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ABSTRACT

Delay is a fundamental issue in packet communication networks. Previ-
ous work has focused on expected delay as a performance measure in queue-
ing models, in the context of routing. It is clear that some types of traffic
are more sensitive to delay than others, and some simple priority structures
have been proposed; but the fact that expected delay is not very meaningful
for certain applications (e.g. packetized voice, which has a critical delay
ceiling) has received little attention.

Both issues are addressed here by defining traffic c/asses, and assignhing
delay costs c(b,t) which reflect the undesirability of a class-b packet spending
time t in the network. We argue that convex, nondecreasing (CND) functions
are suitable for a variety of classes; examples suggest a range from linear
(e.g. file transfers) to step-like (e.g. packetized voice). An appropriate perfor-
mance measure is the limiting expected average cost per packet. (As an
equivalent characterization, we show that, for a given class, the expected aver-
age cost converges to the expected cost in equilibrium, under mild conditions.)
Within a given class, strictly convex costs will be driven by packets whose
routes have many hops, and/or packets which have long delays on some links;
such packets may profitably be given priority as well.

We propose a distributed scheme in which a single scheduling policy is
executed independently on every link. Link traffic is modeled by a stochastic
sequence {yn}, where <anbphntfnrr> = yaiQ=2Y = IRxBx [0,0xRx(0,0) represents
for packet n the epoch of arrival to the link (a,<an+4), traffic class, delay on
upstream links, route, and transmission time; y Ju) becomes known to the link
scheduler at ap(w). Routing-scheduling interactions and communication overhead
are mentioned, and desirable properties for estimates f of the delay on
downstream links are discussed. We develop a dynamic programming formu-
lation in which the scheduler incurs a decision cost git,y) = c{b,h+t-a+r+f) by
selecting for transmission at epoch t a packet with characteristics y €.

We focus on priority rules ¢(t,y):: at epoch t, a packet for which ¢ is
maximum is selected for transmission. A rule ¢* is optimal (in the static
sense) if it empties out any given gqueue at minimum cost; e.g. for linear.costs
g(t,y) = myt, we show that the "xC rule” ¢ = my/r is optimal in this sense. A
significant result here is that, in the case of constant transmission times, an
optimal time-independent rule minimizes the limiting-average cost for every g
thus for linear decision costs, the rule ¢ = my generates an optimal policy for
a G/D/1 link. For delay costs of the form c(b,t} = cqoft+4), where cg is CND,
we show similarly that the rule ¢ = A,+h-a+f is optimal for a G/D/1 link if f
is time-independent. Suboptimal rules are also given for certain costs in the
case of variable service times.
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Title: Professor of Electrical Engineering
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CHAPTER | - INTRODUCTION

1.1 Communication Delays in Packet Networks

In many types of communication systems, the traffic load is not a static
quantity; even during periods of peak average loading, the instantaneous load
typically has a substantial variation about this average. However, providing a
system with sufficient capacity to accommodate these instantaneous load
peaks can almost never be justified economically, and the reduced allocation
of system capacity may result in degradation of one or more aspects of
service to the users.

In packet-switched systems, such as datagram or virtual-circuit communi-
cation networks, point-to-point transmission of data packets is accomplished
over a single shared channel, and packets ready to depart are queued in a
buffer when the transmitter on a link is busy [Tanenbaum; §3.3.5] [Heart et
a/]. Due to the irregular pattern in which data traffic arrives from outside the
network, a certain degree of queueing due to entering traffic will be almost
inevitable, and this will be compounded by internal traffic. In this case, then,
the limited system capacity manifests itself in the form of queueing delays.
Of course there are other delays associated with packet switching: however,
packet processing and transmission delays are relatively small, and propagation
delays become significant only in satellite applications; in any case, all of
these are more-or-less constant system parameters as far as a given user-pair
is concerned.

Communication delay is a fundamental performance issue in packet
networks. As one consideration, many applications have certain necessary or
desirable response-time characteristics for the individual packets. As an

example, the perceived quality of a display terminal session is degraded as the
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round-trip -delay is increased; in particular, it is tempting to speculate that this
kind of consideration will be relevant whenever the psychophysical needs of
the user come into play. As another example, in certain kinds of real-time,
distributed processing environments, the value of information decreases as it
gets older.

As a second consideration, it is often the case that each of the individual
packet delays contributes to the total duration of a given session or, more
specifically, of a given job. In this context, the effects of delay are most
noticeable in applications characterized by frequent exchanges of short
messages; as the frequency of such exchanges increases, the delay becomes a
larger fraction of the total time required to complete the job. At the other
extreme, in a "one-sided” data conversation such as a file transfer, the sender
may have many packets in the network simultaneously, in which case the
effect of individual packet delays on total job time will be much weaker.?

It appears that, for many applications, delay considerations can be
resolved into one or both of the basic types described above; and moreover,
that one of these will often dominate the other. For instance, in a voice
conversation, user-related constraints on the round-trip response times of indi-
vidua! packets should come into play decisively at relatively low leveis of
delay; again, one might suspect that this would apply in those cases in which
a human is involved in a direct way [cf. Roberts et a/; p. 544]. On the other
hand, in certain types of machine-machine interactions, individual packet delays
woulid be irrelevant, and the total job time will be the dominant consideration,

as Roberts et a/. [p. 544] have observed.

1As an intermediate case, in a “window"” flow-control strategy, the sender
is allowed no more than M packets in the network at one time [see Gerla et
al/, 1980]; the job time will then be determined essentially by the round-trip
delays of every Mth packet.
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The primary motivation for distinguishing these two types of applications
is that they typically lead to different kinds of performance criteria, as
discussed in §2.1. For brevity, applications for which the individual packet
delays are the dominant consideration will be referred to here as
packet-sensftive, and those for which the job time dominates will be calied
job-sensitive.

As a final consideration, from the network operator's point of view,
congestion will result if packets spend too much time in the network.
Although one could attempt to incorporate this into delay costs, we expect
that buffering capability will be such that congestion is typically dominated by

other considerations.

1.2 Delay Performance Criteria

Published work on packet networks has been concerned almost exclusive-
ly with reducing the average delay per packet. In particular, considerable
progress has been made in the development of packet routing aigorithms under
the average delay criterion, due in part to the linearity of this performance
measure in the individual link delays [see e.g. Gallager].

However, average delay as a performance measure has two serious weak-
nesses. First of all, desirable delay characteristics for data traffic will vary
over a wide range for different applications. Roberts et a/. [p. 544] give
some figures for typical time-sharing applications as follows: a 50 character
line of text (400 bits) should traverse the network in at most 200ms; for inter-
active graphics, a new display page (20 kbits) should take less than a second,
and interrupts (less than 100 bits) within 30-90ms. According to Bell Labs [p.
56]. voice conversation is not "unduly” impaired if the origin-destination delay
is less than 300ms. Low priority items, such as certain kinds of file transfers

or sensor data, could reasonably be expected to tolerate delays on the order
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of several seconds or more. One recent analysis which addresses this issue
provides for scheduling voice packets ahead of data packets [Ibe].

At a more fundamental level, however, for certain types of applications
average delay simply is not very meaningful. This is perhaps best illustrated
by an example such as the following: in a packetized voice transmission
system, voice samples or “frames” must be delivered to the destination at
regular intervals, to be reassembled and decoded for the listener; if a packet
arrives early it is simply buffered; if it arrives late it must be discarded. It is
fairly clear that the fraction of packets arriving “on time” is all we really care
about here; depending on the distribution of packet delays, the average delay
need not be a very reliable indicator of this.

Thus the figures cited in the next to last paragraph leave something to be
desired; for instance, must we hold the delay of every text packet below
200ms, or will we be content to achieve this as an average value? More
specifically, what are the consequences of exceeding this value, and what, if
anything, do we gain by undercutting it? Such questions have received little if
any attention in the literature.

For certain aspects of telephone system performance, Bell System spec-
ifications are reported to be established as follows. The expected percentage
of users that would bestow a particular subjective rating (e.g. “good”), in
conjunction with a particular aspect of raw performance {e.g. receiver rms
noise voltage), is called the grade of service associated with that rating and
performance aspect [Bell; pp. 45-48]; the calculation of grades of service is
based in part on subjective testing of customers. Typical objectives are to
provide grades of service of about 95% in the "good or better” category and
a negligible fraction in the "poor” category.

The grade of service concept represents a step in the right direction

because it reflects, in essence, a functional dependence of user satisfaction on
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raw performance. Here, however, we are primarily interested in the automatic
control of delay performance in an operational network, and this will require
an objective function, /.e. a scalar measure of global performance, rather than
a collection of individual specifications. It is common in an operations
research context to assign costs as functions of delay for various: commod-
ities, with the expected cost as a performance measure. We adopt this
approach here, and thus exploit the notion of user dependence in a very direct
way.

We are motivated here by the philosophy that, for a given application,
any user should be able to expect a certain level of performance from the
system, regardiess of geographical separation or other non-essential factors.
As Wong et a/. have pointed out, this is particularly./ reasonable when users are
charged on the basis of resource usage. Our goal then is to provide accepta-
ble service, for all users at as small a dollar cost as possible to the operator,
or equivalently for as many users as possible at a given dollar expenditure.

in Chapter |lI, we develop a cost structure for packet delays, énd show
how it addresses the issues raised here. A probabilistic framework is defined,
and by considering equilibrium behavior some qualitative insights are obtained.
In Chapter Ill, we describe a distributed implementation of the basic schedui-
ing idea, and construct a model for the sequential decision process associated
with packet selection. We can show that in certain idealized cases, optimal

policies are given by simple selection rules.



CHAPTER Il - A COST STRUCTURE FOR PACKET DELAYS

2.1 Delay Cost Functions

Let B be some set of data traffic c/asses: for instance, B might be a set
of applications, e.g. video terminal, packetized voice, etc; but B is not
restricted to any particular interpretation, and we require only that it be a
countable set. We assume the availability of a function ¢ from Bx [0) into
the real numbers IR, such that c(b,t) represents the undesirability, from the
standpoint of the entity operating the network, of a "typical” user experiencing
an individual packet delay t for a class-b packet, t20, beB. For short, the
function c(b, ) is referred to simply as the de/ay cost for class-b packets. It
isn't obvious how such functions would be constructed in practice. They
should of course draw on subjective testing for applications directly involving
humans; it would probably be most straightforward in such cases to construct

for t20 the associated marginal/ cost function?

m(b,t) = ac(b.t)/at, (2.1)
i.e. m(b,t)At reflects the aproximate cost of increasing the delay of a class-b
packet from t to t+At. Then the delay cost clearly may be derived as

c(b,t) = f; m(b,x)dx + c(b,0) (2.2)

for some c(b,b).
Now consider a collection of packets, labelied (uniquely) by either the

positive integers IN* or a subset {1,2,...N}, which traverse some system;

?lacking the standard "equals by definition” symbol in our character set,
we will make do with =",
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suppose that packet n belongs to class b,eB and spends time s,20 in the

system. Obvious measures of performance are the total cost
N
2 clbn.sp) (2.3)
n=1

in the finite case, and the long-term average cost per packet

lim (1/N) )h.l clbn.Sp) , (2.4)
N-w n=1
in the infinite case, assuming convergence. The additive structure without any
weighting implicitly requires that the delay costs c(b, ) reflect, as much as
possible, the relative urgency of the various traffic classes. It also implies
that time-independent constants in the delay costs are irrelevant to the
minimization problem, so that we may as well take c(b,0) = 0 in (2.2).

Iin an attempt to get some feeling for the general behavior of delay cost
functions, we will speculate on their form for some representative
applications. At the same time, we will argue that functions which are convex
and nondecreasing (or CND for short) are suitable as delay costs for a reason-
ably wide variety of applications; it turns out that CND cdst functions have a
number of desirable properties, and we want to exploit these in the sequel.
We note here that for a convex cost c(b, ), the associated marginal cost m(b, )
is nondecreasing, and this answers in a general way the questions raised in
§1.2 concerning constraints on raw delay: we lose at least as much by
exceeding a given constraint as we would gain by undercutting it by the same
amount [cf. Haji et a/].

Consider first, as a packet-sensitive application, the packetized voice
connection mentioned earlier in §1.2. The cost associated with the transit time

of a single voice packet is essentially a step function, /.e. of the form



-8~

uq{t) = 0 for t<T and 1 for t>T, where T is a threshold representing the desired
delay between arrival to the network and decoding at the destination.® The

average cost (assuming voice traffic only) is then
N
(1,N)n§1 ur(s . {2.5)

which is the fraction of packets for which s,>T.

Now in the context of an operating network, a desirable control mech-
anism would be aware of this threshold, and would attempt to ensure that
voice packets do not cross it. But we can accomplish the same effect with a
convex, non-decreasing function such as c(voice, ) of F‘ig. 1. The price paid for
using the convex delay cost is that the control mechanism will continue need-
lessly to pay attention to packets past the threshold. However, under normai
operating conditions (i.e. when the traffic load is not excessive) we would
expect the fraction of packets exceeding the threshold to be very small if the
control mechanism is effective.

As a second application, consider the access of a remote facility using a
display terminal, in terms of the round-trip response time. We assume here
that processing in the remote facility normally has a relatively small time
requirement. Sufficiently short response times are not objectionable (or even
noticeable) to the typical user and the delay cost will be flat over this range.
The typical user will then become increasingly impatient with increasing
response time beyond a certain point. Finally, the user resigns him or herself

to the likelihood of an extraordinary delay, at which point the delay cost

3User satisfaction will of course depend also on the value of the thresh-
old T itself, but the selection of a threshold is a separate issue.

*This functional form for delay costs is also similar to that depicted by
Lawler [1964; Fig. 1] in a job shop context.
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levels off again. A reasonable delay cost might look something like the
dashed curve* of Fig. 2. The control mechanism should presumably try to keep
thé majority of packets below the “knee” of the curve at T(disp), and all but a
negligible fraction below the “shoulder” at'Ts(disp). Again, we can achieve a
similar effect with the solid version c(disp, ) of the curve, which is convex
and nondecreasing, with thé same implications as in the previous example.

In this case, the delay cost was naturally expressed in terms of the
round-trip response time. To conform with our earlier definition, we might
now try to find functions c{(user, ) and creply, ), reflecting delay costs for

individual user and reply packets, which satisfy
c(disp,t+s) = c(user,t) + c(reply,s) _ (2.6)

for all t and s; but it isn't hard to show that, because c(disp, ) is nonlinear,
this is impossible. One could, of course, seek a "“best approximation” (e.g. in
the sense of expected values in the equation above), and intuitively we expect
that any reasonable cost functions so derived will also be CND. At the same

time, however, the approach that will be developed here is in principle appli-

N
c(verce,+)

vy +

Figure 1 Possible delay cost function for packetized voice
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cable to round-trip delay costs as well; the assumption of valid individual
packet delay costs for "round-trip-sensitive” applications may be viewed as
eséentially a notational simplification.

For job-sensitive applications, the dominant consideration is the total job
duration, which is in general the sum Xt; of an unspecified number of compo-
nents. The concern of thé user {or manager) will typically be the fact that
processing facilities and possibly personnel must be dedicated to the job for
its duration; there may also be connect-time charges, both for the network and
for remote resources not owned by the user. For a given application, the
natural approach would again be to express these losses as a job delay cost
function c(job, ). In this case, however, connect-time charges will typically be
linear, and in géneral a linear cost seems most reasonable for dedicated
user-owned resources; the well-known business maxim “time is money” is

offered as a partial justification. Then we can write

C(jOb,zti) = mZt,- = Imt ir (2-7)

c(d\sf.‘t)

\ 4
+

T ¥
Tdisg) Tk (A p)

Figure 2 Possible delay cost function for display terminal



-11-

so that a linear cost cli,t} = mt (which is convex and nondecreasing) is appro-

priate for the individual packet delay components as well.

2.2 Stochastic Performance Measures

Of course the class b, and system time s, of packet n are not known in
advance. In queueing and scheduling literature it is typical to model the uncer-
tainty about such a situation by a stochastic sequence, say {zn NelIN'} or
{z,, n=1,...N}, where z, is a random "vector” {(or more properly a random
ordered set), e.g. <anpbn2,> whose elements represent the essential character-
istics of packet n, e.g. the epoch® a, of arrival to the system, class bp, and
iength 2, The r.v. z, are all functions on an appropriate sample space Q,
taking values in some space Z, e.g. |IRxBx(0,o); we assume in particular that the
arrival epochs satisfy aple) € ap+4e) for all veQ. The statistics of the packet
sequence {z,} are specified by a probability measure P, which reflects the
likelihood of various events defined in terms of the z..

Associated with each point wel} is a sample sequence or realization
{z40)} of the packet generation process; we may then assign to every such
realization a value x{w) from some space X, in which case the function x:=X
is a random variable® on Q as well, and its statistics are in principle deter-
mined by the probability measure P. We generally abbreviate events such as
{oed: x(w) € A} by {x(v)eA} or just {xeA}, and if P{xeA} = 1, we may write

"xeA W.p.1” (i.e. with probability one).

5|n deference to tradition, a “time” will denote the duration of a
(temporal) event, whereas an “epoch” will denote a specific instant.

‘A rigorous construction would require that x be measurable on Q [Ash;
§§1.5, 5.6]; this ensures probability assignments for events defined in terms of
Xx. We will simply assume that the packet process and system parameters are
such that this requirement is met for all functions on Q defined here.
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We assume that the system will treat packets in accordance with some
deterministic po/icy = (chosen from a given set Il of policies), so that associ-
ated with each realization {z,(0)} of the external packet process will be a
well-defined (although possibly unbounded) sequence {s.{w,7} of nonnegative
system times; /.e. the s (s) are random variables on (. Again, obvious

performance measures for the policy » are the expected total cost
N
Inir) = n§1E{c [(brsnir)]} (2.8)
and the long-run expected average cost’

Jr) = lim (IN) 3 Efe[bns il }; (2.9)
when the limit exists; thus we seek practical policies for which Jy or J is
small. We will not always make explicit the = dependence, but some underly-
ing policy is always assumed.

For certain traffic classes, particularly packet-sensitive classes, it is
appropriate to define performance specifications as well. We may construct
such a specification for any given class beB by imposing a simple constraint

on the associated long-run cost. We will assume here that the event

Op = {o: {z{0)} contains infinitely many class-b packets} (2.10)

It might seem more natural to consider instead the expectation of the
limit E{lim (1/N)Zyc[bn.sni7)]}. but (2.9) is more convenient from a technical
standpoint; in any case, if there exists a random variable M such that
{(1/N)Zne [bAe)sHe,7)] = M{g) for all w, N, then by the dominated convergence
theorem [Ash; p. 49] the two performance measures are equivalent for a given
policy =.

*We can write P{Q-Qp) = P{lim inf, {b#b}); this will be 0 if, for instance,
the b, are independent and liminf, P{b,=b} > 0 [cf. Ash et a/, 1975; p. 136].
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has probability one;® then for every we{lp, let
N
n;(b,e) = min{N: )"..1)( {b{w)=b} = j} (2.11)
n=

be the index of the jth class-b packet in {z,(v)}, where the indicator X{b,=b} =
1 if bf{e) = b and 0 otherwise. Then we can require of the long-run expected

average cost per class-b packet that
N
J{b) = “SJ (1/N)n1£1E{c [b,s(n;)] [Qp} = c[b,T(b)] (2.12)

for some appropriately chosen “target time” T(b), such as T(disp) in Fig. 2
(thus two traffic classes may have the same delay cost but different specifica-
tions). The additive nature of the performance measures suggests that the
delay costs be individually scaled {multiplicatively) such that c[b,T(b)] is a
constant (say 1) independent of b; this makes precise the manner in which the
delay costs éhould reflect the relative urgency of their respective classes.

One might also want to define one or more "“floating” traffic classes
without specifications. In the network synthesis problem [¢f. Gerla et al,
1977]) performance for these classes could be traded off for savings in dollar
cost, while specifications for the other classes are guaranteed. In an opera-
tional network, the cost functions for the floating classes could be multiplica-
tively scaled as a group, from time to time as necessary, such that
specifications for the constrained classes are just met.

Finally, it will also be useful to have a performance measure in terms of
the equilibrium distribution of system time associated with a given class of
packets; the equilibrium distribution is a much more intuitive entity to think

about, and is known for many representative queueing situations, Define
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F ;{t:b)

P{s[n;lb,e)] st|Q 4, (2.13)

the distribution of system time for the jth class-b packet, where n;(b,w) is
defined in (2.11). Now suppose there exists a distribution function F( ;b) which
is, in some sense, an arbitrarily close approximation to Fj{ ;b) for sufficiently
large j; tﬁen F( ;b) corresponds to what we would think of as the distribution
of system times seen by class-b packets in equilibrium. The sense in which
F;{ :b) is required to approach F( ;b) in this context is called weak convergence
[Ash; §8.1]; weak convergence of a sequence of probability distribution func-
tions, denoted here by F, Y- F, is equivalent® to pointwise convergence Fpt) »
F(t) for every continuity point t of F (including z«).

Now if F;( ;b) *> F( ;b), we might expect that, in some cases,
Je(b,t)dF(t;b) = J(b), (2.14)

/.e. that the expected cost of every class-b packet arriving after the system is
in equilibrium is indicative of the long-run average cost. In the case of linear
costs, certain system models have been shown to obey relations similar to
{2.14) [Fife] [Stidham; p. 1122]. W.ithout assuming a specific model, we can
show that (2.14) holds for every continuous, nondecreasing, nonnegative delay
cost c(b, ), under a technical condition on the sequence {c[b,s(n;)]} which
should be satisfied for most models of interest (hote that every convex delay

cost is continuous); a formal statement and proof are given in §A.1.

*however, it is often defined as follows: F, Y= F iff [x(t)dF,(t) = [x(t)dF(t)
for every bounded, continuous function x: IR = IR.
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2.3 Delay Performance in Equilibrium

In the light of the previous paragraph, we expect that delay performance
in equilibrium will be representative of long-run average performance as well,
and we will often tacitly assume that (2.14) is true. We first obtain a charac-
terization of equilibrium delay performance for a typical packet switching

network.

2.3.1 Packet Network Model

Our model of a packet network is a set V of nodes, which represent
packet switches, and a set E of /inks, where link <i,j> represents a one-way
transmission channel from node i to node j; thus <V,E> is a (directed) graph
[Lawler, 1976; §2.3]. Associated with each link is a packet queue feeding a
transmitter, and we assume unlimited buffer space. The transmitter on link e
has capacity 6. bits/sec, so that transmission of a packet of random length 2
bits on link e takes a random time 7, = £2/f, seconds. The structure just
described is often called the “subnet;” the user's computer system, or "host,”
is interfaced to one of the subnet nodes [Tanenbaum; §1.2]. We view the
packet process {z,} as being generated by the ensemble of external hosts,
and the policy » as a responsibility of the subnet.

Packet n is generated with a specified destination, and in real life the
subnet must select for it a route r, i.e. a sequence of links from the origin
node to the destination node. The subnet will often have other responsibilities
as well, such as congestion control [Gerla et a/, 1980]. Here, however, we
want to focus on subnet scheduling; we first of all want as simple as possible
a structure for the subnet policy in our model, so we now make the explicit
gualification that = is a subnet schedu/ing policy only.

Secondly, we are not going to pursue in any depth the effects of possi-

ble interactions between scheduling and other subnet functions. As an exam-
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- ple, define =g = "first-come-first-served (FCFS) scheduling on every link,” and
suppose 7, is the same except that it always gives priority to packets on
some route r. If the route assignments are identical in each case, it is intu-
itively obvious (and very likely true as well) that the delay on route r will be
smaller under 7, than ﬁnder no. For this reason, however, an adaptive routing
strategy might assign a larger portion of traffic to r under 7. than under nq
[Tanenbaum; §5.2].

For concreteness, we will assume that every packet vector z.{w) contains
a route rp(e) in some set R; the system time sp{w) is then the sum of the
queueing and transmission times for packet n as it traverses the succesive
links in the route r{¢). We also implicitly assume a flow control mechanism,
situated between the hosts and the subnet, which keeps link loading at a
reasonable level.

Suppose now that, as n - «», and for every route reR,
P{sn<t, rn=r} Y= Hit,r). (2.15)
It then follows that, as n = o,
P{rm=r} = P{spSw, r=r} = Hio,r) = Gir), (2.16)

P{snst} = RZ P{snst, rp=r} ¥ %‘ H(t,r) = F(t), (2.17)

and, as long as P{r=r}.G{r) # 0,
P{snSt|rp=r} = P{snSt, ro=r}+P{rn=r} %= H(tr}G(r) = FTt). (2.18)

Then F(t) = ZgFT(t)G(r), /i.e. the equilibrium distribution of system times is the
sum of the distributions corresponding to the individual routes weighted by the

equilibrium route probabilities, as we might have expected.
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By making some simplifying assumptions, we can invoke a standard
result to get a qualitative picture of F(t). It is typical to model a packet
network as a collection of independent M/G/1 queues, because the distribution
of delay is known in this case [Kleinrock, 1975; ch. 5]. In particular, for an
M/M/1 queue in which packets are transmitted FCFS,!° the density of delay
(queueing plus transmission) on link e has the exponential form f&t) =
(pe-re)exp [-(pe-relt], where u. = 1/E(re) is the service rate and Ao is the
arrival rate [Kleinrock, 1875; p. 202]. Moreover, if the link capacities f, are
such that o = (se-Ae) is independent of e, the system time over a given route

r of j hops (links) has an Erlang density
fr(t) = aF"(t)/at = 33t~ Texp(-dt}(j-1), (2.19)

expectation S" = [tdFTt) = j/é, and variance j/32 [for a picture see Kleinrock,
1975; Fig. 4.5, p. 124]; thus for such an idealized model the overall equilibrium
density f(t) = XRf"(1)G(r) of system times is a weighted sum of the Erlang
densities corresponding to the different routes, and might look something like
Fig. 3. While the M/M/1 packet network model is a fairly reasonable one from
the standpoint of mean delay [Kleinrock, 1976; ch. 5], we do not expect an
accurate representation of the entire distribution; yet neither do we expect

such limitations to materially alter the qualitative picture developed here.

1°This mode! is equivalent to the “network of Markovian queues” [Kiein-
rock, 1975; §4.8] (in which case the queues correspond to the vertices of a
graph rather than the edges).
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2.3.2 Implications of Convex Delay Costs

For a linear cost c(t) = mt, we don‘'t really care about the shape of f, we
juét want the equilibrium mean Sé JtdF(t) to be small. However, as the
convexity of ¢ becomes more pronounced, the mean becomes less: crucial, and
we generally become concerned more with higher moments of delay; e.g. if
c{t) = (t/T)* (T is some tHreshold), we want the kth moment [tkdF(t) to be
small. In turn, the higher moments are typically driven by the upper tail of
the equilibrium density, which corresponds to packets whbse routes have large
numbers of hops,*! and/or packets which have long queueing times at some
links on their routes. Transmission scheduling offers the potential for mitigat-
ing both of these contributions to the upper tail, by giving priority (at the
transmitter) to backets whose routes have large numbers of' hops, and by

giving priority to packets which have had long queueing times at "upstream”

~
Cal

f(z)

Figure 3 Density of system time in a hypothetical M/M/1 network

lle,g. in the ARPANET c. 1976, many node pairs had routes with as many
as 7 hops [Gerla et a/, 1977; Fig. 1, p. 49].
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(f.e. earlier) links in their route, or are expected to do so at "downstream” {.e.
later) links.

We immediately qualify this, however, by noting that, in order for sched-
uling to be effective, there must be packets to scheduie. We should expect
that scheduling can be most effective in environments charcterized by large
numbers of packets in queue, such as high-speed systems. Scheduling might
also turn out to be most useful as a smoothing response to transient load
surges.

We expect that pulling the upper tail of the equilibrium distribution in
toward the mean must come at the expense of pulling the lower "tail” in
toward the mean as well, /.e. we expect some sort of conservation of the
mean system time S. In a single work-conserving G/G/1 queue the mean is
conserved iff packets are selected independent of their transmission times
[Kleinrock, 1976; §3.4] [Heyman et a/, 1982; §11.5]. We expect the situation
to be a little more complicated in the network case, but the single queue deri-
vation suggests that the analogous quantity is the sum of transmission times on
the given link and on downstream [inks. Thus if we give priority to packets
with many hops, we might anticipate an increase in mean delay as well as a
reduction in higher moments. By Little’'s formula [¢f. Stidham, 1972;
pp. 1122-23] this would increase the expected number in system, which is bad
from the standpoint of congestion; but by generalizations of Little’s formula
[Brumelle] [cf. Kieinrock,. 1975], higher moments of number in system should
be reduced, which seems desirable from a congestion standpoint.

Insofar as the mean system.time S is conserved, we can alternatively
view convex costs as being generally driven by the central moments
[ |t-S|*dF(t) of equilibrium delay, such as the variance. Indeed, Jensen's
inequality [Ash; p. 287] gives Jc(t)dF(t) 2 c{S) for every convex function c;

moreover, this holds with equality if and only if the distribution F is a unit
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step (/.e. the density f is a unit impulse) at the mean S. Thus given a
collection of distributions with the same mean, those which best approximate
(in some sense) a unit step are the most desirable, from the standpoint of any
given convex cost; this is essentially a restatement of the basic idea of §2.1.

The variance of equilibrium delay similarly has components due to the
variance of route hop-length and the variance of delay at individual links {or
along individual routes). Wong et a/. have recently addressed the effect of
route hop-length variance with packet scheduling: they derived a
time-dependent scheduling discipline {¢f. §3.3.2), based on route membership
only, that minimizes the variance X r(S"™S)2G(r) of mean route delays in equilib-
rium. That work was motivated by a concern for fairness among different
node pairs (cf. §1.2), and the scheme effectively aligns the means of the densi-
ties f"(t), subject to certain connectivity constraints. However, the effect on
the higher moments of,_ delay along individual routes is not apparent. We also
note that their simulation results showed little variation in mean delay due to
scheduling discipline.

The convexity property also suggests an approach to lower bounds on the
expected cost. Denote by F{ ;) the equilibrium distribution under policy #, and -
define S(r) = [tdF(t;7). If we can find a policy = such that S(r*) < S(x) for all

nell, then for every convex and nondecreasing function c, we have
c[S(z™)] < c[S{m] < [clt)dF(t;n) (2.20)

by monotonicity and Jensen’'s inequality. For a single M/G/1 system, it is well
known that the desired = is that policy which gives priority at each departure
instant to a waiting packet with the smallest transmission time (see §3.2.2).
From the discussion above, a network analogue to the optimal single queue
policy should suggest itself. However, we should not expect such bounds to

be very tight, because r” is not likely to achieve equality in the second
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inequality. Moreover, the idea does not seem to generalize to the case of
multiple packet classes in a useful way.

Finally, we mention the possibility of improving delay performance
through selective packet routing. There are a great many approaches to rout-
ing [Tanenbaum; §5.2], but the effective goal can be expressed as follows:
for each origin-destination pair of nodes, the composite traffic flow rate (in
bits/sec) required by the associated users is apportioned among some desig-
nated set of paths; the objective is a profile of link flows that gives rise to a
low expected path delay per packet. Given such a flow assignment, then, one
could reserve the lower delay paths to a given destination for the more urgent
traffic. However, the examples given in §A.2 suggest that, for larger utiliza-

tions, such a scheme will not in general be as flexible as scheduling.



CHAPTER Il - SCHEDULING ALGORITHMS FOR PACKET NETWORKS

Given the network configuration, the packet generation process, and the
delay costs, we want a scheduling policy = to reduce or minimize the
performance measure J(r) or Jn(r). A scheduling policy basically specifies, for
each departure instant, the next packet to be transmitted. An urgent, newiy-
arrived packet might also be allowed to displace or "pre-empt” the one in
transmission.*2  Without allowing pre-emption, one might still decide to leave
the transmitter idle after a departure if a relatively urgent _packet were
expected in a very short while. On the other hand, both pre-emption and
inserted idle time typically complicate queueing system analysis as well as
increase the expected delay, and pre-emption has associated protocol problems
in packet networks; for these reasons we will not consider such strategies

here.

3.1 A Decentralized Scheduling Problem

The network scheduling problem arises in a number of other contexts, for
example the so-called “job shop” scenario, in which pieces of work must be
processed on a number of different machines, perhaps not in the same order.
[see e.g. Conway ez a/]l. In many such cases, the time-scale on which deci-
sions are made is relatively long; it is then reasonable to assume that, for a
given realization «, the characteristics Zplo) = <ap(e),bn(v),2{a)r f@)> of arrival n
(or estimates thereof) become known to a single scheduler at the epoch an(w).

In a packet network, however, this information becomes available at an(o)

only at the first link in the route rnle). Collecting such detailed state informa-~

'2For analysis of some pre-emptive queueing policies see e.g. Conway et
al. [§8.7] and Schrage [1968].

_22-
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tion for a global scheduler (and passing instructions back to the individual
nodes) is clearly out of the question; at the same time, however, most of this
dynamic information is of relatively little value in making scheduling decisions
for a given link. This motivates consideration of distributed schemes, in
which each link makes its own scheduling decisions, based on a combination
of locally available information and limited communicativon with other
nodes.*® A reasonable performance measure for such a link scheduler wouid
then be the expected (average) cost of all packets transiting that link; such a
scheduler will exert a minimal influence on other packets, which would in any
case be difficult to quantify. Thus » will be interpreted as a /ink scheduling
policy, to be executed independently at every link.

Specifically, we will consider implementations characterized by the
following assumptions about the kinds of information available to the link
scheduler:

e The delay cost is known for every class; we do not antipicate a
large number of classes in practice.

e (Certain sample statistics are known about delays on the routes in
which the link is included; the use of these is discussed in §3.2.

Furthermore, for each transiting packet:
e The epoch of arrival to the link itself is of course known.
e The traffic class is known.

o The delay at upstream links in the route (or equivalently, the epoch
of arrival to the system) is known; this has obvious practical
implications, which are discussed below.

135uch an approach might be desirable as well in certain applications with
longer time scales, as an alternative to more complicated global strategies.
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® The route is known; actually, we do not need the route per se
(which may not be known in practice), just some key to the delay
statistics associated with the route, such as the session identifier
[Tanenbaum; §§5.4.1, 5.4.4].

® The transmission time on the link {(or equivalently the length) is

easily established during arrival.

Given {z,} and =», the packet process seen by a given link is specified;
however, it will certainly be very "messy,” even if {zp} is "nice.” In fact,
the link arrival process will in general have a mild dependence on the link
departure process, and hence on the link scheduling policy, through feedback
paths. To avoid these difficuities, we will simply define a new link process
{ys from scratch, with the assumption that the statistics relevant to the
scheduling problem are similar to those that would arise under the old network
process {z,}. The elements of Yn Will be: the epoch a, of arrival to the link;
the class b,; the "history” h,, i.e. the time behind packet n in the system: the
route r,, and the transmission time Tn- P will now denote the probability

measure for the link process.’* It is in this case useful to make the explicit

definitions

Ynle) = <aple)b n(w),hn(w),rn(w),'rn(w)> € IRxBx [0,0)xRx(0,0) = Y {3.1)

for every oweQ).

The assumption of accurate knowledge of each packets history is an

important one here. For example, priority schemes based on number of hops

- in route, and number of hops remaining in route, were considered, but often

had much worse second moment properties than FCFS. The obvious way to

'*In principle, knowledge of the statistics of {y,} might help the link
make scheduling decisions, but we will not consider this approach here.

**Thus no additional effort is entailed by a round-trip-sensitive reply
packet retaining the history from the user leg of its trip (cf. §2.1).
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communicate the packet history is for every packet to contain a bit field,
which is either “stamped” once with the epoch of arrival to the system, or
updated by each node in the route to reflect the new history.*® Thus there is
an obvious tradeoff between resolution and link loading, and the assumption
of precise information can never really be satisfied. On the other hand, we
will see that histories are not really necessary for packets with linear costs.
In other cases there may be sneaky ways to circumvent the requirement as
well: for instance, in a packetized voice protocol, a precise time stamp may
be forwarded at the onset of every session (or talkspurt, as the case may be);
the system-arrival epochs of subsequent packets can then be recovered from
their sequence numbers if all nodes have accurate clocks. However, the
relationship between resolution and performance is certainly not clear and

requires further attention.

3.2 A Dynamic Programming Formulation of Link Scheduling

The behavior of a queueing system may often be modeled as a contin-
uous-time Markov process [see e.g. Heyman et a/, 1982; chs. 8§, 8]. In many
cases, however, we are interested in the system behavior only at a certain
(countable) set of epochs, and the behavior on this “embedded” set of epochs
is often a discrete-time Markov process with a simpler state space than that
of the underlying process; a standard example is the M/G/1 queue [Kleinrock,
1975; §5.3]. We will construct such a Markov model for the link scheduling
problem, or more pfecisely a model "“schema” or template. The model is
essentially a dynamic programming formulation [Bertsekas, 1976; chs. 2, 9]; it
is also similar to the Markov decision process [Heyman et a/, 1984; ch. 4].
For other applications of dynamic programming and Markov decision processes
to queueing system control see e.g. Stidham et a/. [1974] and references

therein.
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3.2.1 Process State and Dynamics

We first need a notion of process state. We want to make a scheduling
decision whenever the transmitter is idle and faces a non-empty queue; we
will represent the kth such decision epoch by t,, k = 0,1,....

We want also to represent the characteristics of the packets in queue.
Let Q be a subset of IN*, and v a function from Q into Y; the function » can
be interpreted simply as a list of packets and their characteristics; indeed, the
rigorous definition of a function v:Q-Y is the set of ordered pairs {<n,y>: neQ,
y=v(n)} [see e.g. Suppes; ch. 3]. Then if Y is the set of all such lists,*¢ we
may represent by v ,:(0>Y the queue /ist, and by Q, thé set of packets in
queue, at the decision epoch t,.

Finally, in order that the process be Markov, we typically need to record
some additional information about the process history up to epoch t,. We
-denote this information by y,:0>¥, where ¥ is an appropriate space; the nature
of the y, will be elaborated on below. Thus we define the state represen-

tation x, at the kth decision epoch, and the state space X, by
Xklo) = <ty {o),v o) yplo)> € IRxYxV = X; {3.2)

note that, given veY, the corresponding packet-set Q is always determined as
{n: <n,y>ev for some yeY}, ji.e. as the domain of v. In particular, the initial

state Xp will include components defined by
to= ay, (3.3)

Qo= {n: ap=ayl, (3.4)

*¢Note that every such function v:Q-Y is a subset of IN*xY = {<n,y>:
nelN*, yeY} (think of the graph of » in IN*-Y coordinates); then Y is the space
of all subsets of IN*xY which are also functions. Other "big” sets defined
here (such as Il) can be precisely specified in a similar manner.
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vo = {<n,yn>: neQp}. (3.5)

We now represent the dynamics which govern the motion of the process
through the state space. We will say a map p:X~IN" is admissible if p(x)eQ
for all xeX. Then we formally define (at last) an admissible scheduling policy
as a sequence 7 = <p§,p,,...> of admissible maps on the state space; let Il be
the set of all such policies. The interpretation is that, at the epoch t,, the

scheduler selects for transmission the packet
U = apdx) € Qy (3.6)

(in the finite case only the first N maps are used); packet u, subsequently

departs at epoch d{uy) = t, + 7{uy. A policy 7ne€ll is stationary if = = <p, p,...>
for some .
The next decision epoch can be written as
Ap+1 if Qk_uk =g & dg+q > d(Uk),
tisy = { . (3.7)
d{u,) otherwise

where g is the empty set. Let Ey .4 = {n: ty<an=<ty.4} be the set of packets

which enter the queue in the interval following the kth decision; then

Qu+1 = Q- upg UEy (3.8)
and the new queue list is given by

ve+1 = {<n,yp> neQyaql. (3.9)

For a given policy 7, denote by {xy(r)} the process which results from the
sequence of decisions {u,=pxy), k20}.
As a concrete example of how the y, would be chosen, suppose that

{y.} is the superposition of independent processes for each beB, and that for
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each component process, the interarrival times, histories, routes, and transmis-
sion times are i.i.d. and independent of each other; then it is suffucient that y,
includes for every class the latest arrival epoch up to and including t,. On
the other hand, a model of this type may in principle be constructed for the
system behavior under compietely arbitrary packet processes, by recording the

entire state history in the y,.

3.2.2 Decision Costs

The process {y,. says nothing about the probabilistic behavior of packets
after they leave the link. As the basis of a performance measure for the link
scheduling problem, we will use the delay statistics (and the delay costs) to
develop a decision cost g: IRxY = [0,); here g{t,y) will represent an est/mate of
the cost (on system exit) for a packet with characteristics y which begins
transmission at epoch t on a given link. Thus g[ty,y(uy,)] will represent the
estimated cost for the packet u, selected at epoch t,, and we may redefine

Jn and J as (expected) estimated costs of using the policy = by?!”

N-1
Inr) = T E{G[tuln)y(udll. (3.10)

N-1
J(m) = lim (1UN) I E{g[ty(=).y(u]}. (3.11)
N1 k=0

where y(u,) abbreviates y{yy[xyk(7)]1}. It is not hard to show that (2.8) and
(3.10) are equivalent, in the sense that they would have the same value in a

single link system; assuming convergence, we might expect the same of (2.9)

171t is typical in dynamic programming to condition the performance
measure on a given initial state; in the present context we expect any such
dependence to be very mild at worst and we will not worry about it explicitly.
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and (3.11), although a proof is not attempted here. The link scheduling prob-
lem is then effectively specified by a probability measure and decision cost
<P,g>; given such an instance of the problem, a policy which minimizes (3.10)
or {3.11) will be called optimal.

Our approach to the decision cost g at a given link is to construct an
estimate f(t,y) of the ”“future,” /.e. of the delay on downstream links, for a

packet with characteristics y selected at t; we then define
glt,y) = c[b, h + (t-a) + r + f]. {3.12)

Of course the actual packet futures must have some variation about the esti-
mate f, and for strictly convex delay costs this will drive up the average cost
beyond the estimate given by (3.12). In certain such cases, the bias is irrel-
evant to the optimization problem: for instance, if c(b,t) = t2, then g(t,y) =
(h+t-a+7+f)2 = t2+ 2(h-a+r+f)t + (h-a+7+f)2, and the. f2 term is an
isolated constant. For a cubic delay cost, however, the slope of the decision
cost would be biased by an f2 term (in this case one might consider the addi-
tional use of an estimate of the second moment of downstream delay). As
the convexity becomes more pronounced, however, we should also expect that
an effective scheduling algorithm will tend to reduce the variation in packet
futures for any given <t,y>.

Thus the.link essentially interprets the downstream estimate f as a delay
which has already been incurred; it is then not completely unreasonable to

define the effective elapsed time
n{ty) = h + (t-a) + f(t,y) (3.13)

of a packet with characteristics y at epoch t. The link is thus assumed to be

already "liable” for the amount c[b,5{t,y)] at epoch t, and the decision cost
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may now be expressed simply in terms of the effective elapsed time as
glt.y) = clb.y+7).
To construct our future estimate f, we assume that the link scheduler has
a table which gives an estimate D(b,r) of the delay to the destination on
downstream links for a class-b packet on route r; of course D(b,r) = 0 if the
link is the last one on route r. In practice, the estimates are likely to be
sample moving averages of the form
(M-m) -1 T:L:: D;(b,r,o,7), (3.14)
where D 4(b,r,e,n) is the downstream delay of the jth class-b packet on route r
to reach the destination. The table would be updated periodically using
reports from the destination nodes. Adaptive routing algorithms often employ
such tables of downstream delays (for a single class) [Tanenbaum; §5.2]. For
simplicity, we will assume that D is independent of ¢ and 7, since we have no
intention of accounting for these complications. Thus we obtain a simple

estimate of the future by setting!®
f(t,y) = D(b,r). (3.15)

Note that f is independent of t here, so that g( ,y) is simply a shifted version

of c{b, ), and has the same functional form.

*8And this can similarly be modified to include an estimate of the system
time on the return leg for a round-trip-sensitive user packet.
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3.2.3 A Refinement of the Downstream Delay Estimate

For a given pair <b,r>, the goal of the scheduler may be viewed as mini-
mizing the variation in estimated system times of transiting packets (cf.
§2.3.2). The packet histories, arrival epochs, and transmission times will be
taken into account by the downstream links, and this should help rectify
imbalances in the delays accumulated at the given link and the upstream links
associated with transiting routes; the estimate f = D(b,r) is somewhat "pessi-
mistic” in that is does not anticipate any such help from the downstream
links. The following example illustrates how this may degrade system
performance.

Suppose for a given realization there are four packets in gueue, all of the
same class b and with identical transmission times r. The link is the last éne
in a route shared by packets 1 and 2, so their estimate is fy , = 0; their
accumulated delays differ by 3r seconds. The link is the first one in a route
shared by packets 3 and 4, with some estimate f3 4; they have arrived 57
seconds apart.

This is clearly the last opportunity to do anything about the relative
delays of packets 1 and 2, and in fact their system times can be made exact-
ly equal if the schedule 1-3-4-2 is followed. This schedule also reduces by r
the difference in accumulated delays for packets 3 and 4 (as seen by the next
link) to 47, moreover, there is a good chance that this difference can be
reduced further, if not eliminated entirely, by the downstream links. But the
pessimistic scheduler is in effect operating under the mistaken assumption that
this is also the last opportunity to do anything about packets 3 and 4. Fig. 4
shows how the effective elapsed times 5, of the four packets might be
related in- the worst case; the average decision cost at the link is then mini-
mized by the schedule 3-1-2-4 (this is easy to prove, and we do so in §3.4,

but the intuition should be fairly clear). This schedule indeed reduces the
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differences in accumulated delays for packets 3 and 4 to 2r, but results as
well in an irrevocable difference of 2r in the total system times of packets 1
an‘d 2. .

We can also imagine the opposite extreme, that of the totally
“optimistic” scheduler; this one assumes that the downstream links are some-
how ableito guarantee equél system times for all packets with the same <b,r>
(a particularly poor assumption on the last link in a route). To generate such
optimistic estimates of downstream delays, a link might maintain a table
which gives an estimate S(b,r) of the total system time for a class-b packet
on route r, and derive a time-dependent estimate f(t,y) = S(b,r) -
[h + (t-a) + 7]. This gives git,y) = S(b,r) - r and git,y) = c[b,S(b,r)]; with this
estimate, then, décisions may be based on at most packet class and route, and
cannot be very meaningful.

The example of Fig. 4 shows that a link has a limited capacity for reduc-
ing variations in accumulated delay. Thus a more “realistic” scheduler should
expect that, for a given pair <b,r>, each downstream link will make some
contribution to this goal, and it should realize that some effort on its own

P c(o,+)
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Figure 4 Elapsed times with pessimistic estimates
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part will be required as well. We may strike such a balance between the

pessimistic and optimistic schedulers with an estimate of the form
fit,y) = ByD(b,r} + (1-8,)[S(b,r) - (h+t-a+7)] (3.16)

where fy¢€(0,1) represents the fraction of the responsibility assumed by the link
for a packet with characteristics v.
As one possibility, if j. is the number of downstream links on route r,

we might set gy = 1/(j+1). Then for packets at early links in a route, the

differences in effective elapsed times are reduced to much more reasonable

values than those seen by the pessimistic scheduler; however, they are not
completely eliminated, so that meaningful scheduling decisions may still be
made. Of course other assignments for jy are possible, and experimentation
would probably be helpful in establishing reasonable choices; but one obvious
constraint is that, on the last link in a route, By should go to 1, so that f
goes to 0.

Now, however, f is affine in t, and we find that
git.y) = c(b, Byt +Ky) (3.17)

for some Ky independent of t. While the convexity of c(b, ) is retained in
g{ ,y), the particular functional form need not be; we will see in §3.4 that the

characterization of an optimal policy becomes more difficult in this case.

3.2.4 Performance on a Saturated Link

Consideration of scheduling disciplines other than FCFS opens up the
possibility that some packets may get “trapped” in the system forever, and
we clearly want to avoid this. Indeed, both (2.9) and (3.11) have little signi-

ficance unless (with probability one) s, is finite for every n. If this condition
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is not met, then!® E[clb,s] = « for some n, so that (2.9) cannot converge.
And because (3.11) accounts for packets in order of departure, it doesn’t even
give any indication of this problem; in fact the scheduler might conceivably
minimize (3.11) while neglecting indefinitely the most urgent packets.

To ensure no trapping, we could require that on each link the queue
empties out infinitely often, /.e. the queue busy-periods are all finite [this is
typically sufficient for stability of a queue: Kleinrock, 1975; p. 93]; then every
packet is selcted eventually, at every link in its route. More precisely,

suppose that, on every link, we have

{(w.p.1) Iirrli(ilnf Qx| = 1. (3.18)

where |Q| denotes the number of elements in a set Q; recall that by defi-
nition |Oy| is never 0. Thus for every k there exists a j>k such that
|Q;| = 1 [¢f. Rudin; pp. 55-57]; then (w.p.1) for every packet n, we have neE,
for some?® k, and hence d, < t; + 7, and s, £ t; -t + 7, for some j>k.

We might also imagine a situation in which the finite busy-period
assumption is violated, particularly when the potential traffic is large. As a

somewhat weaker assumption, then, we require only that

(w.p.1) Iimki1nf Q] =M < © (3.19)

for some M, /.e. for every k there exists a j>k such that [Q;| < M; we do

expect that such an M exists in practice, regardiess of the policy. We may

1° Suppose that, for every n, E[c(b,,sp)] is finite: then by Jensen’'s inequal-
ity E(sn) is finite, hence s, is finite w.p.1; then the probability of the set of
realizations in which s, is infinite for some n is P{Un»4{sn infinite}) <
2 > 1P{sn infinite} = 0.

2%this actually presumes in addition that {w.p.1) liminf,;7, > O.



-35-

loosely refer to a link for which M>1 as marginally stable (pathological insta-
bilities exist). Trapping is now possible for some policies, which suggests
(correctly) that (3.18) is also a necessary condition (for no trapping under every
policy); but an argument similar to the one in the previous paragraph shows
that no trapping occurs under FCFS, so that at least one such policy always
exists.

We will address the marginally stable case by holding the link account-
able for every arriving packet, as follows: in §3.3.1, ['*(t,v) is defined as the
optimal cost of emptying out the queue described by the list », starting at

epoch t; we redefine J (for the last time) by??
N~ 1
J(7) = Iim (1/N) E{k}"og[tk(w).y(uk)] + T™ [tn(m), un(7)] . (3.20)

T *(tyv ) represents the liability of the link after N decisions (assuming no
additional arrivals). Now if (1/N)E{l*[t\{7),vn{m)]} = O, then obviously J(n) =
limnyi{1/N)J n{7). Moreover, we expect intuitively that (w.p.1) no trapping occurs
in this case, and that {2.9) and (3.20) are equivalent.

It would be nice if we could guarantee that (w.p.1) the optimal policy
never traps in the marginally stable case, but this is not true; for instance, in
the case of linear delay costs c(b,t) = myt and constant transmission times, we
will show in §3.3.2 that (in the single-queue case) packets with minimum my
always have the lowest priority, regardless of their effective elapsed times.
In principle, there should exist conditions under which the optimal policy will
never trap; a likely candidate would be unbounded marginal costs for every

class. In such a case, I'* would serve as a "penalty function” which discour-

21Thus J is no longer a true per-packet average; this allows for further
anomalies, which we will not pursue, but the reader is invited to explore.
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ages the scheduler from neglecting any particular packet for too long. |In
practice, however, we cannot guarantee such a condition. Alternatively, we
could establish absolute time limits such that a packet automatically goes onto
a special subqueue with preferred status once its limit has been reached; this

will also guarantee no trapping.

3.3 A Class of Efficient Scheduling Policies

It is appropriate in this context to focus on simple policies which can be
executed quickly. The transmission time of a data packet is typically on the-
order of 10 milliseconds; thus even an (inexpensive} processor, dedicated to
the task of scheduling, will have time for only a few thousand machine

instructions per decision.

3.3.1 Myopic Scheduling Policies

in particular, it seems reasonable first of all to forget about the dynamic
aspect of the problem; /j.e. at any given decision epoch, ignore the fact that
more packets are expected to arrive in the future, and address only the static
problem of emptying out the queue at minimum cost. Policies of this type
will be called myopic scheduling policies [cf. Heyman et a/, 1984; ch. 3]; the
notion will not really demand a precise definition.

In general, the arrival of new packets can upset the optimality of a static
schedule, as the following example shows. Consider a single link system, and
suppose that for a given realization packets 1 and 2 are present, and packet 3
will arrive in 7 seconds. All packets have transmission times 7. The delay
costs are cfbt) = emax{0,t-r}, clbypt) = emax{0,t-27}, and c(bat) =
emax{0,t-7}, with € << ¢, as shown in Fig. 5. The optimal sequence for pack-
ets 1 and 2 is clearly 1-2, which has total cost 0. But if packet 1 goes first,

then one of packets 2 or 3 must incur a cost of 7, whereas the policy which
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results in 2-3-1 has total cost 2¢e7 < e7; debending on the process statistics,
then, the myopic policy need not be optimal. in certain cases, however, a
myopic policy can minimize the expected cost2? as defined in §3.2.

' To formalize the static scheduling problem, let veY be a queue list with
|Q| = q packets. We define a static sequence for v as a collection
c = {on neQ}, where .}n is' the set of packets in Q to precede packet n. The

o, must then be strictly nested, /.e.??
g =o0any <...<ong = Qng (3.21)

where n, is the first packet according to the sequence ¢ and nq is last. Given
a decision cost g, the cost of scheduling v in accordance with ¢, starting at

epoch t, may then be written compactly as

Fetv)y=s X glt+ I 75 vin)], (3.22)
neQ jeon
cChi,t) c(¥u, t) c(by,t)
L /P "~

/{ | -

Pl

Figure 5 How myopic policies can fail

22There are.other such sequential decision problems, e.g. some inventory
problems, for which the optimal policies are myopic under certain conditions
[see Heyman et a/, 1984; ch. 3].

23 Alas, "<"” denotes proper set inclusion.
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and this motivates our definition; but we will often revert to the shorthand
n4No-...-Ng. The optimal cost for the static problem <t,»> will be defined as
T'*(t,) = min No,t,v) (3.23)
g
(cf. §3.2.2), and the sequence ¢ ié optimal for the problem <t,»> if it achieves
the minimum in (3.23).

There are gl possible static sequences for a given collection of q
packets; the search for more efficient solutions to this problem has been rela-
tively active over the last twenty vyears. There seem to be two basic
approaches, the first of which consists of devising rules for eliminating
non-optimal sequences from consideration. As the most straightforward exam-
ple, dynamic programming approaches can reduce the computation required in
the general problem to the order of 29 [Held et a/.] [Schild et a/.] [Lawler,
1964]. When the cost functions take a particular form, we can apparently do
better; additional elimination criteria have been given for non-decreasing costs
[EImaghraby], CND costs [Henderson et a/; §3], and quadratic costs [Schild et
a/]. But there is nothing to suggest that the complexity of these schemes is
better than exponential, which is unacceptably slow in our context. Moreover,
it is not clear that it is any less difficult to find the first item in an optimal
sequence (which is all we really want for a dynamic policy) than it is to find

the whole sequence.



3.3.2 Priority Rules

The second approach is the use of intuition (and a little luck) to find
selection rules for the first item when the decision costs have a particularly
auspicious form; these rules can typically be expressed as priority rul/es, which
are (at worst) order m at each decision, and this is as good as we could’
reasonably have hoped for. We may interpret any function ¢: IRxY > IR as a
priority function; when a decision is to be made among the packets in a queue
list » at epoch t, we simply select a packet neQ for which ¢ [t,»(n)] is maxi-
mum, /.e. we select a packet with the highest priority [c¢f. Schrage, 1973]; for
concreteness (and without loss of generality), we assume that ties are resolved
in favor of the lowest index. If ¢(t,y) is independent of t for all yeY, then ¢
is time-independent, and we may as well write ¢:Y=IR; most useful priority
rules are in fact of this type. Time-independent rules are especially attractive
here because packets need only be ranked once (e.g. inserted into a linked-list
data structure); this of course represents less overall computation, but also
facilitates consideration of packets arriving relatively close to the decision
epoch.

Given a static problem <t,»> we define the sequence ¢ generated by a

time-independent priority function ¢ (or the corresponding rule) by
o5 = {ieQ: ¢[o(i)] > ¢ [v())]} U {ieQ: ¢[oli)] = ¢[v(i)] & i<j} (3.24)

for all jeQ; the time-dependent case is tedious to write down, but should be
intuitively clear as well. Given a decision cost g, we will say that a
time-independent priority function (or rule) ¢* is optimal (in the static sense) if
it generates an optimal sequence for every <t,u»> ¢ IRxY. For certain decision
costs, optimal time-independent rules do exist (we are aware of no
time-dependent rules which are optimal in this sense). Similarly, the {station-

ary} policy = generated by a priority function ¢ (or rule) may be defined by
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ut,w) = min{ieQ: ¢[t.o(i)] 2 g[t,0(j)] for all jeQ} (3.25)

for all xeX, where the notation emphasizes the fact that decisions depend only
on t and v; similarly, for a time-independent rule we write g(v). The policy
generated by an optimal priority rule may be optimal as well for certain
statistics P. |

To iliustrate these ideas, priority functions corresponding to a number of
well-known selection rules (usually associated with single-queue systems) are
now presented. First-come-first-served may be expressed as ¢(y) = -a. In the
case of linear decision costs gft,y) = myt, the so-called "¢C"” rule is given by
¢{y) = my/r; it is optimal for the static problem, as we will demonstrate
below, and the policy it generates is optimal for the dynamic problem (in the
stable case) when the arrival process is Poisson and the classes and service
times are i.i.d. and independent [Lippman] [see also Fife]. In the special case
| g(t,y) = t, the “shortest job first” rule mentioned in §2.3 is of course given by
¢ly) =1/r. Now consider costs of the form c(b,t) = max{0,t-Tp}; Ty, has the
interpretation of a due-date or grace period, after which a linear cost is
incurred. Jackson’s “due-date rule” is given by ¢(y) = «(Tp-5), /i.e. select the
packet whose due-date is closest; for a single queue, the rule can be
expressed as ¢{y) = (Tp*a), and minimizes the “maximum lateness”
maxy{c(bnSn)} in the static problem [Conway et a/; §§3.3, 8.8]. Finally,
Kleinrock’s time-dependent rule [1976; §3.7]) is the one used by Wong et a/. to
place the means of the various route delays (see §2.3.2 above);, it is probably
most meaningfully expressed here as ¢(t,y) = m.(t-a), where the m, are suit-
able constants, chosen independently for every link.

It is easy to show that, in the case of linear decision costs g(t,y) = myt,

the 4C rule

g "ly) = myir (3.26)
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is optimal (in the static sense).?* Let <t,»> be given, and let ¢* be the
sequence generated by ¢*; without loss of generality, assume that Q =
{1,2,...9} and ¢™(1) < ¢*(2) < ... < ¢*(q); then T(¢",t,v) < T{o,t,v) for every o,
as follows. |If packet 1 is not first in ¢, we can interchange it with 4the
immediately preceeding packet j without increasing the total cost: the costs
of the other packets clearly are unaffected by the interchange (because
T4+73; = 73;+74); the cost of packet 1 decreases by myr; and the cost of
packet 2 increases by mj;ry, and my/ry 2 mj/r; vyields for the net cost
increase mjir, - my7; < 0. Iterating the argument, packet 1 can be "bubbled”
to the first position in the sequence without increasing the cost, and packets
2,3,...9-1 can similarly be bubbled to the 2nd, 3rd,...{q-1)st positions without
increasing the cost. In general, the optimality of any time-independent rule
may in principle be established through such an interchange argument, because
the rule will give an optimal sequence for the two-packet problem correspond-
ing to any interchange pair.

it might seem, at first glance, that an optimal priority rule should always
generate an optimal policy, but this is not so. The following example is a
little involved, but illustrates some pertinent points. Consider a single queue
with linear costs c(b,t) = myt, using the pC ruie ¢(y) = my/r. Suppose that, for
a given realization, packets 1, 2, and 3 have the following transmission times,

delay costs, and priority assignments:

Ty =T cbyt) =t #lyq) = 17
70 = (1+2€)r c{bot) = (1+ ¢t #lyo) = (1+e)l(1+2¢)r
73 =T C(ba,t) = 2t ¢(Y3) = 2|7

24 Although the proof is simple, it is new to us. Proofs of optimality in
the dynamic case proceed differently.
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where € << 1. Packets 1 and 2 arrive simultaneously, and packet 3 arrives
(1+2€)r seconds later. Then the policy generated by the yC rule (which is
indeed optimal for packets 1 and 2 only) results in the sequence 1-2-3, with
total cost (7+4e+2¢e?r; on the other hand, the sequence 2-3-1 has total cost
(6+5e+2e?)r. |

It is fairly clear that the scheduler is forced into making a poor decision
because of the variation in transmission times (the example suggests as well
the possible benefits of inserted idle time); indeed, if we reset r, = r for all
n, the »C rule reduces to a "maximum slope” rule which gives the optimal
sequence 2-1-3; similarly, if 7, = (1+2¢)r for all n, the rule correctly gives
2-3-1. It turns out that, in the case of constant transmission times, every
optimal time-independent rule always (/.e. for every P) generates an optimal
policy (in fact, it minimizes the cost for every realization); the proof is based
on interchanges of non-adjacent packets, and is given in §A.3. Thus in the
case of linear decision costs, the maximum sliope rule generates an optimal

policy for the G/D/1 link.

3.4 Selection Rules for Strictly Convex Costs

The uC rule may in some cases be a useful guideline even when the
delay costs are not linear. Given a problem <t,»> in the single-queue case, if
the marginal costs m(b, ) can be reasonably approximated as constant over the
corresponding intervals [y, 7+ Xg7n]. then the interchange argument of §3.3.2

has some validity, and the use of the priority rule

¢(t,y) = m[b,5(t,y)] /7 (3.27)

25Moreover, there probably exist coupled constraints on the ranges of the
marginal costs and transmission times under which an optimal sequence is
guaranteed.
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should result in good performance?® (note that here 5 =t-a). We should also
expect good performance in the dynamic problem [c¢f. Haji et al] if the
marginal costs and queue size are such that the linear approximation is valid
most of the time. In the many-link case we have?*¢ g'(t,y) = aglt,y)/st =

Bym(b, gyt +Ky) from (3.17), and the corresponding rule is

p(t,y) = gym(b,g)/r, (3.28)

with 5 as in (3.13); in the special case of linear costs, we get ¢(y) = fmy/r,
again a time-independent rule.

If we specialize to constant transmission times 7, we can find optimal
time-independent rules in some other cases of interest. Let cglR-IR be any
CND function, with derivative mg:IR»IR, and consider the case of identical
costs c(b,t} = cdt), t20, in a single-queue system. In this case the optimal

rule is ¢(t,y) = g (cf. §3.2.3); this is equivalent to FCFS
¢ly) = -a (3.29)

[¢f. Henderson et a/; Thm. 2] [cf. Haji et a/], and thus generates an optimal
policy for the G/D/1 queue. To show this, suppose that in some sequence we
have £ arbitrary packets followed by packet j and then packet i, and that
ni 2 15 If we interchange i and j, the cost of packet i decreases by
Colni +27 +7) - colny+2r) and that of packet | increases by colp;+Lr+7) -

Colnj +27); the net increase is then

7 jHLe+ )7 y iH2+ )7
S molt)idt - [ molt)dt = 0 {3.30)
] j"’BT 7 -i+.af :

2éthere is of course an implicit time-dependence in (3.14) [and similarly
for S(b,r)], and in practice gy might depend on t as well; we assume here that
these parameters do not change significantly over large numbers of transmis-
sion times.
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(for every r>0), because mg is nonnegative and nondecreasing. In fact, it is
not hard to show that if |r;-7;] < |5;-5;] for all i,jeQ, then the rule
makes optimal choices in the case of variable transmission times as well.
Now in a somewhat more practical vein, we can derive different delay
costs from cgo by shifts of the form c(b,t) = colt+4p) - coldp), t20, as illus-
trated in Fig. 6. In this case mib,t) = mgft+A), and it is not hard to see (or

prove) that in a singie queue the optimal rule is simply ¢(t,y) = A, + 5, oOr
ply) = 4p - &; (3.31)

again the rule generates an optimal policy for the G/D/1 queue. Note that the
due-date scenaric may be expressed as the particular case cgft) = max{0,t},
with Ap = -T,, But while the careful construction of a nominal cost co might
yield a useful coliection of delay costs c(b, ), there is no guarantee of this; in
particular the scaling requirement is not likely to be met.

In the many-link case, c(Ap) is time-independent, and we may assume
glt,y) = colp+7+4p). Then if .we use the time-independent future estimate

(3.15), it is again easy to see that the rule
#ly) = Ap+h-a+f (3.32)

is optimal, and generates an optimal policy for a G/D/1 link. However, with
the more realistic time-dependent future estimate (3.16), we have gty) =
colfyt +Ky +Ap) from (3.17), and the decision costs no longer correspond to a
simple family of shifted functions. In particular g'(t,y) = Aymo(Byt+Ky +Ap);

because the time-scaling of these marginal decision costs depends on Yy, we in

27We can improve the pessimistic estimate (3.15) without introducing time
dependence, by replacing (t-a) in (3.16) with an estimate L(b,r) of the queueing
delay on the given link; but there remains a tradeoff between the quality of
the estimate and our ability to characterize good policies.
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general cannot make the same kind of argument as in {3.30), and cannot find
an optimal time-independent rule.?’

In general, it is hard to say much about the nature of optimal ruies when
the transmission times are not constant. The due-date rule ¢(t,y} = -(Tp-5) is
oﬁe exception; and while the maximum lateness maxy{c(b,s} is not an addi-
tive performance measure‘, it is appropriate here as the Ilimiting case
{Znlclbrsn] P /P as p-=. With a time-independent estimate f, the form of

the decision costs does not change in the network case; thus the rule
#y) = -[Tp - (h-a+f)], (3.33)

a special case of' (3.32), is optimal in the static sense for variable transmis-
sion times as well. As another case of interest, Schrage [1973] has derived a
suboptimal time-dependent rule for variable service times to reduce the second
moment of delay [i.e. c(b,t) = t2]; the results of his simulation for an M/M/1
queue with utilization p = 0.95 showed substantial improvement over FCFS. In

our notation the rule is

ch",t;)

cCla, ta)
c(b|/t|) S

Co (%)

Figure 6 Shifted versions of a given nominal cost
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pi{ty) = 29E3(r)ir - 72, (3.34)

where E(r) is the expected transmission time overall, and is similarly applica-
ble in the network case with a time-independent estimate f.

Unfortunately, we have not found reasonable policies for the important
case in which competing cost functions have very different forms. Part of the
probiem is that the interchange argument is not reliable in general, as
suggested earlier. Now consider the set I of all schedules ¢ for a given prob-
lem <t,v>. The success of the interchange argument for an optimal time-
independent rule rests on the fact that every local minimum of T'( ,t,4):2~IR is
a global minimum, /e T is in some sense “convex” in ¥I. However this prop-
erty does not hold in general. Conway et a/. give a counterexample in which
the service times are variable; the example below shows that the property can
fail for constant transmission times as well.

Suppose that packets 1, 2, and 3 have transmission times r, and arrive
simultaneously at a single queue system; let c(by,t) = t and c(bat) = clbat) =
emax{0,t-27}, with ¢>>1. Then the sequences 1-2-3 and 1-3-2 each have total
cost e7, and are local minima; in either case, if packet 1 is interchanged with
the succeeding packet, the cost increases to (¢+ca)r. Yet the global optima are
the sequences 3-2-1 and 2-3-1 with cost 2e. Thus a selection rule may be
myopic as well, in the sense that it can “paint itself into a corner” by not

looking at the entire cost function.




CHAPTER IV - SUMMARY AND CONCLUSION

We have addressed the issue of delay performance in packet networks by
assigning delay costs for different classes of traffic, and adopted a limiting-
average expected cost approach. In particular, we suggest that applications
characterized by constraints on individual packet (or round'-trip) response times
lead ‘to strictly convex costs, while applications for which job-related
constraints dominate will have linear costs. We showed that the expected
cost in equilibrium is an equivalent performance measure, and characterized the
equilibrium delay performance of a typical network; this suggested consider-
able potential for reducing convex costs by packet scheduling, especially when
link traffic is relatively heavy. In contrast, routing seemed to be relatively
inflexible in this respect.

A distributed scheduling implementation was proposed, which incorporates
knowiedge of packet histories and estimates of packet futures; we know little
about the tradeoff between resolution and communication overhead associéted
with time stamps for packet histories. Link scheduling was formulated as a
dynamic programming problem, with decision costs representing estimates of
the delay cost on system exit. We concentrated on simple static selection
rules appropriate in a real-time environment, but showed that for some ideal-
ized cases such rules are optimal. In particular, we found that, in the case of
constant transmission times, a time-independent priority rule which is optimal
in the static sense always generates an optimal dynamic policy. The most

useful case we found was that of shifted delay costs of the form c(b,t)

coft + Ap), where cp is convex and nondecreasing; in this case the rule ¢(y)
Ap + h-a+f is optimal for a G/D/1 link, if the downstream estimate is

time-independent. We did not find useful rules for the important case in

_47_
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which the delay costs have radically different forms, but helped explain why
this case is more difficult.
We beiieve that the basic idea potentially has practical merit, especially

as processing costs come down in the future.



APPENDIX

A.1 Convergence of Average Cost to Equilibrium Cost

Theorem: Suppose a sequence {F,} of distribution functions converges
weakly to a distribution function F, and let c: IR - IR be  nonnegative, nonde-

creasing, and continuous. If

lim [ c{t)dF,(t) = 0 uniformly in n, (A.1)
Ao 1t >A

then
I'th'n (1/N)n2:1fc(t)dF At) = Sc(t)dF(t) (A.2)

Remarks: Note that if F, is nonnegative [/.e. F{t} = 0 for t<0] for all n,
then so is F, and we are only concerned about the behavior of ¢ on [0,o).
Thus if we substitute F;(;b) for F, F(;b) for F, and c(b, ) for c, (A.2) is
equivalent to (2.14).

In fact it is easy to show that if [c{t)|t|PdF,(t) is uniformly bounded for
ksome p>0, then (A.1) holds [use the approach on p. 186 of Loeve]; thus
uniform boundedness of the expected costs E{c[b,s(n;)]} is "almost” suffi-

cient for {2.14).

Proof: Denote by C, and C the expectations with respect to F, and F in

(A.2); we first show?® that C, ~> C. Define for every A ¢ IR the function ¢, by

28This is a known result [Loeve; §11.4]; the proof here is based on a
moment convergence proof from Chung [Thm. 4.5.2], and is more direct.

_49-
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c(t) if t<A

calt) (A.3)

c{A) if t>A
These functions are all continuous and bounded on IR, so we have for all A

I’:r;n Jealt)dF n(t) = [ alt)dFit) (A.4)

directly from the definition of weak convergence [Ash; §§4.5, 8.1]. Also,

J [eft)-c )] dF ft) = J, felth-c alt)] oF Ht)

< [ clt)dF Aty = [ c{t)dF n(t), (A.B)
t>A Ft1>A

so by (A.1), [flc-c,)dF,, vanishes uniformly, i.e.

lim Jeat)dFpft) = Ch (A.6)

uniformly in n.
It then follows from (A.4) and (A.6), and properties of uniform conver-

gence [cf. Rudin; p. 149], that fc,dF converges and
lim Sca{t)dF(t) = lim C,, (A7)
Al nt
i.e. the iterated limits exist and are equal. But [fc,dF - C by (essentially)
monotone convergence [Ash; p. 44], so C, > C.

Thus for every e>0, there exists an M such that |C,-C| < €/2 for n2M.

Take

L= [ max{(2/e) :Z;(:Cn-C), M} 1 , (A.8)
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~Where [x] is the smallest integer not less than x; then for N2L, we have

N
|{(1/N) C,, - C|
n=1

(1N} 2(C-C)|
n=1

M- 1 N
| (1/N)n‘=2(1C n-C) + (1/N) nE(MC n-C)|

IA

M-1 N
|(1IL)n}=3(1Cn-C)| + |<N-M+1)“n§&cn-C)|

A

(el2) + (el2) = e, {A.9)

i.e. (1INJX\Cn = C, which is equivalent to (A.2).

A.2 Alternate Route Delays in an Optimal Flow Assignment

We consider here, in a network setting, the traffic leaving a given node,
intended for a given destination; two alternate paths py and p,, of Ny and N,
hops, are available. We model the equilibrium behavior with a function v, such
that v(f} gives the expected number of packets (in queue and transmitter) on a
link with flow f, independently at all links in the network. The expected
number of packets in the system is then the sum L = ZXv({fg) over all links
e ¢eE, and by Little’s formula [¢f. Stidham, 1972; pp. 1122-23] we have L = S,
where ) is the total arrival rate. Thus a minimum-delay flow assignment is
one which minimizes Igv(fe); here we examine some of the implications of
such an assignment.

If we assume further that v is convex {as it is for M/G/1), we can charac-
terize the optimal flow assignment as follows [Bertsekas, 1981; eqgn. (4.4) and

below]: if v'(f) = av(f)/of, and we define the first derivative length (FDL) of a
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path p by Xpv'(fe), then path flow is positive only on paths with minimum FDL.

Thus if we have positive flow on both p4 and p, optimality requires that

dy = ;21 viife = Ez v(fe) = do (A.10)

Intuitively, if p; had a smaller FDL, then some flow could be shifted from p,
to py and by convexity the sum XZpv{fg) + Zpav(fe) would decrease, equiv-
alent to a decrease in overall delay.

If the derivative v' is convex as well {also true for M/G/1), we expect
that, for a given first derivative length, variability among link flows along a
path impiies a smaller average link flow (over the path) than does a relatively
constant link flow profile. But because v itself is convex, variability among
link flows also requires less average link flow for a given number of packets
on the path, and when N; = N, these factors tend to cancel.  As an example,
a string of four M/M/1 links, with expected transmission times E(r), capacities
#, and flows 0.44, 0.5, 0.66, and 0.76, has a path delay 6f S, = 9.BE(r); the
same system has a path delay of S, = 9.8E(r) if all link flows are equal and
adjusted such that the FDLs are equal, d, = d;.

If Ny # N,, the path delays are not as constrained. In the case of M/M/1

links with constant path flows f,; and f,, optimality requires
N48/(6-Ff )2 = No8/(#-f)% or (A.11)
vN /(6-f 1) = VNo,/(6-f,), which gives
N E(2WNL/(-f4) = NLE(2WN /(#-f5), or
SWN, = SNy, (A.12)

where E(2) is the expected packet iength. Thus the greater hop-length path has

a larger path delay, but the relative difference is still not so large for N,



_53-

close to Ny The previous paragraph suggests that non-constant path flows

shouid not significantly alter this result.

A3 Optimal Priority-based Policies for G/D/1 Links

To formalize the G/D/1 case. et Y= Y 7(i) = r(j) for all i,jeQ} be
the set of all gueue lists with constant transmission times. Then given g, @
priority rule ¢* is optimal in the case of constant transmission times if it
generates an optimal seguence for every <t,v> € IRxY. (it is intuitively compel-
ling that if a rule is optimal for any given constant 7, then it is optimal for
every such constant; indeed, we show in §3.4 the optimality of some rules of
this type, and the proofs are always independent of 7). Now if Q¢ = {wel
7 ilo) = 7 5l0) for all i,j € IN*} is the set of all realizations with constant trans-
mission times, We define Jn(7|Qc  and J7|Qo by conditioning  the

expectations“ in (3.10) and (3.20) on Q¢ Then we have the following:

Theorem: Given a decision cost g, Ssuppose there exists a
time-independent priority function ¢* which is optimal in the case of constant
transmission times. Then for every P. in the problem <P,g> the stationary

policy 7 = <pmop’e> generated by ¢ satisfies
Intr ™ 1Qe) = Inir | Qe) (A.13)
for every mell Furthermore, if J(n*\Qa exists and is finite, then

Jr Qo) < lim inf (1IN) {In7 |Qc) * B N7} |Qc)} (A.14)

for every nell, where T *\n) abbreviates T [tdn)onin)]

25|f necessary, we can formalize the expectations by simply considering a
new probability measurée P . associated with Qc
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Proof: Consider the problem of minimizing

L=1
o) = T gftlwnly [udem} + T fw,n) (A.15)

- over nell, where I'* (¢,7) abbreviates T [t (e.7).v (0,7)]; j_ is the incurred cost

plus liability after L decisions, for a given realization {assuming no further

arrivals). We show below that, in fact,
jL(wlﬂ*) < jL(w'”) (A.16)

for every oel., 7ell, L. Now in the finite case, Qp is empty for every o, =,
so I'tyon) = 0; then with L = N in (A.16), taking expectations conditioned on
Qc preserves the inequality [cf. Ash; p. 41], giving (A.13). In the infinite case,

take expectations in (A.16) conditioned on?° Q. divide by L, and take lim inf

as L-o, each of which preserves the inequality; this gives (A.14) when the LHS

converges,
Now let weQ. and L be given, and suppose that Tnle) = 7 for all n: to

get (A.16), we show that for every policy 7C¢ll, there exists a sequence of

policies 7% 7', ... 757", 2% in which j_ is non-increasing, /.e. jler9) 2
jilesr )2 ... 2 jle,n¥). To see how jL changes from one policy to the next, it
is helpful to visualize the packet selections Uo, Uy, ... U _¢ {dictated by a

given policy) laid out along the time axis at epochs to t4, ... t_-4 (nOte that
for constant transmission times, the t, are independent of the policy, for a
given realization); follow these by the packets in Q laid out according to the
optimal static sequence ¢" generated by ¢*, at epochs t, t +r, ... t_ +qg-1)7

(where g = |Q_| is also independent of the policy). The basic idea is that, if

3°Note that we could just as easily have conditioned on a given initial
state here to get the more standard dynamic programming statement.
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the packet u; selected at t; under the policy n3 is not the one dictated by P
ie. if uj(rd) # p*[v;(r3)], then we find a new policy #3*?, under which the
positions of packets u (nJ) and p"[v4(n7)] in the ordering are interchanged; the
effect of the transformations is that policy 73 has the form
<p iepy o pdsopdseq..> (j=0,1,...L-1). Note that every such interchange must
occur within some busy period (because ;" is admissible); the lemma below
shows that no such interchange can increase the value of j_ (the lemma is

proved after the theorem).

Lemma: Given a decision cost g, suppose there exists a time-
independent priority rule ¢* which is optimal in the case of constant transmis-

sion times; let 4" be the map which defines the policy generated by ¢*. Then

if veY. is a queue list with transmission times 7, p*(v) = ieQ implies
glt.v(i)] + glt+(m+1)r, v(j)] < glt,o()] + g[t+(m+1)r, v(i)] . (A7)
for every i,jeQ, telR, m = 0, 1, ... . Thus if packets i and j are separated by

m packets in an ordering, the combined cost of both packets is no greater

with packet i in the earlier position.
Formally, we get »3*' from »J as follows, for j+1 = 1, ... L-1:

Case A: 4 "[v;(n?)] = u4z?); je policy »3 makes the choice dictated by

¢ at epoch t;, so simply pick »3*! = #3, and j_ does not change.

Case B: ,"[v5(n9)] = up(nd) for some p e {j+1,...L-1}; /i.e. the packet
which ,” would have chosen at t; is instead selected at some later epoch

tp < t_ by #J. Then pick any »3*! such that
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3 Ikt

pr Lot )],

p3 elxplr3* ] = gl 5Ixs(n9)],

pI T xdr )

pIIXdr )], k#jp (A.18)

(thus #3*' is not uniquely specified here). Some thought shows that these are

all admissible choices if »J is admissible. Clearly the packets in Q. are not
affected by this interchange, so I'*((z3*") = " (#J); similarly, gy(r3*") = g(n9)
for ksL-1, k#j,p. Only the costs of packets uj{z’) and up{sJ) are affected, and

by the lemma (with m+1 = p-j) we have
9{tyy[us(?™"] + gitpy [up(n?* ")}
< gftuyluse9]} + gltpyludri)l. (A.19)
Thus ju(r3*") < j (n?)

Case C: p"[vj{(n9)] eQ(r7); Jj.e the packet that would have been
selected at t; by ,u* is not chosen by rJ in the first L decisions. In this case

pick any »3*' which satifies

/’j+1j[xj(ﬂj+1)]

ll*[l) J<ﬂJ)]l

PRRSIN PN E ERa) PRI P L) S (A.20)

Now if ¢™ is the (optimal) sequence for v (n) generated by ¢”, let ¢ be the
sequence for »(r7*') obtained by substituting uj(n3) for " [v;(r3)] in ¢*; then
assuming £ packets preceed ;*[v;(n?)] in ¢* [or ugr?) in ¢'], the lemma

gives (with m+1 = L-1+2)
gftyylus(r3* M} + git +Lry [u;(79)]}

< gityylui(zi)} + gft +er,y[u (=313, (A.21)
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Since gylri*') = gylr?) for ksL-1, k#j, and the costs gt + |¢™ |7, yn) for all
other packets neQ, n#p*[u J-(ﬂj)], are unaffected by the interchange, we have

L-1 - . e L=1 Cad et

2ol + T (r37 ) s X gu(n? ) + T o't (7?7 7)]

k=0 k=0

L-1 . . ,
Sk-% gilzd) + T[e " tL,v (77)] (A.22)

(where the first inequality follows from the definition of T'*), or in other
words j (3t s j(nI).

We get »* from 7“~' in essentially the same way, in each case, except
that for k=L,L+1,... we must of course set p*, = ", which clearly has no

effect on j.

Proof of Lemma: The lemma is a statement about only packets i and j;

to prove it we define a new queue list v eY. consisting of packets i and |,

and m other packets whose characteristics are the same as those of j. For

concreteness, let ng = max{i,j} +1 and Q' = {i,j, no,...Nng*m=-1}; then v'(i) = »{i),
and v'(n) = v(j) for n = j, ng, ... ngrm-1.

Now consider the sequence defined by
ofj) < olng < ... < elng'm=1) < af(i). (A.23)

The first two packets in the sequence (j and ng+m-1) are indistinguishable, and
interchanging them clearly cannot affect the total cost [{et,v’); similarly we
can bubble packet j to the next-to-last position for the same total cost. Now
we can interchange packets i and | without increasing the total cost: simply
note that i precedes | in the optimal sequence for the correspoﬁding
two-packet problem. Iterating the same argument, we can bubble packet i to

the first position without increasing the total cost. Finally, packets
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No, ... Notm-1 are now back in their original positions, so their combined cost
is the same, hence the combined cost of packets i and j cannot have

increased.
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