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ABSTRACT

An effective surface integral and finite element hybrid
(SIFEH) method has been developed to model 1localized
problems in continuum mechanics; in this research the method
has been developed for fracture mechanics. This
hybridization by (incrementally) 1linear superposition
combines the best features of both component methods.
Displacement based finite elements are used to model the
finite domain (including material nonlinearity) while
continuous distribution of dislocations (resulting in
surface integral equations) are used to model the fracture
(i.e. displacement discontinuity). Quasi-static fracture
propagation of surface and internal cracks has been modelled
effectively. This method has been implemented for 1linear
and materially nonlinear analysis in a computer program and
results of representative problems are presented: these
compare very well with known analytical and experimental
solutions and they demonstrate the computational advantages
of SIFEH over other numerical methods (including the
individual components).
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NOTATION

Al1l the notation used in this thesis is defined in the
text when first used.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION FOR PRESENT RESEARCH AND A BRIEF REVIEW OF
EXISTING METHODS

The motivation for this research was provided by a need
to develop an effective prdcedure to solve localized
problems in continuum mechanics. The characteristic of a
localized problem 1is the existence of a disturbance or a
perturbation in an otherwisz unperturbed field or domain.
An example of such a problem is a fracture in a solid where
the perturbation is caused by the fracture (displacement
discontinuity) in an otherwise continuous and finite solid
defined by its boundaries. Some sample problems which have

localized character are:

o Fracture propagation in arbitrarily shaped bodies,
e.g. evolution of fracture in structures (typical
aerospace, nuclear, or automotive industry
application), growth of hydraulic fractures in rocks
(typical resource recovery industry application) [35]
- (refer to figure 1.1);

o Propagation of 1localized rupture (viz. non-opening
shear bands)
e.g. in flow of granular material through hoppers
[21] (refer to figure 1.2), formation of localized
bands in sheet metal forming, and in glassy metals
and polymers [31,32], etec.;

o Dynamic fracture problems;

e.g. unstable brittle fracture of glass, ceramics and
rock [T4].

-12-



o Potential flow problems in fluid mechanics
e.g. flow over an air foil in a wind tunnel [34]

(refer to figure 1.3);

o Diffusion of heat and mass near surfaces or fractures
e.g. heat and mass transfer around a fracture in a
porous medium [36].

The scope of the localized problems is very broad, but
attention is concentrated on fracture mechanies in this
thesis.

There are various numerical procedures available for
solving proyblems in continuum mechanies. Of the existing
methods, the finite element method [24,25] and the boundary
integral method [8,12] have gained wide acceptance. There
are many general purpose finite element computer programs
commercially available. The finite element method has been
used extensively to solve elastic and elastic-plastic
problems in fracture mechanics [1-7] and is very effective
for solving problems with material and geometrice
nonlinearities, dynamics and inhomogeneity (e.g. boundaries,
inclusions, interfaces}). However, finite element analysis
(which uses 1local interpolation in variables over the
element subspace) is not most effective for problems with
singularities (e.g. a mathematically sharp crack) or any
localized events such as point sources and sinks (e.g. 1in
field problems of heat and mass transfer). A fine mesh is
needed near a crack tip to capture the rapidly varying
stress and displacement field. The topology of the finite
elements is dictated by the shape and orientation of the
fractures. Propagation of fractures necessitates redefining
the finite element topology which may present difficulties,
especially in nonlinear analysis since a reliable continuum
mechanics based method has not yet been developed to

-13-



facilitate remeshing (note: this is also a problem posed in
large strain and large displacement analysis [24,371).

Finite elements are not most effective for infinite
domain problems: e.g. unbounded surface wave problems, deep
underground cavities, etec. However "Infinite Elements"
which for 1instance wuse exponentially decaying shape
functions [14] have been reported in 1literature [14-16]
which enable application of the finite element analysis to
infinite domains.

The boundary integral equation (BIE) method [8-13] has
also been developed and extensively wused for analysis of
problems in continvum mechanics. This method reduces the
order of the problem, basically by using the divergence
theorem of Gauss; however the system matrix is full and
unsymmetric so the reduction in order may be achieved only
superficially. This is particularly effective for problems
with singularities and dominantly linear response; and also
for modelling infinite domains. The method has recently
also been applied to materially nonlinear aralysis [38].
This method has been used for analyzing fracture problems
[9,10,131]; difficulties which existed in modelling sharp
cracks [9] have been overcome by use of multidomain
modelling or substructuring [13].

The surface integral method has been developed for
solving a variety of solid mechanics and field problems
f17,19,20,33,35,361]. It basically involves setting up the
governing integral equation for the prbblem by using known
fundamental solutions to events such as dislocations,
dipoles, fluid or heat point sources and sinks etc. and by
using boundary collocation. Fracture problems in infinite
domains have been modelled effectively using the surface
integral method (19,20]. The fracture is modelled as a

-14-



continuous distribution of dislocations [17], which are
displacement discontinuities defined in the sense of
Volterra [23], and this results in a singular 1integral
formulation [17]. Gauss-Chebyshev quadrature is best used
to perform numerical integration. Mathematical foundations
and convergence criteria for numerical integration of the
singular integral equations using global interpolation has
been provided by Erdogan and Gupta [18]. This surface
integral method has been extended to analyze multiple,
branched, arbitrarily shaped cracxs [19, 20] and also for
quasi~static crack propagation [35]. It is to be pointed
out that displacement discontinuities (fracture) for a sharp
crack can be modelled effectively using the surface integral
method, which distinguishes it from the BIE method. However
as mentioned earlier, substructuring techniques [13] or
Green's functions [9] (for traction free crack) have been
eventually implemented to model a sharp (flat) crack with
BIE methods.

A dislocation superposition computer program to solve
plane elasticity fracture problems has also been developed
f44,45] for finite and infinite domains. Finite domains are
modelled by distributing dislocations not only along the
crack but also along the boundaries of the finite body.
This program uses local interpolation for discretizing the
singular integral equation which 13 in contrast to the
global Gauss~Chebyshev interpolation scheme wused 1in the
surface 1integral formulation. Mixed mode fracture
propagation in titanium specimens due to fatigue was
modelled using this dislocation superposition program as
described in [46]. However the development of the SIFEH
method was motivated to «xtiract the best features of the
component methods espccial.y for materially nonlinear
analysis.

-15~



1.2 SCOPE OF PRESENT RESEARCH

The objective of combining ¢the finite element and
surface integral methods was to simultaneously implement the
best features of the two methods. The procedure of
combining these two methods in 2 hybrid formulation will be
explained after commenting on 1its features. This SIFEH
method allows modelling of the crack "independently" of the
finite element mesh. The crack can penetrate "through" the
finite elements and this 1s very desirable, especially in
the context of crack propagation and also for initiation of
new cracks. In conventional finite element analysis the
mesh depends on the shape of the crack and a refined mesh is
required at the crack tips (even when special elements
[1,2,3] are used). A need to have such a hybrid method was
also arrived at earlier [21], and a computer program was
written to solve a specific shear box problem (central crack
in a plate with pure shear loading). However, the computer
implementation was very limited; also, the formulation
incorporated dislocation dipoles, with crack opening/sliip as
a variable, and a 1local 1nterpolatidn which did not allow
direct relation to the stress 1intensity factor, for
. instance. The research presented in this thesis is based on
computer implementation of a general two dimensional program
capable of modelling multiple cracks and branched cracks.
The amplitude of the "dislocation density" (which 1is the
derivative of the crack opening/slip) is used as a variable,
which 1is directly related to the stress intensity factor at
the crack tip [22,39].

The formulation of the SIFEH method for 1linear
analysis is presented in Chapter 2. The fracture problem is
shown to be the sum of the finite element and surface
ﬁntegral models using linear superposition. Governing
equations are derived for the linear case.

-16-



Sample analyses of 1linear elastic fracture problems
are presented in Chapter 3. Results for representative
problems of internal and surface cracks and cracks 1in

nonhomogeneous domains are presented.

The formulation for quasi-static crack propagation 1is
developed in Chapter &, Results for a plate with an
internal crack and a beam with a surface crack are
presented. Evolution of shear bands in flow of granular
material through hoppers is presented.

Incorporation of the SIFEH method in a nonlinear
finite element computer program is presented in Chapter 5.
The governing equations for nonlinear analysis are
developed. The decoupled method of solution of the
incrementally linear equations is derived. Sample analysis
of fracture problems for 1incompressible hypoelastic
bi-linear materials are presented.

Finally, conclusions and recommendations for further
research are summarized in Chapter 6. Further topics of
research where this hybrid method can be effectively applied
are discussed.

-17-



— CRACK SURFACE
——=PROPAGATION PATH

Figure 1.1 Crack propagation in arbitrarily shaped bodies

18



l-‘.- “ r
| ERRPEE
RN
:.".o."'-.':.' l
STORAGE ~ fi-=--'- . Rk
BIN  ——=[ . GRANULAR
1 MATERIAL ©
| .. .
| .
|

SHEAR BAND

Figure 1.2 Propagation of shear bands in granular materials

-19-



RERIEIRE;

Figure 1.3
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CHAPTER 2

THEORETICAL FORMULATION OF THE SIFEH METHOD FOR LINEAR
ANALYSIS

2.1 LINEAR ELASTIC FRACTURE ANALYSIS

In this chapter the governing equations for 1linear
elastic fracture analysis in the plane are developed.
Consider a mixed boundary value problem (shown in figure
2.1) of a center cracked plate with a tensile load R and
traction T applied along the crack surface. The aim of the
analysis is to compute the stress and displacement fleld and
the stress intensity factors. The above problem can be
analyzed using linear superposition as shown in figure 2.2.

Linear superposition allows representation of the
actual'problem as a sum of a finite plate without the crack
(discretized by a finite element model) and a finite plate
with a crack cut out from an infinite region (discretized by
a surface integral model). The vector R® is the correction
applied (only at the boundary) to the load vector R in the
finite element model to account for the presence of a crack.
The vector T° is the correction applied (only along the
erack surface) to the traction vector T in the surface
integral model to account for the finite boundary of the
actual problem. What has been achieved is a force matching
along the outer boundary of the actual plate and traction
matching along the crack surface; displacement matching will
be analogously achieved.

Using variational or virtual work formulations which
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have been discussed in depth elsewhere [24-25] and for
completeness in Appendix A, the governing finite element
equations for the center cracked plate without the crack
(refer to figure 2.3) are given by:

k oFE - r - gC (2.1)
K = Stiffness matrix of the plate without the
crack.
UFE = Finite element nodal displacement vector
(only continuous field).
R = Applied load vector.
RS = Correction to the applied load vector due to

the presence of the crack.

As is evident from figure 2.4 the 1load correction
vector R® is a function of the displacements of the crack
faces and can be expressed as a function of the dislocation
density (which 1is derivative of crack face displacements)
amplitude vector F'by defining matrix G (refer to Appendix
D):

R®= G F (2.2)
G = Boundary force correction matrix

Combining equations (2.1) and (2.2):

FE

Kk UFE 4 G F = R (2.3)

The product GF represents a correction to the applied
force R due to the presence of a crack in the finite body.

=22~



The surface integral model is the result of modelling
cracks in an infinite medium using continuous distributions
of dislocations [17,19,20,39,401]. Basically a dislocation
is a displacement discontinuity [26,42] and a continuous
distribution of such dislocations can be used effectively to
model a crack or a slip band. A brief discussion of the
formulation is presented here and additional details can be
found in reference [20].

Consider an infinite linear elastic domain with cracks,
loaded as shown in figure C.1 in Appendix C. This problem
of the infinite domain 1is also solved using 1linear
superposition of the infinite domain without the cracks and
the same infinite domain with the cracks with applied
tractions reversed along the cracks. The first problem does
not have singularities; the second one does, and this is
modelled effectively using a sinéular integral formulation.
The resulting singular equation takes the form [17]:

f r(x_, ¥)-n(X)aS, = T(X,) (2.4)
SC

‘Evaluation point along the crack.

~0
3 = Interpolation point along the crack.
F(§°,§) = Stress tensor at 50 due to an edge dislocation
at { (known from elastic theory of dislocations).
p(}) = Dislocation density at E.
Sc = Crack surface
T(}o) = Traction vector at X .



_ The above singular (since the kernel F(Eo’ 5) is
singular) integral equation 1is evaluated in the Cauchy
principle value sense using a Gauss-Chebyshev integration
scheme [17,19,20]. The details of the discretization
process is described in [19,20] and for completeness 1is
described in Appendix C. The discretized equations for the

plate cut out from the infinite domain with appropriate
force R® acting on the boundary (refer to figure 2.4) are

given by:
CF=7T-1T° (2.5)
C = Coefficient matrix for the singular integral
equation (refer to Appendix C).
F = Vector of amplitudes of the dislocation
density.
T = Applied traction vector.
T® = Correction to the applied traction vector due

to the finite domain.

The traction correction vector T can be expressed as a
FE

function of the finite element nodal displacement vector U
by defining matrix S (refer to Appendix B):

¢ = s yFE (2.6)

wn
n

Stress feedback matrix
Using equations (2.5) and (2.6):

SUFE v CF =T (2.7)
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The product S UFE represents the stress feedback

correction to the line of the crack due to the continuous
displacement field at the finite element nodes.

Equations (2.3) and (2.7) result in a coupled matrix

equation:
K G uFE R
= (2.8)
S C F T

In equation (2.8) it is to be noted that the vector yFE

represents the continuous displacement field at the finite
element nodes. The total displacement U at the finite

FE and the
discontinuous field USI resulting from the surface integral

element nodes is the sum of the continuous field U

discretization of the infinite domain with fracture (refer
to figure 2.2).

SI

u= uff 4y (2.9)

To be able to solve a displacement or a mixed boundary

value problem it is necessary to change the UFE vector in

equation(2.8)to U. The uST vector (evaluated at the finite
element nodes) can be expressed as a function of the
dislocation density amplitude vector F by defining matrix L
(refer to Appendix E).

U =L F (2.10)
L = Displacement matrix.
Physically this means that the displacement at any

point in the surface integral model is proportional to the F
vector. The L matrix has been worked out (Appendix E) using
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the displacement influence function for an edge dislocation
(261, and integrating the effect of a continuous
distribution of dislocations along the surface of the crack.
The displacement influence functions model the displacement
discontinuity, and special care has to be exercised to
correctly derive the L matrix as shown in the Appendix and
in [43]. Using equations (2.8), and (2.9):

K (v -0y 4+ g F

n
=

(2.11)
s -0y L+ ¢cF

]
-

Using equations (2.10) and (2.11)

KU+ (G=-KL) =R
(2.12)
SU+(C-SL)FF=T
Defining:
G =G - K L
(2.13)
C* = C -SL

The resulting matrix equation becomes:

K G#* U R
= (2.14)
S C# F T
Equation (2.14) is the governing matrix equation for
the SIFEH method for 1linear analysis. Arbitrary force and
displacement boundary conditions can be imposed using

standard procedures for imposing these constraints [24].
The details of obtaining the K, G, S, C and L matrices are
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explained in Appendices A through E. Evaluation of crack
opening and slip displacements is explained in Appendix E.

Fracture problems in nonhomogeneous media can be solved
by substructuring techniques. The G* and C¥ matrices are
evaluated for the substructure with cracks and the stiffness
of the whole domain is assembled in matrix K. Essentially
this procedure involves providing correct boundary data of
the substructure with the cracks to compute G and evaluating
L only for this substructure. As a degeneration of the
substructuring concept it 1is readily deduced for a
homogeneous domain that the G matrix can be obtained by
taking any closed contour (along the finite element edges)
around the fracture as far as the L matrix is evaluated for
this substructure.

2.2 CONVERGENCE CRITERIA

The convergence of the finite element method has been
studied in great detail by many researchers, some of whom
have used functional analyses to quantify in rigorous
mathematical terms the errors associated with the
discretization process and the manner in which these errors
propagate [24,25,48,49]1. For this hybrid method the
requirement of the finite element discretization is that it
should be adequate to capture the R-R® field. However,
since this method 1is coupled it is important to note that
the RS vector depends on how adequately the crack 1is
modelled using a given distribution of dislocations. The
crack can be modelled effectively using 2a relatively few
degrees of freedom on dislocation density. Convergence of
the surface integral scheme has been presented in a recent
associated research effort as exemplified in [50] (See also
[75]1). The singular crack tip stress and displacement
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fields have been compared with both asymptotic and complete
solutions (when they were available), and superb accuracies

have been obtained for the problems that have been analyzed.
Curved and kinked cracks do need more number of dislocations
to model: the crack [20,35] as compared with straight cracks.

By examining the convergence characteristiecs of these
individual methods it 1is then possible to qualitatively
assess the convergence characteristics of the hybrid method.
Stress jumps at common nodal points (for different finite
elements) can be used as a guide in determining convergence.
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Figure 2.1 Center cracked plate with tensile load
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Fioure 2.3 Finite element model using eight noded isoparametric elements
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CHAPTER 3

RESULTS FOR LINEAR ELASTIC STATIC ANALYSES OF FRACTURE
PROBLEMS

Results are presented for fractures in plates under
plane strain conditions.

3.1 CENTRAL SYMMETRIC CRACK WITH TENSILE LOAD

The finite element discretization of this problem along
with the number of interpolation points (Snk points used to
evaluate the C matrix) is shown in figure 3.1.

The stress intensity factors (SIF's) are as plotted in
figure 3.1. The length of the crack 1is varied maintaining
the samé finite element mesh and number of Snk points
defining the crack. With this SIFEH model it can be seen
that good agreement with analytical solution of Isida (27]
i1s obtained up to a ratio of a/b = 0.5. For a/b > 0.5 the
SIF's are lower than the analytical values. A second SIFEH
model was'analyzed as shown in Figure 3.2. The resulting
SIF's agreed very well up to a ratio of a/b = 0.9. The
reason for using more finite elements rather than more Snk
points 1is that for this problem, theoretically, only two snk
points per crack wing (using an origin and two wings to
define the crack) are sufficient to model the crack; since
for a square root singular dislocation density and the given
loading, the variation of the amplitude vector F is linear.
However, to place the interpolation (Snk) points near the
crack tips using the Gauss-Chebyshev integration scheme,
five Snk points per wing or a total of ten points have been
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used. With this reasoning more finite elements were used in
the second model (Figure 3.2) and as is evident, convergence
in the SIF's wecre obtained over a wide range.

3.2 CENTRAL SYMMETRIC CRACK WITH MOMENT LOAD

The finite element and surface 1iitegral discretization
is shown in figure 3.3. SIF for this problem is shown in
Table 3.1. Good agreement with analytical solution [27] has

been obtained.

Table 3.1 Stress intensity factor for
center cracked test specimen

(Refer to figure 3.3)

SIFEH [27] SIFEH
Ky K1 Ky

g/ila c/Ta K1[27]
0.477 0.513 0.93

3.3 CENTRAL UNSYMMETRIC CRACK WITH TENSILE LOAD

The finite element and surface integral discretization
is shown in figure 3.4, SIF's for this problem are shown in
Table 3.2. Results agree well with analytical solution
[(271.



Table 3.2 Stress intensity factors for center cracked

test specimen - unsymmetric crack - (Refer
to figure 3.4)

SIFEH (271 SIFEH
Ky Ky Ky
ov/Tia ov/Ma KI[27]
Tip 1 1.392 1.405 0.99
Tip 2 1.184 1.200 0.98

3.4 ANGLED CRACK IN A LARGE PLATE

The
shown
crack
shown

finite element and surface integral discretization is
in figure 3.5. The results for this mixed mode angled
problem for various angles of crack inclination are
in Table 3.3. Since the boundaries of the plate are

removed from the crack, the correction R® (refer chapter 2)

will

be small. As expected the results are very close to

the solution for an angled crack in an infinite medium
[13,271].




Table 3.3 Stress intensity factors for an
angled crack in a 1large plate
(Refer to figure 3.5).

. 11 1

angle
B ovia o/Ta ogv/ila o/Na
0° 0. 0. 0. 0.
30° 0.253 0.u434 0.250 0.433
45°  0.520 0.507 0.500 0.500
60° 0.758 0.434 0.750 0.433
90° 1.007 0.000 1.000 0.000

®* Analytical solution for an angled crack in an
isotropic infinite medium is given by:

KI = ov/rma SinB
K?I = cv/ma sinB cos8

3.5 ANGLED CRACK IN A PLATE

The finite element and surface integral discretization
is shown in figure 3.6. Results for this problem are shown
in table 3.4. Good agreement with analytical solutions
[13,27] has been obtained for 45° and 90° cracks for which
analytical results were avalilable.
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Table 3.4. Stress intensity factors for an angled crack in
a plate (Refer to figure 3.6)

SIFEH SIFEH (271 {271 , SIFEH SIFEH

Crack KI KII KI KII KI KII

Angle ov/Ta gviia ov/la ovlia KI[27] KII[27]
B

30°  0.387 0.516 - - - -

45°  0.708 0.553 0.730 0.600 0.97 0.92

60° 1.013 0.458 - - - -

90°  1.u446 0. 1.488 0. 0.97 -

3.6 MULTIPLE CRACKS

The computer program has been written to model multiple
cracks. Figure 3.7 shows a sample analysis. The SIF
obtained numerlcally as shown in Table 3.5 was compared to
that for an infinite strip with an array of parallel cracks
[27] as an analytical solution to the problem was not
available for comparison.
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Table 3.5. Stress intensity factor for
multiply cracked plate
(refer to figure 3.7).

K SIFEH f’STRIP [(27]
I I

1.014 0.960

3.7 SINGLE EDGE NOTCHED (SEN) SPECIMEN

The finite element and surface integral discretization
is shown in figure 3.8. The single edge notched problem
lacks symmetry in both geometry and 1loading, and it was
determined using various SIFEH models that a greater number
of finite elements were needed to attain convergence of
results as compared with the double edge notched (DEN)
specimen (figure 3.9). The greater number of finite
elements were necessary to model the R = RC field; the
surface integral discretization used was determined to be
adequate. Good agreement with analytical [51] and BIE [9)
results has been obtained as shown in table 3.6. For the
ratios of a/b greater than 0.3 an improved finite element
discretization 1is needed. This contrasts with the DEN
specimen results presented next where due to geometric and
load symmetry good results are obtained over a wide range of
a/b.
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Table 3.6 Stress intensity factors for a single edg 1
notched specimen (refer to figure 3.8)

a/W Pressure K SIFEH K [9] K (511 K SIFEH

I I 1 I
P (psi.) ——— S

c/na o/fla o/Ta KI[51]

0.125 313-19 1026 1.27 -

0.150 278.66 1.30 1.34 -

0.200 223.91 1. 40 1.48 1.49 0.94

0.300 152.89 1.57 1.82 1.85 0.90

3.8 DOUBLE EDGE NOTCHED (DEN) SPECIMEN

The finite element and surface integral discretization
{s shown in figure 3.9. Good agreement with analytical
results [27] over 2 wide range of a/b has been obtained as
shown in figure 3.9.

3.9 INTERNAL CRACK IN A NONHOMOGENEOUS PLATE

As a further example of application of the SIFEH method
an internal crack in a nonhomogeneous plate was analyzed.
As described in Chapter 2 2 substructuring technique has
peen used to model the problem. The finite element and
surface integral discretization i{s shown in figure 3.10.
Good agreement with analytical (411 and BIE [9] solutions
‘has been obtained as shown in table 3.7.



Table 3.7 Stress intensity factors for a bi-material
panel with an internal crack (refer to figure

3.10).
KI/om/nL
L/(W1 + w2) E1/E2 Bowiel41] Cruse & SIFEH®
et. al. Wilson([9]
3 1.03 1.03 .994
0.15 1 1.01 1.01 .995
1/3 0.99 0.99 .998
3 1.06 1.06 1.009
0.20 1 1.02 1.02 1.008
1/3 0.98 0.98 1.009
3 1.10 1.11 1.048
0.25 1 1.03 1.03 1.044
1/3 0.97 0.97 1.040

* The boundary conditions are slightly different for
this model. Bowie et. al. and Cruse et. al. have used
displacement boundary conditions. This has been
approximately modelled for convenience in the SIFEH
model by applying the stresses proportional to the

moduli as shown in figure 3.10; however constant
displacements can be imposed. .
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CHAPTER 4

QUASI-STATIC FRACTURE PROPAGATION

4.1  GENERAL DISCUSSION

As has been already described in Chapter 1, this SIFEH
method was developed out of necessity for effectively
modelling fracture and it is appropriate to underscore that
the method has its most significant application for fracture
propagation. In the SIFEH model the finite element
discretization has to be adequate only to capture the R-RC
field which is much well behaved than if the finite elements
were expected to model the singular fields at the crack tip.
The crack can penetrate "through" the finite elements which
'is one of the major advan.ages in this formulation. The
development presented here is within the bounds of 1linear
elastic fracture mechaniecs (LEFM) with quasi-static
propagation (i.e. no dynamic effects). Quasi-static
propagation dictates, for instance, having a test machine
which is very stiff so that dynamic effects are minimized.
It is 1important to note that fracture mechanies has one
additional aspect aside from continuum assumptions, and that
is the 1length of the crack. If the plastic zone at the
crack tip is small compared to the length of the crack and
other dimensions of the finite body (47) then small scale
yield (s.s.y) conditions exist and LEFM can be wused
satisfactorily to model the fracture. The extent of the
plastic zone are given by [27,47]:

-
n

(1/3m) (K/co)2 , for plane strain.
(4.1)

-~
n

(1/m) (K/oo)2 , for plane stress.
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o = (n/8) (K/oo)z, for Dugdale model.
where rp = Extent of the plastic zone as shown in
figure 4.1 [27,47].

95 = Tensile yield stress for the material.

In typical structures (e.g. aerospace structures etc.)
the study of the propagation of cracks is usually in the
context of low cycle fatigue (LCF) life prediction or damage
tolerant design where the aim 1is avoidance of growth of
cracks beyond a critical size. For resource extraction
applications the intent is to grow fractures in underground
reservoirs by hydraulic fracturing. Quasi-~static fracture
propagation in infinite domains has been effectively
modelled using the surface integral method [35] and at
present the SIFEH method developed in this research 1is being
applied for modelling hydraulic fracturing of 1laboratory
specimens to study effects of finite boundaries on the
propagation path [35].

4.2 CRITERIA FOR PROPAGATION

Various criteria for mixed mode crack propagation can
be found in the fracture mechanics literature; in particular
a good discussion is provided in [13]. Viewing the fracture
process within the context of continuum mechanics and LEFM,
propagation occurs when some parameter (e.g. Stress
intensity factor, strain energy, energy release rate etc.)
reaches or exceeds a critical value of the same parameter
for that material. A brief discussion of the various

propagation criteria is given below; additional details can
be found in [13].
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4,2.1 THE MAXIMUM CIRCUMFERENTIAL STRESS THEORY

This theory proposes that crack propagation will
occur when the stress intensity factor reaches a critical
value [54]. The maximum stress and the associated direction
is given by (using polar co-ordinates):

g V2TYX : 0 K 6

860 _ o I 2 % 3 Kpoo |
= 1 = cos cos - = - siné
KIC 2 KIC 2 2 }\Ic (e]
(4.2)
e° (4.3)
O.g = 0 = cos T[Klsmeo + KH(3 coseo - l)] .3
The angle can be found from (4.3):
KIsinGo + KH(3 cos'3o -1) =0 (4.4)
Using trigonometric identities:
/& - c0526 = - Kn (3 cosg_ - l)- (4.5)
o K; o
K1
Using cosé_ =t and K‘ = o and squaring, equation (4.5)
becomes: I
1 - % = o%(9t? - 6t + 1) (4.6)
or, (9a2+l)t2 - 6a’t + (a® - 1) =0 (4.7)
Solving the quadratic equation,
e o602+ /36 a0t - a9 4 1) (® - 1) (4.8)
2(9a% + 1)
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-1 60L2 i/zi + 32(12 (4.9)

8
2(9a% + 1)

cos

This criterion proposes that the crack propagation
occurs along a radial direction and in a plane along the
direction 6, as given by equation (4.9) when K reaches a
critical value as given by equation (4.2).

This criterion for propagation has been implemented in
the computer program as this is physically more appealing.
There are other criteria given below which could also be
implemented in the computer program very easily.

4,2.2. THE MINIMUM STRAIN ENERGY DENSITY THEORY

This theory proposes that fracture will occur in a
radial direction where the strain energy density 1is the

minimum [55]. The angle eo at which propagation occurs is
given by:

3s 3°5

22 = > 0 (4.10)
o6 ! 362

S = Strain energy density.

Crack propagation occurs when S(eo) reaches a critical
value S,. Other details can be found in [55] and [13].

4,2.3 THE MAXIMUM ENERGY RELEASE RATE THEORY

This theory proposes that the crack extension will
occur in the direction along which the strain energy release
rate G per unit of crack extension 1is maximum. Crack
propagation occurs when the energy release rate reaches a
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critical value Gc'

_ 2 2
G =1 (KI + KII ) (4.11)
E
E =E/(1 - vz)for plane strain

[ N |
n
=

for plane stress

The value of eo along which crack propagation occurs
can be found from:

G _ 9°G
5~ = 0

Q

< 0 (4.12)

Q

Other theorjes that use the J integral are discussed in
[13]. It should be noted that the minimum strain energy or
the maximum energy release rate theory should be applied for
those angles for which the Mode I stress intensity factor KI
is positive, as negative KI would mean interpenetration of
the crack surfaces.

4.3 IMPLEMENTATION OF THE MAXIMUM CIRCUMFERENTIAL STRESS
THEORY

The basic method of modelling evolution of fractures or
(non-opening) shear bands is based on propagating the crack
or ‘shear band a certain distance and then determining the
load required to keep the propagation quasi-static.
Consider a finite domain with a system of cracks: '"probes"

or branch cracks are inserted at each tip (Refer to figure
4.2) in turn and certain sensitivities are determined. Then

for a given 1load increment (decrement) the increase in the
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length of the crack 1is determined. The propagation 1is
performed automatically in the computer program. User
inputs include a fixed length or a percentage 1length
(percentage of the wing 1length) for the probe and the
direction of propagation is computed using the following two
methods:

4,3.1 PROPAGATION BASED ON THE STATE OF STRESS AT THE
PRESENT CRACK TIP

This option 1is based on propagating at an angle as
given by equation (4.9) in section 4.2.1. The angle given
by equation (4.9) is valid in the infinitesimal sense. The
probe 1length for the propagating c¢rack should be small
enough so that equation (4.9) 1is applicable; however the
probe length should be large enough so as to keep computer
costs down. Experience indicates that a probe 1length of
around 10% to 15% of the main wing length is adequate for
the problems that have been analyzed. The following
procedure is adopted for this method:

1. Insert a probe of length Lp (modelled by additional
dislocations) at the end of a wing at the angle 8
given by equation 4.9. The probe is modelled as
part of the main wing but can also be modelled as a
branch wing. (Modelling the probe as part of the
main wing has been determined to be more accurate
numerically and is in the current versicn of the
computer program).

2. Compute the increase or decrease in load required to
drive this wing with the probe to K;, (fracture
toughness for the material). Compute|[ L where:

AR

-56-



3.

4,

5.

c
"

Length of the probe.

P

LR = Increment or decrement in load required
to keep the propagation quasi-static.

i = Crack wing number.

temove the probe from this wing.
Repeat steps 1,2 and 3 for all the wings.
Compute the increment 1in the wing length Lpi {for

all the N wings) for a given increment (decrement)
in load, as follows:

L
- -—-—L - . . . . N 1"01
Lpi ). AR, 1 1, ( 3)
Usually, LR = maxl ARi { y 1 =21, . . . . N (4.14)

Insert probes of lengths Lpi at all the wing tips.
This option for crack propagation 1is economical as
iterations are not required to determine the angles
of propagation. However, this method 1is not
realistic for propagation of shear bands: Since for
pure mode II ({i.e. KI=0) the angle predicted by
equation (4.9) 1is -70.5° and the shear band will
branch at this angle at every time step. The second
method given below can be used for cracks and shear
bands and has also been incorporated in the computer
program.

=57 =



4.3.2 PROPAGATION BASED ON KII = O AT THE TIP CF THE PROBE

This method has been used 3successfully in modelling
propagation of cracks in an infinite domain, using the
surface integral method [35]. The following procedure 1is
adopted for this method.

1. Insert a probe of 1length Lp at the end of a wing
along the local tangent at the tip.

2. Compute the stress intensity factors KI and KII at
the tip of the probe. If KII = 0 (i1.e. less than a
small tolerance) no further calculations are
necessary, proceed to step 5.

3. Rotate the probe at the wing tip and determine a
range of angles within which KII changes sign.

4, Use "Regula Falsi" procedure with interval halving
[58] to find the angle Bi(for the wing i) at which
KII=O.

L
5. Compute the ratio{__P _| for this wing.
LR i
6. Remove the probe for this wing.
7. Repeat steps 1 through 6 for all the wings.
8. Compute the increment in wing length Lp ~ (for all
1
the N wings) for a given increment (decrement) 1in

load, as per equations 4.13 and 4.14,

9. Insert probes of lengths Lp at all the wing tips.
i
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This option 1is more expensive as 1iterations are
necessary to determine the direction for which KII = 0.

4.4 RESULTS FOR LINEAR ELASTIC FRACTURE PROPAGATION

Results for propagation of internal and surface cracks
for plane strain conditions are given below.

4.4,1 PROPAGATION OF INTERNAL CRACKS

Two mixed mode fracture problems (refer to figures 4.3
and 4.4) have been analyzed. The finite element and surface
integral discretization, the dimensions of the plates and
crientation of the cracks are as shown in the figures. The
results of the propagation paths predicted by SIFEH analysis
based on the theory presented in section 4.3.1 agreed very
well with known experimental results published 1in
[46,56,571]. The experimental tests were performed for
fatigue loading of titanium Ti-6A1-4V specimens containing
these oblique center-cracks at 45° and 30° respectively.
Material parameters were [46,56,57,13]:

E = 16000 ksi
v = .33
(4.15)
. 1/2
Kio =75 ksi - in

Growth of fatigue cracks can be explained in terms of
initiation (Stage I), steady growth (Stage II) and rapid
failure (Stage III) (Consult reference [13] for further
details). It is the steady growth that can be modelled, for
example, by the ?aris equation:
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- o) (4.16)
Where,
a = Length of crack.
N = Number of cycles.
C,n = Material constants.
(AKeff) = The range of effective stress intensity

factor. (AKeff) is a function of the
range of the mode 1 (KI) and mode II
(KII) stress intensity factors [13].
Note that there is a AK THRESHOLD below
which fatigue propagation does not
occur. Also note that Ak Fc tov/ma

where Fc is the correction factor due
to finite boundaries and a is half the
crack length for an internal crack or
crack length for a surface crack; A0 is

the stress range.

To further investigate fatigue propagation it was
desired that the AKI and AKII as obtained in the elastic
Stress analysis using the SIFEH formulation should be
correlated to the same quantities as was done in [46] and

[13]. (In Reference [13] the same problem was analyzed
using the BIE method). These results are presented in
Tables U4.7 and 4.2 (for the 45° crack) and the AKI and AKII

ranges of Pustejovsky's analysis are obtained from ([46].
Pustejovsky gave these results in the form of a plot; while
these were tabulated in [13] using an incorrect stress range
of 27 ksi. 1instead of the 22.5 ksi. used in the actual
experiments [U6]. Good agreement of SIFEH and Pustejovsky's
results has been obtained. Results presented in [13] for
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the 2K's were consistently higher than the results of [46].
The number of cycles to failure can be easily computed by
integrating equation (4.16) once the material constants C
and n of equation (4.16) can be determined from base-line
fatigue data. Pustejovsky has correlated the AK ranges from
his analysis to the crack growth da/dN for both base 1line
and mixed mode specimens. Good agreement is shown in figure
4,5, SIFEH analysis shows good agreement with Pustejovsky's
AK's. Hence the agreement of AK's to the fatigue life of
the material has been established for the titanium
specimens. The stress range Ag used for the u5° specimen
was 22.5 ksi. (2.5-25 ksi.) and for the 30° specimen was 27
ksi. (3-30 ksi). The lower value of the cyclic Stress is
usually positive (tensile) so as to prevent buckling while
testing. The plastic zone at the crack tip for the maximum
stress of 30 ksi. was 0.01 in. [46] which was less than 10%
of the specimen thickness (0.125 in. thick); thus ensuring
plane strain conditions at the crack tip.

Computer CPU time required for the SIFEH and BIE (13)
methods for the u45° specimen is 1listed in table 4.2 and
table 4.3.; SIFEH analysis required considerably less time
than the BIE method. The SIFEH analysis was performed on an
IBM 370-3033 computer system at M.I.T., an IBM 370-168
computer was used for the BIE analysis. The IBM 370-3033 is
approximately twice as fast as the IBM 370-168 (based on the
number of millions of instructions per second). Pustejovsky
[46] did not report the CPU time required for this problem
using the dislocation superposition analysis.

The computer time for the SIFEH analysis 1is given for
the decoupled method of solution (Refer to Chapter 5) which
has been incorporated in the computer program NONSAP (62).
‘Correlation of the AK's has been obtained for the 45° crack;
similar correlation caé be obtained for the 30o crack.
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Table 4.1 Pustejovsky's results from [46] for mixed mode
- propagation (45° crack).
Crack Lower Crack Tip Upper Crack Tip
Length
Crack increment )
Increment As AKI AKII AKI AKII
Number (in)  (ksi/in) (ksi/in) (ksi/In) (ksi/in)
1 0.0118 19.01 2.55 18.99 0.61
2 0.0161 20.06 0.49 19.65 0.06
3 0.0318 - 21.11 0.17 20.70 1.16
y 0.0263 21.97 0.58 21.63 1.39
5 0.0318 23.08 0.41 22.85 0.20
6 0.0145 23.57 1.02 22.09 4,59
7 0.0196 23.95 1.74 22.50 4,79
8 0.0496 29.57 0.12 25.35 0.49
9 0.0216 26.19 0.06 25.84 1.83
10 0.0255 26.83 1.77 26.65 1.45
* Note: LK = Ao k/T /2 , where £ = initial length of

the crack (0.53 in.), k's are given in [46].
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Table 4.2 SIFEH results for the mixed mode propagation
(45° erack).

Crack

Crack Length CPU

Increment Increment AKI' AKII' Time
Number (in.) (ksiJ/in) (ksi,/In) (Seconds)

1 0.0265 21.24 1.66 2.55

2 0.0291 20.58 2.60 3.57

3 0.0320 23.16 2.40 4.82

L 0.0352 22.55 - 2.65 6.33

5 0.0387 24.76 0.18 8.12

6 0.0u426 26.37 0.5 . 10.10

7 0.0469 27.99 0.25 12.34

TOTAL 47.83

% Note: Symmetric boundary conditions and the method of
crack propagation resulted in the same values for
both crack tips.




Table 4.3 BIE [13] results (CFU time) for the mixed
propagation (45° crack).

Crack
Crack Increment
Increment Length CPU Time
Number (in.) (Seconds)
INITIAL - 15.98
2 0.09 73.06
3 0.09 87.66
y 0.09 104.36
TOTAL . 340.72

mode
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4.4,.2 PROPAGATION OF SURFACE CRACKS

The SIFEH method has also been sucessfully applied to a
concrete beam with a surface crack (Refer to figure 4.6).
The analysis was performed by Daniel Wium of the Civil
Engineering Dept. at M.I.T. and he has extended this method
to model the nonlinear traction transfer across the crack
faces in concrete [59]. The finite element and surface
integral discretization 1is as shown 1in figure U4.6.
Propagated path predicted by the SIFEH analysis (Refer to
figure U4.7) is in excellent agreement with experimental
results [60]. The load at which quasi-static propagation
occurs were lower than the experimental 1loads (Refer to
figure 4.8) when ¢traction transfer was not modelled.
Introducing traction transfer via a simple constitutive
model improved ¢the result and further research 1in
understanding the traction transfer due to aggregate
interlock in concrete etc. has been recommended [59].

4.4.3 PROPAGATION OF SHEAR BANDS

A shear band can be considered as a non-opening crack
where there 1s slip (shear discontinuity) along its
trajectory. Shear bands are observed in a variety of
phenomena e.g.: in flow of granular material through
hoppers [21,61]), faults in the geophysical context [17], and
in metals, polymers etec. [31,32,42]. Conditions for this

localization of deformation have been discussed, for example
in [30].

In this section a problem of shear band evolution in

the two dimensional flow of granular material through
hoppers will be analyzed. Mass flow bunkers (Refer to
figure 1.2) are used to handle materials. The storage
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bunker consists of a bin section and hopper section; the
hopper section may be gently inclined (shallow) or steep.
In either case there are conditions under which the flow of
material can be continuocus or intermittent, with a switch
regime for the intermittent flow. It is important for the
design of the bunker that the wall stresses be determined,
especially during this switching regime. Experimental
research reported in [61] for dense sand has shown that
there 1is localization of deformation and formation of shear
bands (rupture zones) where the displacement field is
discontinuous. The observation of these rupture zones were
made using radiographic techniques [61]. This problem has
been modelled using the finite element method [21] where the
prospective locus of the shear band was modelled by finite
elements using constraints for displacements in the 1local
normal direction and allowing for tangential slippage at the
nodes; which is similar to modelling a contact problem. The
disadvantage, however, is that the prospective locus has to
be known a-priori and this is a limitation. The granular
material was modelled [21] using various constitutive models
available in the computer program ADINA [73]. The problem
was also analyzed by the surface integral method (using
"plane elasticity) [21]. Friectional constraints along the
shear band were also imposed using both these methods. A
similar problem is analyzed here using the SIFEH method.
The opening mode is condensed out for this shear band using
standard procedures. The intent is to be able to model the
evolution of the shear band. The actual problem of
modelling the hopper problem can be very complex if all the
features viz., constitutive model of the granular material,
friction along the bin and hopper walls etc. were all to be
accounted for. However, it was ascertained that the central
feature of this problem was initiation and propagation of a
shear band and it is this dominant behavior that is being

modelled using the SIFEH method. For simplicity, a linear
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elastic constitutive law has been used, and attention 1s
concentrated on the propagation aspects assuming that
initiation has already occured.

A SIFEH model of the hopper problem is shown in figure
(4.9). The propagated path using the method described in
section 4.3.2 and zero friction along the shear band is
shown in figure (4.10); this predicted path is similar to
the experimentally observed path [61]. It was found that
the material on the top side of the shear band was moving to
the left and vice versa, this agreed with the results of the
experimental test. Experimental observations of the shear
band is shown schematically in figure (4.11). Computer CPU
time is given in table 4.4, Simple Coulomb friction
conditions along the shear band have been modelled by
imposing the shear traction to be equal in magnitude to
¢ times the normal traction. The propagated path as
predicted by the SIFEH model for a shear band with friction
(u = 0.1) showed reverse slip along the trajectory; this
effect 1s not physically observed (thus suggesting
additional features are needed in the model). Modelling
nonlinear effects (material nonlinearity) outside the shear
band and using constitutive 1laws for granular materials
would probably alleviate this condition.
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Table 4.4 Computer CPU time for shear band problem
(coefficient of frictionyuy = 0).

Shear Band CPU time
Increment (Seconds)
Initial 1.04
1 9.21
2 11.63
3 8.13
Y 17.05
TOTAL 47.06
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Figure 4.1 Crack tip plastic zones for various conditions [27,47)
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Figure 4.7 Propagated path for beam specimen [59]
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Figure 4.11 Schematic displacement field for a later increment of flow

in a test on dense sand in a bunker with the walls of the
hopper inclined at 60° to horizontal [61]
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CHAPTER 5

FORMULATION AND IMPLEMENTATION OF THE SIFEH METHOD FOR
(MATERIALLY) NONLINEAR ANALYSIS

As was discussed in Chapter 1, this SIFEH method was
developed sc that the best features of the surface integral
and the finite element methods be utilized to be able to
effectively model 1localized problems for 1linear and
(materially) nonlinear continuum response.

The presence of a crack or a shear band causes
intensification of the stresses and strains near the tip
resulting in singularities. However, materials in reality
cannot respond in this manner and the result is yielding of
the material near the tip (Refer to figure 4.1). If the
plastic zone is very small compared to the 1length of the
crack 'and is contained by a dominant elastic stress field
near the crack tip, then it is possible to define a plastic
stress intensity factor which is related to the elastic
stress intensity factor [63,64]. The plastic intensity
factors can be obtained by either solving the governing
(dominant) bi-harmonic differential equation [63] or by
using the path independent property of the J integral by
using paths through the plastic zone and through the far
elastic field respectively [63,65]. The ylelding at the
crack tip has also been modelled by some researchers using
shear bands at the crack tip [(66,67,68,69]. However, it is
the intent of the formulation presented here to also account
for the far field plasticity. First, the decoupled method
of solution of the governing equations for the hybrid method
is presented, then the theoretical formulation for the
nonlinear analysis is developed.
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5.1 THE DECOUPLED SOLUTION METHOD AND IMPLEMENTATION IN
NONSAP

The governing equation for the hybrid scheme 1is given
by equation (2.14) and is given below.

K G#® ; U = R

s cw lF . (5.1)

From equation (5.1),
KU+G® F =R (5.2)

or,
U = k"1 (R - G* F) (5.3)

Also from equation (5.1),
SU+C*F =T (5-“)

Substituting equation (5.3) in (5.4),

-1

S K (R -G®F) +C*F =T (5.5)

Collecting terms in F and rearranging
[C* =S K VG*] F = [T -5 Kk~ R] (5.6)

From equation (5.6) the F vector can be computed. The
displacement vector U is computed using equation (5.3) and
noting that K'1R and K'1G* have already been computed 1in
(5.6). Thus the decoupling has been achieved. At present
the SIFEH method is available in two computer programs. The
first computer program is the coupled version where the
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entire K, G®*, S and C* matrices are stored in a system
matrix A. This system matrix is unsymmetric since ST# G*
and C* is unsymmetric; also the stiffness matrix K is stored
with all its zeros and no advantage is taken of the symmetry
or sparsity. Clearly storing the matrices in this manner 1is
a limitation which has been alleviated by developing the
decoupled method. The second computer program is the
implementation of the SIFEH method in NONSAP, In this
program the K matrix is stored in a compact form using the
sykline or active bandwidth scheme [24] and only storing
half the matrix to take advantage of 1its symmetry. In
equation (5.6) it is to be noted that K'1 is never computed
explicitly. Instead K is triangularized using the familiar
LDL T factorization (noting that this L is not the same as
the L matrix for surface integral displacements); K"1 G* is
computed by forward reduction and back substitution on each
1 R is computed similarly. The L D L T
factorization 1is performed by a column sSolver subroutine
(COLSOL) in NONSAP; equation (5.6) 1is solved using a
pivoting solver subroutine (SIMQ) for a full matrix. Thus
with the decoupled scheme the SIFEH method has utilized the
best numerical and computational features of the two

column of G* and K~

component methods. The decoupled method 1is essentially
substructuring and can be used effectively in a variety of
problems e.g. soil structure interaction, fluid structure
interaction, and contact problems. A major feature of
incorporation of the SIFEH method in NONSAP is that dynamic
storage allocation has been used and all the matrices and
vectors are stored in a vector A; this allows changing the
size of the program very easily by changing the dimensions
of the A vector.
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5.2 THEORETICAL FORMULATION FOR MATERIALLY NONLINEAR
ANALYSIS

5.2.1 A SIMPLE NONHOMOGENEOUS PROBLEM

In this section the development for nonlinear analysis
is motivated by considering the following problem.

At first consider a problem of a bi-material panel
under tensile load as shown in Figure 5.1. The panel 1is
modelled by two finite elements and a linear constitutive
law is assumed. Using conventional finite element analysis
this problem can be solved in one step by assembling the
appropriate stiffness of the two finite elements. This same
problem can be solved in another (admittedly longer) way:

1. As the first step consider that the panel 1is made up
of one material with properties E1, and v, . This
d problem is solved for the applied load R, and the
corresponding stresses and strains at the Gauss
points {cAl and {EA} are computed. In this step
equilibrium is satisfied, compatibility is satisfied
(by virtue of assumed displacements for finite
elements and using complete integration) but the
constitutive law is not satisfied in region 2 (Refer

to figure 5.1).

2. In the second step the constitutive law is updated
in region 2. Since the constitutive law is updated
the stresses obtained from the strains {aA} computed
from the first step will not be in equilibrium with
the applied 1load. In this step compatibility and
the constitutive relations are satisfied but

equilibrium is not satisfied. The out of balance
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load is calculated by computing the misfit stress
and by proceeding as follows. The misfit or

unbalanced
‘A7 “p
where:
°a
‘A
g
Dp
Dp

st

ress is given by:

Stress vector at the finite
Gauss points based on step 1.

Strain vector at the finite
Gauss points based on step 1.

Stress vector at the finite
Gauss points based on step 2.

4

(5.7)

element

element

element

Constitutive matrix for the first step.

Constitutive matrix for the

step.

SA is calculated as follows:

second

(5.8)

The unbalance in the load (computed for all the finite
noting that the terms inside the

elements m

and

integral sign are for an element) is computed as:

A

R -R

!:n[ BT (cA -03) dV(m)
V(m)
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where:

R = Internal nodal force vector
corresponding to the internal stress

st.ce at the Gauss points.

Using (5:7) through (5.9),

”

- ): T "‘1 [s] (m)
R -R .l;)B [r - DB DA 1 A}dV (5.10)
\

m

—
[1]

Identity matrix.

3. The unbalanced load vector is applied to the updated
model from step B. The stress and strain vector in
this step are given by h:c} and {ac}. The total
solution is given by:

{J}TOTAL 2 [:B} + {c:} (Stress vector)

(5.11)
[E}TOTAL = !:A} + {sc} (Strain vector)
(Ulporar = (U} + {U-) (Nodal displacement vector)

This example has been run using NONSAP and the same
results have been obtained using the direct method
and the indirect method described above. Since the
constitutive law 1is linear the problem can be solved
with one iteration using this indirect method. The
concepts developed here (similar to the procedures
used for finite element nonlinear analysis) are used
later to formulate the governing equations fer
nonlinear analysis using the SIFEH method.
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5.2.2 DERIVATION OF THE SIFEH GOVERNING EQUATIONS FOR THE
NONHOMOGENEOUS CASE

Consider the case of a crack in a nonhomogeneous but
elastic body. Similar to the development presented in
Chapter 2 the governing SIFEH equations are derived below.

For the finite element model the equations are:
k uFE - gr - RS - genh (5.12)

Where all the terms have been defined in Chapter 2

except chh:

chh Additional correction to the 1load

vector R due to the presence of

nonhomogeneity.

Let R°™ be a funetion of the dislocation density
amplitude vector F:

chh

1
=~
7]

(5.13)

K

Nonhomogeneity correction matrix

For the surface integral model (considering the crack
to be in one medium),

CF =T--T° (5.14)

Using equation (2.6) in (5.14),

FE

H]
-3

S U + CF (5.15)
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Using U = oFE 4 ¢8I (From equation 2.9) and R® = G F

(from equation 2.2) and equations (5.12)through (5.15) the
following is obtained:

K G - (KL - K) u R I
‘ (5.16)
T

S C-S1L F

chh can be calculated using the misfit stress concept

introduced in section 5.2.1.

N R IR PRSI TR PR VALY (5.°7)
v(m)
where:

GASI = Stresses at the finite element Gauss
points due to the surface integral
model for homogeneous media.

SI
°h = Stresses at the finite element Gauss

points due to the surface 1integral
model after wupdating the constitutive
relations.

Using results from section 5.2.1 in equation (5.17):

genh  _ Fn[ 8T (1 - by p,”") (,5T) av(m (5.18)
(m)
v
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.The constitutive matrix of the
homogeneous body used in the surface

integral model.

The constitutive matrix at the finite
element Gauss points for the

w
1

nonhomogeneous body.

The chh vector has been evaluated assuming that the
stresses due to the surface integral model {oA} have been
interpolated using the finite element B matrix; (Convergence
will be achieved using more finite elements.

The concepts that have been developed in this section
have been verified for the following center cracked specimen
problem. The finite element and surface 1integral
discretization is shown in figure 5.4, The specimen 1is
homogeneous and the correct value of Young's modulus is used
to compute the K and the S matrices; however, 1incorrect
value is used for the C and the G matrices (note that for
plasticity a similar situation exists). By using the K
matrix as per equation (5.18) a body force correction is
provided and solving equation (5.16) has resulted in crack
face displacements which are very close to those using the
correct moduli for the C and G matrices. It 1is to be noted
that to achieve this result a fine finite element mesh was
required to pick up the chh effect.

Secondly, the ecrack in a bi-material plate as shown 1in
figure 5.3 was analyzed using equation (5.16) (Note: a
Similar problem was solved using a substructuring technique
earligr as shown 1in section 3.9). Superdb agreement with
known analytical solutions has been obtained as shown in
table 5.1. The finite element model as shown in figure 5.3
is adequate as the C and G matrices are modelled using
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correct material properties; noting that the G matrix is
obtained by traversing the complete perimeter of the finite
element model as opposed to the substructure as was done in
section 3.9. Also the L matrix is evaluated for all the
finite element nodes. At present, inhomogeneties 1in the
elastic regime can be handled for cracks that are not
intersecting the bi-material interface; however, appropriate
known 1influence functions for an edge dislocation near a
bi-material interface can be utilized to solve intersecting
crack problems using the theory developed in this section.

5.2.3 GOVERNING EQUATIONS FOR MATERIALLY NONLINEAR
ANALYSIS

The concepts developed in section 5.2.2 for solving
nonhomogeneous problems using the SIFEH method are utilized
to develop the governing equations for materially nonlinear
analysis. The governing equations which are based on
incrementally 1linear superposition with equilibrium
iteration and also using the initial stiffness method are as
follows: '

i L
ok °G* sbul t+£.tR _ t+“tR(1 1)
- (i (5.19)
og oc* lAFs t+it, _ bHAtg(i-1)
where
Ok = Initial stiffness matrix at time t=o.

Og» = Initial boundary force matrix at time
t=o (G¥=°G-°K L).

Os = Initial stress feedback matrix at time
t=o0.
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O
Q
*
]

Initial Coefficient matrix at time t=o
(c* = °c-%s L).

i
AU = Incremental total displacement vector
at iteration 1.
i
AF = Incremental dislocation density
amplitude vector at iteration 1i.
t+AtR = Applied nodal force vector at time
“t+At .,
t+Atﬁ(l-l) = Internal nodal force vector

corresponding to the (total) Cauchy
stresses at the Gauss points at
iteration i-1.
t+AtT = Applied traction vector along the crack
at time t+At.
t+its (i-
° T(l b = Internal traction vector corresponding
to the (total) Cauchy stresses at the
Gauss points at iteration i-1.

The internal ncdal force vector and traction vector are
calculated as follows (for both elasticity and plasticity):

t+Atﬁ(i-l) _ }{BT t+AtTéé-l)dV + (°G + t+AtRi-l) t+AtF(1-l)
v (5.20)
and,
t+itzi-1 = Nonhomogeneity correction matrix
(for plasticity) at time  t+Af -
iteration (i-1),.
t+At@(1—l) - t+At§(i-l) + °C t+LtF(i-l)

FE (5.21)

7
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where,

t+AtT(i-l)
FE = Cauchy stresses (due to only the finite
"element continuous stress field) at
time t+At for iteration (i-1).
t+At> (i-1
Té; ) = Smoothed tractions (only continuous

stress field) at the collocation r 'nts
(obtained from Gauss point stresses) at
time t+4t for iteration (i-1).

In equation (5.20) it should be noted that for
elasticity the right hand side is consistent with
the left hand side of equation (5.19); K is activated at

the Gauss points which go plastic. In equation (5.21)

t+AtL(i-1)
TFE is

identically equal to°S

the smoothed traction vector and is not
t+£tUFE(i-l)(however,,exact consistency
could easily be obtained by computing a smoothed °S
matrix). The smoothing is necessary for plasticity and the
traction vector (at the collocation points along the crack)
is obtained by extrapolation of the Gauss point stresses to
the finite element nodal points and then obtaining the
collocation point tractions by performing a bi-linear
interpolation of the nodal point stresses. The
extrapolation is done in a least square sense, the details
of this local smoothing procedure are provided in [70,71].
At present the smoothing is applicable to finite elements
with constant determinants of the Jacobians 1i.e.
parallelograms or rectangles. However extension to curved
elements is possible but would require additional
calculations [70]. Also global smoothing of stresses can be
performed where the smoothinz also depends on the size
(volume) of the neighboring finite elements.

The incremental equations (5.19) are solved using the
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decoupled scheme as described in section 5.1 and the
modified “-wton - Raphson scheme . Convergence is achieved
when the ratio of the Eucledian norms !|AU(1)!|2/i]t+AtU|[2

is 1less than or equal to a small tolerance [24]

5.2.4 PROCEDURE FOR COMPUTING STRESSES FOR ELASTO-PLASTIC
ANALYSIS

The incremental equations for elasto-plastic analysis
are given below. The solution to the governing equation
(5.26) is known at time t and the solution at time t+4t is
to be obtained. For additional details refer to [24]. The
Von-Mises yield condition with an isotropic hardening rule
is used for this material model [62].

* DISPLACEMENTS :

t+lt t
= +
U= "0+240U (5.22)
t+it FE _ tHdt, _ pthitg
40 = Increment in the nodal displacement
vector from time t to t+At
° STRAINS
t+At€ - Bt+AtUFE , tret SI (5.23)
t+dt_SI _ t+AtF N=Surface Integral Strain Matrix
* STRESSES ’
At -t ¢ ag : (5.24)
tc = Stresses at Gauss points at time t.

(4
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-

= Increment in the stresses from time ¢t
to t+it..

o 1s obtained as follows [24]:

Let,
t+3t. = srRaIN |, te = Eps
R T ts = s1G

- COMPUTE STRAIN INCREMENT (DELEPS)
DELEPS = STRAIN-EPS (5.25)

- COMPUTE STRESS INCREMENT (DELSIG)

E

DELSIG = D~ DELEPS (5.26)

DE = Elastic constitutive matrix

- COMPUTE TOTAL STRESSES (TAU)
TAU = SIG+DELSIG (5.27)
- CHECK IF WITHIN YIELD SURFACE

IF F(TAU) <O RETURN

(5.28)
IF F(TAU) >0 CONTINUE

- IF PREVIOUS STATE OF STRESS WAS PLASTIC
SET RATIO = 0 AND GO TO NEXT STEP.
OTHERWISE FIND RATIO TO DETERMINE THE
PORTION OF THE STRAIN TO BE TAKEN
ELASTICALLY.
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F [SIG + RATIO * DELSIG] = O

- DETERMINE STRESS T*2%c BY PERFORMING
EULER FORWARD INTEGRATION.

TAU = SIG + RATIO * DELSIG

DEPS = (1 - RATIO) * DELSIG, DEPS IS
BROKEN
INTO SUB-
INCREMENTS
DDEPS

EP
TAU « TAU + D ® DDEPS (5.29)
DEP = Elastoplastic constitutive matrix
(24,721,

It should be noted that iterations are being performed
and hence (5.22) can be rewritten as follows ( Similar

right superscripts can be used for the other variables):

t+At, (1) t+AtU(i-l)

U = + apd (5.30)

5.3 RESULTS FOR MATERIALLY NONLINEAR ANALYSIS

The SIFEH model for a center cracked test specimen is
shown in figure 5.4. The bi-linear constitutive law used
for this problem is as shown in figure 5.2. All material
parameters used are shown in table 5.2. The following
equation derived by J. Hutchinson [63] are reproduced here.
For small scale yielding around the crack tip the "plastic"
stress intensity factor (obtained by asymptotic analysis)
for plane strain conditions is given by (also noting that
the factor/f is not included in our definition of K):
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H 2,1/2 o -
KD = (1) 267 4 162 | Svoe 10438 4 2:2)77 (5.31)
where,
1, E
£ = v +'2-(‘jE— 1) (5.32)
T
_E
Eq
and
= 3. _E _
Vo= Sl - ) (5.33)

The plastic stress intensity factors (for different
values of'ET) obtained by SIFEH analysis agree well with
those obtained using equation (5.31). It should be noted
that the plastic stress intensity factor given by equation
(5.31) is valid for small scale yieiding around the crack
tip and the 1loading used for SIFEH analysis was such that
this condition was satisfied. The values used for ET were
upto a ratio of E/ET=30. The plastic stress intensity
factors have been obtained from the dislocation density
amplitude at the interpolation point near the crack tip. It
is recommended that these intensity factors should be also
obtained by using the path independent J integral to provide
additional verification. The convergence of the solution is
controlled by the tolerance on the displacement norm as was
deccribed in section 5.2.3.
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Table 5.1 Stress

panel with an edge crack (refer

intensity factors

for a

bi-material
to figure 5.3)

K./
I"Pva7? «_SIFEH
I
E /E, Lu-Erdogan [77] SIFEH
K Lu-Erdogan
I
0.5 2.3 2.45 1.06
1 2.16 2.26 1.05
2 2.00 2.08 1.04
Table 5.2 Elastic and plastic stress intensity factors
E ET lYield KTel* KIpl* HEX KIpl Remarks
. —_— —_— —_ —H
(p51)8 (psi) g (psi) ovaa ovTa o/Ta Ky
.3x10° .15x10 3500 1.206 .85 .884 0.95 Small
yielded
zone1
.3x108 L1x108 3500  1.206 .652  .735 0 89 Small
yielded
zone1
.3x108 .3 107 3500 1.215 387 L4116 0.93 Small
yielded
Zone1’2
3108 .1 107 3500 1.198 .208  .238  0.87 Yielded
zZone was
larger

'® SIFEH analysis

** Based on Hutchinson's bi-linear results

1 Only one element near the crack tip was fully plastiec.

2 SIFEH model used 1st row of finite elements closer to the crack
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR

FURTHER RESEARCH

An effective hybrid method has been formulated and
implemented to solve 1localized problems in continuum
mechanics with emphasis on fracture mechanies in this
thesis. Qualification of this method has been performed by
comparing results with known analytical and experimental
solutions and excellent agreement has been obtained. The
advantage of this method for evolution of fractures and
shear bands has been demonstrated and excellent agreement
with experimental observations has been shown. For this
SIFEH method improvements to the existing program and
further developments are recommended as follows.

1. The S matrix should be based on stress smoothing so
that even if a non-linear material model is used
convergence would be achieved in one step for the
linear part of the stress excursion.

2. A Paris type law for fatigue propagation should be
built in the computer program so that the number of
cycles needed to propagate cracks a certain distance
can be computed directly.

3. Computer graphics should be effectively used in
conjunction with the method for ease of visualizing
propagated paths and deflected shapes and also to be

able to interactively run the program.

4. Dynamic fracture problems can be modelled using
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influence functions which not only have spatial
dependence but also temporal with dynamic effects
included. An example of formulation of singular
integral equations using such influence functions
can be found in [80].

5. Initiation criteria for cracks or for 1localization
of deformation could be studied and also used as the
basis for nucleation of cracks/shear bands (This
study could include bifurcation problems).

6. This method has formed the basis for three
dimensional fracture analysis where force dipoles
are used to model the discontinuity in displacement

and again finite elements model the finite body.

The nonlinear analysis in the SIFEH method was
implemented using a square root singular behavior near the
crack/snear band tip which was shown by Hutchinson [63] and
Hilton and Hutchinson [65] to be valid for the bi-linear and
multi-linear hardening cases. Other singulariaties (e.g.
1/r or power law) could be 1investigated by explicitly
employing such dependence near the tip. It 1is recommended
that the evolution of the plastic zone obtained by the SIFEH
method should be compared with results obtained by using the
finite element method. Propagation of cracks with nonlinear
material behavior is an important area of research which can
be pursued. It 1is hoped that difficulties which are
associated with remeshing of finite elements (for crack
propagation) in non-linear analysis will be alleviated or
reduced using the SIFEH method. The nonlinear analysis has
been introduced using the SIFEH method but more research i3
needed to study in detail other aspects of nonlinear
analysis.
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Another application for the SIFEH method would be
fracture analysis in shells as solutions for dislocations in
cylindrical geometries are known. A possible extension
would be to model geometrical non-linear effects (large
rotations) but small strain (dominantly elastic) for thin
shell structures where the feed back of stress to the line
of the crack could still be the Cauchy stress but the
geometry will have to be kept track of. Such possibilities
should be investigated.

It has been brought to the author's attention that a
technique called the Shwarz's alternating algorithm [29]
has been used in reference [81] to solve fracture problems,
however, the formulation developed is limited. Iterations
are needed for 1linear analysis and the crack has to 1lie
along a finite element side (this is a serious limitation).
Also a large number of degrees of freedom are required (even
though the analysis is for linear elasticity).

The SIFEH method has been demonstrated for fracture but
it can be effectively applied in principle to solve field
problems such as potential flow over airfoils using known
influence functions for fluid dipoles; other applications
include diffusion, electromagnetism, heat transfer etc. For
example, for the airfoil problem shown in figure 1.3, fluid
source and sink dipoles can be distributed around the
airfoil with the requirement that V®.n = -V.n where V® 15
the free stream veloecity, V is the velocity on the airfoil
surface and n is the normal to the airfoil surface. The
corresponding integral equation can be generated (similar to
the procedures described for fracture) using appropriate
influence functions for the fluid dipoles. It is hoped that
in the future, application of the SIFEH method to other
areas apart from fracture will verify its effectiveness as a
method for solving 1localized problems 1in continuum

mechanics.
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APPENDIX A

I. VIRTUAL WORK FORMULATION FOR THE FINITE ELEMENT METHOD

The governing finite element equations for the plate
without the crack can be obtained by invoking the virtual

work principle or by using variational principles [24,25,5].
This discussion is within the context of small displacement

and linear elastic analysis. The virtual work equation for
a body (refer figure A.1) is given by [24]

t+At t+At (A.1)
-~ . v = *
f ‘ij 6t+AteiJ d R

v

t+dt
T,
1]

6t+Ateij

t+at

Cartesian components of the Cauchy
stress tensor at time t+At

Variation in the Cartesian components
of the infinitesimal strain tensor at
time t+at.

External virtual work at time t+At
corresponding to compatible variation
in displacement which satisfies the
essential boundary conditions,.

Volume of the body under consideration.
Remains constant for the small
displacement assumption.

Using linear elastic constitutive law

Tij

Dijrs ers (A.2)

-104-



Using equation (A.2) in (A.1) and for convenience
omitting the time variable:

) . dv =R - (A.3)
[Dijrs ®rs (Se.l.j d

\Y

Dijrs = Components of the 1linear constitutive
tensor.

When the continuum is discretized by finite elements
(using local interpolation of displacements over the element
subspace) the following is obtained by expressing the
integral as a sum over all the m elements.

Using for convenience matrix notation:

T
- = . (m) _(m) (m) (A.Y4
fDijrs e . ceij av z f 8z D £ '@V ( )

\" V(m)
Where for two dimensional analysis:
T
m
E( - [evy vy EXY], Sg(m) = variation of i(m) (A.5)

Nodal displacement for all degrees of
freedom.

[[=
"

(m) Strain cdisplacement interpolation

matrix for element m.

|
n
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jo

|O

rl
E
= v
l--\)2
0
-
E(l-v)

(1+v) (1-2v)

W 0
1 0 |, for plane stress
l-v .
0 =5 (A.T)
- " i
1 I 0
. f ; .
=5 1 0 » for plane strain
1-2v (A.8)
| 0 0 Z(I-7 |

The external virtual work can be computed using

T

/

v
£° -

fS

[#2]
—
1]

|o
1]

T
gB dv+fc3gs £s

S

das + Sg? P (A.9)
Body force vector.

Surface force vector.

Variation in nodal displacement vector.

Variation in nodal displacement vector
along the surface.

Applied
vector.

external concentrated force

Summing over all elements:

f suT £ av
v

T
f suS  £° as
5

T
- : f sg(m ™ B gy (M) (A.10)
v (m)
S(m)T S(m) (
= rzﬁf U £ as ‘™ (a.11)
s(m)
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Also,

su (™ = H U (A.12)

H Displacement interpolation matrix.

Using equations (A.10) (A.11) and (A.12) in (A.9) and
removing GQT outside the integral sign (justified since the
variations are arbitrary)

T
= T (m) B(m) ( T
R 8 e m) - S
g l%ff_i £ av +&.1/H (m) ES(I“) av™ . 5
S(m)

(A.13)
From equations (A.4),(A.5),(A.6) and (A.13):

T T
z j‘ p(M” pm 5y o zfa““’ Bm) g, (m)

- - m
™ V(m)
T
vz (ST S M e (an)
t (H £
S(m)
or,
KU = R (A.15)
Where T
K _ o J[ g(m ™ Jim) g
— = ﬁ." —_ et =
v.(m)
T s (m) s(mT .S(m .. (m
R= I g B@gyt™ oy g H S (M gy (M p
Tom g m (m)

(External consistent load vector).
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The above equations have been derived for statics and
generalization of these equations for initial stresses,
thermal stresses, dynamics, material and geometric
nonlinearities etec. can be found in [24].

II. COMPUTATION OF THE STIFFNESS MATRIX K.

Eight noded isoparametric finite elements have been
used and the elemental stiffness matrix Km is evaluated
using numerical integration (Gaussian quadrature). The
stiffness matrix of the complete structure is evaluated by
summing over all the elements.

m
V(m')
m = Total number of finite elements.

([os
0

Strain displacement interpolation
matrix.

D Constitutive matrix.

A1l quantities shown below with indices "ij" are
calculated at Gauss points with co-ordinates (ri,sj) in the
intrinsic (isoparametric) co-ordinate system where 1i,j
depend on the order of numerical integration.

Km = z. tij-°ij Fij (A.1T)
i,3J
tij = Thickness of the finite element.
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“i5 Weighting factors.

Fij = Bij D Bij det Jij (A.18)

Jij = Determinant of the Jacobian of the
transformation.

_Is =37 K (A.19)

The other matrices needed viz. H and B ete. for the
eight noded 1soparametric element can be obtained using
procedures developed in [24].

-109-



ADMISSIBLE
VARIATION OF
DISPLACEMENT

SATISFYING
S DISPLACEMENT
fy

- BOUNDARY CONDITIONS

FINITE
ELEMENT

-FS- SURFACE FORCES

£E-Booy rorces

pl— CONCENTRATED FORCES
AT NODE i

X

Figure A.1 Application of the virtual work principle for finite
- element analysis
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APPENDIX B

I. COMPUTATION OF THE S MATRIX

The elements of the S matrix are the shear and normal
stresses at collocation points (Smrpoints) along the crack
in the local tangential and normal directions, due to unit
displacements at the finite element nodes.

The stress at any point in a finite element is obtained
as follows [24],

XX
O (Ers) = Oyy = p(m) g (m) g™ (B.1)

Ixy

r,s = Intrinsic co-ordinates of the collocation pcints.

B(m) = Strain-displacement interpolatidn matrix for the
element m evaluated at the collocation point
Smr.

D(m) = Constitutive matrix for the element m.

U(m) = Nodal displacement vector for the element m.

Gxx = Normal stress in the global X direction.

Oyy = Normal stress in the global Y direction.

GXY = Shear stress in the global X-Y plane.

Elements of the S matrix are obtained by computing the
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product DB and using Mohr's circle :r-ansformation to obtain
shear and normal stresses in the local tangential and normal
directions at the collocation points along the crack.

Deleting the element superscript for convenience, the
stresses are given by:

g

XX
Oyy =DBU (B.2)
%y
Smr
Let
_D_ = D 22 9_3 (B.3)

Where the columns of D are given by:

D D

By = 1Py D, D12 23 = | P13
021 Q22 D23 (B.”/
P31 P32 P33
T T T
Ixx = b, BU 9%y = D0, B U v Ixy = 23 B U (B.5)
Since the constitutive matrix D is symmetric:
T _ T _ T _
D, =D, D, = D,, Dy" = Dg (B.6)

The components of the stress tensor in the 1local
co~-ordinate system ¥X'-Y' [Refer to figure B.1] are given by
[281]:

(ccsze-sinze) N - Z x)sin%cos-) (B.7)

g0, =0 vy X

Y X XY
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J = -’-'. L T =1 2_ - \ = P
vry! Jxxcos s uYyaln -+ ZRXTSLn-coa,

Using c0526 - sinze = cos28, 2sinfcosB =sin28

. (B.8)
and c0520 _ l+c2526 , sinze - 1l - 03528
g,..=-0
_ YY XX .
Oyigr = oxycosze * sin29
l+cos2& l-cos2¢c + .
Oyey Oxx[_"——_f__] + Iyy [___—TT—_J Ovy sin2f% (B.9)
Using (B.5) in (B.9)
[ 2 sinae)
Oy1yr = |D, cos28 + ——————=— sin2&é| * B - U
X 3 2 (B.10)
D, + D D, = D
- 1 2 1 2 .
0Y|Y| [ 5 + 3 cos29 + D331n2c] B « U

The terms in the parentheses times the matrix B are the
components of the matrix S (for this collocation point).

In the computer program the sign convention for the
shear stress has been reversed so as to faclilitate using a
right handed sign convention for the applied shear tractions
along the crack; this is consistent with the sign convention
for the shear terms of the C matrix.

s
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Figure B.1 Computation of the S matrix by locating the finite element
that contains the collocation point
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APPENDIX C

I. COMPUTATION OF THE C MATRIX

The concept of modelling cracks using a continuous
distribution of dislocations is well established [17,39,401].
Consider a system of cracks in an infinite domain as shown
in Figure C.1. Slip (gliding) dislocations and opening
(climbing) dislocations are used to model the slip and
opening discontinuities in displacement. The cracks can be
loaded due to remotely applied stresses and also due to
tractions applied along the cracks (e.g. an internally
pressurized crack). Using linear superposition, this
problem can be modelled as é sum of the infinite domain
without the cracks with remote stresses applied and the
infinite domain with the cracks with reversed tractions
applied along the cracks. Essentially this implies that the
tractions (on a prospective crack locus) are relieved due to
the formation of the fracture. The elasticity problem of
the infinite domain without the cracks can be solved using
complex variable or other available techniques
(23,28,29,52], however this problem does not have singular
fields. The second problem of the cracks with remotely
applied tractions reversed has singular fields which are
modelled very effectively using a continuous distribtuion of
dislocations. The governing integral equation i3 given by
the followingzg:

o, (X ) = [ri’j(go,g) P as (c.1)
S

Cc

P?j‘fo’%’ = Stress influence function for a
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M (X)

cij(§o)

uF (%)

§ (X)

dislocation. Stress component Fij at
Zo due to a unit dislocation density in

the p direction at X.

= Dislocation density in the p direction
(p=1,2 for slip ‘and opening
respectively).

Stress component at X  due to a
distribution of dislocations along the
crack surface Sc.

= Crack Surface.

o (c.2)

ds

C

= Discontinuity in displacement at X.

The governing 1integral equation (C.1) 1is further

modified so that
crack surfaces are

Tim(go) =

where,

Tim(zo)

pn
Pim(fo’E)

the applied traction conditions on the
satisfied.

2 pn
E fr (x,.X) wPT 0 as_ (c.3)

Applied traction component in the i
direction on the mth

Eo‘

crack surface at

Traction component in the 1 direction
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on the mth crack surface at zo due to
a unit dislocation density in the p

direction on the nth crack surface at

x.
upn(§) = Dislocation density in the p direction
on the nth crack surface at X.
th
Sn = Crack surface of the n crack.
N = Total number of cracks.
Note: (i) p=1,2 refers to <components of the
dislocation density in the global X-Y
directions

(ii) Traction components are along the 1local
normal and tangential directions along the
crack surfaces.

The integral over the surface Sn is effectively
evaluated in the Cauchy principal value sense using a
Gauss-Chebyshev scheme. The crack surfaces (which nould be
curved in the plane) are mapped onto a (-1,+1) interval for
numerical integration and equation (C.3) becomes:

. nP
T (S.) N 2 (S /S.)
Rl B f : "1 wPisy) s (c.w)
T (S ) n=1 = T (S 'S
Tr(sm) = Applied shear traction 1in the 1loczl

tangential direction at point Sm
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Tc(sm) Applied normal traction in the 1local

normal direction at point Sm.

P
Fi(s,.8)

Traction component in the 1local i
direction (i=t for shear, ¢ for normal)
at point Sm due to a unit normalized
dislocation density up(Sn) in the p
direction at Sn' These components are
obtained from dislocation influence
functions for stresses [19,53] and
using Mohr's circle transformation
[19,20].

Normalized dislocation density

(= wP™(X)/a;) where a_ is half the

pn
u (Sn)
length of crack n.

ds = Differential 1length of the mapped
th
surface of the n crack.

The dislocation density is given by [191]:

FPR (s )
upn(sn) 3 1 3 , in general (C.5)
(1+Sn) (1-Sn)

For homogeneous 1isotropic media o =8 = 0.5 which
results in the familiar square root singular dislocation
density: .

FP(s )
wPs ) = (C.6)

/ 1-sn2

Amplitude of the normalized dislocation
dengity (Sn). '

pn
F (Sn)

using (C.6), equation (C.4) takes the form:
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TT(sm),
TG (Sm)

22
[ ac I B

dsn (c.7)

The integral is evaluated numerically using the Gauss-
Chebyshev formulae as per [18]:

Tt(smr) _ § i 2 n I p(s ,S )
T (s = L Iz FPs ) f T mETTakif o (c.8)
o e’ n=1l n p=1 k=1 n r Py S )
g mr’ nk
N = Total number of cracks
m = 1’2’ L] L] [ ] L ] [ N
n : 1,2’ L ] L] L] L] [ ] N
r = 1’2, . . . » .Mm-1
k = 1,2, . . . . .Mn
Snk = Mn zeros of TMn, the Chebyshev
polynomials of the first kind.
Smr = Mm-1 zeros of UMm-1, the Chebyshev
polynomials of the second kind.
Smr and Snk are obtained from the following:
- 7L
Smr = COS(M——_.‘*_‘-J._“) (Cc.9)
m
2k=-1) 7 | _
S = cosr ( (C.10)
nk L 2Mn J

It is important to identify that in the Gauss-Chebyshev
integration scheme as suggested by Erdogan and Gupta [181]
the total number of collocation points is one less than the
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total number of interpolation points. Additional equations
are needed to solve equation (C.8). These equations are

obtained as follows:

INTERNAL (EMBEDDED) CRACKX

The entrapped dislocation anépnfbr crack n is given by
(using Gauss-Chebyshev quadrature):

1 pn ' M

F¥"(S_)ds n
§PP = wPi(s ) as_ = L0 = & FPi(s )

n n . 2. n k=1

4] =1 vy(1~S )
nk
(C.11)

o) = 1,2 which provides two additional

. equations per crack.
Usually ¢Pn is zero but the above formula can be used for
nonzero gP0 .| For a system of N cracks 2N additional
equations are obtained. The above equation is adequate for
non- intersecting cracks and has to be modified for branch
cracks and intersecting cracks.

SURFACE CRACK

Let us examine the state of stress at the point where a
crack intersects a free surface. Let the crack be along the
X axis and iet a free surface be defined by X = c¢. At the
intersectio °Yx and Ivy should vanish and Cyy should remain
finite. This condition is best modelled by setting the
dislocation density at the intersection to be =zero. This
was also pointed out in [19]. 1In the work presented in [19]
the influence functions for a semi-infinite medium were
used; in this hybrid SIFEH formulation however finite
elements capture the boundary and influence functions for an
infinite medium are used. Thus the additional equation for
a surface crack is given by:

-120-~



upn(snl) = 0 , p=1,2 (C.12)

It can also be argued that for a deep surface cracked
plate under in plane bending that the surface condition is
correctly represented by enforcing the derivative of the
dislocation density to be zero (by noting that near the edge
the crack faces are almost straight):

Supn(snl)
55 =0 ' p=1,2 (C.13)

Again wusing (C.12) or (C.13) additional 2N equations
are obtained.

Both these conditions have been modelled 1in the
computer program and experience 1indicates that imposing
(C.13) does not make appreciable difference in either
displacements or stress intensity factors. Using equations
C.8 through C.12 the following is obtained:

CF =T (C.14)

where C evaluated at collocation point Smr is given by:

M r_P(s
n T m

z -~ P

1 k=1 ‘o et Spk!

i

S )
r’ nk Fpn(s ) (0015)
o nk
1l n p

[ I A
10

[c]smr{F} -

Note: After C 1is computed at all the collocation
points for the crack, c¢losure or matching equations are
added as given by (C.11), (C.12) or (C.13) and as discussed
further in this appendix, to make C a square matrix.

(C.16)

F = Fpn(Snk), ) 1,2
n = 1,2, [ L] L] L] N
k 1,2
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T =

1,2, . . . . N (c.17)
1’2’ L] L] L[] . Mm-1

TT(Smr)! , m
r

Tg(Spy)

ITI. CLOSURE AND MATCHING CONDITIONS FOR RADIAL CRACKS AND
BRANCH CRACKS

Figure C.2 shows examples of radial cracks with branch
cracks. The a .s or wings of the cracks may have different
lengths and these wings are modelled on a (0,+1) interval
and the branch cracks on a (-1,+1) interval. For a system
of M main cracks and B branch cracks for an origin, 2(M+B)
extra equations are required to make C a square matrix. The
closure condition is obtained by summing over all the cracks .
for a given origin [20]:

. +1 pm 1 pb
M FEY(S_)ds B
: {a Jf Co)%n ol a, Jf L = gPe
=3 m -
m=1 S /l _ Sn2 b=1 et & _ snz
_ (C.18)
p=1,2
ay = Crack length of main crack wing.
ay = Half crack length of branch crack b of
main crack wing m.
§Pe

Entrapped dislocation in the p
direction

The above equation is discretized using the
Gauss-Chebyshev integration formula:

M M
M nm nm-1 L(M _-2k+1)}
s ﬁl_ a, I ;% + z % cos “mzﬂ sin(%l) Fpm(smk:
m=1 nm k=1 =1 “nm
Bn Mp (c.19)
+ I rﬂ— a, I pr(sbk4 = gP¢ (p = 1,2)
b=1 {"nb k=1
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Equation (C.16) provides 2 additional equations.
Additicnal 2B equations are provided by the matching
conditions where the dislocation density at the point of
intersection of a main and branch crack or two branch cracks
are enforced to be equal. Additional (2M-2) equations are
provided by =zeroing out the dislocation densities for the
other wings.

IITI. CURVED CRACKS

Curved cracks are modelled by using piecewise 1linear

segments as shown in figure C.3. The length of crack n 1is
given by:

k-1
- - 2 271/2
Ln = I [(xi+1-xi) +(Yi+1-Yi) ] (C.20)
i=1
Ln = Total length of crack n.
(Xj,Yj) = Co-ordinates of discrete points defining
the linear segments, j =1 . . . . . k.
k = Total number of segments

th

The total length upto the j end point is given by:

j=1

| _ 2

2]1/2
nj

(c.21)
i=1

Gauss-Chebyshev interpolation and collocation points

defined by (S Snk) are mapped to the physical space on the

nr?
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linear segments (defining the crack) by:

1 - L_S (Cc.22)
— (nj+1) n’n
X(Sn) = Xj+1 - _— (XJ+1 - XJ)
(nj+1) nj
Sn = Snr or Snk

Equation (C.22) is applied when:

1nj < Ln Sn < 1(nj+1) (€c.23)
Once X(Sn) is determined Y(Sn) can be found from the

end point co-ordinates of the jth segment.

IV, EDGE DISLOCATION INFLUENCE FUNCTIONS FOR STRESSES

P ,
The stress tensor rij at evaluation point (X_,Y ) due

to an edge dislocation of strength bP at source point (X,Y)

in an infinite, homogeneous and linear elastic medium 1is
given by the third order influence function tensor
. (Xo0,Yo;X,Y) defining:
1]
E = Young's modulus
= Poisson's ratio
o = E/4w(l-v2)

><
"
»<
'
>

m o
Ym = YO-Y
bx = Burger's vector in the X direction
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b = Burger's vector in the Y direction
X _ X 2 2
Tyx ob Ym (Ym + 3Xm )
2 2,2
(Ym + X )
Y _ Y 2 2
Tyx ¢b Tn - Xn
12412y
m m
~X  _ X 2 2
gy = #b° Y (X ° - ¥ °)
2 2.2
(Ym + Xm )
Yy _ Y 2 2
2 2,2
(Ym + Xm )
X _ X 2 2
rXY ¢b Xm (Ym - Xm )
2 2.2
(Ym + Xm )
~Y Y 2 2
‘xy = %P Ym(xm - Y )
2 2.2
(Ym + Xm ) (c.2u)

The normalized influence functions are obtained by
using Xm/a and Ym/a (where a is half crack length or wing
length) instead of Xm and Ym in the above equations. The
influence functions given above are of the form 1/r (where
r=radius to evaluation point) and hence the normalized
function will have an extra a in the denominator. This a is
however cancelled by the a in the numerator obtained from
dSn = a dsn during the mapping process of the crack to the
(=1,+1) interval, Hence equation (C.4) 1is obtained.
However for other influence functions (e.g. displacement
influence function) appropriate transformations are required
during the mapping process.
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v. OBTAINING TRACTION COMPONENTS FROM INFLUENCE FUNCTIONS

Using Mohr's circle transformation for stress, the
traction components PTP and Fcp as used in equation (C.U)
are obtailned as follows f(after reversing the sign for the
shear stress):

P _p P
P _ rP ; Y xX in2u c.

I nycoszw + 3 sin2i (C.25a)
PP _~ P ltcos2. ~ B _l-cos2 =~ sin2s (C.25b)
L5 “yx — + Ty > + .XYSLH2J ( 5

P = 1, 2 for mode T and II respectively,.

T's = Normalized iInfluence functions.

Y = Angle made by the local tangent along

. the crack, with the vertical (positive
anti-clockwise).

VI. COMPUTATION OF STRESS INTENSITY FACTORS

The amplitude Fpsnk of the dislocation density at the
crack tip is directly related to the stress intensity factor
as shown in [22,39]. As a greater number of interpolation
points are used to model the crack, the tip interpolation
points apprgach the physical 1location of the crack tips.
Referring to figure C.1 the 38tress intensity factors for a
homogeneous elastic medium are given by [19], [531]:

a r - y -qin:' l
KI(Em) ) )1/2 cos;ml . siny_, F (Sml)
= E(m a
m
, a - '.l 2
KII‘gm) L sinlpml cosy F (Sml)

(C.26)



a
KI(Xm ) Crack opening or mode I stress

intensity facter.

KII(Xm ) = Crack shearing or mode II sStress

intensity factor.

a

Km = Tip vector for crack m, corresponds to
interpolation point Sm1.

ap = Half the crack length for crack m.

E = E/4(1- v 2), for plane strain
conditions.

E = E, for plane stress conditions.

E = Young's modulus.

v = Poisson's ratio.

F'(S;;) = Amplitude of the shear dislocation
density at the interpolation points at

the tips.

F2(8m1) = Amplitude of the opening dislocation
density at the interpolation points at
the tips.

¥m1 = Angle (at the crack tip interpolation

point) made by the local tangent along
the crack with the vertical (positive
anti-clockwise).

The sign convention for KI is positive for the opening



mode I; and for KII it is positive when the crack wants to
propagate to the right for the shearing mode II when looking
towards the crack tip.

It is to be noted that in equation (C.26) Spp and wml
correspond to the location X; and for other crack tips the

appropriate 1interpolation point and angle of the 1local
tangent should be used.
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Modelling System of Cracks Using a Continuous
Distribution of Dislocations
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Figure C.2 Examples of multiple (radial) cracks emanating from an origin
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Figure C.3 Modelling of curved cracks using linear segments
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APPENDIX D

I. COMPUTATION OF THE G MATRIX

The elements of the G matrix are the consistent loads
(in the global X and Y directions) at the finite element
boundary nodes due to unit dislocation density amplitudes at

the interpolations

(61,

(G]

{F}

F

(Snk) points along the crack surface.

Si Si
I H ds1 n J.F(go,f). u(E)dSc
5

S
i c

(D.1)

Element of the G matrix evaluated at
the finite element node i which lies on

the boundarg.

Vector of amplitudes of dislocation
density at interpolation points Snk
along the crack.

Surface defining the finite element
boundary associated with node 1.

Displacement interpolation function for
the node i1 on the finite element
boundary.

Crack surface.
Outer normal vector on the surface Si'
(Note that there could be two normals

assoclated with a node i, e.g. at a

corner).

]2 -



Stress tensor (in the global X-Y
frame) at a point X, due to unit slip
and opening dislocations at X.

L (XX

Position vector for the Gauss

~0
integration points on the surface Si'
X = Position vector for the Snk points
along the crack surface.
u(§f = Dislocation density vector at S_,

points along the crack.

The elements of the G matrix are evaluated using Gauss-
Chebyshev integration along the crack surface Sc and Gauss
integration along the finite element boundary Si. The
Gauss-Chebyshev 1integration here 1is 1identical ¢to the
procedure [19,20] used to obtain the C matrix except that
the evaluation of stresses 1Is carried out at the Gauss
integration points associated with the node i1 (noting that
the Gauss-Chebyshev integration 1is valid for the whole
domain). Once the normal and tangential stresses are
obtained at the Gauss integration points; consistent nodal
forces are obtained wusing standard finite element
integration procedure over the surface Si'

~133-



APPENDIX E

I. COMPUTATION OF THE L MATRIX

The elements of the L matrix are the displacements in
the global X and Y directions at the finite element nodes
due to unit slip and opening dislocation density amplitudes
at the interpolation (Snk) points along the cracks.

L1, {F} =/ Ty (Xgr X) » n(X) 4S5, (E.1)
S
C
P (x_,s ,)
N 5 M, DX ‘To’“nk P
(L]. F = L —=— 5 S (£.2)
i I M - _ P nk .
n=l "n p=1 k=1 Foy (X50S5k!

The integral has been evaluated using Gauss-Chebyshev
integration. All parameters used in this appendix are same
as those in Appendix D except the following:

[L]i = Elements of the L matrix evaluated at
the finite element node i with position
vector Ko'

I'(X,rX) = Displacement vector at X  in the global
X and Y directions due to unit slip anq
opening dislocations at X. ‘

ng(xo,X) = Displacement in the global X direction

at Zo due to unit slip or opening
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dislocation at ¥X.

FgY(xo,X) = Displacement in the global Y direction
at Ko due to wunit slip or opening
dislocation at X.

II. EDGE DISLOCATION INFLUENCE FUNCTIONS FOR DISPLACEMENTS

The displacement influence functions for an edge
dislocation are given in references [26,43], These
displacement functions as described in thése references with
a modification to the UY component of displacement are given
below for Mode II:

X
i b -1, X XY
U, =—— |-tan " (=—) + + B (E.3a)
ST [ Y 2(1-V)(x2+y2)]

X 2 2
U T...2b i-izx) zn(x2 + Yz) + Y2 3 + C
(1=v 4(1-v) (X%+Y2)

(E.3b)

In the aforementioned references the U displacement

field does not have the constant C as shoJ; in equation
(E.3b). If a constant is not included in the expression
then the equation is dimensionally incorrect. A thorough
discussion of this aspect and additional considerations for
curved lines of discontinuity etec., 1is presented in an
associated research effort [43]; for completeness, the

central features will be outlined here.

The equations (E.3) are transformed to polar

. 2
co-ordinates by using X = rcoss, Y==rsxn6,x‘+Y2=r2.
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sin25
u, = 33 [e-ﬂ/z + —TTT:UT] + B (E.43)

X
g l=-22 [ 1-2v in(r) + —99539—] + C (E.4b)

Y 2T 2(l=v) 4(1-v)

The boundary conditions for UxII are as follows:
o e = 0%) =b/2, U (0 =21T) = -b/2  (£.5)
x

which gives, B = b

The boundary conditions for UYII are as follows:
II - II
Uy (ro,eo) = Uy (known) from which C can be

determined. This physically means that if the UYII

displacement is known anywhere at (ro,eo) in the medium
(except at r=o or rzeo as 1n(r) is then unbounded) then
UYII can be determined. In the SIFEH analysis, however,
displacement boundary conditions are always used (in the
least to remove rigid body modes) and thus this constant is
automatically determined. The complete displacement

components for mode I and mode II are given by:

Y
I _ b 1-2v _ _Ccos28 E.6
UX = — [é(l-v) in(r) —ZTT:UT] +Cy (E.fha)
Y .
I _ b _ . _ _S8in2%
and
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II _ b% sin28
Ux = 7 [9 - T + _4(—T:‘—\)-)_] (E.7a)

X
IT _ _ b 1-2+ cos28
UY = e [2(1_.\)) in(r) + —4'(1—-\)_)] + G, (E.7b)

In equations (E.6a) and (E.7b) the constants
corresponding to the rigid body shift are C1 and 02
respectively. For an edge dislocation (opening Mode I or
sliding Mode II) with a line of discontinuity along the X
axis (Refer figure E.1) the range of 6 is given by:

0 <9 < 2m (E.8)

For a curved line of discontinuity the angle 8 at which
the discontinuity occurs has to be tracked (See [43] for
more details). Also while computing elements of the L
matrix at finite element node i, the location of the node
with respect to the curved crack has to be determined so
that the angle 8 can be correctly computed. Since for the
SIFEH modelling bx and bY are the Burgers vectors in the
global X and Y directions; the displacements are computed in
the 1local directions and then rotated to the global
directions. Refer to figure E.2: Let the displacement at a
point (XO,YO) due to opening and sliding dislocation of

strength be and bYL respectively at (X,Y) be given by UL.

L L b

XLI XL
= L D =
- Y - 2 Y (E.9)
lu Lj L L bLg

The vector bL represents components of the Burgers
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vector in the local co-ordinate system. The L matrix has
been evaluated for these two dislocations as shown in figure
E.2. The b vector in the global co-ordinate system is given
by

{b}

1]
o

bY (E.10)

The global displacement vector U is obtained as

{} = [R"91quly (E.11)
where RLG is the local to global rotation matrix given
by:
coso -sind
(r¥G1 -
sin¢ cosd (E.12)
Also,
ok} = (R 1¢b} (E.13)
where RGL is the global to local rotation matrix given
by:
[RGL] - cosd sing

Using equations (E.9) through (E.i4) the displacements
in the global co-ordinate system are obtained as follows:
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) = trEGyrLl ROl (o) (E.15)

The terms in the parentheses are the components of the
L matrix in the global co-ordinate system.

Crack opening and slip displécements are evaluated by
setting up a matrix similar to the L matrix; the only
difference being that the evaluation points are the
collocation points instead of the finite element nodes.
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f :
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\anz OF DISCONTINUITY~

OPENING (MODE I) DISLOCATION SLIDING (MODE II) DISLOCATION

Figure E.1 Opening and sliding dislocations
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Figure E.2 .Omlputation of the angle 6 for opening and sliding dislocations
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