
DalSegno: User-centric preference elicitation
strategies for mitigating cold start in music

recommender systems

by

Cynthia Lin

S.B. in Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Cynthia Lin. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Cynthia Lin
Department of Electrical Engineering and Computer Science
January 26, 2024

Certified by: Eran Egozy
Professor of the Practice, Music and Theater Arts
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee



2



DalSegno: User-centric preference elicitation strategies for

mitigating cold start in music recommender systems

by

Cynthia Lin

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2024, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Avid music enthusiasts often rely on music recommender systems to sift through
expansive music catalogs and find new songs fitting their interests. However, such
systems struggle to personalize suggestions for new users as they heavily rely on
extensive listening histories to make accurate suggestions — an issue known as the
new user cold start problem. This problem is exacerbated by the fact that most
commercial recommender systems lack transparency and avenues for users to influence
their recommendations.

We thus propose DalSegno, a music recommender system with an interactive
web-based user interface. The platform is designed to overcome the new user cold
start problem by iteratively presenting users with recommendations and incorpo-
rating elicited feedback. Additionally, DalSegno enables users to learn about and
fine-tune their inferred music preferences through interactive visualizations of song
characteristics.

Throughout three rounds of user testing, DalSegno demonstrated promising re-
sults. Participants appreciated the system’s ability to incorporate user feedback to
provide more relevant recommendations and considered it more intuitive to use than
commercial recommendation systems. Additionally, users felt that the interactive
visualizations of musical qualities helped them learn more about their personal mu-
sic tastes, which encouraged them to further utilize the interface. Overall, positive
evaluations of DalSegno demonstrate that incorporating user input and fostering
explainability is vital to creating a more user-focused and effective music discovery
experience.

Thesis Supervisor: Eran Egozy
Title: Professor of the Practice, Music and Theater Arts
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Chapter 1

Introduction

Recommender systems are designed to filter through large sets of data, identify items

that best align with user preferences, and present the most interesting content to

users. Specifically, music recommender systems deployed on streaming platforms like

Spotify and Pandora can tailor song and artist recommendations to introduce users

to new music they might enjoy listening to.

Recommender systems generally have several established approaches to filter data.

Content-based filtering involves recommending items with similar features to those a

user has previously expressed favorable interest in. Music recommender systems fol-

lowing this approach may take into account a combination of low-level audio features

and metadata to infer high-level descriptors capturing a user’s music preferences [3].

On the other hand, collaborative-based filtering systems take the collective prefer-

ences and feedback of like-minded users into account when making recommendations

to a target user. Such aggregate data includes crowd-sourced song descriptors or

user listening histories and heavily contributes to the effectiveness of these systems’

recommendations.

For new users, however, recommender systems struggle with making personalized

recommendations. Compared to extensive preferences collected from long-time users

who have spent hundreds of hours on a platform, a recommender system knows little

about what a user likes or dislikes when they first enter the system, even if it prompts

the user to express their preferences when they first register on the platform. As a
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result, the recommender system often makes false inferences from the limited data

on the new users’ preferences, and thus inaccurate recommendations, which leads to

users having a poor experience. This phenomenon faced by recommender systems is

known as the new user cold start problem.

We propose DalSegno, a music recommender system sourcing data from Spotify

that utilizes a novel hybrid content-based and collaborative-filtering approach to sug-

gest songs to a user. The system presents its suggestions in a web-based user interface

that provides additional context to new users by informing them what qualities each

particular recommended song has. To alleviate the cold start problem for the rec-

ommender system, the user interface allows the user to weigh specific song attributes

in the filtering algorithm more heavily than others, and query for new songs better

matching that configured profile, so that the recommender system has a more explicit

understanding of the user’s preferences. Additionally, as users encounter songs they

enjoy, DalSegno determines which songs have similar characteristics together so that

users can understand trends in their preferences and easily export them into Spotify

playlists.

10



Chapter 2

Related Work

The problems of learning new user preferences, making better-informed recommen-

dations accordingly, and visualizing them in interactive interfaces have been explored

in a variety of contexts. The following is a brief overview of research done in the area

of music recommender systems.

2.1 Early work in music recommender systems

Much of the early research surrounding music recommender systems started in the

early 1990s when the Internet became an established avenue to digitally store, dis-

tribute, and discover music. Instead of proactively recommending music to users,

these early systems allowed users to search and filter music by their factual meta-

data, such as their bibliographic information (e.g. song titles, artists, and albums)

[3]. These systems worked well on smaller music catalogs but failed when metadata

could not be properly standardized as music catalogs grew larger. Additionally, the

early systems lacked the capabilities to introduce users to new music that they didn’t

know about.

Ringo (1995) was one of the first systems to directly address this issue by taking a

“social information filtering" approach to make personalized music recommendations

[10]. Ringo suggested artists liked by other users with statistically similar tastes in

music, which inspired methodologies for future collaborative filtering systems. How-
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ever, new users struggled with Ringo because they did not receive accurate recommen-

dations until after rating hundreds of artists on the platform, exposing the system’s

weakness to the cold start problem. This suggests that Ringo’s onboarding process,

which consists of asking users to rate a semi-randomized collection of artists, could

be improved.

2.2 Content-based filtering techniques in music rec-

ommender systems

Modern content-based music recommender systems augment factual metadata with

analyses of low-level audio features to gain additional insight into a user’s music pref-

erences. For instance, in 2002, Kuo and Shan developed an algorithm that analyzed

pitches in a song to determine its chord progressions and melodic patterns, which was

supported by a recommender system that could suggest tracks fitting a certain genre

based on their melodies [5].

Another content-based recommender system developed by Bogdanov et al. in

2013 computed semantic descriptors (i.e. genre, mood, rhythm) for a sampling of

tracks in a user’s music library based on various timbral, temporal, and tonal fea-

tures, such as pitch, beat onsets, and spectral complexity [1]. These descriptors

were augmented with bibliographic metadata sourced from the MusicBrainz Picard

database and mapped into a similarity space. Descriptors were calculated similarly

for each track in a music collection, and the system experimented with different simi-

larity measures to suggest tracks in the music collection that were closest to the user’s

sample tracks in the similarity space. The system demonstrated its resilience to the

cold start problem by its ability to infer user preferences and make successful recom-

mendations for tracks the user had not encountered before. However, users generally

preferred recommendations made by a different commercial system utilizing black box

collaborative-filtering techniques.

In 2021, Okada, Tan, and Tamioka proposed a similarly content-based system
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that could map songs to a spectrum of user preferences based on their audio tim-

bral features; however, their system differed in classifying tracks according to the

MUSIC model, a psychology-based framework characterized by the five attributes of

Mellow, Unpretentious, Sophisticated, Intense, and Contemporary [7]. Additionally,

the system took into account users’ psychological profiles such as age, empathy level,

and tendency to think systematically, which were inferred from their responses to a

self-assessment questionnaire, when making recommendations to them. Experimental

results demonstrated that both age and personality were good initial predictors of a

user’s inclination towards mellow, unpretentious, or intense music and thus make ap-

propriate recommendations, showing that the system was resilient against cold start.

However, the system struggled with recommending sophisticated and contemporary

music, hinting that additional audio features may need to be taken into account

to properly determine the higher-level, culturally-defined properties of these tracks.

Also, the validity of the empathizing-systemizing theory inspiring the system’s user

psychological profiling methodology has been widely questioned due to its inability

to be replicated and its perpetuation of harmful gender stereotypes [11], leading us

to wonder if better results could have been achieved by using a better-established

personality-profiling framework.

2.3 Collaborative-based filtering techniques in music

recommender systems

As demonstrated in the previous section, content-based recommender systems have

great potential for capturing the musical qualities of a song, but may struggle to rec-

ognize higher-level qualities subjectively perceived by humans. Collaborative-based

recommender systems rectify these shortcomings by analyzing patterns across a vari-

ety of user habits and behaviors, which allows them to make more nuanced inferences

about how a song aligns with a user’s complex musical tastes that differ across their

entire music library.
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One popular social media platform aggregating music listening habits is Last.fm,

which tracks user listening histories to inform users and their friends about their

unique listening patterns. In 2012, Purushotham, Liu, and Kuo trained a Bayesian

model to interpret a Latent Dirichlet allocation (LDA) statistical model of user track

ratings and a matrix factorization of their Last.fm data to provide music recommenda-

tions [9]. They discovered that their system made the most accurate recommendations

when both user ratings and social network data were taken into account, noting that

it was more important to consider personal ratings over friends’ preferences. While

lacking significant user rating data, the system made more accurate recommendations

when friends’ listening habits were taken into account because users tend to appreci-

ate similar music as their friends. However, it made a greater number of successful

recommendations when more user rating data was provided.

Streaming platforms such as Deezer also maintain similar logs of their users’ listen-

ing histories as Last.fm. In particular, Briand et al. designed a system that clustered

long-time Deezer users into groups based on their demographics (age, country) and

various listening habits, such as streaming activity, searches, skips, and likes in 2021

[2]. When a new user registered on Deezer, they were matched to the cluster of users

who had the closest centroid to the predicted embedding vector of the new user’s

self-reported demographics and day-one usage data. This semi-personalized strategy

performed better than the ones that recommended the most popular songs to new

users or songs that matched strictly the new user’s listening preferences, and deploy-

ing this recommender system onto Deezer resulted in a higher number of streams and

liked songs across the platform.

Both collaborative-based recommender systems demonstrate that although user

rating data is important, additional nuances about their listening preferences can be

inferred by comparing them to other longtime, like-minded users. However, since

these collaborative-filtering systems need a significant amount of data about many

users to succeed, it would take considerable time and resources to develop a system

that could replicate similar results.
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2.4 Other considerations for music recommender sys-

tem design

Some other music recommender systems consider additional factors when giving sug-

gestions to users, especially to mitigate cold start problems. For instance, a system

designed to make recommendations for tracks to be added to a playlist extracted

playlist titles and analyzed them for additional meaning [13]. Another system, recog-

nizing that users might prefer to listen to different types of music as they performed

various activities throughout the day (e.g. studying, working out), took into account

sensor data from mobile phones to predict what a user was doing and made more tar-

geted recommendations [12]. Finally, a recommender system assessed whether users

were receptive to divergent recommendations by measuring if they altered or de-

creased their activity on the platform upon encountering songs that didn’t align with

their expressed preferences [6]. This system succeeded in increasing user engagement

on the music streaming platform Spotify by making more divergent recommenda-

tions to open-minded users while keeping recommendations consistent with expressed

preferences for less-receptive users.

2.5 User interfaces supporting music discovery

User interfaces for music collections often employ unique visualization techniques to

represent the qualities of each track in a given collection [3]. Knees et al. discovered

several interfaces that map songs onto a multi-dimensional space so that similar tracks

are grouped closer together [4]. For example, they encountered an early interface de-

veloped in 2001 that colored songs according to their genre classifications, and then

projected them into a 3D space based on the similarity between their audio feature

vectors. Another set of interfaces from the 2000s took a geographically-inspired ap-

proach of representing clusters of self-similar songs as islands or mountains on a map;

one particular interface from 2009 even allowed users to edit the map to correct the

recommender system’s perceived similarity. Knees et al. also found other interfaces
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that map tracks, artists, or genres onto wheel-shaped, spherical, and galaxy-inspired

spaces.

Some interfaces are particularly designed to encourage divergent exploration of a

music collection, which is especially promising for solving cold start problems as they

can help recommender systems collect new data about user preferences. One such

interface in 2005 allowed users to interact with a flow of discs — each representing

a track — to discover tracks similar to ones that they had actively selected [3]. To

support a collaborative-filtering system and collect metadata for songs, another user

interface made in 2007 challenged users to quickly and correctly identify a given song

by adding appropriate semantic tags [4].

Others have also investigated unique ways to represent user music preferences so

that users can not only better understand them, but also gain additional context

from them. In particular, the 2013 recommender system developed by Bogdanov

et al. was supported by a visualization of user preferences as humanoid cartoons,

such that each body part or clothing item on the avatar captured some aspect of

their music preferences (e.g. genre, danceability, instrumentation) [1]. Although it

is unique and humorous, such a generalized and metaphorical visualization might

not completely capture all the nuances of a user’s music preferences, and it is not

immediately obvious what certain features (especially body parts) are supposed to

represent.

Most recently in 2022, Petridis et al. developed an especially promising interactive

web interface visualizing user music tastes as a traversable network of artists, aptly

named TastePaths [8]. Specifically, each artist is represented as a colored node in a

graph according to the cluster of genres they belong to, and they are linked to similar

or related artists through graph edges. Prior to generating a graph, the interface

asked users to identify genres users listened to often and artists within that genre to

serve as "anchor" nodes. Artists in the graph were clustered through the Louvain

graph clustering algorithm, and common genres unique to that cluster were identified

through term frequency-inverse document frequency (TF-IDF). Artists were linked

through a shortest paths algorithm — specifically, a bidirectional version of Dijkstra’s
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algorithm — from the most popular anchor artist to each of the other anchor artists,

such that all the intermediary nodes from these shortest paths are added to the initial

graph and each node has two edges. The interface was successful in helping users

identify subgenres in their music preferences and discover new artists that combined

different musical styles they liked. However, users wished that the graph conveyed

additional context, such as which artists they had already listened to and historical

evolutions of genres, and additional interactivity with the graph so that they could

prune uninteresting artists or more deeply explore connections to a particular artist.

These flaws suggest that a graph-based visualization may not necessarily be the most

effective way of presenting the information collected by the recommender system.
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Chapter 3

Design

DalSegno is designed to resolve the user cold start problem by employing a hybrid

recommendation approach, improving system explainability and transparency, and

utilizing explicit and implicit user feedback to better understand a new user’s prefer-

ences. It interfaces with the music streaming platform Spotify to access established

sources of user community and audio analysis data.

3.1 Design Goals

DalSegno encourages users to explore and discover new songs they’ll enjoy in accor-

dance with the following goals:

3.1.1 User autonomy

Users should be free to accomplish a variety of complex tasks that allow them to better

discover or understand their music tastes. For example, they should be able to delve

deeper into a track of interest by searching for songs with similar musical qualities

with a slight difference in a particular attribute. Users should be able to affirm results

from the recommender system by noting which types of songs the system should

prioritize looking for, or reject suggestions and query for different ones. However,

the interface needs to be designed such that the system will not misinterpret overly
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detailed or conflicting demands from the user. Regardless, we believe that providing

these capabilities is important to making the system more resilient to cold start by

operating off of data from active user engagement with the recommender system.

3.1.2 Ease of use

Users should not struggle to understand how to navigate or use the interface. Features

should be discoverable and intuitive to use. The interface should be designed to allow

users to easily execute tasks. We hypothesize that users will find the interface more

engaging if they actively drive their own music discovery. The associated design

challenge with this ideal manifests in how much guidance or assistance we need to

provide the user to help them navigate the interface seamlessly. Whereas some users

may prefer to self-explore, other users may prefer more guided, interactive experiences.

3.1.3 Comprehensibility

The user interface must allow users to understand their established music preferences;

users unfamiliar with their own music tastes should be able to confidently describe

the types of music they like after using the platform, while more musically attuned

users should be able to discover minor nuances about their music that they did not

previously realize.

One particular design challenge is how to handle the disparate music preferences a

user might have. Users may listen to different types of music and thus create queries

involving multiple genres. In order to find recommendations that fit a varied palate,

we need to be able to distinguish disjoint subsets of songs that share similar musical

traits. Doing so allows us to find songs that closely match each identified preference

and equally represent all of a user’s music interests in the resulting recommendations,

thus improving personalization.
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3.1.4 Robustness against user cold start

Although our system will have knowledge of which tracks or artists a user has often

listened to from Spotify, such data may not necessarily indicate or encompass a user’s

listening preferences if they rarely listen to music on Spotify. Thus, we hope to

investigate which of the various techniques we employ in this project are effective

in making more relevant recommendations for new or cold users. Specifically, we

explore the effectiveness of a strategy of directly eliciting preferences from users by

enabling them to reweigh parameters in the recommendation algorithm to better fit

their priorities.

3.2 Data and Parameters

It takes a significant amount of time to start a music collection from scratch, compute

multiple measures of complex musical qualities on each track from raw audio data,

and track user listening histories across the music collection. In other words, we face

new item and community cold start problems attempting to generate our own audio

analysis and user community data, which is out of the scope of this project. Thus,

we heavily rely on various data provided by Spotify’s proprietary systems.

3.2.1 Audio analysis data

Audio analysis parameters taken into account by the recommender system are sourced

from Spotify’s audio features endpoint1, which calculates audio features for each track

in their music collection. The musical qualities obtained in this manner and utilized

in our recommendation algorithm are:

• acousticness — a measure of how naturally sounding (as opposed to being

produced by an electronic or synthesized instrument) a piece of music is

1https://developer.spotify.com/documentation/web-api/reference/
get-several-audio-features
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• danceability — a measure of how suitable a song is for dancing based on per-

ceived attributes related to rhythm

• energy — a measure of the levels of intensity and activity in a song

• tempo — the speed or pace of a given piece and derives directly from the average

beat duration, typically measured in beats per minute (BPM)

• valence — a spectrum of musical positiveness conveyed by a track, which can

range from happiness to sadness

These parameters are also utilized in Spotify’s track recommendation endpoint2 that

returns tracks matching the specified audio analysis parameters. We use this endpoint

to query for tracks with similar qualities to a target track the user has identified by

specifying the target threshold for each quality. If the user queries with multiple

target tracks, we identify trends within the inputs and query with those self-similar

subgroups instead.

Although other features, such as loudness, liveness, and speechiness, were exposed

through the audio features endpoint, they were not taken into account by the system

as they had negligible impact on the effectiveness of recommendations and visualiza-

tions.

One potential tradeoff of using this data source for audio analyses is that Spotify

does not provide precise details on how each quality is computed, which makes it

difficult to evaluate the accuracy of the derived measures. We plan on countering

this by augmenting the interface with explanations and disclaimers of what we know

about how each measure is calculated.

3.2.2 Audio metadata

Bibliographic catalog information, or metadata, for a track, such as release year,

album cover art, and performing artists, is available at Spotify’s general track API

2https://developer.spotify.com/documentation/web-api/reference/
get-recommendations
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endpoint3. The information for each track can be accessed by providing the unique

base-62 Spotify ID4 associated with the track. To retrieve Spotify IDs based on

metadata (such as when a user provides a track name to use as a seed), we can

access the track payloads delivered by endpoints such as the generic item search

endpoint5. We display such metadata on the interface to help users uniquely identify

and recognize tracks.

3.3 User experience

The DalSegno experience is an iterative process consisting of a few key parts: user

onboarding, initial seed selection, recommendation browsing, preference summaries,

history review, and finally playlist export.

Figure 3-1: Overview of the DalSegno user experience.

3.3.1 User onboarding

Starting from the landing page, new users begin their experience by authenticating

with their Spotify credentials. Authorizing DalSegno to access their Spotify account

data enables a more personalized and integrated recommendation experience. After-

wards, users are redirected back to the landing page, which is updated to show the

user’s basic profile info to affirm that they have successfully onboarded.

3https://developer.spotify.com/documentation/web-api/reference/get-track
4https://developer.spotify.com/documentation/web-api/concepts/spotify-uris-ids
5https://developer.spotify.com/documentation/web-api/reference/search
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3.3.2 Initial seed selection

Next, users are prompted to select initial seeds that serve as the starting point for

the music recommendations in their experience (Figure 3-2a). A series of interactive

popups introduces the concept of seeds and provides further context by explaining

how they are used by the algorithm to generate personalized recommendations. Users

are suggested potential seeds based on their listening history (Figure 3-2b), but they

can select other seeds by querying based on track or artist name (Figure 3-2c).

(a) Default state with no popups triggered.

(b) Seed suggestion state.

(c) Multiple-seed selection state.

Figure 3-2: Initial seed selection interface in various states.

3.3.3 Recommendation exploration

Users are presented with a set of recommendations based on the selected initial seeds

(Figure 3-3). They have the option to explore these recommendations by listening to
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Figure 3-3: Sample set of recommendations.

30-second audio previews by clicking on the play icons, and clicking on the song title

user’s native Spotify client.

To provide positive feedback to the recommendation algorithm, users can save

tracks to use as seeds for the next set of recommendations by selecting their cor-

responding checkboxes. If users do not encounter recommendations that they like,

however, they can generate a new set of recommendations for the same seeds by

clicking the Get New Recommendations button without choosing any tracks as

seeds.

Users can gain a more comprehensive understanding of their music preferences

by exploring attribute graphs that accompany each recommendation. These visual-

izations depict various musical qualities — acousticness, danceability, energy, tempo,

and valence — of each recommendation. They can also learn more about how each

quality is defined by clicking its label on the graph. Furthermore, DalSegno helps

users understand their diverging preferences by visualizing attributes relative to those

of similar seeds. For example, in Figure 3-4a, the recommendation “Uptown Girl” ’s

attributes are displayed relative to similar seeds “Never Gonna Give You Up” and

“Take On Me”. However, the attribute graph of “Variations on a Theme by Rossini”

indicates that it has a distinct profile that more closely resembles the seed “Fur Elise”
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than the other seeds (Figure 3-4b).

(a) “Uptown Girl”. (b) “Variations of a Theme of Rossini”.

Figure 3-4: Attribute graphs for two recommendations with different characteristics.
Each colored line on the graph represents the characteristics of a recommendation or
seed.

Attribute graphs also enable users to fine-tune their inferred preferences. By

rearranging the positions of nodes on an attribute graph, users can influence their

subsequent set of recommendations to better match a different combination of musical

qualities (Figure 3-5).

(a) Original attribute graph
for “Holler”.

(b) “Holler” attributes after
user modification.

(c) Recommendation based
on modified “Holler”.

Figure 3-5: Demonstration of the attribute editing process on attribute graphs.
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3.3.4 Preference summaries

After a few rounds of recommendations, DalSegno provides a summary of the pref-

erences it has elicited from the user (Figure 3-6). Like the recommendation browsing

phase, preferences are visualized through attribute graphs, and brief textual descrip-

tions are also generated. Users can proceed to review their seed history, or continue

refining their preferences through additional rounds of recommendation browsing.

Figure 3-6: Example of a preference summary generated after the user completed two
rounds of recommendations.

3.3.5 History review

As the final phase of the DalSegno experience, users can review all the seeds they

saved thus far. Similar seeds are grouped together, while seeds with distinct charac-

teristics form their own separate clusters (Figure 3-7). Additionally, users can export
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each group of songs into a Spotify playlist that they can listen to later (Figure 3-7b).

They can finish their experience by either initiating a new one with a different set of

initial seeds or logging out, which results in all of their session data being deleted.

(a) Two distinct clusters of songs. (b) Exported playlist for the left cluster in
Figure 3-7a.

Figure 3-7: History page overview for 7 saved seeds.
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Chapter 4

Implementation

The DalSegno platform is implemented as a single-page web application. Its modules

utilize various data analysis packages and web frameworks from the Python and

Node.js ecosystems, respectively. Ultimately, the components integrate seamlessly

to enable an interactive user experience that allows users to easily see, hear, and

discover new music. The source code for DalSegno is accessible through this GitHub

repository:

https://github.com/synicalsyntax/dalsegno

The system was designed to be self-hosted on a virtual private server. A public

instance of DalSegno is deployed here:

https://dalsegno.syncl.dev

4.1 System architecture

DalSegno consists of several components, including a Vue.js frontend, Flask backend,

and various data processing modules written in Python. The system is designed so

that the Flask backend facilitates communication between the frontend and backend

through a REST API, while the user interacts with the system primarily through vi-

sual elements afforded by the frontend. Each module on the backend serves a different
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purpose: for example, one module is dedicated to handling the OAuth authorization

flow described in Section 4.3.1. A diagram of the system architecture is pictured in

Figure 4-1.

Figure 4-1: Overview of the system components and data flow

4.2 Vue frontend

Vue.js (also referred to as Vue) is a framework designed for building user interfaces.

Although the long-running 2nd version of Vue arguably has a larger package ecosys-

tem, we opted to use the 3rd version of Vue as it offers first-class support for Type-

Script. The code for the frontend is available in the src folder.

4.2.1 Modular components

Vue enables a component-based architecture, such that each element can have its

template markup, logic, and functionality encapsulated in a dedicated component and

reused across different pages. These components are available in the src/components

folder. Several frameworks streamline the development of components and are listed

in Appendix A-2.
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4.2.2 Client state

Contrary to most client-server implementations, DalSegno runs a stateless backend;

instead of using server-side storage to maintain state, all session data is stored in

the end user’s browser, which thus allows them to maintain control over their data

retention. This is accomplished through the state management library pinia, which

closely follows Vue reactivity and composition paradigms. As a result, calls from

the Vue frontend to the backend often encode several components of the user’s client

state.

4.3 Flask backend

The Flask backend implements a REST API that is responsible for delegating commu-

nication between the Vue frontend and Python modules on the server. Files related to

the Flask backend are placed in the root of the server directory. Further information

regarding the Python libraries used in this project can be found in Appendix A-1.

The backend closely integrates with the spotipy API library for Spotify to utilize

convenient methods for common Spotify operations, such as fetching basic user profile

data, searching for tracks, and fetching recommendations. Notably, spotipy also

provides methods implementing Spotify’s OAuth protocol with the PKCE variant,

allowing DalSegno’s API client to make calls without its client secret; this ensures

the security of our platform as sensitive credentials are not passed in any API calls.

4.3.1 Data access

The Spotify API implements the OAuth authorization protocol1, in which users con-

sent to Spotify-interfacing applications like DalSegno accessing specific types of data

by granting scopes. As part of its user onboarding process, DalSegno requests users

to grant the following scopes:

• user-read-email — obtain the name and profile image associated with a user’s
1https://developer.spotify.com/documentation/web-api/concepts/authorization

30

https://developer.spotify.com/documentation/web-api/concepts/authorization


Spotify account to display on the interface after authentication

• user-top-read — access a user’s top artists and tracks to use as suggestions

for initial recommendation seeds

• playlist-modify-private — create and modify private playlists on the user’s

behalf to help users export their saved tracks

Once a user grants access to their data, Spotify will redirect the user back to

DalSegno and deliver a temporary access token to a dedicated endpoint on the

DalSegno web server so that it can make API calls on behalf of the user, whether

it be displaying the user’s basic profile information or searching for tracks of similar

qualities. Ultimately, this process ensures that users can consent to DalSegno ac-

cessing only specific parts of their personal data, and also grants them the agency to

revoke access permissions at any time through their Spotify account settings.

Although we access the authorized user’s top tracks and artists, that data is not

used when considering potential recommendations unless the user explicitly chooses

one of their top tracks as an initial recommendation seed. Additionally, accessing a

user’s listening history requires a different authorization scope2 that we do not request.

Thus, we can consider DalSegno to be agnostic to a user’s music preferences until

they initiate the recommendations process.

4.3.2 API routes

API resources and their associated routes are located in server/api.py and are listed

below. Notably, all of these routes require the end user to be authenticated to access

them; to do so, the spotipy authentication manager checks its cache to see if there

is a valid token associated with each request before it is delivered to the endpoints.

Middleware redirects users appropriately if they attempt to access invalid routes or

protected routes while unauthenticated.

• /profile — Endpoints for user profile data
2https://developer.spotify.com/documentation/web-api/reference/

get-the-users-currently-playing-track
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– GET /profile — Returns the authenticated user’s basic profile info (name,

profile picture, ID)

• /search — Endpoints for searching Spotify

– GET /search/spotify — Given a string query, return a set of tracks that

match the query through track or artist name.

• /seeds — Endpoints for seeds

– GET /seeds/suggestions — Suggest a set of initial seeds for the user

based on their most-listened tracks.

– GET /seeds/clusters — Given a set of seeds, return disjoint clusters of

seeds considered to be similar to each other.

• /recommendations — Endpoints for recommendations

– POST /recommendations/results — Given a set of seeds, return song

recommendations that are similar to each disparate subset of self-similar

seeds.

• /export — Endpoints for data export

– POST /export/cluster — Given a cluster of seeds, export it into a new

Spotify playlist under the user’s account.

4.3.3 Authorization endpoints

On the other hand, authorization endpoints are located in the server/auth.py file.

The following routes are implemented to align with the OAuth protocol:

• /auth/login — Redirects the user to a unique Spotify authentication page

where they can provide login credentials and grant the requested authorization

scopes.
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• /auth/logout — Clears the user’s session data so they can re-login to Spotify

if desired.

• /auth/spotify/callback — Listens to requests from Spotify that provide an

authorization code that allows the spotipy API client to make requests on

behalf of the authenticated user.

4.3.4 Recommendation algorithm

We utilize the scikit-learn library’s agglomerative clustering functionality3 to group

similar input seeds together based on the vectors formed by the five musical attribute

values described in Section 3.2.1. Unlike other methods (like k-means clustering) that

require particular parameters to be specified, agglomerative clustering is well-suited

for our use case of sorting a variable number of samples into a variable number of

clusters. A new cluster is formed if the minimum cosine distance between a certain

attribute vector and all other attribute vectors in the cluster exceeds a set threshold.

Clustering seeds in this manner allows us to identify a user’s disparate music tastes

and find recommendations that match each type of preferred music.

Once clusters of seeds are distinguished, we create profiles of each cluster by

statistically analyzing the combinations of musical attributes present in the cluster.

Through the pandas library, we calculate the minimum, maximum, and target values

of each attribute, which is set to the 25th percentile, median, and 75th percentile

of the numerical values, specifically. These profiles are used as parameters in a sub-

sequent call to the Spotify recommendations endpoint to filter out data points with

mismatching profiles in the response.

To further identify recommendations that best match the input seeds, we utilize

the annoy library to find the nearest neighboring vectors of musical attributes to

the input seed vectors based on angular distance. Data processing techniques were

employed to specifically eliminate recommendations that were identical to the input

seeds (but perhaps were duplicated on an album repackage), as well as avoiding
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html
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recommending tracks that were too different from the target profiles. The resulting

recommendations are sorted by the number of seeds that match the profile of the

recommendation, and then by the minimum distance difference from a seed vector

to the recommendation vector. The final output from invoking the recommendations

module contains data that can be visualized by chart.js in a custom radar graph,

where certain values like tempo are normalized to be in a range of 0 to 1.
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Chapter 5

Experiments

Three stages of user testing were conducted throughout DalSegno’s development.

Features were tested with groups of increasing size, which allowed us to make iterative

improvements to the system to better align with user needs and preferences.

5.1 Alpha Testing

The initial alpha tests were a series of contextual inquiry field studies conducted with a

small group of users. Through these tests, we sought to better understand the thought

processes of DalSegno users so that we could redesign our user interface to better

align with real-world usage patterns. Additionally, we hoped to validate assumptions

made during the design process; by seeing how users actually used DalSegno, we

were able to either confirm or refute our initial design hypotheses. Ultimately, un-

derstanding the usage context of DalSegno led to the development of additional

features designed to improve usability and encourage long-term usage.

5.1.1 Methodology

We recruited four participants from the MIT Music Technology Lab for our alpha

tests. This meant that each participant had an extensive prior background in both

technology and music theory, as all were EECS upperclassmen or graduate students
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that conducted research in music technology. Recruiting such a body of participants

ensured that users could recognize if the system made false inferences about their

preferences, and could also offer constructive feedback on how to best improve the

user interface and system design.

As part of the recruitment process, participants were asked to complete a consent

form that informed them of the nature of the study and what data would be collected

(Figure B-1). Specifically, participants had to consent to having their session audio,

screen footage, and interview responses recorded for reference in research publications.

A researcher individually met with a participant in a private office setting to

conduct each session. Participants accessed an early prototype of DalSegno via a

development server running on the researcher’s personal laptop, which allowed the

researcher to mitigate mid-session issues. At the start of the session, the researcher

explained the purpose of the contextual inquiry and a broad overview of the plat-

form, emphasizing that the focus was on observing their natural behavior instead of

prompting them on their ability to perform specific tasks. Screen and audio recordings

were initiated as the users began to navigate the interface; as they did so, we directly

observed how users naturally interacted with DalSegno, taking detailed notes on

their actions, behaviors, and any challenges they encountered. Participants were also

encouraged to monologue and explain their thought processes as they navigated the

interface. Afterwards, we conducted follow-up interviews to understand how the par-

ticipants perceived their user experience and encouraged them to share feedback on

and suggest improvements for the system.

5.1.2 Results

A high-level summary of each participant’s session is provided below.

Participant A

This session lasted approximately 32 minutes. Participant A encountered no issues

onboarding onto the DalSegno application. As they selected five initial seeds, the
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participant noted that based on the introduction on the seeds page, they were inclined

to choose as many seeds as they could with diverging characteristics. They also shared

that as a music producer, they chose seeds that belonged to “niche” genres so they

could learn more about the soundscapes of those genres.

Around 40 recommendation results were generated in the first round based on the

five seeds they chose. They commented that it wasn’t clear what they were supposed

to do upon initially seeing the interface. Additionally, Participant A did not find the

song attributes panel of their own volition, and had to be guided by the supervising

researcher towards it. However, they did find the feature “useful”, and later noted

that they considered Danceability the “most important” attribute for defining their

music preferences.

Participant A clicked on the play button of the first track listed on the page, and

listened attentively to the following song snippet, noting that it sounded “fine”. They

then proceeded to listen to several tracks in a similar manner, deeply engaging with

and openly reacting to the songs they listened to. For example, they commented

“This is fire” when they found a track they liked, but disapproved of another track

by an artist, saying “Nah, they missed.” Notably, they opened certain tracks on their

personal Spotify app to listen to them in its entirety and add them to their playlists

if they were particularly interesting, which revealed an opportunity to more closely

integrate with Spotify.

Participant A shared that although they did not recognize the artist that they

first listened to, their heuristic for choosing songs to listen to was based on record-

ing artists; they seemed particularly excited whenever they encountered artists they

recognized.

While choosing seeds for the second stage, we observed that Participant A took

longer than other participants; they explained that they wanted to carefully influ-

ence their future suggestions with their seed choice, which demonstrated that they

understood the concept of seeding. While completing the later stages, Participant A

listened to the song previews more briefly than the previous round, and quickly made

judgments about how much they liked their music. They later remarked that they
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had grown fatigued by the third round, likely caused by the large amounts of seeds

they encountered.

Participant A estimated that they liked approximately half of the songs they

engaged with. They noted that although they did not necessarily learn what music

they liked, they did learn what they didn’t like to listen to. They also commented

that it was a bit difficult to tell how the suggestions had changed over the first and

third rounds. They also suggested designing a more guided experience by having

tracks directly presented to users instead of having to click on buttons to listen to

their previews or view their visualizations. Despite their critiques, Participant A

found that the system was “useful” and wanted to try out future iterations of it.

Additionally, they later shared that one of the songs they had encountered through

DalSegno ended up being one of their most-listened tracks of the year.

Participant B

This session lasted approximately 41 minutes. Similar to Participant A, Participant

B stated their goal for DalSegno was to explore the genres of its recommendations.

They chose five initial seeds that varied greatly from each other and stated their goal

for future rounds was to drive it towards recommending more songs from the disco

genre. While reviewing the resulting recommendations from the initial seeds, they

felt that the recommendation system “didn’t know what to do with me” because the

resulting tracks had all sorts of characteristics that didn’t resemble one individual seed

or another. However, when they chose a single seed, they thought that the results

were much more similar to the seed. This indicated that potential improvements to

the recommendation algorithm would involve identifying distinct groups of similar

seeds.

Amusingly, Participant B also wanted to “stress test” the interface and try to

“break it” to expose unknown bugs. Their first attempt to do so was inserting Chinese

characters into the text input on the initial seed selection page, but the interface

handled it correctly. However, Participant B encountered a bug where identical songs

were shown twice within the same round of results. Upon choosing a seed titled “10
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hours of air conditioner music”, they demonstrated that a song’s duration could be

displayed incorrectly by the interface.

Participant B offered several suggestions for making the interface more intuitive,

like adding info tooltips next to keywords and labels to provide more context. As they

did not discover the track visualizations section without external input, Participant B

also recommended having small previews of the attribute graph in each track listing.

They also wished there was a convenient way to initiate new seed selections from the

recommendations page.

Regardless, Participant B thought the DalSegno experience was “fun” and “satis-

fying”, as they liked engaging with the song attribute graphs and summaries: “Drag-

ging [the graph nodes] is definitely the funnest part!”

Participant C

This session lasted around 35 minutes. Participant C ran into the recurring issue

of retrieving too many recommendations when they submitted 5 seeds in the initial

round and similarly felt that they were overwhelming. Regardless, in subsequent

rounds, they “did vibe with the songs [they] got back”, and felt that their suggestions

sounded similar to the seeds despite being different tracks.

Like the other participants, Participant C did not naturally discover the attribute

graph without guidance from the accompanying researcher. They also did not realize

that clicking on the labels would reveal the definitions of the attributes either. They

believed that adding tooltips would make the feature’s interactivity more obvious.

Participant C also questioned whether having attributes like BPM and loudness dis-

played with the attributes would be meaningful to users lacking musical background.

Nevertheless, Participant C interacted with the attribute graph significantly more

than others; they believed that “the attribute graphs characterized the songs well”

and that they learned from them.

Participant C appreciated being able to retrieve new recommendations if previous

ones were unsatisfactory. However, they thought the interface could provide addi-

tional utility for users by integrating more closely with the user’s data. For example,
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they noted that they struggled to come up with good seeds during initial seed selec-

tion, and thus it would be ideal to have the interface provide suggestions for seeds.

Participant D

This session lasted 17 minutes. Participant D first chose 3 initial seeds. Upon review-

ing the resulting recommendations, they noted that the suggested songs were from

the same artists, likely because their seeds belonged to the same genre. They were

highly satisfied with their suggestions, at one point exclaiming “Ooh, I like this!” Par-

ticipant D also appreciated various other aspects of the interface, such as animations

and color transitions, noting that the interface “looks like Spotify”.

Participant D also struggled to find the attribute graph feature and didn’t engage

with it much after finding it. They also didn’t notice that the panel would update

with attribute definitions until it was explicitly pointed out to them. Like Participant

C, they suggested changing the cursor shape around the labels would help signal users

to interact with it, and were concerned that some attributes would have little meaning

to those without music training.

Participant D was interested in exploring features that would make use of Spotify’s

playlist functionality. They shared that they were interested in using DalSegno to

make a playlist for a party, and thus wondered if it would be possible to consider

data from other users’ profiles or playlists to generate playlists that had songs several

people would like.

5.1.3 Discussion

The alpha tests revealed valuable insight into users’ perspectives on an early prototype

of DalSegno. Overall, participants found the DalSegno experience enjoyable and

engaging. Users enjoyed driving their self-exploration of music, actively seeking out

songs from new genres and artists. They also frequently leveraged the attribute

graphs to request songs with specific characteristics, and found it engaging to test how

different parameters could influence their perceptions of music. This demonstrates
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that providing functionality empowering users to discover music aligned with their

preferences was a pivotal aspect of their satisfaction and engagement with the system.

However, these tests also revealed several design failures. Some were relatively

minor visual bugs that had quick fixes. Others were more difficult to address as they

required the interface or recommendation algorithm to be redesigned. Users also

indicated that they wished for closer integration with Spotify features.

To address the issues discovered through alpha testing, we made the following

modifications to the prototype going forward:

• Instead of generating 8 recommendations per seed, limit the total amount of

results to 10

• Limit track and artist title length to not overflow the table column widths

• Ensure that the same track is not recommended multiple times in a set of

recommendations

• Generate suggestions for seeds based on the user’s most-listened songs

• Move the icon that triggers the opening of a track’s attribute graph to the

left-hand side to make it more visible

• Add inline Spotify links to each recommendation so that users can listen to the

track in their native Spotify app

• Improve the clustering algorithm to sort results by how closely each suggestion

resembles its seed(s)

• Remove loudness and BPM from displayed song attributes

5.2 Beta Testing

As part of our beta testing phase, we orchestrated a series of unmoderated tests

and instead made observations on how the platform was perceived and used through

collecting site analytics and post-experience survey responses from the participants.

41



5.2.1 Methodology

Eight participants were recruited via word-of-mouth; a researcher reached out to

several close friends who used Spotify and were willing to try the interface, which

included individuals with backgrounds ranging from formal to no music training.

As a courtesy for our users’ privacy, users were assigned a randomized site-

generated ID to cite in their survey submissions. Additionally, specific song details

were not collected; instead, site analytics trended towards tracking numerical counts

of various interactions on the site:

• The number of rounds a user underwent during an experience

• The number of recommendations generated per round

• The total number of tracks saved as seeds during a round

• Whether a user listened to a song’s audio preview, viewed its attribute graphs,

or readjusted its attributes

• Amount of time a user spent on each page (in seconds)

The post-experience survey is structured to first elicit the user’s experiences with

Spotify and its recommendation features (Appendix B-2 through B-4). Afterwards,

it delves into how each user perceived the DalSegno recommendation algorithm and

interface design, before finally encouraging users to reflect on their overall experience.

5.2.2 Results

The beta tests revealed new insights about users’ experiences on DalSegno. A total

of 279 recommendations were generated for users that participated in a cumulative

34 rounds of recommendation (an average of 8.21 recommendations per round).

Users expressed universal acclaim for the visual design of the interface in the post-

experience surveys (Figure 5-1). They were impressed by the aesthetic appeal and
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overall visual coherence of the system, which was attributed to colorful, interactive at-

tribute graphs that complemented a simple, clean, and straightforward user interface

design.

Figure 5-1: User ratings for the visual design of the beta prototype.

Figure 5-2 illustrates which features users interacted with as they navigated the in-

terface. In particular, users generally listened to most tracks that they were suggested,

and users rarely engaged with attribute graphs without first listening to a track’s au-

dio preview. This particular usage pattern surfaced by site analytics resonates with

the survey findings that users considered audio previews the most important feature

for exploring music preferences, while attribute graphs were rated highest for prefer-

ence understanding. One user specifically remarked, “I think I can easily recognise if

a certain song fits my preference, but it is hard for me to describe in words, so the

application has been quite helpful.” Several users expressed dissatisfaction with Spo-

tify’s ability to define their music preferences and identify common musical themes

in their playlists, so such explainability was appreciated and contributed to users’

willingness to further use the interface to explore their preferences.

The beta tests also revealed the potential for improvement in the interface’s recom-

mendation algorithm. Surprisingly, despite scoring high on similarity, the relevance

of suggested tracks trended negatively as users underwent more rounds of recommen-
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Figure 5-2: Progression of recorded user interactions during beta testing.

dations (Figure 5-3). Additionally, many users did not consider the recommendations

novel, which indicates they consistently recommended several tracks that they already

recognized.

The most cited critique for the interface was difficulty understanding the concept

of seeds. Such feedback was not captured through the alpha tests, likely because

the alpha testers all had extensive computer science education and would be familiar

with how recommendation systems like DalSegno use seeds, while the beta users

with more diverse backgrounds would not be so familiar. As a result, we had to

consider how to better communicate the purpose of seeds to users.

One particular user echoed a feature request from Participant D in alpha testing

in wanting to have seeds imported based on a playlist, complaining it was tedious to

have to enter seeds one by one. Although developing features to “profile” a playlist

was highly appealing, we were concerned about how the algorithm would scale to

excessively large playlists or playlists with a mishmash of musical profiles. Thus, we

did not move forward with the suggestion.

Finally, several users wrote that they found DalSegno more potent than existing
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(a) Relevance ratings for recommenda-
tions.

(b) Similarity and novelty ratings for rec-
ommendations.

Figure 5-3: Beta test survey ratings of recommendation effectiveness.

Spotify recommendation features, such as Discover Weekly, Spotify Wrapped, and

playlist-based suggestions. This implies that the strategies employed by DalSegno

enable users to more quickly discover songs they like and understand their preferences,

thus mitigating user cold start.

A compendium of survey responses from beta testing is included in Appendix B-7

through B-9.

5.2.3 Discussion

Given the above pain points, we implemented the following improvements for the final

release of DalSegno:

• Initialize a series of interactive popups that appear on the seed selection and rec-
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ommendations pages to guide the user around the interface and provide context

to specific elements

• Limit the number of recommendations associated with each seed to ensure equal

representation of seeds in the set of outputted recommendations

• Modify the recommendation algorithm to separate input seeds into clusters

(Section 4.3.4)

• Add export to Spotify playlist functionality for clusters of saved tracks

• Add detailed summary pages with textual descriptions of inferred preferences

(as opposed to the previous implementation that regurgitated raw statistics)

5.3 Final Release

After improving the beta prototype, we asked our largest audience of users to test with

the final prototype so that we could evaluate the impact of these enhancements on user

experiences. Similar to beta tests, these tests were performed without moderation,

and we relied on website analytics and post-experience survey responses to gauge

usability.

5.3.1 Methodology

The methodology of the final release is highly similar to the strategy deployed for

beta tests. Significant differences include recruiting a larger participant pool (11

new individuals, 3 returning participants) and a rewording/rearrangement of several

survey questions (Appendix B-5 through B-6).

5.3.2 Results and Discussion

Overall, the modifications to the beta prototype resulted in tangible improvements

for users. The addition of interactive popups to guide users around the seed and rec-

ommendation pages contributed to smoother navigation, and users also appreciated
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the clarity and informativeness provided by the popups. As a result, participants

expressed increased satisfaction with the intuitiveness of the user interface (Figure

5-4).

(a) Beta ratings for interface ease-of-use. (b) Final ratings for interface intuitiveness.

Figure 5-4: Comparison of user ratings on interface usability across beta and final
survey results.

Another finding was that users perceived the recommendations had become more

relevant and attuned to their preferences (Figure 5-5). Being able to discern disparate

groups of musical preferences within the broader selection of input seeds provided a

more finely tailored set of recommendations; users similarly appreciated that all seeds

were represented in each set of outputs. The improved relevance in recommendations

had a positive impact on user engagement with the system: analytics demonstrated

that users spent more time exploring and interacting with the recommended songs in

final tests than in beta tests (Figure 5-6).

One point of feedback that persisted throughout the beta and final tests was

that users did not necessarily consider a majority of suggestions novel (Figure 5-7).

Multiple users reported seeing suggestions recurring throughout several rounds of

recommendations (though fortunately not within the same round), and some noted

that they recognized suggestions more often than not. We hypothesize that this

phenomenon occurs because Spotify prioritizes recommending tracks that appear in

a user’s previous listening history. However, it would be difficult to scale a system

to scan through all of a user’s playlists to avoid recommending a track a user has

already encountered. On the other hand, some users appreciated seeing familiar

recommendations, noting that it indicated the system was well-aware of their unique
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(a) Beta relevance ratings for recom-
mendations.

(b) Final relevance ratings for recom-
mendations.

Figure 5-5: Comparison of user ratings on recommendation relevance across beta and
final survey results.

Figure 5-6: Average time spent on each page by users per session.

preferences.

The addition of preference summaries did not seem to have much of a positive

impact on the user experience. Although one user appreciated that it helped “ground”

or remind them of how their experience had transpired thus far, another commented
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(a) Beta novelty ratings for recommenda-
tions.

(b) Final novelty ratings for recommen-
dations.

Figure 5-7: Comparison of user ratings on recommendation novelty across beta and
final survey results.

that it was redundant with the history review page. Analytics showed that users

barely interacted with the summary (Figure 5-6), with some even skipping it to more

quickly advance to their next sets of recommendations. We suspect a better way to

approach preference summaries would be to allow users to generate them on demand

(similar to how track history review is implemented now), and eliminate overlap

between the two features.

Regardless, users continued to express satisfaction with their DalSegno experi-

ences and felt that they were highly rewarding (Figure 5-8). A compendium of final

test survey responses is included in Appendix B-10 through B-12.

(a) User ratings for interface effectiveness. (b) User endorsement ratings.

Figure 5-8: Metrics of user satisfaction on the final prototype.
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Chapter 6

Conclusion

Similar to how DalSegno experiences are structured, iteratively eliciting and in-

corporating user feedback from multiple stages of user testing allowed us to surface

several critical insights. First, we discovered that identifying trends in seeds allows

recommendation algorithms to find items that more closely capture disparate prefer-

ences, rather than items that combine characteristics in unexpected and undesirable

ways. Next, we found that cognitive affordances, such as interactive popups and label

definitions, are integral to helping users understand how to effectively navigate and

utilize interfaces, no matter how redundant they may initially seem. Additionally, we

learned that users enjoy driving their own user experiences when given opportunities

to do so, but struggle when presented with too many options to choose from. Most

importantly, we found that user cold start was mitigated by allowing users to person-

ally influence recommendations, which helped them to discover favorable suggestions

despite lacking an extensive listening history.

6.1 Future Work

Although DalSegno is already a thoroughly developed platform, we believe there

are several other avenues we can explore to further evolve DalSegno into a more

successful platform.

To encourage further user adoption, we would consider integrating more social
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sharing functions into DalSegno. For example, allowing users to compare attribute

graphs and experiences through generated images or links could strike rapport among

users with similar music preferences. On the other hand, some DalSegno testers

requested being able to profile and use playlists as seeds so that they could gain a

more comprehensive understanding of their music tastes; they remarked that if such

a feature were implemented, they would be incentivized to use DalSegno daily.

From a developer’s perspective, it would be ideal to move the DalSegno Spotify

API client out of “development mode”, as this limits the number of requests and

user data that DalSegno can simultaneously access and would prevent DalSegno

from scaling to a larger audience. However, two previous applications to remove

such limitations were denied. As a result, it may be worth it to consider other less-

restrictive sources for audio analysis, audio metadata, and recommendation data.

Doing so would likely improve recommendation novelty, but may harm relevancy and

similarity if the quality of data sources is not on par with Spotify.

In terms of user interface design, it would be interesting to see whether users would

prefer a more guided approach to reviewing recommendations. Instead of manually

clicking on songs to reveal their audio previews and attribute graphs, DalSegno

would individually present users with all of the recommendation’s data at once. Such

a strategy may become cumbersome if they encounter a series of uninteresting sug-

gestions and encourage them to become complacent in offering nuanced feedback, but

we would need to first develop a prototype for this alternative interface to test this

hypothesis.
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Appendix A

Software Libraries

Package Name Purpose
annoy
https://github.com/spotify/
annoy

Nearest-neighbor search implementation.

Flask
https://flask.
palletsprojects.com

Web framework used for implementing the
backend.

pandas
https://pandas.pydata.org/

Library providing utility methods for data
analysis and manipulation.

python-dotenv
https://pypi.org/project/
python-dotenv

Library dedicated to importing .env configu-
ration files into Python environments.

scikit-learn
https://scikit-learn.org

Predictive data analysis library used for clus-
tering.

spotipy
https://spotipy.
readthedocs.io/

Library for interacting with the Spotify web
API.

Figure A-1: Direct Python dependencies.
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Package Name Purpose
naive-ui
https://naiveui.com

Component library that offers a set of pre-
styled yet customizable UI components, such
as text inputs, modals, tables, and dialogs.

tailwindcss
https://tailwindcss.com

Set of pre-defined, shorthand utility classes for
styling, which enables productivity and consis-
tency throughout the project.

unocss
https://unocss.dev

CSS postprocessor that dynamically eliminates
unused styles, resulting in smaller and more
optimized stylesheets.

shepherd.js
https://github.com/
synicalsyntax/shepherd

Component and logic library simplifying the
creation of interactive walkthroughs to intro-
duce site features and functionalities.

@vueuse/sound
https://github.com/
raffaelesgarro/
vue-use-sound

Vue plugin simplifying control over audio play-
back on web browsers.

chart.js
https://chartjs.org

High-level API and plugin ecosystem for creat-
ing custom interactive charts.

chartjs-plugin-dragdata
https://github.
com/synicalsyntax/
chartjs-plugin-dragdata

chart.js plugin implementing support for
draggable nodes on interactive charts.

unplugin
https://github.com/unplugin

Collection of utilities streamlining the devel-
opment of Vue applications, such as auto-
importing components, icon sets, and modules.

vue-router
https://router.vuejs.org

Vue’s official routing package for implementing
single-page applications.

vite
https://vitejs.dev

Tool that optimizes the development and pro-
duction build generation of reactive web appli-
cations.

vite-plugin-pages
https://npmjs.com/package/
vite-plugin-pages

Vite build system plugin for the dynamic gen-
eration of routes based on file directory struc-
ture.

pinia
https://pinia.vuejs.org

Implements session-based state management
for Vue applications, which can be configured
with plugins.

Figure A-2: Direct JavaScript dependencies.
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Appendix B

User Testing Resources

Figure B-1: Participant recruitment form for alpha testing.
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Your Background

DalSegno User Experience Survey

Name

User ID from History page

Roughly, how long have you been using Spotify?

In general, how often do you use Spotify?

Would you consider Spotify your main way to listen to music?

Is your Spotify account registered on a Premium plan?

Which of the following Spotify music recommendation features do you use?

Using DalSegno - Recommendation Effectiveness

How would you describe your satisfaction with Spotify's music recommendation features?

What features or improvements would you like Spotify to implement to better enable you to

discover new music?

Which of the following Spotify features do you use to understand your music preferences?

What features or improvements would you like Spotify to implement to better enable you to

understand your music preferences?

Describe your goals when you started using DalSegno as a new user.  Were you hoping to

discover new artists or genres, or find similar songs to what you enjoy? Were you trying to

learn about your music preferences?

Did DalSegno meet your expectations related to those goals?

Please elaborate on your answer to the previous question.

Which strategy best describes how you chose your initial seeds for your Experience?

Figure B-2: User experience survey for beta testing (Part 1)
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Please consider the following definitions when rating the performance of DalSegno.

How relevant were the recommended songs based on the initial seeds? (Stage 1)

How relevant were the recommended songs based on mid-stage seeds? (Stages 2 through

4)

How relevant were the recommended songs based on late-stage seeds? (Stage 5 and

onwards)

Using DalSegno - Interface Design

Overall, how similar were the recommendations made by DalSegno?

Overall, how novel were the recommendations made by DalSegno?

How would you rate the overall design of the DalSegno interface?

How would you rate the overall ease of use of DalSegno features?

Please share if any features were particularly difficult to use, understand, or access.

Please rate the following features in how effective they were in enabling you to discover

music.

Please share if any other features were particularly effective in influencing how you explored

new music. Reflection

Please rate the following features in how effective they were in enabling you to understand

your music preferences.

Please share if any other features influenced how much you learned about your music

preferences.

How likely are you to recommend DalSegno to a friend?

Figure B-3: User experience survey for beta testing (Part 2)
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What do you like most about the current DalSegno interface?

What improvements would you suggest to enhance the DalSegno experience?

Are there any specific features or functionalities you wish DalSegno had?

How does DalSegno compare to other music recommendation platforms you've used?

Please share any remaining thoughts you might have about DalSegno.

Figure B-4: User experience survey for beta testing (Part 3)
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Using DalSegno - Recommendation Effectiveness

DalSegno User Experience Survey

Name

Describe your goals when you started using DalSegno as a new user.  Were you hoping to

discover new artists or genres, or find similar songs to what you enjoy? Were you trying to

learn about your music preferences?

Did DalSegno meet your expectations related to those goals?

Please consider the following definitions when rating the performance of DalSegno.

Please elaborate on your answer to the previous question.

Which strategy best describes how you chose your initial seeds?

How relevant were the recommended songs in the first round?

How relevant were the recommended songs in the second, third, or fourth rounds?

How relevant were the recommended songs starting from the fifth round onwards?

Overall, how similar were the recommendations made by DalSegno?

Overall, how novel were the recommendations made by DalSegno?

Using DalSegno - Interface Design

Please expand on your ratings.

How would visually appealing was the design of the DalSegno interface?

Intuitive features are defined as those that are easy-to-use and/or understand.

How intuitive were the DalSegno features?

Please share if any features were particularly difficult to use or understand.

Figure B-5: User experience survey for final testing (Part 1)
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Please rate the following features in how effective they were in enabling you to discover

music.

Please share if any other features were particularly effective in influencing how you explored

new music.

Reflection

Please rate the following features in how effective they were in enabling you to understand

your music preferences.

Please share if any other features influenced how much you learned about your music

preferences.

How likely are you to recommend DalSegno to a friend?

What do you like most about the current DalSegno interface?

What improvements would you suggest to enhance the DalSegno experience?

Are there any specific features or functionalities you wish DalSegno had?

How does DalSegno compare to other music recommendation platforms or features you've

used?

Examples: Spotify Wrapped, Discover Weekly, Release Radar, Daily Mixes

Please share any remaining thoughts you may have about DalSegno.

Figure B-6: User experience survey for final testing (Part 2)
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I have used Spotify for multiple
years.

I have used Spotify for around a
year.

I have used Spotify for a few
months or less.

12.5%

87.5%

Consistently - on a near-daily
basis.

Frequently - at least three days
a week.

Sometimes - at least once a
week.

Rarely - once a month or rarer.

25%

37.5%

37.5%

Yes, it's my primary music
streaming service.

Yes, but I sometimes use other
platforms to listen to music as
well.

No, I prefer using other music
platforms to listen to music.

No, I don't stream or listen to
music often.

28.6%

42.9%

28.6%

Yes

No

25%

75%

0 1 2 3 4 5

Discover Weekly

Release Radar

Daily Mixes

Genre/artist-based mixes

None of the above

5 (62.5%)

4 (50%)

3 (37.5%)

3 (37.5%)

2 (25%)

1 2 3 4 5
0

1

2

3

1 (14.3%)

0 (0%)

1 (14.3%)

2 (28.6%)

3 (42.9%)

0 1 2 3 4 5 6

Spotify Wrapped

Top artists/tracks this
month (displayed on your…

Genre/artist-based mixes

Third-party Spotify
integrations like Spotistat…

None of the above

5 (62.5%)

6 (75%)

6 (75%)

3 (37.5%)

2 (25%)

1 2 3 4 5
0

1

2

3

0 (0%)

1 (12.5%)

3 (37.5%) 3 (37.5%)

1 (12.5%)

Figure B-7: Survey results from beta tests (Part 1)
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0 1 2 3 4 5

Chose a single initial seed
that I wanted to find song…

Chose multiple seeds of a
similar genre or style

Chose multiple seeds of
varying genres or style

Chose seed(s) based on
top tracks in my recent lis…

Not too sure how this works
honestly

5 (62.5%)

3 (37.5%)

2 (25%)

1 (12.5%)

1 (12.5%)

1 2 3 4 5
0

1

2

3

0 (0%) 0 (0%)

3 (37.5%)

2 (25%)

3 (37.5%)

1 2 3 4 5
0

1

2

3

4

0 (0%) 0 (0%)

3 (37.5%)

4 (50%)

1 (12.5%)

1 2 3 4 5
0

2

4

6

0 (0%) 0 (0%)

5 (62.5%)

2 (25%)

1 (12.5%)

1 2 3 4 5
0

2

4

6

0 (0%) 0 (0%)

3 (37.5%)

5 (62.5%)

0 (0%)

1 2 3 4 5
0

2

4

6

1 (12.5%) 1 (12.5%)

6 (75%)

0 (0%) 0 (0%)

1 2 3 4 5
0

2

4

6

0 (0%) 0 (0%) 0 (0%)

5 (62.5%)

3 (37.5%)

1 2 3 4 5
0

1

2

3

0 (0%)

1 (12.5%)

3 (37.5%)

2 (25%) 2 (25%)

Figure B-8: Survey results from beta tests (Part 2)
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Seed inputs Customizable attribute
tweaks

Export to playlist Audio previews
0

2

4

6

8
Ineffective - 1 2 Effective - 3

Attribute graphs Attribute explanations Track clustering Saved track history
0

2

4

6

8
Ineffective - 1 2 3 - Effective

1 2 3 4 5
0

1

2

3

4

0 (0%) 0 (0%)

4 (50%)

2 (25%) 2 (25%)

Figure B-9: Survey results from beta tests (Part 3)
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1 2 3 4 5
0

2

4

6

8

0 (0%) 0 (0%) 0 (0%)

6 (42.9%)

8 (57.1%)
0 2 4 6 8

Chose a single initial seed
that I wanted to find song…

Chose multiple seeds of a
similar genre or style

Chose multiple seeds of
different genres or styles

Chose seed(s) based on
top tracks in my recent lis…

kpop groups i liek :)

4 (30.8%)

8 (61.5%)

5 (38.5%)

8 (61.5%)

1 (7.7%)

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

0 (0%) 0 (0%)
2 (14.3%)

3 (21.4%)

9 (64.3%)

1 2 3 4 5
0

2

4

6

8

0 (0%) 1 (7.1%) 0 (0%)

8 (57.1%)

5 (35.7%)

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

0 (0%)
1 (7.1%)

2 (14.3%)

9 (64.3%)

2 (14.3%)

1 2 3 4 5
0

2

4

6

8

0 (0%) 1 (7.1%)

2 (14.3%)

8 (57.1%)

3 (21.4%)

1 2 3 4 5
0

2

4

6

0 (0%)

5 (35.7%) 5 (35.7%)

4 (28.6%)

0 (0%)

Figure B-10: Survey results from final tests (Part 1)
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1 2 3 4 5
0

5

10

15

0 (0%) 0 (0%) 0 (0%)
3 (21.4%)

11 (78.6%)

1 2 3 4 5
0

2

4

6

8

0 (0%) 0 (0%)

2 (14.3%)

7 (50%)

5 (35.7%)

Seed inputs Customizable attribute
tweaks

Export to playlist Audio previews
0

5

10

15
Ineffective - 1 2 Effective - 3 I did not use or encounter this feature

Attribute graphs Attribute explanations Track clustering Saved track history Preference
summaries

0

5

10

Ineffective - 1 2 3 - Effective I did not use or encounter this feature

Figure B-11: Survey results from final tests (Part 2)
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0

2
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6
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0 (0%) 0 (0%) 0 (0%)

6 (42.9%)

8 (57.1%)

Figure B-12: Survey results from final tests (Part 3)
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