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Face2Gesture: Translating Facial Expressions Into Robot Movements

Through Shared Latent Space Neural Networks∗

MICHAEL SUGUITAN*, Independent Researcher, USA
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GUY HOFFMAN,Mechanical and Aerospace Engineering, Cornell University, USA

JESSICA HODGINS*, Robotics Institute, Carnegie Mellon University, USA

In this work, we present a method for personalizing human-robot interaction by using emotive facial expressions to generate

afective robot movements. Movement is an important medium for robots to communicate afective states, but the expertise

and time required to craft new robot movements promotes a reliance on ixed preprogrammed behaviors. Enabling robots to

respond to multimodal user input with newly generated movements could stave of staleness of interaction and convey a deeper

degree of afective understanding than current retrieval-based methods. We use autoencoder neural networks to compress

robot movement data and facial expression images into a shared latent embedding space. Then, we use a reconstruction

loss to generate movements from these embeddings and triplet loss to align the embeddings by emotion classes rather than

data modality. To subjectively evaluate our method, we conducted a user survey and found that generated happy and sad

movements could be matched to their source face images. However, angry movements were most often mismatched to sad

images. This multimodal data-driven generative method can expand an interactive agent’s behavior library and could be

adopted for other multimodal afective applications.

CCS Concepts: · Human-centered computing→ HCI theory, concepts and models; · Computing methodologies→

Machine learning algorithms.

Additional Key Words and Phrases: Human-robot interaction; social robots; neural networks; afective computing; behavior

generation

1 INTRODUCTION

We present a method for personalizing human-robot interaction by using emotive facial expressions to generate

afective robot movements. Robots can use movement to convey internal afective states for more compelling

human-robot interaction. However, creating movements often requires working knowledge of robotics and

kinematics. Even more accessible methods such as kinesthetic teaching are constrained by limited access to robots.

Relying primarily on retrieving preprogrammed user-crafted responses from a static database can eventually

diminish users’ interest in the robot [25]. Generating new behaviors in response to diferent users’ inputs may

mitigate this novelty efect and promote prolonged interaction. Machine learning models, particularly deep

neural networks, have achieved state-of-the-art performance in a variety of applications, such as perceived

emotion recognition [38]. Neural networks have also shown promise in data generation, such as generative
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adversarial networks for photorealistic images and conversational chatbots [15, 20]. Therefore, we believe that
neural networks are well-suited for afective generation applications.

As a proposed application, we envision a personalized interaction scenario where a human interactant’s facial
expressions actively generate a robot’s movement responses, e.g. in the greetings or acknowledgements. We chose
to mirror facial expressions as the input modality given the industry standard of cameras installed on robots
and the importance of gaze in improving subjective and social evaluations of robots [2]. We also considered the
practical availability of facial expression datasets with emotion labels (e.g. the Cohn-Kanade facial expression
database [23]) as well as the potential positive efects of afective mirroring in cooperative scenarios through
emotional contagion [7]. We chose robot movement as the output modality given the uniqueness of this afordance
to embodied robots compared to unembodied voice- or screen-based agents [18]. For a given robot, prior expert
and novice users create a dataset of manually crafted movements labelled according to emotions, e.g. happiness,
sadness, anger. To translate between the modalities, we propose using neural networks to learn the alignment
between the facial images and the sequential movements while maintaining a semantic link through the shared
emotion labels. In this scenario, the network-generated movements do not supplant, but rather complement

the existing user-crafted movement dataset to expand the robot’s available behavior library. In application, the
network-generated movements act as łinbetweensž either chaining together user-crafted łkeyž movements or
acting as idling motions.

We implemented this approach using the zoomorphic Blossom robot [40]. We used a convolutional variational
autoencoder (VAE) to compress Blossom’s emotion-labelled movements - head roll, pitch, yaw, and vertical
translation - into a latent embedding space, and a convolutional image encoder to compress emotion-labelled
facial expression images into the same latent space. To align the disparate modalities in the shared latent space,
we implemented a triplet loss objective to cluster embeddings by emotion classes rather than by modality. We
evaluated this approach in an online user survey where participants watched a video of a robot movement and
selected the best corresponding facial expression image from a set of possible images, i.e. matching a happy
movement to a happy face image. We found that generated happy and sad movements were well-matched, but
angry movements were mostly mismatched to sad images.

Our contribution is an approach for translating facial expression images into afective robot movements using
neural networks. Prior works in robot behavior generation synthesize new behaviors according to the robot’s
communicative afordances (e.g. movement, speech) [29, 30, 41]. Other works in afective human-robot interaction
bisect the robot’s response generation process: a classiication model irst recognizes human input according to
discrete emotion classes, then a retrieval system selects an appropriate robot response from a predeined library
of behaviors [13, 26, 31]. Compared to these works, we implement an end-to-end multimodal neural network that
learns an alignment between disparate input and output modalities and can directly translate facial expressions
into afectively appropriate robot movements. Our approach has further implications for expanding an agent’s
behavior library and for other multimodal afective applications, e.g. a listening ear responding to perceived text
sentiment and audio inlection, or a video-watching companion reacting to the multimodal context of video.

2 RELATED WORK

We based our approach upon prior works in robot movement creation and neural networks.

2.1 Robot movement

Movement enables robots to interact with the world with afordances beyond screen- and audio-based agents [18].
Apart from goal-oriented actions such as locomotion or manipulation, movement can also communicate afective
states, either in discrete categories (e.g. happy, sad, angry [12]) or on a continuous spectrum (e.g. valence, arousal
[37]). LaViers argues that humanizing movement is of paramount importance for human-robot interaction, and
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recommends referencing movement-based arts such as dance and acting in the design of robot movements [24].
However, designing emotive movements requires depth of knowledge in robotics, movement analysis, and
afective expression. Learning from demonstration through either direct manipulation of a robot’s actuators
or remote teleoperation [3] is more accessible to lay users but still requires physical access to a robot and may
not be generalizable to other platforms. To reduce the need for hand-made user-crafted behaviors, researchers
have explored generating movements using machine learning models [9, 19]. We are interested in generating
afective movements for robots using machine learning techniques, speciically neural networks. We view these
generated movements not as supplanting the user-crafted movements, but rather complementing them to expand
the robot’s available behaviors.

2.2 Neural networks

2.2.1 Robot movement generation. Designing robot movements is often time-intensive and limited by proximity
to physical robots. Machine learning models can use existing movements to expand a robot’s available behavior
library. Marmpena et al. generated motion for a humanoid robot by chaining poses together from a VAE’s learned
latent space [29, 30]. Yoon et al. generated gesticulation motions for a humanoid robot using a multimodal dataset
of speech, text, and posture [41]. The works in this space have largely focused on humanoid embodiments,
perhaps due to the familiarity and availability of humanoid movement data. Additionally, these approaches rely
on datasets that are either expert-crafted or sourceable in large quantities, e.g. professionally recorded speeches
to yield paired multimodal datasets. We adopt similar neural network methods, but instead rely on user-crafted
movements. We believe that sourcing movements from users is a more accessible approach and yields samples
that better relect the potential end users of such a system.

2.2.2 Applications of afective movement. The ability for data-driven neural networks to learn features is useful
for applications that may otherwise be intractable with heuristics, such as perceived afective recognition and
generation. Many works in this space focus on perceptive tasks, such as supervised perceived sentiment analysis
in text and images [11, 21]. Pakrasi et al. [34] apply notions of Kansei Engineering principles to the relationship
between animated motion, the design of the character, and choice of character archetypes. Simple non-verbal
movements have been shown to improve perception of team work [22] and have even been shown to improve
team performance [8] in human robot teams. However connecting automatic motion generation to perceptual
outcomes is still an open topic. Heimerdinger et al. [17] link context and environment to the perceived valence
and arousal perceptions. However, there are still signiicant challenges to generating robotic motion using neural
networks that are perceived afectively by people. Robots such as iCat [35], Muecas [10], and Miro [14] emphasize
the afordance of facial expressions of the robot. Muecas uses computer vision to both recognize users’ facial
expressions and, successively, author robot facial expressions. However, this system discretizes the input user
facial expression into discrete categories (neutral, happy, sad, fear, anger), from which the pre-crafted robot
expressions are selected; this alignment is hand-crafted. We are interested in expanding beyond this with recent
advancements in larger neural networks, which can operate end-to-end sans discretization by using the emotion
labels as an alignment guide. Neural networks can also generate emotive samples of images and audio [27, 33].
Our proposed application is less technically complex than these examples, particularly in the relatively low
dimensionality of the robot’s movement compared to high-dimensional images, text, and audio. We show, however,
that this low-dimensional space is suicient for clustering afective states of movement.

2.2.3 Multimodal machine learning. The ability for neural networks to learn features is also useful for multimodal
applications [6]. Automatic image captioning is a common application that learns alignments within a paired
dataset of images and their corresponding textual descriptions [5]. Reversing the task to generate images given
text descriptions is a more complex task, but recent state-of-the-art techniques are capable of generating realistic
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samples [36]. Nguyen et al. adopted similar techniques to perform manifold alignment on a paired image and text
dataset for robot understanding [32]. These techniques are applicable to the multimodal input-output modalities
of robots, e.g. sensor inputs from cameras or microphones and movement outputs through actuators.

Prior works in afective human-robot interaction bisect robot response generation into recognition and retrieval.
First, a classiication model recognizes afect from human inputs (e.g. facial expression, speech) according to
discrete emotion categories (e.g. happiness, sadness, anger) [13, 26, 31]. The system then uses the recognized
emotion to retrieve an appropriate robot response from a predeined library of behaviors.
In our approach, we bypass the intermediate classiication step by using an end-to-end multimodal neural

network with an encoder-decoder architecture. The network aligns the disparate input and output modalities by
using the emotion labels to structure its latent embedding space. In the embedding space, the network clusters
data together towards similar labels and away from opposing labels. To generate a behavior, the network encodes
the input into the embedding space and decodes into an output with the same emotion class. Our approach
directly translates the inputs into afectively appropriate outputs and generates behaviors beyond the initial
library.

We explored neural network-based techniques for robotmovement generation in priorwork titled łMoveAEž [39].
In that work, we used an earlier subsection of Blossom’s movement dataset in a movement-only VAE for move-
ment generation and afective modiication. After training the VAE to compress the movement data into a latent
space, we generated and modiied movements. To generate movements, we sampled embeddings in the latent
space and decoded through the latter decoder half of the VAE into new network-generated movements. To modify
a movement, we irst selected a base movement with a given emotion label and encoded through the former
encoder half of the VAE into a latent embedding. Beside the network, we used linear regression to map the latent
space into the 2D circumplex model of afect, a relational representation of emotions on a 2D plane of valence
and arousal dimensions [37]. In this valence-arousal plane, we moved embeddings from their original labeled
emotion to a new target emotion, e.g. moving an originally happy-labeled movement embedding to the sad region
in the valence-arousal space. We then decoded the embedding through the latter decoder half of the VAE into a
network-generated afect-modiied movement.

The network presented here, dubbed łFace2Gesture,ž expands upon the movement-only MoveAE by translating
afective facial expressions into robot behaviors. MoveAE implemented modiication within the modality of
movement; Face2Gesture implements translation between the input modality of images and output modality of
movement. Face2Gesture builds upon MoveAE by:

• Refactoring and restructuring the VAE neural network,
• Using a larger movement dataset,
• Implementing a paired image-based VAE network for the facial expressions from the Cohn-Kanade data-
base [23],
• Optimizing on a triplet loss to align the disparate movement and image modalities in a shared latent space,
and
• Outputting either reconstructions of user-crafted movements or newly synthesized image-generated
movements.

We use techniques from these previous works to create an afective response system that generates robot
movements from facial expressions. We perform intermodal translation by using techniques from multimodal
machine learning, speciically encoder-decoder architectures and emotion label-based triplet loss. The resulting
system encodes both robot movements and human facial expressions into a shared latent embedding space, and
decodes these embeddings to generate movements from either modality.
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Fig. 1. The Blossom robot. The exterior (let) is made of sot materials while the interior mechanism (right) consists of a

central tower structure from which the head platform is suspended by elastic bands. The head platform has four degrees of

freedom: roll, pitch, yaw, and vertical translation.

3 METHODS

We used an existing robot platform, datasets of movements and face images, and encoder-decoder neural networks.

3.1 Robot platform

We used the Blossom robot, an open-source social robot (Figure 1) [40]. Blossom’s internal mechanisms consist
of a head platform suspended from a tower structure that rotates about its base platform. Blossom features four
degrees of freedom (DoFs): roll, pitch, yaw, and vertical translation, though we disable vertical translation to
simplify the control interface. The robot achieves motion with four actuators: tower motors 1, 2, and 3 control
the front, left, and right sides of the head, respectively, and a motor in the base rotates the tower left and right.
The robot’s head can pitch up and down, roll left and right ±45°, yaw left and right ±150°about its base, and
vertically translate up and down. Although the robot’s DoFs are limited compared to more complex embodiments,
it features a large range of motion and head movements alone can convey complex afective information [1].
Users can control the robot with a mobile browser-based application that maps the orientation of the phone into
motion for the robot’s body.

3.2 Data

3.2.1 Movements. We used robot movement samples that we crowdsourced from lay users. We asked users to
irst view video prompts of cartoon characters (SpongeBob, Pikachu, Homer Simpson - recognizable characters
with recognizable facial and bodily emotional expressions) conveying diferent emotions (happiness, sadness,
anger), then to puppeteer the robot with their phones as if it were conveying the same emotion. Some movements
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Fig. 2. Examples of Blossom movement data and dataset augmentations visualized through motor trajectories. Tower 1

controls the pitch of the front of the head, towers 2 and 3 control the let-right rolling of the head, and base controls let-right

yaw. Each original movement is a 4.8-second sample from a user-crated movement (let). The horizontal axis is time; the

vertical axis is the radial motor position. Shearing the degrees of freedom (DoFs) in time slightly nudges their trajectories

relative to each other. Mirroring horizontally swaps the let and right tower motors (2 and 3) and reverses the base rotation.

Decoupling the let and right tower motors separates the DoFs to promote rolling motion. Shiting the average base rotation

slightly promotes yawing motion.

were collected locally in-person, though most were collected remotely by users teleoperating the robot. Users
generally found anger the hardest emotion to convey. To account for the subjectivity of the user-crafted samples,
we iltered the dataset by deploying a survey to another set of users. Each question contained a video of the
robot performing each movement, followed by a question asking users to select the conveyed emotion. We
deployed this iltering survey through Amazon Mechanical Turk and received over 250 responses, averaging
25 ratings for each movement. We kept only movements recognized at a threshold of 50%, an arbitrary margin
above the chance level of 33% for each of the three emotions. This iltering downsized the original dataset from
over 200 movements samples to approximately 140 movement samples. We then balanced the emotion classes by
oversampling from the smaller class populations. Because the neural network requires ixed-length inputs, we
took random 4.8-second samples from each movement. Though we can expand the data through augmentation,
we took care to perform only augmentations that are emotionally neutral, e.g. mirroring a movement from left to
right is neutral and valid, but modulating the pitch of the robot’s head downwards or upwards may afect its
conveyance of sadness and is thus invalid. We designed the following augmentations (Figure 2):

• Shearing the DoFs in time by slightly nudging their trajectories relative to each other.
• Mirroring horizontally (i.e. along a vertical plane bisecting the left and right halves of the robot) by
swapping the left and right tower motors (2 and 3) and reversing the base rotation.
• Decoupling the left and right tower motors. Because these motors are often synchronized in the user-
crafted movements, they have a tendency to collapse into copies of each other. Separating these DoFs
slightly promotes rolling motion without modifying the emotion.
• Shifting the average base rotation slightly. Because the robot faces directly forward in many user-crafted
movements, this augmentation compensates for the neglect of the base motor and promotes yawing motion.

Because of the relatively small size of the user-crafted movement dataset, enabling augmentation was necessary
to avoid completely overitting.

3.2.2 Face images. We used the Cohn-Kanade dataset, a collection of facial expression videos from a diverse range
of actors [23]. We used the inal frame at the apex of each emotion, resulting in approximately 150 samples. We
augmented the data with low-magnitude rotation, translation, horizontal mirroring, scale, shear, and brightness
transformations.

ACM Trans. Hum.-Robot Interact.
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Fig. 3. Neural network for translating face images into movements. The user-cratedmovements �� (4.8 seconds at 10 Hz

with four DoFs→ 48 × 4) are encoded into a 36D embedding space �� ∼ � (��, ��) (top let). The movement embeddings

�� are then decoded to reconstruct the original input ��→� (right). The face images � � are encoded into the same 36D

embedding space �� ∼ � (�� , �� ) (botom let). The face embeddings �� are then decoded to generate new movements ��→�
(right). (Face images ©Jefrey Cohn).

Algorithm 1: Training algorithm

Input : Input movements �� , input face images ��
�� (��) ← ���� (���� (��)) //movement autoencoder neural network;

�� (� � ) ← ����� (������50 (� � )) //face image encoder neural network;

while not converged do
��, � � //minibatch of movements and faces;

��→� ← �� (��) //movement reconstructions;

�� ← ���� (��) //movement embeddings;

�� ← �� (� � ) //face embeddings;

�� ← ��� (��→�, ��) //reconstruction loss with mean-squared error;

���,� ← ��(��) //movement KL divergence;

���,� ← ��(�� ) //face KL divergence;

�� ← � (��, �� ) //triplet loss (Equation 1);

� ← ���� +���,����,� +���,� ���,� +���� //overall loss, backpropagate to update networks �� and

�� ;

��→� ← ���� (�� ) //pass face embeddings through decoder to generate movements;

end
��→� (� � ) ← ���� (�� (� � )) //face-to-movement translation network;
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3.3 Network

We constructed the end-to-end network using convolutional encoders and decoders for each data modality. We
aligned the encoded latent spaces using triplet loss.

3.3.1 Movement VAE. We used a VAE to compress the movement data into embeddings in a lower-dimension
latent space (Figure 3, top left to right). The encoder ���� uses 1D convolutions that stride across the time
dimension of the movements �� ∈ �� , and outputs the latent space distribution parameters (log-mean and log-
variance of a distribution � (��, ��)). We empirically set the latent dimension to 36 parameters; we arrived at this
dimensionality by decreasing the latent space size until the reconstructed movements lost too much information,
i.e. were very smoothed out. The decoder ���� uses these parameters to sample embeddings �� ∼ � (��, ��) which
pass through deconvolutional layers to reconstruct the original movements ��→� . We used LeakyReLU (� = 0.1)
and batch normalization after each convolutional and fully connected layer. We calculated the reconstruction
loss �� as the mean-squared error between the raw trajectories of the original and reconstructed movements.
The VAE also uses Kullback-Leibler (KL) divergence as a loss ���,� to ensure that the embedding distribution
approximates a normal distribution, i.e. � (��, ��) ≈ � (0, 1).

3.3.2 Face image encoder. We encoded the images of f aces � � ∈ �� into the same latent space by irst passing
them through a pretrained ResNet50 model [16], then through two fully connected layers (Figure 3, bottom
left). Similar to the VAE, we used LeakyReLU and batch normalization after the fully connected layers, and the
inal encoder layers yield the embedding distribution �� ∼ � (�� , �� ). We added the KL divergence of the face
embeddings ���,� to the overall loss.

3.3.3 Shared latent space alignment using triplet loss. Because we do not have paired alignment between robot
movements and face images, we used triplet loss �� to align the embeddings �� and � � in the shared latent
space [32]. The triplet loss minimizes the distance between an anchor embedding �� and a positive sample
embedding �+, and maximizes the distance between the anchor and a negative sample embedding �− . For each
sample in a minibatch, we mined positive samples by randomly sampling embeddings that share the same emotion
class, and negative samples from the other classes. We used an imbalanced mining scheme wherein movement
embedding anchors can sample from either modality, while face embedding anchors only select positive samples
from the movement embeddings. The intuition is that the image encoder can easily separate the emotions due to
the pretrained ResNet50 model and should primarily be ine tuned to match the movement embedding space. For
example, given a happy movement as an anchor, positive samples come from happy movements and images,
and negative samples come from the set of sad and angry movements and images. However, given a happy face
image as an anchor, positive samples come only from happy movements. We used the Euclidean distance function
� (�, �)2 with no margin.

�� =
︁

��∈��∪��

��� (� (��, �+)
2 − � (��, �−)

2, 0) (1)

The overall loss objective of the network is a weighted combination of the reconstruction, KL, and triplet
losses:

� = ���� +���,����,� +���,� ���,� +���� (2)

We empirically set the weights as�� = 1× 104,���,� = 1× 10−2,���,� = 1× 10−1, and�� = 1× 103. We adjusted
these weights based on subjectively appraising the reconstructions and visually checking the clusters in the
latent space.
Algorithm 1 describes the training loop. Due to the subjectivity of the outputs, we both monitored the loss

curves and appraised the quality of the image-generated movements during training. After training, we can use
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the function ��→� (� � ) = ���� (�� (� � )) - the pipeline of the face encoder and the movement decoder - to translate
face images into movements ��→� (Figure 3, bottom left to right). We trained for 1,500 epochs with a learning

rate of 1 × 10−2, batch size of 32, Adam optimizer, and an 80-20 train-test split.

4 EVALUATION

We evaluated the approach through both objective technical metrics and a subjective user survey.

4.1 Network evaluation

We evaluated the technical performance of the method through its performance in minimizing the loss objectives.
We also monitored the outputs: the reconstructed and image-generated movements, and the separability of the
latent embedding space. As an ablation study, we analyzed the performance of the network optimizing either
only reconstruction loss or only triplet loss.1

4.2 User evaluation

Due to the subjective nature of the proposed method’s outputs, we performed a user evaluation through an online
survey. We constructed a survey where each question showed a video of a movement and a lineup of three facial
expression images, consisting of the movement’s actual source image and two random images sampled from
the other emotion classes. We asked users to view the video and select the image that best corresponds to the
movement. We deined a baseline as using a source face image’s known emotion label and randomly selecting
a user-crafted movement sample of the same corresponding emotion class, e.g. pair a randomly chosen happy
face image with a randomly chosen happy movement sample. Rather than claim that our method improves upon
the baseline, our method avoids the repetitiveness of recycling a predeined library of behaviors, the beneits of
which would require a longitudinal evaluation. Our simpler hypothesis is that the image-generated movements
will be recognized above the 50% level used to ilter the dataset (Section 3.2.1). We deployed this comparison
survey on Amazon Mechanical Turk and received responses from 50 participants, each of whom viewed the same
set of 30 selected user-crafted and generated movement samples.

5 RESULTS

We analyzed the results through objective technical metrics and the subjective user evaluation.

5.1 Network training

We monitored the reconstruction and triplet losses during training (Figure 4). There is a gap between the triplet
training and testing loss, indicating overitting. As explained later, this gap may be a limitation of the network’s
ability to separate happy and angry movements, particularly those it may not have trained on.

5.1.1 Reconstruction. We evaluated reconstruction quality by comparing the inputs �� to the outputs ��→�
(Figure 5). The outputs capture the overall trajectories of the inputs, but have diiculty preserving exaggeration
and tend to smooth out low-amplitude high-frequency łjittering.ž

5.1.2 Embedding separation. We evaluated embedding separability by visualizing the latent space �� ∪� � using
t-SNE (Figure 6, left) [28]. Happy and sad samples are well-aligned, but angry movements are barely separated
from happy movements. This coupling may be due to the ambiguity in the data itself (i.e. happy and angry are
both high arousal afective states, and are thus diicult to delineate with a simple embodiment), and may also

1Because KL divergence only helps shape the learned latent space but does not by itself generate movements or align embeddings, we do not

ablate for a KL-only coniguration.
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Fig. 4. Network training curves for reconstruction (let) and triplet loss (right). Triplet loss shows signs of overfiting, perhaps

due to a coupling of perceptually similar happy and angry movements.

Fig. 5. Examples of original movements �� (top) with their reconstructions ��→� (botom) (happy let, sad middle, angry

right). The reconstructions maintain the overall trajectories but have dificulty preserving the exaggeration and low-frequency

high-amplitude components of the originals.

explain the overitting in the triplet loss training curve (Figure 4, bottom). Additionally, even user-crafted happy
and angry movements were less correctly recognized than sad in the video user survey (Figure 11).

5.1.3 Ablation. Using only reconstruction loss deines an upper bound for generating realistic movements,
but does not yield noticeable improvements (Figure 7). Addressing the deiciencies of the reconstructions
(oversmoothed, limited exaggeration) may require alternate techniques such as frequency-domain representa-
tion [4, 42].

Using only triplet loss deines an upper bound for the latent space separability (Figure 6, right). Even without
other objectives, angry and happy movements are still close, suggesting that the coupling is not due to the other
losses, but is rather a limitation of the model itself.

5.1.4 Generation. Throughout training, we appraised the subjective quality of image-generated movements
��→� (Figures 8, 9). The generated movements retain many of the characteristics of the user-crafted movements,
e.g. happy movements have high tower 1 position and sinusoidal out-of-phase rolling motion in tower motors 2
and 3, sad movements have lower tower 1 position and overall latter motion. As with the reconstructions, the
generated movements have less exaggeration and jittering than the originals.

ACM Trans. Hum.-Robot Interact.
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Fig. 6. t-SNE plots of the shared latent embedding space for the full multi-objective network (let) and a network optimizing

only triplet loss (right). Colors indicate modality (movements, faces) and emotion (happy, sad, angry). Stars indicate centroids

of each class. Happy and sad movements and faces are closely aligned, but angry movements are barely separated from

happy movements, even when optimizing only for triplet loss (right).

Fig. 7. Reconstructions from a network optimizing only reconstruction loss. There is only marginal improvement over the

standard network (Figure 5); exaggeration is beter preserved, but jitering is still smoothed out.

5.1.5 Kinematic comparison. We compared the user-crafted and image-generated movements from their re-
spective test sets by calculating kinematic features (Table 1, Figure 10). We calculated range and speed as the
peak-to-peak distance and gradient for each DoF, respectively. We calculated pitch as the diference between the
positions of the front of the head (tower motor 1) and the average of the sides of the head (tower motors 2 and
3). Positive pitch is looking upwards, and negative pitch is looking downwards. We averaged speed and pitch
across the length of each movement. The image-generated movements are mostly comparable to the user-crafted
movements, though the user-crafted movements have larger between-class variation (Table 1, � columns), such
as the range and speed of the tower motors (Figure 10, left column). User-crafted angry movements in particular
exhibit noticeably higher base range and speed than their image-generated counterparts (Figure 10, right column).
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Fig. 8. Examples of source face images � � paired with their generated movements ��→� (happy let, sad middle, angry right).

The generated movements maintain similar characteristics of the original user-crated movements �� (Figure 5), e.g. happy

movements have high tower 1 position and sinusoidal out-of-phase rolling motion in tower motors 2 and 3, sad movements

have lower tower 1 position and overall flater motion. ∗Note: due to licensing restrictions, the face image in the second set of

results (top row center) has been replaced with a publishable image from the same emotion class. (Face images ©Jefrey Cohn).

Table 1. Analytical comparison of the kinematic features (Figure 10). The image-generated movements approximate the

trends of the mean speed, �, of the user-crated movements, but oten have smaller standard deviations � .

Feature Source
Happy Sad Angry
�� �� �� �� �� ��

Tower range
User 0.61 0.18 0.99 0.26 0.89 0.30
Gen 0.79 0.18 0.85 0.18 0.78 0.17

Base range
User 0.31 0.23 0.26 0.14 0.92 0.65
Gen 0.47 0.23 0.30 0.09 0.35 0.16

Tower speed
User 1.60 0.61 0.80 0.25 1.94 1.25
Gen 1.61 0.25 1.42 0.33 1.56 0.27

Base speed
User 0.54 0.51 0.32 0.21 1.19 0.40
Gen 0.58 0.13 0.58 0.09 0.62 0.19

Posture
User -0.11 0.83 -2.19 0.64 -0.53 1.47
Gen 0.92 1.04 -1.38 0.90 -1.09 0.97

5.2 User evaluation

The user evaluation serves as a subjective appraisal of the generated movements. We distributed a survey asking
users to match a video of a movement - either user-crafted or image-generated - to its corresponding source
facial expression image; we received 50 responses, but did not record demographic information. For the survey,
we used only data from the respective movement and image test sets, i.e. samples that the network did not train
on. For the user-crafted movements, we randomly paired face images only with movements from the movement
test set. For the image-generated movements, we used only movements generated from images from the image
test set. We used ive movements for each condition, resulting in a total set of 30 movements (2 sources × 3
emotions × 5 samples). We analyzed the user evaluation results with a confusion matrix (Figure 11); perfect
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Fig. 9. Examples of image-generated happy (top), sad (middle), and angry (botom) movements shown in the survey. ∗Note:

as with the previous figure, due to licensing restrictions, the face image in the second set of results (middle row) has been replaced

with a publishable image from the same emotion class. (Face images ©Jefrey Cohn).

results would be an identity matrix. The randomly sampled user-crafted movements are overall well-matched
(left). The image-generated happy and sad movements are less well-matched (right), but are still above the 50%
level we used for iltering the dataset (Section 3.2.1). However, generated angry movements are recognized below
chance, being confused primarily for sadness, but also for happiness. To compare the perceived recognition
accuracies between the user-crafted and image-generated movements, we performed equivalence tests (two
one-sided t-tests) with an equivalence bound of ±10%. These tests yielded �-values of 0.39, 0.96, and 0.99 for
happy, sad, and angry, respectively, showing that none of the classes are signiicantly equivalent.

6 DISCUSSION

The network training results show that the network is capable of reconstructing the original user-crafted
movements and generating new movements from the shared latent space. The diiculty in separating angry
movements can be attributed to the limitations of both the model and the platform. Users who created movements
noted that it was diicult to convey anger in particular due to the robot’s lack of appendages. This limitation
may have resulted in angry and happy movements being perceptually similar, as they are both classiied as
high-arousal emotions on the circumplex model [37]. Additionally, due to the human uninterpretability of the
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Fig. 10. Comparison of kinematic features between the user-crated and image-generated movements. The legend (botom

let) is the emotion (Happy, Sad, Angry) and source (User-Crated, Image-Generated). The user-crated movements show

more between-class variation, but the generated movements preserve many of the overall features.

learned embedding feature space and stochastic nature of t-SNE, the 2D visualization may have found more
variance in latent features related to arousal and not valence, which could have delineated happy and angry
samples.
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Fig. 11. Confusion matrices for both the user-crated (let) and image-generated movements (right). Participants viewed

videos of the movement then selected the best corresponding face image from a lineup. While the perceived recognition

accuracies for the image-generated movements are lower, happy and sad are still recognized above the 50% level. However,

generated angry movements are recognized below chance and are most oten mismatched to sad images.

The confusion of generated angry movements as sad may be attributed to the diiculty in maintaining the
exaggeration of the user-crafted movements, as corroborated by the kinematic analysis (Figure 10, right column).
This suggests that exaggeration is an important feature for conveying anger. Though the generated happy and sad
movements were recognized above chance, the accuracies were not signiicantly equivalent to the user-crafted
movements. We view the generated movements as not supplanting, but rather complementing existing user-
crafted behavior libraries. For example, an agent could use the more legible user-crafted behaviors for łactivež
scenarios such as call-and-response, while using the generated behaviors for łpassivež scenarios such as greeting
or łinbetweenž motions chaining together łkeyž sequences. To avoid using potentially confusing generated
movements (e.g. generated happy movements potentially interpreted as sad), we could ilter usable generated
movements by measuring similarity to the user-crafted movements (e.g. minimizing embedding distances in the
latent space) or develop improved network architectures that better preserve the original movement afects.

6.1 Limitations and future work

We used only a subset of the six canonical emotions [12], which themselves are a discretization of the broad
continuous spectrum of emotions [37]. This simpliication was done in part to reduce the task to the most legible
emotions, but also due to the limitations of the limbless and potentially velocity-constrained robot. Additionally,
there may be ambiguity within the image dataset itself. Angry and sad images are both low-valence emotions that
may be confounding depending upon both the performer and interpreter of the expression. This discrepancy is
orthogonal to the confusion between angry and happy movements, and highlights disparities between movement
and images as afective modalities. Future work could involve using a more expressive platform with more DoFs,
expanding the range of emotions and data modalities (e.g. text, audio), and deploying the system in a real-time
interactive scenario.
While we achieved good survey results using a between-class lineup, i.e. one image for each of the three

emotion classes, the unpaired nature of the diferent dataset modalities would make it diicult to discern the
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source image from a within-class lineup, e.g. it would be diicult to conidently select the source happy image
from a lineup consisting of only happy images. Although the usability of this approach on unpaired and separately
collected data can be seen as a feature, future work would beneit from collecting a paired dataset of prompts and
multimodal behavior demonstrations in an attempt to achieve a deterministic translation function. Additionally,
new transformer-based neural networks have achieved new state-of-the-art performance on multimodal tasks
such as text-to-image generation [36]; such architectures may prove to be invaluable for future applications in
afective computing, but are also increasingly complex compared to the VAE network we presented here.

7 CONCLUSION

In this work, we demonstrated an approach for generating robot behaviors from emotive images using neural
networks. We used convolutional encoders to compress afective robot movements and facial expression images
into a shared latent embedding space. We used a triplet loss objective to align the multimodal embeddings by
emotion, e.g. bringing happy movements closer to other happy movements and faces, and separating them
from sad and angry movements and faces. We then used a convolutional decoder to generate movements from
embeddings from either modality. Through a subjective user evaluation, we found that happy and sad image-
generated movements were recognizable and well matched to their source images above a 50% level, but generated
angry movements were mostly mismatched to sad images. Though the perceived recognition accuracies were not
signiicantly equivalent to the user-crafted movements, the generated movements are still usable for expanding
the agent’s behavior library. Future behavior systems for afective agents can adopt this intermodal approach
with diferent modalities, such as generating movements from speech or other emotion-labeled inputs.
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