NewArch: A new architecture for an Internet

David D. Clark, Steve Bellovin, Bob Braden, Noel Chiappa, Ted Faber, Aaron Falk, Mark Handley, Scott Shenker, Karen Sollins, John Wroclawski
What has changed?

- The Internet as an economic reality.
 - ISPs have to make money. Facilities are important.
- The erosion of trust.
 - Universal transparency is scary.
- The rise of third-party involvement.
 - A tussle of interests.
- A broader class of users.
 - DIY is not empowerment.
- New application requirements.
 - Quality of service, placement in the network, delegation.
- New technology features.
 - Mobility, embedded processing, location aware computing, etc.
- We did not fully understand any of these.
High level-examples

- Facilitate, and not impede, the deployment of new applications.
 - Old: End to end, transparent carriage. New:??

- Design so that failures in the network impair the end point activities no more than necessary.
 - Old: No state in net that end points depend on. New?

- Bursty traffic and aggregation are fundamental.

- Recognize that people and societal issues are a part of the Internet.
 - Technology shapes the balance of power.
 - Support the tussle.
Thinking about “architecture”

- A future Internet architecture must:
 - Better preserve itself.
 - Be (more) tolerant of evolving requirements.
- Can we invent better design principles for architecture?
Some fundamentals

- Loss of trust--a basic change.
- The Internet as an economic entity.
- Dealing with increasing heterogeneity.
- Routing--still fundamental after all those years.
- Resource management.
Trust--fundamentals

- Trust (among people) is assuming that another will act in our best interest even though not externally constrained.
 - The power and the risk is the lack of constraint.
 - Constraint is the opposite of trust.
- The Internet implies human trust.
- We no longer trust most of the people we meet on the Internet.
Trust-architecture

- Users want selective transparency, regulated by trust relationship.
 - A framework for identity is central.
 - Identity theft is destructive.
 - Need mechanisms for control of transparency.
 - Firewalls of the future--delegate trust.
 - Who, not just what.
 - Some support is “in” the network.
 - Enforce trust locally.
- Trust and constraint are dual approaches.
- Think “middle players”, not “middle boxes”.

Economics--fundamentals

Internet service is provided by a set of players, some of which have economic motivations.
- A number of entities with self interest.
- E.g. ISPs want to make money.

ISPs sit in the middle.
- Transparency commoditizes them.

How can we constrain the resulting tussle?
- Architectural purity? Nope…
- Architect to exploit self-interest.
Economics--architecture

- Payment for services is a necessary part of a competitive market.
 - Does not imply “simple” per-byte billing.
 - No single scheme, not just two-party.
- Competition is a tool to shape commercial practice, and encourage change.
 - Other tools include law and societal pressure.
 - We can design a marketplace, “they” cannot.
- Competition will only discipline the provider based on actual user preference.
 - Beware the “AOL trap”.

Economics-route selection

- Route selection defines an important competitive marketplace.
- Old: Users picks his access ISP. That ISP picks next ISP, and so on.
- Better: User can pick a path of providers.
 - Why? Insufficient competition in access.
 - Example: Force deployment of QoS.
 - Implication: pay for what you use.
- General principle: global change through local action.
Economics-tracking value

- An indication of “value flow” in packets will permit payment flow to follow value flow.
 - Who pays? Sender, receiver, or both?

- A different idea is a congestion marketplace.
Heterogeneity

- Technology heterogeneity.
 - Lossy wireless vs. fiber vs. ???
 - Both very fast and very slow.

- Traffic heterogeneity.
 - Single flows and aggregates are different.
 - “Duration” heterogeneity.

- Operational heterogeneity.
 - Among friends vs. hostile vs. costly.
 - Continuous, not point solutions.
Heterogeneity--how to deal

- Cannot outlaw it.
- Old Internet: one uniform model:
 - Self describing packet (in context of routing).
- Another approach:
 - Conversion inside the network.
 - Can be done at network or at application level.
- Tough choice....
Next Generation Application Architecture (NGAA)

- Transparency is not enough.
- Explicit talk about division of responsibility.
 - Naming, finding peers.
 - Identity framework.
 - Abstraction of network performance.
- Application-level routing.
 - Application-defined transparency/conversion.
 - Controlled delegation.
 - Who do you trust?
 - Role of the third parties.
We must define transparency carefully.
- Syntactic vs. semantic transparency.
- Who controls conversion: net or application.

User must be able to control transparency.
- Data must be associated with identity.
- Implies constraints on routing.

User must be able to control routing at ISP level.
- Data must carry info to support payment.
- ISP must be able to validate service request.
 - Traffic policing.
- Routing will also occur at application level.

A clean separation between forwarding and other functions.
- Balance what ISP, others can see.
Implications for data carriage

- Network must deal with a wider range of issues than in current Internet.
 - Trust, user-specified routes, accounting, etc.
- Require a new model for amortizing complexity/overhead/cost.
 - Not always pure datagrams.
 - Not mandatory connections.
 - Self-detection (caching, adaptive algs, etc.)?
 - Application guidance?
Locators and associations

- **Locator** is that information that directs the data to the foreign endpoint.

- The *entities* at each end point establish an *association* to link state with the sequence of data.

- An initial *rendezvous* establishes an association.
 - Carries service request and identity information.
 - Identity in the first packet: some verification before state setup.

- Rendezvous and association information need not be meaningful outside the entities. It should be end to end.

- Higher level lookup services return locator and rendezvous information on request.

- Additional identity information in the locator.
 - Any router can examine the locator.
Balance of power

- User empowerment in the new world.
- Vs.: The employer as an ISP.
- Vs.: Governments and other third parties.
- Designing the trade-off.
 - What is visible to whom?
 - Hiding contents weakens power of third parties.
 - Who controls routing?
 - Who can attach a connection to a “region”?
Our list of design rules

- What should an architecture do?
 - Don’t design for rigid outcome, but to allow a tussle.
 - Design marketplaces to shape technology.
 - Design for competition, to discipline the market and drive change.
 - Mechanisms will come in pairs--trust and constraint.
Current projects

- Data transport abstraction.
- Location and rendezvous architecture.
- Role based architecture.
- Map/abstraction routing.
- Network projection of trust models.
- Economics framework (routing money?)
Role-Based Architecture

- A protocol model and mechanisms to that will support variable levels of trust and constraint.
 - Work by Mark Handley (ACIRI), Ted Faber and Bob Braden (ISI)
 - Greater flexibility and generality than OSI layer model.
 - Old model did not deal well with middle roles: caches, NATs, firewalls, proxies...
RBA approach

- Non-layered modularity
 - Don’t think about layers
 - Think about actors playing roles.

- More general header data structures.

- Control on how roles are permitted to manipulate packets.

- RBA generality will ease future architectural evolution.