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ABSTRACT

The excitation mechanism is shown in a simple way
to be short range. The standard semi-classical impact
parameter treatment is discussed. The two state approxima-
tion, the Landau Zener theory of level crossing, the per-
turbed stationary state methods, and their relationship to
the adiabatic approximation are discussed in the context of
low energy collision analysis. The Born approximation and
the distortion approximation are discussed as treatments
valid for high energy collisions. (All treatments appear
in their semi-classical form.) A scaling law applicable to
most of these treatments is developed and its relative
merits and shortcomings are discussed. A general discussion
of when the various approximations are valid follows. It is
shown that high (low) energy approximations are valid for
projectile velocities significantly greater (less) than the
orbital velocities of the target electron. The perturbed
stationary state method is shown to be the only applicable
approach ot vacancy production of K-shells in collisions
between heavy ions. Feasibility of computer solutions is
discussed. By considering the assymptotic limits of the
transition probabilities for arbitrary processes in the
limits of very small and very large projectile velocities,
a qualitative sketch of the cross-section for vacancy pro-
duction as a function of collision energy is obtained.
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I. INTRODUCTION

Throughout most of the literature on atomic

collision theory, an atomic collision is generally con-

ceptualized as a point charge projectile scattering off

a target atom. In fact, most of the experiments performed

in this field up until the last five years used either

electrons, protons, or alpha particles as projectiles. In

recent years, there have been numerous experimentst’2s3 in

which both the targets and the projectiles were heavy atoms.

In dealing with this situation theoretically, one treats

the projectile atom as a modification of a point charge.

In fact, as we will show later on, when treating K-shell

excitation and ionization of a target, a heavy atom pro-

jectile can be very well approximated by a point charge.

The projectile can be modeled as a plane wave, or

as a classical particle, following a well-defined traject-

ory, with a definite impact parameter. In the latter case,

the treatment is referred to as being semi-classical, as

opposed to a strict quantum mechanical treatment. The

semi-classical treatment is far more simple from a mathe-

matical point of view. It can be partially justified for

all of the cases we deal with, and rigorously justified in

the limit of high projectile energies.
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In all of our discussion, we will be primarily

concerned with inelastic scattering cross-sections. It

is useful to know the range of impact parameters which

contribute to inelastic processes. While this can be

determined by detailed calculations, we present an easy

way of showing that it is on the order of the radius of

the shell being excited. It is this fact which enables

us to approximate a heavy projectile as a point charge in

calculating K-shell ionization cross sections.

There are basically two ways of modeling the

Hamiltonian felt by the target electron. In the high

energy limit, the most viable scheme is to treat the pro-

jectile as a small perturbation which vanishes at t=#w,

This can be done as long as the projectile does not signi-

ficantly distort the wave function of the target atom, and

high energies are characterized in this way. Otherwise one

must consider a total Hamiltonian containing the potential

formed by the Coulomb fields of both the target and the

projectile. Clearly this Hamiltonian is time dependent,

but the interaction, characterized by an overlap of the two

Coulomb fields, is of finite duration. Fortunately, there

are approximations which enable one to solve the time

dependent Hamiltonian problem in the low energy limit. In

this paper, we give a brief survey of both the high energy

and low energy approximations, and semi-quantitive discussion

of when the various approximations are valid.
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The next problem on the agenda is the issue of

scaling laws. One might ask, if we know the cross-section

for a process in a hydrogen-hydrogen collision as a function

of energy of the projectile, can we scale the results to

determine the cross-section (as a function of energy) of

the same process for say, a uranium-uranium collision?

The presence of screening electrons in heavy atoms renders

an otherwise elegant scaling law. However, the scaling can

be used to approximate results, and in addition, to determine

when various approximations should be used. In this paper,

we use these scaling laws to show that even for high energy

collisions, if the target atom is heavy enough, a particular

low energy approximation, (the perturbed stationary state

approximation) can be implemented. As this approximation is

very difficult mathematically, and not applicable to light

targets, there is very little literature on it. The feasib-

ility of solving this problem on a computer is discussed,

but inasmuch as no computations were carried out for this

research, we can only give a semi-quantitative description

of the results. In particular, we discuss the asymptotic

behavior of the cross-section in the low and high energy

limits.



i. Mathematical Description

In order to write down an atomic collision mathe-

matically, one must decide how to describe the projectile.

It must be determined whether the projectile must be treated

as a plane wave, or whether semi-classical approximation will

suffice. If a classical description of the projectile is to

be sufficient, then the minimum uncertainty in its position

allowed by a well-specified velocity must be small compared

to the characteristic range of the interaction. (The range

of the interaction is defined to be the impact parameter of

the projectile beyond which the target would not feel its

presence appreciably.)

To estimate the range of the interaction, we can

specify the perturbation experienced by the target atom for

any specified impact parameter of a classical particle. We

show that in general, the range of the interaction is on the

order of the average radius of the initial atomic state,

which for convenience, we will assume to be its ground state.

Of all the multipole components the dipole component

can be expected to have the longest range, and we consider

this component. The contribution from any given impact

parameter can be estimated using the Weizacker-Williams

method of virtual quanta.’ In this method we treat the

dipole component of the pulse as being composed of virtual

photons, and the transition to a higher state is reduced to

the problem of absorption of photons and photo-ionization.
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(Since magnetic transitions do not contribute to these

processes appreciably, it is sound to treat the pulse in

this way.) Here we only need to use the fact that the

probability of a certain process taking place is pro-

portional to the number of virtual photons impinging on the

aton with energy corresponding to that which is absorbed by

the electron in that process.

The center of the atom feels electric pulses, of

two polarizations, which, for the dipole approximation, are

assumed to be uniform over the range of the atom. For non-

relativistic velocities,

-

L
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where Kg and Ky are the standard modified Bessel functions,

(I;+I,) is roughly constant over all frequencies up to v/b,

then drops off sharply.
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A trivial calculation shows that for projectile

velocity (v) equal to the average orbital velocity (v,)

of an electron in the ground state of an atom with atomic

number Zz,

M)

where I is the ionization potential, and Vg is the Bohr

radius of the ground state.

Clearly, this implies that the interaction is

short range for that particular velocity.

Due to the fact that I(w,b)a ~ it is easily shown

that even for hydrogen, the dipole interaction is of short

range for non-relativistic velocities. It can be assumed

that the higher order multipole components of the interaction

are characterized by an even shorter range. For heavier

atoms, the interaction can only become more localized, and

in virtually every realistic circumstance, the range of the

interaction is on the order of the radius of the atomic shell.

This is a very useful result, because in treating collisions

between heavy atoms for their resultant K-shell vacancy

production cross-section, we can model the projectile as a

point charge. This is because the screening of the projectile

nucleus by its own electrons is neglegible at internuclear

distances equal to or less than the radius of the K-shell of

the target.
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A necessary condition for treating the projectile

classically is that an uncertainty in the position which

is small compared to the dimensions of the K-shell does

not destroy the information known about the velocity of

the projectile.

The radius of the K-shell of a target atom is given

by a6/ Za RGET * The corresponding minimum uncertainty

in the velocity of the projectile is given by

 = (DB) (Z ) where m is the mass of the projectile.
(Ax) (m) (ap) (m)

Compatibility occurs for trajectories in which the velocity is
(h) (2 )

much greater than Av = etee RGR ne .
(ag) (m)

If we speak of projectiles which have charge comparable to

h) (Zm;that of the target nucleus, then Av = {h) (ZraRGET)

(ag) (2m proton) (Zprog)
10° cm/sec

~
a

(4)

and the velocity beyond which the projectile can be treated

classically becomes a universal result.

As we will see later, the restriction that the

projectile has charge comparable to that of the target nucleus

is highly significant, because this is exactly the point at

which strict quantum mechanical treatment becomes very

difficult.



11

The matter is not rigorously settled because there

is no reason to believe that the position-momentum un-

certainty product is always on the order of h at exactly the

point where the projectile passes by the target. In fact,

the treatment which models the projectile as a plane wave

1s invaribly considered to be more appropriate. One can

only make a hand-waving argument that the results are similar

providing the velocity is great enough. One can also make

the observation that the higher the velocity of the project-

ile, the greater the position-momentum uncertainty product

compatible with a classical description.

It has in fact, been proven by Moisewitch,” Crothers

and Holt® that for high energy approximations, (specifically,

the kinetic energy of the projectile must be much greater

than the energy of excitation of the atom) quantum mechanical

results approach those of the analogous semi-classical

treatment.
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[T. THEORETICAL BACKGROUND

h = e m
=

= a
~

¥

The structure of the following discussion will be

such that we will start with inelastic collisions of the

lowest energies, and work up to the high energy collisions.

Following this survey of the various treatments, we will

discuss in detail when exactly each of these treatments

apply. The discussion will be brief, and the reader is

encouraged to check the references if he desires more

detail.

First we will discuss the concept of adiabaticity.

In the semi-classical model that we are using, the electrons

feel a time dependent Hamiltonian H(t). The concept of

stationary states thus loses its meaning in this context.

In order to find a handle on the problem, one can think of

"freezing" the Hamiltonian at any given time. He can then

have stationary states corresponding to a frozen Hamiltonian,

which in turn, correspondstothephysical situation at

time t. These stationary states form a complete set of

states, {¢,(t)} and the true wave function P(t) can be

expressed in an expansion of the stationary solutions of

time t; Y(t) = I an (t) on (t)
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Now consider the stationary states at any given time.

For a small enough time At later, there will be a set of

stationary states {¢_(t+At)}which bear a one to one corres-

pondence to the set {¢, (2) } . Furthermore, since the

physical potential has changed only a little bit, the state

¢, (t) bears a very close resemblance to ¢ (t+At) for all n.

and of course, we can consider the complete set of states

{op (£)} all bearing a distinct one to one correspondence

to {9 (t+At)} . Thus we see that if we label a particular

state at time t, we can label the state which it resembles

so closely at time t+At by the same name so to speak. In

the same manner, we can label the states ¢ (£) ,—o&lt;t &lt;+oo

by the same name. Thus we can use a formalism in which

although an individual state changes with time, it maintains

a particular identity. The energy corresponding to this

state for instance, may be changing with time, but the energy

curves (energy plotted as a function of time, or as a

function of any variable corresponding directly to time) will

be continuous connected graphs. This is the beauty of the

stationary (otherwise known as adiabatic) states. We can

speak of a particular adiabatic state which bears the same

identity at all times, and we can speak of an energy curve

associated with this state.
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It is obvious that if the Hamiltonian is not

changing appreciably, then a(t) are not changing

appreciably either. One might correctly expect that if the

Hamiltonian is changing very slowly as in the case of slow,

"gentle", atomic collisions, then not only is dap (t) small,
dt

but se d ap(t) dt is also small. This fact will be
—co —dat

justified mathematically later on.

Since the adiabatic states are to be calculated only

as a function of internuclear distance, ¢,(-*) and ¢, (+=)

turn out to be the same combinations of atomic states, as

|R(t)] = © in both cases. Hence, given the set of quantities

{an (-~)} , and {a,j (+x) } one would know the excitation probab-

ilities.

The processes which occur at arbitrarily low energies

are resonance phenomena. The purest example of resonance is

resonant charge exchange between two identical atoms. In

this process, the electron does not actually get excited to

a higher energy state, but merely "latches on" to the ionic

projectile as it goes past. If the collision is at such a

low energy that the probability of exciting the electron to

a higher energy state is neglegible, then we can work in a

space of two states; the atomic state in which the electron

is bound to the target, and the atomic state with the same

energy in which it is potentially bound to the projectile.

Consider for example, a proton colliding with a hydrogen atom

in the 1S state. At all times, the eigenstates of energy
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with which we deal are the bonding and anti-bonding states

of the 1S shell of the atoms, ¢, and ¢,

adiabatic
energies

1 Rydberg-
itd

-
N

£1___
ao

internuclear distance-~

4

(The 1S state of the projectile at R = «

is given by an anti-symmetric combination

of ¢4 and $e)

The 1S state of the target nucleus at R = «» is a symmetric

combination of ¢, and ¢, . At t = +o. the final state is

ij YD)} = ¢._ { oO = z(t)dt where €= =
oP)

IN
AN 4

and the probability for charge exchange is then given by

i. sin2(¥ ©3 _re(RIAR)
fr oy

N
—- J

Figure 1 shows the result of this two state approximation

compared to experimental results. Since momentum transfer

has been neglected in this treatment, one would expect it to

over estimate the actual charge exchange cross section when

the projectile velocity becomes significant compared to the
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orbital velocity of the electron.

Resonant charge transfer involves resonance between

two atomic states. Another form of resonance occurs when a

molecular state containing an electron has, for some inter-

nuclear separation, the same energy as a vacant molecular

state. This internuclear separation at which the energy

levels cross is called the "crossing point", and impact

parameters less than the crossing point result in what are

called "curve-crossing" collisions. This form of resonance

is damped by the repulsion of levels due to off-diagonal

perturbing matrix elements. A particular theory of level

crossing was developed by Landau and zenerS in 1932.

First of all, in making a zeroth order adiabatic

approximation, one simply assumes that aside from the change

in energies associated with them, the stationary states are

not changing in time. That is to say, the finite internuclear

motion does not significantly couple the adiabatic states.

The Landau-Zener model makes this very assumption. Given

that Y(t) = Zan (£) ¢n (t) it also assumes that a, * 0 for all

but two states, ?. and b,,. The off-diagonal perturbation

matrix elements, which cause both the repulsion of levels and

the coupling of the states is also assumed to be constant.

These assumptions are justified on the grounds that

the transition basically takes place at the crossing point

- Ra very localized region with respect to the spatial

dimensions of the system (see Figure 2). The probability of
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transition at a crossing point, according to this theory,
 4

is e H/q where H is the off diagonal perturbing matrix

element, and o is (LL 81-Bady . The perturbation to
dt Ry

which we have been referring is basically everything that

was considered in the original calculation of the energy

level curves. The problem with the Landau-Zener theory is

that it is very hard to determine the matrix elements of

this perturbation and in fact the perturbation is sometimes

written off as an experimental parameter. Lichten has

conjectured that H is of the same order of magnitude as the

subshell splitting of the united or separated atomic levels

which correspond most closely.

There are many other problems with the Landau-Zener

theory, more than time permits to go into, and attempts to

improve it continue to this day.

There is a very important approximation which one

would describe as a first order treatment above the adiabatic

treatment.’ In this approximation, the perturbation which

appeared in the last paragraph is assumed to be neglegible.

That is to say, all of the significant coupling between dif-

ferent adiabatic states arise from the finite internuclear

motion. This approximation, known as the perturbed stationary

state approximation, is in the usual spirit of a first order

perturbation treatment, assumes that ag (t)~ 1 and ap (tt) =0

for n # 0. Again, we expand the true wave functions in terms
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of stationary states, and write Schroedinger's equation in

this form.

The adiabatic solutions are written as bg (xr) ets (RE

where R denotes the internuclear separation, and r denotes

the coordinates of the electron.

Hy (r,R) = €,(R) pg (r,R) (G

When R is very slowly varying with t, we use

solutions of the Schroedinger's equation which are zero-

order in the time dependence of the Hamiltonian, namely

ly, (x, R(t) eH Ss (R(E))dE as an orthonormal basis.

Expandingintermsof these states, we write

Tt

b(£) = Fo (£) v_(r,R(t)e H/ELR(EIAL ;./

and substituting into the Schroedinger's equation, we

~btain

3 ; dec _ (tt) TF

(c(t) 5 P(r, R(E)) + — ST p(x, R(t) tos (RIE)IAE = 0

Projecting onto the state y_(r,R(t))e’ [E (R(E)) dt
\o
Tf eo1)

de, 5
J a {ec (1)

E

“(z,R(t)) S= y_(r,R(t)) d°r} oe 16g, (R(E} JatJ

where - I t) = Cc
oy R{(t)) gE R{t)
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If at t = -», the electron is in a particular atomic

eigenstate of the target atom A, then to zero-order we assume

that c_(t) = Y ng, and to first order

t
dc ® .

 8 my, (5,R(E) 52 ¥ (r,R(E))veHOSag(RIAL4p (€ 2)

OY For = ¥* ds

SYS

ry "Fool=

C

U(r R(E)) Fo bg (r,R(E))&gt; e HOR (RENAE gp (gp
An

In the case where the projectile follows a straight-

line trajectory with impact parameter b,

0 * . Zz

c, (+) £ &lt;U_(r,b,2) - by (x b,2)&gt; ey J owb,2)dz 4, (gq

In this form the velocity appears only as a factor

in the experiment. It is clear that as v&gt;0, C, (+=)&gt;0

due to rapid oscillations in the integral.

It should be pointed out that for simplicity, recoil
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of the target nucleus has been ignored, as Schroedinger's

equation is presumably valid only in an inertial frame of

reference. To take recoil into account, a m dification of

the perturbed stationary state method is required, but for

the purposes of this paper is unnecessary.

It should also be pointed out that if

eigenstate at t=To , then

&lt;y%¥(r,b,z) : Vylr,b,z)&gt; = 0

is a target

at t = *o. This fact will enable us to integrate by parts

later on.

Both the Landau-Zener theory and the perturbed

stationary state method are suitable for both charge ex-

change and excitation because in the midst of the collision,

the molecular stationary states bear no particular loyalty

to either atom. This of course, is because we have ignored

momentum transfer during the process of charge exchange.

We discuss the issue of momentum transfer briefly later on;

but since in this paper we are primarily interested in ex-

citation and ionization, and are only valid when the project-

ile velocity is much less than the orbital velocity of the

electron, we will not discuss the modifications of these

approximations which take charge exchange into account.

It should also be noted that when off-diagonal

perturbation matrix elements and the finite motion of the

nucleus produce the same order of magnitude of coupling, the
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analysis becomes extremely difficult. Lichten'? has

discussed the cases of bands of states with very narrow

energy separation, but his discussions have been basically

qualitative in nature.

The treatment of non-resonant charge exchange

involves a much more sophisticated formulation than that

of resonant charge exchange. In this case, charge exchange

involves an energy change, and cannot take place at

arbitrarily slow collision energies. However, if the energy

difference between a filled state of one atom ¢_ , and some

vacant state of another atom Pp is small compared to the

energy differences between the initial target state and all

other possible final states, then there is an energy range

in which the projectile velocity is large enough to cause

charge exchange, but small enough such that no other states

besides ¢_ and Py come into play; and once again, we can make

a two state approximation.

The true-wave function Y(t) can be written as the

linear combination a(t)¢_(s) + b(t), (x). Using a variational

technique, one can obtain a pair of coupled differential

equations in a(t) and b(t)

Rk

«
-

may

0-1, 1
Va, = =+t31

_=1 1
Vo = + xm
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The derivation of the equations is long and un-

interesting. tt The key concept involved is that the coupl-

ing between a and b arises due to the finite overlap of

n &gt;

’A and bar (8 pz&lt; a7 %g 7 0) finite coupling due to the

perturbation Vv.
A

(Vip = &lt;¢a vs by

The result is

(By (2)
ay ¥S@@aby by ay gt by
b ba’ ‘a ~ 'b ,aa a ab

(22) (22) (10

It is clear that as the energy of the projectile

is increased, the two-state approximation becomes poorer and

poorer. N-state approximations can be done which are con-

ceptually the same as two state approximations, but which of

course are much more difficult. Calculations involving as

many as 8 states have been performed. 2

It should be noted that electron translation factors

have not been taken into account in the preceding treatment.
s a)
ivz=-1v°tBates and McCarroll&gt; have shown that VY(r,t) = ¢é(v,t)e ———

9 _

obeys the equation (H_, spb (r,t) = Va(r,t) v(r,t)

where Vip (XT, t) describes the presence of the target nucleus,

and H_ is the unperturbed Hamiltonian of the projectile.

Bates has also shown that ¥ correctly describes the eigen-

state associated with the moving projectile at t==-«
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The formalism of the two state approximation in this case

is exactly the same, but here,

— 3 &gt; ZL, ivz

Sab fdr o, ré, (r+R) e

Von
_ Z &gt; ivz 3

Jo_ (xr) TET 9), (r+R) e d°r

When Sop and Vib are small due to rapid oscillations in the

integrands of the integrals that express them. Thus, for

high v, charge exchange starts becoming neglegible. Physically,

the meaning of this is that charge exchange is neglegible

when the translational velocity of the projectile is sub-

stantially greater than the orbital velocity of the electron.

On the other hand, for high velocities, the collision

is capable of exciting the electron to different energy levels

of the target atom. Roughly speaking, one can say that the

energy uncertainty associated with the time duration of the

collision is the same order (or greater) than the energy

difference between the various levels of the target atom,

under the condition that the velocity of the projectile is on

the same order (or greater) than the orbital velocities of

the electron.

Aw x= = Zv ¢ (Rvd.) Zz? IVS&gt;7 = velocity of orbital
electron

In this energy range therefore, it is convenient to expand

the true state in terms of unperturbed eigenstates of the

target atom.
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The most basic treatment in this realm is the Born

approximation. This approximation has been solved thoroughly

treating the projectile quantum mechanically.’ ? For the

sake of continuity however, we briefly summarized the semi-

classical equivalent of the Born approximation’? otherwise

known as the impact parameter Born approximation. As

mentioned before, it has been proven equivalent to the

quantum mechanical treatment at high energies.

i
hl)

R) Sd I ¢ (r) —==R"T $, (r)
11 )

int
a, (8) =a (==) + /° vo (R(t) 1 at. (rza)

Assuming a straight pro-

pact parameter b,

jeCo.de trajectory with im-

a (+00) rrons oie Voa(br2z)e
1Lwz

~) dz,
\)

(- 1)

The transition probability P(+x) is given by

P
;

{ -$ ©) = |a +0) / (222)

and the cross-section for the transition, o, is given by

bdb |a (+)|? TN{ -d)
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By inspection, one can guess the form of the

results of the Born approximation. When the velocity is

large enough such that oe &lt;&lt;] , the term e Luz is effect-

ively unity, and the cross section goes as v2. For velo-

cities low enough such that =2 &gt;&gt;| , the term e ie

produces many oscillations in the integrand of the term

re V(b,z) e wz, dz
—co

This causes the value of the integral to vanish faster than

any power of v, hence the cross section increases with v at

low velocities. This sort of argument will be presented

in more detail later on. The maximum can be expected to be

w 1 -
roughly at g*= or Vv = wa

i.e. just before rapid oscillations in the integrand begin

to dominate (see Figure 3).

The most elementary modification of the impact

parameter Born approximation is called the distortion

approximation. It merely uses first order energies in the

oxponent instead of the zero order energies, i.e.

* iJ w' (R(t) dt
a(t) 7 J _oV (RE) oO

A+

(1.ta)

where

(1) (R(t) = w4V_ (R(t) = V__(R(t))



26

The result is somewhat improved at the expense of

a terrific increase in the labor of calculation (see

Figure 3). This approximation was actually carried out by

Bates™® for proton on hydrogen collisions.
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ITI. SCALING LAWS

Having described the main methods of solving atomic

collision problems in different energy ranges, we now discuss

scaling laws with which one can scale the velocity of the

projectile, and the charges of both the target and the

projectile concurrently. These laws give us a way to a)

scale results to some degree of accuracy and b) to know how

to model any given situation once the analysis has been done

for, say, hydrogen.

The Born approximation has been scaled in the past,

and we present the analogous semi-classical derivation of

the scaling law.

For the cross section of excitation from state a

to state b, of the target atom, (atom #1).

Z1 = charge of nucleus of atom 1

Zz, = charge of nucleus of atom 2

1 H H 1 _ :

7LItR) = Jfd3r ¢ (r) $y, (1) Toa = perturbation

matrix element induced by a proton at distance R from a

hydrogen atom. (4g are ordinary hydrogenic states).

Z +2

Vor 2 (R) = perturbation matrix element induced by a point

charge q = z, near an atom of nuclear charge Zq- Screening
Z,,2

v 4 1772 Co. .

is ignored for now. a , the transition amplitude, and
ab
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7

Y

y 2
2 bear the same notational form.

Wy is the energy differnece between states a and b

of the target atom, and Wey is Wy for the special case of

hydrogen. Since screening electrons are ignored for now,

f — 2

04 40g

Z1 2» Z

Ve ® = sare (De Ea

2H 3/2 VF

¢ (z,r)) (Z, 6, (2,1) —_—
|r -

ZZ
(7 R) = — 1

| 2, -2 R|

ras

R|
—

(+4)

7.7%
) 1

\VAnab (Z,R)

Zz 1 Lo
a_1 (b, +o, vv) = 1 © 21,25

’y ! Van (x,b) e
1 Wal

\)
 a

’

| -, . E i, AD 4
°r 1Z22V_[) (2 x, 7 b) e (=) (=)v/Z,

dx

i

4 °° io (41%)
2—eee [VY Z x,2 b o

(v/Z2 )7Z —w ab (7 x Suz)

dZ x

ZN 1
7 Bb (Z1b,+&gt;,v/Z1)

(15)
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~

ZZ © 7 7
2 (v) = J lag * (b,+&gt;,v)|2(27b) db

29 22)” 4 Zz b,+°,v/% )|%(2 b) (2 b)
72 (Fy BB (Z b,+o,v i :

7,

7  Wh

1,1
Cab (v/z ) (le

If Py is a continuum state, say Pics then to keep

proper normalization, we decrease the volume of a hypothetic-

al box enclosing the system by Z 3. This preserves the

CL ¥ pb
condition ¢y (r) = Z ¢ (Z,x)

When dealing with continuum states, one incorporates

a state density term in integrating over the continuum of

states. By simple square well analysis, a decrease in the

box by a factor of z ° decreases the number of states with

energy between E and E+AE by z_* . However, scaling up the

energy E to Z;?E for any particular state has the effect of

scaling up p(E)dE by a factor of Z:*®; where p(E) is the

number of states per unit energy interval. Hence, the over-

all scaling operation leaves the density factor untouched.

Thus, the scaling law is the same for ionization,

and of course, for total excitation, (excitation plus ioniz-

ation).

For the distortion approximation, the results scale

only if 7z2 ==
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 x —_ 1 1 = — ! 3

Then w(R) = w+ v5 (R) Vis (R)
gs 2 H H 3 og ' 3
= 7 (w fui (ZR) Vo (ZR) )

and € 4 (bx)
x

J
3

w(b,x)dx = z 25x w(Zb,Z2x) dzx
0

7 2 el (zb, zx) ra ’y

ty

To scale all of the quasi-molecular models, the

same idea is used, but first we must know how to scale the

energies of the molecules, as we did with the energies of

atoms.

To do this, we note a particular symmetry of the

Schroedinger equation, to which one may attribute the nice

scaling relationships of atomic wave functions. This

symmetry in the Schroedinger equation has nothing to do with

the spherical symmetry of the atom per se.

Consider a potential produced by a distripution of

Coulomb centers.

1
5

3° _r
32

VE 3
i I- R | ’

EU (18)

If all the Coulomb centers increase their charge by

a factor of Z, and the spatial distribution shrunk by a

factor of 7

L 3®5 — "4 :

9%2 v z &gt; 2 -
1 |x-Rji /, |

L 72 329 v'
3 (2%) 2 toeJ

k, 0} (10°

=7¥x-R oo

= F' Vy!

}
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P'(x) = V(x/Z) is a solution with E' = Z?E.

This nice result is possible because the kinetic

energy term is proportional to (ax) "2,

Hence the energy curves of quasi-molecular

eigenstates as a function of internuclear distance can be

 ne

scaled upon multiplying both the target nucleus and pro-

jectile charge by Z.

i.e. E (Z:R) = Z’E(1, ZR)

For resonant charge exchange

P_, (v.2,b) sin®(} /__ e(z,R)dr)

sin? (3 2 r° ¢(1,2ZR) d(ZR)

g(z) = 1

7 2

D cn W/Z, 1,

o(l)

b/7)

“2( )

For the perturbed stationary state method

. » W(R) dR dr&lt;9 3 self —"Ler b|==| ¢_
(21°

© H . H
9 irw™ (ZR) dZR

[o&lt;tplgam! ¢, &gt;e / To 77) dzR

J
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Thus we see that the general scaling law for a

particular process is the same regardless of the approx-

imation used. Namely, if the charge, of both the target

and projectile nuclei are multiplied by Z, the result for

the value of the cross section is 72 times the cross sec-

tion in the case of the original charges where the velocity

was 771 times as much.

The neat law is inaccurate for two reasons. In the

first place, as Z is increased the target atom gains mote

clectron which fill up more shells; hecne certain processes

possible in light atoms are not possible in heavy atoms.

Secondly, screening effects cause the energy between two

specified levels to go as less than 72. In most cases in-

fact, it is not clear that the scaling argument are valid.

(Consider the fact that all atoms are on the order of one

angstrom in radius; this clearly shows that scaling outer

electronic shells is meaningless.) Nevertheless, K-shells

of heavy atoms are not affected severely by outer electrons,

and for the most part, they "look like" K-shells of hydrogen;

hence in these cases, the scaling law is of some value.

The prime value of the scaling laws at this point

is the observation that by the inspection of the Schroedinger

equation that we have done, it is not only the mathematics

of a particular approximation which follows a scaling law,

but rather it is the physics itself which scales. That is
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to say, if a person were watching movies of atomic

collisions, (say for instance, he was watching hydrogen

excitation by protons at various collision velocities),

he would have no way of knowing that he was seeing proton-

hydrogen collisions as opposed to say He - alpha particle

collisions (assuming all trajectories are straight lines)

or AgT4e - agtd? collisions for that matter, without being

told the scale of the movie before hand. Thus we can use

the scaling relationships to determine which method is

appropriate for which situations based only on our know-

ledge of the relative successes of these approximations

in any one given case.

In future notation, a situation having CREAN as

the projectile (velocity, charge), Zn, as the atomic number,

and 0 as the cross section for a particular process, will

be said to have a "universal velocity" of V/ Zens and a

universal cross-section of 2
42.0
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IV. CHARACTERIZATION OF LOW AND HIGH ENERGIES

Now that a somewhat universal formulation of atomic

collision problems has been achieved, we can ask the general

question of when to use which approximations.

All of the models we use can be divided into two

categories: Those that are a first order calculation of

some sort, and those that are exact calculations in an

analytic sense, the approximation entered in the modeling

per se. In the first category are the Born approximation

and all the modifications thereof, and the perturbed station-

ary state method; in the second category are the Landau-

Zener theory of level crossings and the two-state (or n-state)

approximation.

It is clear that of any perturbation approach, a

necessary condition for the validity is that the probability

of excitation is small, and I will not mention this point

anymore.

In the Born approximation, the main worry is that

the target wavefunctions are distorted by the incoming pro-

jectile. This problem can be neglected when a) the velocity

of the projectile is large compared to that of the orbital

electron, and b) the charge on the projectile is small com-

pared to that of the target nucleus. Henneberg’’ has shown

that the joint condition can be expressed mathematically as
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Z ; e?

prog~
h (v)

(22)

or in our notation, Vv &gt;&gt; Zpre

This says in effect, that the universal velocity above which

the Born approximation works is lower for lighter project-

iles.

Figure 4 illustrates the complimentary fact that the

larger the atomic number of the target, the smaller the

universal velocity that can be tolerated in the Born approx-

imation.

For any two state approximation, it is necessary

that no other state play a major role in the process. A

rough characterization of this condition can be given as

follows: There is a characteristic cime of the interaction

which is equal to the range of the interaction, (that is,

the diameter Ax of the atomic orbitals) divided by the velocity

of the projectile. This defines a certain characteristic

uncertainty in the energy of the electron BY px” If the

energy separation between atomic levels is large compared to

the uncertainty in the energy of the electron, then roughly

speaking, the two state approximation is valid.

The Landau-Zener theory involves many approximations,

some of which are extremely particular. One of these
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approximations however, applies to all methods which expand

in terms of adiabatic molecular solutions. There is however,

an important subtlety which generally receives no attention.

Any approximation which uses an expansion in terms

of adiabatic molecular eigenstates assumes that the true

wave function is composed "mostly" of one or two such

states. This assumption is vulnerable on two distinct

counts. 1) We encounter the same problem as we do for any

first order (or zeroth order) approximation: If the probab-

ility of excitation is too high, then the true wave function

is not represented well by a wave function which represents

the zeroth order wave function in excitation probability.

This is extremely elementary. 2) Regardless of excitation

per se, there is another concept associated with the failure

of the adiabatic approximation. For a quasi-molecule with

finite relative nuclear velocity, one can label the eigen-

states of energy with the usual adiabatic labels, despite the

fact that it is difficult to conceptualize these states.

Simply label state X with the label that one would assign

to the adiabatic state which state X approaches as the relative

nuclear velocity approaches 0. In a near-adiabatic approxi-

mation, in addition to assuming little excitation, one must

necessarily assume that the non-adiabatic state X is roughly

equal to the adiabatic state X. The distinction is usually

vacuous because the presence of appreciable components of

higher energy states in the non-adiabatic state X is synono-
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mous with appreciable excitation to these same states.

Nevertheless, it is useful to realize the distinction, since

in heavy atomic collisions, an electron will find many of the

higher states filled, and to first order, could not be

excited to these neighboring states. This state under

consideration however, would experience the same discrepancy

with its adiabatic counterpart regardless of the presence of

other electrons. To examine the restriction under which a

state is almost equal to its adiabatic counterpart, we

consider, for simplicity, an isolated atom moving with

velocity v relative to the lab frame. Assume that at a

certain time, say t = 0, the atom is centered at the origin.

—

The electronic part of the 1S wave function yY(r,o)

is then given by Icn¢ where {eo } is the orthonormal basis
n n

constituted by the "adiabatic" atomic states - i.e. the

states that would be eigenstates if the atom was stationary.

The coupling terms

0 , .

&lt;¢_|=¢ Y(r,t)&gt; getting yY(r,t)&gt; ‘orY 2)

+=0
9 _

where —on = w 6

ignored).

(factor of magnitude unity are

In the adiabatic approximation we assume that -~
—r J

on
&gt;

so that ¢(r,At) = ¢_ (T-VAt)

50
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2 # v . Vu (r,t)3t Y (r,t)

&lt;d EVE) so 3 pe
t=0 t=0

SO
_ _v :

Say ~ veo, [Ve &gt; “Az &lt;¢_lcosb|e

N

where 6 = (T-vt y +2 Az rad ‘us

A

and 7
~

-_— \)

(24

(25 }

of is wave function

%

i

i i that &gt; le |? &lt;&lt;]The adiabatic approximation requires n#o! °n

If one considers the fact that the magnitude of the electron's

orbital z - momentum is - we see that the restriction

essentially requires that the translation velocity of the

atom be small compared to the magnitude of the z-component

of the orbital velocity of the electron, assuming

£&lt;¢, [cos elo, &gt; 1s on the order of unity. This then, is

equivalent to the Born Oppenheimer approximation. It seems

reasonable to generalize this result to Az = a and this

restriction demands that the velocity of the proton projectile

be must less than unity, in atomic units.

A similar way of restricting the velocity is to set

the characteristic uncertainty of the energy, (mentioned

before), much less than the energy difference of the various

levels between which transitions take place. For a proton-

hydrogen collision, if the energy difference are on® the order

of a Rydberg

J
vd ao ] (26)
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At low enough velocities, and at low enough

projectile charges, the method of the perturbed stationary

states and the Born approximation, as they both become valid

concurrently, gives close results. There is in fact a

"compromise" approach which was originally performed by

Frame.l® It involves treating the wavefunction as an atomic

wave function perturbed to first order by the projectile.
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V

The remainder of this paper will deal with the

specific problem of K-shell excitation and ionization in

collisions between heavy atoms.

First, it should be pointed out that K-Xrays are

not seen in a collision between two heavy atoms (Z= 50) at

energies below a few MeV. Thus, measurements of K-Xrays

from collisions of this type have been performed only very

recently, with high energy apparatus, and are still at an

early stage to this day.

Even at these high energies however, distortion of

the target wave functions is still considerable due to the

high charge of the projectile. More precisely, the universal

velocity obtained from scaling down laboratory velocities

corresponding to energies as high as 100 MeV are quite

small, (less than unity) and if both atoms are heavy, then

high energy models simply do not apply.

Curiously enough, the low energy analysis that fills

the literature does not apply either, because the energy

levels that correspond to the K-shells of heavy atoms do not

cross with those of vacant shells. Whereas energy level

crossing dominates excitation processes in collisions of

light atoms, and in the outer shells of all atoms, most of

the low energy analysis which fills the literature does not
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apply to our problem. One might say that this particular

problem derives the worst of both worlds.

It is necessary then, to apply the perturbed

stationary state method to this situation. The mathematical

complexity involved in solving this model can be experienced

by considering the wave function of even a simple hydrogen

molecule.

Another difficulty involved is not knowing how much

of the vacancy production cross-section is due to ionization

processes, and how much is due to excitation processes; i.e.

how many, if any, of the infinite number of excitation pro-

cesses is it necessary to consider? And if excitation pro-

cesses contribute to the cross section considerably, is it

in fact necessary to consider ionization? This is still an

unsolved problem.

If ionization is to be considered, how does one

model the free state wave functions? As a rough start, one

might select the free wave functions to be "orthogonalized

plane waves," that is, to take a plane wave and subtract from

them their ground state component. This method of orthogonal-

ization was employed with some success by peach’’ in calcu-

lation ionization cross-sections for helium. In that

situation however, they expand in terms of atomic wave funct-

ions, and the free state atomic wave functions before ortho-

gonalization are taken to be the free state solutions in a
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central Coulomb field. Here, our Hamiltonian, containing

a two-center Coulomb field potential term, makes it much

more difficult to choose free wave functions. Neverthe-

less, we conjecture that this orthogonalization procedure

gives a reasonable form for the term &lt;bglor $.&gt; :

In the first place, it goes to zero as it should, in the

limits t=+te, v &gt; o. Furthermore, it is directly proport-

ional, as is the true term in real life, to the change of

the ground state wave function with time, so it is reason-

able to expect that at every point in time, this approxi-

mation gives the correct local form for the term &lt;b | 2eb&gt;

To shorten the work, one would probably want to use solutions

solved in cylindrical coordinates, (instead of concnical

plane waves) because at any given instant, the Hamiltonian

has cylindrical symmetry.

The molecular wave functions could be approximated

by the conventional LCAO method.

Furthermore, it is possible to do experiments which

can measure vacancy production cross section as a function

of impact parameter. 2° Such experiments in fact have been

performed for the case of L shell vacancy production. This

will make it that much easier to calculate an observable

number. Specifically, one will be able to calculate probab-

ilities for processes at a given impact parameter, (in

particular at very small impact parameters where the analysis

is easier), instead of having to sum over all relevant impact
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parameters.

The rest of the paper will be devoted to deriving

qualitative features of the results. We can look at the

asymptotic behavior of the cross-section curve as a function

of velocity, at low and high velocities, i.e. when wAt&lt;&lt;|

where At is the time duration of the collision. The

asymptotic limits of v are thus characterized by vo Ax

Ax = atomic dimension, w = atomic frequency.

At low velocities, this model is valid, and at

asymptotically high velocities, the results are completely

meaningless. The motivation for looking at the high velo-

city behavior is that it gives us some idea of what the in-

between portion of the curve looks like.

As pointed out by Bates and Massey, we can categorize

transitions into two categories, those in which the electron

changes z-angular momentum and those in which it does not.

In the former case, the radial motion of the internuclear

distance vector does not contribute to the excitation process

and in the latter case, the angular motion of this vector does

not contribute to the excitation. These two facts follow

from inspection of the symmetries of the situation. Specific-

ally, all of the adiabatic solutions have a well defined

angular momentum around the internuclear axis. If $m and ¢5

have different angular moment about this axis, then the term

&lt;2 &gt; contains a factor s.eimogy = 278 1 where m is

equal to the difference in angular momentum about this axis
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between the two states. In the case of 0-0 transition, a

case which includes all transitions from the K-shell to

states with zero angular mementum about the internuclear

axis, “bg |3=]0;&gt; is anti-symmetric with respect to n

where 8 is the angle between the internuclear axis and any

fixed direction, and n is the angle subtended from the

internuclear axis.

~~.

LY
pe B

wt

n = A e AB

» is the angle between the plane of the paper and the

plane A e B

We now consider the subcases of zero and non-zero

impact parameter colisions. Zero impact parameter we mean

that the impact parameter is small compared to the dimensions

of the ground state atomic wave function.

We will for the time being, neglect changes in the

energy level separation. As we will show later on, all the

arguments we present hold if we use the energy separation at

t=0, and if the energy separation is the same order of magni-

tude at all times.
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0 :

The term Vel|aglv,&gt; as pointed out by Bates and

Massey’ is anti-symmetric about t=0 (the point of closest
: 0 :

approach of the two nuclei). The term Vglz 35 b&gt; 1s

symmetric about this point. Both these facts follow

trivially by inspection.

So we may integrate from 0 to « and use sin( ) and

cos( ) functions (instead of exp( ) ). For the respective

processes in which z-angular momentum remains 0, (0-0 tran-

sitions) and where it changes (we refer to all the latter

processes as 0-7 transitions for convenience).

For the time being, we assume straight line

jectories with of course, constant speeds.

U De
37

Vv. &gt; = — 2 9
’ Lipa) “Velo vi

tra-—

fron }

where b 1s the impact parameter.

is

. . 0

The angular contribution to &lt;Velwp b,&gt;

sin 6 (t) 1 d _ b _d
&lt; Velgey a ¥e&gt; = Cain&lt; Velgg v3» (28)
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o—-0 transitions:

~~

a
0

Zz .

(2240) F(R) sin wz dz
9 ~

where f (R) =&lt;Pc| =x! TE
yt

~ g(z) sin NZ 3 7
where 9(2) =r yf 2TET (Vz2+b?)

by successive integrand by parts, we can obtain a power

series in —=— and &gt; Le for the transition amplitude.
wb w dz

3

oO

a

(Yy 1 dn|"Fn (2) cos uz
)

(30)
rn (22 a” a (z)
byw dzneit.

11

by inspection

ad __z_ |
dz" NZ +b*

0

y=
-

for even n (31)

n
and, assuming SER exists ¥n, ¥R 0,

drn

| 5 (n)

= £ ( Nz2+b?)
Z 1S 0 for odd n (22)

=

(n)4
om —— g(z) —

3511
hn nea 2 gq (n-1) 2 1.2

—_— (——m——) —————— f(Nz“4+b°)= 0
Eo dz?’ Nz2+b?2 dz""t \

for odd n (33°
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so a(vV) goes to 0 faster than any power of Vv.

=]

For 0-T transitions

po ~ Je 12 b.&gt; COs wz
oR 36

dz

oo 1b mre eet
arymes f(R) cos wz dz

bD
v.n d (n)

(=) rn 1
aven w dz"| {2 +b?)

f(

where £(R)=&lt;p (R) 25] bs (R)&gt;

Nz? +b?) "34)

1G 11n,

atm) Ty
on £ (nz +b?) | = 0 for odd n, (3° )

-

a te] =
dz Nz2+ b?

7Z=0

for odd n, ‘3 )

30

and again

gq (n) £ (Nf 22+b2)
Frm ( ) =0dz A z2 +b?

a Vv) Lg
7

3

J

VD

for even

1

n ‘q-7)
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For o-m transitions, 0 impact parameter collisions

do not cause any excitation.

For 0-0 transitions, 0

amplitude is given by:

2
hit

—
— r*  £(R) sinwz

0 J

We must now look at

impact paramecer excitation

dz [22)

aM (gr) more closely. At
arn

small R, we treat the finite separations of the nuclei with

Eirst order perturbation theory.

 a

¥

dey
_ + ¥_(0)

Vi(RI= 2 0 yr (Rr)
E,-E_ in

2
Zz e 2 2 2

V(x TE 4 Z,e _ (zy)e . Z2€ | (39)
! —

1 EN 17;| yx: -2r,R cos +R?

z. +z, e?

7i=v-1... = ze? me He cis 2 ev 3
EN 1 fr3-2r) Roos +R?

——

Vt iJ)
&lt;

(-1-

\1- ¢R cos ¢o+ 22

* rR
ae ( 2coso ~5w2 +

m+2
. n,R

£xCnm cosf (3)
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£(0) = &lt;Ye(0), zx VR) &gt; Ful 2 )

R=0

Ts Ye (0) , V(R)&gt; R=0

”

 ~~ &lt;y (0) Nr 3
sp (0)

a(v) = vot z.e?&lt; belo), wg / b; (0) “4.")

Here we see that the higher the velocity, the more

angular momentum the electron can gain during the collision,

as higher derivatives of F come into play, and higher powers

of cos 6 become involved in the perturbation.

For nuclei of roughly equal sizes, the straight

trajectory approximation is, surprisingly enough, equally
valid for all atoms. For the dimensionless number My

a

characterizing the deflection at an impact parameter To7

Ve

equals

142-)
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For a projectile moving at one tenth the orbital

velocity of the electron, (remeber v2 thereby scales as

Av
z%), 4 &lt;&lt; 1

Besides the straight trajectory approximation, we

see that results scale at any given scattering angle of the

projectile, according to the usual scaling scheme.

To summarize, we see that for o-m type transitions,

a+o faster than any power of V. For transitions, at impact

parameters (much) greater than Vor a&gt;0 faster than any power

of v and for impact parameters (much) smaller than Vr

2/5 + constant as v»&gt;o. It is important to realize that at

small enough velocities, there are no such small impact

parameters. The probability of a certain process taking

place goes as a?.

If exact classical trajectories are used for

~ransitions, then

It
Cn = 2pze’ -_ 1?

dR m R R2

ym

}

all even derivitives SNF
2m (E- ze’ |\ 5 _ 12R2 )

are 0 at the distance of closest approach.

(4A J
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Hence, a(v)&gt;0 faster than any power of v, in this

case. For 0 impact parameter collisions however, this

asymptotic behavior takes over only when the straight

trajectory approximation begins to fail.

If the change in gy is taken into account, then the

series expansion becomes more complicated

a(og-— 7)

wher

Cf
b2 + z2

cos
A fTw(z)dz)

I or—

b2 + -, cos (2
a

Q(z), az

Q(zy= f Ww(z) dz

dz "45 )

without going into too much detail it is clear that

J
cos ,i(z) =z - Vv sin Q(z)z
aim \ ) dz = Q(z) cos )

/ ¢ A

bhecause  Siz)z
vsin(@Elz) 4 (1) _ vein (575) (dade,

dQ /az is certainly less than i, where a is the radius of

the atomic shell. And 2 &lt;&lt; 1. It is also clear that

a L _

dz Q( Afz2+b2)
J

= -

1



52

So the contribution to the excitation from L (3)

could only go as a very high power (24) of v as v*0, and

is not worth checking more thoroughly.

3 f

For asymptotically high velocities, 0-T

—bb  &lt;Yy 0

g(z)

1 7

transitions

 4 ¢)

be:

g(z)dz

}

For 0-0 transitions,

( dR f£(R) sin (Jwdz, dz _ 7 dg AN z2+b?)) dz 0 dz

sin wa dz

4°=J

Nha»

J(R)= J fdr’

&gt;
1

+)

00 CT 1 ” 2 2
ST g( Afz%+b?)w cos ({edz, dz = Vv ( 4 g yz +b" dz

(48)

We might expect the total cross-section therefore,

to level off and eventually start decreasing at high velo-

cities, according to the perturbed stationary state model.
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We now summarize our qualitative knowledge of the

entire cross sectional curve as a function of velocity.

In a given velocity region, for most impact parameters, if

the velocity is low enough, the probability of excitation or

ionization will, roughly speaking, behave as a very high

power of v. (In fact it will behave as a higher power of v

than any power of v.) For very small impact parameters,

the probability of excitation will go as v2. As the

velocity gets smaller, the former set of impact parameters

becomes more and more dominant. On the other hand, as the

velocity is increased, the cross section curve will event-

ually become concave down as it begins to level off.

So while it is therefore impossible to ascribe a

particular power law to the cross-section as a function of

energy, there is a local power law at any velocity region

for which the power decreases with increasing energy.

The qualitative picture would look something like

chi .J»

-
_
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SUMMARY

We see that for heavy projectiles, the Born approx-

imation fails, even for heavy targets, at all velocities

except perhaps extreme relativistic velocities. Furthermore,

the energy curves corresponding to K-shells of heavy targets

do not cross with those of any vacant states; hence the

curve-crossing phenomena, which cause cross-sections orders

of magnitudes larger than non-resonant mechanisms, would not

be expected to apply to K-shell excitation. In fact, recent

sxperinents® in heavy ion bombardment have shown that L-shell

vacancy production cross-sections are orders of magnitude

higher than those of K-shells. Since the K-shell energy

curves maintain a large separation between all other curves,

the perturbed stationary state method, or some modification

thereof, seems appropriate.
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