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ABSTRACT

Unitary transform image coding systems have been shown to be a
successful approach to achieve image data compression. However,
block transform image coding systems generate artifacts which degrade
low bit-rate coded images. The discrete cosine transform (DCT),
for example, generates "blocking effects". Alternatively, the
short-space Fourier transform (SSFT) generates "ringing effects".

To reduce these artifacts, a new class of unitary transformations,
defined as lapped orthogonal transforms (LOT), has been investigated.
The basis functions upon which the signal is projected are nverlapped
by a fixed non-zero number of samples. The transform must remain
orthogonal to avoid redundancy of the image representation in the
transform domain. An example of a LOT optimized in terms of energy
compaction was numerically derived on a digital computer, using

an augmented Lagrangian optimization algorithm.

Intraframe zonal transform coding experiments were performed
at bit-rates ranging from 0.1 to 0.5 bit per pixel. An hybrid
transform/DPCM interframe coding system was computer-simulated.

Such a system, including a motion-compensated predictor, was also
experimentally tested. Using these two architectures, interframe
coding experiments were performed at a constant data-rate of 56
kilobits per second. For both intraframe and interframe encoders,
the LOT, by reducing blocking and ringing effects, improved the
coded image subjective quality over the DCT and the SSFT.

Thesis Supervisor: David H. Staelin

Title: Professor of Electrical Engineering
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Common sense, do what it will, cannot avoid being sur-
prised occasionally. The object of science is to spare
it this emotion and create mental habits which shall be
in such close accord with the habits of the world as to
secure that nothing shall be unexpected.

B.R.

A. E. Van Vogt
The World of Null-A



ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor David
H. Staelin for his suggestions, supervision, support and dedi-
cation of time.

I would like to extend my thanks to everyone in the Research
Group. There are so many who I wish to acknowledge that I am
sure I may inadvertantly leave out some names. With that in
mind, I would like to express my gratitude:

To Brian Hinman and Jeff Bernstein, who introduced me to
image processing and whose valuable suggestions got me started
on this research.

To Henrique Malvar, for providing the software necessary
to use the video system. Despite the fact he usually calls me
"Felipe", I always found his comments useful.

To Dr. Philip Rosenkranz and Mark Colavita, for helping
me w?en the computer system was mad at me (I always wondered
why?).

To Vivek Dhawan, for his artistry which appears in some
of the figures of this thesis.

To Ashok Popat, for helping me produce the photographs
in this thesis.

To Alain and Maria Briancon, for their friendship and
support at times of need. Alain provided numerous suggestions
and helped me with the computer-generated graphs. Maria edited
parts of the text.

My very special thanks to Kristen Kaliski. She gave me
love and moral support and helped me keep what little sanity
I had left during the last few months. Her dedication to this thesis
was probably as high as my own. She did an outstanding job
editing and typing the text.

Last but not least, I would 1ike to express my heartfelt
gratitude to my parents. Their commitment to the education
of their children has always been as strong as their will to
see them succeed. Without them, none of this would have been
possible.

This work was supported by grants from DARPA and the Advanced
Television Research Project.



TABLE OF CONTENTS

Page:
ABSTRACT 2
ACKNOWLEDGEMENTS 5
TABLE OF CONTENTS 6
1. INTRODUCTION 8
2. DEFINITION AND EXAMPLES OF TRANSFORM IMAGE CODING SYSTEMS 12
2.1. Principles of transform coding systems 12
2.1.1. Definition 12
2.1.2. The basis functions 14
2.1.3. Decorrelation of the image samples 18
2.1.4. Energy compaction 21
2.2. The discrete cosine transform (DCT) 23
2.2.1. Definition 23
2.2.2. Coding artifacts generated by the DCT 24
2.3. The short-space Fourier transform (SSFT) 26
2.3.1. Definition 26
2.3.2. Coding artifacts generated by the SSFT 27
3. DEFINITION OF A LAPPED ORTHOGONAL TRANSFORM (LOT) 28
3.1. Definition and properties 28
3.2. Example of a LOT 30
3.2.1. Definition 3l
3.2.2. Constraints on the basis functions 31
3.2.3. Symmetry properties of the basis functions 34
3.3. Computation of the transform and the inverse transform 39
3.3.1. Computation of the LOT 41
3.3.2. Computation of the inverse LOT 44
4. DERIVATION OF THE BASIS FUNCTIONS 47
4.1. Recursive formulation of the problem 47
4.2. The augmented Lagrangian method 50
4.3. Derivation of the algorithm for the LOT 56
4.4. Implementation and experimental results 58



5. APPLICATION OF THE LOT TO INTRAFRAME CODING
5.1. Description of the simulated system architecture
5.2. Non-adaptive coding scheme
5.3. Adaptive coding scheme
5.4. Experimental results

6. APPLICATION OF THE LOT TO INTERFRAME CODING
6.1. Introduction
6.2. Hybrid transform/DPCM coding scheme
6.3. Motion compensated coding scheme
6.4. Experimental results

7. CONCLUSIONS

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

REFERENCES

Page:

67
67
70
74
78
88
88
89
94
98
19
121
124
127
132
136



CHAPTER ONE

INTRODUCTION

Data communication technology has been marked by extraordinary
growth in the past decade. Data communication systems usually
involve either data storage or data transmission, and often both.
As the technology and performance of digital communication systems
improve, the demand for systems able to store, process, and
communicate large amounts of complex data, such as images, becomes
stronger. To satisfy these needs, various methods relative to
image processing have been developed.

In digital image processing, an analog monochrome video
signal is sampled. The total number of samples taken from one
image determines the resolution of the digital image. The Tuminance
value of the image sample (also called picture element or pixel)
is quantized with a fixed number of bits. This number of bits,
along with the resolution, characterizes the quality of the
digital image [8], [26]. However, images in digital form may
represent considerable amounts of binary data. Consider, for
example, a monochrome video signal recorded at 30 frames per
second, 512 x 512 pixels per frame, and 8 bits per pixel. This

signal corresponds to a data rate of about 63 megabits per second.



Although images in digital form can be processed with much more
flexibility than images in analog form, the bandwidth requirenments
of the digital image transmission systems are increased. To minimize
the cost of storage and transmission of digital images, memory and
data compression techniques must be considered [17], [24].

The basic idea is to use the processing flexibility of images
in digital form to implement data compression algorithms. It is
jmportant to notice that significant compression cannot be achieved
without some distortion of the reconstructed image. Therefore, for
any image compression algorithm, three qualities are always considered
to measure its efficiency: the data compression ability, the resulting
distortion, and the complexity of possible hardware implementation.

Transform image coding is known as one of the most popular
and successful methods in image data compression. In traditional
image coding systems, such as PCM, predictive, and interpolative
coding, the image samples are coded directly in their original
representation [8], [26]. In transform image coding systems, the
approach is radically different because the coding process is
indirect. An energy-preserving, or unitary, transformation is
applied to the image, and the resulting transform coefficients
are quantized, coded and transmitted [26], [12], [41].

The concept of transform coding was first introduced by
Andrews and Pratt in 1968 [2]. They used the Fourier transform
as the energy-preserving transformation. Numerous transforms were

presented afterwards. The main concerns were to find unitary



transforms with concurrent low mean-square error coding performance
and reduced computational requirements [1], [14], [16], [28] - [30].

Transform coding systems are successful because the represen-
tation of the signal in the transform domain can be coded more
efficiently than the one in the spacial domain. Because of the
typically high correlation between pixels of natural monochrome
images, the signal energy in the transform domain tends to be
clustered into a small number of transform coefficients. Thus,
considerable data compression can be achieved without significant
distortion of the reconstructed coded image by discarding or
coarsely quantizing the low-energy coefficients. However, some
coding artifacts, typical of transform coding systems, distort
images coded at a very low bit-rate (normally less than 0.5 bit
per pixel). For example, blocking effects are generated by trans-
forms such as the discrete cosine transform (DCT) [23]. Alternatively,
the short-space Fourier transform (SSFT) avoids blocking effects,
but generates ringing effects [14].

A new class of unitary transforms which reduces these artifacts
is developed in this thesis. Definitions and principles of trans-
form coding systems are reviewed first. The basis functions of a
transform are defined, and the important concepts of decorrelation
of image samples and energy compaction are described. The coding
artifacts generated by the DCT and the SSFT are analyzed. A rew
type of unitary transform for image coding is then introduced.

For a specific example of such a transform, optimized in terms of

10



energy compaction, an algorithm which yields a numerical model for
the new transform is derived. For the experimental part, an intra-
frame transform coding system (coding of still images) is described.
Both adaptive and non-adaptive zonal coding schemes are presented.
Hybrid transform/DPCM and motion-compensated interframe coding
system (coding of sequences of images) architectures are computer-
simulated. The new transform and the DCT are tested in both
interframe and intraframe coding experiments; the SSFT is tested

in intraframe coding experiments alone. Finally, the performances

of the various transforms and systems are evaluated and compared.
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CHAPTER THWO

DEFINITION AND EXAMPLES
OF TRANSFORM IMAGE
CODING SYSTEMS

2.1. PRINCIPLES OF TRANSFORM CODING SYSTEMS

2.1.1. Definition

An image in digital form can be represented as an array or
matrix F of size R x R, where R is the resolution of the image.
Each image sample is an element of this matrix. In addition,
each sample is quantized and assigned a fixed-length code word
(8], [26].

Suppose a sequence of digital images has to be transmitted
over a communication channel. One possibility is to scan each
image following a predetermined pattern and to send the code
word of each pixel through the channel. However, for real-
time applications, this technique involves a data rate exceeding
the capacity of the large majority of channels currently used [17].

Alternatively, in a transform coding system, an image is

represented in a space called the transform domain. The domain
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which has the original representation of the image is called the
space domain, in contrast to that of the transform. The image
samples in a transform coding system are quantized and coded in
the transform domain, rather than in the space domain [2], [8],
[17], [24], [26] - [30], [41].

The new representation of the image is obtained by applying
an energy-preserving linear transformation to the array F [16].
If the transformation is invertible, the representation in the
transform domain is non-redundant and thus is an array F' of
the same size as F. Therefore, F' is obtained by applying a
unitary transform T to F:

R

Fi(k,1) = ]

R
T OF(i,3)T(3,3,k,1) k.1 = 1,...,R (2.1)
i=) J=

The transform kernel T is usually separable. In actuality, T
is expressed as the product of two operators: one for the rows,

and one for the columns:
T(i,3,k,1) = Tc(i,k)Tr(j,l) (2.2)
Following this, F' is expressed as the product of three matrices:
F' =T, FT, (2.3)

For reasons of symmetry, transforms used in image coding usually

have identical row and column operators:

T =1 =7 (2.4)

13



Accordingly, the two-dimensional computation of F' reduces to:

Fr=TFT (2.5)
or.

Fl

[t /)bt (2.6)

The R x R unitary matrix T (Tt = T'l) is denoted as the one-
dimensional transform kernel. Consequently, the two-dimensional
transform F' of F can be computed by first taking a one-dimensional
transform along each row, and by then taking another one-dimensional
transform along each resulting column.

Once F' has been derived, each transform coefficient, or element
of F', is quantized and assigned a code word. These coefficients
are scarnned and the corresponding code words are transmitted. At
the receiver, the transform coefficients are decoded. The inverse

transform is then taken to acquire the reconstructed image [41].
2.1.2. The basis functions

Applying a unitary transform T to the image F can be inter-
preted as projecting F onto a set of two-dimensional basis functions.
The unitarity condition implies that the basis functions are
orthonormal. Hence, F' is the set of coordinates of F in the new
basis. Since only separable transforms are considered, the two-
dimensional basis functions are derived from the one-dimensional

basis functions. Computing the two-dimensional transform of F can

14



be done by taking one-dimensional transforms along rows and columns.
Consider a vector f of size R which could be a line of pixels from
the original image F. The one-dimensional transform of f is a

vector f' of size R. This is derived as such:
f'=Tf (2.7)

where T is the R x R unitary matrix defined by equation (2.4).

In most transform coding systems the digitized image is
divided into subimages called blocks [8], [12], [17], [41]. The
process applied to each data block is identical. Suppose F is
divided into blocks of size N by N pixels. Knowing that the
resolution of the original image is equal to R, the total number
of data blocks is Kz, where K is equal to R/N.

The transform vector f' is obtained by projecting f upon
each of the R one-dimensional basis functions, which are the rows
of the matrix T. To express the block structure of the transform
process, f and f; are divided into K non-overlapping segments cf
N samples. Even in the one-dimensional case, each segment is
referred to as a "block" to correspond to the two-dimensional case.

The basis functions can be written as K x N vectors of size R b, .\

for i = 1,...,N and k = 0,...,K-1. Using this notation, the
projection of f upon the N basis functions b ,  \s 1= 15...5N,
(k is fixed) yields the N coefficients of the (k+1)-th data block
of f'. The block structure of the process is determined by the

fact that for a given index i, i = 1,...,N, the basis function
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bisry TS equal to the basis function b, . lineariy shifted
by (k'-k)N samples (assuming that the basis functions are extended
to infinite length sequences). This N-sample shift invariance

is illustrated in Figure 1, for N = 10.

- nll””llm —

_.__‘1“ r” HH“]: —

Figure 1 - N-sample shift invariance of the basis
functions for a given index 10

For transforms traditionally used in image coding, only the
N samples of 9i+kN’ which correspond to the locations of the N
image samples of the (k+1)-th block of f, have non-zero value.
Consequently, the processing of one data block is completely

independent from the processing of another. On the other hand,
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the non-zero coefficients of b.,, . need not be limited to the
locations of the (k+1)-th block samples. The overlap L of the
transform T is defined as the number of non-zero coefficients of
gi+kN which correspond to image samples extending outside the
(k+1)-th block. For reasons of symmetry, the total number of
non-zero coefficients of the b, \ basis functions is N + 2L.
If L is not zero, the transform representation of a block
includes not only the image data of that block, but also the
image data from neighboring blocks. In the example given in
Figure 1, L is equal to N/2. Notice that the basis functions
corresponding to adjacent blocks actually overlap by 2L samples.
Define for a given i the vector a; as the representation
of the non-zero coefficients of the b, . basis functions for
k = 0,...,K-1. The length of the a, vectors, i=1T1,...,N, is
N+2L. The b,y basis is obtained by shifting a, by KN
samples and by setting the remaining samples to zero. The

bi+ky Pasis functions represent the rows of the matrix T:
t .
T= [Pi+kN] 3 =]’oc-9N; k=0,-oo’K"] (2;8)

Similarly, the one-dimensional block transform kernel A is described

as:
- t, .
A= [a, i=1,...,N (2.9)

The operator A is a N x (N+2L) matrix. The transform kernel T

can be expressed in terms of the block transform kernel A. For

17



example, when L is equal to zero, T has the following block structure:

N
AN
g
A
T= )
0 e (2.10)
A
when L is equal to N/2, T takes the following form:
ZN
A N
A @
®
T= o
[
g (2.11)
A

The matrix A is constrained to ensure that the matrix T is unitary.
when there is no overlap, the block structure of T, as described
by equation (2.10), produces the condition that A itself must be
hnitary. In other words, taking the transform of the image F

is equivalent to taking a transform of size N x N of each block

of F. Such transforms have been widely used and remain the most

popular ones used in transform image coding.
2.1.3. Decorrelation of the image samples

In this section and in the following one, jt is assumed that

18



the transform has no overlap (L=0). Consequently, a unitary
transform of each block of size N x N is taken (A is the one-
dimensional block transform kernel).

Stationary assumptions are not valid for typical images
because the image statistics may vary widely between different
regions. However, when an image is divided into blocks of
N x N pixels (usually N is equal to 8 or 16), each block of the
image can be viewed as a sample of a discrete two-dimensional
stationary random process. Images are commonly described as
first order Markov processes [8], [26]. Consider a line x of
N pixels. The covariance matrix Ay of the vector x is defined

as:
h, = EL-E()) (x-E(x))") (2.12)

The stationary assumption implies that the variance of each

coefficient of x is constant, as such:
x =[] of(x)) =a®  i=T,..N (2.13)
The Markov model yields a covariance matrix of the form:
A= oR (2.14)
where R is the N x N matrix defined by:
R(i,5) = ol 171 RERRN (2.15)

and p is the correlation factor between adjacent pixels.

19



For typical images, each pixel is strongly correlated with
its neighbors. Sample values used for the correlation factor o
range from 0.9 to 1 [26]. Due to this high correlation, the
representation of the image information content in the space
domain is redundant. Moreover, since the image samples have the
same variance, a fixed-length code word encryption scheme must
be used in the space domain. The interest in using a unitary
transform for image data compression has evolved because the
transform can be chosen to decorrelate optimally the image
samples. Consequently, the representation of the image information
content in the transform domain is less redundant. The coding
efficiency can thus be improved in the transform domain.

Suppose the 3, vectors, as defined by equations (2.9) and
(2.10), are chosen to be the eigenvectors of the covariance matrix
Ax associated respectively with the eigenvalues Ai. In this

instance, the following holds true:
A, = h.a. (2.16)

Define x', the transform vector of x as:

x'=Ahx  x'=la;%] = 1,n0N (2.17)
The covariance matrix of x' is given by:

A= An A (2.18)

xl X .

However, A is the unitary matrix that diagonalizes Ay (suppose the

20



a; vectors are normalized to 1). Namely:

N (2.19)

Consequently, in this optimal case, the components of the x'
vector are uncorrelated with each other.

This optimal transform is known as the Hotelling or the
Karhunen-Loeve transform (KLT) [8], [26]. However, such a
transform cannot be used easily in practice because, for a
given image, the actual covariance matrix Ax is not known
exactly. Alternative models for Ax’ such as the one defined
by equations (2.14) and (2.15), are used. Even though perfect
decorrelation cannot be achieved in practice, all practical

transforms are chosen for maximal performance towards decorrelation.
2.1.4. Energy compaction

In section 2.1.3, the reasons why A should be chosen to
decorrelate the image samples as much as possible were given.
Another interpretation can be made to provide some insight to
the problem of using unitary transforms for image data compression.

The covariance matrix of the x’ vector, A ., is given by
equation (2.18). More particularly, the variance (or expected
energy) of the i-th component of x', x'i, which is the projection

of x onto the i-th basis function ais is given by the following

21



equation:
2(x'.) = a.b A a, (2.20)

The concept of energy compaction refers to the idea that the
transform should be chosen to pack a maximum of information into
a minimum of transform samples where energy and information are
presumed to be proportional [17]. If the image information content
is concentrated in the fewest possible coefficients, these
transform coefficients then have different variances. Variable-
length code word encryption schemes would be used for transmission.
If the transform is optimized in terms of energy compaction, a
large number of the transform coefficients have small variances.
In this case, they contain little information about the image,
and therefore are quantized coarsely, allowing for large data
compression.

A transform optimized in terms of energy compaction is such
that oz(x‘i) is maximized for any i, i = 1,...,N. Normalizing
cz(x'i) by the squared norm of a; yields the Rayleigh's quotient
of AX. According to Rayleigh's principle, this quotient is
maximized by the eigenvector of Ax corresponding to the largest
eigenvalue. Therefore, the solution to this problem is also the
KLT. The concepts of decorrelation and energy compaction are
equivalent.

Using the Markov model for Ay the variances oz(x'i).

ij=1,...,N, can be normalized by 02 and the squared norm of a;-

22



Thus, the energy compaction of the a; basis function can be defined

as the Rayleigh's quotient of the matrix R defined by equation (2.15):

g, = 21 (2.21)

A transform is optimal in terms of energy compaction if Ei is

g 1° Ty..05N,

normally are arranged by decreasing order of the respective

maximized for any i, i = 1,...,N. The vectors a

ratios Ei‘

2.2. THE DISCRETE COSINE TRANSFORM

2.2.1. Definition

The transform optimal both in terms of energy compaction
and decorrelation of the image samples is the KLT as previously
established. When the image is modelled as a Markov process,
the a; basis functions of the KLT are computabie. Unfortunately,
no fast algorithm is available to compute the KLT of an image.
The discrete cosine transform (DCT) produces results close to
those of the KLT and is known to have computationally fast
algorithms [1], [5], [33], [39].

The DCT is a transform with no overlap (L=0). Thus, K2
two-dimensional DCT's of size N x N. of each block are taken to
compute the DCT of an image of resolution R (R=KN). The block

structure of the one-dimensional transform kernel T is given in

equation (2.10). The a; vectors, which are defined by the next
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equation, are of size N:

eit = [a;(n)] n=0,...,N-1
a.(n) = eci) [M = 0,..N1 (2.22)
! N 2N
with:
1 for i # 0
(i) = [
1//2 fori=0

Note that the a, basis functions, defined by (2.22), are not
normalized to one. Thus, the basis functions used to calculate

the inverse DCT are the a, vectors scaled by N/2. The DCT, due

to both its performance in energy compaction and its fast algorithms,

has been widely used in transform image coding systems.
2.2.2. Coding artifacts generated by the DCT

A block transform coding system using the DCT takes the DCT
of each block, independently quantizes each transform sample, and
transmits the resulting coded coefficients over the communication
channel. Using these coefficients, the receiver reconstructs the
image by taking the inverse DCT of each block. One consequence of
this procedure is that the quantization noise is uncorrelated mainly
from block to block. The resulting effect is that the blocks may
be visible, especially for images coded at low data rates. In such
a system, the original image is divided into subimages. The sub-

images are transform coded separateiy as independent images. Then,
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the complete image is reconstructed by the juxtaposition of each
block. This procedure however, may generate mismatches between

adjacent blocks. Experiments performed with the DCT have shown

that these so-called "blocking effects" may damage significantly
the subjective quality of the reconstructed image [3], [23].

Actually, blocking effects are not generated solely by the
DCT. Indeed, these artifacts appear with any coarsely quantized
transforms having no overlap (L=0).‘ Blocking effects are 1inked
directly to the typical block structure of the transform kernel
T, given in equation (2.10). This problem can also be explained
by the discontinuities of the bo+kn Pasis functions. Consider
the first basis function a, of the DCT. This basis captures
the DC component of the signal. Al1l thé components of the a5
vector are constant, being equal to v 2 /N. Consequently, the
corresponding 90+kN basis functions present discontinuities
at the edges of the blocks.

Until now, three methods have been proposed to reduce
blocking effects due to quantization noise. The first method,
known as both two-component source coding and pinned transform
coding, separates the image into a stationary field coded in
the space domain, and a non-stationary field, coded in the
transform domain [21], [22], [35], [42]. Usually, the stationary
field is a low-pass version of the original image. Since blocking
effects are mainly a result of quantization errors which affect
the low-frequency components of the image, the two-component

source coding procedure reduces their visibility. A second
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method is to apply a low-pass filter over the boundary regions
between the blocks [31]. This also reduces the visibility of the
blocking effects. However, when an edge matches into a block
boundary, a blurring of the edge occurs. The last method is

based upon an overlapping of the blocks by one pixel before
transform coding [31]. The average intensity over the pixels

from overlapping blocks is computed to reconstruct more accurately
the boundary regions between blocks. The main disadvantage of this
method is the redundancy of the transform samples. Since the
image representation in the transform domain is redundant, a loss
of data compression ability results. Thus, none of the methods

described here sufficiently solve the problem.

2.3. THE SHORT-SPACE FOURIER TRANSFORM

2.3.1. Definition

Hinman and Bernstein introduced the Short-Space Fourier Transform
(SSFT) as an alternative to the DCT to avoid blocking effects [31,
[14]. The SSFT is a multidimensional extension of the short-time
Fourier transform which was developed for one-dimensional infinite-
length signals such as speech.

The image, which is a finit:: length signal, is first reflec-
tively extended periodically to get an infinite-length signal. An
jnfinite-length window is applied to this signal. Finally, the

SSFT is obtained by taking a two-dimensional Fourier transform of
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the resulting windowed signal. The applied window is located at
the center of each block and extends over the entire signal. An
interesting feature of the SSFT is that it is computed using all
the image data, but still provides local spectral characteristics.
In that manner, the basis functions of the SSFT completely overlap.

The overlap L is equal to infinity.
2.3.2. Coding artifacts generated by the SSFT

The SSFT has been used for image transform coding. As expected
because the value of L is equal to infinity, blocking effects are
totally avoided when the SSFT is used. Since the window covers the
entire signal, quantization noise generated in one part of the image
spreads everywhere. Around sharp edges, the high-frequency components
of the signal are large. Quantization of the transform coefficients,
especially at low bit-rate, results in a low-pass effect on the image.
Using the SSFT, this noise is spread because of the infinite length
of the basis functions. This generates "ringing effects," especially
noticeable aroqnd the edges. In coding of single images (intraframe
coding) the SSFT has been shown to provide better results than the
DCT, mainly because c¢f the elimination of blocking effects. However,
for coding of sequences of images involving motion (interframe coding),
the SSFT fails to provide better results than the DCT. Actually,
the blocking effects of the DCT were preferred to the ringing effects

of the SSFT in interframe coding experiments [3].
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CHAPTER THREE

DEFINITION OF A
LAPPED ORTHOGONAL TRANSFORM

In the previous chapter, two transforms used in image coding
were presented. When the DCT'(L=0) and the SSFT (L==) are used
in image coding, they generate different types of artifacts:
blocking effects by the DCT and ringing effects by the SSFT.
Image coding experiments illustrating these effects are presented
in chapter 5. This thesis introduces a new class of unitary
transforms with non-zero valued finite overlap L to reduce simul-
taneously the blocking effects of the DCT and the ringing effects
of the SSFT.

3.1. DEFINITION AND PROPERTIES
In this research only real separable unitary transforms have

been considered. Thus, the computation of the transform F' of the

array F of size R x R (R=KN) reduces to:

Fr=TFTt (3.1)
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where T is the one-dimensional transform kernel. Since the trans-

form is unitary, the matrix T is a real unitary matrix. That is:
TT =T T=1 (3.2)

A lapped orthogonal transform (LOT) is a real transform
satisfying both properties of separability and unitarity described
by equations (3.1) and (3.2). The one-dimensional transform kernel
T is constrained, moreover, to having the following standard block

structure introduced in section 2.1.2:

N + 2L
A N
N
A
g
T = e
e
ﬂ @
A (3.3)

The matrix A is of size N x (N+2L). The overlap L, defined in
section 2.1.2, is a non-zero valued integer. The block size is
the integer N. Therefore, the block size N and the overlap L
completely describe the matrix T and hence a LOT.

The choice of the block size N has been discussed in section
2.1.3. It must be chosen so that the assumption about the
stationarity of the "block" random process is valid. Typical
values for N are 8 and 16.

The structure of T given in (3.3) should reduce "mismatch
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effects" between blocks since the transform process is not
independent from block to block. However, the matrix T still
has a block structure which may produce discontinuities. If
the value of L is not chosen carefully, multiple boundary
effects may result. Consequently, the overlap L must be
chosen so that these eventual boundary effects merge into a
square grid of size N. Given the structure of T, this clearly
implies that L must be selected so that N+2L is a multiple of

N. That is, L must be a multiple of N/2 (assuming N is even):
L =k N/2 (3.4)

where k is a non-zero positive integer.

Given the block size N and the overlap L, the matrix A
must be derived so that the unitarity condition on T is satisfied.
Thus, the transform process yields a non-redundant representation
of the digitized image.

This definition of a lapped orthogonal transform defines a
class of unitary transforms. Different values of L may be con-
sidered. The unitarity condition on T specifies the constraints
on A. On the other hand, A can be optimized in terms of energy
compaction. An additional constraint may be a fast computational

algorithm for the calculation of the transform.

3.2 EXAMPLE OF A LOT

An example of a lapped orthogonal transform is defined in
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this section. The problem of finding this transform, referred to
in the following sections and chapters as the LOT, is formulated
as a non-linear optimization problem. The optimization technique
used to solve this problem will be developed in chapter 4. The
applications of the LOT to image coding will be presented in
chapters 5 and 6.

3.2.1. Definition

In order to define a LOT, the value of the overlap L and
how the one-dimensional block transform kernel A is to be
optimized need specification. The overlap L is chosen here to
be equal to N/2. The block transform kernel A is optimized here
in terms of energy compaction, according to the definition given
in section 2.1.4. In this manner, the LOT to be developed in
chapter 4 will be equivalent to the KLT when L is equal to O.
Since the a. vectors alone determine the b, . basis functions
defined in section 2.1.2, they are also referred to as the LOT
basis functions. Since L is equal to N/2, the basis functions
are 2N points long and the block transform kernel A is a N’x 2N

matrix. A1l the fundamental properties of the LOT are summarized

in Table 1.
3.2.2. Constraints on the basis functions

The constraints on the a, basis functions are determined by
the unitarity condition on T. The basis functions a; can be

written:
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Table 1 - Properties of the LOT

* Separability of the 2-D transform kernel:
Fr=TfTh
F : image répresentation in the space domain

F': image representation in the transform domain

* 1-D transform kernel:
T is a real and unitary matrix:

TTtattTe

* Block size: N

* QOverlap: L = N/2

* 1-D block transform kernel:
A=l i= N

A is a N x 2N matrix

* Block structure of T:

A

* QOptimization: the LOT is optimized in terms of energy compaction:

For any i =1,...,N; a; maximizes E,, where:
poo 2R
i t
a; 8
with: R = [R(k,1)], 2N x 2N matrix defined by:
R(k,1) = o K71 Kol = T,...52N

where o is the correlation factor between adjacent pixels.
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2.t = (b)) e (3.5)

where X5 and y; are two vectors of size N respectively representing
the first and the last N elements of the basis function a,. In that
manner, the N x 2N matrix A is composed of two block matrices X

and Y of size N x N:
A=(X | Y) (3.6)

The one-dimensional transform kernel T can then be rewritten:

@ X1Y

®
L (3.7)

The unitarity of T can be expressed in terms of the rows of T,
namely the b, ns 1= 15...,N, k = 0,...,K-1, basis functions

(cf section 2.1.2):

t e
biakny Bjain = 8(1-32k-1) (3.8)
for 1,5 = TouersN; Ko1 = 0,00 K<

* If |k-1] > 2, the constraint (3.8) is always

satisfied because of the block structure of T.
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* If |k-1| =1, consider the two cases:

or:

k=1 -1, then the constraint (3.8) implies:

xit)_(j =0 i,5=1,...,N (3.9)
k=1 +1, then the constraint (3.8) implies:
T TR I PO (3.10)
* If k =1, then the constraint (3.8) reduces to:
gitgj = 6(i-3) (3.11)
Jxy Xitxj = §(i-j) (3.12)

Considering only the orthogonality constraints (the basis functions

can always be normalized later to one), the equations (3.9), (3.10),

and (3.12) define the following set of constraints on the a, basis

functions:

]
-
~<
)
n

3.2.3.

i=1,...,N (3.13)
t.

Y; ¥ = 0 (3.14a)
i = 1,...,N (3.14b)
it

(3.14c¢)

Symmetry properties of the basis functions

The even/odd symmetry properties of the ay basis functions

are introduced in this section.

Other transforms, such as the
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KLT or the DCT, comparable to the LOT for L equal to zero, present
an even/odd symmetry property of their basis functions with respect
to the center of each block. This symmetry appears to be correct
intuitively since the whole block transform process is symmetric
at the center of each block. For the same reason, similar proper-
ties can be expected and assumed for the LOT. However, a more
powerful justification for the symmetry properties can be given.
Assuming the a, basis functions satisfy these symmetry properties,
the problem defined by equations (3.13), (3.14a, b, c), admits.a
pon-empty set of feasible solutions.

The symmetry properties of the basis functions of the LOT

can be expressed in the following manner:

y; = (DT 20,0000 (3.15)

where X, and y; are the vector components of the basis a, defined

by equation (3.5) and H is the following N x N unitary matrix:

1
)

(3.16)

Note that HE = H and K = I.
For i = 1,3,...,N/2-1, y; is equal to H x;. Thus, the basis

a; is symmetric. For i = 2,4,...,N/2, ¥, is equal to -H x;. The
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basis a; is therefore antisymmetric. Using the symmetry properties
from equation (3.15) the constraints on the basis functions can be
revised. The constraints (3.14b) and (3.14c) become identical,

and combined with the cunstraint (3.13), yield the following

equation:
X Hx, =0 isd = 15...,N (3.17)

By replacing Y4 and xj with their expression in terms of X; and

. respectively, the constraint (3.14a) becomes:

%

(+(-1)") x5 = 0 I PO TR T (3.18)

This constraint is obsolete if a, and 3 have different types of
symmetry (i+j is an odd number). If a; and gj are either both

symmetric or antisymmetric, then §it

X3 has to be equal to zero
(i+j is an even number).

Defin~ {s }, m =1,...,N/2, as the set of the N/2 x, vectors
corresponding to the symmetric a; basis functions. Define {§m}.
m=1,...,N/2, as the set of the N/2 X; vectors corresponding
to the antisymmetric a, basis functions. Denote S, §, S» §H
as the subspaces of IRNspanned by the sets {s_}, {§m}, {H§m}’
{H§m}, m=1,...,N/2, respectively . The constraint (3.17)
implies that the subspaces S and S,, S and §H, § and Syp» § and §H

must be orthogonal:

sl sH; sl Sy3 §1 Sy 518, (3.19)
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The constraint (3.18) dictates that both {s } and {5}
m=1,...,N/2, must be orthogonal sets. Since H is a unitary
matrix, {Hs, } and {H5 3> m = 1,...,N/2, are also orthogonal
sets. Therefore, the subspaces S, S, Sy» and §H all must have
a dimension equal to N/2. Combining these results with the
orthogonality constraints given in (3.19) yields the following

necessary condition:
s=S§ (3.20)

Thus S, is also equal to §H'

H
It is interesting to notice that one consequence of (3.20)

is that the set {5 } (respectively {H3_}) can be obtained from the

set {§m} (respectively {H§m} ) by applying a unitary transform.

Finally, all the constraints given in (3.19) reduce to the single

constraint:

S1s (3.21)

H

Since {s_ } and {Hs } are orthogonal sets, the combination
of these two sets form an orthogonal basis of IR”if the condition
(3.21) is satisfied. Therefore, finding a feasible solution for
the problem of the LOT is reduced to finding an orthcgonal basis
of I&qsuch that N/2 of the basis vectors is obtained by applying
the operator H to the remaining N/2 basis vectors. A simple

example can be given to prove the feasibility of the problem.
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N
Consider the following orthogonal basis of IR, given in matrix

notation:

g|HC (3.22)

where C is a N/2 x N/2 orthogonal matrix. Clearly, B defines
an orthogonal basis whose last N/2 basis bectors are obtained
by applying H to the first N/2 basis vectors. Define the
N x N/2 matrix ( % ) as equal to the set {§m}, m=1,...,N/2.
The condition (3.21) is satisfied. Moreover, if the set {5}
is determined by applying a unitary transform to {§m}, then
all the remaining constraints are satisfied. This yields a
feasible X, A, and consequently, a unitary one-dimensional
transform kernel T.

Using the symmetry property defined by equation (3.15),
the LOT is fully specified by the matrix X of reduced size
N x N. A1l the constraints of the problem have been expressed
in terms of the X; vectors (cf (3.17) and (3.18)).

The optimization criterion as a function of the x; vector
can be expressed similarly. The energy compaction of the i-th

basis function a; becomes:

E = 08 % (3.23)
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where R‘i is the following N x N matrix:

Ry = IR (k1))
with:
- 1 1_k-
R'i(k,]) = plk ]I + (_])1+102N"‘ k-1 (3.24)

ksl = 1,...,N

where o is the correlation factor between adjacent pixels. The
detailed derivations of this result are given in Appendix A.
A complete formulation of the optimization problem is given

in Table 2
3.3. COMPUTATION OF THE TRANSFORM AND THE INVERSE TRANSFORM

In consequence of the separability property, the computation
of the two-dimensional forward and backward transforms reduces
to the computation of a series of one-dimensional forward and
backward transforms. Namely, one-dimensional transforms (or
inverse transforms) of each column of the original array are
taken. The resulting array is then transposed and the process
is repeated. This property has been mathematically described
in equation (2.6).

In this section, the computations of the one-dimensional
LOT and the inverse LOT are described. The extension to the

two-dimensional case is straightforward.
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Table 2 - Properties of the 1-D block

transform kernel A

[2,")
= (’jit’lit)
(1" x,
1
[ B
)
1
Zit Hx; =0

* QOptimization:

with:

max E

. R'i(k,1) =

A
%

i t.
Xi %

. R"i = [R'i(k,])]
- i 1- -
plk ]I ' (_-I)'H'] p2N+ k-1
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3.3.1. Computation of the LOT

Consider f a column of pixels extracted from the original
image F of resolution R. The vector f of size R is divided into
K blocks of N pixels, which can be written as K vectors of size
N: Qk’ k=1,...,K. Because of the overlap of N/2 samples, any
block b, is reconstructed from the transform blocks b*, ;. b'}

and b' Details on this will follow in section 3.3.2. However,

= k+1.
it is clear that the exact reconstruction of the boundary blocks
b, and b, requires additional boundary data. Consequently, the
original signal f, of size R = KN, is extended to get the signal
¥, of size R + 2(N+L) = (K+3)N, by reflecting N+L = 3N/2 samples
at each boundary of the signal.

Divide each block b, into two half-blocks Cx and qk of

k
size N/2:

t_ .t t -
by = (gk ody ) k=1,....K (3.25)
The original signal f can be written:

t

t _ t |t t t, t
f = (_c_'l sf_i] ,Ez ’o--ng_~' ’SK 9gK ) (3°26)

The extended signal f can be written:

t
?t = (d t’c t’d t’C t’d t,c t’-ol’d - 9
I ¢ 1 S »%0 &y 29 0C2 CK-1 (3.27)

t  t. t, t_ t
S o9k oSk ka1 Ska2 )
with: dy = H ¢ Chep - Hdg
o= Mg deny " H gy
d =g ez = H dx
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1
and where H is the N/2 x N/2 matrix <‘?’/ﬂ )
1

This extension through reflection of the original signal is

illustrated in Figure 2 for N = 4.

BLOCK #

-1 0 1 2 c-aa K-1 | K . K+l | K42

—

ORIGINAL SIGNAL

- EXTENDED SIGNAL

Figure 2 - Extension of the original signal by
reflecting 1.5 block at each boundary of the signal.

Since L is equal to N/2, each coefficient of the transform
block b', of any block b, is a weighted sum of not only the N
samples of gk, but also of the last N/2 samples of the preceding
block b, _4 and the first N/2 samples of the following block LI
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(respectively d, , and 9k+1)‘ Thus, one defines the extended

block §k:

St ottty to ot t ot
b = (dyoy By o ) = (dyey oGy oGy S ) (3.28)

k = 0,...,K+1

These K+2 extended blocks of size 2N, when projected upon the
N a, basis functions, yield the k+2 transform blocks b’ of size

N, k = 0,...,K+1:
b, = [b', ()] i = Tyl

with:

t

b (1) = 2,*B, (3.29)

The transform signal is composed of K+2 data blocks as
opposed to the original signal which is composed of K data blocks.
However, the coefficients of the extraneous blocks b', and
b' are equal within an alternation of sign to the coefficients

- K+1

of g; and b'  respectively. This result is due to the symmetric

K
and antisymmetric properties of the a; basis functions and the
fact that the extended signal f is obtained from the original
signal f by reflective symmetry. Therefore, the blocks g'o

and b' only provide redundant information, yet they must be

K+1
derived in order to have exact reconstructions of the blocks

by, and by. In this manner, the non-redundant transform rep-
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resentation of f is of the same size as the original signal.

This is expected since the transform is constrained to be unitary.
3.3.2. Computation of the inverse LOT

Suppose the one-dimensional LOT of f has been computed.
Thus, the K transform blocks p'k of size N, specified by
equations (3.28) and (3.29), are given. Assume, as well, that
the two additional transform blocks b’y and b', ., have been
derived.

An original block b, can be expressed as the sum of the
basis functions weighted by the transform coefficients. However,
since the basis functions extend beyond the boundaries of the
block, the reconstruction of this block also depends on the
transform coefficients of the two neighboring blocks and is
expressed in terms of truncated a; basis functions. More
precisely, the block b, can be reconstructed as a summation of
the tails of the a; basis functions weighted by the coefficients
of b',_y» and of the middle of the basis functions weighted by
the coefficients of b’ , and also of the heads of the basis
functions weighted by the coefficients of b' ;. This is

illustrated in Figure 3 for one basis function.
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BLOCK K-1 |
i
|
i

V !BLOCKK

| BLOCK K+l

Figure 3 - Contributions of the transform blocks
K-1, K, and K+1, to the reconstruction of the
K-th data block.
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Any a. basis function can be divided into four segments of

length N/2: o,

t_, t .t _t
a; (257 B57s ¥4 s &4

t
i =1 )

i=1,...,N (3.30)

Define three vectors 1., ¢,

j» and  eq.s of length N, in the

following way:

t_ .t

g5 = (8;70)

epit = (8;5h1;") = 1,00\ (3.31)
t_ t

ez = (0say7)

The reconstructed block b, is derived as the sum of the vectors
€19° E2i° and €34° weighted by the transform coefficients of

b'y_ys b'y and b’y respectively. This is represented as:

N
e = L (0T (idegs # 0"y (H)epy * By (Tegy) (3.32)

From the K blocks by, the original signal f can th.en be reconstructed.

This completes the computation of the inverse LOT.
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CHAPTER FOUR

DERIVATION OF
THE BASIS FUNCTIONS

In this chapter, the algorithm which provided a numerical
model to the LOT defined in section 3.2 is presented. The
problem of finding the LOT is formulated first as a sequence
of non-linear optimization problems which are solved iteratively.
The optimization method which has been used, the augmented
Lagrangian method, is described in section 4.2. The algorithm
applied to the LOT is derived in section 4.3. Finally, the

experimentai results are provided in section 4.4.
4.1. RECURSIVE FORMULATION OF THE PROBLEM

In Chapter 3, it was proven that the mere knowledge of

the N vectors x. of size N is sufficient to determine completely

i
the LOT. The constraints which must be satisfied by the x;

vectors are:

x; Hxs= 0 isd = 15...,N (4.7)

(1+(-1)") 1ty = 0 RERNNIERY (4.2)

47



Moreover, the X; vectors are optimized in terms of energy

compaction:
t .
4Ry
max T i=1,...,N (4.3)
0 %504

Table 2 in section 3.2.3 provides a summary of the LOT properties.
The algorithm used to develop the LOT is a recursive
procedure similar to the Gram-Schmidt procedure for the ortho-
gonalization of a basis. The x; vectors are determined sequentially.
For each of the vectors, the objective function to be maximized
is the energy compaction. However, due to the recursive procedure,
the number of constraints increases as the order of the function
incfeases.
Suppose the first i-1 basis functions have been determined
previously. That is, the vectors §j’ J=1,...,i-1, are known
and have been normalized to one. At this stage, it is necessary
to define the set of constraints which must be satisfied by the

i-th vector x;. The constraint (4.1) yields the following set

of constraints (after normalization):

Ik I I 0 (4.4)

and

=0 J=1,...,i-1 (4.5)



The constraint (4.2) generates a constraint on X; for only the
values of the index j such that i+j is an even number. This,

in turn, implies the following set of constraints:

x

t
. X
t : 1/, = 0 j=1,...,i-1; i+j even (4.6)

(x5~ %3)

Define the vector of constraints on X 9(51), which specifies

it
the complete set of the constraints which must be satisfied by

Xs (cf equations (4.4), (4.5), and (4.6)):

(4.7)
j=T1,...,1-1
J=1,...,1
i+j even
The feasibility condition for the vector x, is:
9(51) =0 | (4.8)

Define the objective function for the X; vectors f(gi) as

t
X: R': X
X.i X
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where R' is the N x N matrix defined in section 3.2.3 (equation

(3.24)). The optimality condition for the vector X5 is:

f(§i) = min f(x) (4.10)
x -

Consequently, the problem of finding the LOT is formulated as
a sequence of N non-linear optimization programs of the general
standard form:

min f(x) subject to c(x) = 0 (4.11)
X

In the formulation of the LOT, the programs are non-linear because
of the constraint (4.4). Due to this constraint, the feasible
sets of the programs are also non-convex. Hence, non-linear
optimization techniques must be investigated to solve the N
programs. The recursive formulation of the problem of finding

the LOT is summarized in Table 3.

4.2. THE AUGMENTED LAGRANGIAN METHOD

In this section the optimization technique, which has been
used to solve the N non-linear programs described in the previous
section, is presented.

Consider the following general non-linear optimization
problem in standard form (4.11):

min f(x) subject to c(x) = 0 . (4.11)
X
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Table 3 - Recursive formulation of the problem

of defining the LOT

Find recursively the N vectors X; of size N. For any

vector X., i=1,...,N, solve the following program:

min f({i) subject to g(gi) =0

%
where: t
% Ry %
flx) = - —%
i %
with:

R, = [R'i(k,1)]

- i 1-k-
R'1(k,]) = plk ]I + (_1)1+1 OZN"’ k-1
k,s1 = 1,...,N
and:
c(x;)
j= ]’.-.,i']
J=1,...,i-1
i+j even
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where f(x) is the objective function and c(x) is the vector of
constraints.

The Lagrangian function of the problem is defined aé:
L(x,2) = f(x) - ate(x) (4.12)

where ) is the Lagrange multipliers' vector [4], [25]. Suppose
(5*,§*) is the optimum solution of the problem (4.11). The
first-order conditions state that (5*, 5*) must be a stationary
point of the Lagrangian function [4]. That is, the first-order
derivatives of L(§,§) with respect to x and A, evaluated at

* %
(x 52 ), must be equal to zero:

Ve L(>_(s}) (x* A*) =V L()_(’ﬁ) ( * )‘*) =0 (4.13)
- 2 92 - X »A

The symbol v, refers to the derivative with respect to x, that
is, the grad;ent with respect to x. The second order condition
states that the Lagrangian function must have non-negative cur-
vature at (5*,5*) [4]. The conditions (4.13) yield a set of

* %
equations which must be satisfied by the optimum solution (x ,A ):
v, £(x) = v, (c* (x))
X = X = =0 -
c(x) =0 (4.14)

where v, f(x) is the gradient of f(x) with respect to x, and
vx(gt(g)) is the Jacobian matrix of c(x) with respect to x (the

matrix whose columns are the gradients of each one of the com-
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ponents of the row vector gt(g)). The solution of the set of

2quations (4.14) satisfies the first-order conditions of optimality.

This method, known as the Lagrange multipliers' method, requires

the solving of the equations (4.14). Unfortunately, in the case

of a non-linear problem, an exact closed-form solution may be

impossible to determine. Thus, iterative methods must be considered.
The augmented Lagrangian method is a sequential multiplier

method [25]. The augmented Lagrangian function is defined as

the Lagrangian function plus an added penalty function. The

penalty function basically is an increasing function of the

constraints' vector c(x). For the problem of finding the LOT,

a quadratic penalty function was chosen. In this case, the

augmented Lagrangian function ¢(§,§,o) is defined as follows:
0(x>350) = L(xs2) + 15 o ¢ (x)e(x) (4.15)
This can also be stated as:
o(x:250) = F(x) = 2%e(x) + 1/ oc®(x)e(x) (4.16)

*
where o is a fixed parameter. The value of A for which Xx
mininizes ¢(x,1,0) is g*. For a fixed parameter o, the algorithm
works as follows [25]:

*
1. Find a sequence {1 } such that 1 im2A =2

n-«
2. For each ), find the local minimizer x(1,) to

¢(§aan’°)°
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3. Stop the iterations on A when g(§(§n)) is approximately

equal to zero.

The two main features of this algorithm are: the optimum 5*
is determined iteratively; and the solution is not forced to
satisfy the constraints exactly, but instead, is forced to
satisfy them with a variable precision.

The key in the augmented Lagrangian method is the iterative

rule to find the sequence {3 }. Consider the following function

p(2r):
P{2) =6(x(1)s2,50) (4.17)

where x(1) minimizes ¢(X5150).
The main property of the augménted Lagrangian function,

stated earlier, implies that:

1 x(2) = x(2) = x (4.18)
A >

Since x(1) is the minimum of the function ¢(x,1,0), the following

inequality is true for any A:
*
¢(§(a)sé90) < ¢(§ 9530)

consequently:

*

w(2) < ¢(x s2s0) (4.19)

For the optimum 5*, 9(5*) is equal to zero. Therefore, ¢(§*,§,o)

is independent of A:
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¢(5*,§,o) = f(x*) (4.20)
Additionally:
f(§*) = ¢(§*.§*.o) (4.21)

Combining the results expressed in equations (4.18), (4.20), and

(4.21) yields:
¢(§*,5,o) = ¢(§(§*).5*,o) = w(a*) (4.22)

Equations (4.19) and (4.22) imply that p(2) < ¢(E*) for any A.
Consequently, it has been demonstrated that 5* is a maximizer of
the function y()) defined by equation (4.17).

The main consequence of this property is that an unconstrained
minimization method can be applied to -y(1) to define the sequence

{gn}. The Newton's method yields the following iteration rule [25]:

oo, = 2 7 PR 07 elx(0)) (4.23)

where J is the Jacobian matrix of c(x): J = Vx(gt(§)), and H is
the Hessian matrix of ¢(x,A,0): H = vx2(¢(5,§:o)). With the
iteration rule (4.23), the convergence-of the sequence {} } to 5*
is quadratic. However, the algorithm was developed using a linear
approximation to this rule, which is easier to implement [25]. The

jteration then reduces to:
he, = A~ 0€(x(3p]) (4.28)

The parameter o takes an a-priori fixed value. It can, however, be
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augmented during the iteration to increase the speed of conver-
gence.

Because of the non-convexity of the feasible set, analyzing
the global optimality is extremely difficult. However, because
of the convexity of the objective function along every dimension,
the solution of the Lagrange's equations (4.14) must be a local
minimum. In the augmented Lagrangian method, the intermediate
computed points are not forced to stay in the non-convex feasible
set. Therefore, the global minimum is more likely to be obtained

with such a sequential method.
4.3. DERIVATION OF THE ALGORITHM FOR THE LOT

The algorithm which has been used for the LOT to solve the
problem of the minimization of ¢(§,An,o) for a given 2, is presen-
ted in this section. In the general formulation of the augmented
Lagrangian problem, this aspect is generally not discussed. The
method used to solve this problem is independent of the augmented
Lagrangian a]gorithm{ and depends only on the specific applications
when the algorithm is applied.

For the problem of finding the LOT, an adaptive step gradient
search method has been used to solve the unconstrained minimization
problem corresponding to step 2 of the augmented Lagrangian method.

For a given A, one has to find x(1) such that x(1) minimizes
¢(xs2,0). Gradient search methods are iterative procedures. That
is, a sequence {§n(x)} is derived such that ; i 2 §n(§) = x(1).

For an adaptive step gradient search (also known as steepest descent)
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method, the iteration rule is given by:

Xp, (2) = %, () = e(n) v,0(x:2,0) (4.25)
| i x = xn(2)

where e(n) is the step size, wich can be modified at each step,
and where v ¢(XsA50) is the gradient with respect to x of the
objective ¢E§,§,o)., In the implementation of the algorithm for
the LOT, e(n) was updated according to the following simple rule:
as long as the objective value ¢(§,§.o) is decreasing, the step
size €(n) is increased by a fixed facfor at each iteration;
whenever ¢(§,§,o) starts increasing, the step size is decreased
by a fixed factor and x is reinitialized to the value having
yielded the smallest previous value of the objective function.
This adaptive rule nas the advantage of being easy to implement
and significantly increases the convergencéyépeed of the algorithm.

A critical aspect to any gradient search method is the
precise evaluation of the gradient of the objective function.
However, what makes gradient search methods worthwhile for the
augmented Lagrangian method applied to ‘the LOT is that vx¢(§,§,o)
has a closed-form expression and thus can be computed pr;cise1y.
The expression of ¢(x,\s0) is given by equation (4.16). Taking

the gradient of this expression with respect to x produces:

V,_(¢(>_c,a.o) = v)_(f(>_<) - Vg(gt(g))a + oV)_((c_:t(zs))Q()_() (4.26)

The optimization problem structure, formulated for the LOT in

section 4.1, is such that closed-form solutions for both the
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gradient of f(x), v f(x), and the Jacobian matrix of c(x),
Vx(gt(§)), exist. }he exact value of vx¢(§,§,o) can therefore

b; computed at each step of the algoritam. The detailed deri-
vations of fo(5) and vx(gt(f)) for the LOT are aiven in Appendix

B.
4.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The algorithm described in sections 4.2 and 4.3 was implemented
on a digital computer to obtain a numerical model for the LOT for
two different block sizes: N =8 and N = 16. In both cases, N
programs for the N X; vectors were run successively according to
the recursive formulation given in Table 3 (section 4.1).

The augmented Lagrangian algorithm was used in each program.
The chosen value of the correlation factor p was.0.9.

The iterations of the Lagrange multipliers' vector were
computed according to equation (4.24). A value of the parameter
o, chosen between 10 and 50, yielded an acceptable convergence
behavior for all of the basis functions.

The minimization of ¢(§.§n,o) with respect to x, for a
given Aps Was performed using the adaptive step gradient search
algorithm described by equation (4.25). The initial step size
£(0) was of the order of 10", Then, if the objective function
was decreasing, the step size was increased by a factor of 2
at each iteration. If the objective function was increasing, the

step size was decreased by a factor of 10. It was discovered
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experimentally that between 50 and 100 iterations were sufficient
to obtain the optimal value of x, x(a,).

The overall algorithm was discontinued when no further
improvements of the objective function and constraints' vector
values could be obtained. The number of iterations of A necessary
to achieve this result varied’widely between the basis functions.
Typically, the low-order basis functions required between 20 and
30 iterations of . The higher-order basis functions required
up to 100 iterations of ). Because of the finite precision of
the computations, the constraints were also satisfied with a
finite precision. Moreover, because of the recursive procedure,
the precision, by which the constraints were satisfied, worsened
as the order of the basis function increased. For the first N/2
basis functions, the precision achieved was of the order of 10'9.
For N = 8, the precision of the last N/2 basis function was of
the order of 10'5. For N = 16, this precision was only of the
order of 10'3. Because of this finite precision, it is conceivable
to believe that the transform obtained from the numerical model
is not perfectly invertible. However, experiments showed that
this is not the case. When the transform and the inverse transform
of an image were computed (see description in section 3.3), the
reconstructed image had a high signal to noise ratio (SNR > 50dB)
for N = 16, and was exactly identical to the original image for
N = 8. Therefore, the finite precision of the numerical model

did not affect the precision of the integer reconstruction of the
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image. The numerical values of the LOT basis function coefficients
are given in Appendix C, for N = 8 and 16.

In Figure 4, the basis functions of the LOT for N = 8 are
represenied as discrete sequences. In Figure 5, the basis
function of the LOT for N = 16, interpolated with a (sin x)/x
window, are represented as continuous waveforms. In both figures
the complete gibasis functions are represented (2N points long).

As might be expected, the order of harmonics increases with the
order of the basis functions. Additionally, the typical structure

of the LOT basis functions looks like that of modulated sinewaves.
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CHAPTER FIVE

APPLICATION OF THE LOT
TO INTRAFRAME CODING

Intraframe coding refers to the coding of single still images.
In this chapter, the architecture of a typical zonal transform
coding system is described [12], [26]. Both non-adaptive and
adaptive coding schemes are investigated. Low bit-rate transform
coding of single images was performed using the DCT, the LOT and
the SSFT. The results of these experiments are presented in

section 5.4.
5.1. DESCRIPTION OF THE SIMULATED SYSTEM ARCHITECTURE

Consider a monochrome digitalized image F of resolution R.
The image F can be described as an R x R array of R2 integer
numbers. Each number represents the luminance value of the
corresponding pixel, quantized with a fixed-length code word
encryption scheme. The use of transform coding techniques may
achieve data compression of the image F. In order to quantify
the data compression ability of a system, the data rate d of a
coded image is defined as the average number of bits per pixel
used to code this image. For the original image F, d is simply

equal to the number of bits assigned to the luminance value of
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one pixel.

The architecture of a transform monochrome image coding system

js illustrated in Figure 6 [26], [41].

F
ORIGINAL IMAGE

RECONSTRUCTED IMAGE

SAMPLE SELECT

QUANTIZER
—— &
ENCODER
CHANNEL
F |
| DECODER

Figure 6 - A transform monochrome image coding system.

In Figure 6, T represents the forward transform operator, and T

is the inverse transform operator.

the size of the array F' is the same as the size of F.

is assumed to be a digital link.

1

Since T is a unitary transform,

The channel

Data compression can be achieved with a transform coding

system because not all the transform coefficients of F' are trans-

mitted. Typically, only coefficients with large variances are

quantized and coded.

decide which samples are to be transmitted.
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For a digital link,




these transmitted coefficients are quantized, coded, and trans-
mitted in binary form. At the receiver, the data is decoded and
the inverse transform is taken to reconstruct the coded image F.
Two different types of sampling procedures are used in
transform image coding: zonal sampling and threshold sampling
[26]. In zonal sampling, only the transform coefficients lying
in an a-priori fixed geographic region of the block are trans-
mitted. These coefficients are typjca]]y the low-frequency
coefficients. In threshold sampling, only the transform coeffi-
cients whose magnitudes are larger than a fixed threshold are
transmitted. Threshold sampling implies that the coding scheme
varies from block to block, as opposed to zonal sampling. In
this manner, threshold sampling makes the coding procedure
adaptive. The coefficients which are to be transmitted depend
on only the block which is to be quantized, and are directly
related to the corresponding local structure of the image
(background, edge, detailed region, etc.). Threshold sampling
is superior to zonal sampling for adaptation. However, with
threshold sampling, the receiver has no a-priori knowledge of
which coefficients are transmitted. Therefore, the position of
each transmitted coefficient must be coded and comuunicated to
the receiver, which usually is done using a run-length coding
scheme [5], [26]. This means that more data has to be trans-

mitted and makes the coder more complex.
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In the intraframe coding experiments, which are described in
the following sections, zonal sampling is used. Since the receiver
has an a-priori knowledge of the positions of the transmitted
coefficients, only the binary code words of these coefficients
need to be communicated. This procedure, however, is not as
adaptive as threshold coding. A non-adaptive zonal coding scheme
is described in section 5.2. To improve the performance of the
coder, adaptive zonal coding schemes can be used [6], [10], [37].
Each block is assigned a category. The zonal coding scheme, which
is used for a block, depends upon which category the block has been
assigned. This adaptive coding scheme, with four categoiies, is

dascribed in section 5.3.
5.2. NON-ADAPTIVE CODING SCHEME

Consider a block B, of size N x N, of transform coefficients:
B = [B(i,j)] isd = 14...,N (5.1)

The variance of each transform coefficient B(i,j) can be computed

with a set of typical blocks. This yields a variance matrix V:
V= [62(i,3)] .5 = 1,...0N (5.2)

where oz(i,j) is the variance of B(i,Jj).
In a zonal coding scheme, a bit pattern N is generated and
transmitted to the receiver as overhead data [26]. In this case,

the receiver knows the variance and bit patterns V and N before
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the actual image data is communicated. In a non-adaptive coding
scheme, the bit pattern N is identical for all blocks. This bit
pattern specifies the number of bits to be assigned to the code-
word of each coefficient B(i.j). The bit pattern N is the bit

matrix:
N = [N(1,3)] isd = 1,...,N (5.3)

where N(i,j) is the positive integer number which specifies the
number of bits to be used in coding the transform coefficient
B{(i,j). Thus, the number of quantization levels to be used to
quantize B(i,j) is ZN(i’j).

If N(i,j) is equal to zero, the corresponding coefficient
B(i,j) is not transmitted. Therefore, the bit pattern also
specifies which coefficients are to be transmitted.

Given the bit assignment N(i,j), there are ZN(i’j) quanti-
zation levels for B(i,j). The optimal placement of the quantization
decision and reconstruction levels in order to minimize the
mear-square reconstruction error is given by the Max quantizer [20].
The use of a Max quantizer requires a model for the probability
density of each coefficient. For the LOT and the OCT, the probability
density of the DC term (coefficient B(1,1)) was modeled as the
uniform density. The probability density of the remaining coeffi-
cients was modeled as the Gaussian density [26]. For the SSFT,
the probability density of the DC term was also modeled as the

uniform density. For the remaining coefficients, the Rayleigh
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density provided a model for the magnitude, and the uniform density
for the phase [14]. When N(i,j) is different from zero, the
appropriate Max quantizer, with 2N(i’j) quantization levels, is
used to quantize the coefficient B(i,j).

When N(i,j) is equal to zero, the corresponding coefficient
B(i,j) is simply discarded, and set by the receiver either to zero,
or to the mean value if the mean is known. Consequently, for
transform zonal coding, the mean-square error beiween the original
and the coded images is equal to the sum of the mean-square quan-
tization error on the transmitted coefficients and the mean-square
energy of the discarded coefficients. This explains why the trans-
form should be able to pack a maximum amount of the image energy
into a minimum number of transform coefficients.

If d is the desired data rate for the coded image, the total
number of bits available to code the image is d R2. The total
number of transform blocks is K2 (R = KN). For a non-adaptive
coding scheme, the total number of bits assigned to a block,

NB, is constant:

2
2
Ng = —B— = d N (5.4)
K
This yields the following constraint

NY? (1,3) (5.5)
N = ) N(i,J 5.5

B =]j='|

Subject to the constraint (5.5), the bit pattern N can be chosen

to minimize the mean-square quantization error. For all the coding
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experiments described herein, the bit assignment N was set according
to the log-variance relation suggested by Wintz [8], [12], [15], [36]:
o Mg 2,. oy 2 NN 2,. .
N(1.3) = —>5— + 2 10g((c"(i,3))- = ] ] logyq(c“(i,3)) (5.6)
N N® =1 j=1
Experimentally, N(i,j) is rounded off to the nearest integer value,
or set to zero if the expression (5.6) is negative. Figure 7 illus-

-trates a typical bit pattern for the LOT.

COoCONWLDN
COOrRMNWDH
OO NW
CO0OO0OCOO kN
COCO OO0
N NN NN
OO0 O0O
SO0 OO0O

Figure 7 - Typical bit pattern for the LOT for the
non-adaptive intraframe coding scheme.
Block size : 8; Data rate : 0.5 bpp.
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5.3. ADAPTIVE CODING SCHEME

An adaptive coding scheme is presented in this section. Typical
images usually can be divided into several local regions where the
characteristics of the image content differ significantly (e.g.,
background, edges, high-detailed regions). Because of this non-
stationarity of the image, the total number of bits available to
code the image should not be assigned uniformly over the image [6],
[10]. For example, fewer bits should be assigned to code a back-
ground region than a highly detailed region. This is especially
important in the case of low bit-rate image coding where the total
amount of data to be transmitted is limited.

In a transform coding system, each block in the transform
domain reflects the local structure of the image in the space
domain. This property makes block transform processes viable
for adaptive image coding [37]. In the following adaptive
transform coding scheme, each block is assigned tou one class,
from four possibilities, before coding. Within a class, or
so-called category, the block quantizer is the same for each
block.

Given a block B of N x N transform coefficients, the spectral
energies which are contained in four fixed geometric regions of
the block, are computed. The fbur regions which have been used,

Ri’ i=1,..,4, are described in Figure 8.
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N/4 N

N

REGION R1 REGION R REGION R3 REGION R4

2

Figure 8 - Geometric description of the four regions
used for the adaptive coding scheme.

The corresponding four spectral.energies Ei’ i=1,..,4, are computed
as follows:
E; = ) B2(1.4) - (5.7)
R
To decide to which category the block B éhould be assigned, the
two following ratios are calculated: E,/E,» and |E2 - E3|/E4. The
assignment procedure works in this order:
« Step 1: if E]/E4 > n, the block is assigred to
category 1. Otherwise, move to step 2.
. Step 2: if |E2 - E3|/E4 < y, the block is assigned
to category 4. Otherwise, see step 3.
+ Step 3: if E2 > E3, the block is assigned to category
2. If E2 < E3, the block is assigned to category 3.

The parameters of n and y are fixed for the image. These two

parameters determine the repartition of the blocks per category
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for a given image. They are chosen experimentally so that the
block repartition per category yields the best coded image quality.

For the standard "head and shoulder" images, which were used
in the coding experiments (see section 5.4), about thirty percent
of the blocks fell in category 1, fifteen percent in each of
categories 2 and 3, and forty percent in category 4. This repar-
tition closely parallels the nature of the image: typically,
blocks in category 1 correspond to background regions, blocks in
categories 2 and 3 to edge regions, and blocks in category 4 to
highly detailed regions (facial features).

For each category, a variance matrix is computed, and the
sum of the log-variance values is determined. Given these
statistics and the repartition per category of the blocks,
the bit assignment per category is determined using the log-
variance rule extended to data blocks. Although the total number
of bits assigned to the coding of a block is constant within each
category, it varies from one category to another. Fewer bits
are assigned to a block in zategory 1 than to a block in one of
the other categories. About the same number of bits is assigned
to a block in categories 2, 3, and 4. For each category, the
bit pattern is determined using the log-variance rule (5.6). The
coding scheme is identical to the non-adaptive scheme described
in section 5.2 for each category. For each block, a code word
identifying the category is sent ahead to the receiver before the
transmission of the coded transform coefficients. Figure 9 illus-

trates typical LOT derived bit patterns for a block in each one of
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the four categories.

Soocooocoo
coocooococao
coocooooco
cocoocoococo
ooccooocOo
HHNwwoOoO
NOMTNNOO
TTYTTNNOoOo

DO O OCCOO O
C OO0 0 OO OOo
OO OTOOO
SO0 TTOoOOO
COTTCOOTO DO O
OO O T OO
N--OoOOoOOOoCcOo O
(UBVE _N-N-N-N-N-

Category 2

Category 1

CO T OO OOoOCO
OO QOO0 OoCOD
DO ST OO
QOO OO
el OO
NOMNNwOoCO O
MOOMNMrOoOoC
NMOMNNAS—"OO

OO OO0 O0OO
OO OO0 OO0
Nt OO OOC O
Mt O OO OO O
TMAOO O OO
TN AODOOO O
NN A OO0 OO0
Tt OO OO0 O

Category 4

Category 3

: 0.5 bpp.

Figure 9 - Typical bit patterns for the LOT for the
: 8; Data rate

adaptive intraframe coding scheme.

Block size
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5.4. EXPERIMENTAL RESULTS

Two images were used for the intraframe coding experiments:
"HIRES" and "BISWEX." Both images are of resolution 256 x 256
pixels. They are monochrome (black and white), and are originally
coded at a data rate of 8 bits per pixel (8 bpp). That is, 256
gray levels are used to quantize the luminance value of each pixel.
"HIRES" is a typical "head and shoulders" image. "BISWEX" rep-
resents about one half of a face; it was extracted from an image
of higher resolution. Figure 10 i1lustrates these two original
images.

These two images were coded at low bit-rates, by applying
the DCT, the LOT, and the SSFT, and by using the non-adaptive
and adaptive coding schemes described in sections 5.3 and 5.4.

For all these transforms, the block size was equal to 16 pixels.

For specifically the LOT, the number of overlapping samples L

was equal to 8. In other words, a block of 16 x 16 LOT coefficients
was computed from a block of 32 x 32 data points.

The computation of the normalized signal-to-noise ratio
(SNR) between the original and coded images measured the quality

of the coded image. The SNR is defined as follows:

R R )
LoL ) - F6a02 ey (s.)

= i=1 J
SNR = -10 log]o g § FZ( )
1,J
i=1  j=1
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Original "BISWEX"

Figure 10 - The original images of resolution 256 x 256, 8 bpp.
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where F is the original array of resolution R x R, and F is the
coded array.

The adaptive coding scheme performed better than the non-
adaptive one in terms of the resulting SNR of the coded image.
Also, the objective quality of the coded image was improved when
the adaptive coding scneme was used. Table 4 compares the signal-
to-noise ratios of the image "HIRES" transform coded with the
DCT, LOT, and SSFT, using both adaptive and non-adaptive coding
schemes, at a data rate of 0.32 bpp.

Table 4: SNR (in dB) of "HIRES" coded at a
data rate d = 0.32 bpp

coding scheme non-adaptive | adaptive
transform
DCT 20.8 22.5
LOT 20.9 22.5
SSFT 21.6 21.8

Figure 11 illustrates the improvement of the subjective
quality of the coded image when the adaptive scheme is used.

A11 the remaining coded images in this section have been
coded with the exclusive use of the adaptive scheme. Figures
12 and 13 compare the performances of the DCT and the LOT, while
Figures 14 and 15 compare the performances of the SSFT and the LOT.

Indeed, the LOT reduces the blocking effects generated by the

DCT. In particular, mismatches that appeaf with the DCT between
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Non-adaptive coding scheme SNR = 20.9 dB

Adaptive coding scheme SNR = 22.5 dB

Figure 11 - "HIRES" coded at 0.32 bpp using the LOT
(original: 256 x 256, 8 bpp).
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LOT, SNR = 22.5 dB

Figure 12 - "HIRES" adaptively coded at 0.32 bpp
(original: 256 x 256, 8 bpp).
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LOT, SNR = 24.3 dB

Figure 13 - "BISWEX" adaptively coded at 0.10 bpp
(original: 256 x 256, 8 bpp).
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LOT, SNR = 22.5 dB

Figure 14 - "HIRES" adaptively coded at 0.32 bpp
(original:256 x 250, 8 bpp).
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SSFT. SNR = 23.4 dB

LOT, SNR = 24.3 dB

Figure 15 - "BISWEX" adaptively coded at 0.10 bpp
(original: 256 x 256, 8 bpp).
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adjacent blocks in highly dJetailed regions disappear with the LOT.
However, the boundaries between blocks are still visible with the
LOT. This can be explained by the boundary discontinuities of the
low-order LOT basis functions. These discontinuities generate a
boundary effect which makes the blocks visible, but this artifact
is different from the DCT's blocking effects. The LOT does not
produce any mismatches between adjacent blocks. Since blocking
effects are only local artifacts and do not increase the background
noise level, the DCT and the LOT perform equally well in terms of
signal-to-noise ratios of the coded images.

Additionally, the LOT reduces the SSFT's ringing effects.
The ringing effects generated by the LOT around an edge spread
over only half a bleck (about 8 pixels), which happens to correspond
to the value of the overlap L. The LOT also performs better than
the SSFT in terms of signal-to-noise ratio of the coded images
because the ringing effects generated by the SSFT are global
artifacts which affect every region of the image. Therefore,
these increase the background noise level. No blocking effects,
however, appear with the SSFT.

In summary, ringing effects, which are not generated by the
DCT, spread over half of a block with the LOT, and over the entire
image with the SSFT. While the latter does not produce any blocking
effects, those generated by the DCT are highly visible. The LOT is
able to reduce blocking effects to boundary effects. In any case,

though, the LOT improved the subjective quality of the coded images.
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Images coded at the same data rate with the DCT, the LOT, and the
SSFT, were shown to several groups of viewers (usually 2 or 3 persons
at a time). Most viewers agreed that the LOT coded images had the
best overall subjective quality. To all viewers, the LOT coded
images appeared less noisy than the SSFT coded ones. They also
recognized that the LOT's blocking effects were less visible and
preferrable to those of the DCT. However, one of five viewers

thought that the quality of the DCT and LOT coded images appeared

close.
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CHAPTER SIX

APPLICATION OF THE LOT
TO INTERFRAME CODING

6.1. INTRODUCTION

Interframe coding, which refers to coding sequences of closely
related images, can also be viewed as the coding of three-dimensional
signals. A third dimension, the time axis, is added to the two
dimensions of the space domain. For typical video sequences, the
temporal correlation between successive frames is strong because
these frames are often similar. Because of the high correlation
in both the spatial and temporal domains, efficient interframe
coding can be a~hieved [5], [26], [41].

Since the efficiency of transform coding has been demonstrated
for intraframe coding, one approach to interframe coding is to
extend the block transform coding techuiques to three-dimensional
signals. This scheme was experimented using the DCT, and it
rrovided excellent coding efficiency [33]. However, this technique
is not practical for two reasons. First, a block transform coding
system involves the coding of three-dimensional blocks, which means
that all the frames corresponding to the width of one block in the

time dimension must be stored simultaneously. Therefore, the system
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must have large storage capabilities which increase its cost.
Second, the transmission of the coded signal is likely to introduce
a delay which is not acceptable for real-time applications (e.qg.,
videophone systems).

However, hybrid transform/DPCM coding systems provide an
alternative solution to the interframe coding problem. The
jdea is to design a hybrid system by combining two different
coding schemes: transform coding and DPCM coding. Transform
coding is used in the spacial domain, and DPCM coding in the
temporal domain [5], [32], [34], [43]. Since a DPCM coding
scheme is used along the time axis, the coding of each frame
requires only the knowledge of the previous frame. Consequently,
just one frame at a time needs to be stored, and both transmission
delays and storage requirements are decreased significantly. A
hybrid transform/DPCM coder involves a linear predictor which
estimates each frame based on its predecessor [19], [32]. The
coder described in section 6.2 involves a fixed predictor equal
to the identity. In other words, the predictor assumes there is
no motion between successive frames. The encoder described in
section 6.3 includes the motion estimation between successive
frames. Thus, a motion compensated predictor provides a much

more accurate estimate of each frame [13], [18].

6.2 HYBRID TRANSFORM/DPCM CODING SCHEME

A simple hybrid transform/DPCM coding system is described

in this section. In the following section, a higher performance
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system will be presented. Because of the cimilarities between
the two systems, the same notations are to be assumed. The
frame previously coded and transmitted is called F] and its

coded version F] The next frame to be transmitted is called

e
F2 and its coded version F2c' In a hybrid transform/DPCM
coding system, a linear predictor provides an estimate of F2
called ?2. The frame ?2 is estimated from the frame Flc' Since
the necessary data F]c is available to the transmitter and to
the receiver, the estimation process can be carried out by the
pair.

Block diagrams for the transmitter and the receiver of
the transform/DPCM coding system are given in Figures 16 and
17. For this system, ﬁz is simply equal to the previously
transmitted frame F]cu Thus, the DPCM signal F2 - ?2 reduces
to the difference between the two successive frames F2 - F]c'
This DPCM signal, also called the error signal, is transform
coded. The transforms used for the experiments were the LOT
and the DCT, with a block size equal to 8 pixels (the sequence
was of resolution 128 x 128 pixels). Since the SSFT has been
shown to perform poorly in interframe coding, it has not been
tested in these experiments. At the receiver, the inverse
transform is taken to obtain the reconstructed DPCM signal.
This is then added to the previously transmitted frame F]c to

generate the new coded frame cm.

To achieve low data-rate interframe coding with a hybrid
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transform/DPCM coding system, not all the transform blocks of the
OPCM signal should be communicated to the receiver. In actuality,
since successive frames often change only slightly in some local
regions of the image, some transform blocks need not be transmitted.
Depending on the desired number of transmitted blocks, a threshold
is computed for each error signal. The error energy inside each
block is computed and compared to this threshold. Blocks which
correspond to an error enargy larger than the threshold are coded
and transmitted; blocks which correspond to an errcr energy smaller
than the threshold are not. A code word identifying the non-
transmitted blocks is sent to the receiver which assumes zero
error for these blocks. The transmitted blocks are quantized
adaptively. The adaptive coding scheme used is identical to the
one described in section 5.3. The transmitted blocks are assigned
to one of four categories. For each category, a bit pattern is
derived using the log-variance rule (5.6). Each transform coeffi-
cient is quantized using a Gaussian Max quantizer.

For the interframe coding experiments described in section
6.4, it was desired to maintain a constant data-rate. Consequertly,
a fixed percentage of blocks for each DPCM signal are transmitted.
The repartition of these blocks is fixed for each category. First,
each block is assigned to its respective category. Ther, for each
category, a threshold is computed so that the total number of blocks
having error energy greater than the threshold corresponds to the

a-priori fixed repartition for the category. Within each category,

93



only the blocks with energy above the category threshold are trans-
mitted.

Because the total error energy may vary widely between different
parts of the sequence, transform coefficients of each DPCM signal
must be scaled so that their variances are uniform from frame to
frame. The average error energy is computed over each DPCM signal.
Each transform coefficient is scaled by the squared root of the
average energy. This number is coded for each frame, and sent to
the receiver as overhead data so that the decoder can recover the

original transform coefficients.
6.3. MOTION COMPENSATEC CODING SCHEME

A description of a transform/motion compensation coding system
is given in this section. This system produces an accurate estimation
of F2 by using motion compensation. Thus, the energy in the DPCM
signal is much lower than the error energy in the system described
in section 6.2. Consequently, the coding of the DPCM signal is
far more efficient.

The block diagram of the transmitter and the receiver for a
transform/motion compensation coding system are given in Figures
18 and 19. The coding procedure of the DPCM signal F2 - ?2 is
identical to the one used in the hybrid transform/DPCM system.

The main difference between these two systems lies in the predictor.

The motion estimation procedure used was developed by Hinman [13].
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The two original frames F] and F2 are divided into blocks (of
size 4 x 4 for images of resolution 128 x 128). For each block,

a motion vector with two components is estimated. A subsampled
motion vector field, whose two components are Vx and Vy, is generated
for the entire image. Using a raised-cosine interpolation filter,
the full-size motion vector field V FIELD is acquired [13]. The
motion-compensated estimate ?2 is obtained by projecting each pixel
of F] in the direction of motion. The motion vector field is
estimated so that the mean-square error between F2 and ?2 is minimal.
The adaptive steepest-descent minimization algorithm developed by
Hinman was used to estimate the motion vector field [13]. The
predictor in this system is a motion compensator. The components

Vx and Vy are estimated from the original data F] and Fz. Using
motion compensation, the estimate ?2 js produced from the previously
transmitted frame F]c'

The receiver must be able to estimate F2 also. Therefore, the
motion vector field components Vx and Vy must be quantized, coded
and communicated to the receiver. The receiver structure includes
the motion compensator which produces Ez (cf. Figure 19 ).

Because motion vectors from adjacent blocks are highly cor-
related, a transform coding scheme can be used to efficiently encode
the motion vector field [13]. The two components vx and vy are
transform coded using the DCT (of block size 8 x 8). Two bit
arrangements are used. Each transform block is assigned to either

a high-energy category or a low-energy category. Half of the blocks
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are assigned to each class. The quantized motion vector field is
coded and transmitted to the receiver as overhead information.
Although the system is more complex than the hybrid transform/
DPCM coding system, the transform/motion compensation coding system
is more efficient since it uses optimally the available information
previously communicated to the receiver. Natural images closely
parallel the motion compensation model; therefore, the expense of
sending the motion vectors is outweighed by the improved performance

of the DPCM coder.
6.4. EXPERIMENTAL RESULTS

The "MAN" video sequence served as test data for the interfraﬁe
coding experiments. "MAN" is a "head and shoulder" type of sequence
of 150 frames of resolution 128 x 128 pixels, 8 bits per pixel
(Tuminance), originally recorded at 15 frames per second. This
sequence was coded at a constant data rate of 56 kilobits per second
(kbps) using the following four simulated architectures:

1. DZT/DPCM coding system

2. LOT/DPCM coding system

3. DCT/MC coding system (motion compensated)

4. LOT/MC coding system
The early portion of the "MAN" sequence contains mostly facial

activity. The latter portion contains a large amount of head motion.
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As with all architectures, only alternate frames were coded
and transmitted. Thus, the actual frame rate was reduced to 7.5
frames per second. To increase the frame rate to the original
15 frames per second, the intermediate frames are interpolated
at the receiver. For a DPCM coder, they are reconstructed using
linear interpolation between two successfully transmitted frames.
For a motion compensated coder, these frames are reconstructed
using motion interpolation. Namely, each pixel of the previously
transmitted frame is projected forward halfway in the direction
of motion. In this manner, the receiver performs smooth frame
interpolation by using the transmitted motion vector field
information. Motion interpolation gives better results than
1inear interpolation because it avoids the "doubling" effects
of the latter.

For a sequence coded at 56 kbps and at a frame rate of 7.t
frames per second, a total of 7465 bits is assigned to one coded
frame (0.46 bit per pixel). For the DCT-LOT/DPCM encoders, all
the available data is used for the coding of the DPCM signal. For
the DCT-LOT/MC encoders, a constant rate of twenty-two percent
of the available data was used for the coding of the motion vector
field.

In the coding of the DPCM signal, fifty percent of the blocks
were quantized and transmitted. Among these updated blocks, fifty
percent were assigned to category 1, fifteen percent to category 2 and

3, and twenty percent to category 4. The category assignment was
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completed as described in section 6.2. The total number of bits
assigned to a block in one of the categories 2, 3, «nd 4, was
about three times the number of bits assigned to category 1.
Figure 20 illustrates the bit pattern for each category for the
LOT/DPCM coding system (at 56 kbps).

In the coding of the motion vector field (cf. section 6.3),
half of the blocks are assigned to both the low-energy and high-
energy categories. Thrée times as many bits were assigned to a
high-energy block than to a lTow-energy one. Those various category
and bit assignments were derived from the sequence characteristics,
and yielded satisfactory experimental results. However, no extensive
study of the various possible coding procedures was made. Rather,
a reasoriable scheme was adopted. The DCT and the LOT were compaied
under exactly identical coding procedures.

The signal-to-noise ratios of the DCT/DPCM and LOT/DPCM coded
sequences are plotted in Figures 21 and 22 as a function of the
frame number. These two figures illustrate the almost identical
performance of the DCT and the LOT in terms of mean-square quanti-.
zation error. Sharp variations of the SNR (occuring around frames
10, 70, and 110) are due to large variations in the amount of
motion. To quantify the amount of motion in the sequence, the
energy of the difference signal (DPCM) between successive frames
was computed. Figure 23 illustrates the variations in the amount

of motion in the "MAN" sequence. Whenever there is a sharp increase
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in the amount of motion, there is a corresponding decrease in SNR.
A comparison between SNR and DPCM energy is given in Figure 24
The higher the DPCM energy is, the lower the signal-to-noise
ratio is. A least-square fit to a straight line was computed
from the data. The resulting line has been added to Figure 24 .
The signal-tc-noise ratios of the DCT/MC and LOT/MC coded
sequences are plotted in Figures 25 and 26 as a function of
the frame number. As for the DPCM systems, the mean-square error
performances of these two systems are almost identical. Figure
27 compares the SNR's between the LOT/MC and DCT/MC coded sequences.
A1l the data points are clustered along the diagonal axis. Only
a slightly better performance by the LOT is noticeable. Specifically,
the least-square fit to the data shows that the LOT yields an SNR
about G.5 dB higher, on the average, than the DCT.
Figure 28 compares the SNR's between the DCT/MC and the DCT/
DPCM coded sequences. This figure illustrates the mean-square
error performance improvement when motion compensation is used.
For high signal to noise ratios (SNR > 34 dB), DPCM and motion
compensated systems perform equally well. In these cases, there
is 1ittle motion between successive frames which renders the use
of motion compensation unnecessary. Except for this special case,
the improvement due to motion compensation is very significant,
reaching about 9 dB for several frames. The least-square fit to
a straight line, along with the average improvements in SNR, have
been added to Figure 28 (the diagonal y = x represents the equi-

performance line).
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Figure 24 - Comparison of SNR versus DPCM log-energy
for the LOT/DPCM coded sequence.
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Figures 29 - 32 show four frames extracted from the four
coded sequences. For frames 19 and 63, the performances by the
four sequences are close because little motion is involved. On
the other hand, frames 73 and 119 correspond to section of the
sequence which contain a lot of head motion. Figures 31 and
32 demonstrate the dramatic improvement in image quality when
a motion-compensated predictor is included in the coding system.
For these two frames, the DCT/DPCM coded images are very noisy
and show considerable blocking effects. Although the LOT/DPCM
coded frames are as noisy, the blocking effects are much less
visible. Similarly, remaining blocking effects in the DCT/MC
coded frames disappear in the LOT/MC coded frames. In actuality,
the LOT/MC coded sequence was virtually free of these artifacts.
Figures 33 and 34 provide close-ups of the DCT/MC and the LOT/
MC coded frame 119. The blocking effects, especially visible
around the subject's right eye in the DCT/MC coded image, are
avoided completely with the LOT/MC coding scheme.

In summary, the interframe coding experiments described in
this chapter demonstrate the clear superiority of a motion-com-
pensated system over a simple hybrid transform/DPCM system. In
terms of both image quality and mean-square error, the performance
af the motion-compensated systems was much better than the one
of transform/DPCM systems. The DCT and the LOT perform almost
identically in terms of mean-square error. However, the LOT

reduces the DCT's blocking effects in the DPCM system, and
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Figure 29 - Frame number 19 from the "MAN" sequence.

Upper left : DCT/DPCM coded sequence
Upper right: LOT/DPCM coded sequence
Lower left : DCT/MC coded sequence
Lower right: LOT/MC coded sequence
(original: 128 x 128, 8 bpp)

112



Figure 30 - Frame number 63 from the "MAN" sequence.

Upper left : DCT/DPCM coded sequence
Upper right: LOT/DPCM coded seauence
Lower left : DCT/MC coded sequence
Lower right: LOT/MC coded sequence
(original: 128 x 128, 8 bpp)
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Figure 31 - Frame number 73 from the "MAN" sequence.

Upper lett : DCT/DPCM coded sequence
Upper right: LOT/DPCM coded sequence
Lower left : DCT/MC coded sequence
Lower right: LOT/MC coded sequence
(original: 128 x 128, 8 bpp)
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Figure 32 - Frame number 119 from the "MAN" sequence.

Upper left : DCT/DPCM coded sequence
Upper right: LOT/DPCM coded sequence
Lower Teft : DCT/MC coded sequence
Lower right: LOT/MC coded sequence
(original: 128 x 128, 8 bpp)
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Figure 33 - Close-up of frame 119 from the DCT/MC
coded sequence.
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Figure 34 - Close-up of frame 119 from the LOT/MC
coded sequence.
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almost avoids them entirely in the motion compensated one (at
56 kbps). A1l viewers (the coded sequences were shown to half
a dozen people familiar with image processing) recognized that
the overall quality of the LOT coded sequences was better than
the quality of DCT coded sequences at a constant data rate of

56 kbps.
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CHAPTER SEVEN

CONCLUSIONS

A new type of unitary transform for image data compression
has been introduced in this thesis. Only real separable unitary
transforms were considered. The most important result of this
research is that the unitarity property of the transform can be
maintained with non-zero overlap betwéen the basis functions.

By overlapping the basis functions, the block transform process
is no longer independent from block to block. By keeping the
overall transform unitary, the image representation in the trans-
form domain is non-redundant.

A specific example of a lapped orthogonal transform (LOT)
was developed. The number of overlapping samples between adjacent
block basis functions was equal to half the number of samples in
a block. Furthermore, the LOT was optimized in terms of energy
compaction. By the use of a non-linear optimization algorithm
(the augmented Lagrangian method), a numerical model for the LOT
was obtained.

Intraframe and interframe coding experiments were performed.
The mean-square error coding performance of the DCT and the LOT

were almost identical. However, in both intraframe and interframe

19



coding experiments, eighty percent of the viewers preferred the
quality of the LOT coded images to the quality of the images
coded with the DCT and the SSFT. The remaining twenty percent
of the viewers found the performance improvement of the LOT over
the DCT not as significant. An important conclusion to these
experiments is that the signal-to-noise ratio of a coded image
does not account for local coding artifacts such as blocking
effects. The blocking effects generated by the LOT are much less
visible than those generated by the DCT. The ringing effects,
generated by the SSFT, virtually disappear with the LOT.

Although the LOT's performance is better than the DCT's,
local boundary effects between b1ocks.sti11 remain and sometimes
are visible. This is due to the discontinuities of the LOT
basis functions. Future research on lapped orthogonal transforms
should try to eliminate completely these remaining artifacts.
The basis functions could, for example, be constrained for a
smooth decrease to zero at the boundaries. This would, however,
worsen the energy compaction performance. A larger number of
overlapping samples could also be considered.

Last, but not least, a transform can be used in practice
only if its computational requirements are small enough to
compete with other transforms such as the DCT. Although the
superiority of the LOT over other transforms was proven, the
possibility of developing a fast LOT, without sacrificing its

performance in image coding, remains to be demonstrated.
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APPENDIX A

The energy compaction of the a, LOT basis function is defined as:

t
a;” Ra,
E; = t
=i =i
where R = [R(k,1)] is the 2N x 2N matrix defined by:
R(k,1) = ol k=Tl K1 =1,...,2N

and where p is the correlation factor between adjacent pixels.
According to equations (3.5) and (3.15), the a; vector can be

written:

t _ t _ i+1 t
g-i "()_(.is(l) )_(,i H)

where H is the N x N matrix:

(20

Using a matrix notation, a, can be written:

Eit - 51t (1 l(_1)1+1 H)

The 2N x 2N matrix R has the following block structure:
R|R

R = 2
R”| R
2 1
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where R] and R2 are two N x N matrices respectively defined by:

Ry (k,1) = olk-1] ks1 =1,...,N
and

Ry(k,1) = oMK Kol = 1,...,N
Consequently, git R a; can be expressed in the following way:

éit Ra,-= §1t (1 [(-1)"* n) :;t i 2? (-1;i+]H %
that is:

a;t R = xR+ (1), H ()RS + HRiH)

It can be shown easily that because of the definition of H and the

Toeplitz nature of R; and R2, the following properties are derived:

HR, H=R;

and

- t
R2 H=H R2

Thus, equation (A.10) reduces to:

i+l

to o L, t )
a; Rag=2x7 (Ru+ (-1)7 Ry H)

Next, git a; can be expressed in terms of X following an analog
procedure:
I
a;f 2y =t (0™ 0 | T ) ¥
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This equation reduces to:

Consequently, the energy compaction Ei’ using equations (A.1),

(A.13), and (A.15), is expressed as:

t i+l
X;  (Ry + (-1) 77 Ry H) X,

Define the N x N matrix R'iz

R', =Ry + (1)1 R, H

j 2

R'.(k,1) can be expressed as follows:
R',i(k,'l) = p [k-1] + (_1)1+1 DZN*-'l-k-'I

ks1 = 1,...,N

Therefore, the expression of Ei reduces to:
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APPENDIX B

B.1 Computation of the gradient of f(x)

According to equation (4.9), the objective function f(g) for the
optimization problem of any of the LOT basis functions has the
following form:

x* R x

f(x) = - ——— B.1
X o (B.1)

Taking the gradient of f(x) with respect to x yields:

! t t t t
v Flx) = and < (x7%) -9, (x"R'X) + (x"R'x) vy >.<)> (8.2)
Additionally:
v, ("R x) = (R + R'E) x = 2R" x (.3)
and
v, (5 x) = 2 (.4)

Using the results of equations (B.1), (B.3), and (B.4) in equation (B.2)

yields the following expression of the gradient of f(x):

2
v, f(x) = - —— - (F(x) - x +R' x) (8.5)
- x 5
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B.2 Computation of the Jacobian matrix of c(x)

The censtraints' vector c(x), defined by equation (4.7), can be

| written:

¢"(x) = <}1<5), [r25 ()15 Ors; <§){> (8.6)
with: .
) - -———-—"‘xtHf (2.7
(; 5;)t X
v25(x) = A (8-8)
X-t X
a3 (x) - —%§5—§3T7;— (8.9)

The Jacobian matrix of 5(5) is defined as follows:
V,_((gt(g()) = (V,_( v1(x), [V,_( Y2 (x)1s [V,_< Y3 (>_()J> (B.10)

where v, V1 (x), v Y2 (x), and v, Y3 (x) are the gradients with respect

X
to x of v;(x), Yzj(§), and y3j(§), in that order. Taking the gradient of

vy (x) yields:

7)==y () v, GEH) - () o (xF) (8.11)

- (x"x)

Taking the gradient of ij(g) yields:

1
ey = e - (6t 2 i) - ()0, (0t 2

(B.12)
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Taking the gradient of y3j(§) yields:

Ty vagle) = —— N CHRRERN VR AR R(CL RO MR

Following this, the next equations are easily derived:

v (x"Hx) = 2Hx (B.14)
Yy (§t x) = 2x (B.15)
v, ((H x5)" %) = H x; (B.16)
A (x;* %) = (8.17)
" ((x* )_()1/2) = —(F]T)_ﬂ; -'gg (B.18)

Combining the results given by equations (B.14) - (B.18), and the definitions
given by equations (B.7) - (B.9), with equations (B.11) - (B.13) yields:

2

v, Y1 (x) = T (Hx = vy(x) + x) (8.19)
- XX
_ 1 Y2°(’_()
V§Y25(5) i (xtx)1/2. (H %5 - (xti)l/z * x) (8.20)
] 'Y3’()_()
s sy, byt pgv Y (6.21)

Replacing the expressions of the gradients of y1(§)..72j(5) and
133(5). (8.19) - (B.21), in equation (B.10) results in a closed-form

formulation of the Jacobian matrix of c(x).
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APPENDIX C

C.1 The coefficients of the LOT basis functions for a block

size equal to 8 (overlap equal to 4)

-0,85022E -1 -0,94311E -1 -0,28200E -t -0,27498E -1
-0,25800E -1% -0.,90764E -1 -0.,1734SE 0 0.12354E 0
0.50189E -§ 0.44394E -2 -0.15729E 0 0.,23669E 0
0.13631E 0 0.16241E O 0,95968E -1 -0,32202E -1
0.22490E 0 0.32416E 0 0.36463E 0 -0,37045E 0
0.30792E 0 0.409S{E 0 0.33735E 0 -0,18149E 0
0.37772E 0 0.,37587E 0 -0.33854E -1 0,33563E 0
0.42772E 0 0.,210S9E 0 -0.43286E 0 0.,37960E 0
0.4277T2E 0 -0,210SSE 0 -0.43286E 0 -0,37960E 0
0.37772E 0 -0.37587E 0 -0,33854E -1 -0,33563E 0
0,30792E 0 -0,40954E 0 0.,33735E 0 0.18149E 0
0,22490E 0 -0,32116E 0 0,36463E 0 0,37045E 0
0.13631E 0 -0.16241E 0 0.95968E -1 0,32202E -1
0,50189E -1 -0,44394E -2 -0.,15729E 0 -0,23669E 0
-0,25800E -1 0,90764E -1 -0,$731SE 0 -0,12354E 0
-0,85022E -1 0,94311E -1 -0,28200E -1 0,27498E -1
Basis 1 Basis 2 Basis 3 Basis 4
-0,63229E -1 0.42286E -1 -0,35594E -1 0.43009E -1
-0,51062E -t 0.11491E 0 0.89607E -1 -0.67ST8E -1
0.21994E 0 -0.,14696E 0 -0,54318E -1{ 0.31287E -1
0,28055E -1 -0,56694E -1 -0.,14414E 0 0.13690E 0
-0,33969E 0 0,30653E 0 0.38952E 0 -0,34102E 0
0.58039E -1 -0,18817E 0 -0,45766E 0 0,430S4E 0
0.46776E 0 -0,27526E 0 0.,30999E 0 -0,35924E 0
-0,32664E 0 0.50504E 0 -0,98540E -1 0,20785E O
-0,32664E 0 -0.50504E 0 -0,98540E -1 -0,20785E 0
0.46776E 0 0.27526E 0 0,30999E 0 0.35921E 0
0.58039E -1 0.18817E 0 -0.,45766E 0 -0.43051E 0
-0,33969E 0 -0,30653E 0 0,38952E 0 0,34102E 0
0.2B0SSE -1 0.56694E -1 -0.14414E 0 -0,.3690E 0
0.21994E 0 0,14696E 0 -0,54318E -4 -0,31287E -1
-0.54062E -1 -0.11481E 0 0.89607E -1 0.675S78E -1
-0,63229E -1 -0,42286E -1 -0,35594E -1 -0,43009E -4
Basis 5 Basis 6 Basis 7 Basis 8



-0G465329E
-0,50285E
-0,30797E
-0.,73537E
0.19430E
0.48850E
0.80114E
0.11237E
0,14473E
0,17630E
0.20618E
0.,23354E
0,25739E
0,27762E
0.29303E
0,3033SE
0.30335E
0,29303E
0,27762E
0.,25739E
0.23354E
0,20618E
0,17630E
0.14473E
0,14237E
0,80114E
0.48B850E
0,19430E
-0,73557E
-0,30797E
-0.50285E
-0,65329E

Basis 1

)
© e vm e N) M e b

o X-R-X-X-X-X-E-E-N-R-K-R-N-N-N-N-4

-0,58684E
-0.TAT3TE
~0.75075E
-0.57837E
-0,23394E
0,2563SE
0.,84588E
0.14726E
0.20655E
0.23552SE
0,28683E
0.,29624E
0.28047E
0,23901E
0.47392E
0.89777E
-0.89777E
-0,17392E
-0,23901E
-0.28047E
-0,29624E
-0,28683E
-0.,25525E
-0,20655E
-0.,14726E
-0.,84588E
-0.25635E
0.23394E
0,57837E
0,7507SE
0.74737E
0.58681E

Basis 2

1] 1] " [} []
O ro ro 4o o bo pe b

t
OO0V O» HHrOOODODO0OO0OCO

size equal to 16 (overlap equal to 8)

0.72729E
-0.50451E
-0,40843E
-0.,13818E
-0.,12571E
-0,689272E
0.20237E
0.12258E
0,21259E
0.26544E
0,26210E
0,19449E
0.67758E
-0.9483SE
-0.25502E
-0,36041E
-0.36044E
-0,23502E
-0.94835E
0.67758E
0.19419E
0.26210E
0,26544E
0.21259E
0.12258E
0.,20237E
-0.69272E
-0,12574E
-0.13818E
-0,10813E
-0.50451E
0,72728E

Basis 3

-2

L]
OO0

COO0OOOr»r»

N OO0 rOOO0OOR M OOOO™™K

C.2 The coefficients of the LOT basis functions for a block

-0,35039E
-0.26299E
0.41422E
0,12851E
0,18022E
0,15496E
0.47925E
-0.,10230E
-0.22886E
-0.,26733E
-0,18907E
-0.1T046E
0,47836E
0.3094{6E
0.30925k
0.,16604E
-0.,16604E
-0,30925E
-0,30916E
-0,17836E
0.,17046E
0,18907E
0.267S5E
0,22886E
0.,10230E
-0.47925E
-0.15496E
-0,48022E
-0,12851E
-0,41422E
0.26299E
0,35033E

Basis 4

LI T
- e

,~P O OO0 OO0

TR -E-E-F-Xo - NN =N N

"t 1]
-, OO



~0.72912E
-0,76S04E
-0.87328E
0.,31573E
0.,14098E
0,20117E
0.110SSE
-0.88048E
-0.23334E
-0,25001E
-0.59627E
0,19141E
0,31663E
0.20997E
-0.63380E
~0,30147E
-0.30147E
-0,63380E
0.20997E
0,31663E
0.,19441E
-0.,59627E
-0.25001iE
-0,25334E
-0.,88048E
0.1105S5E
0.20147E
0.14098E
0.9541573E
-0.,87328E
-0,76501E
-0.72912E

Basis 5

-0,24480E
0.29073E
0.12434E
0,10870E

-0.43563E

-0.18514E

-0.14706E
0.64334E
0.24543E
0.19279E

~0,70123E

-0.29106E

-0,23263E
0.70840E
0.32103E
0.24548E

-0.,24548E

-0.32103E

-0,72840E
0.23263E
0,29406E
0.,70123E

-0.19279E

-0.24545E

-0.64334E
0,14706E
0.18514E
0.,43563E

-0.10870E

-0,12434E

-0.29073E
0.24180E

Basis 6

-1

OO OO OO OO OOOO»WOO

(I ]
[ o
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-0,19006E
-0.735269E
0.10048E
0.,14906E
0.90066E
-0,136335E
-0.19998E
0,35779E
"0,23568E
0.119435E
-0.,21435E
-0.26702E
0.68851E
0.33079E
0.,12467E
~0.27777TE
-0.27777E
0.12467E
0.33079E
0.68851E
-0.26702E
-0.,21435E
0.,11943E
0.23568E
0.35779E
-0.19998E
-0.13635E
0,90066E
0.14906E
0,10048E
-0.75269E
-0.19006E

Basis 7

LI I ]
-

] [] ]
OO Oo

COr OO0 0O0rr OO0 OrOOOO

L] L] L] 1]
[ N -

-0,89802E
0.,70105E
0.,87746E

-0,86386E

-0,14643E
0.,77252E
0.,21654E

-0,46S559E

-0.23478E

-0,62066E
0.26350E
0.15060E

-0.,24656E

-0,24152E
0.18916E
0.29730E

-0.29730E

-0,18946E
0,24152E
0,24656E

-0.15060E

-0.26550E
0.62066E
0,25478E
0.46559E

-0,21654E

-0.77252E
0.,14643E
0.86586E

-0,8T746E

-0,70105E
0.89802E

Basis 8

] L] L] LI B R )
CrOrOrOrm N

L "t ]
N+ = e OO O, OO0 00000 O



-0.2B7SSE
-0,45148E
0.11799E
0.38548E
-0,15170E
-0,38643E
0.20074E
0.,19706E
-0.25435E
0.38465E
0.26994E
-0.86729E
-0,27441E
0.11090E
0.33942E
-0,25949E
~0.25949E
0.,33942E
0,11090E
-0,2T7441E
-0.,86729E
0.26994E
0.3B465E
-0,25435E
0.,19706E
0,20071E
-0.38643E
-0.15470E
0.38548E
0,11799E
~C.45148E
-0.2875SE

Basis 9

-1
-1
0
-1
0
-1
0
-1
0
-1

'
oo

] '
R -A N -N NN - N-N-E-N-N-N-]

(]
SO0

-1
-1

0.28481E
0,92651E
-0.51676E
-0,92427E
0.10303E
0.11008E
-0.1B8470E
-0.,46762E
0.26649E
-0.,93378E
-0,24891E
0,22629E
0,14622E
-0,29959E
-0.39196E
0.34000E
-0,34000E
0.39196E
0,29959E
-0.,14622E
-0,22629E
0.24894E
0.93378E
-0.26649E
0.46762E
0.18470E
-0.11008E
-0,10303E
0,92427E
0.51676E
-0,92651E
-0.,28484E

[ B}
Ll N ]

L 1
—-_O 000

OO OFHOOOO OO OO0OO

. L ] L]
SO

Basis 10
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-0,373578 -4
0,38207E -1t
0,45648E -1

-0,91325E -1

-0.38934E -2

0,13496E
-0,14206E
-0.,83763E

" 0.27424E

-0,16840E
-0,14745E
0.31651E
-0.,13756E
-0.,20142E
0.34954E
-0,16860E
-0.16B860E
0.34954E
-0,20142E
-0.13756E
0.31651E
-0,1474SE
-0,16840E
0,27424E

-0.83763E -

-0.14206E
0.15496E
-0,38934E

SO OO0 OOCO0OOD+OO

-2

-0,91325E -

0.45648E

-1

0,38207E -1

-0,37357E

Basis 11

-1

0.34022E
0,16318E
-0.63171E
0.51597E
0.,56348E
-0,13285E
0.86423E
0,98233E
-0.,25368E
0.,21853E
0.40747E
-0.,24429E
0.251B4E
-0,95500E
-0.29214E
0,36499E
-0.36499E
0.29214E
0.95500E
-0,25184E
0.,24429E
-0.10747E
-0,21853E
0,235368E
-0,98233E
-0,86423E
0.13285E
-0,56348E
-0.54597E
0.6317T{E
-0.16318E
-0.34022E

-1
-1
-1
-1
-1

0
-1
-1

1
(- - N ]

'
Ore OO0 OONOODOOND

Al . 1) 1] 1
. ph e e e

Basis 12



-0.12490E
0.23251E
-0.65244E
-0.,47359E
0.10030E
-0.,1027LE
0.33829E
0.,96108E
-0.,24297E
0,31377E
-0.,20972E
-0.45508E
0.28403E
-0.34500E
0.,23798E
=0.77TT94E
~0.TT794E
0.23798E
-0.34500E
0,28403E
-0,45508E
-0,20972E
0.31377E
~0.24297E
0.96108E
0,33829E
-0.10274E
0.40030E
-0,47358E
-0.65244E
0,25251E
-0,12490E

Basis 13

-4

[ ] [
OO re N\

r o 1]
COMr OO0 OO0+ rrOOoOOOOoO

-1
-2
-1
-1

0,23669E
-0,13657E
~0.40743E
0.49933E
-0.,68996E
0.70379E
-0.,20367E
-0.,84837E
0.24723E
-0,28299E
0.20874E
-0.,15861E
-0,19722E
0.32227E
-0.,33071E
0.23688E
-0.23688E
0,33074E
-0.32227E
0.19722E
0.15864E
-0.20871¢E
0.28299E
-0.,21723E
0.84837E
0,20367E
-0.70379E
0,68996E
-0,49933E
0,10743E
0,13657E
-0,23669E

-1
-1
-1
-1
-1
-1
-1
-1

COO0OHrOO0ODOOCOO0» OO0

Basis 14

0,4628EF
-0,12781E
0.22782E
-0,24028E
0.33664E
-0.,31468E
0,25925E

=0.19044E

0.11136E
-0,42466E
-0.60542E
0.28394E
-0.,36019E
0.,30290E
-0.18694E
0.60906E
0,60906E
-0,18694E
0.30290E
-0.36019E
0.28394E
-0.60542E
-0,42466E
0,11136E
-0.,19014E
0.2592SE
-0.31468E
0.33664E
-0.31026E
0,22782E
-0.,12784E
0.46286E

O Nrmme NN e 2N 000000 O e

[l - - R -N-N-N-¥-]

Basis 15

0,47395E
-0,12594E
0.22663E
-0.31025E
0.34088E
-0,31795E
0.26133E
-0,18596E
0,10341E
-0,31914E
-0.,10734E
0.25021E
-0.24057E
0,22258E
-0.,199314E
0.13457E
~0,13457E
0.19931E
-0.22258E
0.240S7E
-0.25024E
0.10734E
0,31914E
-0,103414E
0.18596E
-0.,26133E
0.31795E
-0,34088E
0.,31025E
-0,22663E
0.12594E
-0,47395E

A -N-N-N-N-N-N-

[ e N il S

[l - N-N-N-N-N-¥ ]

Basis 16



APPENDIX D

Standard FORTRAN program for the computation of the LOT basis functions

BASISn.FR

# s n ¢+ Intiin-1)/2)
¢t = [nt(in-1)/2)

OO0 0

DOUBLE PRECISION RAU,R(8,8),1STEP, ISTEPO, ACCF, DECF
DOUBLE PRECISION CXMAX,CXMIN, TCX
DOUBLE PRECISION NORMX,O0BJ,PHI, NORMXOP, 0BJOP,PHIOP, SICMA
DOUBLE PRECISION X(8),X0P(8),XCX(8),DX0BJ(8),DXPHI(8)
DOUBLE PRECISION LAMBDA(2),CX{(#),CXOP(#),CXCX{(#),LAMBDACX(#),JACOB(#,8)
DOUBLE PRECISION MA(n-1,8),A(8)
ACCEPT "Enter correlation factor: *+RAU
ACCEPT °Enter initial step size: *s ISTEPO
ACCEPT "Enter acceleration factor: °,ACCF
ACCEPT °Enter decceleration factor: °,DECF
ACCEPT "Enter precision: "y TCX
ACCEPT "Enter number of iterations: ",NITER
ACCEPT “Enter sigma: *,SIGMA
ACCEPT "1s this your first run (Yes={,No=0) ?",M
CXMIN=1,0D310
IF(M.EQ.0) GOTO 30
DO 10 I=4,#*
LAMBDA(I)=4,0D0
10 CONTINUE
Do 20 1=1,8
X(1)=1.,0D0
20 CONTINUE
GOTO 40
30 CALL FOPEN(2S5, "LAMBn")
READ BINARY(25) LAMBDA
CALL FCLOS(25)
CALL FOPEN(25, "BASnP")
READ BINARY(25) X
CALL FCLOS(25)
40 DO 60 1=1,8
Do S0 J=41,8
R(1,J)=RAU##(DBLE(ABS(FLOAT(I-J))))+
((-1)#8(n+1))sRAU## (DBLE(FLOAT(17-1-d)))
S0 CONTINUE
60 CONTINUE

c Repeat for i=i,n-1

CALL FOPEN(20, "BASi")
READ BINARY(20) A
CALL FCLOS(20)
DO 7i I=1,8
MA(i,I)=A(])

7i CONTINUE

1000 N=0
PHIOP=1,0D30
ISTEP=ISTEP(

2000 NsN+i

- NN



80

90
100

110

120

130
140

150
160

170

180

190

200
210

220

NORMX=0,0D0

DO 80 1=4,8
NORMX=NORMX+X(I)aX{(I)
CONTINUE

0BJ=0,0D0

DO 100 J=41,8

DO 90 I=%,8
OBJ=0BJ+X(J)*R(I,J)eX(])
CONTINUVE

CORTINUE

0BJ=-0BJ/NORMX

DO 110 I=4,s

CX(l)=0,0D0

CONTINUE

DO 120 I=4,8
CX{1)=CX(4)+X(T1)8X(9-1)
CONTINVE

DO 140 K=i{,n-4

DO 130 I=1,8
CX{K+4)=CX(K+1)+MA(K,9-1)#X(I)

CONTINUE

CONTINUE

DO 160 L=0,8s-14 if n odd
L=, s8¢ if n even

DO 150 I=1,8 -
CX({n+1+L)=CX(n+1+L)+MA(24L4+1,1)8X(])
CX{n+L)=CX(n+L)+eMA(2¢L,1)8X(])
CONTINUE

CONTINUE

CX{1)=CX(1)/NORMX

DO 170 I=2,¢
CX(I)=CX(I)/DSQRT(NORMX)

CONTINUE

CXMAX=0,0D0

DO 180 I=4,+
IF(DABS(CX(1)).,GT.CXMAX) CXMAX=DABS(CX(I))
CONTINUE

TYPE °“CXMAX: ", CXMAX
IF(CXMAX.GT.CXMIN) GOTO 210
CXMIN=CXMAX

DO 190 I=1,8

XCX(I)=X(1)

CONTINUE

DO 200 I=1,+¢

CXCX(I)=CX(I)

LAMBDACX{(1)=LAMBDA(I)

CONTINUE

TYPE "CXMIN: -,CXMIN

PHI=0BJ

DO 220 I=1,+
PHI=PHI-LAMBDA(I)#CX(I)+0,5DO#SIGMA*CX(I)#CX(I)
CONTINUE

IF(PHI1,.CT.PRIOP) GOTO 250

PHIOP=PHI

91N
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(2)
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230

240

250
260

270

280

290

300

310

320

330
340

350
380

370
380

3s0

0BJOP=0BJ

NORMXOP=NORMX

DO 230 I=1,s

CXOP(I)=CX(I)

CONTIRUE

DO 240 I=1,8

XOP(1)=X(I)

CONTINUE

ISTEP=ISTEP#ACCF

GOTO 280

DO 260 1=4,¢

CX(1)=CXO0P(1)

CORTINUE

D0 270 I=4,8

X(I)=XOP(I)

CONTINUE

0BJ=0BJOP

NORMX=NORMXOP
ISTEP=1STEP/DECF

DO 290 I-=1,8

DX0BJ(I)=0.,0D0

CONTINUE

DO 310 J=4,8

DO 300 I=1,8
DXOBJ(J)=DXOBJ(J)+R(I,J)eX(T)
CONTINUE
DXOBJ(J)=DXOBJ(J)+0BJ#X(J)
DXOBJ{J)=(-2,0D0#DXO0BJ(J))/NORMX
CORTINUE

D0 320 I=1,8
JACOB(1,I)=(2,0D0#(X(9-1)-CX(1)#X(I)))/RORMX
CONTINUE

DO 340 K=1,n-{

DO 330 I=%,8
JACOB(K+1,1)=MA(K,9-1)/DSQRT(NORMX)-(CX(K+1)&X(I))/NORMX
CONTIRUE

CORTINUE

DO 360 L=0,%#-1 (1)
L=11'* (2,

DO 350 I=4,8

JACOB(n+1+L,I)=MA(24L+4,1)/DSQRT (NORMX) - (CX(n+1+L)#X(I))/HORMX
JACOB(n+L, I)=MA(2¢L, I)/DSQRT (NORMX) - (CX(n+L)#X(I)}/RORMX
CONTINUE

CONTINUVE

DO 380 J=1,8

DXPHI(J)=DX0BJ(J)

DO 370 I=1,+ ,

DXPHI (J)=DXPHI (J)-LAMBDA(I)#JACOB(T,J)+SICMA#CX(1)#JACOB(I,J)
CONTINUE

CONTINUE

DO 390 I=4,8
X(1)=X{1)-ISTEP#DXPHI(I)
CONTINUE

DO 400 I=4,8

134



TYPE X(I)
400 CONTINUE
TYPE "LAGRANGIAN VALUE:*,PHI
TYPE °“OBJECTIVE VALUE: *,0BJ
IF(N.GT.KITER) GOTO 3000
WRITE(10,1)
GOTO 2000
3000 IF(CXMIN.LT,TCX) GOTO 4000
WRITE(10,1)
GOTO $000
4000 ACCEPT “Do you want to continue (Yes=i,No=0) ?°,M
IF(M,EQ.0) GOTO 6000
ACCEPT “Enter new precision: °,TCX
WRITE(10,2)
5000 CALL FOPEN(25, “LAMBn")
WRITE BINARY(25) LAMBDACX
CALL FCL05(25)
CALL FOPEN(2S, “BASnP")
WRITE BINARY(25) XCX
CALL FCLOS(25)
DO 410 I=1,+
LAMBDA(1)=LAMBDA(I)-SIGMA®CX (1)
410 CONTINUE
GOTO 1000
8000 ACCEPT "Do you want last X 40) or best CX (1) ?°,N
IF {M.EQ.0) GOTO 7000
DO 420 I=4,+
TYPE “CX: *,CXCX(I)
420 CONTINUE
DO 430 I=%,8
X(I)=XCX(1)
430 CONTINUE
GOTO 8000
7000 DO 440 I=1,+s
TYPE "CX: *,CX(I)
440 CONTINUE
8000 NORMX=0,0D0
DO 450 I-=4¢,8
NORMX=NORMX+X(I)#X(I)
450 CONTINUE
KORMX=DSQRT (NORMX)
DO 460 I=1,8
X(I)=X(1)/RORMX
460 CONTINUE
CALL FOPEN(20, "BASn")
WRITE BINARY(20) X
CALL FCL0S(20)

1 FORMAT (41X, 13("¢13>"))
2 FORMAT(1X,15("¢13>"))
STOP
END
c JANUARY 22,1985
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