituting

equations (2.24) and (2.60) into equations (2.61) and (2.62),

one obtains the following approximations of the perturbing

radial and

well as in

tangential accelerations to second order in L/R as

e, Ao As, A and B.

™o 22
3y — — [-1-(2A +4e)Cos8 - 21 Sind
m a& c 3
) 2 — A .
3 A" Cos V3(8+1) + 3ABCosY3(8+1)SinvV3(08+1)
12
— AC Cos/i(6+)\)Cos(6+¢ )
N !
12

12 c Cos/3(6+1)Cos(V3 +0.) + 3B2Sins/3(8+1)
/3 8 8 2

lzBCISin/3(9+x)Cos(e+¢1) + l% BC

Sin/3(6+x)cOs(/§e+¢8)
/3 /3

8

1601C8Cos(e+¢1)Cos(/§6+¢8) + 8C12C052(6+¢1)
2 2 .
8C, Cos (/§9+¢8) - (22 A2 + 8ex )SineCos®
c’'s s

8

2 2 2 2.2 2
(xc + sext + 6e )Cos 0 - As Sin“8 - 4e”] (2.63)
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.lzol
Pl IS

4
[ACos/3(8+A) + BSin/3(8+1) + — C,Cos(0+0,)

m
12
a=3u——‘ /3

2] m

)

Sioro) an?  Cos(/3-1)(8+1) . Cos(/3+1)(8xA)
— C,C +¢ - -
I 8" 16 (1 2/3) (1+2/3)

2 Sin(v/3-1)(8+1) . Sin(V/2+1)(8+1)

Bh

- 716 (1-2/3) (1+2/3)

+ 4 C Cos(26+¢11) + —é C12Cos(k+¢12) + —é CISCos(/§—1)0+¢15)
a3 U /3 /3

018005((/3+1)e+¢18) + A(3e+kC)COSGCos/§(9+A)

Sil
wl &

+ B(3e+A )Cos&Sin/5(9+X) + —EC (3e+X )CosGCos(e+¢1)
c /3 1 [

+ —&C (3e+ )Cosecos(/§9+¢ ) + A\ Sin6Cos/§(6+A)
/3 8 c 8 s

+ B) SinOSin\/g(0+X) + —QC x SinB8Cos(6+¢. )
s /5 17s 1

/F Bx SlneCos(/—e+¢8)] (2.64)

The variational equations for the total angular momentum L,

the orbital eccentricity, e, the semimajor axis, a, and the
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argument of pericenter, w, may be written in terms of the

p.rturbing radial and tangential accelerations as (Ref 7),

3

dL R

€ B, (2.65)

d_e_R_22 Binda [Cos6 + X(e+Coso)]:

=13 bink  fooss - Hescosnle, (2.56)
2 2

da 2R a .

ds © 2 [efsineh, - § ag] (2-67)

dw -R2

T e—L-z- LpCOSe)ae - (p+RXSl.n9)36] (2.68)

By substituting equations (2.63) and (2.64) into
equations (2.65), (2.66), (2.67) and (2.68), and linearizing
to second order in K/R as well as in e, )., )u; A and B, one
obtains a set of nonperiodic variational.equations which can
not be averaged directly over one orbit. Each term in these
equations, however, may be written in terms of first powers
of sine and cosine, and thus may be averaged separately
according to its particular frequency. Using this tec: ique

of averaging, results in the following equations describing
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the average changes in the orbital elements due tc tether

orbital rescnance.

dL -0 (2.69)

de =
avg

de M2 7.2

m = —6-7;'(;) A (2.70)
avg

da Mo 7.2

a6 =R Qe (2.71)
avg

dw M2 7.2 Ac

16 =6T(;’) (1 +?) (2.72)
avg

Equation (2.69) states that the total angular momentum
of the center of mass must be conserved on average. This is
consistent with the fact that the overall angular momentum is
strictly constant due to the central nature of the external
forces (Appendix A), while the angular momentum with respect
to the center of mass remains bounded. Of course, the
angular momentum of the center of mass does fluctuate in the
course of each orbit, in response to the corresponding
fluctuations of the libration angle.

The average rate of change in orbital eccentricity,
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described in equation (2.70), agrees with Martinez's result
given in equation (8). This change is directly proportional
to )\, the constant of the sine term of the tether length
equation (2.23). fTherefore, only the variation of the tether
length in spacial quadrature with the radius vector magnitude
contributes to the chapge in accentricity. If A; is positive
(in the direction of the true anomaly), a decrease in orbital
eccentricity will result and vice versa. Thus, an orbit can
be gradually circularized by "paying out" tether during
perigee passage, i.e., so as to have maximum deployed length
90° past the perigee. Notice the absence of quadratic terms
in equation (2.70) and (2.72). These results are accurate to
second order, though, and the error involved is cubic in <,
e, A, and A..

Since the average angular momentum is constant, a
decrease in orbital eccentricity will correspondingly yield a
decrease in the semimajor axis. Equation (2.71) describes
how the semimajor axis varies to second order with both the
eccentricity and the constant As. Here we note the absence
of first order terms in e, &, A; and A,. Indeed, small
eccentricity changes in a near-circular will not affect the
orbit's energy or semimajor axis. This follows from the

Keplarian relationship given in equation (2.75), which is
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satisfied to second order in e by equation (2.69),

(2.70), and (2.71).

The cosine term of the tether length equation (which

produces a maximum tether length at perigee and a minimum
tether length at apogee) yields a positive rotation in the
argument of perihelion as described in equation (2.72). This
rotation is also inversely proportional to the eccentricity.
The constant term in equation (2.72), describes a constant
rate of change of the argument of perihelion due to the fact
that the tether system is a very elongated mass whose forced
libration due to orbital eccentricity alcone (even with no
tether length changes) is in resonance with the orbital
motion.

By integrating equations (2.69), (2.70), (2.71) and
(2.72), it is now possible to find closed form solutions for
these parameters in terms of §.

Equation (2.70) may be written as follows:

e 1
— = -C (=)
4% Lvg a’ (2.73)
where,
m -
12 4.2 2
C=6 7;—(p) P (2.74)
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C is constant on average, since angular momentum and
therefore the orbital parameter, p, are constant on average.
Now, consider the relationship between the total angular

momentum, the semimajor axis, and the orbital eccentricity.

L2 - pa(1-e?) (2.75)

Solving for "a" in terms of "e", substituting into equation
(2.73), and separating variables yields an integrable
equation for the eccentricity. Using the initial conditions
at 9 = 0.0, e = e,, one obtains the following closed form

solution for the eccentricity:

e = —/—g tanh [- :—— + tanh-l(ﬁeo)] (2.76)
where,

N = g_" = # of orbits completed (2.77)

1 ™2 2.2

Lo 1a/zn L2 (52, (2.78)

N* m p 5

This equation describes the eccentricity as a monotonically
decreasing function of N/N*, starting at e, and reaching a
minimum limit at e = -.7071. The eccentricity must be

positive, however, giving a real minimum limit of e=0.0. A
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graph of equation (2.76) for a positive A is shown in
Figure 5. Note that N* is negative if ), is (thus yielding
an increase of e with 8). Of course thé. quadratic
approximation and other aspects of the theory, such as the
boundedness of o« fail for large values of e.

By substituting equation (2.75) into equation (2.73) and
integrating, one obtains a similar expression for the

semimajor axis divided by the parameter.

i—: 1 + 1/2 tanh?® [- g— + tanh 1 (/2 e,)] (2.79)
This ratio is a monotonically decreasing function of N/N%*,
originating at a/p=1+el and reaching a minimum at a/p=1.0
(since e must remain positive). A plot of this equation for
a positive A, is given in Figure 6.

Finally, one can obtain a closed form solution for the

argument of pericenter, w, by first writing equation (2.72) as

dw D _< 2.80
de -2 1+ e) ( )
avg a
where,
m -—
D=6 —2 (%2 2 (2.81)
m p
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Dividing equation (2.80) by equation (2.73) and integrating
subject to the initial condition at w=0.0, e=e,, one obtains

the following result.

1 /2 N -1
w =—)‘—[-—:2- tanh (- 47 + tanh” " [/2 eo]) - ey
s
V7 N -1
—)‘cln (z—e; tanh [- el tanh (2 eo])] (2.82)

A plot of this equation for a positive A; and A.=0.0, is

given in Figure 7.
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III. Theoretical Analysis versus Numerical Analysis

In this section, the theoretical variations of the
orbital parameters derived in Section II, will be compared to
purely numerical results obtained by integrating the equations
of motion of the center of mass of the tether systen
(equations (2.18), (2.19) and (2.20)).

As mentioned in Section II, it is the sine variation of
the tether length that produces a change in the orbital
eccentricity. A positive A, will result in a decreasing
orbital eccentricity, and a negative Ay will result in an
increasing orbital eccentricity. A cosine variation of the
tether length will simply effect the rotation of the argument
of perihelion. A positive A. will result in a positive
rotation of the argument of perihelion. A negative A. will
result in either a positiv? or a negative rotation in the
argument of perihelion depending on the ratio A./e (positive,
if |A./e] is less than or equal to 1, negative otherwise).

Three potential tether missions will be considered:

1) A decrease in orbital eccentricity using a sine

variation of the tether length (A, positive, A.=0.0,
a maximum tether length 90° past perigee and a
minimum tether length 90° before perigee)

2) An increase in orbital eccentricity using a sine

variation of the tether length (A negative,

Ae=0.0, a minimum tether length 90° past perigee and
a maximum tether length 90° before perigee)
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3) A constant orbital eccentricity using a cosine
variation of the tether length (A. positive,
As =0.0, a maximum tether length at perigee and
a minimum tether length at apogee)
Tether velocity, tether tension, and the power required
for the tether reeling operation will be considered for the

first case. The instantaneous tether tension for a length

varying tether is derived in Appendix B and is given by

T = - Hg m l[—2~35in2a]
R
3u 2 5.2 4 M2
- Ra L Cosa[l—ZSLn a) — [m1 - m2]

X . 2
- Qol'l'llz + 2m12(0+é) (3.1)
The instantaneous power is simply the product of the tether

tension and velocity.

T (5 (3.2)

=

d -—
I3 ﬂ(ascose - acsine) é% (3.3)

For all cases considered, the following initial

conditions were used:
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m, = 100,000 kg

m, = 10,000 kg

% = 100 km

R, = 6770 ka

L= 398778 km>/sec?
8 = 0.0

A =0.0

B = 0.0

A copy of the program used to calculate the following results
is given in Appendix C. Numerical integration of the
equations of motion was executed using fourth order

Runge Kutta, with a 10" step size. Double precission accuracy

was used to minimize roundoff errors.

3.1 Decreasing Orbital Eccentricity Using a Sine
Variation of the Tether Length

As a first example, consider A;=0.2, A.=0.0, and an
initial eccentricity e=0.1. For A;=.2, a sinusoidal length
variation between 80 and 120 kilometers results, with
a maximuw tether length Qd' past perigee and a minimum tether
length 90° prior to perigee. A graph of the tether length
versus the true anomaly is given in Figures 8 and 9.

Figures 10 and 11, show the changes in the Coriolis

induced in-plane libration angle as a function of the number




of orbits completed. The libration angle is a nonperiodic,
bounded function with a maximum value of 24°.

The analytical and numerical éccentricity, semimajor
axis, and argument of perihelion, are plotted versus the
number of orbits completed in Figures 12, 13, and 1l4. As seen
in Figure 12, the orbital eccentricity can be decreased from
0.1 to 0.0773 in 200 orbits or approximately 15 days. The
theoretical eccentricity falls within 0.76 % of the numerical
eccentricity, and the theoretical semimajor axis falls within
0.02 % of the numerical semimajor axis. Thus, the analytical
expressions derived in Section II for both the eccentricity
and the semimajor axis are very good approximations describing
the variations of these elements. In Figure 14, the numerical
argument of perihelior increases by 9.7} while the theoretical
argument of perihelion predicts only a 6.5° change after 200
orbits (within 33 % of the numerical value). For better
accuracy, one would have to consider third and higher order
terms not kept in the theoretical analysis.

.Next, consider the tether velocity, tension and power
requirements given in Figures 15 through 20. In Figures 15
and 16, the tether velocity is seen as a near sinusoidal
variation, with a 24 m/s maximum speed. A positive velocity
signifies an increasing tether length, while a negative

velocity signifies a decreasing tether length. Note, the




tether velocity has a larger magnitude for an increasing
tether length than a decreasing tether length. This may be
explaiﬁed by the fact that the center of mass angular
velocity, @6/d4+< , in equation (3.2) is maximum at perigee

and a negative libration angle (or a rotation of the tether
about the system c.m., opposite to the rotation of the tether
system in its orbit) and minimum af apogee and a positive
libration angle. The above is consistent with equation
(2.20), describing the conservation of total angular momentum.

The instantaneous tether tension, described by equation
(3.1), is plotted as a function of the number of orbits
completed in Figures 17 and 18. The maximum and minimum
tensions which occur during the mission are approximately 4000
and 1500 Newtons respectively. Note, the minimum tether
tension is sufficiently high, far from the danger of a zero
tension tether. The average tether tension is
approximately 2750 ﬁ.

In Figures 19 and 20, the power required for the tether
reeling operation is given as a function of the number of
orbits completed. A positive power corresponds to a power
consumption (tether length decreasing by reeling process), and
a negative power corresponds to a power dissipation or storage
(tether length increasing due to external forces). The power

comsumed exceeds the power dissipated or stored by a factor of’
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2.6, which is a desirable result since it is best to have a
minimum amount of power to be dissipated.

‘ The peak power required is approximately 90 kilowatts and
occurs when the product of the tether velocity and tension is
maximum, according to equation (3.3). The maximum power to be
dissipated and the average power are approximately 30 and 15
kilowatts respectively. A means of measuring the relative
inefficiency of designing a 90 kilowatt power supply for
operating the tether syster is to cnsider the average to peak
power ratio which is approximately 0.17, compared to an ideal
ratio of unity. Of course the maximum power required can be
significantly decreased by using a shorter tether, having the
effect that it will take a longer operation time to obtain the
same variations in the orbital parameters.

Finally, it is important to consider the range of values
of the initial eccentricity, and X\¢ for which the tether
libration angle remains bounded. 1In Figure 21, the maximum
libration angle encountered during a mission is plotted versus
the initial eccentricity (this assumes A; =0.2, A.=0.0). For
values of the original eccentricity greater than 0.16, the
tether angle is unbounded, and the tether system starts to
spin. In Figure 22, the maximum libration angle encountered
during a mission is plotted versus the constant A; (this

assumes an initial eccentricity e=0.1, and A.= 0.0). For
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values of ), greater than 0.27, the tether angle is again
unbounded, and the tether system starts to spin. A graph
demonstrating the maximum initial eccentricity and A
combinations possible before an instability in the tether
libration angle occurs is given in Figure 23. The area below
the curve represents a tether system with a bounded libration
angle, while the area above the curve represents a spinning

tether system.

3.2 Increasing Orbital Eccentricity Using a Sine
Variation of the Tether Length

This section will verify that the tether scheme of
section 3.1 is reversible, i.e. that the eccentricity of the
orbit may be increased using tether orbital resonance. For
this mission, let As;= -0.2, A =0.0 and the initial
eccentricity be e=0.0773 (this was the final eccentricity
obtained after 200 orbits in section 3.1). With As; = -0.2,
the tether length will reach a minimum value 90 after perigee,
and a maximum value 90° prior to perigee. The variations in the
tether length and libration angle are given in Figures 24
and 25.

As seen in Figures 26 and 27, after 200 orbits, the

eccentricity and semimajor axis have increased to the




eccentricity and semimajor axis values used as initial
conditions in section 3.1 (e = 0.1, and a = 7521 km).
Thus, the eccentricity and semimajor axis are directly
reversible. Again, the analytical eccentricity and semimajor
axis are within 0.16 % and 0.004 % of their numerical values.
In Figure 28, both the theoretical and numerical analysis
show a positive rotation in the argument of perihelion. After
200 orbits, the numerical analysis yields a 5.2° rotation of
the argument of perihelion, while the theoretical analysis
predicts a 6.3° rotation of the argument of perihelion
(within 21% of the numerical value). Again, the theoretical
model must consider third and higher order terms in equation
(2.82) to predict the variation in the argument of perihelion

more accurately.

3.3 Constant Orbital Eccentricity Using a Cosine Variation
of the Tether Length

As a final example, let A; = 0.0, Ac = 0.2 and the
initial eccentricity be equal to e=0.l1. Under these
conditions, the tether length will reach a maximum value at
perigee and a minimum value at apogee. The variations in
tether length and libration angle for this mission may be seen

in Figures 29 and 30.
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According to equations (2.70) and (2.71), setting As;=0.0
(i.e. no sine term in the tether length equation) will result
in a zero net change in the orbital eccentricity and semimajor
axis. The numerical results verify this in Figures 31 and 32.
In fact, the final eccentricity and semimajor axis are within
0.04 % and 0.12 % of their original values (therefore, any
deviation in the numerical results may be regarded as noise).

Looking at equation (2.72) a positive A. value should
result in an additional positive rotation of the argument of
perihelion compared to the rotation if Ac=0.0 (as in
Section 3.1). This theoretical variation in the argument of
perihelion is shown in Figure 32, and reaches 18.93 after 200
orbits (compared to 6.5 for A.= 0.0). The numerical value of
the argument of perihelion reaches 20.02° after 200 orbits
(compared to 9.7° for A = 0,0). For this example, the theory
is‘able to predict the argument of perihelion to within 6 % of

its actual value.

-50-




IV. Conclusion

Linearized approximations (to second order in £/R, e, Ay,
and J.) for the variations of the ofbital elements due to
tether orbital resonance were derived in Section II. 1In
Section III these approximations were compared to the varia-
tions obtained by integrating the equations of motion. The
theoretical variations of both the orbital eccentricity and
semimajor axis were found to be very close to the numerical
results (within 1 % after 200 orbits or 15 days). Although
the theoretical estimate for the variation in the argument of
perihelion was significantly less accurate than for the eccen-
tricity and semimajor axis, it was still within 33 % of the
numerical value in the worst case and 5.4 % of the numerical
value in the best case examined.

The numerical analysis was extended to identify the range
of values of the eccentricity and tether length parameter A
for which the libration angle remains bounded for a sinusoidal
variation in tether length. The instantaneous tether tension
equation derived in Appendix B allowed for the calculation of
both the tether tension and the powered required for operation
of the tether system.

The derivation and verification of the linearized, second
order variations in the orbital elements due to tether orbital

resonance, increases the confidence with which potential
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missions may be studied. It has been shown that significant
changes in eccentricity may be obtained using a sinuscidal,
length varying tether system within a reasonable period of
time and varying power demands. Due to the relatively large
power requirement necessary to make the resonance scheme
competative with other orbital maneuver techniques, a space
station application seems the most likely candidate (since a
large power source would be present for other station require-
ments). A space platform could change orbits at virtually no
expense simply by deploying a length varying tether in times
of off-peak power requirements. Of course, not all possible
orbital changes could be conducted using a tether systen,
since the total angular momentum must remain constant. Several
practical applications of the resonance technique are
possible, however, especially in cooperation with other
potential tether applications. For example, the elliptic
orbit that results after a station deploys a satellite or
deboosts the shuttle using a tether, could be recircularized
using the same tether system by periodically varying the
tether length. Several examples of this technique for various
satellite masses and tether lengths were investigated in
Reference 8. A cosine variation of the tether length, opens a
new door in the potential use of a tether system for

controlled rotation the argument of perihelion.
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Figure 1. Sinusoidal Tether Libration Angle and
Corresponding Length Variation Over
One Orbit
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Figure 2. Geometry of an Orxbiting Body
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Figure 3. Geometry of an Orbiting Dumbbell
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APPENDIX A

CONSERVATION OF ANGULAR MOMENTUM FOR A DUMBBELL
IN ORBIT ABOUT A SPHERICAL PLANET

Consider the geometry and forces action on an orbiting dumbbell, two
masses connected by a tetner, in Figure Al and Figure A2. The total

angular morentum of a dumbbell, may be written as follows:

—t

_ —A - - P
L = mr XV myroxv, (A.1)
Differentiating the angular momentum with respect to time, one obtains,

" dv1 dF dv2 d?z
T xml —E tm —Hf xv + rzxm2 —F t M —F xv2 (A.2)

The second and fourth terms of this equation are equal to zero since

. d?l

Vl = T‘—f (A.3)
oy |

VZ = 1‘{' (A.4)

Let FroT* FINT and Fext be the total sum of tne forces, the internal
forces and the external forces acting on a mass respectively. Equation

A.2 may then be written,

= = - - -
T = "1 rromy T r2Fecromy T TPy t Frexm)
o= =
+ (7, 208T) * Fa(exm) (A.5)
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Figure Al. Geometry of an Orbiting Dumbbell

/
¥ Earth
c.m.
Figure A2. Forces Acting on an Orbiting Dumbbell
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-
But the external forces are the gravity forces, and FI(EXT) is aligned

— _l . . .
with ros and FZ(EXT) is aligned with PZ. Therefore

-t — P a—

PyXFyexmy) T FXFaeexm) O (A.6)
Equation A.5 may now be written as,

d - R = FoxFyipyry = O (A.7)

dt 17 H{EXT) 2™ 2(EXT) :

Let ;1

earth to the center of gravity of the dumbbell, FG’ and the distance from

and F} bHe written in terms of the distance from the center of

the c.g. of the dumboell to the two masses at the end of the tether,

y2 and /02:

?1 = Fc: +/o_‘ (A.8)
-d - -
ry = T+ Py (A.9)

Substituting into equation A.7, one obtains,

gt = (rgtAXF g * A2 )%Fo )

-t D

= - a a4
= rexFrm * Foqmy) AT N A2 2 (.10)

The sum of the internal faces in the first term of equation 9, must be
equal to zero for the system to be in equilibrium. For a dumbbell,

these forces are just the tension forces in the tether which must be
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equal and opposite. The second and third terms of equation A.10 must

also be equal to zero since the internal tension forces are alig ned
- -

along the tether and are therefore, parallel to‘/ﬁ adn/pz. Equation

A.10, may be rewritten as follows,

d. _ o (A.11)

Therefore, total angular momentum must be conserved for an orbiting
dumbbell. Note: the above proof is independent of tether length.
Thus, total angular morentum must still be conserved for a dumbbell

whose tether length is made to vary periodically.
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APPENDIX B
DERIVATION OF THE TENSION IN A LENGTH VARYING TETHER

To calculate the tension in a length varying tetner, consider the
free body diagram of the forces acting on one of the masses at the end
See Figure 81.
of the tether, say mz.A Using equations 2.8 and 2.9, the radial and

tangential accelerations acting onm, are given by,

2 2
Frlo o ay ooagy o2, 02 "% g T cose (8.1)
m, r’2 ;Z ra rZ M, :
G G
(FG )2 = (aa) - “~H X—Z—[l - 3 _.Y_Z] _ T Sina (B.Z)
m, 2 ;E'rG a m,

Equations B.1 and B.2 may be combined and written in terms of the total

acceleration of mass m, as,

_ =T

a, = — = Cosa
2 - my 2
G
u[“( 2 2 2
- —=(- 2+ 3 Sin“) + 3 (£)¢¢ -5 s (8.3)
:g o s osa(l - § Sina)]
where,
Coso = {_g (B.4)
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Figure Bl. Geometry and Forces Acting on A Dumbbell Mass
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Sina = X2 (8.5)
2

The total acceleration of mass n, may also be written in terms of
the center of mass, the relative, the centifical and the Cor/o/is accelera-

tions.

- -2 - - -

4 = qem * amz/c.m. dcor rel (B.6)

The center of mass acceleration is tne sum of the radial and tangential
center of mass accelerations which are given by the right hand sides of
equations 2.18 and 2.19. The relative, centificial and Coriolis accelera-
tions may be found using the following expressions for the angular

velocity and distance 7%

R (B.7)
-9:2 = X:i‘ + _y:'j-. (8.8)

m
a, = :5 Cosa - é;-—%g (FE)Z(I - % Sinza)COSa
r r G
G G
¢ E - 1,(d48)2 (8.9)
27 "2 )

The distance from mass m, to the center of mass of the dumbbell,
%55 Can be written in terms of the total tether length &, and the

two masses my and .
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2 R} (B.lO)

Using equation B.10, equations B.3 and B.7 may be equated and solved for

the instantaneous tether tension.

-H _ . 2
T=—m, 2(- 2 + 3 sin“a)

"a
-3 92c0sa(l - 2 sinta) M2 0 om)
z 7 = M-
G
.2: . . 2
- imy, + mmlz (a+8) (B.11)




APPENDIX C: NUMERICL ANALYSIS PROGRAM

THE
SIS
CON

INHY

AC
AL
ALD
AMX
AMXD
AR
ARF
ATH
DA
DAD
DATH
DL
DOL
DT
DA
ECC

ECCO
ECTH

i

PROGRAM NOTATION

MAIN PROGRAM

SUBROUTINE, CALCULATES RUNGE KUTTA VALUES
SUBROUTINE, CALCULATES LI3BRATION ANGLE INITIAL
CONDITIONS (CONSTANTS AND PHASE ANGLES).
SUBROUTINE, CALCULATES THE INVERSE HYPERBOLIC
TANGENT.

SEMIMAJOR AXIS (KM).

CONSTANT OF COSINE TERM IN TETHER LENGTH EQUATION.
TETHER LIBRATION ANGLE (RADIANS).

TETHER LIBRATION ANGLE (DEGREES).

MAXIUM TETHER LIBRATION ANGLE IN ORBIT COMPLETED

(RADIANS).

MAXIUM TETHER LIBRATION ANGLE IN ORBIT COMPLETED
(DEGREES).

DERIVATIVE OF THE ORBITAL RADIUS WITH RESPECT TO TIME
(KM/SEC).

"AR" AT LAST RUNGE KUTTA ITERATION (KM/SEC).

CONSTANT OF SINE TERM IN TETHER LENGTH EQUATION.

SEMIMAJOR AXIS THEORETICAL VALUE (KM)

DERIVATIVE OF “AL"™ WITH RESPECT TO TIME (RADIANS).

DERIVATIVE OF "AL" WITH RESPECT TO TIME (DEGREES).

DERIVATIVE OF THE TETHER LIBRATION ANGLE WITH

RESPECT TO THETA AT T=0.0 (RADIANS).

DERIVATIVE OF THE TETHER LENGTH WITH RESPECT

TO TIME (KM/SEC)

SECOND DERIVATIVE OF THE TETHER LENGTH WITH

RESPECT TO TIME (KM/SEC).

DERIVATIVE OF THETA WITH RESPECT TO TIME
(RADIANS/SEC).

DERIVATIVE OF THE LIBRATION ANGLE WITH RESPECT

TO TIME AT T=0.0 (RADIANS/SEC).

ECCENTRICITY.

ECCENTRICITY AT T=0.0.

THEORETICAL ECCENTRICITY VALUE.

EARTH GRAVITATIONAL CONSTAMT (KM=**3.0/SEC*+2.0)

RUNGE KUTTA STEP SIZE (RADIANS).

RUNGE KUTTA STEP SIZE (DEGREES).

ANGULAR MOMENTUM OF THE CENTER OF MASS (KM**2.0/SEC)

TOTAL ANGULAR MOMENTUM

MASS AT END OF TETHER, NEAREST EARTH (KG).

MASS AT END OF TETHER, FARTHEST FROM EARTH (KG).

NUMBER OF ORBITS COMPLETED.

ORBITAL PARAMETER.

ORBITAL PERIOD (SEC).

ORBITAL PERIOD (HOURS).

ORBITAL PERIOD AT LAST RUNGE KUTTA ITERATION
{HOURS) .

POWER REQUIRED FOR REELING OPERATION (WATTS)

POWER REQUIRED FOR REELING OPERATION (KWATTS).

MAXIMUM POWER REQUIRED FOR REELING OPERATION IN

LAST ORBIT COMPLETED.

TETHER LENTH (KM).

APOGEE RADIUS (KM).

MEAN TETHER LENTH (KM)

ORBITAL RADIUS AT LAST RUNGE KUTTA ITERATION (KM).

ORBITAL RADIUS (CENTER OF EARTH TO CENTER OF MASS)

PERIGEE RADIUS

TETHER TENSION (NEWTONS/1000.0)

TETHER TENSION (NEWTONS).

TRUE ANOMOLY (RADIANS).

TRUE ANOMOLY (DEGREES).

*THD* AT LAST RUNGE KUTTA ITERATION (DEGREES).

TETHER OPERATION TIME (HOURS).

ARGUMENT OF PERIHELION (DZGREES).

ARGUMENT OF PERIHELION LINEARIZED THEORETICAL VALUE
(DEGREES).

ARGUMENT OF PERIHELION THEORETICAL VALUE (RADIANS).

ARGUMENT OF PERIHELION THEORETICAL VALUE (DEGREES).
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o000
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MAIN PROGRAM

IMPLICIT REAL%16 (A-H, K-2Z)

COMMON /ALL/ K(4), N(4), P(4), Q(4),

SET

H, LPM, GR, MR, R, M12,
RGT, LT, ART, ALT,

ECC, TH, AS, AC,

ci, c8, Pi, P8, RR, QR, I

INITIAL CONDITIONS.

ECC = .10 DO

ECCO = ECC

TH = 0.0 DO

THD = 0.0 DO

AC =0.0 DO

AS = 0.2 DO

CALL CON

RP = 6770.0 DO

A = 7491.36115 DO
RP = A*(1.0 - ECC)
A = RP/(1.0-ECC)
RA = A = (1.0+ECC)
PAR = A * (1.0 - ECC*%2.0)

RG = RP
GR = 398778.0 DO
RB = 100.0 DO

R =RB * (1.0 + AC*COS(TH) + AS*SIN(TH))
PER = (6.283185308 DO) * SQRT(A*=*3.0/GR)
PERHO = PER/3600.0

ORC = 0.0
SIGN = 1.0

X = 0.0

X10 = 10.0

X1 = 1.0

M{ = 100000.0
M2 = 10000.0
M= M + M2

MM = M1 - M2

M12 = (M1+xM2)/M

MR = M12/M

LPM = SQRT(GR*PAR)

MS3 = SQRT(3.0)

AL = (4.0/MS3) * (C1*COS(P1) + CB=*COS(P8))

AMX = AL

DATH = {4.0/MS3) * (0.0 - CixSIN(P1) - MS3+C8+SIN(P8))

DT = (LPM/RG**2.0) * (1.0 -.MR*((R/RG)'*2.0) * (DATH + 1.0))

DA = DT * DATH
L =(RG**2.0)* DT

AR =(DTGO * ECC * PAR* SIN(TH))/(1.0 + ECC * COS(TH))*+2.0

H = .10471976 DO
HD = 6.0 DO

H = .17453293 DO
HD = 10.0

TIMH = 0.0 DO

TW = SQRT(2.0)

=83

THEOOQO 10
THEOQ0O020
THEOO030
THEOQO040
THEOOOS0
THEOOO060
THEOQO70
THEQOO80
THEOO090
THEOQO 100
THEOCO110
THEOO 120
THEOO130
THEOCO 140
THEOO 150
THEOO 160
THEOO170
THECO 180
THEOO 190
THEOCO0200
THEOO210
THEQO0220
THEOO230
THEOO0240
THEQO0250
THEOQO0260
THEO0270
THEOQO280
THEOO290
THEOO300
THEOO310
THEQO0320
THEQO330
THEOO340
THEOO350
THEQO360
THEOQO370
THEOQO380
THEQO390
THEQO400
THEOO4 10
THEOO420
THEQO430
THEQ0440
THEOO045%0
THEOO460
THEQO470
THEQ0480
THEOO490
THEOCS00
THEOOS10
THEOQ520
THEQCO530
THEOOS540
THEQOS50



LT = L + .5 = N(2) THEO1110

ART = AR + .5 * P(2) THEO1120

ALT = AL + .5 * Q(2) THEO1130

CALL SIS THEO 1140

c THEO1150
c FIND K4, N4, P4, Q4 : THEO1160
c THEO1170
{ =4 THEO1180

RGT = RG + K(3) THEO1190

LT = L + N(3) THEO 1200

ART = AR + P(3) THEO1210

ALT = AL + Q(3) THEO 1220

CALL SIS THEO 1230

c THEO 1240
c FIND NEW VALUES FOR RG, L, AR, AL : THEOQ 1250
c THEO1260
RG = RG + (K(1) + 2%K(2) + 2+K(3) + K(4))/6.0 THEO1270

L =1L + (N(1) + 2sN(2) + 2+N(3) + N(4))/6.0 THEO 1280

AR = AR + (P(1) + 2#P(2) + 2+P(3) + P(4))/6.0 THEO 1290

AL = AL + (Q(1) + 2+Q(2) + 2+Q(3) + 0(4))/6.0 THEO 1300

c . THEO1310
c FIND AL IN DEGREES, AND THE DERIVATIVE OF AL WITH RESPECT THEOQ 1320
c 70 TIME. THEO 1330
c THEO1340
ALD = AL * (57.2957795 DO) THEO 1350

c THEO 1360
I =1 THEO1370

RGT = RG THEO 1380

LT = L THEO 1390

ART = AR THEO 1400

ALT = AL THEOQ1410

CALL SIS THEQ 1420

DT = L/RG*+2.0 THEO 1430

DA = Q(1) = DT THEQ 1440

DAD = DA * (57.2957795) THEO 1450

c THEO 1460
c THEO 1470
c UPDATE RA AND RP, WD, ORC, PER: NEED TO START PROGRAM AT THEO 1480
c PERIGEE, TH = 0.0. ’ THEO 1490
(o] , THEO 1500
M11= SIGN * AR THEO1510

{F (M¥1 .GE. 0.0) GO TO 180 THEO1520

IfF (AR .GE. 0.0) GO TO 170 THEO1530

A92 = (AR-ARF)/AR THEO 1540

RA = RG-(RG-RF)/A92 THEO 1550

SIGN = 0.0 - SIGN THEQ 1560

GO TO 180 THEOQ 1570

170 . A92 = (AR-ARF)/AR THEO 1580
RP = RG-(RG-RF)/A92 THEO 1590

SIGN = 0.0 - SIGN THEQ 1600

AMX = AL THEO1610

ORC = ORC + 1.0 THEO 1620

TIMH = TIMH + .5+*(PERH + PERHO) THEO 1630

PERHO = PERH THEO 1640

WD = THD-(THD-THF)/A92 - ORC*360.0 THEO 1650
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180 RF = RG THEO 1660
ARF = AR THEOQ1670

THF = THD THEO 1680

(] THEO 1690
c FIND THE ECCENTRICITY : THEO 1700
c THEO1710
ECC = (RA-RP)/(RA+RP) THEO 1720

A = .5%(RA+RP) THEO 1730

PER = (6.283185308 DO) = 3QRT(A**3.0/GR) THEO1740

PERH = PZR/3600.0 THEO1750

c THEO1750
c CALCULATE THE MAXIMUM POWER REQUIRED. THEO 1770
c THEO 1780
\ DL = RB * (AS*COS(TH) - AC+#SIN(TH)) = DT THEO1790
c THEO 1800
D4 = -2.0%ECC*AS*COS(TH)*SIN(TH) THEO 1810

DS = 2.0%ECC*AC*SIN(TH)=*»2 THEO 1820

D6 = 0.0 - AS*SIN(TH) - AC*COS(TH) THEO 1830

ODL = RB*(DT**2) * (D4+D5+D6) THEO 1840

c THEQ 1850
T4 =0.-GR*M12*R*(0.0-2.0+3.0+«SIN(AL)**2)/(RG*#*3) THEQ 1860

TS5 = 0.0-3.0+*GR*(R**2)*COS(AL)/(RG*=*4) THEO1870

T6 =SIN(AL)**2 THEO 1880

T66 = (1.0-2.5%T6)+*MR*MM THEO 1890

T7 = 0.0-DDOL*M12 + R*M12+(DT+DA)**2 THEO 1900

TEN = T4 + T5*T66 + T7 THEOQ1910

TENN = TEN = {00G.0 THEO 1920

ALF = AL THEO 1930

POW = TEN+DL THEO 1940

POWK = POW*1000.0 THEO 1950

c THEO 1960
c THEO 1970
c UPDATE THE MAXIMUM LIBRATION ANGLE PER ORBIT. THEO 1980
c AMXD 1S THE MAXIMUM LIBRATION ANGLE PER ORBIT. THEO 1990
c IF ONLY PRINTING AFTER FINISHIG AN ORBIT, AMXD IS THEQ2000
c THE MAXIMUM LIBRATION ANGLE THAT OCCURED IN THE LAST ORBIT. THED02010
C LIKEWISE, POWX IS THE PEAK POWER REQUIRED PER ORBIT. THE02020
Cc THE0202D
M90 = ABS(AL) THEQ2040

IF (M90 .LE. ABS(AMX)) GO TO 181 THE02050

AMX = AL THEO02060

AMXD = AL*(57.2957795 DO) THE02070

AXXD = AMXD THEO2080

c THEO2090
M91 = ABS(POW) THEG2100

131 IF (M91 .LE. ABS(FOWX)) GO TO 182 THEO2110
POWX = POW THEO2120

C THEO2130
C CALCULATE fHE THEORETICAL VALUES. THEO2140
c THEO2150
182 N7 = 12.0sTW*PI+*MR*((RB/PAR)*=2) THE02160
NN = N7 = AS THEO2170

KR = TW = ECCO THEO2 180

CALL INHY THEO02190

D32 = QR - ORC*NN THE02200
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ECTH (TW/2.0) * TANH(D32)
ATH PAR * (1.0 +.5%(TANH(D32))=**2)
WTH = -(ECC-ECCO + AC*LOG(ECC/ECCO))/AS
WTHD = WTH *(57.29577951 DO)
(N7/TW) * (1.0 - 2.0+ECCO**2)*(1. 0+AC/ELCO)*ORC
WLD = WL * (57.29577951 DO)
GO TO 190

WRITE (6,188) NN, RR, QR, D32
188 FORMAT(’ NN = ’, F14.6, * RR = ’, F14.6, ' QR = ‘', F14.6,
& ' D32 = ', F14.6,//)
PRINT ONLY FOR EVERY 10 ORBITS
190 C4 = ORC/X10
IF (C4 .GE. 1.0) GO TO 200
GO TO 220
PRINT FOR EVERY ORBIT
190 C5 = ORC/X1
IF (C5 .GE. 1.0) GO TO 200
GO TO 220

PRINT FOR EVERY ITERATION

180 GO TO 200

PRINT THE RESULTS

200 WRITE(6,210) ORC, ECC, TH,THD, RG, AL, LPM, L, AR, TIMH, R,
RA, RP, A, PERH, AMXD, ECTH, ATH, WTHD, WD, POWX,

DAD

210 FORMAT( ’ ORC = ’, F14.

@ Qo

‘f ECC = ', F14.6, ' TH = ’, Fi4.6,/

6,
& THD = ‘, F14.6, RG = ’, F14.6, ' AL = ', F14.6,/
& ‘' LPM = ', F14.6, L="', F14.6, ' AR = ‘, Fi14.6,/
& * TIMH = ’, F14.6, ' R = ', F14.6, ' RA = ', Fi14.6,/
- & ‘RP = ', F14.6, ' A = ', F14.6, ’ PERH = ’, F14.6,/
& ‘ AMXD = ‘/, F14.6,’ ECTH = ’, F14.6, ' ATH = ’, Fi14.6,/
& ’ WTHD = ’, F14.6,’ WD = ’, F14.6,’ POWX = ‘, F14.6,/
& ‘ DAD = ‘, F14.6,///)
211 WRITE (6,212) DL, DDL, TEN. POW
212 FORMAT( - DL = ‘, F14.6, ' DOL = ‘, F14.6,/
& * TEN = ', F14.6, ' POW = ‘', F14.6,//)

200 WRITE (6,214) ORC, ECTH, ECC, WLD, WD
214 FORMAT( F10.1, F14.6,F14.6, F14.6, F14.6)

X10=X10 + {0.0
X1 = X1 + 1.0
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THEO2210
THEO02220
THEO2230
THEO2240
THEO2250
THEOQ2260
THE02270
THEO2280
THEOQ2290
THEOQ2300
THEO2310
THE02320
THEO2330
THE02340
THEO2350
THEO2360
THED2370
THEO2380
THE02390
THEO2400
THEO24 10
THEO2420
THEO2430
THEO2440
THEO2450
THEO2460
THEO2470
THEO2480
THEO2490
THEO2500
THEO25 10
THEO2520
THEO2530
THE02540
THEO2550
THEQ2560
THEO2570
THEO2580
THEQ2590
THE02600
THEQ026 10
THE02620
THEO2630
THEO2640
THEO2650
THEQ2660
THEO2670
THEO2680
THEO2690
THEO2700
THEQ27 10
THEO2720
THEO02730
THEDO2740
THEO2750
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PI = 3.14159265 DO THEQOS60

THEQOS70
PRINT INITIAL CONDITIONS: THEO0580
THEOO590

80 WRITE (6,90) A, ECC, RP, RA, RG, TH, THD, AL, RB, AC, AS, THEOO600
& R, ORC, M{, M2, M12, PAR, LPM, L, DT, AR, PER, THEOO6 10

& H, HD THEQ0620
90 FORMAT ( * A = ‘, F12.4, ' ECC = ', F12.4, ' RP = ', F12.4,/ THEOO630
& ' RA = ’, F12.4, ' RG = ’, F12.4, ' TH = ', F12.4,/ THEOO640

& * THD = *, Fi12.4, ' AL = ‘', F12.4, ' RB = ', F12.4,/ THEOO650

& ' AC = ', F12.4, ' AS = ‘', F12.4, ' R = ', F12.4,/ THEOO660

& ' ORC = /, F42.4, * M1 = *, F12.4, * M2 = ‘' Fi12.4,/ THEOGCE70

& © M12 = ‘, F12.4, * PAR = ’, F12.4, ‘ LPM = ', Fi12.4,/ THEOO680

& L ="', Fi12.4, * OT = ’, F12.4, ’ AR = ', F12.4,/ THEO0690

& * PER = ‘, F12.4, ' H = ', F12.4, ' HD = ’, F12.4,///) THEOO700
THEOO710

THEQ0720

WRITE (6, 94) THEOO730

94 FORMAT ( ’ AS = .2, AC = 0.0, ECCO = .1 “,/) THEOO740
WRITE (6,95) THEQO750

95 FORMAT( ’ PROGRAM : ORC, ECTH, ECC, WLD, WD, ’ ///) THEOO760
WRITE (6,96) THD. R, ALD THEOO770

96 FORMAT( F8.2, F14.6, F14.6) THEQO780
THEOO790

THEOO800

CALCULATE THE NEW R AND TH: THEOOB10
THE0O820

100 TH = TH + H THEOO0830
THD = THD + HD THEQO840

R = RB *+ (1.0 + AC*COS(TH) + AS*SIN(TH)) THEOO850
THEOQOB860

START THE RUNGE KUTTA APPROXIMATION THEOO870
THEOO880

FIND K1, Ni, P1, Q1: THEO0890
THEOO900

I =1 THEOO9 10

RGT = RG THEO0920

LT = L THEOO930

ART = AR THEOQ0940

ALT = AL THEOO950

CALL SIS THEOO960
THEQ0970

FIND K2, N2, P2, Q2 : THEOO980
THEO0990

I =2 THEO 1000

RGT = RG + .5 = K(1) THEO1010

LT = L + .5 = N(1) THEO 1020

ART = AR + .5 = P(1) THEO 1030

ALT = AL + .5 = Q(1) THEO 1040

CALL SIS THEO 1050

THEO 1060

FIND K3, N3, P3, Q3: THEO1070
THEO1080

1 =3 THEO 1080

RGT = RG+.5 * K(2) THEO 1100

IF (ORC .GE. 200.0) GO TG 250 THEO2760

IF (CRC .EQ. 100.0) GO TO 250 THEOD2770

IF (X .GE. 2.0) GO TO 250 THEO2780
THE02790

220 X = X+1.0 THE02800
IF (ORC .GE. 200.0) GO TO 200 . THEO2810
THEO2820

GO TO 100 THEO2830
THE02840

250 STOF THE02850
END THEO2860
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SUBROUTINE SIS

SUBROUTINE SIS
IMPLICIT REAL*=16 (A-H, K-2)

COMMON /ALL/ K(4), N(4), P(4), Q(4),
H, LPM, GR, MR, R, M12,
RGT, LT, ART, ALT,
ECC. TH, AS, AC,
ci, c8, P1, P8, RR, QR, I

PP ® P

TT = (RGT**2.0)/LT
FIND THE NEW RUNGE KUTTA VALUES

H *« ART = TT

—_~

N NN .~

.0-1.5«(ABS(SIN(ALT)))*=2
H+ (A + B1%B2) = TT
-LT/(RGT**2)
-LT/(MR*R#*%«2)

D = LPM/(MR*(R*%2.0))

Q(I) = H = (C1+C2+D) *= TT

WRITE (6,50) K(1), N(I). P(I}), Q(I),

RGT, R, LT, ART, ALT, A, Bi, B2,

ci, €2, 0, TT

50 FORMAT (' K(I) = ‘, F14.86,

he)
~~
OO D> e

N = s N -

® @

&
& Fi14.6, ' RGT = ', F14.6, ' R =
& F14.6,/’ LT = ‘, F14.6, ’ ART =
& F14.6,/' A = ' ,Fi4.6, " B1 = ',
& F14.6,/’ C1 = ' ,F14.6,’ C2 =
& ©TT = ', F14.6.//)

RETURN

END

SUBROUTINE INHY

SUBROUTINE INHY
IMPLICIT REAL*16 (A-H, K-2)

COMMON /ALL/ K(4), N(4), P(4), Q(4),
& H, LLPM, GR, MR, R, Mi2,
& RGT, LT, ART, ALT,
& ECC, TH, AS, AC,
& ci, €8, P1, P8, RR, QR, I

YR = (RR+1.0)/(1.0-RR)
QR = .5 * LOG(YR)

RETURN
END
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GT +(ABS(LT/(RGT#*#2)))*+2 - GR/(RGT*+2)

H*3.0*GR*MR/RGT)*TT* ((R/RGT)**2)* SIN(ALT) * COS(ALT)
R
-3.0*GR*MR/(RGT=*%2))* ((R/RGT)**2)

© N(I)} = ', Fi14.6, ' P(I) = /, F14.6,/’ o(1) = 7,

‘,F14.6,’ D

S1S00010
$1S00020
S1S00030
S1S00040
S1S00050
SIS00060
S1S00070
$1S00080
SI1S00080
SI1S00100
SIS00110
S1S00120
S15S00130
SIS00140
SIS00150
S1S00160
SI1S00170
S1sS00180
SIS0C0190
S1500200
S1500210
S1500220
S1500230
S1500240
S1S00250
S1S00260
S1500270
S1500280
S1500290
S1S00300
SIS00310
SI1S00320
SIS00330
S1500340
SI1S00350
S1S00360

INHOOO 10
INHO0020
INHO0030
INHO0040
INHOO0S0
INHOO060
INHOO0Q70
INHO0080
INHO0090
INHOO 100
INHCO110
INHOO0120
INHOO 130
INHOO 140
INHOO 150
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SUBROUTINE CON

SUBROUTINE CON
IMPLICIT REAL*16 (A-H, K-2Z)

COMMON /ALL/ K(4), N(4), P(4), 0(4),

H, LPM, GR, MR, R, M12,
RGT, LT, ART, ALT,
ECC, TH, AS, AC,

&
&
&
& ci{, C8, P{, P8, RR, QR, 1

AS/(2.0%ECC-AC)
ATAN(X)

IF (AS .NE. 0.0) GO TO 1

St = 1.570796327 DO
$2 = S1

S4 = S{

S9 = Si

$10 = S1

S13 = Si

S16 = S1

s3 = -Si

S5 = S3

S12 = S3

S14 = S3

S17 = S3

GO TO 2

B1= (ECC+AC)/AS
X = Bt

PQ = ATAN(X)
S1 = FQ

s2 = st

S10 = S1

S13 = S1

S16 = S1

X = -Bf

PQ = ATAN(X)
$3 = PQ

S12 = S3

S14 = s3

S17 = S3

B2 = AC/AS
X = B2

PQ = ATAN(X)
sS4 = PQ

S9 = S4

X = -82

PQ = ATAN(X)
S5 = PQ

NOW CALCULATE THE PHI’S AND C’S SIMULTANEOUSLY.
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CONOOO 10
CONOO0020
CONOOO30
CONOOO40
CONOOOS0
CONOOO6E0
CONOOO70
CONOOO8O
CONOOO030
CONOO 100
CONOO 110
CONO0 120
CONOO 130
CONOOQ 140
CONOO 150
CONOO 160
CONOO 170
CONOO 180
CONOO 190
CONO0200
CONOC210
CONOO220
CONOO230
CONO0240
CONOO0250
CONO0260
CONOO0270
CON00280
CONO0290
CONOO300
CONOO310
CONO0320
CONOO330
CONOO340
CONOO350
CONOO360
CONOO370
CONOO380
CONOO0390
CONOO400
CONOQ4 10
CONO0O420
CONO0430
CONOO440
CONQ045S0
CONO0460
CONCO470
CONO0480
CONOO490
CONOOS00
CONOOS 10
CONOO0520
CONOOS530
CONOOS540
COMOOS50
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SR3
SM

WRI
FOR

ACH
gct
BB=
Ct
ctt
SIG
IF
IF

Y1
Y2
ACH
8ct
88
C2
c22
SIG
IF
IF

WRI

8.0+SQRT((ABS(AS))**2+(ABS(2+ECC-AC))**2)
SQRT((ECC+AC)**2 + AS==2) ’
3.0

= SQRT(G1)

= SQRT (ACe*%2 + AS%x2)

TE (6,3)
MAT (’ MARK 1 *,/)

(ECC+AC)*SR3/4.0

-AS*SR3/4.0

0.0

= ABS((SR3+SK)/4.0)

= SQRT((ABS(AC1))*«*2 +( ABS(BC1))+**2)
= AC1+SIN(BB) + BC1*COS(88)

(SIS .GT. 0.0) Ci= C1

(SIG .LT. 0.0) Ct1 =-Ct

an

§28.0 - 352.0+*SR3 + HS+*(20.0 - 8.0¢SR3)
6336.0 - 3520.0¢SR3
= (ECC+AC)eY1/Y2
= -AS«Y1/Y2

= (SR3 - 1.0)+L
= ABS(Y1*SK/Y2)

= SQRT((ABS{AC1)}«+2 + (ABS(BC1))=*2)

= AC1+SIN(BB) + BC1+COS(BB)

(SIG .GT. 0.0) C2= C2

(SIG .LT. 0.0) €2 =-C2

TE (6,4)

FORMAT ( * MARK 2 ‘, /)

Y1
Y2
AC1t
BC1
88
C3
C33
SIG
IF
IF

Yi
AC1
BC1
:]:]
c4
c44
SIG
IF
IF

528.0 + 352.0%SR3 + HS«(20.0+8.0¢SR3)
-6336.0 - 3520.0+%SR3
= -(ECC+AC)«Y1/Y2
= -ASsY1{1/Y2

(SR3+1.0)sL

ABS(Y1*SK/Y2)
= SQRT(ABS(ACt)v*2 + ABS(BC1)==2)

= AC1«SIN(BB) + BC1+COS(BB)
(SIG .GT. 0.0) C3= C3
(SIG .LT. 0.0) €3 =-C3

= -8.0 + 4.0+SR3

= -AC*¥ECC/Y1

=AS*ECC/Y1
= (5R3-2.0)sL
= ABS(ECC*SM/Y1)

= SORT((ABS(AC1))s*2 + (ABS(BC1))*«2)
= AC1+SIN(BB) + BC1=C0OS(BB)

(SIG .GT. 0.0) C4= C4

(51G .LT. 0.0) C4 =-C4
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CONOOS60
CONOO570
CONOOS8C
CONOOS90
CONOO60O
CONOO6 10
CONOO620
CONOO630
CONO064C
CONOO650
CONOO660
CONOO670
CONOOE80
CONOO0690
CONOO700
CONOO7 10
CONOO720
CONOO730
CONOO740
CONOO750
CONOO760
CONOO770
CONOO780
CONOO790
CONOO80O
CaNOO8 10
CUNO0820
CONO0830
CONOD0B40
CON0O0850
CONOO860
CONOOB70
CONOOB8O
CONOOB3S0
CONOOS00
CONOO0910
CON0Q0920
CON0CO0930
CONOOS40
CONCO950
CONO0960
CANOQ970
CONOO980
CONQQ990
CINO 1000
CONO1010
CONO 1020
CONO 1030
CONO 1040
CONO 1050
CONO 1060
CONO 1070
CONO1080
CONO 1090
CONO 1100




COEaN000000000

CONO1110

Yi = 8.0 + 4.0%SR3 CONO1120
AC1 = AC*ECC/YH{ CONO1130
BC1 = AS*ECC/Yt CONO1{ 140
BB = (SR3 + 2.0)+L CONO1150
C5 = ABS(ECC*SM/Y1) CONO1160
C55= SQRT((ABS(AC1))=**2 + (ABS{BC1))*x*2) CONO1170
SIG = AC1*SIN(BB) + BC1*C0S(BB) CONO 1180
IF (SIG .GT. 0.0) C5= CS CONO 1190
IF (SIG .LT. 0.0) C5 =-C5 CONO 1200
CONO1210

P1 = SH CONO 1220
P2 =(SR3-1.0)*L + S2 CONO 1230
P3 = (SR3+1.0)*L +S3 CONO 1240
P4 = (SR3 - 2.0)*L + S4 CONO 1250
P5 = (SR3 + 2.0)*L + S5 CONO 1260
Y1 = C2+SIN(P2) + C3+*SIN(P3) CONO 1270
Y2 = €2+COS(P2) + C3+C0OS(P3) CONO 1280
X = Y1/Y2 CONO1290
PQ = ATAN(X) CONO 1300
P6 = PQ CONO1310
Y1 = C4*SIN(P4) + C5=*SIN(PS) CONO 1320
¥2 = C4*COS(P4) + C5+*COS(PS) CONO1330
X = Y1/Y2 _ CONO 1340
PQ = ATAN(X) CONO 1350
P7 = PQ CONO 1360
CONO 1370

C6 = SQRT((ABS(C2))**2 + (ABS(C3))=**2 + 2.0+C2+C3*C0OS(P2-P3)) CONO 1380
SIG = C2+*COS(P2) + C3*COS(P3) CONO 1390
IF (SIG .GT. 0.0) C6= C6 CONO 1400
IF (SIG .LT. 0.0) C6 =-C6 CONO14 10
CONO 1420

C7 = SORT((ABS(C4))*+2 + (ABS(CS))*+2 + 2.0+%C4+«C5+C0OS(P4-PS)) CONO1430
SIG = C4*COS(P4) + C5+COS(P5) CONO1440
IfF (SIG .GT. 0.0) C7= C7 CONO 1450
IF (SIG .LT. 0.0) C7 =-C7 CONO 1460
CONO 1470

C8 = SQRT((ABS(C6))**2 + (ABS(C7))**2 + 2.0+*C6+C7+COS(P5-P7)) CONO 1480
SIG = C6 * COS(P6) + C7+C0S(P7) CONO 1490
IF (SIG .GT. 0.0) C8= C8 CONO1500
CONO1510

Y1 = C6+SIN(P6) + C7*SIN(P7) CONO1520
Y2 = C6+COS(P6) + C7+COS(P7) CONO 1530
X = Y1/Y2 CONO 1540
PQ = ATEN(X) CONO 1550
P8 = PQ CONO1560
CONO 1570

WRITE (6, 200) St, S3, S4, SS, Pi, P2, P3, P4, PS5, PG, P7, P8 CONO 1580
CONO 1590

200 FORMAT (’ S1 = ‘, Fi14.8, * S3 = ’, F14.8, ' S4 = ', F14.8,/ CONO 1600
& 'S5 = *, Fi14.8, ' P1 = ’, Fi14.8, ' P2 = ', Fi14.8,/ CONO 1610
& * P3 =’ F14.8, ' P4 = ‘', FI14.8, ' P5 = ', Fi14.8,/ CONO 1620
& ' pP6g ="', F14.8, * P7 = ', Fi4.8, ' P8 = ', F14.8,//) CONO 16230
CONO 1640

WRITE (6,300) ci, C2, Cc3, C4, C5, C6, C7, C8 CONO 1650
CONO 1660

300 FORMAT (  Ct = *, F14.8, * C2 = ', F14.8, ' C3 = ', F14.8,/ CONO 1670
& *Cc4 ="', F14.8, ' C5 = *, F14.8, ' Cc6 = ', F14.8,/ CONO 1680
& ©C7T =, F14.8, ' C8 = ’, F14.8,//) CONO 1690
CONO1700

RETURN CONO1710
EMND CONO1720
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