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ABSTRACT

Required inputs for thermal-hydraulic codes are constitutive
relations for fluid-solid flow resistance, in single-phase flow, and
interfacial momentum exchange (relative phase motion), in two-phase
flow.

An inclined rod array air-water experiment was constructed to study
the hydrodynamics of multidimensional porous medium flow in rod arrays.
Velocities, pressures, and bubble distributions were measured in square
rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the
vertical flow direction.

Constitutive models for single-phase flow resistance are reviewed,
new comprehensive models developed, and an assessment with previously
published and new data made. The principle of superimposing one-
dimensional correlations proves successful for turbulent single-phase
inclined flow.

For bubbly two-phase incline flow a new flow separation phenomena
was observed and modeled. Bubbles of diameters significantly smaller
than the rod diameter travel along the rod axis, while larger diameter
bubbles move through the rod array gaps. The outcome is a flow
separation not predictable with current interfacial momentum exchange
models. A two-region liquid velocity model is developed to explain the
experimentally observed phenomena. Fundamental data for bubbles rising
in rod arrays were also taken.
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Title: Professor of Mechanical Engineering



To my Family: Mom, Dad, Bob, Tasha, Gwen,
Trebor, Blanche, and Hap.



ACKNOWLEDGEMENTS

First of all, I would like to give my sincere thanks to my
supervisor Professor Neil E. Todreas for his guidance, suggestions,
endless concern, and demand for quality, while still giving me creative
freedom. Thanks are also extended to my reader, Professor Peter
Griffith, for helping to keep this ambitious task in perspective and
sharing his wealth of insight.

Thanks are due to Dr. Richard T. Lahey, Jr., Dr. Lothar Wolf,
Prof. John E. Meyer, Mr. Yves Coéffé, and Prof. Warremn M. Rohsenow for
their expert advise and comments.

The experimental portion of this research could not have been
accomplished without the help of: Joseph (Tiny) A. Caloggero and
Frederick R. Johnson for their continuous assistance and advise; to Hugo
R. (Bob) Barra, Aubrey R. Rigby, Peter B. Roemer, and Maureen R. Hayes;
and to Yehia Khalil for designing the test loop. Also thanks to Ernesto
Faillace, Victor Iannello, Chi-Ming (George) Or, and William Ijams for
their assistance in data collection.

To my dearest friends, I give my wholehearted thanks for sharing
the peaks and pulling me out of the valleys:

Walter H. Strohmayer,
Linda P. Nelson,
Thomas J. Downar,
Paul D. Symolon,

Richard P. Burke,



e Steven P. MacCabe, and
* Joseph A. Sefcik.

For the hours of discussions, consultations, and criticism, thanks
to my colleagues and office mates: Shih-Ping K., Tolis E., Steven A.,
Tsing-Tung H., Shih-Kuei C., Hugo D., Marty V., Bahman A., and Roy K.

Very special thanks to James T. Robinson for his fresh interest in
this research and countless suggestions at the most crucial end.

To Clare Egan, Sofia Caloggero, and Elenore Kehoe, thanks for
making the Nuclear Engineering Department an enjoyable working
environment.

I am indebted to Duk-Haeng (David) R. Rhee for typing this
manuscript in the wee hours. Also thanks to Gregory K. Branan and Dr.
Andrei L. Schor for proofing parts of this manuscript.

This research was partially supported by Northeast Utilities
through the Sherman R. Knapp Fellowship, U.S. Department of Energy Basic
Energy Science Contract No. DE-AC02-82ER12075, and under appointment to
the Nuclear Science and Engineering and Health Physics Fellowship
program administered by Oak Ridge Associated Universities for the U.S.

Department nf Energy.



ABSTRACT .

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .

LIST OF FIGURES.

LIST OF TABLES .

LIST OF PLATES .

NOMENCLATURE .

CHAPTER 1:

1.1

1.2

1.3

1.4

CHAPTER 2:

2.1

2.2

2.3

2.4

CHAPTER 3:

3.1

3.2

CHAPTER 4:

4.1

4.2

4.3

INTRODUCTION .

Objective and Scope.

Motivation . . . .

Contribution . . .

Outline. . .

THERMAL-HYDRAULIC MODEL METHODOLOGY.

General Model Development.

General Hydrodynamic Conservation Equations.

Constitutive Relations .
Practical Conservation Model
HYDRODYNAMIC MODEL .
Single-Phase Hydrodynamic Model.
Two-Phase Hydrodynamic Model
EXPERIMENT .

Design Base. . .

Test Sections.

Test Duct.

Page

13

19

21

22

28

30

31

32

33

34

34

36

38

39

40

40

42

46

46

46

48



Page

4.4 Flow LOOP. . . &« ¢ v & v 4 t o o v v v 4w v o o« « « « « 56
4.5 Instrumentation. . . . « « &+ « &+ 4 ¢« « 4 4 4 s s o« . 59
4.5.1 Turbine Meter . . . . « + . . + + « +« « « + « « 59

4.5.2 Orifice Meter . . . . . . . . . . . . ¢« . . .. 61
4.5.3 Rotameter . . . . . . . + v + v 4 4 s 4 s o« . . 61

4.5.4 Lloop Pressure and Temperature . . . . . . . . . 63

4.5.5 Pitot-Static Tube . . . . . . . . . . .. . . . 63
4.5.6 Photography . . . . . . . . . . .. .. .. .. 67

4.5.7 Single Bubble Measurements. . . . . . . . . . . 69
CHAPTER 5: SINGLE-PHASE FLOW MODELING . . . . . . . . . . . . . . 173
5.1 Flow Field Description . . . . « ¢« « « « &« « « ¢« o« « « 13
5.2 Multidimensional Flow Resistance Formulation . . . . . 79
5.2.1 General Formulation . . . . . . . . . . . .. . 79

5.2.2 Model Constraints . . . . . . . . . . .. ... 83

5.2.3 Secondary Variables . . . . . . . . . . . . . . 84

5.2.4 Modeling Formulation. . . . . . . . . . . . . . 90

5.3 Parallel Flow Resistance . . . . . . « « « « « « « . . 091
5.4 Crossflow Resistance . . . . . . . . . . . ... ... 9%
5.5 Inclined Flow Resistance . . . . . . . . . . . . . . . 105
5.5.1 Single Cylinder Superposition Model . . . . . . 105

5.5.2 Rod Array Superposition Models. . . . . . . . . 107
5.5.2.1 Parallel Flow Component. . . . . . . . 107

5.5.2.2 Crossflow Component. . . . . . . . . . 112

5.2.2.3 Summary. . . .+ ¢ ¢+ 4« 0 0 o« o . . 114

5.6 Lift/Drag Flow Resistance Components . . . . . . . . . 118



5.7

5.8

5.9

5.10

5.11

CHAPTER 6:

6.1

6.2

6.3

5.6.1 Coordinate System. . . .

5.6.2 Composite Superposition Models .
Published Data Base .

5.7.1 Kazakevich .

5.7.2 Groehn . . . .

5.7.3 Mdller .

5.7.4 Bbttgenbach.

5.7.5 Data Summary .

5.7.6 Drag Component Correlations.
Experimental Data .

5.8.1 Flow Fields.

5.8.2 Flow Resistance. . . . . . . . . .
Model, Correlation, and Data Comparison .

5.9.1 Correlation and Composite Superposition
Model Evaluation .

5.9.2 Recommendations.

Individual Superposition Factor Evaluation.
Summary . . . . . . . .

TWO-PHASE FLOW MODELING .

Model Formulation . . .

6.1.1 General Formulation. . .

6.1.2 Drag Force Formulation .

Flow Environments .

One-Dimensional Drag Coefficient Models .
6.3.1 Single Bubble in Infinite Medium .

6.3.2 Multiple Bubbles in Infinite Medium.

Page

. 118

119

122

122

125

125

. 127

. 127

. 127

. 134

134

138

152

152

158

162

167

169

170

. 170

172

174

176

176

184



6.4

6.5

6.3.3 Single bubble in Finite Geometry .
6.3.3.1 Round Tubes .
6.3.3.2 Parallel Array.
6.3.3.3 Crossflow Array .
6.3.4 Multiple Bubbles in Finite Geometry.
6.3.5 Liquid Flow.
Inclined Array Flow Observations.
6.4.1 Single Bubble in Inclined Array.
6.4.1.1 Zero Liquid Flow.
6.4.1.2 Liquid Flow . . . . . .
6.4.2 Stream of Bubbles in Inclined Array.
6.4.3 Two-Phase Flow in Jnclined Array .
6.4.3.1 Previous Work .

6.4.3.2 Bubbly Flow Observations
in Inclined Array . .

Multidimensional Drag Coefficient

6.5.1 Current Code Models.

6.5.2 1Isotropic Model. . . .

6.5.3 Superposition Model.

6.5.4 Two-Region Model
6.5.4.1 Liquid Velocity Model
6.5.4.2 Drag Force Formulation.
6.5.4.3 Mainstream Drag Coefficient

6.5.4.4 Recirculating Region
Drag Coefficient.

6.5.4.5 Weighting Function A.

6.5.4.6 Model Validation.

Page

187

. 190

194

. 200

. 203

. 203

. 204

. 204

. 204

. 208

. 208

. 213

. 213

. 216

. 224

. 224

. 228

. 228

. 233

. 233

. 236

. 236

. 239
. 240

. 242



6.6
CHAPTER 7:

APPENDIX A:

A.l

A.2

A.3

A.4

6.5.5 Summary. .
Summary and Conclusion. .
SUMMARY, CONCLUSIONS, AND FUTURE WORK .

DERIVATION Of THE TIME/VOLUME-AVERAGED MASS
AND MOMENTUM CONSERVATION EQUATIONS .

Mathematical Theorems . . . .

A.1.1 Leibnitz's Rule. . . . .

A.1.2 Gauss' Theorem . . . . . .

Local Instantaneous Conservation Equations.

A.2.1 Local Instantaneous Mass Equation.

A.2.2 Mass Jump Condition. . . . .

A.2.3 Local Instantaneous Momentum Equation.
A.2.4 Momentum Jump Condition. . . . . . . . . . .
A.2.5 Summary. . . . . . . 4 4 4 4 4 e 4 oa

Local Time-Averaged Conservation Equation Equations
A.3.1 Time-Averaging Definitions and Theorems.
A.3.2 Time-Averaged Mass Equation.

A.3.3 Time-Averaged Mass Jump Condition.

A.3.4 Time-Averaged Momentum Equation.

A.3.5 Time-Averaged Momentum Jump Condition.

A.3.6 Summary. . . . . . . . . .
Time/Volume-Averaged Conservation Equations

A.4.1 Volume-Averaging Definitions and Theorems.
A.4.2 Time/Volume-Averaged Mass Equation .

A.4.3 Time/Volume-Averaged Mass Jump Condition .

A.4.4 Time/Volume-Averaged Momentum Equation .

10

Page

. 246

. 248

. 251

254

254

254

. 254

. 256

. 256

. 257

. 258

259

. 260

. 260

. 260

. 261

. 263

. 264

. 265

. 266

. 266

268

269

270

270



A.5

A.6

APPENDIX B:

APPENDIX C:

c.1

c.2

c.3

C.4

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

G.1

G.2

Page

A.4.5 Time/Volume-Averaged Momentum Jump Equation. . . 272
A4.6 SUumMmMAry. . . . ¢ 4 4 4 v e e e e e e e e e e . 272
Time/Surface-Area-Averaged Conservation Equations . . . 273

A.5.1 Conversion of Volume to Surface-
Averaged Equations . . . . . . . . . . . . . . . 273

A.5.2 Comments on Surface-Averaged Equations . . . . . 273

Partitioning of Constitutive Variables in the
Time/Volume-Averaged Momentum Equation. . . . . . . . . 275

A.6.1 Total Stress Tensor. . . . . . . . . « « « « . . 275
A.6.2 Volumetric Flow Resistance . . . . . . . . . . . 275
A.6.3 Interfacial Momentum Exchange. . . . . . . . . . 275
A.6.4 Summary. . . . . . . . . . e . e e e e e e ..o 277
TEST ASSEMBLY BLUEPRINTS. . . . . . . . . « +« « « . . . 278
INSTRUMENT CALIBRATION. . . . . . . . + « « « « « « « o« 291
Turbine Meter Calibration . . . . . . . . .« « . « . . . 291
Orifice Meter Calibration . . . . . . . . . . . . . . . 292

Rotameter Calibration . . . . . . + + + v & « « « « « . 295

Pitot-Static Tube Calibration . . . . . . . . . . . . . 301
MODELS FOR CROSSFLOW MAINSTREAM VELOCITY. . . . . . . . 304
SINGLE-PHASE RESISTANCE DATA. . . . . . . . . . . . . . 316

SINGLE BUBBLE VELOCITY AND TRAJECTORY DATA. . . . . . . 325

DERIVATION OF MULTIPLE BUBBLE DRAG MODEL. . . . . . . . 335
Single Bubble Model . . . . . . . . . . . . . . . . . . 335
Multiple Bubble Model . . . . . . . . . . . . . . . . . 337

G.2.1 Viscous Regime . . . . . . . . . . . . . . . . . 337
G.2.2 Distorted Regime . . . . . . « . . .« . . . . . . 338

G.2.3 Churn-Turbulent Regime . . . . . . . . . . . . . 341

11



Page

G.3 SUMMATY . « &4 « &« « o o o & o 4 4 4 e 4 e e e e e e .. 342
APPENDIX H: THERMIT-2 MODIFICATIONS . . . . . . . . . . . « « « . . 344
APPENDIX I: BUBBLE VELOCITY AND TRAJECTORY CALCULATIONS . . . . . . 345

I.1 Isotropic Model . . . . . . . . . . . . . . . . . . . .35

1.2 Two-Region Model. . . . . . . . . . . . . . . . . . . . 348
REFERENCES. . . . . ¢ « & + & 4 o « o & o & o « o« « « o o o« « « « & 355

BIOGRAPHICAL NOTE . . . . . . . + & & « & v v & o« ¢ o+ = o « « . . 361

12



LIST OF FIGURES

Page
1.1 Cross sections of heat transfer components. . . . . . . . . . 29
2.1 Thermal-hydraulic model development . . . . . . . . . . . . . 35
4.1 Parallel test section cross section . . . . . . . . . . . . . 49
4.2 Test duct cross section . . . . . . . . + + 4 .+ s 4+ . . . 54
4.3 Cross-sectional view of test section/test
duct/diffuser assembly. . . . . . . . . . . ... ... ... 55
4.4 Air-water test loop . . . . . . . ¢« ¢ + ¢ ¢ 4+ 4 4 « « . . . . 58
4.5 Air orifice calibration curves. . . . . . . . . . . . ... . 62
4.6 Velocity and differential pressure measurement system . . . . 65
4.7 Photographic lighting arrangements (a) back reflecting,
(b) front reflecting, (c) back shadow . . . . . . . . . . . . 68

4.8 Collimated perpendicular lighting arrangement . . . . . . . . 70
5.1 Observed rod array streamlines. . . . . . . . . . . . . . . . 16
5.2 Postulated rod array streamlines. . . . . . . . . « . . . . . 18
5.3 Regular rod array geometry and coordinate definitions . . . . 80
5.4 Coordinate system transformation. . . . . . . . . . . . . . . 82

5.5 Two-dimensional flow coordinate definitions--(a) crossflow

independent resistance, (b) symmetric crossflow direction . . 85
5.6 Crossflow mainstream porosity models. . . . . . . . . . . . . 87
5.7 Velocity vector definitions . . . . . . . . . . . .. ... . 89

5.8 Parallel flow resistance for round tube and square array
of P/d =1.5. . . . . . ¢ ¢ v i it i e e e s e e e e e e . 93

5.9 Crossflow correlations for square array of P/d = 1.5. . . . . 98
5.10 Circumferential variation in crossflow resistance . . . . . . 99

5.11 Geometry and Reynolds dependence of Gunter-Shaw [G.2]
and Jakob [J.1] crossflow correlations. . . . . . . . . . . . 101

13



5.12

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

5.24

5.25
5.26
5.27
5.28

5.29

5.30

5.31

5.32
5.33
5.34

5.35

Geometry and Reynolds dependence of Idel'chik [I.2] and
Chilton-Genereaux [C.2] crossflow correlations. . . . .

Array independent crossflow correlation .
Principle of independence for inclined cylinder . .
Inclined flow mainstream velocity model . . . . .

Parallel flow superposition models. . . .

Crossflow superposition models. . . . . . . . . .
(x,y) coordinate system . . . . . . . . . . . . .
Pange of parallel/crossflow ratio .

Superposition model prediction of drag resistance component .

Superposition model prediction of lift resistance component .

Groehn's (a) experimental setup and (b) sample data [G.1]
Bottgenbach's test apparatus [B.4). . . . . . . . . .

Bottgenbach's reduced data (a) crossflow component
and (b) parallel flow component [B.4]

Normalized drag flow resistance correlations.

45 degree test section flow profile, Rev 7,450 (bottom)

7,450 (middle)

45 degree test section flow profile, Rev

45 degree test section flow profile, Rev 7,450 (top).

Effect of Reynolds number on velocity and pressure profile,
45 degree test section.

30 degree test section flow profile, Rev = 7,450,

Parallel and crossflow test section velocity profile,
Rev = 7,450 .

Measured variables and locations.
Parallel flow resistance, drag component.
30 degree test section flow resistance, drag component.

30 degree test section flow resistance, lift component.

14

Page

102

104

106

110

115

116

. 120

121

123

124

126

128

. 129

. 133

135

135

135

. 139

140

141

143

144

145

. 146



5.36
5.37
5.38
5.39

5.40

5.41

5.42

5.43

5.44
5.45
5.46
5.47
5.48

6.1

6.2

6.3

6.4

6.5
6.6
6.7
6.8

6.9

45 degree test gection flow resistance, drag component.
45 degree test section flow resistance, lift component.
Crossflow resistance, drag component. . . . . . .

Flow resistance curve fits. . . .

Angle and geometry dependence of flow resistance,
y
drag component (Red = 107). v i e e e e e e e e e

Angle and geometry dependence of flow resistance,

lift component (Red =10%). ...

Reyrolds number dependence of flow resistance,
drag component (Yv = 0.65). . . . . ..

Reynolds number dependence of flow resistance,
1ift component (Yv R 1. 3 1

Data, correlation, and model comparison, drag component
Data and model comparison, lift component . . . .
Parallel and crossflow resistance components. . . .
Data, crossflow superposition model comparison.

Data, parallel flow superposition model comparison. . .

Single bubble drag coefficient in an infinite medium
(Insert from Ref. [C.3]). . . . . . . + « « « . .

Bubble shape regimes for buoyancy flow in infinite medium

‘adapted from Ref. [C.3])
Bubble rise velocity in test duct . . .

Comparison of bubble rise velocity in infinite
medium of this study with previous work [C.3] . .

Multiple bubble drag coefficient for infinite medium.
Slug velocity in round tube [C.3] . . . . . . . . .
Effect of round tube on bubble rise velocity. . . . . .
Bubble rise velocity in parallel test section .

Effect of parallel rod array on bubble rise velocity.

15

Page

147

. 148

149

. 150

153

154

156

157

. 159

160

. 163

165

166

181

182

183

185

189

193

. 195

196

. 198



6.10

6.11
6.12
6.13

6.14

6.15

6.16

6.17

6.18

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

Definition of characteristic length for square rod array
(a) volumetric hydraulic diameter, (b) inscribe diameter,

and (c) average gap width .

Bubble rise velocity in crossflow section .

Effect of crossflow rod array on bubble rise velocity . .
Bubble (a) force and (b) velocity vector definitions.

Bubble rise velocity in 45 degree test section

for zero liquid flow. . . .

Bubble trajectory in 45 degree test section

for zero liquid flow. .

Two step description of bubble trajectory in inclined

rod arrav of standing liquid.

Bubble .rajectory in 45 degree test section for

0.36 ft/sec (0.11 m/sec) liquid velocity. .

Bubble trajectory in 45 degree test section for
0.56 ft/sec (0.17 m/sec) liquid velocity. . . . . .

Bubble velocity in 45 degree test section for

two liquid flow rates . . .

Test section designs of (a) Baush and Lahey [B.10]

and (b) Osakabe and Adachi [0.1].

Map of flow conditions photographed .

Void distribution predictions of 45 degree
test section with THERMIT-2 (a) coordinate

mesh, (b) low, and (c¢) high liquid flow rate.

Bubble trajectory prediction with isotropic

model for large bubbles .

Bubble rise velocity in parallel and

crossflow test sections .

Bubble coordinate variable definitions

(a) general and (b) for zero liquid flow.

Two~-region velocity model

Construction of mainstream and recirculation

region velocities .

16

Page

. 199

. 201

. 202

. 205

. 206

. 207

. 209

210

211

. 212

. 217

218

. 227

. 229

231

. 232

. 234

. 237



6.28

6.29

6.30

A.l
A.2
A.3
B.1
B.2
B.3
B.4
B.5

B.6

B.7
B.8
B.9
B.10

B.11

c.3
C.4

c.s

Page

Model/data comparison of single bubble trajectory
in 45 degree test section . . . . . .+ . . . . . . e« e o . . 243

Bubble trajectory prediction with two-region
model for large bubbles . . . . . . . . . . . . .. . . .. .24

Model/data comparison of bubble velocity
in 45 degree test 8eCtiOn . . . . « 4 4 4 4 . 4 4 4 o« e . . . 245

Control volume definitions. . . . . . . . . . . . . . . . . . 255
Time interval definmition. . . . . . . . . . . . . . . « . . . 262
Stationary spatial averaging control volume . . . . . . . . . 267
Test section isometric. . . . . . « + « + ¢ & « &« « « « « « . 279
Parallel test section--cutaway side view. . . . . . . . . . . 280
30 degree test section--cutaway side view . . . . . . . . . . 281
45 degree test section--cutaway side view . . . . . . . . . . 282
Crossflow test section--cutaway side view . . . . . . . . . . 283

Cutaway top view--(a) parallel test section,
(b) 45 degren test section. . . . . . . . . . . . 4 . . . . . 284

Test section assembly . . . . . . . . . . . . . .. .. . . . 285
Test duct isometic. . . . . . « « & & + « « + « « « « + « . . 286
Test duct isometric detail. . . . . . . . . . . . . . . . . . 287
Probe penetration detail. . . . . . . . . . . . . . . . . . . 288
Inlet flow diffuser/straightener. . . . . . . . . . . . . . . 289
Instrument calibration tube . . . . . . . . . . . . . . . . . 290
Turbine flow meter calibration curve. . . . . . . . . . . . . 293
Air orifice metering system . . . . . . . . . . . . . . . . . 29
Air orifice meter calibration curve . . . . . . . . . . . . . 297
12 FS rotameter calibration curve . . . . . . . . . . . . . . 299

20 FS rotameter calibration curve . . . . . . . . . . . . . . 300

17



D.3

D.4

D.5

D.6

F.l

I.1

Pitot-static tube calibration velocity profiles
Pitot-static tube calibration curve
Definition of average mainstream flow area. ., . .

Definition of (a) minimum and (b) average clearance
area (model @ and , respectively).

Path length with constant minimum clearance area
model for mainstream volume (model (:)) S

Crossflow mainstream porosity model (:) for
principle crossflow directions. . . . .

Crossflow mainstream porosity model @ for
principle crossflow directions.

Crossflow mainstream porosity model for
principle crossflow directions. e e

Measured quantities for determining
bubble velocity and trajectory. . . . . . . .

Isotropic and two-region model

for Db = 0.02 ft (0.6l cm). . . . . . . . . .

18

Page

302

. 303

. 305

. 307

309

. 311

. 312

. 313

. 326

349



4.1
4.2
4.3
4.4
5.1
5.2
5.3
5.4
5.5
5.6
6.1
6.2
6.3

6.4

E.A
E.5

E.6

LIST OF TABLES

Page
Test Section Geometry. . . . + ¢ « & ¢ ¢« ¢ & v o« o o o« o o o« 92
Test Duct GEOMEETY . . « & &+ & « « o + « « o o o o o o o « o o 517
Test Loop Conditions . . . . . . . . . . .. 60
Average Bubble Diameter Generated at Orifice . 72
Flow Regime Classifications. 75
Parallel Flow Correlations (for smooth surfaces) 92
Crossflow Correlations . . . 95
Superposition Models . . . . . . . . . . . . . .. 117
Published Inclinad Flow Data . . . . . . . . . . . . 130
Linear Fits for Flow Resistance Data . . . . . . . . . 151
Drag Coefficient Models for Single Bubble in Infinite Medium . 179
Multiple Bubble Drag Coefficient . . . . . . . . 188
Round Tube Relative Velocity Ratio . . . . . . . . . . . . . 192
Two-Region Model . . . . . . . . ¢« « o ¢ v v v o v o o . . . 24]
Multidimensional Interfacial Drag Models . 247
Orifice Meter Calibration Curve. . 296
Models for Crbssflow Mainstream Porosity, Gv 315
Flow Resistance for Parallel Test Section, Drag Component. . 318
Flow Resistance for 30 Degree Test Section, Drag Component . . 319
Flow Resistance for 30 Degree Test Section, Lift Component . 320
Flow Resistance for 45 Degree Test Section, Drag Component . 321
Flow Resistance for 45 Degree Test Section, Lift Component . 322
Flow Resistance for Crossflow Test Section, Drag Component . . 323

19



Page

Estimated Measurement Error Bars . . . . . . . « . « « « « « . 324

Bubble Velocity in Test Duct . . + « & & & & & v o & « « o« « « 327

F.8

G.1

I.1

I.2

Bubble Velocity in Parallel Test Sectiom . . . . . . . . . . . 328
Bubble Velocity in Crossflow Test Section. . . . . . . . . . . 329
Bubble Trajectory in 45 Degree Test Section: l >| = 0. .. . 33
Bubble Velocity in 45 Degree Test Section: I(v >| = 0. .. . .33l
Bubble Trajectory in 45 Degree Test Section:

|<y4>|=0.36ft/sec.....................332
Bubble Trajectory in 45 Degree Test Section:

|<u>|=0.56ft/sec........ e e e .. . 333
Bubble Velocity in 45 Degree Test Section: >| >0 . . 334
Multiple Bubble Drag Coefficient . . . . 343
Two-Region Model Program Input/Output. . . .. . 350
Two~-Region Model Program Listing . . .. . 351

20



4.1

4.2

4.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LIST OF PLATES

Page

30 Degree Test Section (a) Parts, (b) Half Assembled,
(c) Side View, (d) End View . . . . « « « v v v « « « « « . . 50

(a) Parallel, 30 Degree, and Crossflow Test Sections--End
View, (b) Mounted Test Duct with Crossflow Section,
(¢) Flow Loop, (d) Flow Diffuser/Straightemer . . . . . . . . 51

(a) Differential Pressure Measuring System, (b) Pitot-Static
Tube and Small Bubble Generating Orfices in Parallel
Test Section, (c) Large Bubble Release Cup. . . . . . . . . . 66

(a) Spherical, (b) Distorted, and (c) Capped Bubbles in
Infinite Medium; (d) Distorted and (e) Slug Bubbles in
Parallel Array; (f) Slug Bubble in Crossflow Array. . . . . . 178

Bubble Trajectories for a Stream of Bubbles in 45 Degree
Test Section with (a) Re, = 00, (b) Re, = 1,600, and
(c) E-ev = 2’750 . L] . . L L] . . . L . . . . L L . . . . . » L] 214

Bubble Trajectories for a Stream of Bubbles in 45 Degree
Test Section (a) For Small Bubbles at Re, = 1,600,
(b) Close-up of Spiral Motion at Re, = 5,150. . . . . . . . . 215

Flow Pattern in 45 Degree Test Section
for Low Liquid Flow Rate. . . . . . « ¢ ¢« ¢« &« &+ « « « &« « « . 219

Flow Pattern in 45 Degree Test Section
for High Liquid Flow Rate . . . . . . . . . « . ¢« « . . . . . 220

Flow Distribution at Exit Plenum of 45 Degree Test
Section for jg = 0.013 ft/sec (0.0038 w/sec). . . . . . . . . 221

Flow Distribution at Exit Plenum of 45 Degree Test
Section for jg = 0.047 ft/sec (0.014 m/sec) . . . . . . . . . 222

Flow Distribution at Exit Plenum of 45 Degree Test
Section for jg = 0.87 ft/sec (0.27 m/sec) . . . . . . . . . . 223

21



Variable

Dy

Eo

£'{a]

NOMENCLATURE

Definition
Area
Friction factor constants
Constant in Groehn's correlation
3/(2 Dp)
Total crossflow resistance coefficient
Momentum covariance coefficient
Pitot-static tube calibration constant
Bubble drag coefficient
Form drag resistance coefficient
Tube diameter
Volumetric hydraulic diameter
Bubble equivalent spherical diameter
Rod diameter
ES5tvds Number
Unit vector
Body force
Total steady state drag force
Buoyancy force
Resistance force
Friction factor
Arbitrary variable of definition
Function in Ishii's model

Acceleration of gravity

22



Variable Definition

g1(6) Parallel superposition factor

H Surface to volume transformation tensor
Hoy Radius of curvature
h1(9) Crossflow superposition factor

I Identity tensor

J Directional mainstream drag tensor

j Superficial velocity
K, K Flow resistance coefficient tensor
k Constant in Darcy Law

k' Orifice meter calibration constant

L Length

Tgap Average gap width, St - Y,d

lj Line coordinate length

M Interfacial momentum exchange

M Dimensionless viscosity number

m, m', n, n' Exponential constants

m Mass flow rate

Ny Number of bubbles

Ny Alternate definition of viscosity number
n Interface normal vector

P Pitch of equilateral rod arrangement
P Pressure

Ap Differential pressure

Q Volumetric flow rate

R Flow resistance

RA Rod arrangement

23



Variable Definition

Rey Liquid Reynolds number, °2.Dv|<l’_>|/“l
Reyq Liquid Reynolds number, pgd '!ms|/ug
Rey Bubble Reynolds number, °2°bl1:|/“2
r Coordinate vector
SL Longitudinal pitch
Sy, Staggered pitch
ST Transverse pitch
T Total stress tensor
T Temperature
t Time
At Time interval
u Characteristic velocity
v Volume
v Velocity
v Relative velocity
w Arbitrary weighting variable

X, ¥y 2 Cartesian coordinates

X, ¥y Z Principle coordinates of test section
a Void fraction
an Maximum packing void frction
B Volumetric flow fraction
r Interfacial mass exchange
Y Porosity
6 Interface region thickness
Sy Crossflow mainstream porosity
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CHAPTER 1

INTRODUCTION

Efficient heat transfer is an essential part of the power
generating and chemical process industries. Heat transfer components
such as condensers, boilers, steam generators, baffled heat exchangers,
and nuclear reactors, are used extensively in these industries. The
most widely used heat transfer geometry is a shell enclosing a tube
array with heat exchange between the fluid within the tubes and the
fluid within the shell surrounding the tubes. Arrays of tubes are
widely used because they provide a large surface area for hcat transfer
while still furnishing structural strength, low flow resistance, and
ease of construction. Schematics of several heat transfer components
are shown in Fig. 1.1.

A detailed understanding of heat transfer components is desired to
maintain good operational performance with maximum efficiency over a
long lifetime. Thermal-hydraulic computer codes have been developed to
aid in the design and performance analysis. These codes solve the
finite difference fluid conservation equations along with problem
specific geometry, boundary conditions, initial conditions, and
constitutive relations. The advent of high-speed digital computers and
advanced numerical methods have expanded thermal-hydraulic codes from
one-dimensional mixture models to a two- and three-dimensional,
nonequilibrium, two-fluid models. A partial list of these codes are:
COBRA-TF [C.4], TRAC [T.3], THERMIT [R.3, K.3], URSULA-2 [U.1l], COMMIX-2

[S.2]. The application of these codes has been hampered by the
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insufficient development of multidimensional constitutive relations.

Analysis with advanced thermal-hydraulic codes provide detailed
descriptions of flow distributions and heat transfer rates which are
essential to solving current heat transfer component problems. For
example, in the U-tube steam generator, regions of flow stagnation cause
temperature increases, voidage, and sludge accumulation, lcading to tube
denting, cracking, and corrosion, limiting the component lifetime in
addition to decreasing its efficiency [W.2].

Also of importance in a nuclear power plant, is the steam generator
heat transfer rate under transient conditions. In some reactor
transients (i.e., loss of auxiliary feed water) the response of the
primary coolant system is contingent on the heat transfer (removal) rate
of the steam generators. Therefore the more accurately the steam
generator transient performance can be predicted, the safer and more
economically the entire plant can be operated.

A third applicat.on of advanced thermal-hydraulic codes is in the
design of new heat exchangers. Many new rod array concepts are being
proposed [G.4, G.5] which costly experimental programs can only
partially address. Code analysis enables relatively less expensive
scoping and sensitivity studies to be performed so that judicious
choices of validating experiments may be made.

1.1 Objective and Scope

A fundamental part of thermal-hydraulic codes is the constitutive
relations describing the fluid interaction with its environment.
Constitutive relations have been well formulated for one-dimensional

flows in round tubes and some for rod array geometries, but very little
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work has been done for multidimensional flows in rod arrays. The
objective of this research is to explore, assess, and identify the
limitations of current multidimensional hydrodynamic constitutive models
and propose new formulations where warranted. The specific constitutive
variables addressed here are: for single-phase flow, the fluid-solid
flow resistance (skin friction and form drag), and for two-phase flow,
the liquid-gas interfacial resistance (relative motion between

phases). The focus of this study is on the influence of flow direction
with respect to the rod array axis, applied on a porous medium scale (as
opposed to a subchannel or distributed parameter scale). Current
unsubstantiated models have been developed by superimposing
one-dimensional correlations for the three principal orthogonal
directions.

An experimental investigation of flow inclined to a rod array is
performed to help assess the applicability and limits of current
constitutive models and direct research in the areas of needed model
improvement. The experimental program consist of pressure, velocity,
and flow distribution measurements for air-water at zero, 30, 45, and 90
degree inclinations to the axis of a square pitch rod array.

1.2 Motivation

The principle motivation for this work is the lack of
substantiating experimental data of multidimensional effects predicted
by the current multidimensional models. Single-phase flow at incline
angles exhibits not only a drag resistance force in the average flow
direction but also a lift force perpendicular to the flow direction.

Four researchers [K.2, G.l, B.4, M.3] have measured the drag resistance
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component through inclined rods. However, of these four, only two [B.4,
M.3] attempted to measure the lift resistance component. Even with this
sparse published data a comprehensive comparison with multidimensional
resistance correlations has not been made.

Two-phase experiments of inclined flows in rod arrays is also
sparse. Two researchers [B.10, 0.1] have published flow regime
observations in inclined array flow, but little has been done about
validating current interfacial models. Current bubbly flow interfacial
models are based on drag forces for a single bubble rising in a large
liquid pool. Clearly the introduction of a rod array will change the
flow field, and consequently alter the bubble drag forces from that in a
large pool.

The goal of this research is to identify the important physical
phenomena not incorporated in current constitutive models and propose
new methods to include these phenomena.

1.3 Contributions

Previewed here are several important contributions arising from
this research:

(1) Confirmation of the superposition formulation for
single-phase turbulent flow resistance.

(2) Identification of the questionable application of
superposition formulations for single-phase laminar flow.

(3) Observation of a phase separation phenomena in bubbly flow
and a physical model to describe these observations.

(4) Addition of new data for the fundamental understanding of
bubble kinematics in parallel, crossflow, and inclined rod

arrays.
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1.4 Outline

The general development methodology for a thermal-hydraulic model
is presented in Chapter 2. Practical single- and two-phase models are
presented in Chapter 3. Chapter 4 describes the experimental apparatus
and instrumentation. Single-phase flow resistance models are discussed
in Chapter 5 and two-phase interfacial force models in Chapter 6.
Finally an evaluation of this exploratory study and the areas requiring

further research are presented in Chapter 7.
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CHAPTER 2

THERMAL-HYDRAULIC MODEL METHODOLOGY

2.1 General Model Development

Thermal-hydraulic computer codes are a tool developed to solve the
flow field within a defined system for a specified set of boundary and
initial conditions. The codes solve the conservation equations in
conjunction with constitutive laws describing the interaction of the
fluid(s) with its surrounding environment. Universal, intrinsic
constitutive laws valid for all environmente is beyond the current
knowledge of thermal-hydraulics, therefore constitutive relations
applicable for a limited environment have been used extensively in
developing thermal-hydraulic models.

Figure 2.1 shows the general procedure used in developing a
thermal-hydraulic model for a specific problem. Starting with the
congervation laws, a set of generalized conservation equations are
developed by time and volume averaging. These generalized equations are
then simplified to a set of practical equations by making constraining
assumptions chosen for the specific problem of interest (i.e.,
one-dimensional, steady state, incompressible, equal phasic pressures,
thermal equilibrium, etc.). Still, relations for the remaining
constitutive variables are required.

Constitutive relations are developed by first starting with
phenomenological models; then correlating and/or validating the
individual models with separate effects experiments. Finally the

individual models are collectively validated with global experiments.
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Separate effects experiments are designed to identify, isolate, and
correlate a single phenomena. Global experiments are primarily to
confirm the integral effects predicted by several constitutive relations
developed from separate effects experiments. In some instances
developing constitutive relations from separate effects experiments is
not feasible and global experiments have to be used directly for
correlation of the integral effect. Once confirmed constitutive
relations have been developed the flow solutions may be solved for the
desired boundary and initial conditions.

A key component in the solution methodology is the choice and
modeling form of the constitutive variables. With proper models,
extrapolation and integration of the constitutive relations to
conditions outside the range of correlation may be done with
confidence. Unambiguous experimental data for the environmental
conditions of interest is a major contributor to comprehensive
constitutive models.

In the remainder of this chapter the generalized conservation
equations for the hydrodynamics of porous medium flow and corresponding
constitutive variables are presented.

2.2 General Hydrodynamic Conservation Equations

The local instantaneous hydrodynamic conservation equations for

phase k are

325 + Vep.v, = 0 (2.1)
3t k—k
%:'(pk!k) + Vep v v, =~ P g - VI =0 (2.2)
I)i pk(lk-li)'-'lk' 0 (2.3)
é (Pvy (ryem ¥)°my = y°T) = 28, 9 1 (2.4)



where Eqs. (2.3) and (2.4) are the interfacial jump conditions. In the
above, the state variables are the phasic density py, and velocity
Vk; and the intrinsic constitutive variables are o, Fg, Tk, and
vi

These equations, derived from the integral mass and momentum
balances (as shown in Appendix A), are intermittently applicable at a
point depending on the phase present. Because of the complicated
interface structure of two-phase flow, solving the local instantaneous
equations in general flow systems is impractical except for simple,
well-defined flow situations. Clearly a more useful set of equations is
one where the high frequency spatial and temporal fluctuations are
averaged out. Time and volume averaging the local instantaneous
equations through a control volume including solid structures, yields

the time/volume-averaged porous medium conservation equations

9 = = )
™ [Yv<ak)<<pk)>] + v-[yv<ak><<pk>>{y_k}]
(2.5)
= 7v<rk>
'] = ~» = ~ ~
;: [Yv<ak><<pk>>{!k)] + V-[Yv gkm<ak><<pk>){!k}{!k}]
= ~ = T
= Y S P E P = e[y <a >(KKT>> + <L >>)]
Y RO =Y M (2.6)
where the jump and closure conditions are
Y <r>=0 (2.7)
K k
E <M > = <M > (2.8)
Y <a,> =1 (2.9)
K k

(See Appendix A for a detailed derivation.)
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Although mathematically simiiar to the local instantaneous
equations, these equations introduce new global state variables, {Ek}
and <<;k>>, which are weighted temporally and spatially averages of
the local state variables_!k and px. In the averaging process new
external constitutive variables (i.e., <Pk>, <ak>, <<§k>>, <<;:)), {§k>
<!m>’ <!k>’ gkm and, {EB}) are introduced.

2.3 Constitutive Relations

Some of the external constitutive variables are definable in terms

of local state and intrinsic constitutive variables (i.e., <T >,

k
<<§k>>, <R, {EB), <M >, and {!k>). However through spatial and
temporal integration they also become dependent on the surrounding
environment. New constitutive variables are also introduced (i.e.,
<uk>, (<£E>), and gmk) which incorporate the topological characteristics
lost by averaging the state variables. The local variables appearing in
the formal definitions of the constitutive variables are not available
when the generalized conservation equations are solved, hence models for
the constitutive variables ultimately must be dependent on only the
environmental geometry and global state variables.

In developing models for the constitutive variables, fundamental
relations are desired for wider application and extrapolation. The
drawback of fundamental models is that they generally rely on many
separate effects experiments as building blocks for more elaborate flow
situations. The compilation of many fundamental models can become quite
complex and have the potential for many sources for error. Lumped
constitutive models are simple to develop and have good accuracy in the

range of correlation, but are limited to that range, since without a
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physical fundamental basis extrapolation outside the validation range is

unwise.

2.4 Practical Conservation Model

Employing the generalized conservation equations directly, with its
many required constitutive relations and elaborate state variable
definitions, is still an involved task. To transform these time/volume-
averaged equations into a practical set of equations several justifiable
simplifying assumptions, for the problem of interest, should be made.
With careful choices of the restricting assumptions the number of
constitutive relations required can be reduced and the physical
interpretation of the global state variables may be simplified.

By always starting first with Eq. (2.5) through (2.9) and stating
the restricting assumptions clearly, an unambiguous practical
conservation model can be developed. If experimental observations
warrant relaxing one of the restrictions, then a new practical
conservation model can be easily constructed. Clearly the experiments
used for validation should reflect the same degree of restrictive
assumptions as the model being used. For example one-dimensional flow
data cannot fully validate a three-dimensional constitutive model.

In Chapter 3 a practical set of conservation equations for single-
and two-phase flow in inclined rod arrays is presented and the required
constitutive variable identified. In Chapter 4 the validating
experiment is described. Then in Chapter 5 and 6 constitutive relations

for inclined flows are developed.
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CHAPTER 3

HYDRODYNAMIC MODEL

Practical hydrodynamic models for single- and two-phase porous
medium flow in rod arrays are developed here and the required
constitutive relations identified.

3.1 Single-Phase Hydrodynamic Model

For single-phase flow the void fraction <ay>, is unity, and the
interfacial conditions and k-phase subscripts may be dropped, hence the

generalized conservation equations, Eq. (2.5) through (2.9), reduce to

P’ = =
(Y. <p>) + Ve[y <p>tvh] = 0 (3.1)
e 7 v =

:_: [, BT} + V+[v, ¢ G>THTH]

= .~ - T
- Yv<p>{§B} - V']Yv(<I> + <1)]
+ Y, <R =0 (3.2)

Now a practical conservation model can be developed by making some

reasonable restricting assumptions:

* The flow is incompressible

%> =p
tvr = &> (3.3)

{F b = <Fp>

* The only body force is the constant gravitational field,

=g (3.4)
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where

and

The total shear tensor may be modeled in terms of pressure

and shear forces (See Appendix A.6.1)

<D = - <p>L + <D

The averaging volume is large and includes enough

(3.5)

distributed solids such that the viscous and turbulent shear

stresses <E> and <ET>, respectively, are negligible

comparad to the fluid-solid flow resistance <R>.

The spatial covariance is negligible

(3.6)

The spatial coordinates are the Cartesian system (x,y,z).

Introducing the above assumptions into Eq. (3.1) and (3.2) gives

9

9
at

3 3 ]
[ =
[va] + — .,vavx] + — [vav ] + — [vavz] 0

9 9
[vavxl + — [Yvovxvxl + — [y

3 9
[Yvovy] + — [y, pv vl +— [vav

ox

9x

3y

dy

9z

vpvxvy]

] 3 =
+ oo [vavxvz] - Y,PB, * Y, — [Yv<p>] + 7v<Rx>

9z

Ix

3
+ —_ [vavyvzl - vagy Y,

3z

9x

ox

dy

oy

dy

v
y Y]

) =
__.[Yv<p>] + Yv<Ry>

9 9
—_— [vavz] + — [vavzvx] + - [vavzvy]

) 2 =
+— [ypv v ] -y e, + v, — [Y, <P + v <R>

at

9z
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The remaining constitutive variables are <;> and <R>. Assuming the
equation of state intrinsic constitutive relations can be applied to
temporal/spatial-averaged state variables gives a relation between the

pressure <;>, and density p,
p = fea[<p>, T_]

where Tg is the system temperature. Because pressure is an easier
quantity to measure than density, <;> is generally refered to as the
state variable and p the correlated constitutive variable.

The one remaining constitutive variable is the flow resistancé
<B>. Correlations for <R> can be developed by measuring the state
variables for a specified flow field and solving Eq. (3.7) through
(3.10) for <R>. In Chapter 5 correlations for {E? for single-phase flow
inclined to rod arrays are discussed in detail.

3.2 Two-Phase Hydrodynamic Model

A practical two-fluid conservation model is developed by making a
set of restricting assumptions and applying them to the generalized
conservation equations. Presented here is a set of assumptions used
widely in current two-fluid codes [R.3, T.3, C.4, S.2].

Starting with Eq. (2.5) through (2.9),

- Partitioning the total stress tensor into a pressure and

shear stress term
<<!k>> s - <<pk>>; + <<;k>>

and
* Partitioning the interfacial force <{Mi>, into a mass

transfer force {Ekr>, steady state drag and transient
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gives

9

it
9

at

force {!kd>, and a pressure fluctuation term,

[, <@ <3 > | + Vely <o ><<B OXT b1 = v <I,> (3.13)
[Y, <@ <GBy, ] + VoL, <a > v, MY, }]

- Y <@ B OHEP - Vely Ca M(<E 5> + Kgd)]

+ <a> Ve[y <p > + Y <R = yv§§£>

d i
Y, M -y Ap V<o > (3.14)

(See Appendix A.é for a detailed derivation).

The sim

plifying assumptions are:

* The phasic densities are constant

<<pk>> =P

tv, b = <« » (3.15)

{EB} = <§EB>>
The only body force is the gravitatior field

KF>> = g (3.16)
The mixture momentum due to surface tension forces is
negligible

<M>=0 (3.17)
ﬂ

The phasic viscous and turbulent shear stresses, <<Ek>>
and <<1kT>>, respectively, are negligible.
The liquid phase only contacts the solid surfaces, so

<R>=0 (3.18)
—g
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* The spatial convariance is negligible

¢ =1 (3.19)

km

* The phasic pressure fluctuations are negligible, such that

Kpy> = <<Sg>> = <py>> (3.20)
and
i i
Ap2 = Ap8 =0 (3.21)

The simplifying definitions made possible by using the jump and

closure conditions (Eq. (2.7), (2.8), and (2.9)) are:

> 2Qr > .-y (3.22)

D £ > = - a> - (> + Up>) (3.23)
<a> & <a8> = - <a> (3.24)

a2 (3.25)

Substituting the simplifying assumptions and definitiors into Eq. {(3.13)

and (3.14) yields the two-fluid hydrodynamic model:

--[Y <a>p ] + Ve [Y <a>p <<v ] = Y, <> (3.26)
at

— [y, (1 = <a>)p,] + [ (1 ~ <a>)p, «<v D1 = -y <> (3.27)
ot

—_ [Y <a>p <<v ] + Ve [Y (a)p <<v >><Lv >>]
it

- Yv<a>pg§ + <a> V-[Yv<<p>>]

r d
Y<MD+ Y <M (3.28)

__.[Y a - <a>)pl<(v ] + Ve [Y (1 - <a>)p£<<v >><<v >>]
it

= ¥, (1 - <ad)p g + (1 - <ad) Ve[y <<p>>] + v <R,>
r d
== Y, <M -y <MD (3.29)
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In this model the state variables are: Pgs PL, <§§é>>, and
<{¥p>>. The constitutive variables are: <I>, <a>, <<p>>, <Mj'>,
§Eid>- and <Rg>. Hence six constitutive relations are still
required. For a two-component system there is no phase change so
<I>=0 (3.30)

and
r
§Ei> = 0 (3.31)

Analogous to the single-phase flow model, the intrinsic equations of

state for each phase are applied to the average variables, giving

Py = fen[<<p>>, T,] (3.32)

o, = frn[<<p>>, T,] (3.33)

With Eq. (3.32) and (3.33), pg and pg become known constitutive
variables and <a> and <<;)> become the new state variables. (Strictly
speaking the constraint <<;g>> a <<;g>> is the topological
constitutive relation replacing the required relation for <a).)

All that remains are constitutive relarions for {!id> and
<Rg>. 1In Chapter 6 we consider models for {Eid> in
multidimensional rod array geometries. Models for <Ry> are not
addressed in this study, but do require further development for

multidimensional rod array flows.
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CHAPTER 4

EXPERIMENT

An experimental apparatus was designed and constructed to study the
fundamental behavior of single- and two-phase flow in inclined rod
arrays. The apparatus consists of: four test sections of a single rod
array geometry at various inclinations to the average flow direction; a
test duct to house the individual test sections; an atmospheric air-water
flow loop; and flow instrumentation.

4.1 Design Base

Two basic categories of experiments are generally performed:
prototype experiments, where a scaled version of a particular component
design is used to study the overall design performance; and separate
effects experiments, where an experiment is designed to amplify one
particular flow phenomena for detailed understanding and modeling. Both
types of experiments are needed. Prototype experiments are used
extensively to confirm the aggregate effects predicted by combined
individual models developed from separate effects experiments.

In this research we are interested in modeling a specific phenomena,
influence of flow to rod array orientation. Therefore the experiment
described below is a design structured to amplify the effect of rod array
inclination on fluid flow.

4.2 Test Sections

Four test sections of identical rod array geometry were designed
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with each differing only in the direction of the array axis with respect
to the test section housing. The four array/housing inclinations are
zero degrees (parallel flow), 30, 45, and 90 degrees (crossflow). A
square array arrangement was chosen to allow visual observation and
instrument probe penetration through the rod array. The test loop
maximum flow rates and desired maximum velocities (Sec. 4.4) constrained
the test section flow area to less than 0.50 inch? (3.2 cm?). A
trade-off between the desire for a large test array--small rod diameter
and pitch--and large gap spacing for visual observation and
instrumentation--large rod diameter and pitch--resulted in a chosen rod
diameter of 0.25 inch (0.318 cm) and pitch to diameter ratio of 1.5.

Each inclined rod array is set in a rectangular housing 15 pitches
wide and 3 pitches deep: 5.625 inch (14.3 cm) in the direction of rod
inclination and 1.125 inch (2.36 cm) perpendicular to the axis of
inclination. Half-round rods were placed on the housing walls to
minimize the presence of a finite depth. (The smallest perturbation from
an array of infinite extent results when the solid boundaries are located
through the rod centers.) Half-round rods on the walls and a gap
required in the center for instrumentation, limited the array depth to
only odd numbers of pitches. One pitch would create too strong a wall
effect. Five pitches with the total flow area constraint of 0.50 inch?
would restrict the width to only twice the depth. Hence the test housing
was designed 3 pitches deep allowing for a width five times the depth (15

pitches).
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A cross-sectional view of the parallel test section is shown in
Fig. 4.1. The wide side walls and imbedded rods are both made of
plexiglass to allow visual observation from the side and keep the
construction of half-round rods simple. The center rods are stainless
steel for structural rigidity not obtainable with plexiglass. The center
rods are supported by stainless steel pins in the plexiglass sides and
holes drilled in the short sides of the housing. The housing short sides
are made of brass because it is more rigid than plexiglass, less
corrosive than aluminum, and easier to machine than stainless steel.

The four test sections are all 3 feet long (0.91 m) which
corresponds to approximately 80 equivalent diameters. This long length
was chosen to ensure ample distance for flow development in both single-
and two-phase flow. At the top and bottom of the 30 and 45 degree test
sections partial rods are inserted to retain identical, well-defined
boundary conditions for all test sections (a very helpful feature when
making simulations with a computer code). Views of the 30 degree test
section are shown partially assembled in Plate 4.1 (¢) and (d). End
views of the other three test sections are shown in Plate 4.2 (a). More
detailed blue prints of each test section are given in Appendix B.

The test section basic dimensions are summarized in Table 4.1.

4.3 Test Duct

A gingle test duct was constructed to mount the individual test

sections in the test loop. This method eliminated the need for each test

section to be watertight. A cross-sectional view of the test duct is
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TABLE 4.1

Test Section Geometry

Number of Test Sections 4 -
Rod Array Inclination, 0 0, 30, 45, 90 |degrees
Length, L_ 36 (91.4 ) |in (cm)
Inside Width, Ly =15 P 5.625 (14.3 ) |in (cm)
Inside Depth, L, = 3P 1.125 ( 2.86 ) {in (cm)
Rod Pitch, P 0.375  ( 0.953) |[in (cm)
Rod Diameter, d 0.250 ( 0.635) |in (cm)
Pitch to Diameter Ratio, P/d 1.5 -
Gap, P-d 0.125  ( 0.318) |in (cm)
Length to Hydraulic -80 .

Diameter, L_/D

x v

Rod Arrangement, RA Square -
Fluid Flow Area, Ag 4.12  (26.6 ) |in? (cm?)
Hydraulic Diameter, .

D, (infinite array) 0.466 ( 1.18 ) lin (cm)
Hydraulic Diameter, .

Dv (parallel test section) 0.399 (1.01) tin (cm)
Hydraulic Diameter, 0.406 ( 1.03 ) |in (cm)

D, (30°, 45°, and 90° test sections)
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shown in Fig. 4.2. The short sides are made of brass. Round rubber
gaskets set in grooves in the brass sides maintain a watertight seal.
The wide sides are plexiglass to allow viewing through the entire test
section and duct assembly.

The duct is 4.0 ft (1.22 m) long, one'foot longer than the test
sections. The test sections, supported by six keyway pins are mounted in
the center of the duct to allow for a 6.0 inch (15.2 cm) inlet and outlet
plenum. A plexiglass diffuser containing an aluminum honeycomb flow
straightener is inserted in the inlet phenum to provide a smooth
transition into the test section. Brass end caps couple the test duct
housing to the flow loop. Figure 4.3 shows a cross-sectional view of the
test section/duct/diffuser assembly. The diffuser and mounted test duct
(with the crossflow test section) are also shown in Plate 2(b) and (d).
The assembly is always mounted vertically with flow introduced from the
bottom.

Also shown in Fig. 4.3 are twelve penetrations for instrumentation,
six located on each side of the test duct. Ten of these penetrations
coincide with the top half of the test sections, hence corresponding
slots are also located on each test section. The penetrations allow flow
measurements along the center of each test section (See Fig. 4.1) at
various elevations. Because of the symmetry of both the duct and test
sections, measurements in the bottom half may be obtained simply by

inverting the entire housing and relocating the diffuser at the bottom.
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Instrument
penetration

48.0"

Tor

Figure 4.3 Cross-sectional view of test section/test
duct/diffuser assembly.
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Table 4.2 summarizes the test duct geometry. Detailed drawings of
the test duct and diffuser are given in Appendix B.

4.4 Flow Loop

The test assembly is mounted vertically in an atmospheric air-water
loop. Water and air are used for the liquid and gas phases because they
are different components eliminating phase change, and they make handling
and instrumenting simple and inexpensive. Air-water is also a reasonable
model for most commercial two-phase flows (i.e., steam-water).

The system, shown schematically in Fig. 4.4, consists of a closed
water loop circulated by a 1.5 horsepower Bell and Gossett pump. Air
from the laboratory compressor is metered through either a high or low
flow rate system and introduced into the water loop through a mixer just
upstream of the test assembly. The mixer is a capped off piece of copper
pipe set in the center of the water pipe with an array of 0.0625 inch
(0.159 cm) holes drilled around the pipe circumference. The air after
passing through the test assembly, enters a separation tank and then is
exhausted to the ambient. The tank is normally maintained at atmospheric
pressure, but can be increased by throttling the exhausting air. 1In
practice pressures higher than two atmospheres absolute produced leaks in
the separation tank welds, so the loop was generally operated at
atmospheric pressure. A short bypass loop is provided to permit low flow
rates without damaging the pump. A picture of the flow loop is shown in

Plate 4.2(c).

56



TABLE 4.2

Test Duct Geometry

Length 48.0 (12.9 ) in (cm)
Inside Width 6.625 (16.8 ) in (cm)
Inside Depth 1.88 ( 4.78) in (cm)
Entrance Plenum Length 6.0 (15.2 ) in (cm)
Exit Plenum Length 6.0 (15.2 ) in (cm)
Cross—Sectional Area 12.46 (31.6 ) in2 (cm?)
Hydraulic Diameter 2.93 ( 7.44) in (em)
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The loop operating conditions are summarized in Table 4.3. The
desired maximum liquid and gas velocities of 6.0 ft/sec (1.83 m/sec) and
60 ft/sec (18.3 m/sec), respectively, set the test section
cross-sectional flow area of 4.12 inch? (26.6 cm?). The maximum liquid
velocity was chosen to enable normal commercial component flow conditions
to be reached. The maximum gas velocity was chosen to allow simulation
of annular flow. The flow metering systems along with the local
measuring instrumentation are described in the next section.

4.5 Instrumentation

Good reviews of single- and two-phase fluid measuring techniques are
given in References [B.9, L.1, and H.2]. In this experiment the liquid
flow rate was measured with a turbine flow meter; and the gas flow rate
was measured at high flow rates, with a sharp-edged orifice, and at lower
flow rates, with two rotameters. The loop pressure and temperature were
monitored with Bourdon gauges and a thermometer. Local velocity and
differential pressure measurements within the test sections, were made
with pitot-static tubes and an electric manometer system. Lastly,
two-phase flow was studied with photographs, a single-bubble rzlease
system, and transit-time measurements.

4.5.1 Turbine Meter

A Fischer-Porter industrial turbine flow meter was used to measure
the loop liquid flow rate. A turbine flow meter consists of a small
propeller encased in a pipe housing and inserted in the loop. The meter

requires 15 straight pipe diameters upstream and 4 diameters downstream.
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TABLE 4.

3

Test Loop Conditions

Water Flow Rate, Ql 0 - 0.17 ft3/eec
(0 - 0.0048) (m3/sec)
Water Superficial Velocity, 0 -6.0 ft/sec
Q,l/Kf (0 - 1.83) (m/sec)
Air Flow Rate, Q 0-1.72 £t3/sec
& (0 - 0.0486) (m>/sec)
Air Superficial Velocity, 0 - 60 ft/sec
— (0 - 18.3) (m/sec)
o,/ K
Temperature, T 60 - 100 °F
(15 - 38) (°c)
Pressure at Separation 14.7 - 30 psia
Tank, p (0.1 - 0.2) (MPa)
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An oscillator and magnetic pick up measures the propeller's rotational
frequency. This frequency is directly proportional to the liquid flow
rate through the meter. The calibrated flow rate is

Qz(gPM) = 36.08 (V - 0.996) (4.1)

where V is the D.C. output voltage. The meter was calibrated from 4.0
to 144 gpm. Details of the calibration are given in Appendix C.1l.

4.5.2 Orifice Meter

An orifice meter and two rotameters are used to span the five decade
range in gas flow rate required to encompass all two-phase flow regimes
from bubbly to annular flow (See Fig. 4.5).

A orifice meter measures the differential pressure drop across a
sharp-edged orifice placed in the flow stream. The gas flow rate is
proportional to the square root of the orifice pressure drop. Curves for
the gas mass flow rate as a function of the upstream pressure and orifice
diameter are given in Fig. 4.5. These were constructed from calibration
curves for ASME flange-tap sharp-edged orifices and checked with volume
integral measurements (See Appendix C.2).

4.5.3 Rotameters

Two Fischer-Porter rotameters were used to measure low gas flow
rates. A rotameter is simply a vertical graduated glass tube of
increasing cross-sectional area with a float of specified mass and size
inside. The float rises to a height in the tube proportional to the flow
rate passing through the tube. The resulting calibration curves for both

flow meters are:
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For the 12 full scale (FS) rotameter

Pus + 14.7

m (lbm/sec) = 4.57x10~% RD - 1.50x10"3 (4.2)

14.7
where 2.0!10'6.£ ;.S 6.9!10‘5; and for the 20 FS rotameter
P + 14.7
m (lbm/sec) = 2.36x10~> R0 Y25 _ 1 osx10~" (4.3)
14.7
where 3.OXIO'5.S ;_S 5.9x10~*. In both equations RD is the scale
reading, and p,g is the upstream gauge pressure (regulator pressure) in
psi. (See Appendix C.3 for more details.)
The air flow through all the air meters are controlled by downstream
valves so that the pressure through the meter always equals the regulator

pressure.

4.5.4 Loop Pressure and Temperature

The loop pressure is monitored with two Bourdon gauges, one located
just before the separation tank inlet and the other located between the
turbine meter and mixer (See Fig. 4.4). The loop temperature is measured
in the outlet plenum of the test duct with a thermometer. The
thermometer can be seen in the top of Plate 4.2(b).

4.5.5 Pitot-Static Tube

Local velocity and pressure measurements are made with a
pitot-static tube and electric manometer system. A pitot-static tube
is an L-shaped probe constructed of two concentric tubes pointing in the
direction of the flow. Holes at the probe tip and circumferentially
around the outer tube measure respectively the stagnation and static

pressures. Differential pressure drops are measured between static taps
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of two pitot-static tubes (See Fig. 4.6).
The local flow velocity is determined from the dynamic pressure of a
single pitot-static tube. The dynamic pressure is the difference between

the stagnation and static pressure

2
P, Vv
1 L 2
Ap - _ (4.4)
dyn c2 2
or
/239
Py

The calibration constant C corrects for nonideal (nonisentropic) slowing
down of the fluid at the probe tip. As described in Appendix C.4 the

pitot-static tubes were calibrated giving
= L] L]
vy (ft/sec) = 11.6 JAden (psl) (4.6)

which corresponds to C = 0.95. One pitot-static tube inserted in the
parallel test section is shown in Plate 4.3(a).

Differential pressure was measured with an electric manometer and
time~averaging voltmeter shown in Plate 4.3(b) and schematically in
Fig. 4.5. The system consist of a Datametric multi-range differential
pressure ‘ransducer which measures full scale pressures from 0.002 to
20.0 psi (0.1 to 1000 Torr). The transducer is connected to a silicon
oil loop which is linked to the measuring environment by two diaphragms.
Water was used as the medium in the piping (air was also tried, but
produced slow response times and required constant purging as water
entered from the test section). With water in both the test section and

piping, the measured differential pressure excludes any gravitation head
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and hence is independeat of the probe locations in the test assembly.
Thus the recorded differential pressure is only caused by friction, form,
and acceleration pressure drops, not elevation. Instantaneous pressure
readings were averaged over 10 to 100 seconds with a TSI time-averaging
digital voltmeter. The averaging interval was governed by the
fluctuations in the reading.

The electric manometer system was convenient because the single unit
could cover a large range of differential pressures. One quirk of the
system is it is very sensitve to ambient temperature changes. It has to
be warmed up for several hours before using and has a significant drift
from the zero setting when operated at the lower two scales. Best
resulis were obtained when the system was left on continucusly and lowest
differential pressure data were taken first, right after zeroing the
metez.

4.5.6 Photography

Two-phase flow regimes were studied and documented with
photographs. A 35 mm camera, tripod, tungsten lights, and back drop were
used. Several lighting arrangements were employed to capture specific
regime characteristics and minimize light scattering of the plexiglass
rcds and windows (See Fig. 4.7).

A front reflecting technique was used for still photographs of flow
regimes both within the test sections and in the exit plenum. A back
shadow method was used to photograph the shape of single bubbles. Last a

back reflecting technique was used to obtain multiple bubble trajectories
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by time exposing the illuminating bubbles. Long exposure times are
desired to obtain long bubble track lengths. However the maximum
exposure time possible is limited by the contrast between the bright
bubbles and dark background. If the time is too long, then the tracks
become washed out by the background light. Best results were obtained
for short exposures of many bubbles producing a lot of short tracks
showing the average trajectories of the bubbles. Trajectories of a
single bubble were not obtainable because the required exposure times
were too long. Photographs employing the above lighting techniques are
shown and analyzed in Chapter 6.

To obtain single bubble trajectory photographs a fourth lighting
arrangement was explored. This lighting arrangement shown in Fig. 4.8,
increased the bubble/background contrast, but limited the area of
illumination to only the first 6 inches of the test section. Because the
illuminated area was small and only in the developing flow region
photographic single bubble trajectory data were not obtained. With a
high intensity coherent light source this technique could be perfected.

4.5.7 Siqgle Bubble Measurements

To study the dynamics of bubbles in inclined rod arrays two
single-bubble release systems were developed.

At very low gas flow rates the bubble size that forms at an orifice
(tube) is dependent only on the tube diameter [C.3]. Thus a spectrum of
bubble diameters can be generated by using different diameter tubes. The

bubble equivalent volumetric diameter for a given tube was determined by
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scaled photographs and by counting the number of bubbles required to fill
a known volume. Table 4.4 lists the tubes and caiibrated diameters.
Plate 4.3(b) shows two tubes inserted in the parallel test section.
Larger bubbles were created by releasing a known volume of air in
the lower plenum from a rotatable cup. A slug of air is placed in a
water filled horizontal glass tube. The air volume is determined from
the slug length and glass tube inside diameter (0.090 inch, 0.229 cm).
Next the air is transferred through a hollow support tube to a small
inverted cup in the center of the lower plenum. Finally the bubble is
released by quickly uprighting the cup (See Plate 4.3(c)). Single bubble
velocities were determined by transit-time measurements. The time of
flight of a bubble over a known path length was decermined with a stop

watch, giving

v = __ (4.7)

The actual path length £, was determined by visually marking the starting

and stopping locations within the test section. Larger distances, from 2

to 3 feet, were used to minimize the error of starting and stopping time.
Single bubble trajectories were determined by measuring the

vertical (x) and horizontal (y) components of path length £. Then the

bubble trajectory ¢p, is simply

%
b, = Tan~! _Y (4.8)
)

X

where ¢, = 0 for a vertical rising bubble.

The two-phase flow regime and single bubble data are presented in

Chapter 6.
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TABLE 4.4

Average Bubble Diameter Generated at Orifice

Tube Outside Diameter | Inside Diameter | Equivalent Yolumetric
Bubble Diameter
(inch) (inch) (inch) *0.01

A 0.010 0.005 0.03

B 0.018 0.0095 0.06

c 0.022 0.011 0.08

D 0.35 0.023 0.11

E 0.065 0.045 0.12

F 0.072 0.054 0.12
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CHAPTER 5

SINGLE-PHASE FLOW MODELING

The principal constitutive relation for a single-phase, porous
medium flow is the flow resistance. Single-phase flow resistance is
the average skin friction, form drag, and form lift forces on a fluid

flowing through a porous, nondeformable solid medium; mathematically

ww 8

S/ GL-Denaa (5.1)
£ fs

where the first term in the integral results in the form drag and lift
and the second in the skin friction. Form drag is the component force
parallel to the average flow direction and lift is the perpendicular
component .

The introduction of volumetric flow resistance enables the
distributed fluid-solid momentum interaction, which is dependent on
the flow conditions independent of geometry, to be lumped as a single
force correlated to the average flow conditions for a specific
geometry. Before going into explicit mathematical models for flow
resistance we shall examine the fundamental flow field within a rod

array.

5.1 Flow Field Description

Much insight into constitutive modeling can be gained from a full
understanding of the flow field within rod arrays. We define five

flow regimes comprised of laminar or turbulent flow within three
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regions. In laminar flow all momentum exchange is transmitted by
viscous forces; in turbulent flow fluid eddies also contribute to
momentum exchange. The presence of a boundary layer and flow
separation around a submerged solid allows three distinct regions to
be defined: The mainstream region--comprised of the bulk fluid
flowing around the submerged solid, the boundary layer region--
consisting of the slower fluid which blankets the solid surface, and
the drag region--which is the recirculating fluid region between the
séparated boundary layer and trailing edge of the solid surface. The
five regimes are listed in Table 5.1. Below we shall restrict our
discussion of flow patterns to the laminar through
subcritical-turbulent regimes for which the patterns in rod arrays are
relatively unchanged.

Parallel flow in rod arrays experiences no flow area change, hence
no boundary layer separation or drag region, Figure 5.1(a) shows the
evenly spaced, parallel streamlines for parallel flow. (A streamline
is the path of a continuum fluid element which for turbulent flow may
be interpreted as the average path.) 1In parallel flow because there
is no drag region the five regimes discussed above reduce to just
laminar, laminar-turbulent transition, and turbulent flow.

For flow across a cylinder (Fig. 5.1(b)) the laminar boundary
layer separates at about 82 degrees from the leading edge resulting in
two vortices behind the cylinder [H.1l, V.2]. At high flow velocities
these vortices start shedding in a periodic fashion. For an array of
cylinders (rod array) a similar flow pattern exists even at higher

velocities where the vortices remain attached because of a flow
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TABLE 5.1

Flow Regime Classifications

Boundary
Flow Mainstream Layer Drag
Regime Description Region Region Region
Creep No separation, negligible
inertial forces, viscous Laminar Laminar | =——---
forces dominate.
Laminar Separations due to
inertial forces creates Laminar Laminar Laminar
drag region.
Laminar/ Turbulent eddies
Turbulent introduced into main Turbulent Laminar Laminar
Transition| stream.
Sub- Turbulent eddies in
critical drag region. Turbulent Laminar Turbulent
Turbulent
Super- Turbulence in
critical boundary layer before Turbulent | Turbulent | Turbulent
Turbulent separation.
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restriction downstream. Figure 5.1(c), (d), and (e) sketch the
observed crossflow patterns for in-line and two limiting staggered rod
arrangements [H.1, V.2, W.3]. Hoerner [H.l] found that the distance
at which interference between two rods begins is about five pitch to
diameters.

The last pertinent observation is of flow across an inclined (yaw)
cylinder (Fig. 5.1(f)). As a streamline approaches an inclined rod it
deflects towards the rod axis, then across the rod along the shortest
path and finally resumes its original flow direction. The vortex
generated behind the cylinder moves along the cylinder axis.

From the above observations we postulate two additional flow
patterns of situations which have not yet been documented visually.
For crossflow in an arbitrary direction, the mainstream flow
periodically subdivides and rejoins as in the principal flow direction
cases, except not in a symmetric fashion (Fig. 5.2(a)). For inclined
flow in a rod array the mainstream flow does not maintain the average
flow direction but slants towards crossflow while the recirculating
flow moves along the rod axis resulting in a net vertical average
flow. This postulated flow pattern description will be very useful
when formulating two-phase flow models in Chapter 6. Although both of
the above described flow patterns are illustrated for a square array
in Fig. 5.2, analogous patterns can be envisioned for staggered
arrays.

Now with a physical picture of single-phase flow in any direction
in rod arrays, let us proceed with the development of flow resistance

models.
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direction
(b) Arbitrary direction incline flow.

Figure 5.2 Postulated rod array streamlines.
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5.2 Multidimensional Flow Resistance Formulation

5.2.1 General Formulation

The flow resistance vector {R> is modeled in the general form of a
loss coefficient matrix K times the characteristic average velocity u

within the porous medium,
B =Ku (5.2)

This formulation originated from extending che Darcy scalar law used

for isotropic, viscous flows in porous media

R = u (5.3)

L]
k
(where k is a constant) to higher velocity, anisotropic flows where u/k
becomes dependent on the flow speed and direction [B.2, W.l].

Regular rod array geometries have three orthogonal axes of
symmetry (Il,_Ll,_Lz) as shown in Fig. 5.3. In this coordinate system

the loss coefficient matrix becomes diagonal

] T e
R = 0 K O u (5.4)
11 11 11
R 0 0 K u
12 12 12
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since the resistance and velocity vectors are collinear for each of
these principal component directions, there is no lift force. Equation

(5.4) also can be written in terms of scalar components

B> =R e *oRpEn v Rpep (5.5)

=Kpupepy ‘llullsil + ‘l?%lzgl?

where e is the unit vector. Equation (5.4) may be transformed into any

desired coordinate system by a coordinate transformation matrix T.

R'> = (L<R) = (LKT ) (Lu) =K' u (5.6)

A specific example of T where the z-axis is restricted to the crossflow
plane is given in Fig. 5.4. Tensor K' is no longer a diagonal matrix
signifying the presence of both drag and lift components of resistance
for flow in any of the coordinate directions x, y, or z. This
coordinate system with the flow in the x-direction will be used
extensively.

In general, the resistance vector depends on the flow conditions,
geometry, and fluid properties. For flow in regular rod arrays

R> = ftn [l.l_, Vu, s

L’ S

T d, RA, €, p, U] (5.7)

where € denotes the surface roughness and RA the rod arrangement

(i.e., in-line, staggered, square, etc.).
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Figure 5.4 Coordinate system transformation.

82



5.2.2 Model Constraints

The model development and validation presented here will be
coucerned with two-dimensional, turbulent, fully developed flow through
smooth rod arrays. For fully-developed flow in smooth arrays the Vu and
€ dependence in Eq. (5.7) may be eliminated. The three-dimensional flow
can be reduced to a two-dimensional inclined flow problem by either of
two independent assumptions:

(1) The crossflow resistance is independent of flow direction in

the crossflow plane
Ky = Ky = Ky (5.8)
or,

(2) The crossflow velocity is in a symmetric direction of the rod
array. All symmetric directions can be represented by a rod
arrangement where |1 is the flow direction, so

4, = 0 and Kll = Kl (5.9)
For both cases the crossflow velocity and resistance become collinear.

For a two-dimensional flow we define the crossflow velocity as

u
8 /a2 42 , N £ tan’? Ldig) (5.10)

u
1 11 12 ull
so Eq. (5.5) reduces to
e T T

(5.11)
Kpuney * kLw ey
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where

u = u,e, + u e (5.12)

Finally, we also define u in terms of polar components

lgl £ /Lﬁ + ui1+ uiz = Juﬁ + uf (5.13)
/ 2 2
- uji + uy2 _ u
8 & tan! (——— 7)) = tan! () (5.14)

]| Uy

These vectors are summarized for the two independent assumptions, in
Fig. 5.5.
Applying the above constraints, the independent variables of the

flow resistance (Eq. (5.7)) reduces to

<R = ftn [ IEI’ 6, S, Sy, d, RA, p, u] (5.15)

5.2.3 Secondary Variables

Some usefui secondary variables are defined for regular rod arrays
as follows

* The volume porosity

Q Fluid Volume
v Total Volume

T d d -
Y [1-z (-S—L)(S—)] (5.16)

T
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¢ The volumetric hydraulic diameter

T o2
5 A& _4 (Fluid Volume)  _ * (s 57 - 7 4%) 1y (5.17)
v Wetted Surface Area md L“ : -
Y
v
= d(+—=)
1 Yv

Note that for a rod array D, is equal to the equivalent hydraulic
diameter of parallel flow, based on flow area and wetted perimeter.
Also notice Dy, is a length scale independent of rod arrangement or
flow direction.

* Crossflow mainstream porosity

Gv 4 Crossflow Mainstream Volume (5.18)
Fluid Volume

The crossflow mainstream porosity is used to define the crossflow
mainstream velocity discussed below. Explicit relations for §, depend
on how the mainstream flow volume is modeled. A detailed discussion of
various models is given in Appendix D. The most widely used model ((:))
defines the mzinstream volume as the area at the minimum flow clearance
times the straight length S;. 1In this model, §, is dependent on the
rod arrangement. An approximate model ((:)) independent of rod
arrangement is introduced here, §, = y,. Model (:) is used with
generalized crossflow correlations that have rod arrangement dependence
averaged out. These two models are shown for staggered and in-line
arrays in Fig. 5.6.

Three characteristic flow velocities 'u' are defined:
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* The superficial velocity

A  Volumetric Flow Rate o Q (5.19)
Izﬂl Total Cross-sectional Area -K;s .
* The average velocity
A Volumetric Flow Rate Q l!ml
|<!?| Average Flow Area ALY, Y, (5.20)

* The crossflow mainstream velocity

A Volumetric Flow Rate
'!msl Average Malnstream Flow Area
<v> v
- Q = I - l = I_ﬁl (5.21)
A 0 Y s R
X8 V Vv v

The velocity magnitudes as defined are independent of the flow direction
(See Fig. 5.7).
Last we define the dimensionless Reynolds number group

DLEIL
u

L

Re (5.22)

where 'ul and L are a characteristic velocity and length respectively.

The Reynolds numbers used here are

p|<v>|D
Re_ 4 _L:_J-l (5.23)
Re, = ———plz‘“sld = R (—l _ Y") (5.24)
ey = m e, ava .

The first definition is recommended for use in porous media. The second

has been used by many authors to correlate crossflow data.
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Figure 5.7 Velocity vector definitions.
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5.2.4 Modeling Formulation

We postulate correlating Ky and K.L of Eq. (5.11) by forms analogous
to those used in one-dimensional correlations
s

® = (£ lul 5= ——) vy *
v

©

(fej_[_‘il —ll)— 12" + cgq,lul —Il)- 9l3_|) u e (5.25)
v © v

This form reduces simply to the one-dimensional limits of parallel and
crossflow. The coefficient f denotes skin friction and c denotes form
drag. Remember that there is no form drag for parallel flow. Generally
for crossflow, only the sum of the skin friction and form drag is known,
hence we define a total drag ccefficient bgj, giving the modeling

formula .

<R = R, (0)e,; + R) (B)e,
(5.26)
1 Plu 1 °|.‘l|
= (fgy [B.]Fv' ) uney * (beﬂilﬁ: — ) up ey

Equation (5.26) can be put in a dimensionless form by multiplying by

Dv2/u|g| . Thus

2
D
* A v * *
foy Lul DlEIDv ) uy . bg, [(ul Plg_lbv uy
T Ty et T T Tl A

where the asterisk (*) denotes the -dimensionless form.
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In the remainder of this chapter, we shall review correlations for
fg)| and bgy for the limiting cases of parallel and crossflow, then
present superposition models relating fg|| and bg] for inclined flows
to the one-dimensional limits, and finally evaluate the multidimensional
models with published data and new data taken in this study.

5.3 Parallel Flow Resistance

For the limiting case of parallel flow, 6 = 0°, the resistance

vector reduces to

B> = R (0%)e; + R) (07e (5.28)
where
. 1P|
Ry @) = Eylfef] g- = <vyy (0>
v (5.29)
R_L(O") = 0

and the characteristic velocity u has been taken as the average
velocity, <v>. Note that for parallel flow <v'|(0°)> = lﬁz?l.

A wealth of data and correlations for f” are available in the
literature. Knudsen and Katz [K.l] have summarized round tube
corrections; Marek et. al. [M.2] have related round tube correlations to
square arrays. Rehme [R.2] has related round tube correlations to
triangular arrays and also has developed a generalized model for all
noncircular geometries [R.1]. Sparrow and Loeffler [S.4] have
analytically solved the laminar flow solution for both square and
triangular arrays. All these models are summarized in Table 5.2 and
plotted for a round tube and square array of P/d = 1.5 in Figure 5.8.
Note that the rod array friction for turbulent flow is only about 7

percent higher than that for an equivalent round tube.
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TABLE 5.2

Parallel Flow Correlations (for smooth surfaces)

- -Z—D_VR" 0%)
" D|<i>'z

Reference Skin Friction Factor Geometry Range
64 . ,
(k.1] f“ " e Round tube Laminar flow solution
v
1 Rev
Nikaradse {K.1] L = 2.010g (= /F, ) - 0.2 Round tube 4x163¢Re <3.2x10°
7%, 2 v
Blasuis [B.3] g oo -3 Round tube x10%¢Re_<1x10°
(Re )0.25 v
v
McAdam [M.1] £, - —2-184 Round tube sx10<Re <2x10°
(Re )0-20
v
1 - —-—
Maubach [M.3] = 2.035 log (Rev/Th ) - 0.969 Round tube Turbulent flow
1]
Sparrow and f“ - ftn [RA, 6"' Square and tri-| Analytical laminar
Loeffler [S.4] angular array flow solution
£ 1.045 + 0.071(£ - 1) Triangular Re_ = 10"
Rehme [R.2] 1 d
) (round tube) 1.036 + o.ost.(% - 1) arrays Re = 10°
Rehme [R.1] f" - ftnlf" (round tube), f” (laminar), All rod Laminar and
geometry]| arrangements turbulent flow

Marek ecr. sal.
[H.2]

£

f||1round tube)

1.04 + o.os(g - 1)

Square arrays
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In the developments to follow we shall use the form

(Re )"
and when numerical values are needed the Blasius correlation (A = 0.3l6,
n = 0.25) shall be used. This model is sufficient because, as will be
seen later, f|| has a minimal effect on the total flow resistance for

inclined flows.

5.4 Crossflow Resistar.ce

The other one dimensional limit is pure crossflow, 6 = 90°. For
crossflow the resistance vector becomes

<R = R”(90')_e_| + R, (90°)e (5.31)

I 1
where
R||(90°) = 0
(5.32)
o 1 °Vasl
R, (90°) = blll_gms“-b—;z—vmsl(%')
and now the characteristic velocity is vyg, and VmﬁL(9°°) =|Xm3|'
Ample crossflow data and correlations are available in the literature.
Unlike parallel flow, however, there is considerable variation in
correlating forms, characteristic lengths, mainstream velocity
definitions, and the predicted flow resistance itself.
Knudsen and Katz [K.l] summarized some of the simple, earlier
correlations. Hore elaborate piecewise correlations were developed by

Idel'chik [I.2] and more recently by Bossier [B.6], VDI-Wirmeatlas

[v.1], Z@kauskas and Ulinakas [Z.1] and Toborek [T.1]. Table 5.3
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TABLE 5.3

Crossflow Correlations

2 .
20 6 R, (90%)

A
b =
1
9|<1>|2
Reference Total Drag Coefficient 6v model Geometry Range
Gunter and D 0.4 S, 0.6 Rod arrays and
180 v L'
b, = T (=) (=) extended (Re_/6 )<500
Shaw L (Rev v) ST s'l‘ @ surfaces v
(6.2] b e 192 (o) e 1.25¢5/d<5.0 500
1 (Re /6 Y0145 S; S <(Rev/6v)<
v 1.25¢s ,/d<5.0 200,000
D 0.16 D Staggered
4.0 0.1175
Jakob b () (Fo.25¢ —=— ] 0.6<5S /d <3.0
L (re s 0016 4 5t (2T )r-oe -065, 74 <3
(5.11 v d 1.25¢5./d <3.5 5,000¢
In-line (Re /S )
4.0 (Dv)o-ls(bv)lo 064 @ v v
b -— | — — . +
1.25¢s /d <3.0 < 40,000
1 (hv”v)o.ls d 5. 5¢s /
S 1.25¢S./d <3.0
T
0.08 (-—d'=)
S
. . d
(d_'l'_ _ l)(0 43 + .13 d/8))
106 Staggered s
Chilton b (Re /& )<100
17 Wy and in-line v
and
1.0 D 100 <
" v .
Genereaux b.l. - — 3.2 ?‘:d‘o z ® Staggered
(Re /5v) T Re  S.-
(c.2) z (=) (——)
D 6V DV
bl - 1.320 > (3 vd)o.z In-line
(Re /8 )" T < 20,000
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TABLE 5.3 (continued)

Crossflow Correlations

(. 2
Idel'chik ftn R
by a a: im o, = 0;26 In-line 3,000 <
[1.2) (Re /8 ) ( T )z
vy 54
L d
® (Re /6 )(5-)
S, S v
ftn [—T —Ll
d'd
bl —_—2 Staggered
(Re /6 )" < 10,000
v v
assume
Boisser b = ftn [Re L6, P/d] s Ve Turbulent
1 v' v Square arrays
[B.6]) or flow
-
vy,
vDI- In-line 2 ¢
Wirmeatlas b, = fen [(levldv), ¢|—T-l EL] and (Re /6 )
{v.1} staggered <1,000,000
- . 3 <
Z2ikauskas [ S,r s"'] @ In-line d
b, = fton [(Re /8 ), —, — (Re /8 )(=—)
[z.1}] L vivitd®d and staggered viv'p,
<1,000,000
1<
Toborek [ | ® Square and d
b, = fen |(Re /6 ), P/d (Re /8 )(=)
[T.1} 1 vy triangular viwoD,
<1,000,000
6.0 6 185 1,000 <
This Study bl - —-—--v--o-——l? @ All rod arrays Ilev
(Re /6)) < 10,000
Isolated single
Hoerner .
by = %cp‘ Cp = ftn [Re ] 61 eylindes All Re
(H.1] SL,/d > 95 v
sT/d >S5

-
Models ahown in Appendix D
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summarizes the reviewed correlations. The majority use the area of
minimum flow clearance in defining the mainstream velocity (Model (:) of
Fig. 5.5), however the characteristic length and Reynolds number
dependence postulated by each author vary considerably. Figure 5.9
shows a comparison of the crossflow resistance predictions for a square
array of P/d = 1.5. The correlations span a *35 percent band for this
particular geometry. The newer, more elaborate correlations of
VDI-Wérmeatlas, Zikauskas, and Toborek, however, are in closer
agreement.

For a well defined, symmetric crossflow geometry (flow direction),
the flow resistance should be evaluated from a comprehensive correlation
such as Zikauskas, or a correlation based on data for the particular
geometry and velocity of interest (or better yet on the data base
itself). For three-dimensional flows and irregular rod arrangements the
above method becomes inadequate. For these applications an averaged
correlation independent of rod arrangement (crossflow direction) is
desired. Figure 5.10 shows graphically the desired constant flow
resistance which is an average of the circumferential variation.
Generally only the resistances in the symmetric flow directions are
known.

Attempts to predict the circumferential variation in flow
resistance are not practical because, as is shown below, the absolute
accuracy of the crossflow resistance measurements and correlations are
less than the circumferential variation being predicted. Hence we
propose using an average correlation for a given porosity independent of

the rod arrangement (flow direction).
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Figure 5.9 Crossflow correlations for square array
of p/d = 1.5.
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(b) Square array

i Known flow resistance for symmetric directions.

Locus of local flow resistance vectors.
, Average flow resistance.

] .
— ——-Locus of average flow resistance vectors.

Figure 5.10 Circumferential variation in crossflow
resistance.

99



A simple generalized crossflow correlation is created by averaging
out the variations in Reynolds number and geometric arrangement of the
simpler correlations. (This is sufficient for the analysis performed
here. A more precise correlation based on the complete crossflow data
base should be developed for implementation in thermal-hydraulic codes.)

The chosen generalized form is
B, [v,]

b = (5.33)
1 0.15
(Revlﬁv)

where (1) the rod arrangement independent model ((:)) is used for the
mainstream porosity, 8, = Yy; (2) a mean Reynolds number dependence
of 0.15 is used; (3) the only length scale is the array independent
volumetric hydraulic diameter, D,; and (4) B, is assumed only a
function of the volume porosity, Y,.

Figures 5.11 and 5.12 show plots of B, as evaluated from the four
simpler correlations for four equilateral rod arrangements (See Fig.
5.3). Comparison of these curves show no consistent rod arrangement
dependence. For a given porosity, the accuracy of predicting the
resistance as shown by the variation between correlations for a given
rod arrangement is as great as the rod arrangement dependence predicted
by each author. The curves in Fig. 5.11 and 5.12 are for a Reynolds
number of 10*. The arrows show the translations of each curve for
Reynolds numbers ranging from 103 to 10°. Clearly the inconsistent
array dependence exists for all Reynolds numbers. Butterworth [B.2]
reaffirmed this point for a limited set of experimental data. He found

no arrangement dependence when comparing data for square and rotated
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Figure 5.11 Geometry and Reynolds dependence of Gunter-

Shaw [G.2] and Jakob [J.l] crossflow
correlations.
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Figure 5.12 Geometry and Reynolds dependence of

Idel'chik [I.2] and Chilton-Genereaux
[C.2] crossflow correlations.
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square arrays of P/d = 1.5 in laminar flow; and comparing triangular and
rotated triangular arrays of P/d = 1.25 and 1.33 in both the laminar and
turbulent flow.

Considering the curves collectively, a monotonically increasing
porosity dependence is apparent. We propose a simple, array independent
crossflow resistance model where B, in Eq. (5.33) is

1.85

B =6.096 (5.34)

(o] v

This model is a smooth curve through the mean of the correlations as
shown in Fig. 5.13. This approximate model is based on two constraints
(1) the model approaches a single cylinder resistance as the volume
porosity approaches one; and (2) the model is only a function of the
volumetric hydraulic diameter and average velocity. Thus

e

6.0 v
(Rev)°'15 D, 2 1

Rl_(90°) (90°)> (5.35)
This model is not very accurate. It was developed here to emphasize the
limitations of rod arrangement dependent correlations, help motivate the
development of more precise array independent crossflow correlations,
and furnish an average crossflow correlation for use in the inclined
flow development to follow.

The crossflow correlation form used subsequently is

B (5.36)
bl. = —
(Re )
When numerical values are required we shall use B = 6.0 sz and

m = 0.15.
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Figure 5.13 Array independent crossflow correlation.
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5.5 Inclined Flow Resistance

Data on flow resistance for inclined flows in a rod array are very
sparse; consequently explicit correlations for inclined flows do not
exist.To overcome this deficiency the limited data are used in
conjunction with current parallel and crossflow correlations to develop
superposition models. Superposition models basically construct the total
flow resistance vector from known correlations for the principal
component directions utilizing appropriate compensating velocities and
lengths.

5.5.1 Single Cylinder Superposition Model

A well documented example of superposition is the principle of
independence for form drag across an inclined cylinder. It has been
shown theoretically for laminar flow [W.5], and experimentally for
turbulent flow [B.8, H.l], that for inclined cylinders of equal crossflow
component velocity, the pressure distribution, separation point, and
consequently form drag are equal. This means the total form drag is
dependent only on the crossflow velocity component, independent of the
parallel flow component; hence the name principle of independence. The
total form drag for an inclined cylinder, therefore, can be evaluated
from a correlation for pure crossflow when the correct compensating
velocity is used. Fig. 5.14 graphically illustrates the principle of
independence.

The above observations suggest some additional questions:

(1) Can the skin friction force also be evaluated by the principle

of independence?

(2) Does the principle of independence also apply to rod arrays? 1Is

105



Follv,, |1

(a)

\*( ' F [|vml|]cos 8

FD[|le|]51n G

l|1

Voo )
P - T
ool o
(b)

Figure 5.14 Principle of independence for inclined
cylinder.
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some other superposition principle more appropriate? or is the
concept of superposition not applicable for rod arrays?
To answer these questions we present several superposition models
developed for rod arrays and compare them with the available
experimental data base.

5.5.2 Rod Array Superposition Models

All the superposition models discussed liere are based on choosing
an appropriate compensating characteristic velocity and retaining the
characteristic lengths as defined in the one-dimensional correlations.
Individual superposition models for the parallel and crossflow
components of Eq. (5.26) will be described, then specific combinations
of the individual models will be compared with data.

5.5.2.1 Parallel Flow Component

We define the parallel flow superposition factor, g;(0), as the
parallel flow resistance component for a flow at inclination 6,
normalized by the resistance for the flow if it were purely parallel

s Rut® foy Le! |u] vy

g1(0) (5.37)

Ry (0°) £y Lo [1]<w>|<vy, 023>

Model
This model assumes the principle of independence holds for skin
friction in rod arrays, so

oy |

Fon (2] = £y [uy |1 —— (5.38)

|
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where the characteristic velocity u is the average velocity <v)>, giving

B

NIk LENATR TR

g1(8) = (5.39)

£y ([ |1 |<w>| <oy 00>

Now substituting in Eq. (5.30) for f|y» noting that <v||(0°)> = |<1>|

gives the parallel superposition factor

oy 2| F™ <y

v> |<v|'>|

g1(8) (cos 82" (5.40)

where for the second equality we have restricted @ to the first quadrant
( <v||) is positive). Throughout the remainder of the chapter we will
assume 6 varies between only 0 and 90 degrees. More general expressions
covering all angles can be developed simply by including the normalized

directional terms (i.e., <v||>/|<v||>|).

Models (:) and (:Z

A more realistic model does not assume that the form drag principle

holds for skin friction, but instead the parallel friction

factor is independent of flow direction fellLE] = f||[|£1] thus
£y L[[<o>|1 |<w>| <> SITRI ISR
g1(8) = = (5.41)
f <vo> <v>| < 0°)» <vo < >
|1 | <y w | [y
= cos O

This model is called the magnitude-component since the magnitude of
resistance is directly proportional to the component of velocity.
(Models (:) and (:) are identical with respect to the parallel

superposition factor.)
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Model S:)

Model @ proposed by Bdttgenbach [B.4] amplifies the parallel flow

friction factor of model @ and @ , to match his experimental data

£y (w1
(cos 0.98)2 '<'Y'>| <v”> cos 0

g1(8) = = (5.42)
E L[|l [« <) 0> (cos 0.99)7

Model (:)

Finally we introduce two new models. The first is a
mechanistic model based on the inclined flow mainstream characteristic
velocity l@ instead of <v>. The velocity 1@ is modeled simply as
a smoothly varying velocity between the two 1imits—-<v” (0°)> for

parallel flow and vmsl(90°) for crossflow,

_v_@ = <v“>E|| + V“‘S.LE.L (5.43)
or
ll®| = v/|7<\_r_>|2c0529 + Iv |2sin26
= |<1>| /cosze + ;—— sin20 (5.44)
and ) '
tan 0 = -I-Eisl—il—rl—?- = l—- tan 6 (5.45)
@ '(_!_)Icos ) Gv

Figure 5.15 shows graphically the construction of l@from <>, Vos®

and 6. A more physical development of _\L(Dis reserved for Chapter 6.
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=|v__|sin 0

l

=|<v>| cos 6

Figure 5.15 1Inclined flow mainstream velocity model.
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Replacing u by 3<:>in Eq. (5.37) and assuming the magnitude-

component principle gives

Ol ol '@ (5.46)

g1(8) =
£ <] || < 00>
1 1;n
= (cos?® + sinze) cos 0
s 2
v

Model 562

In contrast to model (:) which proposes a more physical
characteristic velocity, model (:) is simply a generalized form of the

first three models

u

nl
fop [ul = £ [u] ! (5.47)

I:L_

Where u = <v> and n' is a correlated parameter which may be a function
of geometry, inclination and/or Reynolds number. The parallel

superposition factor becomes

<v||> n'+l <v||> n'+l
g1(8) = ——— = (cos 6) (5.48)
§!? l(v“ >|
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5.5.2.2 Crossflow Component

Analogous to g)(3) we define the crossflow superposition factor
hy (8) as
N R boylul |af oy

RY00D by [y |1 |y | vas 1907

(5.49)

hy(8)

Model S:!

As shown in Sec. 5.2.4, bl is the combination of both skin friciton
and form drag. 1If it is assumed that the form drag is the dominant
force and tt principle of independence applies for rod arrays, then

bg, [ul = bl[|u1|1|—u-|-—|- (5.50)

The characteristic velocity is now Vos? thus

) = b"'[|v“ﬂ|] Iv’“‘ij—-l ‘ms) (5.51)

bj_[lxmsll Ixmsl vmslf90°)

substituting in Eq. (5.36) for bl.and noting vmslf90°) = lxmsl gives

v 2-m v

h(e) = |-Bsd| _msl_ o (6in 02 (5.52)
v Vs o |
—-—Mms msl

Again the last equality is true when 6 is restricted to the first

quadrant.
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Model S:!

For the case where skin friction is important or the principle of
independence is not valid for rod arrays a model based on a constant
crossflow coefficient, bel {u] = bl [lul], and characteristic velocity

Vmss 1S postulated

hy(8) = bl.[lzmsll 'Xmsl vms_L vms_|_ vms_]_ = sin 6
bl.[lzmsll Izmsl Vas | (90°) | Yms Ivmsl '
(5.53)

Model S:!

Todreas and Co¥ffé [T.2] suggested correcting Model (:) based on
data interpreted by Idel'chik [I.2].
Their resultant model is
h(8) = n'(0) sin 6 (5.54)

where

n'(8) | 0.25 0.60 0.76 0.94 1.00

Model ‘:!

In contrast, Bdttgenbach, based on his data, proposed a different

correction factor, (sin 0)0'9, giving

b].[lzmsll (sin B)o'9 Izmsl v@ﬂ;

b_l_ ll‘—'ms“ Ix-msl vmsl (90%)

h(8) = = (sin 0)1°3 (5.55)
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Model (:)

This new model assumes the principle of independence, but based on

the inclined mainstream velocity v® instead of the crossflow velocity
Ims

h (8) = LY@ |v®.L| 'OL _

(90°)

MO
Vs

TR OL (5.6
Moll

However for the model of v® given in Eq. (5.44) we get v® =v s
* L Vms)

b.l.[-‘-’-ms] Ig-msl vms_]_

or
hy(8) = (sin 8)27® (5.51)

which is simply model @

Model (:)

This last model is simply a generalized form of models @

through @

uL ™

u

by el = by L))

where u = vpq and m' is a correlated parameter. The crossflow

superposition factor becomes

v mn'-1 v .
hy(e) = |-RedL msl - (sin )% 7} (5.58)
Yas Ivmsll

5.5.2.3 Summary

Table 5.4, Fig. 5.16, and 5.17 summarize and compare the different
superposition models. An interesting point is that the correction
factors of Todreas-Co&ffé (Model @) and Béttgenbach (Model @)

essentially convert the crossflow superposition model @ back into
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model (:). There is a larger disparity between parallel superposition
models, but as will be seen later, for most turbulent flow conditions
this factor has an insignificant effect on the total flow resistance.
Also notice that all the reviewed superposition models are a function of
flow inclination only. The Reynolds number and geometry dependences are
assumed correctly accounted for by the one-dimensional parallel and
crossflow correlations.

Ideally, using the appropriate superposition models g;(6) and
h;j(6), the total flow resistance can be calculated from

<R = R|'(0°) 31(9)'g|| + RJ_(90°) hl(e)-ﬁl. (5.59)

The remainder of this chapter is concerned with assessing the above
superposition models with past and new data.

5.6 Lift/Drag Flow Resistance Components

5.6.1 Coordinate System

Most of the available data for inclined flows is limited to the
drag component of resistance {component in the average flow direction).
Therefore we introduced a second (x,y) coordinate system where x is the
average flow direction (drag force direction) and y is perpendicular to

the average flow direction (lift force direction). Mathematically

yowmy e +v e (5.60)
- X —x y =y
where Ve = |§!?|
(5.61)
v =20
y
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The resistance vector (Eq. (5.26)) then becomes

R = R (8)e + Ry(e)ey (5.62)
where Re(€) = R (8)cos 8 + R, (B)sin 6 (5.63)
Ry(ﬁ) = -R|;(@)sin 6 + Ry (8)cos &

Both vectors and components are shown in Fig. 5.18.

5.6.2 Composite Superposition Models

To assess the superposition models on their merit alone,
independent of the absolute magnitude of the total resistance,we
normalize the above equations by the crossflow resistance Ry(90°)

(= Rj (90%)), giving

1 R (6) R (8)
Koo L T TEo S TR0 Yy (5.64)
where
R (8) R (0°)
Rx 30 = m ] g]_(e)COS 0 + hl(e)sin 0
(5.65)
R (8) Ry, (0°)
R (90 = ( R (90 ) g1(8)cos 8 + hy(8)sin 6

All inclined flow data can also be put in this form since Ry(90°) was
measured in all cases. Notice that to evaluate the above expressions
using the individual superposition models the ratio of parallel to
crossflow resistance is also needed.

In Fig. 5.19 the parallel/crossflow ratio is evaluated for the
generalized models developed in Sections 5.3 and 5.4. For turbulent
flow the ratio is approximately 0.02 * 0.0l which means the crossflow

superposition factor h)(6) dominates both components of Eq. (5.64) for
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Figure 5.18 (x,y) coordinate system.

120



*OoT31RI MOTISsoxd/Tarreaed jo sbuey mﬁww aanbtg

a9y

000°0¢ 00G‘01 000°T 001

L} ] 1 LI R L B L] v Yy TV T T ¥

“fn;r/’ -
~ =~ -

L S N -

! N |

! N\ ]

~ 6870 |.ur! 0°9 | sz0 | 9te-0 juarnqang ~ -
o T o -
0°1 ooy 0°'1 001 Irutwe]
r N 4
w d u L4
r MOT JSS0aD MOTJ [Oo11R2Cy -
. T o m T L

4 A 2 I I D . | 1 1 A b s 4 1 1 1 1 i

(006) Ty
(o0) 4

g

(283

121



all angles except very close to parallel flow (8 < 3°). Hence the exact
numerical value of the parallel/crossflow ratio is insignificant.
For all data-model comparisons a value of 0.02 is used.

Theoretically, all combinations of the individual superposition
factors g)(8) and h)(8) should be examined, however since g)(0) has a
negligible contribution we shall consider only the six basic
combinations listed in Table 5.4.

The normalized drag and lift components are plotted in Fig. 5.20
and 5.21. Because h)(8) is the dominant term models (:), (:), (:), and
(:) are all still grouped together. In comparisons with all the
inclined flow data we shall use only models (:) and (:) since they
represent the span of the different models. After assessing the
composite superposition models (actually h;(8)) the significance of
superposition factor g;(8) will be appraised; but first we present the
inclined flow resistance data base.

5.7 Published Data Base

Previous to this work four researchers have published data for flow
resistance in inclined rod arrays: Kazakevich [K.2], Groehn [G.4],
Moller [M.3], and BSttgenbach [B.4]. Several other researchers have
also published correlations for the normalized drag component of
resistance (i.e., Ry(8)/Ry(90°)) [I.2, G.1, Z.1].

5.7.1 Razakevich

The first published data for inclined rod array flow were by
Kazakevich in 1952. He measured pressure drops of air flows
progressively across one to seven rows of rods for inclinations of 90,

60, 45 and 30 degrees. The pressure drop measured was in the direction
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of flow yielding only the drag component of resistance. He measured six
in-line and eight staggered rod arrangements for Reynolds numbers,
Req, from 7,000 to 100,000.
5.7.2 Groehn

More recently, Groehn made measurements similar to Kazakevich.
Groehn, however, measured air flow pressure drops progressively across
one to ten rows of rods and for a more extensive range of inclinations:
90, 75, 60, 45, 30, and 15 degrees. His experimental apparatus and a
sample of his data are shown in Fig. 5.22. Groehn's goal was to develop
a more consistent pressure drop data set while also obtaining heat
transfer data for inclined arrays. Like Kazakevich he only measured the
drag component of resistance.

5.7.3 Moller

Moller developed a rod arrangement independent, two-dimensional
flow resistance correlation using superposition model (:) and specific
parallel and crossflow correlation from the literature. He attempted to
confirm the model by making both parallel and perpendicular pressure
drop measurements in inclined arrays. His rod arrays were of irregular
arrangements at inclinations of 90, 60, and 45 degrees. Because of
limitations of his air blower system he took only a few data points at a
Reynolds number, Re,, of =1,100. The few data points he did obtain
are questionable because (1) he attempted to measure the parallel
component of resistance directly, which is a very small quantity leading
to large experimental errors and (2) his array geometry was not well

controlled between different flow inclinations.
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Figure 5.22 Groehn's (a) experimental setup and
(b) sample data [G.1].
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5.7.4 Bottgenbach

The most comprehensive inclined flow data taken to date were by
Bsttgenbach. He measured both components of flow resistance for air in
a square array of P/d = 1.2. He measured the resistance vector across
one to ten rows of rods for inclinations of 90, 75, 60, 45 and 30
degrees. His data were taken in the high Reynolds number, Re,, range
of 55,000 to 550,000. Bsttgenbach's test apparatus and data are shown
in Fig. 5.23 and 5.24, respectively. The only drawback of Bdttgenbach's
data is a large scatter due to the localized measuring techniques he
employed.

5.7.5 Data Summary

The above data base is summarized in Table 5.5. All researchers
also measured the flow resistance for crossflow (6 = 90°) for the same
Reynolds numbers range and geometries as their inclined flow
measurements. Hence experiment specific normalized data can be obtained
from each data set.

5.7.6 Drag Component Correlations

Several empirical correlations for the normalized drag flow
resistance componeht have been published based on the above data and
possibly additional unpublished data.

Idel'chik [I.2] proposed a tabular correlation based on the data of

Razakevich [K.2].

9 30° 45° 60° 90°

Rx(e)

Rx 50 0.15 | 0.38 | 0.71 1.0
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Figure 5.23 B&ttgenbach's test apparatus [B.4].
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Groehn [G.1] compared his data to the above correlation of
Idel'chik and correlations by Michejew [M.4] and VDI-Widrmeatlas [V.1].
Groehn also proposed a tentative correlation dependent on Reynolds

number

Rx(e) [a(Re, sin 8) 0-242]

= (gin 0) d

R (5.66)
Rx(90 )

where a = 3.8 for P/d = 1.5.
Bsttgenbach [B.7] in a review paper published before his
experimental work recommended a correlation developed by Wiemer [W.4]

R (8)

— . 2.355
Rx(goo) = (31“ e) (5-67)

More recently Ziikauskas and Ulinskas [Z.l] have proposed separate
in-line and staggered correlations

R (0)
X

-2.412
= 1.107 ¢ 0-301(®) sin © (5.68)

R_(90°)
X
and

R_(9)
X

-1.733
—_— -0.478(0) .
Rx(90°) 1.245 e sin 6 (5.69)

respectively, where 8 is in radians.
All these correlations are plotted in Fig. 5.25. They are valid
only for angles greater than about 30 degrees. Excluding VDI-Wirmeatlas

they all agree rather well, within * 7 percent.
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5.8 Experimental Data

The test apparatus described in Chapter 4 was used to take
comprehensive flow resistance data in the Reynolds number range of 1,000
to 25,000 for 0, 30, 45, and 90 degree flow inclinations. In contrast
to previous experiments, water was used as the working fluid and
measurements were taken within a fully-developed flow region. Before
flow resistance data could be taken, the test section flow field was
studied to find the fully-developed flow region.

5.8.1 Flow Fields

A pitot-static tube (described in Sec. 4.5.5) was used to measure
the center line velocity and pressure profiles across the width of the
test sections at various elevations. A complete flow profile for the 45
degree test section at Re, = 7,450 is shown in Fig. 5.26, 5.27, and
5.28.

At the test section entrance a linear pressure gradient sets up
rapidly, while the velocity, despite the presence of a flow
straightener, takes longer to devel&b a fully developed profile. (A
velocity profile at x/Ly = 0.04 was not obtained because the support
pins obstructed pitot tube motion.) Toward the middle of the test
section the velocity profile does become fully developed. 1Ideally the
profile should be flat, however it is not. A dip at the left wall and a
peak at the right wall are observed. This can be explained by the
postulated flow description given in Sec. 5.1. The flow consists of a
mainstream moving to the right of the average flow direction (vertical

or x-direction). The pitot tube measures the vertical component of the

mainstream flow. As the mainstream flow approaches the right wall it
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Figure 5.26 45 degree test section flow profile,

Re = 7,450 (bottom).
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Figure 5.27 45 degree test section flow profile,
Rev = 7,450 (middle).
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diverted along the wall resulting in a higher vertical velocity
component; conversely, at the left wall rightward motion of the
mainstream leaves a stagnating region which is replenished by the
recirculating flow behind the rods. Thus, the presence of walls limits
the extent of an ideal flat, fully developed velocity profile. At the
exit of the test section the large plenum causes a flattening out of the
pressure profile and a corresponding acceleration of the velocity to the
left.

The effect of varying the Reynolds number on the resulting profiles
was examined at x/Ly = 0.56. Figure 5.29 shows normalized velocity
and pressure profiles for a Rey of 2,150 and 7,450. No significant
change in the pressure profile is observed. The velocity profiles agree
well too, when it is considered that the slower velocity is an order of
magnitude smaller measurement (velocity is proportional to YBp) and is
reaching.the lower limit of the instrumentation.

Similar profiles were observed for the 30 degree test section
(Fig. 5.30). Velocity profiles were .also taken for the parallel and
crossflow test sections and were reasonably flat as expected (Fig.
5.31). Pressure variations across these latter two test sections were
too small to measure, hence a flat pressure profile was obtained.

5.8.2 Flow Resistance

Solving the conservation of momentum equation, Eq. (3.8) and (3.9),
for a
© steady state,
* two-dimensional (x,y),

* fully-developed flow; with

138



(Pg = ) ® Re = 2,150

0.0 (po - py)avg a Rev = 7,450

® Re 2,150

7,450

-&---
.“4
<
[}

(V'.) ' [ ] Rev

o @ &
(8))
f

F

-
L ]
o

Figure 5.29 Effect of Reynolds number on velocity and
pressure orofile, 45 deqgree test section.
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Figure 5.30 30 degree test section flow profile,
Rev = 7,450.
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Figure 5.31 Parallel and crossflow test section
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* gravity in the negative x-direction, and

* constant porosity;

gives
®RD> = - ‘?Fx B> - og (5.70)
P =
<R > = - -5 <p> .71
y " P (5.71)

the momentum equation for a control volume within the fully-developed
region of a test section.

As shown above, the pressure field is linear in the fully-developed
region so the partial derivatives can be accurately approximated by

measurable, differential quantities, thus

Apx
Rx = <RX> = -i-— (5.72)
X
Ap
R = <R)> = —L (5.73)
y y Ly

where the gravitation term has been dropped since it is already included
in the Ap, measurement. Finally we may obtain the total resistance
vector <R> by simply measuring the x- and y-component pressure drops
within a fully-developed flow region.
Figure 5.32 shows the measured variables and typical locations.
The complete tabulation of data is given in Appendix E. Plots of the
reduced data are shown in Fig. 5.33 through 5.38. The least square
curve fits are shown together in Fig. 5.39 and also listed in Table 5.6.
The large scatter in the reduced parallel flow (86 = 0°) data is

because a loop temperature of 60°F (15°C) was assumed for all runs.
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Figure 5.39 Flow resistance curve fits.
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TABLE 5.6

Linear Fits for Flow Resistance Data

Flow Resistance Range

x A (60 (Sparrow and Loeffler) Rev<2,510
R (0°) = ‘
x 0.169 (Rev)0'75 (Marek + Blasius) | 2,510<Re <20,000
* A

0oy 2o | ee---

y

. 0.858 (Re )°"7%° 1,000<Re < 5,230
Rx(30') }0-800

0.604 (Re 5,230<Re_<27,000

. 0.0223 (Re SO 1,000<Re < 4,360
R (30°) 0 966

y 0.134 (Re ) 4,360<Re_<25,000

R

. 1.42 (Re )°%%7 1,000<Re < 4,500
R_(45°)

X 1.46 (Re )°"%%° 4,500<Re,_<25,000
. 0.0936 (Re )" 1,000<Re < 3,370
R_(45°) 0.827

y 1.19 (Re ) 3,370<Re_<25,000
. 0.788 (Re )°"%%! | 1,000<Re < 2,580
Rx(go.) 0 765

4.65 (Re_) 2,580<Re_<20,000

*

R (%0°) =0 e

y
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Although there is some scatter, the general agreement with current
correlations is still quite good. The linear fit of the crossflow data
(6 = 90°) is compared with correlations in Fig. 5.9. Again the
agreement is good. At higher numbers the data is below the mean, but in
light of the accuracy of crossflow correlations in general, the
deviation is not unexpected.

5.9 Model, Correlation, and Data Comparison

Now we systematically assess the Reynolds number (Req),
inclination (0), porosity (Y,), and rod arrangement dependence of the
data base and compare them with the superposition models and
correlations (which are only a function of inclination). Remember when
we asgsess the drag and lift component resistances as predicted by the
composite superposition models, Eq. (5.65), we are only appraising the
crossflow superposition factor, h;(6).

5.9.1 Correlation and Composite Superposition Model Evaluation

The purpose of normalizing the resistance components by the
one-dimensional correlations is to separate the inclination dependence
from the geometry and Reynolds dependence. This, of course, assumes
that the geometry and Reynolds dependence are completely characterized
by the one-dimensional limits, independent of the flow angle, 6. To
test this hypothesis, consider first the geometry dependence of the
drag/lift flow resistance components for a fixed Reynolds number
(Reg = 10%).

Figures 5.40 and 5.41 show the data for all geometries plotted

versus inclination, 8, and versus porosity, Y,. Also plotted for
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comparison are the two superposition models (:) and (:). Bottgenbach's
data is for a higher Reynolds number, but is included here by
extrapolating down to Rey = 10", Kazakevich's staggered data points

(vyy = 0.792, 8 = 30°) and (Y, = 0.870, 8 = 60°) which appear low,

should be weighted lightly since they are based on only three rows of
rods. For total drag resistance no distinct porosity or rod arrangement
dependence is apparent. The scatter in the data base is also nicely
bracketed by the two superposition models. The few data points for the
lift resistance component, on the other hand, suggest Model (:) is more
appropriate.

Now we examine the Reynolds number dependence for a fixed, mean
porosity. Figures 5.42 and 5.43 show Reynolds dependence of the
available data for v, ~ 0.65. Again for reference, superposition
models (:) and (:) are also plotted. Examining the curves collectively
the only justifiable assumption is that the normalized resistance
components are constant independent of Reynolds number. A slight
decreasing trend in the drag component and increasing trend in the 1lift
component could be postulated; however in light of the absolute
differences between data sets, limited Req range of each data set and
overall limited quantity of data, correlating this trend for general use
is not justifiable. Like the geometry dependence, the Reynolds number
variation in normalized drag component is bracketed by the two
superposition models (:) and (:). One might argue that the
superposition models already account for the above mentioned dependence
by the parallel/crossflow ratio term (A/B)(Re )™ D, which has been

assumed constant in the above comparison. Although this dependence is
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in the right direction, the magnitude is so small that no significant
change would be observed (about a one percent change over the entire
Req range considered.)

The empirical correlations for the normalized drag component are
replotted in Fig. 5.44 with superposition models (:), (:) and (:) and
the geometry and Reynolds number averaged data. All the correlations
also fall between superposition models (:) and (:) and match the mean of
the data, however below 30 degrees the correlations either diverge or
approach zero resistance. Model (:) nicely predicts the mean of the
correlations and data (the exponent m of model (:) was chosen to match
the mean of the data base, m' = 0.4). Figure 5.45 shows the normalized
lift component as predicted by models (:), (:) and (:) along with the
averaged data. No empirical correlations for the lift component have
been published to date. For the limited data available, superposition
model (:) appears good.

5.9.2 Recommendations

From the above comparisons superposition model (:) overall best
predicts the average of the data and correlations. Unlike the empirical
correlations it reduces to the parallel flow limit and predicts a lift
component of resistance.

All the superposition models lie within the error bars of the
data. Robinson [E.1] performed a sensitivity study to assess the
importance of the range in the data base on overall calculations. He
used superposition models (:) and (:) to predict the overall pressure
drop and flow dietribution of a baffled heat exchanger experiment. He

concluded that the choice of superposition model has a much smaller
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impact on the predictions than the choice of the accompanying
one-dimensional correlations (R||(0°) and RJ-(90°)). Within the
sccuracy of the available data for both incline and one-dimensional
flows, the geometry-Reynolds number independent superposition models are
sufficient for applicatien in computer codes.

In conclueion, for predicting turbulent flow resistance in incline
rod arrays, we recommend:

(1) For general design using superposition model (:) with

m' = 0.4 and n' = 0,

p|§!?|

1
® =il 5wy

plv 0.6 v 0.4
bJ.[I!msll ll)—v l—msl lms.l.l ms | £ | (5.74)

since it best predicts the data base average over all ranges of
inclinations.

(2) For precise deeign calculatione consulting the actual
available data base for the conditions of interest before using
the generalired superposition model above.

(3) For current multidimensional computer code applications using

superposition model (:)

1 Pl
Dv 2

<R = f <
R TURTRL et

plv
blllvms_]_“%;#lvmﬂlsl (5.75)
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since it is easier to implement than model (:). Considering the
overall accuracy of thermal-hydraulic codes, the accuracy lost by
using model (:) is far outweighed by the simplicity gained in
implementing model (i) in the current staggered mesh numerical
algorithms. (The simplification arises from each resistance compo-
nent being only a function of the corresponding velocity component.)

5.10 Individual Superposition Factor Evaluation

The previous section recommended superposition models for turbulent
flow, where the only requirement of the parallel superposition factor
g1(8) was that it approached one as 0 approached zero. For laminar flow
the above models have not been validated and clearly need further
examination.

In laminar flow the parallel/crossflow ratio of Eq. (5.65) is
approximately 0.25, resulting in a significant contribution of g,(8) to
the total resistance prediction for flow inclinations as large as 60
degrees. Physically, skin friction is no longer a negligible portion of
the total resistance. The correct way to appraise the superposition
models for laminar flow is to cssess h)(8) and g;(6) independently with
dzta for the parallel and crossflow resistance components evaluated from
comprehensive inclined flow data.

We shall illustrate this procedure by using the comprehensive
turbulent flow data. This procedure should be repeated with laminar
flow data for proper evaluation of the superposition models for laminar’
flow. To date no laminar flow data for rod arrays have been published.

The data of MYller, Bdttgenbach, and this study (Fig. 5.46) are

evaluated for the parallel and crossflow components and compared with
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Figure 5.46 Parallel and crossflow resistance components.
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the individual superpcsition models. The superposition factor h(8) is
shown in Fig. 5.47. To no surprise the crossflow component data
generally lie between models (:) and (:). This was already shown in the
last section with a more complete data base. Notice, however, that at
about 45 degrees the resistance data becomes progressively larger as the
Reynolds number (or Reynolds number range) decreases. This can be
explained physically as an increasingly larger contribution from skin
friction which is not correctly modeled by the principle of independence
(model (:)).

This hypothesis is further illuminated by looking at the deviation
of the drag resistance component from model (:) for low Reynolds numbers
(Fig. 5.42); and for arrays of intermediate porosity and flow
inclination (Fig. 5.40). At low Reynolds number skin friction becomes a
significant portion of the total resistance. Also for intermediate
porosities and flow anglee the flow exhibits an appreciable amount of
weaving motion, not exhibited in crossflow, which would explain a larger
skin friction and consequently larger total resistance.

The parallel resistance component comprised totally of skin
friction, further confirms the hypothesis of a larger skin friction in
incline flows. Figure 5.48 shows the models and data for g,(8). The
data is much larger than any of the model predictions, but is also not
well correlated. Fundamentally, the lack of correlation is expected
because for turbulent flow the parallel resistance component is a very
small component of a much larger total resistance, making measuremenct

and correlating of the quantity difficult. 1In laminar flow g,(8)
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would have a 'arger contribution, data would be better correlated, and a
better evaluation of the parallel superposition models could be made.

In conclusion, a comprehensive data base of laminar flow resistance
in inclined rod arrays is desired. Ideally drag and lift resistance
components should be measured in laminar flow for inclinations of 15,
30, 45, and 60 degrees. Within this range of angles g;(8) and h(8) can
both easily be evaluated and hence modeled. Hopefully with this
data base a better physical understanding of the separate skin friction
and form drag superposition principles can be obtained. Then when the
superposition models are applied to the limiting case of turbulent flow
they will smoothly reduce to the models recommended in the previous
section.

5.11 Summary

In this chapter a comprehensive review and evaluation of
correlations, superposition models, and data for single-phase incline
turbulent flow resistance in rod arrays was performed. The first
complete flow resistance data for incline water f{low was taken. This
data was taken in a well-defined, fully-developed flow field at Reynolds
numbers ranging from 1,000 to 25,000. This data together with
Bottgenbach's high Reynolds number air flow data are the first to verify
the superposition principle for calculating the lift component of
resistance.

In the range of accuracy of the incline flow data base no
generalized geometry or Reynolds dependence can be formulated. 1In
addition the current accuracy of crossflow correlations limits the

accuracy that can be achieved by using a superposition formulation for
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calculating incline flow resistance. In general, superposition model (:)
best predicts the complete data base. For multidimensional,
thermal-hydraulic codes superposition model (:) with a circumferentially
averaged crossflow correlation is sufficient and the simplest to
implement. To date no circumferentially-averaged crossflow correlations
have been developed.

An attempt to understand the actual flow field in a rod array,
interpret the separate effects of form drag and skin friction, and
develop a physically based superposition model (i.e. model (:)) proved
inconclusive fcr turbulent flow. It was inconclusive primarily because
form drag dominated all flow inclinations. These developments, however,
may prove useful in laminar flow, where to date, superposition models

for rod arrays have not been validated.
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CHAPTER 6

TWO-PHASE FLOW MODELING

The two principle constitutive relations for two-phage flow
hydrodynamic modeling are the two-phase flow resistance &nd interfacial
momentum exchange force. In this chapter we shall focus on developing
models for the interfacial force which governs the relative slip between
the phases. The time/volume averaged interfacial momentum exchange
force {Eid> is the average of the shear and pressure forces on the
interface between gas and liquid, mathematically

o> 8

-1

[l B - epr e gy e (6.D)

At Vf Ai

= b

where the integral of the local pressure is relative to the interfacial
surface averaged pressure {{;i}}i.

Equation (6.1) is a local definition of the interfacial force
applicable for all flow situations. However in application the local
variables in Eq. (6.1) are unknown, so it is desired to develop an
integral correlation for {Eid> dependent only on known average flow
variables for the specific fluid topology and geometry of interest.

First a formal development of the modeling correlations shall be
presented; then current one-dimensional correlations are reviewed.
Next, based on data taken in this study, one-dimensional correlations
for parallel and crossflow in rod arrays will be examined. Finally,

single and multiple bubble observations in inclined arrays are

discussed, and multidimensional formulations for rod arrays proposed.
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6.1 Model Formulation

6.1.1 General Formulation

To see the contribution to the interfacial momentum exchange force
in terms of momentum of each phase we solve the phasic momentum
equations for {Eid>

o> = o> = - > (6.2)
g § — puie )
where the mixture momentum (surface tension forces) <Mp> is
neglected. The phasic momentum equation, Eq. (A.89), when solved for
the interfacial force under the constraints:
* constant phasic densities,
e gravity as body force,
* constant volume porosity,
* no phase change, and
e combined viscous and turbulent shear, i.e.,
1> B T+ iy
=K 2k =k
becomes

> = R > - <adp g + <adVLp >
-2 -8 g& g

+ Ap; <a> - v-[<a><<§:>>] (6.3)
+ 2 [<adp <K >>] + Ve[C  <adp <<¥ >3¢5 >>]
3t g -8 Zgm g g —
and
d =
Mp> = R> - (1 = <ad)pgg + (1= <ad)V<<p,>>
- 8py o> - Ve[(1 - <@>)<<T>>) (6.4)
3 = = =
+ - [(1 = <a>)p,<<¥ 3] + Tolg, (1 = <a>)p <V, >><¥,>>]
where

{a> e <a > = = <Ka,>
g L
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Now starting with the identity

M = (1 = <)M + x>
(6.5)
d d
= (1 - <a>)<M > - <ad><M,>
— —f
and substituting in Eq. (6.3) and (6.4) gives
<§g> = (1 - <a>)§§g> - <a>§51> } Structural Resistance Force
- - <a>)<a>(pg - p£)§_ } Buoyancy Force
+ (1 - <a>)<a> V(<<§g>> - <<py>>)
; ; Mechanical Disequilibrium
+ ((1 - <a>)Apg + <a>Ap£)V<a> Forces
e
- {(1 - <)V [<a><<;g>>] - Viscous and Turbulent Shear
e Forces (i.e., Basset and
<a>Ve[(1 - <)<z, >>1} lift forces)
¢ (1 - <o) 2 [<adp <& >>] +
g —g

at

Spatial and Temporal
} acceleration Forces
(i.e., virtual mass)

Ve[C <adp <<v >><<v >>1})
“gm g -8 —8

@ {® [ - a>)p K<y, ) +
at

Ve[g, (1 = <a>)p <y, >><Ky ]} (6.6)

The first two terms are the steady state forces and the remaining are
transient forces.

In practice, correlations for the individual contributions are
modeled separately and then assumed mutually independent so that the
total interfacial force can be evaluated by summing the individual
models. 1In steady state the structural resistance and buoyancy forces

are modeled together as an interfacial drag force. In transients,
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correlations for the Basset and virtual mass forces have been developed
[D.1, 1.5]. Basset force is the effect of acceleration on viscous drag
and boundary layer development. Virtual mass is the force associated
with accelerating the surrounding liquid phase when the relative
velocity changes. The inclusion of virtual mass is important to
obtaining numerical stability in transient two-fluid codes, however its
contribution to phase separation is not completely understood. The lift
force may be important only in viscous systems, and the mechanical
disequilibrium only for rapid depressurization situations.

6.1.2 Drag Force Formulation

In this study we shall be concerned with modeling the steady state
drag forces which are the dominant terms for a large range of gas-liquid
flows. We shall also restrict our discussion to flows vhere the gas
phase is dispersed in the liquid (i.e., bubbly flow.).

First consider partitioning {Eid> into individual drag forces
EDj Vbj> for each closed interface j, where Vbj is the closed

interface (bubble) volume and Fpj is the drag force per bubble volume.

Then
ng.v.
. : —Dj bj
_<Mg> - Interfacial Force _ j (6.7)
Fluid Volume Ve

where N is the number of bubbles in the averaging volume. Now noting
that

N
V =) V.. = <adV (6.8)
i
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Eq. (6.7) becomes

gb
F_ .V .

(6.9)

F
<ad> N -
b
L Vs
j

The bubble drag per unit bubble volume Fj, may be interpreted either

as the drag force of an average size bubble in N, or if all Ny

bubbles are of identical size, the force on one of the bubbles.
Comparing Eq. (6.9) with Eq. (6.6) for steady state flow where only

the liquid phase contacts the solid surfaces (§58> = () gives

H* R L%

= <_!_l_,’> + (1 - <<:n>)(pg - 02)5

(6.10)

We have now reduced the problem of modeling {!id) down to modeling
the drag force on a typical bubble of given volume V, in a specified
environment.

One-dimensional drag formulas for a bubble have historically been
modeled in the form
Aproj pllzflz

Vb 2

|fol = C (6.11)

D

where Cp is the scalar drag coefficient, Aproj, is the projected
area of the bubble, and |Vr| is the relative velocity between the
bubble and liquid. This formula can be generalized to multidimensional

flows for thermal-hydraulic code applications thus

p,|v
P-I—rl

Fy = S a - v, (6.12)
where ED is now a drag coefficient tensor; the relative velocity is

defined in terms of volume-averaged velocities
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>

KV D> = KL
—g —f
(6.13)

v > =-<Kv,>
— —£
where the second equality applies to a single bubble; and Aproj/vb

has been defined for a spherical bubble of equivalent volumetric

diameter Dy,

2
D,
| | S
api‘ 43=.3.l (6.14)
D} 20
|
6

The drag coefficient ideally is a universal scalar constant
applicabie for all flow situations. This is true only if the bubble
shape (i.e., Aproj)n local gas, and local liquid velocities are used
in the model. 1In reality, however, only the average velocities and
phase volumes are known. To account for'the differences between local
variables and measurable average variables, the drag coefficient becomes
a tensor function dependent on the specific flow environment of

interest.

6.2 Flow Environments

Four eavironmental conditions which effect the bubble drag
coefficient gD’ are considered here: the geometry, gravitation field,
liquid velocity field, and gas distribution.

The geometry may be a large pool, round tube, or rod array. In a
large pool (infinite medium) the boundaries have no influence on the
liquid translation and rotation around the bubble. 1In a round tube or
rod array the liquid motion in the neighborhood of the bubble can be
inhibited by the zero liquid velocity constraint at the solid

boundaries. Consequently in restricted geometries the effective drag
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should be greater than that in an infinite medium. However, as will be
seen later, this is not always true.

For zero and low liquid flows the dominant driving force is
bouyancy created by the gravitational field. In these cases the
Jirection of gravity with respect to the flow geometry is critical. For
high liquid flows the flow resistance force is the dominant driving
force diminishing the importance of gravity. Also for nonzero liquid
velocities in some geometries (i.e., inclined rod arrays) the velocity
field tan change significantly from that of zero liquid flow. Thus the
drag coefficients correlated from and applicable for zero flow may not
apply for the flowing liquid fields. Last, a system of many bubbles in
close proximity will influence each other either increasing or
decreasing the average bubble velocity.

It is not practical to study all possible combinations of
environmental conditions that occur. Instead a few fundamental cases
are addressed, the importance of each weighed, and if possible
superimposed to describe more elaborate environments. For example the
drag coefficient has been correlated extensively for a single bubble in
an infinite medium (with buoyancy as the only driving force.). These
basic correlations are then corrected for the presence of multiple
bubbles, finite geometry, or flowing liquid.

In correlating drag coefficients several dimensionless groups have
successfully incorporated the influence of fluid properties. They are

* The Edtv8s number
2
A glp, pg)nb

Eo (6.15)

(o]

The dimensionless bubble number where D, is the equivalent
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spherical bibble diameter

6V
D, 2 (_byr/3 (6.16)
m

* The bubble Reynolds number

p,D v
e, & "l (617
My
and
* The dimensionless viscosity number
L
. a8 (P -p)
wad’t e '8 (6.18)
p2 03
L
which is sometimes defined as
A A
N, 8 /s (6.19)

6.3 One-Dimensional Drg§:Coefficient Models

In this section we review and amend the state of the art of the
drag coefficient for one-~dimensional bubbly flow; specifically for
single and multiple bubbles in an infinite medium, vertical tubes,
parallel and crossflow arrays.

In one-dimensional flow the relative velocity'zr, and drag force
Fp, are collinear so Eq. (6.12) can be written

2|F
Cp =S = — 0 DIT\[:'IZ (6.20)
p L|=r
where the drag coefficient Cp is a scalar. For zero liquid flow Eq.
(6.20) reduces to
2|Eq|
appll§!g>|2

6.3.1 Sigg}e Bubble in Infinite Medium

D (6.21)

Three basic regimes of a single bubble flowing in an infinite
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medium have been identified. They are spherical viscous bubbles,
distorted bubbles, and capped bubbles. Sample bubbles for these three
regimes are shown in Plate 6.1(a), (b), and (c).

Table 6.1 lists the reviewed models for drag coefficient in an

infinite medium, Cp_. Figure 6.1 plots the reviewed models versus

bubble Reynolds number for a viscosity number M of 10 ! (characteristic
of gas-liquid systems such as air-water and steam-water). The low
Rep,, monotonically decreasing region is the viscous regime, where
the bubbles behave as a sclid sphere. The monotonically increasing
region is the distorted regime. The high Rep_ plateau is the capped
regime. As shown in the insert of Fig. 6.1 the liquid purity can effect
the transition from viscous to distorted bubbles. This is because
surfactants in contaminated liquids effect the surface tension forces
which determine the bubble volume at which distortion from spherical
begins. For very pure liquid systems internal circulation of the gas
reduces the bubble drag, dropping the drag coefficient below that for a
solid sphere [C.3]. Figure 6.2 shows the regime boundaries as predicted
by Ishii [I.3] end Peeble-Garber [P.1] overlaid on the regime map of
Clift et al. [C.3]. The distorted regime of Peeble-Carber is small
because their model is based on data in pure water systems. In the
developments to follow we shall use the infinite medium drag model of
Ishii as a base since it is the most comprehensive model to date.

Figure 6.3 shows air bubble rise data taken in standing water in

the experimental test duct (The data is tabulated in Appendix F).
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TABLE 6.1

Drag Coefficient Models for sin!le Bubble in Infinite Medium

4
A 2I-‘3|>| A "znbllr.l qd gy (P, - py)
De 2 ' - ’ 2 .3
.ppllltnl Uy pl g
Model Drag Coefficient CD. Range
25 (1 4+0.18e?75) §/% ¢ 3672 (1 4 0.1 Re®75)
Re be ~ Re? be
bes be
Iehii
[1.3] glp, - p
.2. Db . 8 elsevhere
3 o
2 D, >4 —_—
k] (P, - p.)
8Py P'
TRAC-PIA 240 Rey < 0.1
{T.3] 24,’Reb. 0.1« Reb“i 2
18.7/Re 2 < Re < 248
b. b.—
0.44 248 < Reb.
Stonecypher -
[S5.5] 0.889 + 0.03421 ln(kfb. viscous bubbles

26. 3% hb.* 0.00144 (ln(Reb.))
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TABLE 6.1 (Continued)

Drag Coefficient Hodels for siggle Bubble in Infinite Medium

Model Drag Coefficient cD. Range
24/Reb. Reb- S_ 2
18.7/Re? " 68 2 < Re, < 4.02 # 0-31%
Peeble and be De —
([;;ﬂﬁr 0.0275 H Re! 4.02 W02 ¢ ge < 3.10 W 025
. a» -» -
0.82 #°*%5Re 3.10 M 925 ¢ Re
b. b-
?;lzi. 6.3O/Reg;3°5 viscous bubbles
Haas and .
viscous bubbles
Brauer 0.70
(R.3) 14.9/Reb- Reb. >2
Grace CD. - (cD.)cont /(1 + P)z distorted bubbles
?;'3;1 wvhere contaminated water: I' = 0
(¢ ) cont. ™ fen[Re, , M) pure water: I = 2
= f:n[Db, ”g/"zl
Clift 8
et. al. - capped bubbles
(c.3] 3
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Figure 6.2 Bubble shape regimes for buoyancy flow in
infinite medium (adapted from Ref. [C.3]).
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Good agreement between this data and previous work is shown in Fig 6.4,
reproduced from Clift et al. [C.3]. Also plotted in Fig. 6.3 is the
model of Ishii. His model predicts the average trends well, however it
does not account for the peak in rise velocity at Dp = 0.06 inch

(0.15 cm) caused by the relatively pure water system.

6.3.2 Multiple Bubbles in Infinite Medium

Ishii [1.3] has developed a bubble drag coefficient model for
multiple bubbles in an infinite medium. Additional bubbles in the
neighborhood of a single bubble will alter the single bubble drag
coefficient by adding resistance to deformation of the surrounding
medium and by adding direct interaction between bubble wakes. A
detailed derivation of Ishii's model is given in Appendix G.

In the viscous regimes Ishii hypothesizes that similarity between
single bubble and multiple bubble drag can be drawn when the liquid
viscosity is replaced by the mixture viscosity, p,. The justification
for using mixture viscosity similarity is: as a bubble moves through a
dispersed two-phase medium it causes translation and rotation of the
medium in the neighborhood of the bubble. The addition of discrete
bubbles in the liquid makes the surrounding medium appear more rigid
increasing the resistance to motion. This increased resistance is
accounted for by the higher viscosity of the mixture relative to that
for the liquid alone. The increased drag results in a slower rise

velocity than for single bubbles. The resultant drag coefficient is

) H
cl, [Re,, 1 =2 (B)(1+ 0.1(Re,, —2)0°79) (6.22)
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where the superscript V denotes viscous regimes, the prime denotes

multiple bubbles, and for bubbly flow the viscosity ratio is

u
L (6.23)
uz 1 - <a>

In the distorted regime the single bubble drag is independent of
relative velocity and viscosity. Assuming that the same is true for
multiple bubbles and maintaining continuity of drag (and relative
velocity) at the viscous-distorted transition point gives

v VD

glp, = p_ ) C, [Re | ]
D, [Re., 1=2D t 8 Do ba (6.24)
D'w ' b'w b
3 o &V [re'?]
Dm bm

The transition point drag coefficient ratio can be evaluated from the

viscous regime correlations at the transition Reynolds number Re:D.
[~

Ishii approximates ReVD by the Reynolds number at the viscous-Newton

b

transition, ReVN = 1,006 (The Newton regime is where the solid sphere

be

drag coefficient reaches an asymptote of 0.45). Using approximations to

reduce the formula to an explicit expression gives

v VD v VN 2
CpratRepr ] CpefRepr b 104 17.86 £'[a]57 (6.25)
v VD v VN 18.86 f'[a]
Cp, [Rep ] Cp [Rey "]

where
£'la] = (1 - <a>)!*5 (6.26)

VD

b directly and using approximations only to

By solving for Re

reduce tc an explicit expression gives the more general formula
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B 0.460 6/7 1 2
1+ ——— f'[a]
Cg. [Rez? ] YN
® o _ H (6.27)
v VD 0.460
C [Re, ] f'[a] (l + )
DQ ba i /F‘: J

Equation (6.24) with Eq. (6.25) or (6.27) gives multiple bubble drag
coefficient in the distorted regime.

In the capped regime multiple bubbles interact with the wakes of
neighboring bubbles creating a churning, hence this regime is more
appropriately called churn-turbulent. Ishii assumes the average motion
is governed by the drag of the largest bubble formed (i.e., capped
bubble) where the characteristic velocity is the drift velocity, '!gjl

= (1 - <°>)|XI" Thus the churn-turbulent drag coefficient is

c _ 8 _ 2
CD'.[Reb'o] = ;.(1 <a>) (6.28)

Notice that in this regime the drag is reduced by the bubbles following
in the wake of leading bubbles.

The multiple bubble infinite medium model is summarized in Table
6.2 and shown graphically relative to the single bubble model in Fig.
6.5. Ishii has shown good agreement with experimental data for a wide
range of flow conditions [I.3].

6.3.3 Single Bubble in Finite Geometry

The presence of a solid boundary in the neighborhood of a single
bubble will change the uniform liquid velocity condition remote from the
bubble to a no slip condition near the bubble. Physically, the finite
geometry restricts the translation and rotation of the surrounding

liquid around the moving bubble. The restriction increases the bubble
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drag and consequently decreases the bubble velocity relative to an
infinite medium.

The finite geometry drag coefficient Cpy, d- fined by

2
Pylv
IL—rwl
I.Eowl Cp [Rey ] 2 ——— (6.29)
can be expressed in terms of the infinite medium drag coefficient
P
F. | =c [Re ] a ____._pl'!'r“lz (6.30)
I-'le Deo beo P 2 :
by dividing Eq. (6.29) by Eq. (6.30); hence
v \ 2 |F
= T —T' m —Dw
Cpy[Re, ] CDQ[Rebw ] === .__, (6.31)
v v F
—TW —rw ~Deo

Models for Cpy, can be developed by substituting in correlations
for IXIV[!le developed from buoyancy driven data 'Epwl = IED°| = IEG"
and hypothesizing that the resultant drag coefficient holds for nonzero
liquid flow conditions where IEDV' # |E§“ Extensive data and
correlations are available for rise velocities in round tubes [C.3].
However minimal data has been taken in other geometries [G.7].
6.3.3.1 Round Tubes

In general the relative velocity ratio for vertical round tubes
I!IO[!le' ie correlated against the dimension ratio Dy/L¢
where the characteristic length L. is the tube diameter D, and a
second parameter, i.e., Rep. For Rep > 200 the Reynolds dependence
is negligible [C.3]. For gas bubbles of Rep < 200 the bubble
diameters are so small that the wall effect for the gecmetries of

interest here, will be negligible. Hence we shall consider only the
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dimension ratio dependence
D

0 a fra[2] (6.32)
D

|<

1|<

Correlations for the velocity ratio for Dy < 0.6 D in the viscous,
distorted, and capped regimes are listed in Table 6.3.

For bubble diameters greater than 0.6 D the tube walls not only
restrict the liquid motion but also deform the bubble shape
significantly. The condition

D.
2508 (6.33)

D
is arbitrarily chosen as the transition point from viscous, distorted,
or capped regime to the slug regime. In the slug regime the bubble rise
velocity becomes independent of the bubble diameter and only dependent
on the tube diameter. In the slug regime it is therefore more
convenient to use a correlation for i!I| directly.
Figure 6.6 shows the correlated slug velocities in terms of Froude

number

Fr 2 |y e (6.34)

- gd(p, - ) ’
L 4

as a function of the tube diameter D, and fluid properties. The

corresponding slug regime drag coefficient CDS, can be written

D
cg=i‘._"_.}7 (6.35)
3D Fr

It is useful to solve for Izro[zral in the slug regime, Dp/D > 0.6,

for comparison with data. Normalizing Eq. (6.35) the infinite medium

capped bubble drag coefficient (Table 6.1) gives
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TABLE 6.3

Round Tube Relative Velocity Ratio

ro Db
Model —_— for — < 0.6 Range
v D
—r“
Viscous regime
Edgar [ ( b)]-l (bubble behaves
[W.7] 1+1.6 —l;- as fluid sphere,
My STy
D Viscous regime
Ladenburg [1+ 2.4 (_b)] 1 (bubble behave
[W.7] D as solid sphere)
Wallis 1 D viscous regime
[l _ b] (linear approxi-
[(W.7] 0.9 ;' mation of Edgar
: and Ladenburg)
Clift et al. [1 _ (Db)z]l.s distorted
(c.> D regime
Dy
, 1.0 for — < 0.125
Collins D
Capped regime
[#.7] ~(D, /D) D,

1.13 e

D

for 0.125 < - < 0.6
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Figure 6.6 Slug velocity in round tube [C.3].
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C
v C D
0l 2 [ D=7 (B)V/2 (6.36)
vC CS D
T

Db -1/
= 0.495 (—=)712 for Eoy > 70
D

Using the distorted bubble drag coefficient in an infinite medium

(Table 6.1, Ishii model) gives

s

v

—to| .72 b Eog'zs (6.37)
D 2

v

—rw

where Eop is defined in terms of the tube diameter D, instead of

Dp. In the viscous regime Wallis [W.7] proposes

S

Yro l)b ~-2

2| = 0.12 (2) (6.38)
v D

v

—Y oo

The velocity ratio correlations are plotted in Fig. 6.7 for

M< 100, Ideally these correlations could be extended to other
geometries providing the correct characteristic length L., is used in
place >f the tube diameter D.

6.3.3.2 Parallel Array

Single bubble rise velocity data were taken for the parallel test
section to examine the effect of rods on the bubble velocity. The data
(tabulated in Appendix F) is plotted in Fig. 6.8. The best fit curve of
the infinite medium data is also shown for comparison. Clearly the
parallel rods do increase the drag (decrease the bubble velocity) for
small bubble diameters. For larger bubbles, however, the drag in a rod
array is decreased relative to a bubble of the same diameter in an

infinite medium.
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Comparison of the relative velocity ratio with round tube
correlations is shown in Fig. 6.9 where the volumetric hydraulic
diameter D, = 0.466 inch (1.18 cm), is used as the characteristic
length (See Fig. 6.10(a)). The data does follow the correlations in the
viscous regime, transfers to the distorted-capped correlations at the
transition bubble diameter DyVD (as predicted by Ishii's model, See
Appendix G), then at Dy/Dy > 0.35 the data diverges from all round
tube correlations. This unexplained increased velocity for large slug
bubbles in parallel rod arrays has been also observed by Griffith
[G.7]. A complete understanding of the marked increase in slug bubble
velocity in rod arrays relative to equal volume bubbles in round tubes
or infinite medium is still unresolved. A plausible description of the
distorted bubble departure point at Dy/D, = 0.35, is the point where
the bubble diameter reaches 0.6 of the inscribed diameter of the rod
array Djngc, (See Fig. 6.10(b) for definition). Using the rod array

dimensions shows this correspondance i.e.,

DS
D 0.6 D. :

b o_ insc _ (0.6)(0.280 inch) _ 0.36 (6.39)
D D 0.466 1inch

v v

Further study is required before a full understanding of slug
bubbles in parallel rod arrays is reached.

For calculations performed later in this chapter the following
approximate analytical expression is used to model the parallel array

relative velocity ratio
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Figure 6.10 Definition of characteristic length for
square rod array (a) volumetric hydraulic
diameter, (b) inscribe diameter, and (c)
average gap width.
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D
1-_L () 0 <p, <D
0.9 D
v
VD
v D
| = 1 -1 (2 D" < D, < 0.6 D (6.40)
v 0.9 D v
—To v
1.12 0.6 D < D,

This piecewise approximation of the data is shown in Fig. 6.9.

6.3.3.3 Crossflow Array

Bubble rise velocity data were taken in the crossflow test
section. The resulting data (tabulated in Appendix F) are plotted with
the infinite medium best fit curve in Fig 6.11. The bubble drag in the
crossflow array is consistantly greater than the drag for a bubble in an
infinite medium (or parallel array). However when the relative velocity
ratio is evaluated and compared with round tube correlations (Fig.6.12)
where now the chosen characteristic lemgth L., is the average gap
width Tﬁap (See Fig. 6.10(c)), we again see a divergence for large
(slug) bubbles. With Téap as the characteristic length the viscous
regime trend and transition point are reasonably modeled with the round
tube correlations. Also Db/téap = 0.6 can be postulated as the
distorted-slug transition point, but again the slug velocity is much
larger than that for an equal volume bubble in a round tube.

For calculations performed later the following approximation of the

measured crossflow array relative velocity ratio is used
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1 -1 0 <D < DZD
0.9 T -
gap
vD
v D
il - L b 0 ¢p <0.6T (6.41)
v 0.9 T b b— gap
—T oo ' gap
0.85 0.6 L <D
gap b

This piecewise approximation of the data is shown in Fig. 6.12.

6.3.4 Multiple Bubbles in Finite Geometry

s

We mention here that the two bubble drag environmental effectsg--

multiple bubbles and finite geometry-—have been to date only studied
independently. The eff?ct of multiple bubbles in a confined geometry
has not been explicitly addressed. A model esasily could be developed by
superimposing the two contributions on a single bubble drag model,
however the mutual independence of the two contributions is still
unsubstantiated. This area needs further attention.
6.3.5 Liquid Flow

The experimental basis for all the bubble drag models developed
above has been buoyancy driven experiments in standing liquid. It has
always been hypothesized that the drag coefficient models developed for
zero flow also apply for flowing liquid systems because the relative
velocity between the liquid and gas and the total drag force correctly
account for the liquid motion and additional pressure forces. This
assumption is valid for an infinite medium. For vertical
one-dimensional flow geometries it is a reasonable assumption because
the liquid velocity field changes only slightly and the direction of the

total drag force is the same as the buoyancy force. However as will be
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seen in the next section this assumption dces not hold for
multidimensional geometries.

6.4 1Inclined Array Flow Observations

The dynamics of bubbles in standing and flowing liquid within a 45
degree inclined array were stuciied to develop insight into modeling the
interfacial drag force in multidimensional geometries.

6.4.1 Single Bubble in Inclined Array

Single bubble trajectories ¢p, and velocities |<!g>|, were
measured for standing liquid and two liquid velocities in the 45 degree
cest section described in Chapter 4. Figure 6.13 defines the measured
variables.

6.4.1.1 Zero Liquid Fiow

For zero liquid flow, the bubble velocity for 45 degree inclined
rods is in close agreement with the bubble velocity for crossflow at all
bubble diameters measured (See Fig. 6.14). The bubble trajectory,
however, deviates from the direction of the buoyancy driving force
(vertical) by as much as 10 degrees and .s very dependent on the bubble
size (See Fig. 6.15). Very small viscous bubbles are insignificantly
effected by the rods and rise vertically as expected. As the bubble
diameter becomes bigger than the rod gap spacing, P-d = 0.125 inch (0.318
cm), the bubbles tend toward the direction of the rod axis. However as
the bubble diameter becomes larger than the average gap width, Téap =
P-Yyd (0.212 inch, 0.529 cm) they tend toward the crossflow direction.

'These trends can be explained by concentualizing the bubble motion
as two descrete steps: an undeformed bubble step between rows of rods
(space step) and a deformed bubble step through the rod gaps. The

direction of motion in each step is toward the path of least
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Figure 6.13 Bubble (a) force and (b) velocity vector definitions.
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resistance. In the gap step the path of least resistance is toward
crossflow (shortest path out of the gap); in the space step the path of
least resistance is toward the rod axis (avoiding the gap). The smaller
size bubbles have a large undeformed step and on an average traverse
toward the rod axis. The larger size bubbles have a large region where
they are deformed, consequently have a large, deformed gap step, and
traverse on an average toward crossflow. Figure 6.16 illustrates the
two steps for a small and large bubble. (Tracks of actual bubble
trajectories for zero liquid flow can be seen in Plate 6.2(a).)

6.4.1.2 Liquid Flow

Single bubble trajectory data were obtained for large bubbles at
two average liquid velocities: 0.36 ft/sec (0.1l m/sec) and 0.56 ft/sec
(0.17 m/sec). For 0.28 inch (0.7]1 cm) diameter bubbles the bubble
velocity was also measured. This data is shown in Fig. 6.17, 6.18, and
6.19 respectively, and tabulated in Appendix F.

Shear forces in the flowing liquid (i.e., critical Weber number
criteria) limited the maximum observable bubble diameter. The
trajectories for bubbles smaller than about the average gap width were
not recorded because the bubbles did not follow a visually observable
path. Very small single bubbles also could not be followed visually.

To study the motion of very small and intermediate size bubbles a rapid
stream of bubbles were released and photographed.

6.4.2 Stream of Bubbles in Inclined Array .

To observe photographically the trajectories of small diameter
bubbles in an inclined array with flowing liquid, a steady stream of
bubbles was released from a small horizontal orifice inserted in the 45

degree test section. (The photographic technique is described in Sec.
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2.5 , T .
° I<z£>| = 0.56 ft/sec (0.17 m/sec)
) |<!£>| = 0.36 ft/sec (0.1l m/sec)
2.0 _— any
°
® o
1.5 = -
%
v > :
—g
|
[ ]
1.0 p— -
(ft/sec)
0.5 = -
0.0 1 —4 L
0.0 0.10 0.20 0.30 0.40
Db (inch)

Figure 6.19

Bubble velocity in 45 degree test section
for two liquid flow rates.

212



4.5.7.) Plate 6.2 shows a still and time exposured photography of a
stream of bubbles at three liquid flow rates: '{xg>| = zero, 0.43, and
0.73 ft/sec (zero, 0.13, and 0.22 m/sec). The white streaks in the time
exposed photographs mark the path of illuminated bubbles. The very dark
slanted lines are the 45 degree inclined rods. At the bottom the
horizontal orifice can also be seen. Two discrete trajectories are
clearly visible, one along the rod axis and one inclined, across the
rods. The resulting fan distribution of bubbles indicates that the two
paths occur randomly.

Plate 6.3(a) shows a smaller diameter stream of bubbles at
|<!g>| = 0.43 ft/sec (created by reducing the air flow rate). Small
bubbles when released in the mainstream (between rods) migrate behind
the rods and flow up along the rod axis. In contrast, intermediate size
bubbles as shown in Plate 6.2, interchange directions of flow randomly,
and large bubbles as shown in the data of Fig. 6.17 and 6.18 travel
continuously across the rods.

Plate 6.3(b) shows a close-up view of small bubbles moving behind
the rods in a helical motion. This can be explained by the single-phase
flow observations (Sec. 5.1) of vortices behind inclined rods spiraling
up along the rod axis. A model describing the two-step behavior
observed here will be presented in Sec. 6.5.4.

6.4.3 Two-Phase Flow in Inclined Array

6.4.3.1 Previous Work

To date only two multidimensional two-phase flow experiments have
been published. Baush and Lahey [B.10] performed a high void fraction
(<a> = 0.39 - 0.80) flow experiment in a vertical array one row deep and

24 rows wide. The two-phase flow was introduced at the bottom and
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0.0 F1/Sec
0.0 M/Sec

i<vg>l

)

= (0,43 F1/SEC
0.13 M/Sec

A
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=

v

|

B

l<y,>| = 0,73 F1/Sec
= 0,22 M/Sec

()

STILL TINE EXPOSURE

PLaTE 6.2 BumBLE TRAJECTORIES FOR A STREAM OF BuBBLES IN 45 DEGREE TEST SECTION WITH
(A) Re,, = 00, (B) Re,, = 1,600, anp (C) Re, = 2,750,
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(A)

BLow up OF PHOTOGRAPH
AT RIGHT,

(B)

PLATE 6.3 BuBBLE TRAJECTORIES FOR A STREAM of BuBBLES IN 45 DeGrRee Test Sectton (A) For
SmaLL BusaLes AT Re,, = 1,600, (B) Crose-up oF SPIRAL MoTion AT Re,, = 5,150,
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discharged with a range of flow splits at the top left and right sides
(See Fig. 6.20(a)). Aside from obtaining benchmarking void and liquid
velocity distributions, their main observation was that the inclusion of
the rod array reduced the phase separation observed in the test duct
without the array.

Osakabe and Adachi [C.l] measured two-phase pressure drops in zero,
15, and 30 degree test sections of similar design to the ones of this
study, except their test sections were inclipmed to retain the rod axis
vertical (See Fig. 6.20(b)). Osakabe and Adachi took pressure
measurements for zero net liquid flow in the separated flow regime shown
in Fig. 6.20(b).

6.4.3.2 Bubbly Flow Observations in Inclined Array

A photographic study of flow regimes in the 45 degree test section
was made for a range of gas and liquid flow rates. A map of the flow
conditions photographed is shown in Fig. 6.21. Plates 6.4 and 6.5 show
the flow development through the test section for two liquid flow
rates. These photographs verify that the bubble distribution observed
in the exit plenum is equivalent to that observed in the developed
regime within the test section. Plates 6.7, 6.8, and 6.9 are
photographs of the exit plenum for a range of inlet gas flow rates.

The key observation from this photographic study is that the
influence of bubble size on bubble trajectory observed for individual
bubbles also can be seen in global bubbly flow situations. At low
liquid flows a wide distribution of bubble sizes is generated and the
large bubbles migrate to the right wall across the rods, while small
bubbles migrate along the rod axis, to the left wall (See Plates 6.4,

6.6(b), 6.7(b), and 6.8(b)). At high liquid flows after the development
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J. = 0.0 Fr/Sec Jg = 0.49 F1/Sec
) = 0.0 M/Sec (B = 0,15 M/Sec
B8 =10 B = 0.026

J, = 1,14 Fr/Sec J, = 1,98 Fr/Sec
© = 0,35 M/Sec (m = 0,60 M/Sec
@ = 0.011 3 = 0,0065

PLATE 6.6 Frow DisTrisution AT ExiT PLENUM OF 45 DEGREE TEST SECTICN FOR
Jg = 0.013 Fr/Sec (0.0038 M/Sec).
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PLATE 6,8 FLow DisTRIBUTION AT ExIT PLENuM OF 45 DeGRee TesT SecTioN FOR
Jg = 0.87 Fr/Sec (0,27 M/Sec).
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region, only small bubbles persist. Small bubbles move along the rod
axis and up the left side, consequently the exit void accumulates at the
left wall (See Plates 6.5, 6.6(d), 6.7(d), and 6.8(d)). 1If the left
wall were not present then the bubbles would continue aleng the rod
axis.

At zero net liquid flow for small gas flowrates the bubbles
distribute according to size as expected from the individual bubble
observations (See Plate 6.6(a)). However at high gas flow rates a
channel of recirculating liquid is created along the right wall causing
the distribution of bubbles to be compressed toward the left wall. (See
Plates 6.7(a) and 6.8(a)). This regime was also observed by Osakabe and
Adachi when the rod array is also inclined (Fig. 6.20(b)).

The ability of drag interfacial force models to mathematically
predict the flow observations described above will be explcred in the
next section.

6.5 Multidimensional Drag Coefficient

6.5.1 Current Code Models

Two-fluid thermal-hydraulic codes currently model the interfacial

force §§1d> by only the steady state drag force,

P v
d, _ _ L |u¢|
<_D_1_i> = < ED = <a> 51) ap _.2__lr (6.42)
where
v, = §!g> - §!£> (6.43)

(A few advanced codes have included models for the virtual mass (spatial
and temporal acceleration) forces principally to add numerical stability

to the solution algorithm.) The drag coefficient Cp is
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modeled several ways:
71) by a correlation for a single bubble in an infinite medium,
i.e.,

gD = CD = CD°° (Sec. 6.3.1)

(2) by a correlation for multiple bubbles in an infinite medium,
i.e.,

S =% = %,

(Sec. 6.3.2)
(3) by a large number yielding homogeneous flow, i.e.,

= = e
¢p = Cp = 10

(4) by an empirical correlation of average void fraction <a>,
(R.3, L.3, K.3] generally based on one-dimensional round tube
data.

The following discussion of drag models will be presented in two

dimensions. A three-dimensional formulation can be reduced to two by
making assumptions analogous to those used for single-phase flow

resistance (Sec. 5.22). In theory the drag force is

Fo=F e * FDy.gy (6.44)
P v P \Y
_ L |—¢| L L—r'
F_ = CD ap.___;__. v et CD ap __.7;___ vry Ey (6.45)

where Cp is one of the above models and (x,y) is an arbitrary
coordinate system. Equation (6.45) is reference frame invariant,
independent of the coordinate system chosen. This formulation assumes
the drag coefficient correlated for zero average liquid flow (<!ﬂ> =

0) is valid for nonzero flows (§!£> > 0). 1In application, all the

codes reviewed [R.3, S.1, T.3, C.4] use a staggered numerical mesh which

provides only one velocity component at a given spatial cell (or
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surface). Hence to eliminate the computational time required to
interpolate the other velocity components in order to evaluate the total

relative velocity vector, the codes approximate Eq. (6.45) by

o] v p v
2 l rx| L | ryl
FE CD ap ___2._ Vox Ex + CD ap —2__. vry Ey (6.46)
lvrx| o) |1r| |vr I ) Ilrl
F -(CD Ja — " v _e +(cC Y)a — Ly e (6.47)
-D P X —X D P Ly =y
|| 2 v 2

This form is not reference frame invariant since the magnitude of the
effective drag coefficients in parentheses is coordinate system
dependent. However the (x,y) coordinate system of Eq. (6.47) was
arbitrarily chosen creating an unjustified directional dependence of
Fp.

Even when this discrepancy between theory and application is
eliminated (by implementing Eq. (6.45) in the codes) the current
interfacial drag models still do not predict the observations described
in Sec. 6.4.3. Simulations of the 45 degree test section for two liquid
flow rates were performed with a modified version of THERMIT-2 [K.3]
(The modifications are summarized in Appendix H). Comparison of the
predicted void distribution, Fig. 6.22(a) and (b), with observed void
distributions, Plates 6.4 and 6.5, respectively, show a discrepancy at
high flow rates. The isotropic interfacial model predicts the right
phase separation for low flows when the bubble size distribution is
large, but does not for high flows when the bubble size distribution is
small. Obviously the presence of inclined rods can create gross changes
in phase separation which are not incorporated in the present

interfacial models.
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Figure 6.22 Void distribution predictions of 45 degree
test section with THERMIT-2 (a) coordinate
mesh, (b) low, and (c) high liquid flow rate.
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In the remainder of this section we shall explore new interfacial
drag formulations which incorporate the physical presence of the rod
array.

6.5.2 Isotropic Model

The experiment/prediction comparison of the last section showed
that an isotropic drag model predicts the right direction of phase
separation for large bubbles. A more precise appraisal can be made by
comparing single bubble trajectories for large bubbles with predictions
of an isotropic model.

Consider an isotropic model where the scalar drag coefficient is

that for crossflow Cp| (Sec. 6.3.3), then

) Ilrl
v

E-D = CD_|_ ap _2.___1_ (6.48)

vhere vy is defined in Eq. (6.43). Figure 6.23 shows that the

isotropic model grossly underpredicts the measured bubble trajectory (A
sample calculation is given in Appendix I). More importantly, with an
isotropic model the maximum possible bubble trajectory is bounded by the
direction of the total drag force, y - 8, since_!r and Fp are

collinear and <vg> is vertical (See insert in Fig. 6.23). Thus it is
impossible to predict the observed large bubble trajectory with a simple
isotropic model.

6.5.3 Superposition Model

The next logical step is to introduce a tensor drag coefficient by
formulating a superposition model analogous to those developed for
single-phase flow resistance (See Chapter 5),

(6.49)

F F.., e + F e
-0 D|j =i pL -1
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Y v o] v

L l—r' b4 l—rl

F.= C a — v e +C a — v e (6.50)
-D DI} 'p 2 ]} =) D] p 2 r] -1

In Eq. (6.50) Cp|} and Cp) are the drag coefficients for the two
principle directions, parallel and crossflow, developed from data in
Sec. 6.3.3. The drag coefficient for parallel flow is less than that
for crossflow

c <cC (6.51)

This can be seen in Fig. 6.24 by the larger rise velocity for parallel
flow. With an anisotropic (tensor) drag coefficient, Fp aud v, are

no longer required to be collinear vectors. However the consequence of
Eq. (6.5]1) is to make the parallel flow direction more preferential,
resulting in the bubble trajectory ¢, being closer to the parallel
direction than the direction drag force i.e.,

¢b <yp-96 (6.52)

(variable definitions are given in Fig. 6.25) For the case of zero
liquid flow, Eq. (6.52) can be easily derived. The ratio of the drag

force components for zero liquid flow is

tan ¢ =.f24= = EEi; iEEJ:i
LTI T
(6.53)
= CDJ‘ tan eg
“ol]
but the restriction of CD|| < CDl. requires
8 <y (6.54)

g

Using the identity 8, = ¢, + 8, Eq. (6.54) becomes Eq. (6.52). Like

the isotropic model, the superposition model also restricts the bubble
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trajectory angle less than the total drag force angle although the
converse is observed experimentally.

The superposition model also fails to correctly predict the
magnitude of drag (bubble rise velocity). The drag is accurately
predicted by crossflow drag (as seen in the rise velocities of Fig.

6.14). The superposition model, however, predicts that the magnitude of

drag is
S| = _il_g.'il_i.z. = \r(cD”cos 8.)7% + (cDJ_ sin 6_)2 (6.55)
ap Py Yr

which is less than CDl. for all 8, < 90° since CD" < CDl.'

In light of the deficiencies of the above two models, in the next
section we introduce a new formulation which captures the observed
physics of two-phase flow in inclined arrays.

6.5.4 Two-Rggjon Model

6.5.4.1 Liquid Velocity Model

The time-exposure photographs of a stream of bubbles (Plates 6.2
and 6.3) show two discrete trajectories of bubbles, ome inclined across
the rods and one parallel to the rod axis. This observation plus the
concept of a mainstream and recirculating drag region observed in
single-phase crossflow and inclined flow (Sec. 5.1) suggest partitioning
the average liquid velocity for inclined flow into two regions. Region
(:) is the mainstream region of irrotational flow which weaves between
the rods. Region (:) 1s the recirculating drag region behind the rods

which spirals along the rod axis (See Fig. 6.26). To mathematically
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Figure 6.26 Two-region velocity model.
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describe these two regions we relate the two region velocities v2<:)
and v2<:>, to the average velocity <vg>, and the crossflow

mainstream porosity

ne
L]

5 /A, = vm/vf (6.56)

v ms f
(See Appendix D) by using continuity and assuming that:

* The mainstream flow volume V., defined for crossflow is
constant and applicable for inclined flows,

¢« The recirculating region velocity_zz(:), follows the rod
axis, li.e.,

Bl(:) =0° (6.57)

and,

* The net velocity of the recirculating region is the
component of the mainstream velocity in the parallel

direction, i.e.,

Ilﬂ-@l = l12®| cos BR'@ (6.58)
Physically, this last assumption places no slip constraint on the
parallel component of velocity of both regions, but allows slip in the
crossflow direction because region (:) is constrained by the rods.

Continuity of mass in the parallel direction yields

Kf !/‘32) cos (02> =Kms |1£®| cos GE'@ +

_ _ (6.59)
(Af - Ams) I_!,’@I
and in the crossflow direction, yields
Ag |§!£>| sin <8,> = A _ IX&(:>| sin 62(:) (6.60)
Solving Eq. (6.58), (6.59) and (6.60) for 91(:> and Lzlc:)' gives
1
tan 6 = __ tan <9,> (6.61)
Oy :
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and

cos <62>
|.‘h®| = v ———— (6.62)
cos ©
:®
where the definition 6v = I;B/Kf has been used. Consequently the
velocity of region (:) becomes
61(:) =0 (6.63)

Ixa(:)| = |§!2>| cos <32> (6.64)
A graphic construction of‘x;(:) and_!g<:) is shown in Fig. 6.27.
6.5.4.2 Drag Force Formulation

Now consider individual drag formulations for each region
- gD(:) a EE_JEES:ll v (:) (6.65)
P 2 -T

and

F.o=C ,~ a ﬂﬂ@lv (6.66)

L %@ % %@
where

v =y -v (6.67)

) SORE OO

an

-‘ir@ = 13@ - _9’® (6.68)

The two formulas are linked to the average bubble (gas) velocity by

<v>=(1-A) v +Av (6.69)
e = ORI 10
where the function A is defined as the probability that a bubble of

given diameter is in a recirculating region (region (:)). All that

remains are models for QD(:) and A.

6.5.4.3 Mainstream Drag Coefficient

For zero liquid flow, bubbles rise between the rods similar to in
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Figure 6.27 Construction of mainstream and recirculation
region velocities.
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the mainstream region. Hence we postulate a correlation for QD(:)
which can be evaluated from the zero liquid flow inclined array data.
Remembering that the magnitude of drag is relatively constant we split

QD(:) into a scalar magnitude and directional tensor J

J“ 0

gp@ = gn@l 0 (6.70)

I
where
25|

A
“0| % % |n @l

The components of J can be evaluated in terms of measurable quantities

(6.71)

by substituting Eq. (6.70) into Eq. (6.65)

cos "’3|| + '-F-D' sin wf_l (6.72)

2
2 1)
p_* r(:) cos 0
2

Ey = |Bp]

@ (@2

2
a_p lv |
p * —r@ sin Gr

Yol > O

and then using Eq. (6.71) to get

Iy =208y (6.73)
cos 6r®
g =Sy (6.74)
sin Or(:)
The mainstream drag coefficient then can be correlated thus
= 0 .
IgD(:)l fenlCy s Cp) - r@! (6.75)
er® = ftaly, Db/fgapl (6.76)
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where the bubble diameter is referenced to the average gap width. Since
the only available inclined array bubble data to date is the 6 = Q, 45,
and 90 degree data of this study, we present here only a preliminary
model to demonstrate the validity of the two-region model. The
preliminary model assumes IgD(:>| 1s that of crossflow, CDJ_’ except in
the limit of parallel flow

C for 0° < p < ~5°

Dl =¥

(6.77)

IgD@' i Cp) for =5 < ¥ < 90°

and assumes the relative velocity deflection from Fp is small so that

er® ) (6.78)
The zero liquid flow measured deflection, ¢p = Br<:) - ¢, for the 45
degree test section (Fig. 6.15) has a maximum value of ~10°, which
most likely is the maximum for all angles 8, since in the limits of zero
and 90 degrees, ¢, = 0. The transition angle of -5 degrees in Eq.
(6.77) is arbitrarily chosen, but is required tc maintain continuity in
the parallel flow limit.

6.5.4.4 Recirculatiggnggion Drag Coefficient

The recirculating region drag coefficient gD(:) cannot be measured
from zero liquid flow data since region (:) does not exist for zero
flow. Drag measurements with flow also prove very difficult because of
the high speed and small size of the recirculating region bubbles.
However a good estimate of QD(:> is that for homogeneous flow (no slip)
since only small viscous bubbles have been observed in the recirculating
region and the interfacial drag for these bubbles is large. Also

contributing to the homogeneous flow assumption are the vortices which
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restrict the bubble motion along the rod axis, parallel to vl(:)'

Hence a preliminary model for the region (:) drag coefficient 1is

{ Cp for 07 < ¥ <5

c = (6.79)
'@ 10 for -5° < y < 90°

where in the limit of parallel flow gD reduces to ngl'

6.5.4.5 Weighting Function A

All that remains to complete the two-region model is a correlation
for the weighting function A--the probability of the bubble to be in the
recirculating region, 1i.e.,

A= ftn[Db/Lgap, <a>] (6.80)

Again a complete model for A cannot be developed with the limited data
to date. The two-region model, however, can be validated for the two
limiting cases:
(1) Large bubbles where the bubbles remain in the mainstream
region, A = 0, and
(2) Small bubbles where the bubbles remain in the drag region,
X =1,
Then a preliminary model for A is
{ 1 for 0 < D < d/2
A= (6.81)

0 for d/2 _<_ Db

The transition bubble diameter of half the rod diameter, d/2, is chosen
because that is the width of the recirculating region vortices. A
bubble larger than this width cannot easily stay in the region (:).

The complete model is summarized in Table 6.4. This model is valid

for nonzero liquid flows only.
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TABLE 6.4

Two-Region Model

‘l__’-u
[
[T}
o
o
N
A

J’m
I
ne
o
o
N
&

lr =.‘Lg® - lﬂ,@

11- =lg®-lf,®
3
2

A
v
1]
~~
—
}
>
A
<
C]

[}
>
<

10® for -5° < ¥ < 90°

{1 for 0<Db<d/2
A= -

0 for d/2 _<_ Db
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6.5.4.6 Model Validation

The single bubble data taken within the 45 degree test section
(Sec. 6.4.1) and the observed small bubble trajectory along the rod axis
(Sec. 6.4.2) are used here to validate the two-region model. The
velocity and trajectory of a single bubble were calculated with the
two-region model and for comparison with the isotropic model (See
Appendix I). In these calculations the resistance force Fr = <Rg>,
was evaluated from the single-phase flow resistance fits of Chapter 5.
This is an excellent assumption because a single bubble has a negligible
effect on the total flow resistance force.

Figure 6.28 shows a comparison of the predicted bubble trajectories
with data for a range of bubble diameters. The two-region model clearly
captures the severe difference between large and small diameter bubbles
not possible with the isotropic model. The data/model comparison is
shown again for large diameter bubbles in Fig. 6.29. The direction of
the total drag force is also plotted. Notice that the introduction of
the mainstream velocity.21<:), in a direction to the right of the
average velocity {vg>, correctly explains the large bubble
trajectories.

The 0.28 inch (0.7]1 cm) diameter bubble velocity data are compared
with model predictions in Fig. 6.30. For large bubbles the discrepancy
between models is not as severe as with trajectories, however the
two-region modei more closely predicts the available data. More
important, for small diameter bubbles the isotropic model is really not
applicable because the drag coefficient used is based on bubbles moving

across rods in the mainstream region where as we observed the bubbles in
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a recirculating, vortex flow moving along the rod axis. Bubbles flowing
in this recirculating region clearly will have a different drag.

This initial comparison demonstrates the potential of the
two-region model to predict single bubble motion within inclined
arrays. The extrapolation and extention of this physically based model
to multiple bubble systems where bubble interactions will also influence
the flow and void distribution is yet to be explored.

6.5.5 Summary

Table 6.5 summarizes the three multidinensional interfacial drag
models. With a scalar drag coefficient the isotropic model shows no
preferential direction for phase separation. The gas phase slips
relative to the liquid phase only in the direction of the driving force
independent of the orientation of the rod array.

The superposition model introduces a preferential direction of
phase separation by the arbitrary tensor formulation. Although this
tensor formulation matches the one-dimensional limits, the additional
physics of inclined array flow are not correctly incorporated.

The two-region model, shown in tensor form in Table 6.5, is a
judicious construction of a multidimensional drag coefficient. It
incorporates a relation between the local, effective liquid v