Telecommunications @ Crossroads

Philip K. Mutooni
President
IP.Phusion Technologies, Inc.
Current Network Infrastructure

![Diagram showing current network infrastructure including RBOC Toll Switches, Local Exchanges, IXC Network, IP Network, and Local ISPs.]
The Traffic Transition Model

Assumptions:
- Installed Capacity closely matched with peak traffic
- Capacity growing at constant compounded rate

Formulation:
- \(C(\tau) = C_0 (1 + r_x)^\tau \)
 where \(C_0 \) is a base capacity, \(r_x \) is a voice or data growth rate, and \(\tau \) is a time duration
- \(C_{ov} = \alpha C_{od} \)
 where \(\alpha \) is a constant determined during the model’s calibration
Model Formulation

* The general function used to plot these graphs was $k(1+x)^t$. A different value of x was used in both the voice and data cases with $x(\text{voice}) < x(\text{data})$.
Desired Model Results

- Five quantities of interest:

1. t_l or the lead-user point:
 Defn - The point at which packet-data traffic required 10% of the total capacity

2. t_c or the crossover point:
 Defn - The point where both types of service require the same capacity

3. t_e or the eclipse point:
 Defn - The point where packet-data traffic consumes 90% of overall backbone capacity

4. The time interval $t_c - t_l$

5. The time interval $t_e - t_c$
Calibrating the Traffic Transition Model

Four Step Process:

1. Obtain Overall Capacity C_{total} at known points
2. Decompose C_{total} into C_{voice} and C_{data} components
3. Determine growth rates r_v, r_d, and r_{total}
4. Determine t_l, t_c, t_e

Process applied to two data sets:
- For a selected MCI POP
- For a selected ATT POP
Model Results - MCI Case

MCI Traffic Transition Results (1988-2010)

<table>
<thead>
<tr>
<th>Year</th>
<th>Log10(Capacity)</th>
<th>Year</th>
<th>Log10(Capacity)</th>
<th>Year</th>
<th>Log10(Capacity)</th>
<th>Year</th>
<th>Log10(Capacity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>1</td>
<td>2000</td>
<td>5</td>
<td>2005</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>1.5</td>
<td>2001</td>
<td>5.5</td>
<td>2006</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>2</td>
<td>2002</td>
<td>6</td>
<td>2008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2.5</td>
<td>2003</td>
<td>6.5</td>
<td>2010</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>3</td>
<td>2004</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>3.5</td>
<td>2006</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_c</th>
<th>t_e</th>
<th>t_c-t_1</th>
<th>t_e-t_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 1999</td>
<td>2007</td>
<td>8 yrs</td>
<td>8 yrs</td>
<td></td>
</tr>
</tbody>
</table>
Model Results - ATT Case

AT&T Traffic Transition Results (1988-2010)

<table>
<thead>
<tr>
<th>Year</th>
<th>Log10(Capacity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>2.5</td>
</tr>
<tr>
<td>1990</td>
<td>3.0</td>
</tr>
<tr>
<td>1992</td>
<td>3.5</td>
</tr>
<tr>
<td>1994</td>
<td>4.0</td>
</tr>
<tr>
<td>1996</td>
<td>4.5</td>
</tr>
<tr>
<td>1998</td>
<td>5.0</td>
</tr>
<tr>
<td>2000</td>
<td>5.5</td>
</tr>
<tr>
<td>2002</td>
<td>6.0</td>
</tr>
<tr>
<td>2004</td>
<td>6.5</td>
</tr>
<tr>
<td>2006</td>
<td>7.0</td>
</tr>
<tr>
<td>2008</td>
<td>7.5</td>
</tr>
<tr>
<td>2010</td>
<td>8.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t₁</th>
<th>tₑ</th>
<th>tₑ - t₁</th>
<th>tₑ - tₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988 Apr 1997</td>
<td>2006</td>
<td>9 yrs</td>
<td>9 yrs</td>
</tr>
</tbody>
</table>
Model Results - Industry-wide

Industry-Wide Traffic Transition Results (1988-2010)

<table>
<thead>
<tr>
<th>Year</th>
<th>Log10(Capacity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t₁</th>
<th>tₖ</th>
<th>tₑ</th>
<th>tₑ-t₁</th>
<th>tₑ-tₖ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>Nov 1998</td>
<td>2007</td>
<td>10 years</td>
<td>9 years</td>
</tr>
</tbody>
</table>
Key Findings - General

- Window in which data traffic increases to contribute 90% of overall traffic is 10 years from 1997.

- Crossover point in 1998.

- Suddenness of the change, as opposed to change itself, is key in determining post “crossover” industry structure.
Key Findings - IP Telephony

- Due to short transition interval, growth of IP telephony will be very sudden and very significant.

- Potential of infrastructure sharing is key driver of IP telephony, not bandwidth savings.
IP.Phusion Technologies, Inc

- **Mission**: To be the premier provider of Open and Cross-Platform Support Systems for IP Telephony
 - “Shrink-wrap” Software: Billing and NMS
 - Customized Software: Billing/CDR Interfaces
 - Solutions: Consulting, System Integration, and Network roll-outs for Service Providers.

- **Founded**: By Researchers from ITC and LCS

- **Contact Info**: www.ipphusion.com
 info@ipphusion.com