A DISCRETE CHOICE ANALYSIS
by

Axel Boersch-Supan Diplom-Mathematiker, University of Bonn, West Germany
(1980)

Submitted to the Department of Economics In Partial Fulfillment of the pequirements For the Degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology
June 1984
(C) Axel Boersch-Supan

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.

Signature of Author \qquad May 4, 1984
Certified by Daniel L. McFadden Thesis Supervisor
Accepted by \qquad
ARCHUES Gradfate Registration Officer

mASSACHUSETTS MSTITUTE

 OF TECHNOLOGY
JUN 191984

THE DEMAND FOR HOUSING IN THE UNITED STATED AND WEST GERMANY: A DISCRETE CHOICE ANALYSIS
by

Axel Boersch-Supan
Submitted to the Department of Economics on May 4, 1984
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology

ABSTRACT

This thesis applies discrete choice techniques to an analysis of housing demand in the United States and West Germany. Housing demand comprises the choices of household formation, tenure, type of structure, and size and quality of dwelling. We will focus on peculiarities of housing demand which have found little attention in the otherwise ample literature on housing demand. Usage of similar surveys in the United States and west Germany allow us to make comparisons between the two countries and to identify mechanisms which are concealed by examining only one country.

The multidimensional heterogeneity of housing demand possibilities suggests the usage of discrete choice techniques, in particular hierarchically nested choice models. The theory and estimation of nested multinomial logit models is reviewed and extended.

Household formation as a dimension in housing demand renders household based models inappropriate. A model which simultaneously determines headship status and conventional housing demand is developed and estimated for U. S. data. Simulations mimicking the Experimental Housing Allowance Program underscore the importance of household formation as a factor in housing demand.

The tenant-landlord relationship over time is examined. Empirical evidence points to the existence of tenure discounts, leading to a bias in conventional price specifications. A microeconomic model highlights the potential misinterpretations in housing market analysis when tenure discounts are disregarded. As illustration, we evaluate the German rent and eviction control legislation.

Finally, we compare housing choices in the United States and West Germany. We apply a common analytical model on comparable data sets to examine the differences in tenure choice and size demand. Using this model, we try to isolate behavioral from institutional differences.

Thesis Supervisor: Dr. Daniel McFadden, Elisabeth and James R. Killian Class of 1926 Professor of Economics

AXEL HELMUT BOERSCH-SUPAN

BIOGRAPHY

Personal Data

Date of Birth: December 28, 1954 (Darmstadt, West Germany)

Married to Martina Elisabeth Boersch-Supan
Academic Education
Vordipiom (Economics), University of Munich, June 1976
Vordiplom (Mathematics), University of Munich, December 1976

Diplom (Mathematics), University of Bonn, March 1980
Academic Appointments
Teaching Assistant (Mathematics), University of Munich, 1977
Research Assistant (Econometrics) for Professor Peter Schoenfeld, University of Bonn, 1978-1980

Lecturer (Applied Econometrics), University of Born, Spring 1980

Research Assistant (Urban Economics and Econometrics), Joint Center for Urban Studies of MIT and Harvard University, 1981-1982

Research Assistant (Econometrics) for Professor Daniel McFadden, Department of Economics, M.I.T., 1982-1983

Teaching Assistant (Građuate Applied Econometrics), Department of Economics, M.I.T., Spring 1984

Honors, Scholarships, and Fellowships

Studienstiftung des Deutschen Volkes, 1972-1982

Scholarship of the Department of Economics, M.I.T., 1982

Sloan Foundation Fellowship. 1983

Fellow of the Joint Center for Urban Studies of MIT and Harvard University, 1983-1984

It took a good seventh part of my life so far to fulfill what is called "the requirements for the degree of Doctor of Philosophy" on the title page of this thesis. Four years of neglecting wife and child, ignoring the amenities of Boston (almost), leaving my home country with parents and friends. I would not be a proper economist not to ask myself whether it was worth all the trouble, nor would I deserve the appendage Ph.D. not to take this opportunity to philosophize on what I have learned during this time.

Quite a lot. The benefits outweigh the costs. I learned sconomics, starting pretty much and frustratingly from scratch, in a pace and intensity which I -- finally -- enjoyed. It convinced me that my place is in applied economics rather than in abstract mathematics. And I learned to like my profession. Apart from economics, I enjoyed the company of such a variety of interesting fellow students and teachers as it is only possible in this Cambridgean ivory tower. I am grateful to all my friends for discussions, excursion, and symposiums in which we shared the ups and downs of a great time.

I own many thanks to Dan McFadden, my mentor and thesis advisor, on both accounts. He taught me the art of combining solid and well-founded econometrics with the interest in substantive but less palpable since real life issues. And he taught me where to eat the best Peking Duck in town. He contributed essentially to my positive
balance by being a friend in and outside the world of the Economics Department who shared the maay incisive events in these four years and supported by word and deed our sometimes shaky two career plus child enterprise.

The four years of M.I.T. life were four years living in a new country. This was an exciting and mind-opening experience which I do not want to miss. I am grateful to the Studienstiftung in West Germany for providing the incentive to sail out to the New World and the generous financial support which made this possible ${ }^{\text {fithout }}$ going through the stage of a dishwasher.

Large benefits do not come without costs. And the costs were borne not only by myself. It is a good and meaningful tradition to dedicate a thesis to the parents. I do this with pleasure and thankfulness. My parents put me on the road I am nowi pursuing, and always supported me with encouragement even when they had to bear most of the burden when I left Germany four years ago to go through yet another study.

The cost were large for my wife as well. What a time: We left our country, married. got our first child -- all this mixed with constant fickleness about exams, night-long glare at a computer terminal, and the final frenzy to get this thesis finished. It is a wonder that she still talks to me. Believe me, I am grateful for such wonders. After all, we did enjoy these four years, together.

Finally, these acknowledgments must include all those who contributed to this thesis by commenting on earlier drafts when the work was still in the snips and thoughts stage. Among those are Jerry Rothenberg and Bill Wheaton in my thesis committee, wolfgang Eckart and Konrad Stahl in Dortmund, John Pitkin at the Joint Center, and Ray Struyk at the Urban Institute. The Ifo-Institut fuer Wirtschaftsforschung in Munich granted permission to quote from an unpublished interim report and supported the German part of my research.

The work was exciting and rewarding, but it was the acquaintance with and the support of so many people which made this time worth a considerable part of my life.

TABLE OF CONTENTS

1. Chapter One: Introduction and Survey
1.1 Substantive Issues
1.2 Methodological Issues
1.3 Organization of the Thesis
2. Chapter Two: The Basic Tool: Nested Multinomial Logit Demand Functions
2.1 Introduction: Discrete Choice Description of Housing Demand
2.2 Random Utility Maximization and Hierarchical Choice 2.2.1 Microeconomic Theory
2.2.2 Functional Specification of Choice Probabilities
2.2.3 Relation Dissimilarity Parameters and RUM
2.3 Estimation Techniques
2.3.1 Econometric Theory and Numerical Analysis
2.3.2 Elasticities and Goodness-of-Fit Measures
2.3.3 Aggregate Probability Shares
2.3.4 Choice Based Sampling
2.4 Conclusions
2.5 Footnotes
3. Chapter Three: The Influence of Household Formation on Housing Demana
3.1 Introduction: Review of Earlier Approaches
3.2 Household Decomposition into Nuclei
3.3 Specification of Decision Tree and Variables
3.4 Baseline Estimates
3.5 A Housing Allowance Experiment
3.6 Tax Simulations
3.6.1 Cutting the Local Property Tax in One Half 3.6.2 Making the Federal Income Tax Less Progressive
3.7 Conclusions
3.8 Footnotes
4. Chapter Four: Dynamic Aspects in the Housing Market Equilibrium

4.1	Introduction: Market Imperfections and Government Intervention
4.2	Empirical Evidence on Price Dispersion
	4.2.1 Tenuce Discounts
	4.2.2 Landlord Characteristics and Search
4.3	Rent and Eviction Control in West Germany
4.4	A Microeconomic Model of Tenant-Landiord Relations
	4.4.1 The Landlord
	4.4.2 The Tenant
	4.4.3 Steady State Market Equilibrium
4.5	Rent and Eviction Control with Tenure Discounts Present
4.6	Conclusions
4.7	Footnotes

```
5. Chapter Five: An Analytic Comparison of Housing Demand Decisions
            In the United States and West Germany
    5.1 Introduction: Idea and Scope of an Analytic Comparison
    5.2 A Brief Descriptive Comparison
    5.3 Tax Treatment of Owner Occupancy in the Two Countries
    5.4 Specification of the Demand Equations
    5.5 Hedonic Price Indices
        5.5.1 United States
        5.5.2 West Germany
        5.5.3 Comparison
    5.6 Permanent Income Estimates
        5.6.1 United States
        5.6.2 West Germany
        5.6.3 Comparison
    5.7 Estimation of the Demand Equations
        5.7.1 Pooled Sample: Optimal Tree Structure
        5.7.2 Stratified Sample: Age and Location
        5.7.3 Sensitivity Analysis
    5.8 Simulations with Tax Laws and Preferences
    5.9 Conclusions
    5.10 Footnotes
Appendix: FORTRAN Program for Nested Multinomial Logit Models
Bibliography
```

Chapter 2:	
Table 2-1:	Definition of Housing Alternatives
Figure 2-2:	Clusters of Similar Housing Alternatives
Figure 2-3:	Decision Trees for Housing Choices
Figure 2-4:	Three Alternatives: Density and Choice Probabilities
Figure 2-5:	Choice Probability Preserving Choice Models
Chapter 3:	
Figure 3-1:	Basic Decision Tree
Figure 3-2:	Consolidated Decision Trees for the Different Strata
Tables 3-3f:	Nested Multinomial Logit Parameter Estimates
Table 3-7:	Prediction Success Table and Full Elasticity Matrix
Table 3-8:	Own Price and Sum of Income Elasticities
Table 3-9:	Aggregated Shares: Housing Allowance Experiment
Table 3-10:	Predicted Moves in Response to Housing Allowances
Table 3-11:	Incidence between Jurisdictions and Strata
Table 3-12: Aggregated Shares: Local Property Tax Cut	
Table 3-13:	Aggregated Shares: Flatter Federal Income Tax
Chapter 4:	

INTRODUCTION AND SURVEY

This thesis investigates the demand for housing as a heterogeneous commodity. We will focus on the demand side of the housing market in most of our empirical work and restrict the analysis to partial models, that is, on potential demand under perfect elastic supply. This long run analysis is in tune with the use of two large cross-sectional data sets and their interpretation as steady state equilibria: the Annual Housing Survey in the United States and the One Percent Sample in West Germany. The only deviation from our concentration on demand only will be in the theoretical model of the nature of those steady state equilibria.

To capture the neterogeneity of the commodity housing we will introduce a comprehensive notion of what housing demand consists of : it includes the choices of quality, size, tenure, and headship status. We will not consider choice of location, nowever, and we will concentrate on large metropolitan areas.

Although housing demand is a well studied field, there are still a host of unresolved substantive issues. Having introduced the notion of the commodity housing as a broad class of different housing categories or alternatives, a general issue is the question of substitutability among these categories. In Joan Robinson's (1933) words, we are looking for the gaps in the chain of substitutes. Do people easily substitute larger dwellings for smaller dwellings in response to price increases, or do they switch tenure? Does the
substitutability among housing alternatives change with the life cycle? Are there differences in behavior between the United States and West Germany?

Furthermore, how does household formation as a dimension of housing demand fit into the chain of substitutes? Is household formation responsive to price changes in the rental and owner markets? Does this response depend on the stage in the life cycle or on demographic characteristics?

Apart from interest in the structure of a comprehensive housing demand per se, we might ask ourselves how this structure is reflected in policy analysis. The tax codes in both countries are asymmetric in their treatment of owner-occupancy versus rental housing, but it is not clear whether all of the observed preferences in the tenure choice can be explained by taxes alone. Would a drastic tax change induce a drastic change in the preference for tenure? A comparison and West Germany and the United States seems to be of particular interest due to their very different proportions of owner-occupancy (1978: U.S.: 65.2 percent, Germany: 36.3 percent). Are there repercussions in the other dimensions of housing choice? What about the response of household formation to changes in the tax code? And, more interesting for the latter dimension, is there a response to direct demand subsidies like housing allowances? Is the Experimental Housing Allowance Program flawed in its complete ignorance of household formation?
A final topic of this thesis and another red thread through the
five chapters is the question of what the proper price is for this
heterogeneous and durable good. In the last Chapter, we will use
hedonic indexes to capture neterogeneity, an at least empirically
resolved issue. However, the durability of housing has implications
on intertemporal pricing which are not well understood. Is there
price dispersion in the housing market? How can it be explained? can
different explanations be empirically tested against each other? How
does the existence of price dispersion affect our knowledge of price
responsiveness? And finally, do we have to reevaluate policy analysis
in the presence of price dispersion? How does normative analysis of
rent and eviction control change in a non-walrasian market with price
dispersion?

The comprehensive notion of housing demand as the choice among a collection of heterogeneous alternatives raises many methodological issues. There is the question of the appropriate functional form for housing demand equations which include the qualitative and quantitative components of the commodity housing. We will resolve this question in simply dividing the qualitative dimensions into sufficient of discrete categories, and proceed with large discrete Choice models.

However, the specification of large discrete choice models is closely related to the question of substitutability among the choices which was raised in the previous section. Is there a feasible compromise between choice models which are easy to compute but impose strict cross-substitution patterns, and choice models which leave freedom for the cross-substitution effects but are computationally intractable? We will show that nested multinomial logit models (McFadden, 1978) constitute such a compromise in nousing demand analysis. The unresolved issues at stake is the efficiency loss of the sequential estimation technique and the viability of full information maximum likelihood. A further theoretical issue is whether the estimation results can be rationalized by a highly structural economic choice model, the random utility hypothesis.

Household formation as a part of housing demand raises the question of how usable our household based surveys are. The entity
"household" is endogenous and we face a potential self selection bias in our estimations. How can we resolve this sample selection problem? Is it possible to avoid a structural model of household formation which is bound to be poorly estimable due to our poor knowledge about this process and will result in a large noise-to-signal ratio? Can we find a reduced form approach with just enough structure to resolve the endogeneity problem?
A final methodological issue is the handling of price dispersion
generated by intertemporal processes when only a single cross section
of observations is available. How large is the potential bias in
estimations ignoring price dispersion? How do we get unbiased
results?

1.3 Organization of the Thesis

The remainder of the thesis is organized in four chapters. The
first of these chapters is devoted to the microeconomic and
econometric underpinnings of our basic tool, the nested multinomial
logit demand functions. The microeconomic part includes the
compatibility of these demand functions with random utility
maximization, the econometric part discusses the use of full
information maximum likelihood estimation.

Chapter Three applies the demand model on the joint choice of household formation, tenure, and size of dwelling to three SMSA's in the United States to answer the question of how price responsive our Comprehensive nousing demand is. Some microsimulation results illustrate public policy implications.

Chapter Four is a digression on the dynamic nature of the rental housing market. This chapter, mainly microeconomic theory, is intended as a motivation and guidance to analyse price dispersion generated by a complicated intertemporal interaction of the demand and supply side.

Finally, Chapter Five applies all the tools we have collected so far on an analytic comparison of housing demand in West Germany and the United States: A common hierarchical choice model for both countries embodies hedonic rent indexes to capture the heterogeneity of the housing stock and corrects for price dispersion in both

countries.

Each chapter contains an introductory section to present the
issues at stake, and a conclusion to summarize the results. An
appendix lists the FORTRAN source of the full information maximum
likelihood estimation program for nested multinomial logit models in
random and choice based samples.

THE BASIC TOOL: NESTED MULTINOMIAL LOGIT DEMAND FUNCTIONS

2.1 Introduction: Discrete Choice Description of Housing Demand

Housing or, more precise, the service stream from a housing unit, is a heterogeneous commodity. Some dimensions, as size or age of structure, are measured on a continuous scale, others, as tenure or type of structure, are discrete properties. Measuring the volume of housing services as housing expenditure essentially ignores this heterogeneity, and for a large number of policy purposes, the distribution of housing consumption into qualitatively different categories is of more interest than an aggregate quantitative measure of housing expenditures alone. The most popular example of the interest in qualitative dimensions is the choice between renting and owning, and the response of this tenure choice to federal income tax treatment. (See Laidler (1969), Rosen (1979), Rosen and Rosen (1980), Henderson and Ioannides (1983).)

We can go one step further: not only the choice of tenure, but also the choices among other continuous or discrete characteristics of a housing unit will be affected by taxes and subsidies. Furthermore, the decision whether to form an autonomous household at all may be dependent on relative prices and income. Thus, housing demand decisions consist of discrete decisions; e. g., concerning headship, tenure, as well as continuous decisions, e. g., size or quality level.

Lee and Trost (1978) and subsequently King (1980) argue that the tenure choice and the choice of size and quality level are made simultaneously. We will point out in Chapter 3 that also the headship
choice is influencing and is in turn influenced by the other two decisions, so that all three choices are made in a joint decision process. This joint decision process constitutes a comprehensive notion of housing demand which will the focus of this thesis.

The econometric theory of joint discrete/continuous models is well studied, and there exist a variety of applications, e. g. Lee and Trost (1978), King (1980), or Dubin and McFadden (1984). We will not pursue this line of modeling, however, but use consistently a discrete choice framework throughout this work. Sweeney (1974) casts the entire bundle of quality characteristics into discrete categories so that housing units can be arranged in a commodity hierarchy. We will use a similar discretization of the quality space in a finite number of housing alternatives. Discretization of continuous variables has widely been applied in transportation economics, see Chiang, Roberts, and Ben- Akiva (1982) for a model of freight mode and shipment-size, or Small (1981,1982) and Small and Brownstone (1981) for discrete models of trip timing. Ben Akiva and Watanatada (1981) provide a theoretical analysis of the aggregation of a continuous variable into a finite number of discrete choices. There is good pragmatic reason to do so: it simplifies both the theoretical analysis and the empirical estimation. In addition, for most poiicy purposes, it suffices to explain or predict shifts among rough categories as "large owner-occupied houses". "low quality rental housing", or "non-headship." Table 2-1 lists the choices we will consider in our comprehensive notion of housing demand.

Table 2-1: Definition of Housing Alternatives

Symbol	Housing Alternative
NH	Non Headship: lives as a subnucleus in another household
O_SF.S	Owner-Occupied, Single-Family-Structure, Small Dwelling
O_SF.M	Owner-Occupied, Single-Family-Structure, Medium Dwelling
O_SF.L	Owner-Occupied, Single-Family-Structure, Large Dwelling
O_2F.S	Owner-Occupied, Two-Family-Structure, Small Dwelling
O_2F.M	Owner-Occupied, Two-Family-Structure, Medium Dwelling
O-2F.L	Owner-Occupied, Two-Family-Structure, Large Dwelling
O_MF.S	Owner-Occupied, Multi-Family-Structure, Small Dwelling
O_MF.M	Owner-Occupied, Multi-Family-Structure, Medium Dwelling
O_MF.L	Owner-Occupied, Multi-Family-Structure, Large Dwelling
R_SF.S	Rental-Housing, Single-Family-Structure, Small Dwelling
R_SF.M	Rental-Housing, Single-Family-Structure, Medium Dwelling
R_SF.L	Rental-Housing, Single-Family-Structure, Large Dwelling
R_2F.S	Rental-Housing, Two-Family-Structure, Small Dwelling
R_2F.M	Rental-Housing, Two-Family-Structure, Kedium Dwelling
R_2F.L	Rental-Housing, Two-Family-Structure, Large Dwelling
R_MF.S	Rental-Housing, Multi-Family-Structure, Small Dwelling
R_MF.M	Rental-Housing, Multi-Family-Structure, Medium Dwelling
R_MF.L	Rental-Housing, Multi-Family-Structure, Large Dwelling

Estimating such a complex joint decision process poses a number
of econometric problems: the choice set, that is the set of housing
alternatives from which the consumer has to select one, is fairly
large and consists of alternatives of which some are close substitutes
and others not. The first problem restricts the possible
specifications of the functional form of the relation between the
choice probabilities and the explanatory variables to functions that
have a structure which simplifies the computations involved, e. g.,
the class of generalized extreme-value functions. on the other hand,
the second problem pronibits the use of simplifying assumptions like
the Independence of Irrelevant Alternatives which reduces the
multinomial decision to binary comparisons. As a viable compromise
between computational simplicity and economic complexity, we will
nested multinomial logit models (NmNL) as the basic analytic tool for
our empirical research. The remainder of this chapter reviews the
microeconomic foundations and the econometrics of Nmi-models and
estimated NmNL-parameters. the theory of the relation between utility maximization and

2.2 Random Utility Maximization and Hierarchical Choice

2.2.1 Microeconomic Theory

Let us assume the housing market is partitioned into M discrete housing alternatives, e.g.. as depicted in Table 2-1. We associate each of these alternatives with an index of desirability, which comprises all advantages and disadvantages for a given consumer into one scalar unit corresponding to the indirect utility function in neoclassical continuous consumer theory. Uncertainty about quality and erratic or irrational valuations introduce a stochastic component into this index. Like the hypothesis of utility maximization under budget restriction, we assume that each household will choose the alternative with the highest index of desirability. Due to the probabilistic nature of the index, we will call this the random utility maximization hypothesis (McFadden, 1981).

In the following, we will give this notion a more precise definition. For each household t we decompose the desirability index $u_{i t}$ of the alternative i into a deterministic and a stochastic component:
(2.1) $\quad u_{i t}=v_{i t}+e_{i t}$

The stochastic component $e_{i t}$ is drawn from a M-dimensional joint distribution characterized by the cumulative distribution function $F\left(e_{1}, \ldots, e_{M}\right)$ with an associated finite-valued ${ }^{i}$ density $f\left(e_{\left.1, \ldots, e_{M}\right)}\right.$. The deterministic part $v_{i t}$ is dependent on the characteristics of the alternative (e. g., price) as well as on the characteristics of the housenold (e. g., income), and is linear and additive separable ${ }^{2}$:

```
(2.2) \(\quad v_{i t}=\sum_{k} x_{i t}^{k} * b_{k}+\sum_{i} y_{t} * a_{i 1}\)
where \(x_{i t}^{k}=\) the \(k-t h\) characteristic of alternative \(i\)
    for household \(t\),
    \(y_{t}^{l}=\) the l-th characteristic of household \(t\),
    \(a_{i 1}, b_{k}=\) weights (to be estimated).
```

Choices are made by pairwise comparison of utilities. Thus, only M-1 differences of utilities describe the choice behavior ${ }^{3}$. This implies that household specific variables that are alternative invariant will be irrelevant for the choice among alternatives as long as they do not interact with each alternative. We therefore let the weights of the household characteristics vary by alternative ${ }^{4}$.

In addition to uncertainty and erratic valuations, the stochastic disturbance $e_{i t}$ will pick up deviations of the household t from the weights a_{i} and b_{k} in the population. The different components of $e_{i t}$ can not be identified or only under specific assumptions.

Household t will choose alternative i, if $u_{i t}>u_{j t}$ for all $j \neq i . \quad T h u s, ~ t h e ~ p r o b a b i l i t y ~ t h a t ~ h o u s e h o l d ~ t ~ c h o o s e s ~ i ~ a m o n g ~ a l l ~ M ~$ possible alternatives is

$$
p_{t}(i)=\operatorname{Prob}\left\{v_{i t}+e_{i t}>v_{j t}+e_{j t} \mid j \neq i\right\}
$$

where F denotes the joint cumulative distribution function of the errors e_{it}.

Definition (Random Utility Maximization)
Choice probabilities $p_{t}(i)$ are said to be generated by random utility maximization, if there exists a random utility function (2.1), characterized by a linear, additive separable deterministic utility (2.2) and a distribution function F with a finite-valued density of the stochastic utility, such that (2.3) holds.

Finally, the aggregation
(2.4) $f(i)=\frac{1}{T} \sum_{t=1}^{T} p_{t}(i) \quad i=1, \ldots, M$ will yield the relative frequencies of alternative i in the population, also called aggregated or market shares of choice i, provided the households t are a random sample of the population.

2.2.2 Functional Specification of the Chojce Probabilities

This theory has a very important implication: for a given specification of the deterministic utility $v_{i t}$, the choice of a functional form for the relation between the choice probabilities $p_{t}(i)$ and the explanatory variables $x_{i t}^{k}$ and y_{t}^{\prime} is equivalent to the specification of the joint distribution F of the error terms $\mathrm{e}_{\mathrm{i} \boldsymbol{q}}$.

The integral formula (2.3) shows the dilemma for this choice. On one hand, the correlation among the $e_{i t}$ should be as flexible as possible to allow different correlations among the choice probabilities. On the other hand, the computational effort of evaluating the multidimensional integral should be minimized, suggesting a distribution function F where this can be done explicitly. This in particular pronibits the use of a normal distribution for problems with more than four alternatives.

Two families of distribution functions allow easy evaluation of the integral. One leads to a linear functional relation between the choice probabilities and the explanatory variables, and thus does not take account of the adding up and the unity interval restrictions of the choice probabilities. The other family is that of generalized extreme-value distributions, an extension of the logit approach; this is the family we will use to specify the choice probabilities.

A completely free correlation structure of the disturbances implies the estimation of $M *(M-1) / 2$ correlation coefficients which is
impractical for most sets of alternatives. Thus, further restrictions are necessary. The most drastic restriction is to postulate the independence of the $e_{i t}$. Then the multidimensional integral can be factorized into a product of simple integrals. If in addition the $e_{i t}$ are extreme value distributed, the resulting choice probabilities are of the well-known multinomial logit form. An application of the latter specification to the housing market can be found in Quigley (1976).

The assumption of independent $e_{i t}$ is known as "Independence of Irrelevant Alternatives" (McFadden, 1973) due to the following necessary and sufficient characterizations:
(1) The $e_{i t}$ are stochastically independent.
(2) The odds of choosing alternative i over alternative j are independent of the attributes of all other alternatives and independent of the existence of any other alternative.
(3) The elasticity of the relative frequency $f(i)$ of alternative i with respect to the attributes of any other alternative $j \neq i$ is constant, that is independent of j.

Therefore, independence can oniy be assumed for alternatives that are "equally different," but not for alternatives with different degrees of substitution. The following example translates a classical example (Domencich and KcFadden, 1975) into the housing market. For simplicity, consider the tenure choice. Let us assume the relative odds are 1:1 for renting versus owning. Let us introduce a third, new form of tenure (e.g., cooperative) which is a very close substitute for owning. Intuitively, we would expect the new distribution to be something like $50 \%: 25 \%$: 25%. But condition (2) tells us that the relative odds of renting versus owning have to stay constant, forcing the new distribution to be 33\%: 33\%: 33\%, which is implausible
because of the similarity of owning individually and owning cooperatively.

The failure to accommodate different degrees of cross-alternative substitution renders the multinomial logit specification inappropriate for such heterogeneous choice sets as depicted in Table 2-1. On the other hand, the possibility of grouping or clustering the alternatives according to their degree of substitution allows us a relatively straightforward way of combining the computational simplicity of the multinomial logit form with a richer substitution pattern: for each cluster, we introduce a parameter that describes the similarity of its alternatives. We can do the same with clusters themselves, and thereby achieve a hierarchical structure of similarities and substitution patterns. Within each cluster and between the clusters, we apply multinomial logit choice probabilities. This approach is called "Nested Multinomial Logit" (NMNL). McFadden (1981) gives a discussion of the development of these models and their relation to other discrete choice approaches.

For the application at hand, let us introduce three steps of clustering. $\underset{\sim}{\text { sist, we bunde housing alternatives by size and }}$ quality, then these clusters by tenure and type of building, and finally by all headship alternatives versus the nonheadship alternative, see Figure 2-2 for a simple example. We can look at NMNL models in two ways: they represent hierarchically grouped clusters of alternatives with a large within group substitutability, and we can interpret them as hierarchical decision processes or decision trees,

FIGURE 2-2: CLUSTERS OF SIMILAR ALTERNATIVES

NH: non-head
R: rented
O: owned
S: small
M: medium
L: large

Abstract

where each nucleus decides whether to head a household or not, the heads decide about tenure, and owners and renters choose their dwelling size and quality. Of course, this does not necessarily imply a temporal decomposition of the decision process. Figure 2-3 represents this second intcrpretation graphically, and the equivalence to the representation of Figure $2-2$ can be seen in each of the steps.

We can decompose the choice probabilities for a three-level hierarchical decision process into a marginal choice probability at the highest level of the decision tree and conditional probabilities at each lower level (we suppress the index t for the individual nousehold) :

(2.5) $P(i)=P_{H}\left(H_{i}\right) * P_{T}\left(T_{i} \mid H_{i}\right) * P_{S}\left(S_{i} \mid H_{i}, T_{i}\right)$
where

At each level, the conditional choice probabilities have the multinomial logit form:

FIGURE 2-3: DECISION TREES FOR HOUSING ALTERNATIVES

NH R_S R-M R_L O_S O_M O_L

NH R_S R_M R_L O_S O_M O_L

$$
\mathrm{NH} \quad \text { R_S }_{-} \quad \mathrm{R}_{-} \mathrm{M} \quad \mathrm{R}_{-} \mathrm{L} \quad \mathrm{O}_{-} \mathrm{S} \text { O_M } \mathrm{O}_{-} \mathrm{L}
$$

$N H \quad R_{-} S \quad O_{-} S \quad R_{-} M \quad O_{-} M \quad O_{-} L \quad R_{-} L$

NH: non-head
R: rented
O : owned
S: small
M: medium
L: large
$P_{S}\left(S_{i} \mid H_{i}, T_{i}\right)=\exp \left(v\left(S_{i}\right)\right) / \sum \exp \left(v\left(S_{j}\right)\right)$, (sumation over all size choices S_{j} possible in tenure choice T_{i})
$p_{T}\left(T_{i} \mid H_{i}\right)=\exp \left(u\left(T_{i}\right)\right) / \sum \exp \left(u\left(T_{j}\right)\right)$,
(summation over all tenure choices T_{j} in headship choice H_{i})
$P_{H}\left(H_{i}\right)=\exp \left(w\left(H_{i}\right)\right) / \sum \exp \left(w\left(H_{j}\right)\right)$,
(summation over all headship choices H_{4})

In these choice probabilities, $v\left(S_{1}\right)$ denotes the utility, a consumer derives from dwelling size S_{i} and $u\left(T_{i}\right)\left(w\left(H_{i}\right)\right.$) the utility from tenure choice T_{i} (headship choice H_{i}, respectively) implied by choosing alternative i.

```
    At the higher levels, we assume that there is no utility per se
of either headship or tenure over and above the utility derived from
the alternatives underlying each tenure or headship choice. If we
aggregate the utility provided by all alternatives }\mp@subsup{S}{j}{}\mathrm{ in tenure
category T; we obtain (McFadden, 1978):
\[
\begin{equation*}
u\left(T_{i}\right)=\log \sum_{j \in T_{i}} \exp \left(c_{j} * v\left(S_{j}\right)\right) \tag{2.6}
\end{equation*}
\]
```

and similarely for the aggregated utility of the headship choice H_{i} :

$$
\begin{equation*}
w\left(H_{1}\right)=\log \sum_{j \in H_{j}} \exp \left(\alpha_{j} * u\left(T_{j}\right)\right) \tag{2.7}
\end{equation*}
$$

Note that the attributes of the lowest level utility, e. g., income and prices in the size choice, enter recursively, bottom-to-top, the utility of the tenure and headship choices. On the other hand, decisions are clustered in a sequential fashion, top-to-bottom, as Figures 2-2 and $2-3$ suggest. Altogether , we have achieved a simultaneous choice of headship, tenure, and dwelling size where prices as well as income are allowed to influence not only the size and tenure choice, but also the headship decision and thus household formation.

The taste weights c_{j} and d_{j} have to be estimated. The aggregate utility levels $u\left(T_{i}\right)$ and $\left.H_{i}\right)$ are called inclusive values of their respective lower level alternatives because they can be interpreted as the surplus generated by these alternatives. The taste weights c_{j} and d_{j} are called dissimilarity parameters because they can be interpreted as a measure of the substitutability among the respective lower level alternatives. For c_{j} and d_{j} equal to one, the decision tree model collapses to a simple multinomial logit choice model among all alternatives. If they are smaller than one, alternatives in the respective clusters are close substitutes relative to other alternatives.

We can test whether the difference between the simple MNL model and the nested MNL model is significant. Usualiy, the MNL model has to estimated in a first stage to obtain initial values for the NMNL estimation. Thus, we have all ingredients of a lekilihood ratio test, see Table $5-13$ for examples. Furthermore, we can construct a Wald
test based on the estimated dissimilarity coefficients in the NMNL model with their joint covariance matrix. For simple one-dimensional tests we can look at the asymptotic t-statistics around one as reported in the estimation results. Finally, we can calculate a Lagrange multiplier test and evaluate this test at the simple MNL estimates, see McFadden (1983) for the appropriate formula. The asymptotic and small sample properties of this test trinity is examined by Hausman and McFadden (1981). These test are tests of the simple MNL functional specification versus the nested MNL model. Thus, they amount to tests of the independence of irrelevant alternatives property.

The random utility maximization interpretation of the NMNL §unctional form rested on the integral formula (2.3). However, the cumulative distribution function F is parameterized by the taste weights a_{i}, b_{k}, the dissimilarity coefficients c_{i}, d_{i}, and depends on the data as well. If all similarity parameters are in the unit-interval, the underlying joint distribution of the disturbances is well behaved and consistent with the microeconomic theory outlined at the beginning of this section, independent of the explanatory variabies. With similarity parameters outside the unit-interval, this consistency will hold only for a certain range of explanatory variables, and it must be checked. whether this range includes the given data. This check and a reconciliation of such NMNL models with the random utility maximization hypothesis is discussed in the following.

2.2.3 The Relation Between Dissimilarity Parameters and the Random Utility Hypochesis

Let C_{T} denote the similarity coefficient corresponding to the first-order clusters of elementary alternatives (say, tenure categories), and d_{H} the similarity coefficient corresponding to the second-order clusters consisting of first-order clusters (say. headship categories). The NMNL functional form specified in (2.5) is then equivalent to the following joint cumulative distribution function of the errors $e_{i t}$ in (2.1) (McFadden 1978):
(2.8) $F\left(e_{1}, \ldots, e_{M}\right)=\exp \left\{-G\left[\exp \left(-e_{1}\right) \ldots, \exp \left(-e_{M}\right)\right]\right\}$
with
(2.9) $G\left[y_{1}, \ldots, y_{M}\right]=\sum_{H}\left(\sum_{T \in H}\left(\sum_{S \in T} y_{S}^{1 / c_{T} c_{T} / d_{H} d_{H}}\right)^{d^{\prime}}\right.$

Where we sum over the highest-order clusters h, the first-order clusters T contained in each cluster H, and finally over the elemental alternatives S in each cluster T.

Two theorems provide the link between NMNL-models and the random utility maximization hypothesis (RUM). They are global statements in the sense of being independent of the realization of the explanatory variables.

Theorem 1 (Global Sufficiency) (McFadden 1979):

Let $0<d_{H} \leqslant 1$ and $0<C_{T} / d_{H} \leq 1$ for all T and H. Then the NMNL model is consistent with RUM for any data.

Theorem ? (Global Necessity) (Williams 1977, Daly and Zachary 1979):
Let $d_{H}>1$ or $c_{T} / d_{H}>1$ for at least one T or H.

Then it is always possible to construct data at which the NMNL model is inconsistent with RUM.

The question arises, whether this possibility of RUM-inconsistent data points is relevant for the data at hand. Theorem 2 leaves the possibility open that for the data given by the application, the NMNL model is consistent with RUM, and that the data points where the inconsistency occurs are insensible for the given application. Thus, the purpose of the remainder of this section is to construct a discrete choice model that (1) is compatible with RUM, (2) has the same cumulative distribution function F for the given daca points, and (3) preserves the choice probabilities of the original NMNL model. We shall give a necessary and sufficient condition under which such a construction is possible.

The failure of the random utility hypothesis occurs because the estimated dissimilarity coefficients prevent F from (2.8) being a Cumulative distribution function:

Lemma 1:

Let c_{T} and $d_{H}>0$.
(1) Then F is differentiable to any order, in particular, all mixed partial derivatives exist.
(2) $F \rightarrow 1$ for $e_{i} \rightarrow \infty, F \rightarrow 0$ for $e_{i} \rightarrow-\infty$.
(3) The choice probabilities derived from Fobey $0 \leq p_{t}(i) \leq 1$ and $p_{i}(t)=1$.

The Lemma follows from the obvious properties of (2.5),(2.8), and (2.9). Thus. Theorem 2 implies the existence of at least one point in which F has a negative mixed partial derivative, i. e., a point of negative marginal or joint "density".

We shall illustrate the effect of $d_{H}>1$ in the simplest case of a three-alternative, two-level NMNL-model in which the first two alternatives constitute a cluster. This model has the cumulative distribution function
$F(e)=\exp \left\{-\left[\exp \left(-e_{1} / d\right)+\exp \left(-e_{2} / d\right)\right]^{d}-\exp \left(e_{3}\right)\right\}$.
Because of translation invariance (see Footnote 3), we can reduce F to the two dimensional space of differences without loosing information. Let $v=e_{2}-e_{1}$ and $w=e_{3}-e_{1}$. Their joint distribution function is
$F^{*}(v, w)=\frac{(1+\exp (-v / d))^{d-1}}{(1+\exp (-v / d))^{d}+\exp (-w)}$
with density
$f^{*}(v, w)=\frac{(1+\exp (-v / d))^{d-2}}{(1+\exp (-v / d))^{d}+\exp (-w)} \quad * \exp (-w) * \exp (-v / d) * \operatorname{discr}$,
where the discriminant term
discr $=\frac{2(1+\exp (-v / d))^{d}}{(1+\exp (-v / d))^{d}+\exp (w)}-\frac{d-1}{d}$
signs the density f^{*}.
For $d<1$, discr > 0. However, for $d>1$,
$f^{*}(v, w)>0 \Leftrightarrow w>\log (d-1)-\log (d+1)-d \log (1+\exp (-v / d))$.
This function approaches the constant $\log (d-1)-\log (d+1)$ for $v \rightarrow \infty$ and a by this constant shifted 45-degree line for $v \rightarrow-\infty$. Thus, we can partition the (v, w)-plane in a part with nonnegative and a part With negative density, see Figure 2-4. Note that the latter part cannot be contained in any choice probability defining orthant.

If any of our data points is in the (shaded) area $f^{*}<0$, we will not be able to explain the data by preference maximization using the integral formula (2.3) underlying RUM. Moreover, if $f^{*}(e)<0$ for some e, then the continuity of f^{*} implies the existence of a point e with $F^{*}(e)>1$. This point need not necessarily be in the set $\left\{\mathrm{f}^{*}<0\right\}$. Again, we cannot rationalize the data by RUM. Thus,

Theorem 3 (Local Necessity):

Let A be a set containing all data points.
Let any one of the following conditions be true:
(1) A mixed partial derivative of F up to order M is negative at a point in A.
(2) F exceeds unity at a point in A.

Then the construction of a RUM-compatible discrete choice model in A is not possible ${ }^{5}$.

The proof is trivial: F cannot be a c.d.f. if it exceeds unity or any of its associated marginal or the joint densities is negative.

If neither of the conditions of Theorem 3 is raised, we can indeed reconcile a NMNLmodel with large dissimilarity coefficients with random utility maximization:

Theorem 4 (Local Sufficiency):

Let A be an open interval containing all data points.

Let moth of the following conditions be true:
(1) All mixed partial derivative of F up to order M are nonnegative in A.
(2) F does not exceed unity at a point in A.

Then for any positive c_{T}, d_{H} exists a continuation F^{c} of F, such that
(a) F^{c} is a cumulative distribution function,
(b) F^{c} generates the same choice probabilities as F.

We will give the proof by construction. Figure 2-5 illustrates the construction in the case of three alternatives, already underlying Figure 2-4. We first use the translation invariance principle to reduce the dimension of the problem to $M-1$: for any point y in R^{M}. let y^{*} be the $N=M-1$ dimensional vector $\left(y_{1}-Y_{2}, \ldots, Y_{1}-Y_{M}\right)^{\circ}$. Correspondingly, we introduce A^{*}, F^{*}, and f^{*} as the $M-1$ dimensional counterparts of A, F, and f. For a set C, we use int(C), bnd(C), $\operatorname{ext}(C)$, and $c l o(C)$ to denote the interior, the boundary, the exterior,

FIGURE 2-4: THREE ALTERNATIVES: CHOICE PROBABILITIES AND DENSITY

FIGURE 2-5: CHOICE PROBABILITY PRE'JERVING CHOICE MODELS

and the closure of C, respectively.

For each y^{*}, we can partition R^{N} according to the M choice probability defining open sets
$P_{i}\left(y^{*}\right)=\left\{e^{*}\right.$ in $\left.R^{N} \mid e_{i}+y_{i}>e_{j}+y_{j}, j \neq i\right\}$
and the M separating half-hyperplanes
$L_{i}\left(Y^{*}\right)=\left\{e^{*}\right.$ in $\left.R^{N} \mid e_{i}+y_{i}<e_{j}+y_{j}, j \neq i ; e_{k}+y_{k}=e_{j}+y_{j}, j, k \neq i\right\}$. The sets $P_{f}\left(y^{*}\right)$ and $L_{i}\left(y^{*}\right)$ will be important at the boundary of $A_{\text {, }}$ and it is convenient to define for y^{*} in bnd $\left(A^{*}\right)$:
$P_{i}^{m i n}=P_{i}\left(y^{*}\right)$
y^{*} in A^{*}
and
$L\left(y^{*}\right)=L_{i}\left(y^{*}\right)$ with i such that $L_{i}\left(y^{*}\right) \cap \operatorname{clo}\left(A^{*}\right)$ is empty.
The $P_{i}^{m i n}$ define the smallest choice probability of alternative i attainable in clo($\left.A^{*}\right)$ where this well-defined minimum occurs for each i at one of M corners of the interval A^{*}. The $L\left(y^{*}\right)$ define the half-hyperplane pointing outward of A^{*}. This is well-defined except for the above mentioned M corners. Here, we define:
$L\left(y^{*}\right)=P_{i}^{m i n}$.

We now construct a choice model which has identical choice probabilities in A^{*} by shifting all probability mass outside of A^{*} onto the boundary of A^{*} in a way which does not distort the original choice probabilities.

We define

$$
\begin{aligned}
& f^{* C}(y)=f^{*}(y) \text { for } y \text { in } A^{*}, \\
& f^{* C}(y)=\int_{L\left(y^{*}\right)}^{d F^{*}} \text { for } y \text { in bnd }\left(A^{*}\right), \\
& f^{*} C(y)=0 \quad \text { for } y \text { in } \operatorname{ext}\left(A^{*}\right) .
\end{aligned}
$$

We have to show:
(i) $f^{*} \mathbf{C}$ nonnegative。
(ii) $f^{*} c$ integrates to one.
(iii) $p_{t}(i)=\int_{P_{t}(i)} d F=P_{P_{t}(i)} d F^{c}$.

To (i):

We only need to show the nonnegativity at the boundary.
Case 1: y is at one of the M corners defining $P_{i}^{\text {in }}$.
Then the $f^{*} \subset(y)$ is a choice probaioility which is always nonnegative for positive $C_{T} . \mathbb{d}_{H}$ by Lemma 1.

Case 2: y otherwise.
Then $\int_{L_{i}\left(y^{*}\right)} d F^{*}=\lim \underset{h \rightarrow 0}{1 / h}\left(\int_{P_{j}\left(y^{*}\right)} d F^{*}-P_{j}\left(y^{*}-h z_{j}\right)\right.$
where j is an arbitrary index other than i and z a vector of zeroes except a one at the j-th component. This; however, defines the $j-t h$ marginal density of F^{*} which is nonnegative due to assumption (1).

To (ii):
Decompose $\int_{R^{N}} f^{* c}(u) d u=\int_{A^{*}} f^{* c}(u) d u+\int_{\operatorname{ext}\left(A^{*}\right)} f^{* c}(u) d u+\int_{\text {bnd }\left(A^{*}\right)} f^{* c}(u) d u$

$$
=\int_{A^{*}} d F^{*}+\int_{R^{N} \backslash A^{*}} d F^{*}+0=\int_{R^{N}} d F^{*}=1
$$

because $F(e) \rightarrow 1$ for any $e_{i} \rightarrow \infty$ for positive c_{T}, d_{H} by Lemma 1.

To (iii):

$$
\begin{aligned}
& p_{i}(y)=\int_{P_{i}\left(y^{*}\right)}^{\int d F^{*}=} d F^{*}+\int_{P_{i}\left(y^{*}\right) \cap A^{*}} d F^{*} \\
& =\int_{P_{i}\left(Y^{*}\right)\left(1 A^{*}\right.} d F^{*} c+\int_{P_{i}\left(Y^{*}\right) \cap \text { bnd }\left(A^{*}\right)} d F^{* C} \\
& =\int_{P_{i}\left(Y^{*}\right) \cap A^{*}} d F^{* C}+\int_{P_{i}\left(Y^{*}\right) \cap\left(R^{N} \backslash A^{*}\right)} d F^{* C}=\int_{P_{i}\left(y^{*}\right)} d F^{* C}
\end{aligned}
$$

This proves Theorem 4.

Theorem A extends the usefulness of NMNL-models by reconciling large dissimilarity coefficients with random utility maximization, provided, conditions (1) and (2) hold. In practice, these conditions can be checked by evaluating the density and cumulative distribution function at the corners of an interval containing the data.

Furthermore, the idea behind Theorem 4 can be exploited to construct a large class of RUM-compatible discrete choice models. Any function which is translation invariant in the sense of Footnote 3 and obeys conditions (1) and (2) of the Theorem in an interval containing the data can be extended to a cumulative distribution function generating a probabilistic choice system by equation (2.3).

2.3 Estimation Techniques

2.3.1 Econometric Theory and Numerical Analysis

The likelinood function of the hierarchical choice model are the logarithms of the choice probabilities (2.5), cumulated over all consumers. Thus, we can estimate the model by maximizing over the taste weights a_{i}, b_{k} and the similarity coefficients c_{i}, d_{i}. Because the full information maximum likelinood function is highly nonlinear in the similarity parameters, this approach is costly. As an alternative, we can exploit the recursive structure in (2.5) and estimate sequentially by level of clustering. This approach has been applied to a large number of problems in transportation, energy demand, and urban economics, see Domencich and McFadden (1975) or Anas (1982). However, the sequential estimator is inefficient, especially for complex decision trees. Furthermore, it can not embody parameter restrictions across branches/clusters of alternatives.

The first point relates to the flow of information: the sequential estimator uses all the information of the lower branches to estimate the dissimilarity coefficients ar the upper levels, but not conversely. Amemiya (1978) noted that the standard errors of the estimated coefficients at the upper levels have to be corrected for the presence of lower level estimated coefficients, McFadden (1981) provides the proper formulae. Evaluating these corrections is expensive and greatly reduces the computational advantages over the FIML estimator, see Small and Brownstone (1982). The second point is more important: if the alternatives in different branches have taste
weights in common, a proportionality constraint has to be fulfilled Which is non-trivial for the case of at least two elementary alternatives in at least two branches:

The sequential estimator estimates (b/c) ${ }_{1}$ and $(b / c)_{2}$ in the first stage choices, then c_{1} and c_{2} in the choice between the branches. A common b implies
$b=(b / c)_{1} * c_{1}=(b / c)_{2} * c_{2}$.

However imposing this restriction destroys the sequential decomposition and leads us back to full information maximum likelinood. The proportionality constraints could be imposed by an iterative procedure where the c_{i} from the sequential estimation as described are used in a second sequential estimate to scale the (b/c); as $\left(b / c_{i}\right)_{i,}$ calculate new c_{i}, and so on. This iteration will further reduce the computational advantages over FIML estimation in addition to the necessary correction of the standard errors, in particular so in higher level trees.

We therefore prefer joint estimation and use the modified quadratic nill-climbing method developed by Goldfeld and quandt (1972) With analyticel first and numerical second derivatives. This procedure proved computationally fairly efficient compared with BHHH procedures (Berndt, Hall, Hall, Hausman, 1974). Small and Brownstone
(1982) report similar experiences with BHHH as compared to a method of scoring. The reason for the relative poor performance of the BHHH algorithm seems to be the highly nonlinear dependence of the likelihood function on the dissimilarity parameters. In particular, the function and its gradient have a singularity in c_{i} or d_{i} at zero. The singularity is well behaved for the likelinood, but is a pole for the gradient. Thus, the outer product of the gradients is ill-behaved and a bad approximation of the hessian for small values of the dissimilarity parameters.

This unpleasant behavior of the likelihood function requires a careful numerical analysis of the algorithms involved. In particular, the data should be normalized to prevent the multiplication of very small with very large numbers and numerical extinction. The appendix lists a FORTRAN program for the full information maximum likelinood estimation of NMNL models which embodies all these considerations.

2.3.2 Elasticities and Goodness-of-Fit Measures

Following the random utility maximization theory and equation (2.2), the estimated parameters represent the taste weights of the respective explanatory variables in the deterministic part of the indirect utility function $v_{i t}$. For a more intuitive interpretation of their magnitudes, the taste weights can be transformed into elasticities of the choice probabilities with respect to the various explanaさory variables:
$\partial \log p(i)$
(2.10) $\underset{\log x_{j k}}{ }=a_{k} * x_{j k} *\left(-p(j)+k_{s} * 1 / c\right.$

$$
\begin{aligned}
& +k_{T} *(1 / c-1 / d) * Q(S) \\
& \left.+k_{H} *(d-1) / d * Q(S) * Q(T)\right)
\end{aligned}
$$

```
where ks = 0 if i and j are in the same size category
            = 1 otherwise
                kT = 0 if i and j are in the same tenure category
            = 1 Otherwise
                k}\mp@subsup{\mathbf{H}}{}{\prime}=0\mathrm{ if i and j are in the same headship category
            = 1 otherwise
                c,d = similarity parameters: c=cT
                Q(S) = conditional choice probability pg(S | | Hj, Tj
                Q(T) = conditional choice probability PT( }\mp@subsup{\textrm{T}}{\mathbf{j}}{|}|\mp@subsup{H}{j}{}
```

These elasticities measure the percentage change of the probability to choose alternative i. when the $k-t h$ attribute of alternative j is changed by one percent. Note that for the cross elasticities the difference between i and j enters only through the "switches" $\mathbf{k}_{\mathrm{s}}, \mathrm{k}_{\mathrm{T}}$, and k_{H}. The structure of the tree is therefore directly reflected in the pattern of cross elasticities. If the dissimilarity parameters c
and d are in the unit interval, equation (2.10) implies descending elasticities with the "distance" in the tree, i. e., elasticities are larger within than between branches. This plausible structure is destroyed for dissimilarity parameters larger than one, hinting to alternative tree specifications.

Derived from a highly non-linear model, elasticities at variable means are generally different from mean individual elasticities, and in interpreting the elasticities, one should keep the absolute level of the choice-probabilities in mind; the elasticities tend to be very high at very low probabilities and vice versa, reflecting saturation effects.

Three scalar measures of performance or fit will be used in the applications of Chapters 3 and 5. Amemiya (1981) provides an extensive review. The straigntforward discrete analogy to the continuous R^{2} uses the sum of squared errors:
(2.11) $1-\frac{\sum_{i} \sum_{i}\left(y_{i t}-P_{i t}(b)\right)^{2} / P_{i t}(b)}{\sum_{t}\left(y_{i t}-P_{i t}(0)\right)^{2} / P_{i t}(b)}$
where $P_{i t}$ denotes the predicted choice probabilities of alternative i for consumer t, evaluated at the optimal parameter values b or at zero, and $y_{i t}$ the actual response ${ }^{6}$. However, this measure has little discriminatory power for well specified models. A more satisfactory measure can be constructed from the ratio of the likelihood at the estimated parameters and the likelinood with taste weights at zero and similarity parameters at one. One minus this ratio behaves like the
continuous R^{2}, see Mcfadden (1973):

Domencich and McFadden (1975) give a comparison between these two measures of fit and their discriminatory power. As a third measure of fit, we compare actual with predicted individual choices which is a fairly stringent, though erratic criterion. Note that discrete choice models produce two predictions of the aggregate choice probabilities:

t
(2.14) $\quad f(i)=n(i) / T$

$$
\begin{aligned}
\text { with } n(i) & =\text { number }\left\{t \mid p_{t}(i)=\max _{j=1 . . M} p_{t}(j)\right\} \\
T & =\text { sample size }
\end{aligned}
$$

The erratic nature of the percentage of correct predictions is due the integer constraint in (2.14). We can disaggregate this measure into the form of a success table in which observed and predicted alternatives are crosstabulated and the off-diagonal elements show the mispredictions.

2.3.3 Aggregate Probability Shares

The aggregate probability shares $f(i), i=1 . . M$, where M denotes the number of alternatives, from equation (2.14) can be used for prediction and policy analysis. They should reproduce the aggregate shares in the population $q(i)$ as close as possible. A multinomial specification with a full set of alternative specific constants will always reproduce the sample shares exactly which can be seen by adding up the first order conditions of the MNL-likelihood function with respect to the alternative specific dummies. This property is not carried over to the nested model. Anas (1982) gives some numerical examples for this bias. However, a full set of alternative specific constants still saturates the model and we can always solve the nonlinear system of $M-1$ equations in these constants to adjust the aggregated shares. This suggests the following two stage procedure: first we estimate all parameters freely; then, we solve this nonlinear equation system evaluated at the slope parameters of the first stage. The second step can be achieved by minimizing the sum of squared deviations of fitted to actual aggregated shares. This two stage procedure is consistent, but does not provide efficient parameter estimates. Usually, the adjustment necessary is very small, and so the loss in efficiency.

A more satisfactory approach is to maximize the likelinood function subject to the $M-1$ constraints $f(i)=q(i), i=2$..M. This will yield efficient estimates (Coslett, 1981) where also the slope parameters embody the constraints, not only the constants.
Unfortunately, the nonlinear equation system can not be solved
analytically, making a costly constraint maximization necessary which
involves additional m-1 nuisance parameters and in general the
solution of a saddlepoint problem as opposed to a simple maximization
problem. Furthermore, the application of Kunn-Tucker type algorithms
is not possible because the constraints $f(i)=q(i)$ are nighly nonlinear
in the alternative specific constants. We will only use the two stage
procedure. We apply this procedure in Chapter Five to adjust our
baseline estimates before making predictions and policy simulations.

2.3.4 Choice Based Sampling

Abstract

The problem of fitting the known aggregate sample shares is related to the problems generated by choice based sampling. Choice based samples may arise in two ways: the data may originally be collected by sampling according to the observed choice. This is the case when we interview a fixed number of nomeowners and a fixed number of renters and these numbers do not reflect the proportions in the population. Second, we may start from a large random sample. Typically, however, some choices have very low, others very high market shares. To achieve precise estimates for all choices, the overall sample size of a smaller random subsample drawn for estimation has to be large enough that even the smallest cell has a sufficient number of observations. This will yield very large cell counts for the popular choices. We can substantially decrease estimation costs by oversampling the infrequent choices, undersampling the frequent choices, and then treating our subsample as a choice based sample. We will make heavy use of this technique in Chapter Five.

Given a choice based sample, the parameters have to be estimated to predict the population, not the sample shares. Without a correction, the estimates are inconsistent (Heckman 1979). Thus the efficient full information maximum likelihood estimator is again the Coslett (1981) estimator mentioned in the previous subsection and involves the solution of a saddlepoint problem with M-1 additional nuisance parameters. Alternative estimators are discussed in Manski and McFadden (1981) of which we mention the two most important.

First, we can compensate for choice based sampling by weighting the observations inversely to the ratio of over or undersampling. This estimator (weighted exogenous sampling maximum likelihood, WESML, Manski and Lerman, 1977) is as cheap to compute as the normal maximum likelihood estimator. Second, we can maximize the likelihood of an endogenously sampled observation conditional on its exogenous Characteristics. This estimator (conditional maximum likelinood, CML. Hsieh. Manski, and McFadden, 1983) has a slightly more complicated likelihood function compared to the WESML estimator. Both estimators yield consistent estimates without the introduction of additional nuisance parameters, but there are not efficient compared to the Coslett estimator. However, the efficiency loss seems to be very small as indicated in McFadden, Hsieh, and Manski (1983) or McFadden, Winston, and Boersch-Supan (1984).

Therefore, and for its simplicity, we will only use the WESML estimator. The resulting likelihood function in our case is

Where i_{t} denotes the chosen alternative of household t $q(i)$ the proportion of alternative i in population $f(i)$ the proportion of alternative i in the sample $p(i, b)$ the choice probability according to (2.5) b vector of parameters

The covariance matrix of the estimated b can be derived by an exact Taylor approximation around the the true parameter vector b^{*} :
 where b^{*} lies on a line segment between b and $b *$.

Under the appropriate regularity conditions (Manski and McFadden 1981), we can apply a uniform law of large numbers (Jennrich 1969) to show

$$
\begin{equation*}
H_{T} \xrightarrow[H]{ }=E\left(\frac{\partial^{2} W(t) \log P\left(b^{*}\right)}{\partial b} \frac{\partial b^{\prime}}{\partial b}\right), \tag{2.17}
\end{equation*}
$$

and a uniform central limit theorem (Jennrich 1969) to yield

$$
\begin{equation*}
A_{T} \xrightarrow{\text { a.d. }} N(0, V) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
v=E\left(\frac{\partial w(t) \log P\left(b^{*}\right)}{\partial w(t) \log P\left(b^{*}\right)} \partial \partial b^{\prime}\right. \tag{2.19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sqrt{T}\left(b-b^{*}\right) \rightarrow N\left(0, H^{-1} V H^{-1}\right) . \tag{2.20}
\end{equation*}
$$

As a consequence,
(2.21) $f(i) \neq q(i) \Rightarrow H \neq V$.
because H includes the weights linearly, but V quadratically. Thus, the inverse hessian does no longer provide an estimate for the covariance matrix of the estimated b. In the estimation, we will use the sample hessian to approximate H and the sample outer product of the gradient to approximate v, both evaluated at the optimum.

Tne likelinood function (2.15) is a special case of the WESML estimator insofar, as we assume independent draws of households t, each with one choice of its housing alternative. This devjates from the analysis in Hsieh, Manski, and McFadden (1983) where multiple cell

```
counts m(i,t) are observed. In our case, m(i,t)=1 for i=its the chosen
alternative, O otherwise. In the case of multiple cell counts, which
are distributed multinomially, the negative covariance between m(i,t)
and m(j,s) may reduce the variance (2.19). Depending on the way the
sample is drawn, either E(m(i,t) m(i,s) ) or E(m(i,t) m(j,t) ) will
have a non-zero contribution.
```


2.4 Conclusions

This chapter provided the econometric tools for this thesis. We will cast all housing alternatives in a finite set of alternatives, structure them in the form of a hierarchical decision tree, and calculate the nested multinomial logit choice probabilities for each alternative.

These choice probabilities can be rationalized by utility maximization behavior of the consumers, but only under certain parameter restrictions. We developed necessary and surficient conditions for the consistency of random utility maximization with the nested multinomial logit specification in the case of dissimilarity parameters in and outside the unit interval. If we maintain utility maximization as underlying structural behavior, we can interpret the violation of these conditions (the case of Theorem 3) as a hint to misspecification of either the indirect utility function (2.2) or, more important, the tree structure. Alternative tree structures may be derived from the elasticity patterns created by (2.10).

Because of the inefficiency of sequential estimation procedures and their inability to embody equal utility weights for prices and income across tenure and headship clusters, we use full information maximum likelinood estimation throughout the thesis. This has become possibl. Ene use of sophisticated numerical procedures.
(1) The requirement to be finite-valued implies that ties in the pairwise comparison of utilities occur only with probability zero.
(2) We impose linearity and additive separability of the indirect utility function in the definition of RUM. In the language of McFadden (1981), such models are defined as AIRUM-compatible.
(3) Note that the definition of the indirect utility function implies translation invariance of the choice probabilities in the following sense:
$p_{u}(i)=p_{u+c}(i)$ for all constants C and all utility vectors u in R^{M}, or.
$G(y+c)=G(y)+c$ for all constants c and all vectors y in R^{M+}. where G denotes the generating function (2.9).
(4) This amounts to including M-1 alternative specific constants D_{i} interacting with the y_{t}^{\prime} and using a common parameters $b_{\text {, for }}$ all alternatives which can be seen by the transformation
$y_{t}^{l} \cdot D_{i} \cdot b_{1}=y_{t}^{l} \cdot a_{i 1}$.
(5) The random utility maximization hypothesis as stated in Section 2.2 is only one rationalization of observed choice behavior with the notion of a homo economicus. Failure of RUM does not necessarily preclude the possibility that such a model is rational in an axiomatic sense, i. e., that it fulfills the axiom of stochastically revealed preferences. This is a combinatorial problem of a large dimension. See McFadder and Richter (1979).
(6) The sum of the squared residuals can be weighted in several ways. The natural weights are the true choice probabilities. As the best available estimates, we replace them by their maximum likelinood estimates. See Amemiya (1981) for alternatives.

The Libraries
Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Institute Archives and Special Collections
Room 14N-118
(617) 253-5688

There is no text material missing here. Pages have been incorrectly numbered.

$$
p .59-62
$$

＊＊＊＊＊＊＊	＊＊＊＊＊＊
＊＊＊＊＊	
	大れ大
	＊
	あ＊＊＊＊＊＊＊
＊＊＊＊＊＊	＊
＊＊＊＊＊＊＊	あもせ＊
＊＊＊	＊＊＊＊＊＊＊
※t＊＊＊＊	

3.1 Introduction and Review of Earlier Approaches

Abstract

Does the current rise in rental housing prices discourage household formation? Was household formation fostered by the falling real rents during the early seventies? This chapter tries to answer these questions to give a rationale for the more comprehensive definition of housing demand outlined in the first section of Chapter 2. New households are formed when existing households split: Children decide to leave their parents' home or marriages are divorced, and families, living together, decide to undouble. Conversely, households cease to exist because of death or merger due to marriage or doubling up. Which of these six mechanisms are affected by economic circumstances, in particular by housing market conditions? This seems implausible for death'. but less so for marriage and divorce, and it is worthwhile to shed light on whether doubling up, undoubling, and the timing of the childrens' leave from home is influenced by the price of housing.

Whereas the influence of housing market conditions on household formation is a rather new topic, the influence of demographic factors on housing demand is well studied. The early literature on household formation, largely written by demographers, concentrated on two aspects: the rise or decline of the total population size, and the distribution of age and marital status within the population (Campbell. 1963, and Kobrin, 1973 and 1976). But a third aspect is as crucial in the determination of housing demand: how the population is
divided into households. This third aspect is closely related to the second, but by no means determines household formation. In particular, much interest has been devoted to the dramatic increase in the number of households with only one person, and the corresponding decline in the proportion of married couples in the total number of householas. Both changes are larger than the change in the distribution of age and marital status alone would predict, see George Masnick (1983) or Alonso (1983).

Campbell (1963) used standard demographic techniques to predict headship rates for a given distribution of age and marital status. He then compared these rates with the actual rates and attributed the discrepancy to "the development of a taste for privacy and independence."

The search for an explanation of this development concentrated on the rise in real income during the sixties that made privacy and independence affordable. Beresford and Rivlin (1966) and Carliner (1975) present a verbal discussion of cross-sectional data focusing on this explanation. Maisel (1960) presents a descriptive analysis of aggregated time-series data and links changes in headship rates to cyclical variables like income and unemployment rates.
Three studies apply regression analysis to investigate the
quantitative nature of this link: Hickman (1974) estimates an
aggregate time-series regression of headship rates and finds a
positive income effect. However, he does not report standard errors
of his estimates, so that the significance of his results cannot be assessed. DePamphilis (1977) attempts a time-series regression of headship rates on aggregate income, the number of young adults, and various interest rates, with questionable results. Finally, Michael, Fuchs, and Scott (1980) estimate an aggregate cross-section Berkson Theil regression of the proportions of one-person nouseholds across states. Their findings include a significant effect of the income level in the state. They study variables outside the corventional demographic and economic categories as well, e. g., whether the state has adopted a liberal legislation.

The rise of real income slowed considerably down in the mid-seventies, however, the upward trend in household formation even accelerated in this period, see Kitagawa (1981) and Masnick (1983). This puts the role of income as the most important explanation for the growth in household formation over and above demographic changes in some doubt. Observing the falling real rent level in this period ${ }^{2}$, an apparent conclusion is to attribute the affordability of privacy and independence not only to the income at disposal, but also to the price of privacy, the price of housing. A look at the recent development underscores the importance of this hypothesis: in the first years of the 1980's we finally observe household formation leveling off. At the same time real rents started to rise again. Does the surrent rising rent level discourage household formation?

Housing prices as determinants of household headship rates are considered already by Hickman (1974). He estimates a "negligible"
price elasticity and concludes that price effects are not important or cannot be separated from income effects. Michael, Fuchs, and Scott (1980) use this argumentation to exclude price variables a priori.

Abstract

Hickman's result is confirmed by two studies that use individual cross-sectional data and venture the difficult task of modeling household formation behavior per se. Ermisch (1981) develops a microeconomic model of the determination of housenold size where the disadvantages of crowding have to be traded off against economies of scale in a multi*person household. He applies his model on data from the General Household Survey in Great Britain. Wial (1983) estimated a multinomial logit choice model among four household types, based on young unmarried men in the 1970 Census. The choices are to stay with the parents, form a independent one-person housenold, or share a household with one or more other persons. Both studies find insignificant price elasticities.

However, Hickman's hypothesis and the two behavioral models by Ermisch and by Wial are contradicted by two studies that use aggregate time-series data: Rosen and Jaffee (1981), and Smith, Rosen, Markandya, and Ullmo (1982) discover a highly significant influence of the aggregate rent level on headship rates, even after controlling for income.

One purfose of this paper is to add another piece of evidence to the contradictory results in the literature. We will use individual cross-sectional data as Ermisch (1981) and Wial (1983) did, but avoid
modeling the nousehold formation process explicitly. As it turns out, we do in fact estimate highly significant price effects.

The findings of Rosen and Jaffee (1981), Smith et. al. (1982), and of this paper establish a causal relation from the housing market on househola formation in the opposite direction of the well studied influence of demographic variables on household formation and housing cemand. However, a simultaneous interaction between housing markets and nousehold formation behavior has major implications for estimation and prediction of housing demand. The concept of households as basic sampling units in data collection and econometric estimation is blurred because nouseholds may consist of independent members who find together and break off for endogenous reasons. Thus, a sample of households can not be considered a random sample for the purpose of nousing market analysis. Estimation results will biased due to a similar kind of sample selection as studied by Heckman (1979). Therefore, prediction and policy analysis will be biased as well. For instance, if privacy as an economic good complements housing, then a housing allowance program may foster household formation rather than induce moves of existing households into nigher quality dwellings. Conversely, the current cuts in spending on public housing programs may greatly increase the number of households that "double up".

An analysis without the consideration of household formation may not only mispredict behavior quantitatively, but also qualitatively. Using Sweeney's (1974) commodity nierarchy model of the housing market, conventional analysis will predict an upward demand shift
along the quality/size categories in response to a housing subsidy. However, if housing allowances foster household formation, just the opposite may occur: existing households in large units will split up, and demand is increased in the lower categories of the hierarchy. Note that an accompanying supply program, designed to cushion the excess demand and based on conventional analysis, would fail. The provision of public nousing with large units will not only be a waste, but even increase excess demand at the relevant level in the quality/size scale.

How should we design a model of housing demand that is able to answer the question of how price responsive household formation is? First, it should have a smaller decision unit than the household. second, it should have doubling up as an alternative to the conventional types of housing. We will use the concept of the family-nucleus (Pitkin, 1980) to define our decision unit, and we will use discrete choice analysis and include the choice of doubling up.

We will apply such a model to four representative population strata:
(1) Young unmarried male and female without children, aged 20-34
(2) Married couples with one or two children, aged 35-59
(3) Elderly married couples without children, aged 60 and above
(4) Widowed, divorced, and separated women without children, aged 60 and above.

The model is estimated for the three Standard Metropolitan Statistical Areas of Almany-Schenectady-Troy, New York; Dallas, Texas; and Sacramento, Caiifornia, representing the Northeast, the Sunbelt, and the West Coast. The estimates are based on the Annual Housing Survey SMSA cross-sections in 1976 and 1977.
We then apply the estimates to simulate changes in the tax and
subsidy structure for nousing consumption. In the first case the
model simulates the impacts of a simple housing aliowance program
along the lines of the housing gap formula applied in the Experimental
Housing Ailowance program in $1973-79$. Second, the local property tax
rate is assumed to be a half of its actual rate in $1976-77$. Finally
the model analyses the effect of reducing the nighest marginal tax
rate of the federal income tax from 70 percent to 50 percent. For all
three changes, we calculate the resulting distribution of the
population among the different nousing alternatives and study the
actual moves that take place in response to these changes with the
focus on the response of headship rates to price changes induced by
the simulations.

3.2 Household Decomposition into Nuclei

Conventional housing demand analysis is based on households. Households are the sampiing units of almost all available housing data bases. However, if household formation is endogenous, the decision unit must be smaller than the household. In fact, the correct decision unit is every housing consumer who could form his own nousehold. We will call this decision unit "nucleus" (Pitkin 1980). A nucleus consists of a married couple or a single individual together With all its own children below a certain age (say, 18 years). Children above this threshold are considered grown-up and, as potential household heads, form a new nucleus, even if they (still) live in their parents' household. Similarly, households that consist of several adults are split up into several nuclei, both when the members are related or unrelated to each other. Examples are elderly parents in the household of their children, or roommates. This construction assumes death, marriage, and divorce ${ }^{3}$ as given from the view-point of housing market analysis, but allows for the endcgeneity of doubling up and undoubling, and it also considers endogenous the decision of adult children to stay at or leave home.

Accordingly, there are five types of households:
(1) housenolds consisting just of one nucleus,
(2) parents with their adult children,
(3) households composed of nuclei with family-relations,
(4) households composed of nuclei without family-relations,
(5) complex households, i.e.. combinations of the latter three types.

Pitkin (1980) presents a variety of behavioral hypotheses for these five types of nouseholds, and provides a descriptive analysis of

Abstract

trends in housenold composition. Pitkin and Masnick (1980) use the nucleus approach for housing projections in the United States.

Each nucleus chooses its housing accommodation: it either shares housing within an housenold composed of several nuclei, or heads its own household. In the latter case, the nucleus has to decide which housing unit in terms of tenure and dwelling size.

The basic idea of this approach is to avoid the difficult task of constructing a behavioral model of the determination of the household size per se (as Ermisch. 1981), or a model of the matching of nuclei (as Wial, 1983). The estimation of the resulting structural form tends to be unsatisfactory because of the high noise to signal ratio given our poor knowledge about these mechanisms. In addition, the approach is applicable to data on the microlevel which allows us to use the rich information provided in surveys and to avoid the typical biases in the use of aggregated data in housing demand studies (see Polinsky and Ellwood, 1979). The split-up of households into their true underiying decision units and the creation of the headship/non-headship dichotomy can be interpreted as a reduced form of the above mentioned behavioral models of housenold production and formation.

The data base of our empirical research is the Annual Housing Survey by SMSA, cross-sections of 1976 and 1977. Sampling unit of the AHS is the household. However, the composition of each household is well documented. This allows us to detect other adults in the
household with their children, and to create a data record for each of these subnuclei in adiation to the head nucleus. The explanatory variables have to be split up according to this partition. All demographic variables and the most important income sources are reported for each household member. Some income sources are only reported for the household as a total, but in very specific income categories. However, with the demographic characteristics of each person, it is possible to employ a very accurate income allocation scheme for these income categories. For housing costs, it is suggestive that the nuclei pay their shares in proportion to the number of adults and children in the nucleus ${ }^{4,5}$.

This reduced form approach does not come without its costs. Information is lost by splitting up households into independent nuclei and separating them into different strata; e. g.. it seems a valuable piece of information, whether an adult child has parents with a large nouse in town or not. However, this is a supply factor in the provision of non-headship. As we set out in the introduction, our model is designed to describe "potential" housing demand under perfect elastic supply. Furthermore, the housing alternative "non-head" is a single category for a variety of rather different possible multi-nuclei households. As a special problem, the entire concept of neadship is blurred in housenolds of roommates, where no clear subordination exists. However, this problem is in so far irrelevant, as in the case of roommates income and demographic characteristics will be very close, and we can thus pick a head at random.

3.3 Specification of the Decision Tree and the Variables

Each nucleus chooses whether to head a household or shelter in an existing household, if one chooses to head a household, then the decisions are whether to rent or own a dwelling, and what quality and size the dwelling should be. As a simple measure of quality and size, we use the number of rooms and the type of the building. A nousehold chooses among three size categories and between single-family detached houses and multi-family houses, in particular apartment buildings. We can arrange the choices in form of a decision tree as depicted in Figure 3-1. "Small" refers to dwellings with up to four rooms, "medium" to dwellings with five or six rooms, and "large" to dwellings with at least seven rooms ${ }^{6}$.

Some of the alternatives are fairly scarce, e.g., renting iarge apartments or single-family homes, so some alternatives have to be consolidated for a reliable estimation. This consolidation depends on the stratum. Furthermore, no cost data are available for owner-occupied dwellings in multifamily buiidings, which forced us to omit these alternatives from the choice set. A more satisfactory approach would be to estimate the cost data for multifamily dwellings by hedonic regressions, or to explicitly model the missing alternatives in the definition of the choice probabilities. But the problem is a minor one for Dallas 1976 and Sacramento 1977, where these alternatives count for only 0.5 and 0.8 percen: of all choices; it might bias ole results only for Albany, where 6.9 percent of all nuclei chose cooperatively owned multi-family buildings. The final

FIGURE 3-1: BASIC DECISION TREE AND NOTATION OF ALTERNATIVES

FIGURE 3-2: DECISION TREES FOR THE DIFFERENT STRATA

(1) YOUNG SINGLES:

(2). (3) FAMILIES AND ELDERLY COUPLES:

(4) WIDOWS:

decision trees are depicted in Figure 3-2. In Chapter 5, we will experiment with other decision trees.

The choice among the alternatives will depend on the following demographic variables: (1) age of head of nucleus, (2) sex of head of nucleus, (3) marital status of head of nucleus, (4) race of head of nucleus, (5) number of children in the nucleus, as well as on financial variables of (6) after-tax user-cost and (7) income. We pursue the approach of de Leeuw (1971) and quigley (1979) and assume different demand functions for nuclei with different demographic Characteristics. Accordingly, we stratify the sample with the first five demographic variables. This approach is equivalent to the use of dummy variables for each of the strata which interact with all regressors to accommodate the unknown nonlinear functional form (see Li, 1977), in which the demographic variables enter the equations for the choice probabilities.

Of all possible strata, this paper examines demand functions for four representative strata:
(1) Young singles: unmarried white male and female without children, aged 20-35,
(2) Middle-aged families: married white couples with one or two children, aged 35-59,
(3) Elderly couples: married white couples without children, aged 60 and above,
(4) Widows: widowed, separated, and divorced white females without children. aged 60 and above.

The financial variables, income and user-cost, enter the demand functions directly. User-cost (UC) must be distinguished for renters and owners. For renters, the user-cost is simply gross rent. For
owners, the user-cost has a number of components (see for example, Hendershott and Hu (1979) or Follain (1982)):

```
UC(own ) = maintenance + insurance + utility-payments
    + mortgage-rate * deít
    + property tax rate * value
    - tax savings from federal income tax deductions
    + T-Bil1-rate * equity
    - rate of appreciation * value
```

Where the tax savings on the federal income tax is the sum of the local property tax and the mortgage interest, multiplied by the appropriate marginal tax rate. Note that federal income tax savings depend through the marginal tax rate on such nucleus characteristics as income and number of children. Furthermore, we assume different interest rates on debt and on equity to account for the effect of inflation on fixed-rate mortgages.

The user-cost of owners consists of two types of cost which the nucleus perceives differently: Maintenance, mortgage costs, property taxes and federal income tax savings are easily perceived as costs, whereas capital gains from appreciation are uncertain and opportunity costs of equity are a rather cloudy concept for non-economists. We therefore split up user-cost in two components:

$$
U C(\text { OWn })=\text { OOPOCK (OWn) }+ \text { RETURN (OWn). }
$$

where the "out-of-pocket cost" is composed of:

```
OOPOCK(own) = maintenance + insurance + utility-bills
    + local property tax + mortgage-rate * debt
    - federal income tax savings.
```

and the return from the asset homeownership is defined as:

$$
\begin{aligned}
\text { RETURN (own) } & =\text { rate of appreciation } * \text { value } \\
& - \text { T-Bill-rate } * \text { equity. }
\end{aligned}
$$

For fully rational housing demanders, the coefficients for OOPOCK and RETURN should be of equal magnitude and opposite sign. For renters, we set RETURN to zero.

The Annual Housing Survey gives us rather precise data for out-of-pocket costs. The return variable has to be constructed with external information: appreciation is based on the difference in house values between the Annual Housing Survey 1976/77 and the 1970 Census, converted into yearly rates. This rate varies by SMSA and by type of dwelling. Equity costs are calculated from the value-to-loan ratio in the Annual Housing Survey, multiplied by the interest on five-year U.S. treasury bills. Both appreciation rates and equity costs suffer from serious data problems: loan-to-value ratios are often not reported, making constructed substitutes necessary, and the available appreciation rates vary only by SMSA, but not within SMSA.
aleernatives is a hypothetical one: we observe each nucleus with its chosen alternative and its attributes like user-cost, do not observe the attributes of the alternatives that the nucleus rejected. We take as. these attributes the averages in the cross-section confined to recent movers. Underlying is the notion that a household collects its information on prices of other units by skimming through the ads in the newspapers and listening to the experiences of friends and neighbors who just moved. Mean prices of recent movers seem a plausible approximation to the current spot market prices. Note however that the comparison of spot prices with the prices tenants pay after a considerable length of tenure may bias the estimated price response. Specifically, the presence of tenure discounts in the rental market will result in exaggerated price elasticities because we compare the average housenold with price $p_{0}\left(1+d_{L}\right)$ for the tenure discount \mathbb{d}_{L} after an average length of tenure L with the recent mover with price po. Thus, the average price elasticity is overestimated by a factor of $1+d_{L}$. This factor can roughly be estimated by dividing the tenure aiscounts reported in Table 4-2 by the mean length of tenure. Based on the conservative hedonic estimates by Follain and Malpezzi (1980), this bias amounts in Albany to about 9.5 percent, in Dallas to 1.5 percent. of the estimated price coefficient for OOPOCK. The estimations by Malpezzi, Ozanne, and Thibodeau (1980) predict considerably higher tenure discounts, implying an upward bias of 25 percent in Albany, 5 percent in Dallas, 7.5 percent in Sacramento. Thus, we should be careful to take those numbers in account when interpreting the numerical size of our results. The responses on exogenous price shocks are proportional to the price elasticity, hence
these biases translate in an exaggeration of the predicted reaction to tax and subsidy changes in the order of the above-mentioned percentages. However, in Section 3.5 through 3.7 we will see that these biases do not change our qualitative conclusions. In particular, the most striking results will be found in Dallas and Sacramento where the overestimation is least. Chapter 4 describes the estimation of tenure discounts in more detail and provides some critique of the quoted estimates and a more general discussion about problems related to the description of intertemporal processes by a static model. Finally, in Chapter 5 , we explicitly correct housing prices for the presence of tenure discounts.

For the hypothetical loan-to-value ratios, we assume a 20 percent downpayment for young singles, and 99 percent for the elderly households, which takes into account the availability of mortgage loans to the different age groups. Tinis assumption is not critical to the estimates, but is confirmed by cross- tabulations of recent movers.

Finally, income is defined as the current total gross income of all nucleus members. Due to the nature of a choice between discrete alternatives, income enters the demand functions interactively with alternative-specific dummies. Furthermore, income influences the out-of-pocket costs of homeowners because federal income tax savings depend on the marginal tax rate, i.e., on gross income.

3.4 Baseline Estimates

The parameter estimates and summary statistics are tabulated in Tables 3-3 trough 3-6 for each of the four strata. The parameters represent the taste weights of the respective explanatory variables in the deterministic part of the indirect utility function. T-statistics are given in brackets, and are evaluated at zero for the taste weights. Note that income Y interacts with alternative specific dumies, where we use the same mnemonics for the alternatives as in Figure 3-2. The final parameters are the similarity parameters that express the degree of closeness in the respective clusters (See Figure 3-2). T-statistics for the similarity parameters are evaluated at one, using the multinomial logit case as a benchmark. Three scalar measures of performance or fit are used, see Section 4 in Chapter 2 for a discussion.

The model achieves a surprisingly high prediction accuracy in terms of all three measures of fit. This is surprising because of the small number of explanatory variables and the simple specification. The model performs poorest in the strata of young singles and in the family stratum in Albany. The first is not astonishing: a static model can hardly capture changes in housing consumption in this period when the nucleus is establishing its own existence. These strata are also very heterogeneous and include children still living with their parents, student roommates, and singles in their thirties. The poor performance in the case of families with one or two children in Albany may be attributable to the misspecification of the decision tree where

Table 3-3 : NMNL Parameter Estimates
"Young Singles": Unmarried, Age 20-35, No Children

	ALBANY	DALLAS	SACRAMENTO
OOPOCK	$\begin{array}{r} -0.69598 \\ (10.04) \end{array}$	$\begin{array}{r} -1.18246 \\ (9.96) \end{array}$	$\begin{array}{r} -1.56947 \\ (13.29) \end{array}$
RETURN	0.13156	0.12316	0.20421
	(1.55)	(1.45)	(2.97)
Y_NH	-0.02006	-0.13204	-0.14574
	(1.65)	(6.88)	(5.36)
Y_0	-0.00196	0.00894	0.02125
	(0.09)	(0.43)	(0.65)
Y_R_SF	0.01213	-0.02375	0.01408
	(1.87)	(1.61)	(0.62)
Y_R_MF.S	0.02282	0.04212	0.03539
	(4.07)	(3.38)	(1.59)
TH_R_MF	0.20422	0.42742	0.45242
	(26.81)	(8.05)	(7.08)
TAU_HEAD	0.14958	0.32322	0.37700
	(28.96)	(13.17)	(12.48)
LOGLIK	-616.591	-421.180	-457.455
LOGLIK_O	-1401.82	-925.427	-1199.03
RHO_SQ	0.56	0.545	0.618
\%CORRECT	82.9\%	73.2\%	81.2\%
NOBS	871	575	745

```
In brackets: t-statistics around zero or one
LOGLIK = loglikelihood at optimum
LOGLIK O = loglikelihood at zero
RHO_SQ = 1.0 - LOGLIK/LOGLIK_O
%CORRECT = percentage of correct ex post predictions
NOBS = number of observations
```

Table 3-4 : NMNL Parameter Estimates

"Families": Married, Age 35-59, 1-2 Children

	ALBANY	DALLAS	SACRAMENTO
OOPOCK	$\begin{array}{r} -0.92185 \\ (4.91) \end{array}$	$\begin{array}{r} -3.55522 \\ (5.87) \end{array}$	$\begin{array}{r} -2.81777 \\ (6.28) \end{array}$
RETURN	$\begin{array}{r} -0.69255 \\ (3.55) \end{array}$	$\begin{gathered} 1.07524 \\ (5.08) \end{gathered}$	$\begin{aligned} & 0.63690 \\ & (3.87) \end{aligned}$
Y_O_SF.S	$\begin{array}{r} -0.99077 \\ (4.35) \end{array}$	$\begin{array}{r} -0.70474 \\ (4.69) \end{array}$	$\begin{gathered} -0.32266 \\ (1.91) \end{gathered}$
Y_O_SF.R	$\begin{gathered} 0.07448 \\ (3.12) \end{gathered}$	$\begin{aligned} & 0.05039 \\ & (1.20) \end{aligned}$	$\begin{aligned} & 0.15820 \\ & (1.21) \end{aligned}$
Y_O_SF.L	$\begin{gathered} 0.22973 \\ \left(\begin{array}{c} 6.19) \end{array}\right. \end{gathered}$	$\begin{aligned} & 0.20642 \\ & (3.56) \end{aligned}$	$\begin{aligned} & 0.27165 \\ & (2.08) \end{aligned}$
Y_R_SF	$\begin{array}{r} -0.00667 \\ (0.37) \end{array}$	$\begin{array}{r} -0.02119 \\ (0.63) \end{array}$	$\begin{gathered} 0.18802 \\ \left(\begin{array}{l} 1.49) \end{array}\right. \end{gathered}$
Y_R_MF.S	$\begin{array}{r} -0.10296 \\ (1.86) \end{array}$	$\begin{aligned} & 0.18602 \\ & (1.69) \end{aligned}$	$\begin{array}{r} -0.00061 \\ (0.00) \end{array}$
I'H_R_MF	$\begin{gathered} 0.74920 \\ (\quad 0.71) \end{gathered}$	$\begin{aligned} & 2.25563 \\ & (0.86) \end{aligned}$	$\begin{aligned} & 1.74344 \\ & (1.06) \end{aligned}$
TH_O_SF	$\begin{gathered} 5.03934 \\ (8.77) \end{gathered}$	$\begin{gathered} 2.73284 \\ (3.21) \end{gathered}$	$\begin{gathered} 2.20262 \\ (2.97) \end{gathered}$
LOGLIK	-357.208	-121.134	-127.350
LOGLIK_0	-627.116	-584.114	-580.530
RHO_SQ	0.43	0.793	0.781
\%CORRECT	78.9\%	90.8\%	90.9\%
NOBS	350	326	324

```
In brackets: t-statistics around zero or one LOGLIK = loglikelinood at optimum LOGLIK_0 = loglikelinood at zero RHO_SQ = 1.0 - LOGLIK/LOGLIK_0 \%CORRECT = percentage of correct ex post predictions NOBS \(=\) number of observations
```

Table 3-5 : NMNL Parameter Estimates

"Elderly Couples": Married, Age 60t, No Children

	ALBANY	DALLAS	SACRAMENTO
OOPOCK	-3.61354	-2.35330	-3.21796
	(8.29)	(6.66)	(6.49)
RETURN	0.52908	0.68032	1.02552
	(2.27)	(4.27)	(4.87)
Y_O_SF.S	-0.26210	-0.19193	-0.21797
	(4.15)	(2.05)	(2.68)
Y_O_SF.M	0.16994	0.08080	0.07719
	(3.96)	(1.02)	(1.11)
Y_O_SF.L	0.30284	0.25677	0.25455
	(4.94)	(2.67)	(3.05)
Y_R_SF	0.03169	0.03272	0.11807
	- 0.59)	(0.42)	(1.61)
Y_K_MF.S	-0.08036	0.01262	-0.14165
	(1.17)	(0.15)	(1.01)
TH_R_MF	3.02958	2.08399	3.39293
	(2.93)	(1.49)	(1.85)
TH_O_SF	1.41709	0.87605	0.47555
	(1.36)	(0.49)	(1.73)
LOGLIKLOGLIK_0	-153.730	- 77.926	-62.706
	-582.322	-458.690	-519.610
$\begin{aligned} & \text { RHO_SQ- } \\ & \text { \&CORRECT } \end{aligned}$	0.735	0.83	0.88
	86.8\%	90.2\%	91.7\%
NOBS	325	256	290

```
In brackets: t-statistics around zero or one
LOGLIK = loglikelihood at optimum
LOGLIK_O = loglikelihood at zero
RHO_SQ = 1.0 - LOGLIK/LOGLIK_O
sCORRECT = percentage of correct ex post predictions
NOBS = number of observations
```

Table 3-6 : NMNL Parameter Estimates

"Widows": Widowed, Divorced, Separated, Age 60+, No Children

the alternative of owning cooperatively is not included.

Table 3-7 shows the prediction success table for the stratum of unmarried elderly in Sacramento, based on the criterion (2.14). The diagonal dominance reflects the high prediction accuracy. The off-diagonal elements represent the mispredictions: the model has some difficulties in discriminating between small rental housing and non-headship, which may reflect the crute reduced form specification of the household formation process.

The main result is the significance of the price variables in all strata. The out-of-pocket costs are highly significant, while the RETURN variable is somewhat weaker. Note that the hypothesis of rationality - i.e. equal magnitude and opposite signs for the taste weights of OOPOCK and RETURN -- is rejected; considerably moze weigrt is given to easily perceived out-of-pocket costs as opposed to appreciation minus equity costs. One should keep in mind, however, the difficulties of constructing the RETURN variable. Note furthermore that RETURN is least significant for the young singles, the strata most affected by liquidity constraints, rendering the rationality hypothesis inappropriate and introducing a lot of noise. Note the similarity between the estimates for elderly couples and elderly widows: taking into account the different choice sets (a large proportion of widows live in their children's homes), it reflects the stability of the taste weights during old age.

Table 3-7: Example of a Success Table and a Full Elasticity Matrix
 Stratum: Widowed, Divorced, Separated, Age 60+, No Children SMSA: Sacramento

PREDICTION SUCCESS TABLE:

MEAN INDIVIDUAL ELASTICITIES:

VARIABLE ALT.	NH	CHOICE PROBABILITY OF ALTERNATIVE:					
OOPOCK NH	-2.814	0.739	0.739	0.739	0.739	0.739	0.739
OOPOCK O_SF.S	0.420-	-12.898	-4.671	-4.671	1.876	1.876	1.876
OOPOCK O_SF.M	0.918	0.389	-12.540	0.389	1.968	1.968	1.958
OOPOCK O_SF.L	0.235	0.195	0.195	23.002	0.502	0.502	0.502
OOPOCK R_SF	0.287	0.670	0.670	0.670-	19.015	0.670	0.670
OOPOCK R_MF.S	1.315	4.097	4.097	4.097	4.097-	10.477	-3.161
OOPOCK R_MF.L	0.103	0.322	0.322	0.322	0.322	-0.317	-10.964
RETURN O_SF.S	-0.200	2.759	0.892	0.892	-0.634	-0.634	-0.634
RETURN O_SF.M	-0.429	-0.345	1.711	-0.345	-0.915	-0.915	-0.915
RETURN O_SF.L	-0.120	-0.112	-0.112	2.316	-0.256	-0.256	-0.256
Y_NH	-4.422	0.588	0.588	0.588	0.588	0.588	0.588
Y_O_SF.S	0.187	-2.059	-0.453	-0.453	0.452	0.452	0.452
Y_O_SF.M	-0.330	-0.242	0.702	-0.242	-0.704	-0.704	-0.704
Y_O_SF.L	-0.302	-0.281	-0.281	2.261	-0.642	-0.642	-0.642
Y_R_SF	-0.005	-0.012	-0.012	-0.012	0.155	-0.012	-0.012
Y_R_MF.S	0.001	0.004	0.004	0.004	0.004	-0.009	-0.003
Y_SUM	-4.871	-2.002	0.548	2.146	-0.147	-0.326	-0.320

reflect the relative price of housing with respect to all other goods. In addition, they indicate the attractiveness of the various alternatives relative to large rented apartments, measured in money terms. In absence of any other alternative-specific dummies, they also pick up all other non-measured advantages and disadvantages of the included alternatives relative to large rented apartments. Thus, one should be careful not to rush to conclusions about pure income effects. Introduction of alternative-specific dummies in several test strata reduces the income parameters, but leaves the price variables virtually constant. Because the focus of the simulations is on relative prices rather than on income, we avoided the costly inclusion of alternative specific dummies.

The attractiveness of the alternatives measured by the taste weights of the income dummies corresponds to a priori assessment. Note that most of the rented single-family houses are small houses, thus their negative weight for families with one or two children.

The last two coefficients in Tables $3-3$ through 3-6 are the weights of the inclusive values or similarity coefficients. Note that four of the similarity coefficients are significantly larger than one (at the 5 percent level). This implies that in these strata the compatibility with the underlying microeconomic theory of random utility maximization must be explicitly checked for the given data and is not automatically guaranteed as in the other strata (see appendix). In fact, the test rejects this compatibility. Note that the microeconomic theory described above is based on static utility

Abstract

maximization. Note furthermore that failure of the test occurs in the strata where people move considerably less frequently than in the strata of young singles, where the similarity parameters are in the unit-interval. The rejection thus could be interpreted as a nint that optimization is done dynamically and that the model in these strata should be interpreted as only a reduced-form description of the steady-state as opposed to a structural static choice model.

Table 3-8: Own Price and Sum of Income Elasticities

PROB	NH	O_SF.S	O_SF.M	O_SF.L	R_SF	R_MF.S	R_MF.L
Albany, Young Singles:							
OOPOCK	-0.395		-19.596		-12.973	-2.863	-7.227
RETURN	0.0		3.675		0.0	0.0	0.0
INCOME	-0.083		-0.591		-0.101	0.238	-0.343
Albany, Families							
OOPOCK		-0.209	-0.686	-0.898	-2.460	-2.517	-2.169
RETURN		-0.468	-0.386	-0.415	0.0	0.0	0.0
INCOME		-4.835	-0.132	0.553	-3.394	-6.250	-3.193
Albany, Elderly Couples:							
OOPOCK		-3.765	-6.222	-11.998	-10.187	-4.517	-5.160
RETURN		0.791	0.379	0.653	0.0	0.0	0.0
INCOME		-4.214	0.028	1.333	-1.788	-2.944	-2.574
Albany, Widows:							
OOPOCK	-2.430	-6.984	-7.529	-11.861	-16.940	-5.979	-5.016
RETURN	0.0	-0.914	-0.292	-0.418	0.0	0.0	0.0
INCOME	-3.694	-2. 284	0.359	0.973	-0.428	-0.737	-0.664
Dallas, Young Singies:							
OOPOCK	-0.632		-16.494		-8.392	-3.031	-7.641
RETURN	0.0		2.165		0.0	0.0	0.0
INCOME	-0.669		-0.037		-0.710	0.625	-0.030
Dallas, Families:							
OOPOCK		-2.167	-3.365	-6.141	-8.548	-4.786	-8.590
RETURN		1.531	1.335	1.451	0.0	0.0	0.0
INCOME		-7.663	-1.343	1.138	-2.536	-4.690	-2.513
Dallas, Elderly Couples:							
OOPOCK		-4.581	-5.189	-18.934	-5.798	-4.315	-4.311
RETURN		2.064	1.313	2.497	0.0	0.0	0.0
INCOME		-5.462	-0.667	2.427	-1.337	-1.676	-1.770
Dallas, Widows:							
OOPOCK	-1.431	-5.806	-8.580	-24.426	-8.964	-5.162	-4.867
RETURN	0.0	0.816	0.682	1.016	0.0	0.0	0.0
INCOME	-2.823	-1.958	0.457	1.478	0.341	0.005	-0.164

Table 5: Own Price and Sum of Income Elasticities (cont'd)

PROB	NH	O_SF.S	O_SF.M	O_SF.L	R_SF	R_MF.S	R_MF.L
Sacramento, Young Singles:							
OOPOCK	-0.728		-16.459		-10.046	-3.563	-9.519
RETURN	0.0		2.939		0.0	0.0	0.0
INCOME	-0.513		0.279		0.181	0.468	0.064
Sacramento, Families:							
OOPOCK		-2.570	-2.862	-4.790	-6.922	-5.222	-5.358
RETURN		1.215	0.844	1.112	0.0	0.0	0.0
INCOME		-5.563	-0.550	0.632	-0.397	-4.727	-4.719
Sacramento, Elderly Couples:							
OOPOCK		-13.100	-9.361	-42.173	-8.112	-4.318	-5.485
RETURN		5.479	2.490	8.194	0.0	0.0	0.0
INCOME		-7.813	0.672	5.770	0.765	-2.055	-1.484
Sacramento, Widows:							
OOFOCK	-2.814	-12.898	-12.540	-23.002	-19.015	-10.477	-10.964
RETURN	0.0	2.759	1.711	2.316	0.0	0.0	0.0
InCOME	-4.871	-2.002	0.548	2.145	-0.147	-0.326	-0.320

be negatively correlated to the choice probability of not formang an nousehold. Both effects together seem to cancel out, reflected in the insignificant value of 0.103.

If we compare the own elasticities across strata, the following general pattern emerges: the strata of young singles and elderly widows are the most price-responsive, especially in the owner alternatives, reflecting a priori knowledge of inertia and mobility in the different strata. Return from the asset nomeownership exhibits a strong life-cycle behavior, and is thus higher for young people with a long decision horizon than for the elderly. Headship rates are highly responsive to prices for both young singles and elderly widows. Finally, note again that the income elasticities measure not only income but also pure alternative specific effects due to their interaction with alternative specific dummies.

The elasticity pattern is fairly stable across the three SMSAS, in spite of their very different distribution of housing alternatives. This provides some confidence in the robustness of the model. As a general pattern, housing demand reacts most to prices in Sacramento and least in Albany, suggesting the more flexible nature of the housing market in California compared with New England. The pattern holds for both out-of-pocket costs and returns.

Summing up, we observe the following:
o Relative prices significantly determine housing choices for given demographic variables.
o Household formation, in particular, is highly responsive. o Out-of-pocket costs have higher taste weights than return from homeownership.
o Among strata, young singles and widows are more price responsive than the reiatively inert strata of families and elderly couples.
o The sensitivity to RETURN shows the expected life-cycle behavior.
o The general pattern of elasticities is fairly stable across markets, with Albany behaving least flexibly and Sacramento the most.

Abstract

The estimation results show a strong responsiveness of household formation to housing prices. It is now interesting what the consequences of endogenous household formation rates are in quantitative terms. Do the price coefficients, highly significant as they are, in fact translate into a reassessment of policy anaiysis? We will use the estimation results for three comparative static experiments of public intervention in the housing market: housing allowances, local property taxes, and the deduction from the federal income tax. These experiments are exercises in comparative statics and have thus to be interpreted as long-run responses, leading to a new steady state equilibrium. Furthermore, the results are based on the partial analysis of only the demand side in the preceding sections. Thus, we implicitly assume a perfect malleable housing stock and disregard all transitional phenoma like inertia of mobility and transaction costs.

Between 1973 and 1979s the U.S. Department of Housing and Urban Development conducted a large scale Experimental Housing Allowance Program. Kennedy (1980) describes in detail the design of the program, and a good survey of the subsequent discussion and critique is given in Bradbury and Downs (1981). Somewhat surprising is the fact that all components of the Experimental Housing Allowance Program ignored the feedback of housing allowances on household formation. One focal point in this section is the question of now much improvement in housing conditions comes through increased headship
rates over and above moves of existing households into larger dwellings.

The following simulation assumes a so-called housing gap formula for the calculation of the allowances. First, for each family size and site a benchmark rent is calculated, representing the "fair cost of standard housing." Then a minimum standard of quality is established, with only dwellings above this standard eligible for the subsidy. Finally, a linear tax is levied on the allowances in such a way that people with no (adjusted) income will receive the full rent for standard housing, whereas people above a certain income level will receive no allowances at all.

If the minimum standard is measured as a fraction af the fair cost of standard housing C, and the upper income limit is a multiple b of C, then the housing allowance for a household with income Y and rent R is:

0 if $R<a C$

0 if $Y>b C$

C-Y/b otherwise.

To perform a realistic experiment, we use the settings $a=0.7, b=4.0$, and C from the Experimental Housing Aliowances Program, where C was taken from the Pittsburgh demand experiment and inflated by a yearly as well as inter-SMSA rent index as follows:

FAIR MONTHLY RENTS	PITTSBG 75	DALLAS 77	ALBANY 77	SACRAM 76	
NO. OF PERSONS:					
1	$\$ 115$	$\$ 150$	$\$ 130$	$\$ 140$	
2	130	180	160	170	
$3-4$	150	200	180	190	
$5-6$	170	225	205	215	
$7+$	205	275	245	260	

Abstract

Housing allowances introduce nonlinearities in the budget set, see Hausman and Wise (1980) or Venti and Wise (1982). They can be handled fairly elegantly in discrete choice models by changing the prices of the housing alternatives differently rather than by adding the allowances to the income.

Table 3-9 lists the predicted shares of the housing alternatives before and after the introduction of the housing allowance program. Given the static nature of the model, this reflects a change between steady-states. The shares are calculated as means of the individual choice probabilities. Table $3-10$, in turn, tabulates the moves according to the individual predictions.

Our main result is the strong impact of housing allowances on headship rates: about half of the people who lived in some sort of shared accommodations created their own households in response to the housing allowance program. Most of these nuclei in the strata of young singles have little or no income, thus their rent net of the housing allowance is virtually zero. More surprising is the strong response in the strata of elderly widows, where the non-head share is far less and the income higher than among the young singles, the share

Table 3-9: AGGREGATED SHARES: HOUSING ALLOWANCES

Stra tum	Alt.	befor	NY after	$\begin{aligned} & \text { DAl } \\ & \text { befor } \end{aligned}$	AS after	$\begin{aligned} & \text { SACR } \\ & \text { befort } \end{aligned}$	ENTO after
YSL	NH	. 6331	. 4780	. 5507	. 3226	. 62.62	. 3067
	O_SM						
	O-HE	. 0092	. 0092	. 0224	. 0219	. 0425	. 0409
	O_LA						
	R_SF	. 0123	. 0159	. 0478	. 0913	. 0508	. 0772
	R_SM	. 2815	. 4041	. 3438	. 5046	. 2642	. 5396
	R_LA	. 0637	. 0928	. 0353	. 0596	. 0163	. 0356
FAM	NH						
	O_SM	. 0182	. 0149	. 0440	. 0272	. 0320	. 0210
	O-ME	. 3310	. 3270	. 4439	. 4370	. 4772	. 4682
	O_LA	. 4997	. 4969	. 4085	. 4046	. 3852	. 3831
	R_SF	. 0546	. 0572	. 0639	. 0694	. 0780	. 0772
	R_SM	. 0161	. 0207	. 0152	. 0299	. 0219	. 0394
	R_LA	. 0804	. 0833	. 0244	. 0320	. 0056	. 0111
ELC	NH						
	O_SH	. 1251	. 0920	. 1443	. 1174	. 1450	. 1191
	O_ME	. 4050	. 3830	. 5446	. 5316	. 6667	. 6418
	O_LA	. 2773	. 2683	. 2014	. 2004	. 0750	. 0746
	R_SF	. 0174	. 0193	. 0420	. 0517	. 0531	. 0595
	R_SM	. 0870	. 1225	. 0484	. 0686	. 0335	. 0613
	R_LA	. 0882	. 1149	. 0192	. 0302	. 0268	. 0437
WID	NH	.2757 .1300		.2130 .1005		.2745 .1068	
	O_SM	.0694 .0387		.1165 .0562		.1105 .0946	
	O-WE	.1602 .1398		. 3144.2875		.2281 .2232	
	O-LA	.0985 .0909		. 0486	. 0453	. 0562	. 0558
	R_SF	.0273 .0286		. 0737	. 0953	. 0729	. 0777
	R_SM	.2340 .3636		. 1842	. 3039	. 2437	. 4160
	R_LA	. 1348	. 2084	. 0496	. 1133	. 0140	. 0259

First column : predicted shares of housing alternatives before housing allowances.

Second column: predicted shares of housing alternatives with housing allowance program in effect (housing gap formula: $P=C-Y / b$).
of non-heads is nevertheless drastically reduced in response to the subsidy. We conclude once more that headship rates are important endogenous variables in the housing market.

Within the rental sector, only few moves occur. The mobility rates induced by the housing allowances (Albany 0.047, Dallas 0.057, Sacramento 0.055) are very close to those measured in the demand part of the Experimental Housing Allowance Program by MacMillan (1980) i.e. Pittsburgh 0.045 and Phoenix 0.101. Note again the difference in the price sensitivity between the Northeast and the southwest.

Unlike the Experimental Housing Allowance Program, our simulation offered allowances for rental housing to everybody in the population, changing the balance in the tenure choice in favor of renting. As a response, we observe a reiatively large number of moves from the owner-occupied section into the rental section of the nousing market. The mobility rates for the shift from owning to renting induced by the allowances are between 0.125 for Sacramento and 0.189 for Albany. Note the lower rate for Sacramento, reflecting the high valuation of owner-occupancy in the West relative to the Northeast.

Moves from owner-occupancy into the rental market have two important fiscal side-effects: on the federal level, some money given for housing allowances is retrieved through lower mortgage and property tax deductions from the federal income tax. More important is the spill-over effect at the local level of reductions in local property taxes. Table $3-11$ lists these fiscal repercussions created

Table 3-10: Predicted Moves in Response to Huusing Allowance Program

Stratum	from	NH	0.5	O.M	O.L	R.SF	R.MS	R.ML
Albany,	to R_SF	1		0		-	0	0
Young Singles	to R_MF.S	309		0		0	-	0
	to R_MF.L	3		0		0	0	-
Albany,	to R_SF		0	0	0	-	0	0
Families	to R_MF.S		9	3	0	3	-	3
	to R_MF.L		0	0	3	0	3	-
Albany,	to R_SF		0	0	0	-	0	0
Elderly Couples	to R_MF.S		24	28	3	0	-	0
	to R_MF.L		6	0	0	0	0	-
Albany,	to R_SF	0	0	0	0	-	0	0
Widows	to R_MF.S	156	11	26	11	0	-	4
	to R_MF.L	0	0	0	2	0	2	-
Dallas,	to R_SF	4		0		-	0	0
Young Singles	to R_MF.S	426		0		0	-	0
	to R_MF.L	2		0		0	0	-
Dallas,	to R_SF		3	0	0	-	0	0
Families	to R_MF.S		18	6	0	3	-	0
	to R_MF.L		0	0	0	0	0	-
Dallas,	to R_SF		8	0	0	-	0	0
Elderly Couples	to R_MF.S		35	0	0	4	-	0
	to R_MF.L		0	0	0	0	0	-
Dallas,	to R_SF	18	0	0	0	-	0	0
Widows	to R_MF.S	172	33	12	3	12	-	0
	to R_MF.L	0	0	0	0	0	0	-
Sacramento,	to R_SF	9		0		-	0	0
Young Singles	to R_MF.S	525		1		3	-	1
	to R_MF.L	1		0		0	0	-
Sacramento,	to R_SF		3	0	0	-	0	0
Families	to R_MF.S		16	6	3	9	-	0
	to R_MF.L		0	0	0	0	0	-
Sacramento,	to R_SF		7	0	0	-	0	0
Elderly Couples	to R_MF.S		31	17	0	3	-	0
	to R_MF.L		0	0	0	0	0	-
Sacramento,	to R_SF	0	0	0	0	-	0	0
Widows	to R_MF.S	194	3	3	0	3	-	0
	to R_MF.L	0	0	0	0	0	0	-

Notes: predicted moves, normalized for 1000 nuclei per stratum

Table 3-11: FISCAL INCIDENCE BETWEEN JURISDICTIONS AND STRATA

Stratum	Level of	Housing	Property	Fed. Income
	Government	Allowances	Tax Cut	Tax Change

Albany, Young Singles:

Federal, direct subsidy
Federal, tax-subsidy
Local, lost property tax
Albany, Families
Federal, direct subsidy
Federal, tax-subsidy
Local, lost property tax
Aidany, Elderly Couples
Federal, direct subsidy
Federal, tax-subsidy
Local, lcst property tax
Albany, Widows
Federal, direct subsidy
Federal, tax-subsidy
Local, lost property tax

Dallas, Young Singles
Federal, direct subsidy
Federal, tax-subsidy
Local, lost property tax
Dallas, Families
Federal, direct subsidy
Federal, tax-subsidy
Local. lost property tax
Dallas, Elderly Couples
Federal, direct subsidy
Federal, tax-subsidy
Local, lost property tax
Dallas, Widows
Federal, direct subsidy
Federal, tax-subsidy
Local, lost property tax

638.60	0.0	0.0
0.0	-1.02	-0.91
0.0	5.20	0.0
50.16	0.0	0.0
0.0	-110.4	-33.73
12.30	433.9	1.94
60.52	0.0	0.0
-0.98	-77.54	-26.83
44.31	357.57	9.05
274.65	0.0	0.0
-0.33	-14.24	-6.28
39.37	80.87	3.81

823.08	0.0	0.0
0.0	-0.79	-0.63
0.0	3.73	0.0

46.24	0.0	0.0
-0.91	-87.48	-43.63
10.93	286.66	3.73

58.22	0.0	0.0
0.0	-47.80	-16.80
12.12	220.49	0.0

480.17	0.0	0.0
0.0	-10.31	-4.21
19.58	123.76	0.0

Table 9: INCIDENCE: BETWEEN JURISDICTIONS AND STRATA (cont'd)

by the shift of demand ${ }^{7}$. All amounts are normalized to a stratum of 1000 nuclei to allow for comparisons both among strata and among SMSA. Note that especially for the married strata, the losses in local property taxes are a sizable proportion of the housing allowances paid by the federal government.
we can sum up the results of the housing allowance experiment as follows:
o headship rates are highly responsive to the housing subsidies,
o mobility rates within the rental market are low and of comparable size to the findings of the Experimental Housing Allowance Program,
o greater mobility between renting and owning produces sizable spill-over effects from federal policy to the local level.

3.6.1 Cutting the Local Property Tax By One Half

Abstract

In recent years, some states have passed legislation that introduces upper ceilings for local property tax rates, e.g., Proposition 13 in California and Proposition 2-1/2 in Massachusetts. These ceilings imply a drastic reduction in local property taxes for given assessment ratios. As a crude approximation of the isolated impact due to a drastic change in the local property tax rate, the following simulation predicts the distribution of nuclei into nousing categories assuming a property tax rate of half the level in effect during the estimation period 1976/77.

Effective property taxes (as percentages of the house values reported in the Annual Housing Survey) in this period were 2.2 percent in Albany, 1.3 percent in Dallas, and 1.6 percent in Sacramento. The proportion of property taxes in the out-of-pocket cost varies considerably across strata, mainly due to the variation in mortgage payments in the life cycle, and less so across housing alternatives; the overall proportion is about 10 percent. The impact of the property tax cut is softened by a reduction in the federal income tax deductions proportional to the marginal tax rate of the household. Taking this into account, the simulation reduces the cost of owner-occupancy about 3 percent for the average homeowner. This is a fairly small change in relative prices considering that the property tax rate is lowered by 50 percent.

Table 3-12 lists the distribution of housing alternatives before and after the property tax change, calculated as means of the individual choice probabilities. If we concentrate only on the tenure choice, the share of owner-occupancy increases by:

Stratum	Albany	Dallas	Sacramento
Young Singles	.0050	.0024	.0119
Families	.0249	.0213	.0273
Elderly Couples	.0670	.0151	.0249
Widows	.1080	.0333	.0454

The impact is of course strongest in Albany where the property tax is substantially higher than in Dallas and Sacramento. In addition, the impact is very low for young singles: they have high mortgage payments and the percentage of property taxes in their total out-of-pocket costs is very low. The same reasoning explains why the increase in owner-occupancy is largest for small houses. In addition, smaller houses are attractive for people with low incomes, for whom the offsetting effect of decreasing income tax deductions is least.

Finally, we can see the interjurisdictional fiscal effects in the second column of Table $3-11$. In the family strata, the gains for the federal government by smaller deductions are between 23.9 percent and 30.3 percent of the losses in local property taxes. The size of this spill-over effect depends on two factors: it simply reflects the relatively high marginal tax rates for these strata, but the gains are also reduced by the higher share of owner-occupancy in response to the tax change.

Table 3-10: AGGREGATED SHARES: LOCAL PROPERTY TAX CUT

Stra tum	Alt.		NY after	$\begin{array}{r} \text { DAl } \\ \text { befor } \end{array}$	AS after	$\begin{aligned} & \text { SACF } \\ & \text { before } \end{aligned}$	ENTO after
YSL	NH	. 6331	. 6322	. 5507	. 5501	. 6252	. 6227
	O_SM						
	O_ME	. 0092	. 0142	. 0224	. 0248	. 0425	. 0544
	O_LA						
	R_SF	. 0123	. 0119	. 0478	. 0477	. 0508	. 0494
	R_SM	. 2815	. 2791	. 3438	. 3424	. 2642	. 2578
	R_LA	. 0637	. 0627	. 0353	. 0350	. 0163	. 0157
FAM	NH						
	O_SM	. 0182	. 0201	. 0440	. 0458	. 0320	. 0378
	O_ME	. 3310	. 3413	. 4439	. 4585	. 4772	. 4899
	O_LA	. 4997	. 5123	. 4085	. 4134	. 3852	. 3940
	R_SF	. 0546	. 0456	. 0639	. 0530	. 0780	. 0587
	R_SM	. 0161	. 0132	. 0152	. 0114	. 0219	. 0157
	R_LA	. 0804	. 0674	. 0244	. 0178	. 0056	. 0038
ELC	NH						
	O_SM	. 1251	. 1745	. 1443	. 1529	. 1450	. 1617
	O_ME	. 4050	. 4173	. 5446	. 5503	. 6667	. 6728
	O_LA	. 2773	. 2826	. 2014	. 2023	. 0750	. 0770
	R_SF	. 0174	. 0137	. 0420	. 0374	. 0531	. 0436
	R_SM	. 0870	. 0543	. 0484	. 0412	. 0335	. 0246
	R_LA	. 0882	. 0576	. 0192	. 0159	. 0258	. 0203
WID	NH	. 2757.2396		.2130	. 2016	.2745 .2585	
	O_SM	. 0694.1606		. 1165	. 1411	. 1105	. 1506
	O_ME	. 1602.1746		. 3144	. 3202	. 2281	. 2326
	O_LA	. 0985.1011		. 0486	. 0494	. 0562	. 0572
	R_SF	. 0273 . 0254		. 0737	. 0703	. 0729	. 0711
	R_SM	.2340 .1942		. 1842	. 1703	. 2437	. 2181
	R_LA	. 1348	. 1046	. 0496	. 0450	. 0140	. 0120

First column : predicted shares of housing alternatives under actual 1977 local property taxes.

Second column: predicted shares of housing alternatives under only 50\% of the 1977 local property taxes.

We can summarize the results of the property tax experiment as
follows:
o The impact of a strong reduction in the local property tax is small in the strata with high mortgage payments and high tax brackets. It is high for the elderly and for small homeowners.
o The spill-over effect to the federal government is sizable. The direct effect through the marginal tax rate is partially offset by the indirect effect of movers into owner-occupancy.

The final simulation concerns the change in the federal income tax law that reduced the highest marginal tax rate from 70 percent to 50 percent. This has two opposing effects on housing consumption: while high-income people pay fewer taxes the deductions for mortgage interest and local property taxes are less worth and thus reduce the tax advantages of ownership. In the following simulation, we isolate the second effect by holding the income level constant and calculate the tax savings in the out-of-pocket costs of homeownership assuming the new tax scheaule. We used the federal income tax schedule for 1983 and deflated the tax brackets by the Consumer Price Index to the price and income level of the estimation period.

Abstract

We can again make the back-on-the-envelope calculation as in the preceding section: for the very rich, deductions lose 20 percent of their value. If we assume that a third of the out-of-pocket costs is deductible, we generate a 7 percent increase in the cost of owner-occupancy. This is an upper limit: people in lower tax brackets face a much smaller increase because below the 50 percent brackets, the marginal tax rates were only very slightly reduced. For the poor, there is no change whatsoever.

It should be noted that the sample includes only few "very rich" people (the 50 percent tax bracket in 1977 was about $\$ 40,000$) because the selection of strata overrepresents the very young and elderly nuclei. Table 3-13 shows that the change in the marginal tax rate

Table 3-13: AGGREGATE SHARES: FLATTER FEDERAL INCOME TAX SCHEDULE

First column : predicted shares of housing alternatives under actual 1977 Federal Income Tax schedule (highest marginal tax rate: 70\%).
Second column: predicted shares of housing alternatives under 1983 Federal Income Tax schedule, deflated by CPI to 1977 levels (highest marginal tax rate: 50\%).
results in a slight shift from owning to renting. More comprenensively, the share of renting increases by:

Stratum	Albany	Dallas	Sacramento
Young Singles	.0005	.0004	.0017
Families	.0056	.0061	.0081
Elderly Couples	.0070	.0015	.0040
Widows	.0026	.0010	.0004

These numbers are very small: not only very few people are affected by the change in the marginal tax rate, but these "very rich" people are also those who are least likely to shift to the rental market.

Within each city, the shifts into rental units basically reflect the tax brackets which can be seen by a look at the yearly mean income before taxes:

| Stratum | Albany | Dallas | Sacramento |
| :--- | ---: | ---: | ---: | ---: |
| Young Singles | $\$ 5,200$ | $\$ 6,700$ | $\$ 6,200$ |
| Families | 22,200 | 26,400 | 23,000 |
| Elderly Couples | 13,900 | 15,400 | 13,700 |
| Widows | 5,300 | 5,600 | 6,000 |

But mean income will not tell the entire story because the picture is complicated by distributional differences within each stratum and among SMSAs - both in terms of the income distributions and in terms of mortgage payments. This might explain the large shift to rental units among elderly couples in Albany.

Finally, the spill-over effects induced by the few moves in the

```
rental market are calculated from the predicted moves in a stratum of
1000 nuclei (see the last column of Table 3-1.1). Note that the
already mentioned problems with the small number of affected people
are compounded by the erratic nature of the individual forecasts. The
predicted changes in local property tax payments might therefore be
unreliable. Aggregated over the three SMSAs and over all strata, the
spill-over effect in lost property taxes is about 15 percent of the
income tax deductions saved by the federal government. The latter are
measured after the tax change: the percentage in terms of the direct
effect is lower because the moves into the rental market partially
Offset the savings in income tax deductions.
```

```
We sum up the Federal Income Tax experiment as follows:
o Flattening the income tax schedule affects relatively few
people and the changes in the aggregate are therefore small.
Too few sample nuclei are affected to allow a reliable
simulation.
O The pure price effect makes the federal income tax
deductions worth less at high marginal tax rates. The
resulting shift in the rental market is very small because
the "very rich" people that are affected by the change are
the least likely nuclei to switch to renting.
```


3.7 Conclusions

The main conclusjon from the baseline estimates and from the housing allowance experiment is the strong response of headship rates to relative housing prices. Headship rates can not be treated as exogenous variables. The second conclusion concerns fiscal federalism: in all three fiscal changes, the spill-over effects from Federal fiscal action to the local level and vice versa are of sizable magnitudes.

Taken as a descriptive device, the model performs well in terms of fit and prediction accuracy. Simulation results give a fairly stable pattern across SMSAS. In the case where the simulations coincide with other published experiments, the results were very close. All this gives us some confidence in the robustness of the model and its forecasts.

However, one caveat should be made which leads us to the next chapter: it concerns the interpretation of the cross-sectional data 3 a steady state, especially with using the housing prices as they are reported in the Annual Housing Survey. The approach ignores all intertemporal effects that might produce price dispersion or disequilibria. Spurious price elasticities may come from the fact that many sitting tenants receive tenure discounts: if we compare the rent of their actual unit with the hypothetical prices of those not chosen (measured as the prices paid by recent movers), the existence of tenure discounts will give us a larger price response than if we
compare the prices with the tenure discounts subtracted. The same argument holds for other kinds of factors producing price dispersior in the nousing market, e.g., search equilibria, explicit or implicit long run contract agreements, and rent control. In the following chapter, we will develop a theoretical model of idiosyncratic exchange that produces tenure discounts even in the absence of rent control. We will also find empirical evidence for tenure discounts: hedonic regressions produce significant negative coefficients for length of tenure, indicating an upward bias of the price coefficient. Estimations by Follain and Malpezzi (1980) translate in a bias of about 9.3 percent in Albany, only 1.5 percent in Dallas. Estimates by Malpezzi, Ozanne, and Thibodeau (1980) indicate much larger tenure discounts, yielding an upward bias of about 25 percent in Albany, 8 percent in Sacramento, and 4.9 percent in Dallas. However, even after subtracting 25 percent of the price coefficients, the main conclusion of this chapter still holds: household formation is highly responsive to housing prices, with elasticities and simulation responses smaller by 25 percent which remains still very large.

Footnotes to Chapter 3

(1) To take an extreme position: even suicide rates and health status may depend on housing market conditions as pending eviction or urban blight.
(2) See Statistical Abstract of the United States 1980, Table 819: Indexes of Residential Rents in Selected SMSAs: 1970-1980, divided by Table 811: Consumer Price Indexes - Selected Cities and SMSAs: 1960-1979.
(3) This assumption contradicts Hu (1980), who considers marriage as the crucial link between economic factors and household formation. See the discussion of the six mechanisms in household formation at the outset of this paper - of those seem marriage and divorce (and of course death) the least likely to be price responsive.
(4) This sharing scheme is realistic for roommates, less so for adult Children living in their parents" household. However, they incur non-monetary cost in the form of household help etc.
(5) Note that for a common price for all housing units this relation establisnes an identity between the prices of non-heads and heads. In this case, the price coefficients would not be identified in certain functional forms of the demand equations. One sufficient condition for identification independent of the functional form is the presence of economies of scale in the formation of larger households. In fact, these economies are likely to exist and seem to be a major attraction to share accommodations.
(6) These categories are still fairly large and do not distinguish quality levels within each size category. This holds for the non-head category as well where we do not differentiate nuclei according to the number of nuclei per household. As a consequence for marginal analysis, OOPOCK measures expenditure rather than price within each size category. However, the confusion between prices and expenditure vanishes between the discrete categories of our demand model: in each category, OOPOCK can be interpreted as the price of a standard bundle in the category. Note that one reason to use discrete choice rather than marginal analysis is the assumption that these standard bundles are qualitatively different and do not only group housing according to some scalar measure of housing services. In Chapter 5, the standard bundle of each category is computed and priced as a Lancastrian commodity, using hedonic regressions.
(7) However, the accommodating supply shifts are ignored in this analysis. The fiscal side-effects between jurisdictions may well be offset by increased property-taxes paid by landlords. If landlords overassess their buildings, the shifts in tax revenues depicted in Table 3-11 are even overcompensated.

So far, our empirical results were derived from a single cross section of the Annual Housing Survey. Implicitly, we assumed that the observed market outcome represents a stabie steady state with a unique price for each housing alternative. Thus, we could ignore the time dimension. In addition, we assumed perfect elastic long run housing supply. In this chapter, we will examine now violations of those heroic assumptions affect housing demand estimation. In particular, we try to shed some light on the existence of and causes for price dispersion. We will concentrate on the rentai housing market, where the above mentioned assumptions seem most likely unrealistic.

Market imperfections abound in the rental housing market. First, housing is a durable good where prices are not necessarily defined by one period spot market conditions alone. Second, high monetary and nonmonetary transactions sost are involved with changing consumption by moving. These two conditions create intertemporal externalities. Third, property rights of the rental unit are given up only temporarily, giving the seller a strong incentive to care who the buyer is. However, there is uncertainty: the tenants' characteristics will be revealed only after some time. These two conditions create an interpersonal externality. We will show that these externaiities create rental price dispersion.
dispersion: costly search for an appropriate housing unit may create a partition of the market in expensive units which are easy to find, and well hidden inexpensive units. Prices may vary according to implicit contracts including maintenance on the tenants side. These contracts may be correiated with such characteristics as landlord living in the unit or the landlord being a small private owner.

In addition 'co these deviations from perfect market assumptions still within the competitive market context, government intervention regulates competition in the housing market. Government intervention takes place both on the demand aris the supply side of the market, in form of housing allowances, tax subsidies, public housing provision, and rent control. Again, we will show that government intervention is able to generate price dispersion in the nousing market, intertwined with the above mentioned market imperfections.

Empirical analysis of government intervention in West Germany faces the problem of the impossibility of a with and without analysis, due to the fact that housing market intervention is basically a federal function, depriving researchers from regional variation, and that there is only poor time series data available to exploit the temporal variation in government policies. However, we will be able to draw empirical conclusions by comparing evidence in West Germany with evidence from the United States where we observe a variety of local housing policies as well as the total absence of intervention.
mechanisms leading to market imperfection, in particular price
dispersion, and collect empirical evidence for this. second, we try
to disentangle the effects of government intervention and the effects
of intrinsic housing market imperfections. Often, in particular in
the discussion about rent control, these two sources of inefficiency
are confused, and policy recommendations are easily victims of the
mistake to propose first best solutions in this second best
environment. As a case in point, we will study a highly controversial
piece of legislation that regulates the rental housing market in the
Federal Republic of Germany, the " 2 . wohnungsraumkuendigungs-
schutzgesetz" (wkschg), or law for the protection of tenants from
arbitrary eviction. Finally, in the conclusions, we will propose some
ad noc remedies which will allow estimation of the price elasticities
unbiased from the price dispersion, even if no panel data is available
to explicitly model the underlying intertemporal processes.

4.2 Empirical Evidence for Price Dispersion

4.2.1 Tenure Discounts

The first example of price dispersion in the rental housing market are so-called tenure discounts. Tenure discounts are the phenomenon of a gap between spot market rent and actual rent that increases with length of tenure. They can be measured as the difference in rent paid for comparable units by households moved in at different times. Units are kept comparable by controlling for housing quality and neighborhood characteristics as well as tenants' and landlords' characteristics. This is achieved by applying hedonic regression techniques where a function of the form
(4.1) $\mathbb{R}=f(Q, N, T, L ; t)$
is estimated. Here R denotes the rent, and Q, N, T, and L vectors of housing quality, neighborhood, tenant, and landlord characteristics. Finally, the length of tenure (denoted by t) enters this hedonic rent index. The following estimated tenure discounts in West Germany are calculated from hedonic regressions by Behring and Golarian (1983), based on about one percent of all West German households in 1978. Behring and Goldrian use a semilogarithmic functional form, where the length of tenure enters linearly, quadratically, and in form of a dummy variable for very long length of tenure. This generates the nonlinear time profile of Table 4-1.

Already after one year of tenure, tenants pay two percent less rent than new tenants in comparable units. The discounts increase until they level off for very long lengths of tenure where they amount

TABLE 4-1: TENURE DISCOUNTS IN WEST GERMANY

Length of Tenure (Years)	Area Dens City	th High Fringe	Population Environs	Low Pop City	ion Density Fringe	Rural Area
1	2\%	2\%	2\%	2\%	2\%	2\%
5	8	9	11	10	10	10
10	13	15	20	16	19	17
14	19	25	27	19	25	26

to savings of up to more than a quarter of the rent which a new resident would have to pay for the same unit.

We use the same methodology to measure tenure discounts in the United States, but. in addition, we categorize SMSAs by their rent control legislation. Tables 4-2 and 4-3 present estimated tenure discounts for fifty-nine Standard metropolitan Statistical Areas (SMSA), calculated from hedonic regressions by Follain and Malpezzi (1980) and Malpezzi, Ozanne, and Thibodeau (1980), based on the Annual Housing Surveys by SMSA 1974-1977. Follain and Malpezzi (1980) estimare tenure discounts as a linear function of the length of tenure only, whereas Malpezzi, Ozanne, and Thibodeau (1980) use the same nonlinear specification as Behring and Goldrian (1980). The large difference in the size of the discounts is disturbing. It might be attributable to these specification differences. If the true relation between the discounts and length of tenure is concave, the linear specification of Follain and Malpezzi will be biased downwards for

TABLE 4-2: TENURE DISCOUNTS IN THE UNITED STATES 1974-76

Standard Metropolitan Statistical Area	Rent Control Status	Tenure Discounts after 10 Years (1) (2)	Average Length of Tenure
Albany, NY	*	13.5\% 36.4\%	6.9
Ananeim, CA	*	18.325 .0	3.3
Atlanta, GA		6.921 .3	4.4
Boston, MA	*	13.430 .2	6.9
Chicago, IL		7.717 .9	6.0
Cincinnati, OH		$10.5 \quad 27.2$	5.2
Colorado Springs, CO		9.318 .1	3.5
Columbus, OH		$8.6 \quad 25.3$	4.6
Dallas, TX		4.113 .5	3.6
Detroit, MI		$9.7 \quad 25.5$	5.3
Fort Worth, TX		7.118 .6	3.7
Hartford, CT		9.218 .8	6.0
Kansas City, KS/MO		10.122 .0	4.8
Los Angeles, CA	*	10.819 .0	4.6
Madison, WI		5.614 .1	4.0
Memphis, TN		8.718 .4	4.9
Miami, FL	* *	8.413 .7	4.4
Milwaukee, WI		13.223 .7	5.5
Minneapolis, MN		7.613 .3	4.3
Newark, NJ	* *	9.118 .9	6.6
New Orleans, LA		9.924 .1	5.7
Newport News, VA		10.123 .8	4.5
Orlando, FL		$4.7 \quad 25.5$	3.5
Paterson, NJ	*	10.319 .8	6.6
Philadelphia, PE		7.424 .4	6.3
Phoenix, AZ		18.622 .5	3.6
Pittsburgh, PE		8.2 33.0	6.5
Portland, OR		11.022 .0	4.4
Rochester, NY	*	$12.5 \quad 22.6$	4.5
Salt Lake City, UT		12.3 31.0	4.3
San Antonio, TX		$8.9 \quad 22.3$	4.7
San Bernadino, CA	*	12.928 .9	4.0
San Diego, CA	*	11.629 .5	3.9
San Francisco, CA	* *	11.322 .2	5.4
Spokane, WA		11.934 .2	4.4
Springfield, MA	*	$6.6 \quad 26.3$	7.1
Tacoma, WA		8.123 .5	3.8
Washington, DC	*	7.518 .6	5.5
Wichita, WA		11.626 .3	4.3

Source: (1) Follain and Malpezzi (1980),
(2) Malpezzi, Ozanne, and Thibodeau (1980).

Two asterisks denote a strict measure of rent and/or eviction control One asterisk denotes a weak measure of rent and/or eviction control

TABLE 4-3: TENURE DISCOUNTS IN THE UNITED STATES 1976-77

Standara Metropolitan	Rent Control	Tenure Discounts after Years			
Statistical Area	Status	1	5	10	14
Allentown, PA		4.1\%	18.6\%	32.4\%	40.1\%
Baltimore, MD	* *	2.4	11.5	21.1	27.4
Birmingham, AL		3.4	14.7	23.2	25.6
Buffalo, NY	*	4.1	18.3	31.2	37.7
Cleveland. OH		2.2	9.8	16.7	20.1
Denver, Co		3.4	15.3	26.6	32.8
Grand Rapids, MI		3.8	15.9	28.6	34.0
Honolulu, HI	*	2.9	15.6	33.7	49.9
Houston, IX		4.1	18.2	30.8	36.9
Indianapolis, IN		2.4	10.9	18.5	22.2
Las Vegas, NV		1.9	8.3	14.4	17.5
Louisville, KY		3.4	15.0	25.1	29.7
New York, NY	* *	3.9	17.9	31.0	38.2
Oklanoma City, OK		3.8	16.5	26.9	30.7
Omaha, NE		2.3	10.5	17.9	21.7
Providence, RI	*	4.6	20.5	34.3	40.6
Raleigh, NC		3.2	14.3	24.6	30.0
Sacramento, CA	* *	2.8	12.2	19.9	22.9
St. Louis, MI		2.4	10.8	18.2	21.5
Seattle, WA		3.3	14.5	24.2	28.4

Source: Malpezzi, Ozanne, and Thibodeau (1980).
Two asterisks denote a strict measure of rent and/or eviction control One asterisk denotes a weak measure of rent and/or eviction control

TABLE 4-4: AVERAGE TENURE DISCOUNTS BY RENT CONTROL STATUS

Rent Control Status	Discounts for a 10 -Year Tenure (1) (2) (3)		
Controlled according to strict measure	$\begin{aligned} & 10.0 \% \\ & (2.2) \end{aligned}$	$\begin{aligned} & 20.3 \% \\ & (5.0) \end{aligned}$	$\begin{aligned} & 24.0 \% \\ & (6.1) \end{aligned}$
Controlled according to weak measure	$\begin{aligned} & 11.3 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 23.9 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 28.6 \\ & (6.3) \end{aligned}$
Uncontrolled Market	$\begin{gathered} 9.3 \\ (2.9) \end{gathered}$	$\begin{aligned} & 22.7 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 23.4 \\ & (5.5) \end{aligned}$

Computed from: (1) Follain and Malpezzi (1980), 1974-76,
(2) Malpezzi, Ozanne, and Thibodeau (1980), 1974-76,
(3) Malpezzi, Ozanne, and Thibodeau (1980), 1976-77. Standard deviation in brackets.
small and medium tenures. The estimates by Malpezzi, Ozanne, and Thibodeau may show an upward bias because of collinearity with their identically specified concave age of dwelling variable so that some impact of old structures pollutes the tenure discounts. Goodman and Kawai (1982) produced linear estimates for 19 SMSAs in the Annual Housing Survey of 1977-7S which are almost identical to those reported in Table 4-2. Barnett (1979), Noland (1980), and Lowery (1981) in turn reproduce estimates similar to the nonlinear specification of Table 4-2. Guasch and Marshall (1983) mention the possibility of an upward bias in all these estimates due to sample selection adverse to movers in response to low tenure discounts. Their empirical results, however, were inconclusive ${ }^{1}$. For this Chapter, we are less interested in the actual size of the discounts as their relation with rent control. As we will see in Table 4-4, our conclusions hold for both the linear and the nonlinear specification.

In the United States, rent and eviction control legislation is at the discretion of the state or even municipal level of jurisaiction. Information about the presence of controls is collected from Braid (1980), Thibodeau (1981), and the National Multi Housing Council (1982). We use two measures to assess whether the market was influenced by rent or eviction control. The stricter measure includes all SMSAS, in which rent control was in effect in at least one jurisdiction. These SMSAs are marked in Tables 4-2 and 4-3 by two asterisks. The weaker measure is denoted by one asterisk. It marks an SMSA where state legislation made rent control easy to introduce. Included into this category are also SMSAs, in which rent control was
a "big issue" and was rejected only by a small margin. Thus the presence of at least one asterisk indicates a SMSA where landlords faced or perceived an incentive to restrain rent increases and eviction.

Does rent control affect tenure discounts? Even in SMSAs where no jurisdiction ever had some kind of rent control, e. g., Phoenix and Milwaukee, we observe substantial tenure discounts. Table 4-4 lists the average tenure discounts and their corresponding standard deviations, by rent control status, time period, and specification. Average tenure discounts tend to be higher under effective or likely rent control, but none of the differences is statistically significant: the hypothesis that tenure discounts are not affected by rent control at all can not be rejected. Note that this result holds under both specifications of the hedonic index and in both time periods of Tables 4-2 and 4-3.

3.2.2 Landlord Characteristics and Search

Price dispersion in the rental market may not only be generated by the intertemporal process in which the landlord grants tenure discounts to the tenant, but by all mechanisms that create some form of partition of the rental market and therefore produce a possibility for sustained cross sectional price variation.

The first partition to be discussed in this subsection concerns landlord characteristics: landlords with only a few units to lease or landords who live in the building where they rent out the remaining units may behave quite differently from large scale landlords who administer their units by a house manager. Second, private landords may have a different behavior than institutions like the public sector housing companies in England or West Germany. Confirming evidence is presented in Tables 4-6 and 4-7.

On average over the 59 SMSA's in the survey of Malpezzi, Ozanne, and Thibodeau (1980), we find a rent reduced by 2.8 percent ceteris paribus when the landiord is present in the building. The evidence, nowever, is weak: it is significant only in 21 of the SMSA's. insignificant in 37: and has a significant but reversed sign in one SMSA. In our estimations, reported in Section 5.5.1 in Chapter Five, we present similar evidence with a significant discount in three out of four SMSA's. The pattern of discounts granted by a private landord in Germany is much clearer, see Table 4-7. In cities situated in regions with high population density comparable to U.S.

TABLE 4-6: DISCOUNTS, WHEN LANDLORD IS PRESENT IN BUILDING

Mean over 59 SMSA's in the U.S. $1974-1977^{1}$	-0.028		
Boston 1977^{2}	-0.039	(2.59)	
Dallas 1977	-0.056	(1.66)	
Los Angeles 1977		-0.042	(2.04)
Minneapolis/St.Paul 1977	-0.0012	(0.06)	

TABLE 4-7: DISCOUNTS, WHEN LANDLORD IS PRIVATE PERSON

$\begin{array}{rrrr}\text { West Germany } 1978^{3}: \text { High Density Region, City } & -0.127 & (31.99) \\ \text { Fringe } & -0.139 & (15.85) \\ \text { Environs } & -0.097 & (5.54) \\ & \text { Low Density Region, City } & -0.144 & (16.06) \\ & \text { Fringe } & -0.084 & (8.27) \\ \text { Rural Region } & & -0.174 & (15.41)\end{array}$

TABLE 4-8: PREMIUM FOR MOVERS FROM DUTSIDE SMSA

Boston 1977^{4}	0.041	(2.77)
Dallas 1977	0.026	(1.80)
Los Angeles 1977	0.017	(1.14)
Minneapolis/St.Paul 1977	0.030	(2.15)

Coefficients represent hedonic regression coefficients of a semilogarithmic form, i. e. percentage discounts or premiums on the rent. Tostatistics in brackets.
Source: (1) Malpezzi, Ozanne, and Thibodeau (1980),
(2) Own Hedonic Estimations in Section 5.5.1.
(3) Behring and Goldrian (1983),
(4) Own Hedonic Estimations in Section 5.5.1, based on recent movers only.

SMSA's, we measure a discount as large as 13 percent and highly significant.

All these hedonic coefficients measure discounts on the rent over and above the tenure discounts already corrected for as reported in Tables 4-1 through 4-3. However, they may be related to the emergence of tenure discounts as an amplifying factor. The line of reasoning follows Williamson's (1979) notion of idiosyncratic exchange: the landord-tenant relation will be more affected by idiosyncrasies of either tenant or landlord if the latter is present in the building or a private person. It would be interesting to study the interaction of the intertemporal phenomenon of tenure discounts with the cross sectional phenomenon of "landlord-present-discounts". However, this would require panel data which is not available, so that we cannot pursue this topic further.

A second partition of the rental market which is able to produce price dispersion is related to search. Finding a new housing unit is a costly process and people will trade off housing characteristics including price with search costs. This argument follows Loikannen's (1982) suggestion that people searching under time pressure choose suboptimal housing bundles. This would imply on average a rent differential between people with high and with low search cost. In particular, we might partition the rental market of recent movers in those who move from outside the SMSA and those who move within the SMSA. The latter group will have lower search cost due to more information than the former. One might even think of inter-SMSA moves

Abstract

as a two stage process where under time pressure a suboptimal unit is chosen for a short initial period. Then, from this base, a search for the optimal unit is started, with no time pressure and accumulated information. The following simple model illustrates our point.

Let us assume a fixed supply of N vacant housing units in the SMSA, where a fraction c are good values ("bargains"), and (1-c)*N units are lemons. However, at the time of the search, lemons and bargains can not be distinguished by the searcher.

For simplicity, we assume an equal number of N movers. out of which a fraction g ("greenhorns") come from outside the SMSA, and the remaining (1-g)*N persons are intra-SMSA movers. The movers from outside the SMSA have one period to find a place to live, then they stay further b periods in the city, then die or migrate. We will consider a steady state: a stable distribution of greenhorns and inira-city movers implies g=1/b. If a greenhorn picks a bargain, he stays there for the remainder of his life. Otherwise, he will start his second stage search for a better value. Thus, we have b vintages of people:

```
1: greenhorns,
2: insider with one chance to recontract,
    \bullet..
b: insider with b-1 chances to recontract.
```

For stationarity, we assume that each vintage inas the same size. In addition, let us assume for the beginning that all searchers face the same probability to pick a lemon. Then (1-c)' persons of vintage
i still live in lemons. In a cross section of all movers and sitting tenants, the proportion of people living in bargains is

$$
\text { (4.2) } \begin{aligned}
p & =i-1 / b \sum_{i=0}^{b-i}(1-c)^{i+1} \\
& =c / b \sum_{i=0}^{b-g}(b-i)(1-c)^{i>c}>c
\end{aligned}
$$

This steady state "price dispersion" between new movers and all sitting tenants just reflects the accumulated chance to recontract. This dispersion will be even greater if the probability to pick a lemon is larger for greenhorns than for insiders.

This simplistic model implies a division of the market into two categories: A segment with long-run leases, relatively low rents for a standard unit, occupied by a majorizy of tenants already living a long time in the SMSA; and a segment with short-run leases, higher rents, and a majority of tenants moved in from outside the SMSA.

This nypothesis can be substantiated by evidence from hedonic estimation, see Table $4-8$. Using the functional specification of Section 5.5.1 in Chapter Five, we include an indicator variable for movers from outside the SMSA, and restrict the estimation to recent movers (within twelve month). We estimate a premium charged to movers from outside the SMSA which ranges from 1.7 percent in Los Angeles to 4.1 percent in Boston, the latter signisicant at the 99 percent level.

4.3 Rent and Eviction Control in West Germany

What implications have the deviations from textbook economics listed in the preceding section on the analysis of rent control? As a case in point, we will study a nignly controversial piece of legislation that regulates the rental housing market in the Federal Republic of Germany, the "2. Wohnungsraumkuendigungsschutzgesetz" (WKSchs), or law for the protection of tenants from arbitrary eviction. This law is in effect since January 1975 ${ }^{2}$. The law consists of two - stylized - provisions: eviction of tenants is pronibited, and the rent is indesed once the tenant moved in. However, when a new tenant moves in, the rent can be set freely ${ }^{3}$.

More precisely, eviction is only permitted, if (1) the tenant breaches his contract (e. g.. does not pay his rent), if (2) the landord nimself or a close relative wants to move into the unit, or if (3) the landlord is substantially innibited in the appropriate economic usage of the lot (e. g., conversion into office space in areas assigned by zoning laws as a business district) ${ }^{4}$. The rent regulation permits the landlord to pass on cost increases and some of the cost of upgrading. In total, he may raise the rent up to the level of a standard rent that is defined by the average rent of comparable units, allowing him in addition to passing costs also to skim off some of the appreciation. However, a time consuming formal procedure is required for any rent change ${ }^{5}$. Thus, the rent level for sitting tenants can be described as lagged average rent of comparable units.

The law is nighly controversial: proponents argue, it is necessary to counterbalance the weak position of tenants in a sellers' market by an regulated pricing scheme. Specifically, it is claimed, that without the price regulation a landlord can exploit the exit barriers of high moving costs giving him a sort of local monopoly power. We will argue that the existence of tenure discounts contradicts this claim by showing that also the landord faces exit barriers in terms of costs of uncertainty. A second point concerns the eviction control: eviction, arbitrary in the sense of justified or unjustified ${ }^{6}$ discrimination, inflicts high moving costs on the tenant. The legislation would eliminate or at least resirict the landlords' discriminatory behavior, reduces moving costs, and therefore makes tenants better off. On the hand, opponents argue, that crucial property rights - the right to evict an unpleasant tenant - are only given up against compensation for the money value of those rights in terms of higher rents and depressed supply, which, as they claim, will ultimately reduce tenants' utility. We will show that the the claim of higher rents and depressed supply holds. However, the latter conclusion is not necessarily correct, because the balance Detween the value of reduced moving for the tenants and the value of restricted property rights for the landlords is affected by the externalities enumerated above. In fact, rent and eviction control can make both tenants and landlords better off by reducing the distorting effects of those externalities.

We will first examine the part of the German tenants' protection legislation that controls the rent level. As was pointed out in the
introduction, though the rent for sitting terants is regulated, the initial rent can be set freely. Eeknoff (1981) shows that the primary effect of this price regulation is a heavily front-loaded payment schedule, depicted in Figure 4-5, to keep profits at the pre-legislation level. Losses (B) in the second phase of the lease are compensates by profits (A) from the high initial rent in the first phase.

Figure 4-5: Effect of the Price Regulation. (Source: Eekhoff 1981).

This brings us to the topic of tenure discounts: the pricing scheme of Figure 4-5 implies that the rent of sitting tenants in terms of the initial rent is a falling, then constant function of the length of tenure. Thus, the price regulation in the German tenants' protection legislation seems to be a perfect explanation for price dispersion in the form of tenure discounts. This, however, seems rushing to a wrong conclusion: significant tenure discounts are also present in metropolitan areas in the United States, even where no rent and

Abstract

eviction control ever has been in effect. In turn, if tenure discounts indeed exist independently of rent control and are as substantial as indicated by the evidence of Tables 4-1 through 4-3, then the analysis of rent control must take into account the mechanisms that produce those discounts.

The second part of the West German tenants' protection legislation, the eviction control provision, stirs most of the heat of the emotional debate on either side, obviously, because it concerns the subtle balance between two vital rights. On one side, there is the tenant's right of the invulnerability of his dwelling, sometimes interpreted as the right to stay in the dwelling, along the lines of positive prescription. Its economic value is expressed in the psychological and monetary moving costs inflicted on the tenant when forced to move. On the other side, we have the landlord's right to dispose of his property. Its economic value is expressed in the increasea psychological and monetary maintenance costs inflicted on the landlord, when forced to keep a costly or unpleasant tenant. An economic analysis of the tenants' protection legislation must take in account the economic values of those rights and how they are affected by the legislation.

Obviously, the restriction of the landlord's property rights only matters, because tenants are different, but do not reveal these differences at the time when the rental starts. Eviction is the landlords' instrument to cope with that uncertainty. Eviction control deprives the landlord of this instrument. Thus, a model to analyze
the rental market and eviction control must include heterogeneous landlords and tenants, and it must include uncertainty about the type of tenant/landlord in the initial period.

Finally, the interest of landlords for a matching tenant, and the interest of tenants not to move too often, coincides, once tenant and landlord realized that they are matching. This provides a basis for an externality: the tenant will better maintain the unit, reducing the costs for the landlord. The landlord in turn will want to keep the tenant, for instance by giving him tenure discounts, reducing his probability to move out. The iandlord has two incentives to do so: first, he will reward the tenant's good care for the unit, second, he saves the uncertainty of gambling for a new good tenant. Eviction control yields a positive probability for the landord to still have a bad tenant in the seciond period. Thus, tenure discounts might become an even more important instrument for the landiord, once he is not permitted to evict.

In the following section, we will construct a model around those hypotheses, concentrating on the link between tenure discounts, heterogeneous tenants and landlords, and moving costs ${ }^{7}$.
4.4 A Microeconomic Model of Landiord-Tenant Relations

Let us assume a rental housing market with four different agents:
(1) Landlords of type A,
(2) Landlords of type B,
(3) Tenants of type A,
(4) Tenants of type B.

We will consider two time periods. The landlords supply N nousing units, where N is large, but fixed over this two periods. The proportion of type A tenants on the market in period 1 and 2 will be denoted by a_{1} and a_{2}, respectively, and the corresponding proportions of type A landords by b_{1} and b_{2}. Though the number of nousing units is fixed, the service stream generated by each unit is variable and reflects the quality of the dwelling unit. The housing stock is durable in the sense that once the landiord has decided on the quality level of his unit, this level will stay put over both periods. Similarly, we assume that the tenant, once having chosen his optimal quality level, will not change his mind in the second period. The difference between both periods will become clear later. We deriote the quality level or service stream of a housing unit by h. The landlord recieves profits $P(h)$ from the dwelling he is leasing, and the tenant enjoys utility $U(h, x)$ from the stream of housing services n and from the consumption of other goods, denoted by x, which he can afford after having spent his incorie y on housing.

The difference between the types of landlords and tenants consist in the monetary and non-monetary maintenance cost of the dwelling unit. If landiord and tenant match these costs will be lower as compared to the case of a mismatch. A landlord of type A faces costs
$C_{A A}(n)$ to supply a unit of quality h to a type A tenant, $C_{A B}(h)$ to a type B tenant. Analogously, a landlord of type B has costs $C_{B A}(h)$ and $C_{B B}(n)$ for type A and type B tenants. respectively. We will view the world of our model through the eyes of a type A landiord and tenant, and assume complete symmetry for type B persons. Then, we simply denote the costs in a match by $C_{A}(h)=C_{A A}(h)=C_{B B}(h)$, and the costs in a mismatch by $C_{B}(h)=C_{A B}(h)=C_{B A}(h)>C_{A}(h)$. Tenants are assumed to be indifferent with respect to the type of their landlord.

The two periods are short enough to keep our assumptions of a fixed stock, durable quality, and lasting preferences sensible. Furthermore, we are not interested in the division of consumption across the periods and assume that landlords and tenants have a common discount rate which is equal to the interest rate. The only purpose of dividing the short run horizon into two periods is the information available to the agents in the market. At the beginning of the first period, landiords and tenants are unable to identify the other party's type. Only after the first period, the types are revealed.

Rental contracts are made at the beginning of the first period. A contract (r, h) lays down the rent r for a dwelling with quality h. Both parties may breach the contract after the types are revealed at the beginning of the second period: the landlord is allowed to evict the tenant, and we will assume that he will do so in the case of a mismatch ${ }^{8}$. A tenant does not care about match or mismatch, but he may breach the contract for some exogenous reason, say, to migrate because of a job offer. We will denote the probability of such an event by

Po- However, the tenant will actually move only if the attractiveness of the job offer outweighs the opportunities he may have in his current housing unit. This is the point where tenure discounts enter: the landlord may reduce the rent in the second period by an amount t, and this tenure discount will negatively influence the probability of moving. We will denote this moving probability by $\mathrm{P}_{\mathrm{m}}(\mathrm{t})$ with $P_{m}(0)=P_{0}$ and $P_{m}{ }^{\prime}(t) \leqslant 0$. This tenure discount is entirely at the discretion of the profit maximizing landlord. A priori, it can be positive or negative.

The rental contract is a contingent contract in the sense that the rent-quality relation is determined taking in account the possible events at the transition between the two periods. Table 4-9 gives a survey of all possible events with their respective probabilities. Competition among the large number of landlords and tenants will produce. an equilibrium rent level r corresponding to an eqiulibrium quality level n^{9}. Once the quality of the match is revealed, landord and tenant form a sort of bilateral monopoly. As we defined the contract (r, h), this situation is anticipated in the competitive bargaining process before the initial period starts and the rent level adjusted accordingly. Therefore, the bilateral monopoly does not result in a bargaining game in the second period when match or mismatch is revealed, and we can avoid specifying bargaining rules with their arbitrariness ${ }^{10}$.

The contingent market approach does not resolve the market failure intrinsic in the model constructed so far. The tenant type is

TABLE 4-9: SPECIFICATION OF EVENTS FOR TYPE A LANDLORDS AND TENANTS

(1) LANDLORD:

Case	Te in Pe 1		Move	Probability	$\begin{aligned} & \text { Rent } \\ & \text { in } \\ & \text { Period } \\ & 1 \end{aligned}$	Cos in Per 1	is
1		A	stays	$\mathrm{a}_{1}\left(1-p_{m}(t)\right)$	$r \quad r-t$	$C_{\text {A }}$	C_{A}
2	A	A	moves	$a_{1} p_{m}(t) a_{2}$	$r \quad r$	$C_{\text {A }}$	C_{A}
3	A	B	moves	$a_{1} p_{m}(t)\left(1-a_{2}\right)$	$r \quad r$	$C_{\text {A }}$	C_{8}
4	B	B	stays	$\left(1-a_{1}\right)\left(1-\operatorname{sp}_{m}(0)\right)$	$r \quad r$	C_{B}	C_{B}
5	B	A	moves	$\left(1-a_{1}\right) s p_{m}(0) a_{2}$	$r \quad r$	C_{B}	C_{A}
6	B	B	moves	$\left(1-a_{1}\right) s p_{m}(0)\left(1-a_{2}\right)$	$r \quad r$	C_{B}	C_{B}

(2) TENANT:

Case	$\begin{aligned} & \text { Landid } \\ & \text { in } \\ & \text { Period } \\ & 1 \quad 2 \end{aligned}$	Move	Probability	$\begin{aligned} & \text { Rent } \\ & \text { in } \\ & \text { Period } \\ & 1 \end{aligned}$	Moving Expen. Period 2
1	A A	stays	$b_{1}\left(1-p_{m}(t)\right)$	$r \quad r-t$	
2	A A	moves	$b_{1} p_{m}(t) D_{2}$	$r \quad r$	m
3	A B	moves	$b_{1} P_{m}(t)\left(1-b_{2}\right)$	$r \quad r$	m
4	B B	stays	$\left(1-b_{1}\right)\left(1-s p_{m}(0)\right)$	$r \quad r$	
5	B A	moves	$\left(1-b_{1}\right) s p_{m}(0) b_{2}$	$r \quad r$	m
6	B B	moves	$\left(1-b_{1}\right) s p_{m}(0)\left(1-b_{2}\right)$	$r \quad r$	m

$a_{i}:$ Proportion of tenants type A in period i, b_{i} : Proportion of landlords type A in period i, $p_{m}(t)$ with $p_{o}=p_{m}(0)$: Koving probability,
s : Rent and eviction control parameter ($s=1 / p_{0} \ll>$ no control, $\mathrm{s}=1 \quad \Leftrightarrow$ reguated market)

Abstract

revealed only after the first period and only to his landlord. There will be no market emerging for the information of match or mismatch because other landlords are unable to identify both the tenant's type and the type of their fellow landlord. A second external effect is introduced by the moving probability $\mathrm{P}_{\mathrm{m}}(\mathrm{t})$. The expected utility of the tenant is a function of the probability density of the possible future states of the world, and this density depends via $p_{m}(t)$ on the tenure discounts t granted at the discretion of the landlord.

Both externalities create a "second best environment" in which the classical welfare theorems do not hold, and it is this environment in which we want to analyse regulation of the rental housing market. Rent and eviction control will be introduced in Section 4.5. We define rent and eviction control as follows:
(1) The landlord is not permitted to breach the rental contract.
(2) The landlord is not permitted to charge a rent premium in the second period, that is, negative tenure discounts are unlawful.

We can combine the regulated and unregulated market setting by introducing a rent and eviction control parameter s. If eviction is at the landiords discretion, this parameter is set to $1 /$ Po, otherwise s=1. With this definition, the tenant's moving probability in the case of a mismatch can be written spo. In the case of a match, regulation has no influence on the tenant's probability to leave the unit $p_{m}(t)$.

The final ingredient of the model are the expenses which occur to the tenant if he moves. We will denote the moving expenses by m, and
assume that they are a lumpsome amount and independent of the cause of the move which maly be the new job or eviction.

We can enumerate all possible events at the transtion from period 1 to period 2:
(1) There is either a match or a mismatch in the first period;
(2) The tenant either moves after the first period or stays in the unit:
(3) If he moves, there will be either a match or a mismatch in the second period.

The probabilities for the events and the corresponding realization of rents, maintenance costs, and moving expenses are given in Table 4-9.

Abstract

Two asymmetries may be worth noting. First it is not necessary to introduce the possibility of a rent premium in the case of a mismatch: if the market is unregulated, the landlord will evict the tenant: under rent and eviction control, such a premium is unlawful. Second, we did not introduce physical turnover costs for the landlord, say the cost of a vacant unit. However, the difference between the certain maintenance costs for the current tenant and the expected costs with an unknown tenant can be interpreted as iurnover costs. For $0<a_{2}<1$ this difference is positive for a matching, negative for a non-matching tenant. Thus, in case of a match, this difference constitutes an "exit-barrier" for the landlord as do the moving cosis for the tenant. The introduction of physical moving costs will only strengthen results which we will derive from this exit-barries aixa is thus unnecessary. In case of a mismatch, the cost difference is negative and thus provides an incentive for the landlord to breach the

contract. Turnover costs will weaken the assumption that all mismatches will be severed in unregulated markets. To put results in the proper perspective, we can interpret the second period costs of a good tenant C_{A} as including turnover costs. The exit-barriers -- the cost difference $C_{A}-C_{B}$ for the landlord and the moving expenses fin for the tenant -- are the main parameters for the interpretation of the model and will play a key role when we evaluate the welfare gains and losses from rent and eviction control.

In the following Sections, we will study the landlord's and the tenant's optimization problem in more detail, and then define a suitable equilibrium concept for the two period model.

We will examine the landlord's behavior first, and look at a landlord of type A who considers tenants of type A as good, tenants of type B as bad tenants. At the beginning of the first period, he maximizes his expected profits with respect to the quality level h and the tenure discounts t which he will grant in case the tenant turns out to be a good tenant:
(4.3) $\quad \max E[P(n, t)]$
h,t

From Table 4-9, we compute the expected profit function

$$
\begin{align*}
& P^{E}(n, t)=a_{1}\left(1-p_{m}(t)\right) \quad\left[(1+e) r h-(1+e) C_{A}(n)-e t h\right] \\
& +a_{1} P_{m}(t) a_{2}\left[(1+e) r h-(1+e) c_{A}(h)\right] \\
& +a_{1} p_{m}(t)\left(1-a_{2}\right) \quad\left[(1+e) r h-(1+e) c_{A}(h)-e\left(c_{B}(h)-C_{A}(h)\right)\right] \tag{4.4}\\
& +\left(1-a_{1}\right)\left(1-s \rho_{o a_{2}}\right)\left[(1+e) r h-(i+e) c_{B}(h)\right] \\
& +\left(1-a_{1}\right) \operatorname{spoa}_{2}\left[(1+e) r h-(1+e) c_{B}(h)+e\left(c_{B}(h)-c_{A}(n)\right)\right]
\end{align*}
$$

where $e=1 /(1+i)$ the discount factor for interest rate i.

Due to the linearity of the profit function, (4.4) reduces to
(4.5) $\quad P^{E}(n, t)=r_{1}^{E_{h}}-c_{1}^{E}(n)+e\left(r_{2}^{E}(t) h-c_{2}^{E}(h, t)\right)$
with the expected values of rents and costs in period 1 and 2:
$(4.6) \quad r_{i}^{E}=r$
(4.7) $\quad r_{2}^{E}(t)=r-a_{1}\left(1-p_{m}(t)\right) t$
(4.8) $\quad c_{1}^{E}(h)=C_{B}(h)+a_{1}\left(c_{A}(h)-c_{B}(h)\right)$
(4.9) $\quad c_{2}^{E}(h, t)=c_{B}(h)+p_{A}(t)\left(c_{A}(h)-c_{B}(h)\right)$
where

$$
p_{A}(t)=\left(a_{1}\left(1-p_{m}(t)\right)+a_{1} p_{m}(t) a_{2}+\left(1-a_{1}\right) s p_{m}(0) a_{2}\right)
$$

Maximization of (4.5) with respect to h and t yields the first order conditions:
(4.10) $r+e r_{2}^{E}(t)=c_{1}^{E}(n)+e c_{2}^{E_{1}}(n ; t)$
(4.11) $\left(1-P_{m}(t)\right)-P_{m}(t) t=P_{m}(t)\left(1-a_{2}\right) \quad\left(c_{A}(n)-c_{B}(n)\right) / h$

As a first result, we can characterize the tenure discounts by equation (4.i1).

Theorem 1:

If the cost differences between tenant types are large enough, the lanilord will grant positive tenure discounts to keep a good renant. More precisely, the optimal tenure discounts are given in implicit form by
$(4.12) \quad t=\left(1-a_{2}\right)\left(C_{B}(h)-C_{A}(h)\right) / h+\left(1-p_{m}(t)\right) / p_{m}^{\prime}(t)$
Note that the first term in (4.12) is positive, the second
negative by our assumption. The landord faces a trade-off between
losing money by granting tenure discounts on one hand and by risking
to get a bad tenant in the second period on the other nand. A large
cost difference in the first term will outweigh the second term and
generate positive tenure discounts. However, if the probability of a
bad tenant in period two is very small and the moving probability
insensitive to tenure discounts, the landlord is better off by
discouraging the ola good cenant to gamble for a new good tenant, whom
he does not have to pay tenure discounts.

To simplify the analysis and to be able to solve (4.12) for the discounts t, we assume a linear functional form for the moving probability $P_{m}(t):$

$p_{m}(t)$	$=p_{0}-k t$		for $t<p_{0} / k \quad(k>0)$
	$=0$		otherwise

Next, we examine the structure of the cost functions. Obviously, $c_{A}(0)=c_{B}(0)=c_{0}$, the cost of a vacant unit. We have already defined the type of tenant by $C_{A}(h)<C_{B}(n)$ for $h>0$. For a well behaved cost function, we postulate $C_{A}{ }^{\prime}>0, C_{B}{ }^{\prime}>0, C_{A}{ }^{\prime \prime}>0, C_{B}{ }^{\prime \prime}>$ O. In addition, it is convenient to assume that the difference between the costs for different tenure types increases linearly with the housing unit service stream: $C_{B}(h)-C_{A}(h)=C_{D} h>0$.

With the linear specifications of P_{m} and $C_{B}-C_{A}$, the tenure discounts are given by:
(4.14) $t=\left(1-a_{2}\right) / 2 * C_{D}-\left(1-p_{0}\right) / 2 k$ 。
hence positive for

$$
\begin{equation*}
C_{D}>\frac{\left(1-p_{0}\right)}{\left(1-a_{2}\right) k} \tag{4.15}
\end{equation*}
$$

We can substitute this into the first order condition (4.10) to obtain the following implicit reduced form equation in the landlord's.
;
housing supply $\mathrm{h}:$
(4.16) $\quad F=r(1+e)-e a_{1}\left(1-p_{m}(t)\right) t-(1+e) c_{B}^{\prime}(n)-\left(a_{1}+e p_{A}(t) i c_{D}=0\right.$
with p_{A} from (4.9).

For the comparative staicie analysis in Section 4.5 we compute the following partial derivatives of F with respect to rent r, the regulation parameter s, and the quality level $n:$
(4.17) $\quad F_{r}=(1+e)>0$
(4.18) $\quad F_{s}=e\left(1-a_{1}\right) a_{2} p_{0} C_{D}>0$
(4.19) $\quad F_{n}=-(1+e) \quad c^{\prime \prime} B_{B}(h)<0$

Applying the implicit function theorem, we obtain an monotonously upward sloping supply function in the initial rent level r, with the supply elasticity given by
(4.20) $\quad E_{S}=-\frac{r F_{r}}{h F_{n}}=\frac{r / h}{C^{\prime \prime} B_{B}(h)}>0$.

Finally, we define the elasicity of supply of housing services with respect to the regulation parameter s which falls from 1 to $1 / p_{0}$ when rent and eviction control is introduced:
(4.21) $\quad R_{S}=-\frac{s F_{S}}{h F_{h}}=\frac{e\left(1-a_{1}\right) a_{2} P_{O} C_{D}}{c^{\prime \prime}{ }_{B}(h)}>0$.

Note that this elasticity is positive and proportional to the cost differential C_{D} between good and bad tenants.

4.4.2 The Tenant

We turn now to the demand side. We will look at a tenant of type A. He chooses housing quality n and consumption of other goods x at the beginning of period 1 as to maximize his expected utility subject to a budget constraint. For simplicity, we assume a separable utility function $U(x, h)=u(x)+v(h)$. Because we are not interested in the intertemporal distribution of consumption, we define $x=x_{1}+e x_{2}$ as two period consumption and $y=Y_{1}+e y_{2}$ as two period income with $e=1 /(1+i)$. Rent is denoted by r, moving expenses by m, and other goods are normalized to have unit price. With these conventions, the tenants maximization problem can be written as

```
(4.22) \(\max E[u(x)+v(h)]\) s.t. \(E[y-x-r h-m]=0\).
n, X
```

The lower part of Table 4-9 specifies the outcomes and probabilities for all possible events for a tenant of type A. There are three different outcomes according to the receipt of tenure discounts and Whether the tenant moves. Note that depending on the imposition of rent and eviction control one of the three outcomes will not occur. The maximand of the tenant expands to

$$
\begin{align*}
v(h) & +b_{1}\left(1-p_{m}(t)\right) u(y-(1+e) r h+e t h) \\
& +\left(1-b_{1}\right)\left(1-s p_{0}\right) u(y-(1+e) r h) \tag{4.23}\\
& +\left(b_{1} p_{m}(t)+\left(1-b_{1}\right) s p_{0}\right) u(y-(1+e) r h-e m) .
\end{align*}
$$

We will use the simplifying notation

$$
\begin{aligned}
q_{1} & =b_{1}\left(1-p_{m}(t)\right) \\
(4.24) \quad q_{2} & =\left(1-b_{1}\right)\left(1-s p_{0}\right) \\
q_{3} & =\left(b_{1} p_{m}(t)+\left(1-b_{1}\right) s p_{0}\right)
\end{aligned}
$$

to denote the probabilities of the different events for a tenant, and

$$
\begin{align*}
& \bar{x}=y-(1+e) r h \\
& w(\bar{x})=q_{1} u(\bar{x}+e t h)+q_{2} u(\bar{x})+q_{3} u(\bar{x}-e m) \tag{4.25}
\end{align*}
$$

for "normal" consumption and the expected utility from consumption. The first order condition of (4.23) with respect to h is
(4.26) $\quad G=v^{\prime}(h)-w^{\prime}(\bar{x})(1+e) r-q_{1} u^{\prime}(\bar{x}+e t h) e t=0$
and defines the implicit reduced form of the tenant's demand for housing quality. This gives us the following partial derivatives for comparative static analysis:
(4.27) $G_{r}=w^{\prime \prime}(\bar{x})(1+e)^{2} r h-w^{\prime}(\bar{x})(1+e)-q_{1} u^{\prime \prime}(\bar{x}+e t h) e(1+e) t h<0$
(4.28) $\quad G_{s}=\left(1-b_{1}\right) p_{o}(1+e) r\left(u^{\prime}(\bar{x})-u^{\prime}(\bar{x}-e m)\right)<0$
(4.29) $\quad G_{n}=v^{\prime \prime}(h)+w^{\prime \prime}(\bar{x})(1+e)^{2} r^{2}-q_{1} u^{\prime \prime}(\bar{x}+e t h)\left(e^{2} t^{2}-2 e(1+e) r t<0\right.$
where the signs are implied by the assumption of well benaved neoclassical utility functions with $v^{\prime}>0, u^{\prime}>0, v^{\prime \prime}<0$, and u'' < O. In particular, we have a monotonously downward sloping demand curve with a demand elasticity of
(4.30) $\quad E_{D}=-\frac{r G_{r}}{h G_{h}}<0$.

In analogy to the supply side, we define the elasicity of demand for housing services with respect to the regulation parameter s as
(4.31) $\quad R_{D}=-\frac{s G_{s}}{h G_{h}}<0$.

Note that this elasticity is negative and roughly proportional to the moving expenses m, which can be seen from (4.28) when the bracketed difference in marginal utilities is approximated by u''(x̄)em.

4.4.3 Steady State Market Equilibrium

A steady state equilibrium is characterized by three conditions:
(4.32) $\quad a_{1} N^{\top}=b_{1} N^{L}$ and $\left(1-a_{1}\right) N^{\top}=\left(1-b_{1}\right) N^{L}$
(4.33) $\quad a_{1} D^{A}(r)+\left(1-a_{1}\right) D^{B}(r)=b_{1} S^{A}(r)+\left(1-b_{1}\right) S^{B}(r)$
(4.34) $\quad a_{1}=a_{2}$ and $b_{1}=b_{2}$

The first condition assures that the number of housing units demanded equals the number of housing units supplied, for both types of landords and tenants. This equilibrium condition of the extensive margin of course implies $a_{1}=b_{1}$ and $N^{\top}=N^{L}=N$, the number of landlords ${ }^{11}$ and tenants. The second condition equalizes demand and supply of housing service streams at the intensive margin. $S^{A}(r)$ denotes the optimal housing service supplied by a landlord of type A at initial rent r, that is $S^{A}=h$ given by equation (4.16). $D^{A}(r)$ denotes the corresponding demand, given by equation (4.26). Finally, the third condition characterizes the steady state by a stable distribution of tenant and landord types.

Note the distinction between the discrete problem of matching the number of units (=landlords) and tenants, and the continuous problem of determining the equilibrium housing service level. The latter condition (4.33) is the substantive equilibrium condition of this model, the first holds by assumpeion. The slope of the demand and
supply functions, given by (4.20) and (4.30), and their monotonicity guaranty that the continuous housing service equilibrium condition (4.33) yields a well defined and unique equilibrium rent level r. If the discrete equilibrium condition (4.32) is violated, vacencies or homeless will emerge, and we have to specify rules for this disequilibrium. We will not consider this problem in this paper.

The violation of the steady state condition (4.34) can be interpreted as a kind of adverse selection problem. Let N denote the population in the housing market under examination, and M denote the net migration to another housing market, with g_{1} the proportion of type A migrants. After one period. $P_{m}(t) a_{1} N$ is the number of type A tenants moving within the given housing market. In addition, gim type A tenants will move from outside into this market. For type B tenants, we have $s p_{o}\left(1-a_{1}\right) N$ intra-city movers and $\left(1-g_{1}\right) M$ inter-city movers. Thus,

$$
\begin{equation*}
a_{2}=\frac{p_{m}(t) a_{1} N+g_{1} N}{\left(p_{m}(t) a_{1}+s p_{0}\left(1-a_{1}\right)\right) N+M} \tag{4.35}
\end{equation*}
$$

is the second period share of type A tenants on the market. In steady state, $a_{1}=a_{2}$. Solving (4.35) for $a_{1}=a_{2}$ yielas a quadratic equation

Thus, in the absence of migration $(M=0)$, we obtain the corner solutions $a_{1}=0$ or $a_{1}=1$ as steady state shares to which any other
initial distribution $0<a_{1}<1$ will converge. This is due to the unbalanced shares of movers in each period, $p_{m}(t) / s p_{0}$, which creates a selection of bad tenants among movers adverse for the landords.

```
    We will assume a steady migration of tenants to produce a steady
state distribution 0 < a < < 1. For simplicity and without loss of
generality, we set a, =0.5. Now all reactions of type A agents are
mirror-images of their type B counterparts, and it is sufficient to
examine only nalf of the market.
```


4.5 Analysis of Rent and Eviction Control

The eviction and rent control as defined in Section 4.1 is modelled along the lines of the tenants' protection legislation in West Germany and has two effects in our model: (1) landlords are not permitted to evict tenants of a different type, and (2) landlords are prohibited from charging tenants a premium on top of their second period rent. Note that the initial rent level is unrestricted and free to move according to the competitive market equilibrium (4.33). We model the two effects simultaneously by changing the parameter s in the specification of the probabilities in Table 4-9. Setting $s=$ $1 / p_{m}(0)$ corresponds to a nousing market without intervention: mismatches will be severed with probability one, and Case 4 in the Table will never occur. In turn, setting $s=1$ corresponds to a housing market under eviction and rent control, where the bad tenant will only move with probability $\mathrm{P}_{\mathrm{m}}(0)$ and pays the contract rent r in period 2. A decrease in s thus corresponds to a step in direction of rent and eviction control.

Total differentiation ${ }^{12}$ of the equilibrium condition (4.33) yields

where the pieces can be collected from equations (4.17), (4.18), (4.19): and (4.27), (4.28), and (4.29). In terms of the elasticities
(4.21), (4.22); and (4.31), and (4.32), we can write the impact of a step in direction of regulation on the rent level as
(4.38) $\left.\mathrm{dr}=-\mathrm{r} / \mathrm{s}\left(\mathrm{R}_{\mathrm{D}}^{(-)}-\mathrm{R}_{\mathrm{S}}^{(+)}\right) /\left(\mathrm{E}_{\mathrm{D}}-\mathrm{E}_{\mathrm{S}}\right) \mathrm{C}\right) \mathrm{d}$

Thus, we can describe the first effect of the intervention:
Theorem 2:
The initial rent level for a new lease will rise in response to the rent and eviction control.

Proof:

The signs in (4.37) and (4.38) follow from the quoted equations, and imposition of rent and eviction control is equivalent to ds <0.

Note that we can decompose the price change dr in two terms. The first term includes R_{D} and is roughly proportional to the moving expenses m, see (4.31). The second term includes R_{s} and is proportional to the difference in maintenance costs C_{D} according to (4.21). Thus, the price change reflects the sharing of the burden and the gain from eviction and rent control between landlord and tenant, the gain expressed in the moving expenses saved by the tenant and the burden in the cost difference inflicted on the landlord.

How does the landlord respond to the imposition of rent and eviction control?

Theorem 3:
(1) The landlord's supply for housing services will fall in response to the rent and eviction control.
(2) Under linear cost differences, the tenure discounts will remain
unchanged.
Proof: We computed the supply effect when defining the elasticity R_{s} in (4.21) by applying the implicit function on (4.16):
(4.39) $\quad d n=-F_{s} / F_{n}=\frac{e\left(1-a_{1}\right) a_{2} P_{O} C_{D}}{(1+e) c^{\prime \prime}{ }_{B}(h)} d s<0$

The absence of a tenure discount effect is entirely due to the linear cost difference $C_{B}(n)-C_{A}(n)=C_{D}=$ constant which can be seen from equation (4.14) where all right hand side items are constants.

Supply will be depressed, because the legislation imposes higher costs on the landlord: he looses the economic value of his right to evict. To adjust optimal profits under a convex cost function, output has to go down. The change in tenure discounts for a general cost specification can be obtained from equation (4.12):
(4.40) $\quad d t=\left(1-a_{2}\right) / 2 h^{2}\left[\left(c_{B^{\prime}}(h)-c_{A^{\prime}}(h)\right) h-\left(c_{B}(h)-c_{A}(h)\right)\right] \frac{d h}{d s} d s$

The landlord will grant larger discounts in response to the legislation if the cost difference increases more than linearly with the housing service stream, and less discounts for a concave cost difference. He will do so to counterbalance the changes in cost differences with a changed moving probability $p_{m}(t)$: if this difference decreases due to (4.39) and a convex cost difference, he is more interested to keep the tenant, and will give him larger discounts.

The effect for profits is given by the envelope theorem
(4.41) $d P=(1+e) \frac{d r}{d s} n d s+e\left(1-a_{1}\right) a_{2} p_{O} c_{D} h d s$
and consists of two effects of opposite signs. The second term in (4.41) is negative: the landlord looses because he is forced to keep a bad tenant, if this tenant decides to stay. This effect is proportional to the cost difference. On the other hand, he is able to regain some of the losses through rent increases. As we have seen in (4.38), we can interpret the first effect as appropriation of some part of the tenant's advantage from the legislation in the form of lower expected moving expenses.

We now turn to the impact of rent and eviction control on the demand side of our rental housing market model. We evaluate the effect on the tenant's utility by applying the envelope theorem on (4.23) :
(4.42) $\quad d u=-w^{\prime}(\bar{x})(1+e) \frac{d r}{d s} n d s-\left(1-b_{1}\right) p_{o}(u(\bar{x})-u(\bar{x}-e m)) d s$

The first effect in the tenant's utility (4.42) is the mirror image of the first effect in the landlord's profits (4.41). Tenants suffer from an utility loss due to the increase in in the initial rent level. This price increase is converted by the marginal utility $w^{\prime}(\bar{x})$ as defined in (4.25) into utility units. The second effect reflects the increase in utility due to the decreased likelihood of moving, that is lower expected moving expenses. This utility increase is approximately $w^{\prime}(\bar{x}) \mathrm{em}, \mathrm{thus}$
(4.43) $d u / w^{\prime}(\bar{x})=-(1+e) \frac{d r}{d s} n d s-\left(1-b_{1}\right) p_{0}$ em ds

If we analyze the relative weights of the opposing effects in (4.41) and (4.42), we obtain the main result of this Section:

Theorem 4:

(1) If moving expenses are small relative to the cost differential between good and bad tenants, both landlords and tenants are worse off by eviction and rent control.
(2) If moving expenses are large relative to the cost differential between good and bad tenants, both landlords and tenants are better off by eviction and rent control.
(3) For a given ratio of moving expenses and differential maintenance costs, Case (2) is the more relevant the smaller the likelihood is of a second period match after the severance of a mismatch.

Proof:

We express the utility change (4.42) locally as
$d u=\left(G_{r} d r / d s+G_{s}\right) \bar{x} d s$
and the profit change (4.41) correspondingly as
$d P=\left(F_{r} d r / d s+F_{s}\right) i n d s$
To obtain a utility (profit) increase in response to the imposition
of the legislation (ds<0) the bracketed expressions have to be nega-
tive. Substitute dr/ds from (4.37). Then
$d u>0 \Leftrightarrow-G_{r} \frac{G_{s} F_{h}-G_{h} F_{s}}{G_{r} F_{n}-G_{n} F_{r} .}+G_{s}<0$,
and
$d P>0 \Leftrightarrow-F_{r} \frac{G_{s} F_{h}-G_{h} F_{s}}{G_{r} F_{n}-G_{h} F_{r}}+F_{s}<0$.
Thus,
$d u>0 \Leftrightarrow d P>0 \Leftrightarrow G_{g} / G_{r}>F_{s} / F_{r}$.
From (4.19). (4.27), and (4.43):
$F_{s} / F_{r}=\frac{e\left(1-a_{1}\right) a_{2} P_{0}}{1+e} c_{D}>0$,
and

```
                (1-a, \()\) Po er \(w^{\prime \prime}(\bar{x})\)
```


Hence,

```
du>0 < < dP>0 <m m > a N K CD
```

with

```
    \(w^{\prime \prime}(\bar{x}) r h(i+e)-w^{\prime}(\bar{x})-q_{1} u^{\prime \prime}(\bar{x}+e t h)\) eth
\(K=-\infty-\infty-\infty-\infty-\infty-\infty\)
    \(u^{\prime \prime}(\bar{x})(1+e) r\)
```

which proves the pheorem.

The result is an example how the intuition from a first best environment can be misleading in a second best environment. Market failures occur in the rental housing market because of two externalities: a missing market for the information of landiord and tenant type; and an expected utility function of the tenant which is responsive to the tenure discounts. The fundamental welfare theorems are not valid in an environment with external effects. In Case (2), interference with the market in form of rent and eviction control proved to be Pareto superior to laissez faire: the tenants' protection legislation did not only improve the tenant's welfare but also the profite of the landlords.

4.6 Conclusions

Using empirical evidence on the existence of tenure discounts in West Germany and the United States we screened the arguments pro and contra rent and eviction control, specifically the West German tenants' protection legislation. A model was build based on the mechanisms identified as important for the working of the rental nousing market: tenant and landlord idiosyncrasy, potential tenure discounts, and high moving costs.

As a first result, the model indeed predicted positive tenure discounts. Second, the comparative static analysis of rent and eviction control showed, that with low moving costs and a large difference in costs between good and bad tenants rent and eviction control makes both tenants and landlords worse off. However, with high moving costs and only little difference in costs between tenant types, the intervention increases the utility of all participants, of landlords as well as of tenants. The conclusion of many analyses that the German tenants' protection legislation will not only reduce the profits of landlords, but even harm the tenants which should have been protected by the legislation is at least premature.

This result of an intervention Pareto superior to laissez faire is due to the externalities between landiord and tenant and an example of how first best analysis misleads policy evaluation in a second best environment.

Abstract

The second conclusion concerns estimating housing demand. As discussed in the end of Chapter Three, positive tenure discounts bias the estimated price responses upward. How can we correct for that? Obviously, the proper solution is to take all units of a given cross section, but look at their spot market rent rather than their actual rent. The spot market rent is observed only at the time of moving. With a panel, we could trace all units back to this period. In absence of a panel, however, we can use the hecionic estimates of average discounts quoted in Tables 4-1 through 4-3 and add these discounts to the actual rent to achieve approximations of the spot market rent. Note that this procedure avoids the bias which is introduced when confining the estimation only to recent movers. We will use this procedure in the next chapter, when we compare housing demand in the United States and in West Germany.

(1) Guasch and Marshall (1983) argue that the hedonic regression suffers from self selection bias, because tenants with low or no tenure discounts will move out of their expensive units and therefore have less probability to be in the sample. Our model in Section 4 will have the same implication. However, their empirical findings about the size of this effect and the remaining "true" discounts are inconclusive. Correction for the selection bias in three different samples changes the estimated tenure discounts only little and in either direction. Their standard errors, though, increase as much as to render the discounts statistically insignificant at all. It is not clear whether this result is due to the specific sample they used or to an inefficient estimation procedure for their relatively small sample size.
(2) The law was modified in 1983, but not changed in its substance.
(3) Only usury is prohibited by $\oint 5$ WiStG.
(4) $\int 564 \mathrm{~b}$ BGB.
(5) f_{2} Miethoeneg. This procedure can only be waived if the tenant agrees to it.
(6) This might be a frivolous choice of words. We want to distinguish discrimination due to objectively higher costs from discrimination due to taste or prejudice.
(7) Compare Goodman and Kawai (1982) for a sketch of a similar model.
(8) We assume that the expected costs of a bad tenant staying are always larger than the expected costs of an unknown new tenant. For $0<a_{2}<1$, this is basically a statememt about small turnover costs. See the discussion at the end of this Section.
(9) A suitable equilibrium concept is developed in Section 4.4.3.
(10) Eckart, Scnulz, and Stanl (1983) consider a model of voluntary and involuntary exchange in a housing market with implicit contracts. The landord-tenant relationship in our model resembles an implieit contract: the tenant takes the discounts in the second period in account when maximizing his expected utility over the two periods.
(11) We assume each landlord supplies only one housing unit. This includes landlords with more than one housing unit, as long as each of the units is supplied by maximizing its own profit.
(12) We keep a_{2} constant. In fact, a_{2} is a function of the tenure discounts, thus affected by the change of s. However, the linear specification of costs and moving probability keeps a_{2} unchanged, as it will turn out in (4.40).

CHAPTER FIVE

AN ANALYTIC COMPARISON OF HOUSING DEMAND DECISIONS
IN THE UNITED STATES AND WEST GERMANY

```
******************ザ大丈********
```



```
&*****
******
**$***
```



```
                                    ************
                                    **********
                                    *********
                                    *********
                                    **********
```


5.1 Introduction: Idea and Scope of an Analytic Comparison

This last chapter of the thesis uses all the analytical tools we have developed so far to compare housing demand in the United States and West Germany. In both countries nousing surveys exist with comparable scope of questions asked, sample sizes, and sampling procedures. This is the Annual Housing Survey in the United States which we already used in Chapter Three, and the One Percent Sample in West Germany, named after its sampling ratio.

The existence of parallel data sets in the two countries allows us to use the same analytical model, i. e., Eunctional specification of the demand equations and specification of the explanatory price, and income, and demographic variables. In this sense, we will carry out an analytical rather than a descriptive comparison

Though the scope of questions asked is roughly the same in both surveys, due to confidentiality restrictions in West Germany the data available to us has little information on household composition, prohibiting the decomposition of nouseholds into nuclei as described in Chapter Three. Thיs, our comparison will be confined to population strata in which household formation can safely be considered exogenous to the housing market: married couples.

Second, we do not want to stress the comparison to areas where the two countries are structured very differently. We will exclude guestworkers in West Germany and non-whites in the United States from

Abstract

our comparison. With similar reasoning, we confine the analysis to metropolitan areas because the density pattern of rural settlements are completely different in the two countries. In Germany, we sample only from counties which are classified as highly densely populated. The United States are represented by the Standard Metropolitan Statistical Areas of Boston, Dallas, Los Angeles, and Minneapolis/St.Paul from the Annual Housing Survey by SMSA.

Though we pool the data across cities in both countries, we will keep city centers and suburbs apart, and we will further stratify the households (married couples) according to three age groups (age below 35, age between 35 and 50, and age above 50). This yields six strata for each country. In addition, we pool all data to explore a variety of functional forms -- decision trees -- and different specifications of the explanatory variables. These pooled samples contain 8035 white married couples in West Germany and 8139 in the United States. We will refer to these two samples as our "basic samples".

This chapter begins with a short enumeration of descriptive statistics to outline the differences in housing consumption in the two countries. In addition, we will compare summary statistics from the entire nation with summary statistics from our basic sample to obtain a sense of how the samples represent the countries. Section Three briefly sketches the differences in the tax treatment of owner-occupancy between the countries.

This descriptive part is intended to set the stage for the
analytical comparison: how much of the observed differences in
housing consumption can be explained by differences in the exogenous
variables, and how much has to be attrinuted to preference
differences. Sections Four through seven specify the common demand
model, estimate the components -- permanent income and hedonic prices

- and finally the NMNL-demand equations. Then, we compare the price
and income responsiveness and optimal tree structures. This will give
us insignt in the differences between the preferences in west Germany
and the United States. The last section attempts to separate those
from the effects of the tax differences: we forecast each country's
housing consumption first at the other country's preferences and then
at the other country's tax and subsidy system.

5.2 A Brief Descriptive Comparison

The most striking difference in housing consumption between West Germany and the United States is the difference in the tenure choice: of all households in the U. S. 1978, 65.2 percent lived in owner-occupied housing ${ }^{1}$, only 36.3 percent in Germany ${ }^{2}$. This pattern is as striking in our basic samples of white married couples in urban areas: compared to the entire population, this ratio rises to 77.0 percent in the U. S.; but only to 42.2 percent in West Germany. Table $5-1$ gives a more detailed decomposition of housing demand for the two countries, based on the entire population (Annual Housing Survey 1977, National Sample, and the West German One Percent Sample 1978, respectively) and our basic samples. We consider eight housing alternatives, generated by three dimensions: owner-occupied versus rental housing, single-family homes and duplexes versus multi-family structures, and one-to-four room dwelling (plus kitchen) versus dwellings with more than five rooms.

The differences in tenure choice are echoed in the differences between structure types: whereas in Germany single-family structures (including duplexes) and multi-family structures have almost equal shares, single-family homes constitute the overwhelming share of structures in the United States. Note, that our sample differs from the population in two ways: we consider only married couples with a higher likelihood of owner-occupancy, and only high density urban areas with a lower propensity to own. The ownership ratio for married couples all over Germany is 43.2 percent, whereas the ownership for

TABLE 5-1: MARKET SHARES OF HOUSING ALTERNATIVES

WEST GERMANY: ONE PERCENT SAMPLE 1977, NATIONAL SAMPLE

All Households $23,067,000$	Rental Housing		Owner-Oc.cupied		Unit Choice
1-2 Units	10.5\%	5.7\%	8.0\%	22.9\%	47.1\%
3+ Units	38.7\%	8.8\%	3.2\%	2.1\%	52.9\%
Tenure Choice Size Choice	$\begin{array}{r} 49.2 \% \\ 63.48 \end{array}$	$78^{14.4 \%}$	11.2% 3	$\begin{aligned} & 25.0 \% \\ & 3 \% \\ & 39.6 \% \end{aligned}$	

WEST GERMANY: REGIONS WITH HIGH DENSITY

Married, German $8,019$	Rental Housing		Owner-Occupied		Unit Choice
1-2 Units	10.2\%	2.5\%	21.1\%	15.9\%	4.7.7\%
$3+$ Units	41.0\%	4.2\%	4.6\%	0.6\%	50.3\%
Tenure Choice Size Choice	$\begin{array}{r} 51.2 \% \\ 76.9 \% \end{array}$	8.7%	25.7%	$\begin{aligned} & 16.5 \% \\ & 3.1 \% \end{aligned}$	

UNITED STATES: ANNUAL HOUSING SURVEY 1977, NATIONAL SAMPLE

UNITED STATES: BOSTON, DALLAS, LOS ANGELES, MINNEAPOLIS/ST.PAUL SMSA

$\begin{gathered} \text { White Married } \\ 8,139 \end{gathered}$	Rental Housing		Owner-Occupied		Unit Choice
1-2 Units	7.2\%	3.2\%	24.5\%	50.6\%	85.5\%
3+ Units	11.9\%	0.6\%	1.178	0.7\%	14.5\%
Tenure Choice Size Choice	$\begin{array}{r} 19.1 \% \\ 23 \\ 44.7 \% \end{array}$	3.9%	25.6%	$\begin{aligned} & 51.4 \% \\ & 0 \% \\ & 55.3 \% \end{aligned}$	

Abstract

all households in urban areas in the United States (SMSA's) is 61.0 percent.

The difference between rural and urban areas in the two countries are most striking in the market shares of small versus large dwellings. On the national scale, they are very close: 57.9 percent of all dwellings have less than five rooms in the United States, 60.4 percent in West Germany. However in urban areas, this ratio falls in the United States to 44.7 percent, but rises in Germany to 76.9 percent. This reflects a greater degree of suburbanization in the United States with both urban sprawl and a concentration of higher income households in the suburbs as compared to rural areas.

So far, we have compared the endogenous variables of housing demand. Table 5-2 compares the patterns of exogenous variables and their reflection in the tenure choice. Germany has a substantially higher proportion of elderly households (aged over 65) both on national scale and in our sample of couples in urban areas. In both countries our sample has a more centered age distribution, here, the married couple effect and the urban area effect accumulate. The ownership ratios show the familiar life cycle pattern, but with considerable differences between the countries. The peak in Germany is about ten years earlier than in the United States and the decline in homeownership among the elderly is much more pronounced.

The second part of Table 5-2 lists the annual gross income in Dollars at prices of 1977. Median income is about equal in West

TABLE 5-2: EXOGENOUS VARIABLES: AGE, INCOME, AND PRICES

(1) AGE DISTRIBUTION AND TENURE CHOICE:

Age	Age Distribution				Ownership Ratio			
	$\begin{aligned} & \text { United } \\ & \text { All HH } \end{aligned}$	States Sample ${ }^{b}$	$\begin{aligned} & \text { West G } \\ & \text { All } \mathrm{HH}^{\mathbf{a}} \end{aligned}$	rmany Sample ${ }^{b}$	United All HH	States Sample	West G All HH	rmany Sample
< 25	6.4\%	5.3\%	12.6\%	3.2\%	35.3\%	24.6\%	10.4\%	5.1\%
25-29	11.6	11.3	"	8.5	56.6	53.3	"	15.1
30-34	12.4	12.7	18.5	10.1	74.5	74.6	32.6	28.8
35-39	20.0	11.2	"	14.5	82.5	83.5	"	40.3
40-44	-	9.5	18.8	12.5	1	86.2	48.4	54.2
45-49	35.5	10.3	"	9.9	86.8	86.6	"	34.1
50-64	"	27.5	23.2	21.3	"	87.7	47.6	52.4
> 65	14.2	12.4	26.7	20.1	83.2	79.2	33.6	43.2

a: Nationwide, see Footnote 1, b: White Married Couples in Urban Areas
(2) INCOME DISTRIBUTION AND TENURE CHOICE:

Income	Income Distribution				Ownership Ratio			
	United All HH	States Sample	$\begin{gathered} \text { West } \\ \text { All HH } \end{gathered}$	ermany Sample	United Ali HH	States Sample	West Ge All HH	rmany Sample
<4.0	13.1\%	2.1\%	9.7\%	0.4\%	44.3\%	59.8\%	23.9웅	42.8 \%
<6.0	8.9	3.2	14.9	0.9	48.5	51.7	25.2	44.7
<8.0	10.2	4.9	18.4	1.7	52.1	53.5	29.5	39.6
<10.0	6.6	4.9	14.9	9.4	54.1	57.4	34.7	38.2
<12.5	10.7	8.0	16.0	8.2	58.2	60.2	37.7	39.5
<15.0	7.7	7.6	9.7	8.8	66.5	63.3	42.3	38.3
<20.0	14.7	18.3	10.3	25.7	72.3	76.0	50.6	40.8
<25.0	28.0	16.4	6.1	15.1	85.0	82.7	61.6	38.8
>25.0	n	34.6	"	29.8	\%	91.3	"	48.2

Inconie is yearly gross household income in Thousand 1977 Dollars
(3) HOUSING PRICES

	United States		West Germany	
	City Center Suburbs	City Center Suburbs		
Gross Rent	2,815	2,981	1,627	1,628
Hedonic Rent	2,742	2,935	1,980	2,010
	Out-Pocket-Cost	4,108	4,300	2,741
Hedonic Rent	3,428	3,546	2,738	2,667
Value	49,238	48,443	116,694	103,724

Yearly rents and values in 1977 Dollars

Germany $(\$ 13,361)$ and the United States $(\$ 13,444)^{3}$. However, the income aistribution is very different. In both countries income is approximately evenly distributed across all categories up to median income, but in Germany only the small fraction of 6.1 percent earns more than $\$ 20,000$, whereas in the United States this percentage is as large as 28.0 percent. A similar pattern holds in our sample: mean income is similar (United States: $\$ 22,020$, West Germany: $\$ 23,420$), but the income among couples in U.S. cities has somewhat fatter tails on either side: the low income category (below $\$ 8,000$) accounts for 10.2 percent as compared to 3.0 percent in German cities, and the high income category (above $\$ 35,000$) 34.6 percent as compared to 29.8 percent. In both countries ownership is strongly correlated with income where the owntaship ratio reaches 95.8 percent for an income above $\$ 45,000$ in the U.S. sample, and 58.8 percent in the German sample. Interestingly, the pattern is reversed for the very low income groups. A more detailed cross-tabulation reveals that most of these households are elderly or very young couples. This may reflect reporting errors in transfer income of the young and extremely low out-of-pocket cost due to paid-off mortgages among the elderly.

The most striking observation is the difference between the income of the renter households and the homeowners. In the United States, median income for homeowners is about twice as high as among renter households (\$ 17,100 versus $\$ 8,800$), but in West Germany it is only about 30 percent higher $(\$ 15,750$ versus $\$ 12,000)$. The same discrepancy holds in our sample: the mean income in the U.S. sample is $\$ 24,030$ for homeowners and $\$ 15,410$ for renters, in West Germany $\$$

25,260 and $\$ 22,080$, respectively.

5.3 Tax Treatment of Owner Occupancy in the Two Countries

We will argue that a substantial part of the different housing consumption patterns can be explained by the different tax laws. This Section gives a brief description of how the out-of-pocket costs of homeownership are reduced by tax deductions from the personal income tax in the two countries. Compared with the United States, the tax provisions for homeowners in Germany are confusing and complicated, and we present only a simplified version.

Table 5-3 gives a stylized survey of the tax laws. The important tax tool in the United States is the deduction of mortgage interest, Whereas in West Germany the basic mechanism is the allowance for the depreciation of the structure. There are three depreciation schedules in Germany: an "accelerated schedule" with a cap on time and value, a "degressive schedule" applicable only to new structures, and the omnibus linear depreciation schedule. In the United States, imputed rental income is not taxed; in Germany, it is taxed except in the case of an accelerated depreciation schedule. Germany has only a negligible property tax, whereas in the United States the property tax is substantial even after deduction from personal income tax. The German tax law has an additional twist in its special treatment of two-family homes. In this case, mortgage interest can be deducted in addition to depreciation allowances as well as all maintenance and a percentage of modernization expenses, only partially offset by the taxation of imputed rent. This is insofar relevant to our demand analysis, as the law did not exclude the rentless "lease" of the

FIGURE 5-3: STYLIZED TAX-TREATMENT OF HOMEOWNERSHIP
(1) Property Tax:
varies locally, varies locally,
about 2\% of value
about 0.1\% of value
(2) Imputed Rent Taxed as Personal Income:

```
no yes, if schedule B yes
no, if schedule A
```

(3) Deductions from Personal Income Tax:

Property Tax	yes	no	yes
Mortgage Interest	yes	no	yes
Depreciation	no	schedule A or schedule B	any Maintenance
Modernization	no	no	no

Notes:

Schedule A ("accelerated"): 8 years 5% of structure costs, capped at \$ 3,000. Thereafter none.

Schedule B ("degressive"): 12 years 3.5% of structure costs, 20 years 2\%, finally 10 years 1\%. Only applicable for new buildings.

Schedule C ("linear"): 50 years 2\%. No restrictions.
Imputed Rent: Effectively ca. 1% of structure costs.

Abstract

second unit to a family member. Not too surprisingly, this "fake two-family house" became very popular (1977: 17.3 percent on national scale, 13.0 percent in our sample, that is about 40 percent of the one or two unit owner-occupied nouses) until the loop-hole was closed. This, too, is the main reason to include two-samily homes into the same category as single-family homes in the definition of the eight housing alternatives: apart from the required extra kitchen and bath, the "fake two-family nome" is virtually indistinguishable from a single-family house.

Tax advantages from homeownership are much more favorable in the United States apart from this odd loop-hole for two-family homes in Germany. Table 5-4 lists the value of the tax savings from single-family nomeownership in both countries for various income levels, house values, and equity ratios in the first few years of a new home. Note, that the German tax write-offs depend on the value of the structure only, not on the value of the land, and that they are independent of the loan-to-value ratio, tilting the symmetry between borrowing and lending (interest income is taxable in Germany). The tax savings in Germany do not increase strictly monotonically with value due to the cap on the accelerated depreciation schedule long before the degressive schedule becomes attractive.

A final note concerns the subsidy given to renters in form of housing allowances ("Wonngeld"). They depend on the rent paid, income, and family-size similar to the housing gap formula applied in Chapter Three. For a couple with two children paying the median rent

TABLE 5-4: YEARLY TAXSAVINGS FROM OWNER-OCCUPANCY IN GERMANY VS. USA

EQUITY: 50\%, STRUCTURE: 80\%

Value in	Yearly Gross Income in 1977 Dollars: 8,000 12,000 16,000 25,000							
\$ 1000	GER:	USA:	GER:	USA:	GER:	USA:	GER :	USA:
30.0	\$ 260	240	\$ 260	\$ 370	$\leqslant 260$	\$ 440	\$ 470	\$ 560
50.0	440	420	440	610	440	710	770	920
80.0	540	420	690	930	690	1,080	1,180	1.420
120.0	540	420	690	1.150	690	1,550	1,180	2,060
160.0	540	420	700	1,150	700	1,930	1,200	2,650
200.0	540	420	880	1,150	880	1.930	1.490	3,170

EQUITY: 50\%, STRUCTURE: 60\%

$\begin{aligned} & \text { value } \\ & \text { in } \end{aligned}$	Yearly Gross Income in 1977 Dollars: 8,000 12,000 16,000						25,000	
\$ 1000	GER:	USA:	GER:	USA:	GER:	USA:	GER :	USA:
30.0	\$ 200	240	\$ 200	\$ 370	\$ 200	\$ 440	\$ 350	\$ 560
50.0	330	420	330	610	330	710	580	920
80.0	530	420	630	930	530	1,080	910	1,420
120.0	540	420	690	1,150	690	1,550	1,180	2,060
160.0	540	420	690	1,150	690	1,930	1,180	2,650
200.0	540	420	690	1,150	690	1,930	1,180	3.170

EQUITY: 20\%, STRUCTURE: 80\%

value in	Yearly Gros$8,000$		Income in12,000		Dollar	000	25,000	
\$ 1000	GER:	USA;	GER:	USA:	GER:	USA:	GER:	USA:
30.0	\$ 260	360	\$ 260	\$ 530	\$ 260	\$ 610	\$ 470	\$ 790
50.0	440	420	440	840	440	970	770	1.270
80.0	540	420	690	1.150	'690	1,490	1,180	1.970
120.0	540	420	690	1.150	690	1,930	1.180	2.790
160.0	540	420	700	1,150	700	1,930	1,200	3,510
200.0	540	420	880	1,150	880	1,930	1,490	4.100

EQUITY: 20\%, STRUCTURE: 60\%

value in	Yearly Gross Income in 1977 Dollars: 8,000 12,000 16,000						25,000	
\$ 1000	GER:	USA:	GER :	USA:	GER:	USA :	GER:	USA:
30.0	\$ 200	360	\$ 200	\$ 530	\$ 200	\$ 610	\$ 350	\$ 790
50.0	330	420	330	840	330	970	580	1.270
80.0	540	420	530	1,150	530	1.490	910	1,970
120.0	540	420	690	1,150	690	1,930	1,180	2,790
150.0	540	420	690	1.150	690	1,930	1,180	3,510
200.0	540	420	690	1.150	690	1,930	1,180	4.100

```
in an urban area the income cap is at \(\$ 7,000\) yearly after-tax income. At an income of \(\$ 4,000\), about. 60 percent of the rent will be reimbursed. In 1977, 7.4 percent of all households in West Germany received housing allowances.
```

Thus, ail things considered, the tax and subsidy structure in Germany is much less favorable to homeownership than in the United States.

5.4 Specification of the Demand Equations

In Table 5-1. we already introduced the eight housing alternatives of the dependent variable:

We use a similar set of explanatory variables as we already introduced in Chapter Three:
(1) YP: Permanent income before taxes,
(2) HEDON: Hedonic index as a measure of user cost,
(3) RETURN: Return from equity minus its opportunity costs.
(4) CROWDS: Squared deviation of optimal from actual dwelling size,
(5) AGE: Age of housenold head.

Most of the differences to Chapter Three are motivated by making the cross country comparison as meaningful as possible. Unfortunately,
the cerman survey only reports net income which is endogenous in this

FIGURE 5-5: DECISION TREES AND HOUSING ALTERNATIVES

Abstract

housing demand equation because after-tax income depends on the housing choice and its implications on tax deductions. Gross income is calculated using stepwise polynomial approximations of the tax scnedule, given imputed tax deductions from homeownership and average other deductions by age, household size, social status, and other demographic variables ${ }^{7}$. This necessary calculation, though made as careful as possible, is rough and noisy.

The use of permanent income rather than current income reflects the common wisdom (Quigley, 1979) that housing decisions are long run decisions and should not be influenced by transitory income fluctuations. Cleaning the explanatory variables from transitory components is in particular important when comparing two countries where the transitory components are more likely to be different. In particular, it may help to minimize the noise introduced by the calculation of gross income in West Germany. Section 5.6 will discuss the estimation of permanent income in both countries. Because income varies by household, but is not alternative specific, it has to interact with a set of dummies ${ }^{8}$. Instead of using a full set of seven alternative specific dummies, we exploit the symmetric tree structure and let income interact with a dummy for each dimension of choice.
Age of the household head is included in the equation over and
above the stratification of the sample into age categories to take
account of the differences in the life cycle pattern of housing
consumption within each stratum, discovered in Table 5-2. Age enters
the equation linearly and quadratically, and both variables interact
with the dummies for each dimension of choice in the same as way income does.

We use two price variables. one measuring the out-of-pocket user cost, and the other measuring the less tangible return from equity invested in an owner-occupied home. The latter variable is defined as

```
(5.1) RETURN = ( APPR - TBILLR * (1-MARGTR) * (1-LOANRA) ) * VALUE
    where APPR: rate of appreciation
        TBILLR: aiternative interest rate
        MARGTR: marginal tax rate of nousehold
        LOANRA: loan-to-value ratio
```

Note that the capital gains accrued by appreciation are not taxed, whereas the alternative investment (in the U.S.: in treasury bills, in Germany in "festverzinsliche Wertpapiere") is subject to personal income tax. This reflects the tax treatment of home sales in both countries where the capital gains essentially evade taxation.

To compuce user cost, we could in principle proceed as in Chapter Three. However, the data provided in both surveys is quite different, in particular, house values have to be imputed from external information because they are not reported in the German survey. Therefore, it is likely that user cost of homeownership are not comparable across the two countries, and we rather use a hedonic index. Furthermore, this allows us to include condominiums into the choice set. Condominiums are an important housing alternative in West Germany (5.5 percent in the sample) and Boston (5.1 percent in the sample), less so in the otiner U.S. SMSA's (Dallas 0.6 percent, Los Angeles 1.6 percent, Minneapolis/St.Paul 0.8 percent). A discussion
of the nedonic estimation follows in the next section.

As a second demographic variable, we introduce a variable to measure household size which boils down to the number of children in our sample of married couples. As most useful a variable turned out which measures the crowding of a dwelling in terms of the deviation of an optimal from the actual dwelling size:

```
(5.2) CROWDS = (NROPT - NRACT)}\mp@subsup{)}{}{2
    where NRACT: actual number of rooms
        NROPT: Optimal number of rooms
        NROPT = NADULTS + 1 + (NKIDS-1)/2
        NADULTS: number of aduits in household
        NADULTS: number of children in nousehold
```

Finally, the attributes of hypothetical, i.e., not chosen alternatives are imputed as sample averages evaluated at the nousehold's housing independent characteristics. The treatment differs from that in Chapter Three: we keep the chosen number of rooms constant when the household hypothetically moves to another tenure or structure category. This way, we can more clearly separate the choices on each level of the tree.
We did a fair number of experiments with alternative
specifications for the exogenous variables in the chosen and
nypothetical alternatives, the functional form of the decision trees,
and the number of alternatives. Some sensitivity results are reported
in section 5.7.
5.5 Hedonic Price Indices

Hedonic rent indexes are estimated from the renter subsample in each country, then evaluated at each dwelling. This yields an imputed rent for owner-occupied nomes and condominiums, where no value and out-of-pockec cost data is available in both countries. Methodological underpinnings of hedonic estimation can be found in Lancaster (1966), Rosen (1974), Muellbauer (1974), and Murray (1978). Mean gross rents and hedonic rents are reported at the bottom of Table 5-2. In both countries, we use a semilogarithmic functional form to accommodate interaction terms but avoid using nonlinear specifications.

5.5.1 United States

In the United States, we mimicky the the specification of Malpezzi, Ozanne, and Thibodeau (1980), in the following denoted by MOT. The estimates are readjusted for our sample and the sampling period (1977-78 instead of 1974-75), and the specification was slightly changed to be applicable for both renter and owner-occupied units. We estimated four sets of coefficients, one for each SMSA, to accommodate regional differences in the housing stock and its evaluation in each geographical region due to, e. g., climatic differences, as well as in the general level of rents due to market conditions.

The estimated coefficients are reported in Table 5-6. Very little changes compared to the original MOT results. The number of rooms has the expected significance as the most important quality measure. Structure type performs weakly, as it does in the MOT estimations for 1974-76, and, as we will see, in the German necionic regressions. Of the building attributes, the informal ratings are unreliable. Age enters in a s-shaped nonlinear fashion. The rental unit depreciates fast in the first years after construction; this rate slows down after the initial period; but increases again when the building becomes very old. Interestingly, the pattern is different in Boston where old buildings even have a positive contribution to the hedonic value. Almost all dwelling attributes have their expected signs or are insignificant.

We measure strong tenure discounts with a concave relationship to the length of tenure. Ten years after moving in, tenants receive a discount of 22.1 percent in Boston, 16.1 percent in Dallas. 24.5 percent in Los Angeles, and 10.7 percent in Minneapolis/St.Paul, compared to those of MOT quoted in Table 4-2. The presence of the landlord in the building implies a significant (at the 90 percent level) rent reduction in all SMSA's except Minneapolis/ St.Paul, which supports our reasoning in Section 4.2.2. Tenant characteristics may proxy neighborhood characteristics not picked up in the coefficients at the bottom of Table 5-6. Finally, we control for inclusions in the gross rent and inflation during the lengthy interview period.

The Boston rental market emerges as distinctly different froin the

TABLE 5-6 HEDONIC REGRESSION COEFFICIENTS (USA)

Dependent Variable: Logarithm of Yearly Gross Rent

VARIABLE:	BOSTON:	DALLAS:	LOS ANGELES: MINN/ST.P.:
CONSTANT	$0.90199 *$	$0.94663 * ~$	$1.33857 * 10.83656 *$

(1) NUMBER OF ROOMS:

1+1/2 BATHS	0.13285	*	0.10007	*	0.11486	*	0.12840	*
TWO BATHS	0.21148	*	0.16076	*	0.11136	*	0.13190	*
THREE EATHS	0.50431	*	0.37019	*	0.21600	*	0.11278	
ONE ROOM	-0.10873	*	-0.16168	*	-0.14698	*	-0.14291	*
TWO ROOMS	-0.05875	*	-0.12015	*	-0.10482	*	-0.04869	*
FOUR ROOMS	0.07249	*	0.05947	-	0.20443	*	0.04485	-
FIVE+ ROOMS	0.02473	+	-0.01625	-	0.04412	*	0.06999	*
NO BEDROOM	-0.21798	*	-0.20446	*	-0.27271	*	-0.21347	*
TWO BEDROOMS	0.11596	*	0.12006	*	0.19344	*	0.13746	*
THREE BEDROOMS	0.22820	*	0.26933	*	0.35732	*	0.29278	*
FOLR + BEDROOMS	0.06679	*	0.08153	*	0.10280	*	0.06839	

(2) STRUCTURE TYPE:

(3) ATTRIBUTES OF BUILDING:

BUILDING AGE	0.03099	$+$	-0.02530	*	-0.03452	*	-0.02873
AGE SQUARED	-0.00262	+	0.00101	-	0.00170	+	0.00135
AGE CUBED	. 000054	*	-. 000012		-. 000030	+	-. 000024
PRIOR 1940	0.02558		-0.22387	*	-0.35393	*	-0.28725
ELEVATOR	0.12151	*	0.37430	*	0.10561	+	0.10681
BAD HALLWAY	-0.00373		-0.04854	+	0.02274	-	0.00021
LEAKS, CRACKS	0.00888		-0.00778		0.00075		0.00403

(4) ATTRIBUTES OF DHELLING:

ROOM HEATER	-0.07710 -	-0.03693	$-0.04243+$	-0.05421
STEAM HEAT	0.00216	0.02376	-0.08911	-0.01782
ELECTRIC HEAT	-0.00169	-0.03554	0.01642	0.00553
ROOM AIRCOND.	0.04912 *	0.15800 *	0.01314	0.03727
CENTRAL AIRCO.	0.17119	0.09890 *	0.10926	0.08094
NO RADIATORS	-0.03860	-0.02579	-0.05037	-0.02954
POOR PLUMBING	-0.15616 *	-0.16900	-0.13973	-0.07503
NO PRIVACY	$-0.04803+$	$-0.04793+$	-0.06610	-0.09208
NO OUTLETS	-0.06982-	-0.17764 *	-0.06638	0.00217
COOK WITH ELEC.	0.06503	0.07872	-0.00012	0.05554

TABLE 5-6 HEDOHIC REGRESSION COEFFICIENTS (CONT'D)
VARIABLE: BOSTON: DALLAS: LOS ANGELES: MINN/ST.P.:
(5) TENURE DISCOUNTS

Length of ten.	-0.02841	-0.02671	-0.03469	-0.01335
L.O.T. SQUARED	0.00063	0.00106	0.00101	0.00027
MOVE PRIOR 1950	-0.24097	-0.18788	-0.30103	-0.37291
LANDLD PRESENT	-0.03875	-0.05625	-0.04171	0.00118

(6) TENANT CHARACTERISTICS:

BLACK	-0.02188	$-0.15769 *$	$-0.17172 *$	$0.04533-$
SPANISH	$-0.09236 *$	$-0.06463+$	$-0.14289 *$	0.07447
CHINESE	0.04310	$-0.07988-$	$-0.07150 *$	-0.03224
PERSONS/ROOM	$0.04012-$	$0.05058+$	$0.04329 *$	$0.09127 *$

(7) CONTROLS FOR GROSS RENT:

Utilities incl.	0.20532	0.06374	0.11750	0.18198
HEAT INCL.	-0.00491	0.34012	0.23630	0.20027
PARKING INCL.	0.10299	0.03587	0.03850	0.13858
FURNITURE INCL.	-0.01085	0.00889	-0.00394	-0.03753
INTERVIEW DATE	-0.00086	-0.00220	-0.00414 +	-0.00120
DATE * HEAT INCL	0.00395	-0.01973	0.00747	-0.00695

(8) NEIGHBORHOOD CHARACTERISTICS:

ExCELLENT	0.07522		$0.03738-$	0.10468 *	0.09294
GOOD	0.04408	*	0.00768	0.04550 *	0.05350
POOR -	-0.02213		-0.06031	0.00591	-0.02192
AbANDONED STRUC -	-0.07983	*	0.05323	$-0.06336+$	-0.00985
LITTER	0.01417		-0.02959	-0.01269	-0.01083
HO SHOPS	0.02936	-	-0.00515	-0.02996 -	-0.01104
CEYTER CITY -	-0.02243	-	0.01051	0.04379 *	0.05219 *
GROSS RENT/MONTH:	: \$ 225		\$ 190	\$ 198	\$ 201
MEAN DEP. VARIABL	LE 0.995		0.825	0.863	0.880
STANDARD DEV.:	0.368		0.397	0.412	0.328
STASDARD ERROR:	0.262		0.244	0.263	0.205
OBSERVATIONS:	171.4		1368	1818	1196
R-SQUARED:	0.509		0.636	0.606	0.624

```
* = SIGNIFICANT AT 99%
+ = SIGNIFICANT AT 95%
- = SIGNIFICANT AT 80%
```

other three SMSA's: the mean monthly rent is considerably nigher; the explained fraction of rent variation lower; and the age pattern, discussed above, is reversed. This is consistent with the MOT findings and parallels the other SMSA's in the North-East considered in their investigation.

5.5.2 West Germany

For west Germany, we use the nedonic regression results by Behring, Goldriang et, al. (1983) reported in Table 5-7. These indexes vary by city center versus suburbs, but are pooled across West Germany. To make up for intercity differences, we calculated average rents by housing alternative for each city and adjusted the level of the hedonic index accordingly. The variables used are similar to those in the specification of Malpezzi, Ozanne, and Thibodeau (1980).

The sample for the estimation is huge and produces very large t-statistics. As in the U.S. estimates, number of rooms has the strongest impact on hedonic values. For a given number of rooms, the average size of the rooms contributes positively to the rent. This variable is measured as the deviation of average room size from the standard room size of 135 square feet.

The coefficients for structure type are weak, and the negative value for two-family structures may indicate the German peculiarity of the "fake two-family homes" where the rent in the second unit is substantially retuced in some form of gentlemens agreement as mentioned in Section 5.3. Note, however, that Behring and Goldrian excluded a unit from the sample if the tenant did not pay rent at ali or explicitly stated that his rent was reduced due to an agreement with the landlord.

The age of the building is measured linearly and enters

TABLE 5-7 HEDONIC REGRESSION COEFFICIENTS (GERMANY)

Dependent Variable: Logarithm of Monthly Rent Net of Utilities

VARIABLE:	CITY CENTERS	SUBURBS		
CONSTANT	5.451	(402.90)	5.451	(248.93)

(1) NUMBER OF ROOMS:

ONE ROOM	-0.289	(47.08)	-0.320	(24.24)
THREE ROOMS	0.215	(52.06)	0.212	(27.41)
FOUR ROOMS	0.389	(69.60)	0.367	(38.85)
FIVE ROOMS	0.103	(79.98)	0.094	(44.52)
MEAN ROOM SIZE	0.0325	(79.68)	0.0317	(43.94)
NO KITCHEN	-0.261	(40.14)	-0.320	(27.02)
NO BATH	-0.172	(29.56)	-0.129	(13.12)
TWO+ BATHROOMS	0.114	(20.00)	0.184	(20.69)

(2) STRUCTURE TYPE:

ONE FAMILY HOME	0.005	(0.49)	0.071	(5.45)
TWO FAMILY HOME	-0.082	(10.11)	-0.065	(7.99)
5+ F.. 4- FLOORS	0.029	(5.58)	0.070	(8.79)
$5+$ F.. 5+ FLOORS	0.059	(10.29)	0.150	(11.68)

(3) ATTRIBUTES OF BUILDING:

BUILDING AGE	-0.0082	(21.81)	-0.0075	(12.54)
PRIOR 1949	-0.330	(41.93)	-0.239	(19.13)
GENTRIFIED	-0.046	(17.86)	-0.039	(6.22)

(4) ATTRIBUTES OF DWELLING:

CENTRAL HEAT	0.216	(54.62)	-0.163	(22.72)
WARM WATER	0.137	(17.81)	-0.045	(3.13)
BALCONY	0.037	(24.81)	0.065	(14.39)
DOUBLE WINDOWS	0.007	(1.81)	0.031	(4.64)

TABLE 5-7 HEDONIC REGRESSION COEFFICIENTS (CONT'D)
(5) TENURE DISCOUNTS

LENGTH OF TENURE	-0.020	(8.20)	-0.022	(5.59)
L.O.T. SQUARED	0.0007	(3.32)	0.0007	(2.06)
MOVE PRIOR 1955	-0.189	(30.70)	-0.249	(21.44)
LANDLD PRESENT	-0.127	(31.99)	-0.139	(15.85)

(6) TENANT CHARACTERISTICS:

GUESTWORKER	0.008	(1.14)	-0.011	(0.98)

(7) CONTROLS FOR GROSS RENT:
COMPANY DWELLING $-0.083 \quad$ (10.20) -0.062 (4.51)
(8) NEIGHBORHOOD CHARACTERISTICS:

NOISE	-0.005	(2.10)	-0.018	(4.51)
PUBLIC TRANSP.	0.022	(5.95)	$0.016)$	(3.76)
SHOPPING	0.003	(1.28)	-0.002	(0.57)
PUBLIC PARKS	0.015	(6.56)	0.009	(2.11)
NET NORMAL RENT:	$\$ 100$		100	
OBSERVATIONS:	31207			
R-SQUARED:	0.692			

t-statistics in brackets.
negatively, approaching a discount of a third of the normal rent in Ity centers, and of a quarter in suburbs for pre-1949 structures. An indicator variable for gentrification obviously measures the cause rather than the effect because it depresses the rent significantly. The tenure discounts are those reported in Table 4-1. In addition. the landlord's presence in the building has a significant influence on the rent, reducing it more than 12 percent. An indicator variable for guestworkers is included to test for discrimination, however, this variable can not be measured with any precision. Finally, a group of neighborhood variables is included with the expected sign pattern, but weak t-statistics.

The interviews in the one Percent Sample were conducted within a single week, so no adjustment for inflation was necessary. There are very little differences in the valuation of the nedonic attributes between city centers and suburbs. Buildings depreciate faster in Cities, highrises add a substantialiy nigher amount to the hedonic value in suburbs. Unfortunately, Behring and Goldrian do not report the means of the dependent variable. However, the explanatory variables are constructed in a way that the constant measures "normal rent" of a standard German rental unit. Tais rent is the monthly rent net of utilities and is approximately $\$ 100$ for suburbs and city centers, which is considerably higher than the average in non-urban areas, $\$ 77$ per month. For the demand equation in Section 5.7, we will add utility bills to this number as reported in Behring ard Goldrian (1983). The average of this gross rent in our sample is reported at the bottom of Table 5-2.

5.5.3 Comparison

Using the same functional specification and similar explanatory variables, we can make a meaningful comparison between the results of the hedonic estimations in both countries. Note first the stunning difference in the rent levels as already pointed out in Table 5-2. The regression fit is somewhat tighter in the German estimation in spite of a more parsimonious specification which might be due to a smaller spread of rents in Germany. In both countries, the hedonic regressions do not discriminate well among structure types which indicates some trouble in predicting hedonic rents for owner-occupied single or two-family homes and comparing hedonic rents across tenure. For this reason, we will use the hedonic rents in the demand equations only interacting with a tenure choice dumm.
We already compared tenure discounts in Chapter Four. We also
refer to this chapter for a discussion of measurement problems
pertaining to this variable. The discounts for a private landiord are
substantial in Germany. Many of these landiords live in the building
they rented out. If we compare the discounts with the
landlord-present-discoants measured for the American SuSA's, we may
conclude that the relationship between landiord and tenant is more
idiosyncratic as compared to the united States.

As we argued in Section 5.3, the decision for a durable commodity like housing should depend on transitory income components. Thus, we use the following age specific permanent income
$Y_{\text {curr }}=Y_{\text {perm }}(a g e$, human and nonhuman wealth $)+Y_{\text {trans }}$ where the transitory income is defined as the residual of a regression of current income on the determinants of permanent income, thus uncorrelated to the latter. In both countries, we face data problems to measure all the components determining permanent income. The estimation heavily relies on the puritan proposition that numan and nonnuman wealth are strongly correlated, and missing data in one of the wealth categories is predicted by the other. However, structural interpretation of the estimated coefficients should be only made with care.

5.6.1 United States

The Annual Housing Survey has very littie information on human wealth as measured by professional status, social position, or job training. The only variable in this direction is the nousenold nead's education given by the nighest degree received. The survey, however, has some information on non-human wealth in form of indicator variables of asset income, rentas income, the number of cars and trucks and the possession of a second home. To accommodate interaction patterns, we stratify the estimation by age groups and use

```
a semilogarithmic form. To cope with inter-city differences, we
estimate each set of regressions for each city separately. The
results are presented in Table 5-8.
```

The regression fits are fairly low, most satisfactory in the elderly strata. Average gross income varies considerably among strata, reflecting life cycle earning patterns, and among SMSA's, with Minneapolis/St. Paul at the top and Boston at the bottom of the income scale. Only for the youngest stratum, Los Angeles has the lowest average income. The cross sectional variation in income is increasing with age in all strata, lowest in Minneapolis/St.Paul.

Not surprisingly, the employment status in the week of the interview has in almost all regressions a large and significant influence on permanent income. Similarly , the impact of additional wage and salary incomes in the household is positive, though measured with less precision. Among the coefficients of nun-human wealth, the presence of assets and the number of cars play the most important role to predict permanent income. They are highly significant and of large magnitude in every regression. The presence of rental income has a negative impact which may be explained by the lack of other income sources.

The household characteristics perform very weakiy. This is partially due to the stratification by age which takes care of most of the age generated income variation. In the pooled sample, all age variables are highly significant. The number of dependents is of

TABLE 5-8: PERMANENT INCOME ESTIMATION (USA)

Dependent Variable: Yearly Gross Income in 1000 Dollars
MARRIED COUPLES, HEAD AGED UNDER 35

VARIABLE: BOSTON: DALLAS: LOS ANGELES: MINN./ST.P.:

| CONSTANT -0.80973 | $1.59981+0.14282$ | -0.42008 |
| :---: | :---: | :---: | :---: | :---: |

(1) INCOME SOURCES:

EMPLOYED	$0.51998 *$	$0.17746-$	$0.19068-$	$0.25783 *$
RETIRED	$-0.03709 *$	0.09544	$0.05716 *$	$0.26918 *$
NUMBER OF WAGES 0.12955	0.05445	$0.19286 *$	0.05011	

(2) MONHUMAN WEALTH:

ASSETS PRESENT	$0.19084 *$	$0.13198 *$	$0.14937 *$	$0.12817 *$	
RENTAT INCOME	-0.07496	-0.01337	$-0.30735 *$	$-0.17260 *$	
SECOND HOME	0.04524	0.00428	-0.18293	0.15247	*
NUMBER OF CARS	$0.20459 *$	$0.17218 *$	$0.16886 *$	$0.15266 *$	
TRUCKS	$0.15078-$	$0.13096 *$	$0.19457 *$	$0.08854 *$	

(3) HOUSEHOLD CHARACTERISTICS:

AGE OF HEAD	$0.20867-$	-0.01180	0.08496	$0.12986+$
AGE SQUARED	$-0.00308-$	0.00037	-0.00125	$-0.00203-$
AGE OF SPOUSE	-0.05026	0.03911	$0.06507-$	$0.06350-$
AGE SQUARED	0.00094	-0.00030	$-0.00085-$	$-0.00076-$
HEAD FEMALE	$-0.53898-$	$-0.27547+$	-0.06889	$-0.46801 *$
HEAD SPANISH	$-0.29875+$	$-0.13915+$	$-0.16636 *$	0.12459
DEPENDENTS	$-0.07036+$	$-0.02233-$	$-0.03441-$	$-0.05588 *$

(4) EDUCATION OF HEAD:

GRADE 0-7	-0.17824	$-0.24808 *$	$-0.29891 *$	-0.04451
GRADE 8	0.15895	$-0.21486-$	-0.19937	-0.14088
GRADE 9-11	-0.03026	$-0.18188 *$	$-0.22314 *$	-0.19088
TWO Y. COLLEGE	$0.14623-$	-0.00325	0.01650	-0.00028
FOUR Y. COLL.	$0.21300 *$	$0.17191 *$	$0.14929 *$	$0.10726 *$
GRAD. SCHOOL	$0.25401 *$	$0.16361 *$	$0.26262 *$	0.05295

| GROSS INCOME: | $\$ 16.729$ | $\$ 16,413$ | $\$ 14,490$ | $\$ 18,758$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| MEAN DEP. VAR.: | 2.790 | 2.798 | 2.673 | 2.932 |
| STANDARD DEV.: | 0.653 | 0.517 | 0.622 | 0.439 |
| STANDARD ERROR: | 0.551 | 0.425 | 0.488 | 0.368 |
| OBSERVATIONS: | 435 | 674 | 493 | 782 |
| R-SQUARED: | 0.323 | 0.347 | 0.412 | 0.316 |

* $=$ SIGNIFICANT AT 99\%, $+=$ SIGNI. AT 95\%, $-=$ SIGNIFICANT AT 80\%

TABLE 5-8: PERMANENT INCOME ESTIMATION (CONT'D)
===
Dependent Variable: Yearly Gross Income in 1000 Dollars

MARRIED COUPLES, HEAD AGED 35 TO 50
$\begin{array}{lccc}\text { VARIABLE: } & \text { BOSTON: } & \text { DALLAS: LOS ANGELES: MINN./ST.P.: } \\ \text { CONSTANT } & 3.36395-4.29046+\quad-0.81824 & 4.66697 *\end{array}$
(1) INCOME SOURCES:

EMPLOYED	$0.59880 *$	0.14077	$0.29925 *$	$0.45921 *$
RETIRED	$0.17779 *$	-0.01350	0.05632	0.05910
NUMBER OF WAGES	$0.06008 *$	0.02934	$0.03601-$	0.03577

(2) NONHUMAN WEALTH:

ASSETS PRESENT	0.20699	*	0.21668	*	0.15666	*	0.11054
RENTAL INCOME	-0.06914		-0.14468	-	-0.16673	-	-0.07303
SECOND HOME	-0.00404		-0.05242		-0.00915		0.13155
NUMBER OF CARS	0.18490	*	0.13613	*	0.15155	*	0.09574
TRUCKS	0.00954		0.10244	$+$	0.11271	+	0.07375

(3) HOUSEHOLD CHARACTERISTICS:

AGE OF HEAD	-0.00953	-0.04111	$0.17083-$	$-0.13516+$
AGE SQUARED	0.00013	0.00049	$-0.00200-$	$0.00154-$
AGE OF SPOUSE	$-0.05746-$	-0.02400	-0.00396	0.03509
AGE SQUARED	$0.00070-$	0.00026	0.00009	-0.00041
HEAD FEMALE	-0.05133	$-0.32602-$	$-0.36750 *$	$-0.26408-$
HEAD SPANISH	-0.08615	-0.11953	$-0.10984-$	0.04132
DEPENDENTS	-0.00412	-0.02729	-0.00806	$-0.01937-$

(4) EDUCATION OF HEAD:

| GRADE 0-7 | $-0.20554-$ | $-0.49628 *$ | $-0.44321 *$ | -0.09350 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| GRADE 8 | -0.13150 | -0.06132 | $-0.22485-$ | -0.10471 |
| GRADE 9-11 | $-0.31727 *$ | $-0.27937 *$ | $-0.22982 *$ | -0.03883 |
| TWO Y. COLLEGE | 0.05834 | 0.00525 | $0.13788 *$ | $0.10378 *$ |
| FOUR Y. COLL. | $0.33085 *$ | $0.16639 *$ | $0.19509 *$ | $0.24956 *$ |
| GRAD. SCHOOL | $0.45139 *$ | $0.23079 *$ | $0.24461 *$ | $0.36131 *$ |

GROSS INCOME:	$\$ 20.795$	$\$ 22.727$	$\$ 21.170$	$\$ 24.210$
MEAN DEP. VAR.:	3.035	3.124	3.053	3.187
STANDARD DEV.:	0.633	0.648	0.640	0.466
STANDARD ERROR:	0.502	0.571	0.508	0.409
OBSERVATIONS:	566	753	552	818
R-SQUARED:	0.396	0.245	0.396	0.251

* $=$ SIGNIFICANT AT 99\%, $+=$ SIGNI. AT 95\%, $-=$ SIGNIFICANT AT 80\%

TABLE 5-8: PERMANENT INCOME ESTIMATION (CONT'D)

Dependent Variable: Yearly Gross Income in 1000 Dollars

MARRIED COUPLES, HEAD AGED ABOVE 65

VARIABLE:	BOSTON:	DALLAS: LOS ANGELES: MINN./ST.P.:	
	0.83725	$2.89141+\quad 3.81292 *$	$4.44491 *$

(1) INCOME SOURCES:

EMPLOYED	$0.56220 *$	$0.42915 *$	$0.52288 *$	$0.46670 *$	
RETIRED	-0.03779	$-0.16794 *$	-0.00646	-0.00477	
NUMBER OF WAGES	$0.10064 *$	0.05139	$*$	0.02891	0.05000

(2) NONHUMAN WEALTH:

ASSETS	PRESENT	0.17069	*	0.30942	*	0.22881	*	0.21248	*
RENTAL	INCOME	-0.12446	+	-0.11814	-	-0.25154	*	-0.11196	+
SECOND	HOME	0.07390		0.15351	+	0.00349		0.07766	-
NUMBER	OF CARS	0.14855	*	0.15342	*	0.20605	*	0.12445	*
TRUCKS		0.06069		0.04032		0.11191	+	-0.00938	

(3) HOUSEHOLD CHARACHERISTICS:

AGE OF HEAD	0.02659	0.01631	-0.01261	-0.03608
AGE SQUARED	-0.00022	-0.00019	0.00006	0.00015
AGE OF SPOUSE	0.01521	-0.02337	$-0.02787-$	-0.01469
AGE SQUARED	-0.00012	0.00019	$0.00025-$	0.00013
HEAD FEMALE	-0.14404	0.05405	$-0.38831+$	$-0.35599 *$
HEAD SPANISH	-0.20846	$-0.39402 *$	-0.05994	-0.03418
DEPENDENTS	0.01323	-0.03779	-0.03355	-0.03570

(4) EDUCATION OF HEAD:

GRADE 0-7	-0.13966 -	-0.38534 *	-0.04878	-0.36015*
GRADE 8	-0.09756	-0.22214 +	-0.14171 -	-0.22988 *
GRADE 9-11	0.00421	-0.25738*	-0.11925 -	-0.15364*
TWO Y. COLLEGE	0.13113 +	0.09931 -	0.14367 +	0.05274
FOUR Y. COLL.	0.30181 *	0.12521 --	0.16261 -	0.09221 -
GRAD. SCHOOL	0.39379 *	0.21239 *	0.37758 *	0.13384 +
GROSS INCOME:	\$ 16.183	\$ 17,329	\$ 16,793	\$ 17,489
MEAN DEP. VAR.:	2.784	2.852	2.821	2.862
STANDARD DEV.:	0.732	0.769	0.767	0.672
STANDARD ERROR:	0.534	0.559	0.590	0.468
OBSERVATIONS:	813	694	670	880
R-SQUARED:	0.481	0.487	0.427	0.526

importance only in the strata of young couples where it reduces the expected normal income.

The dummy variables for the highest degree have the expected sign pattern and are in general measured with satisfactory precision. Comparing the three strata, we discover an interesting life cycle pattern: the magnitude of the education coefficients are largest in the strata of medium age, less so among the couples over fifty, and smallest in the young couples' stratum. Here, it may reflect the lag before the educational achievements are translated into money income. Among the people over fifty years old, it may indicate the supersession of education by experience and on-the-job-training.

It is very unfortunate that no information about the latter group of variables is contained in the Annual Housing Survey. We are left With a less than satisfactory determination of permanent income, but still prefer the poorly measured correct explanatory variable to current income. Section 5.7 .3 discusses the sensitivity of the demand estimations when we replace permanent income by current income.
5.6.2 West Germany

With the German One Percent Sample we face the opposite data problem: the sample contains rich information on human wealth of both household head and spouse, but no information on asset noldings. We use the regression results by Schneider, Stahl, and Struyk (1983) which were estimated from a large pooled sample across West Germany. This sample includes rural areas as well as other demographic strata apart from married couples, so the mean income is lower than the mean income in our sample. Summary statistics and coefficients are reported in Table 5-9. Not presented are the coefficients for marital status, guestworkers, and rural area dummies which are irrelevant for our basic sample. Furthermore, the constant and the city center dummy are adjusted for the base case of a suburban location. Finally, the original specification of Schneider, Stanl, and Struyk included an indicator variable for homeownership on the right hand side. The inclusion of this variable would introduce a simultaneity bias in the demand equations. The corresponding coefficients were barely significant and of small magnitude (0.035 for single-family homeowners, -0.048 for two-family nomeowners, with t-statistics of 3.36 and 2.97, respectively, in a sample of 29.017 observations). We excluded these coefficients.

The dependent variable is net income adjusted for tax advantages of homeownership as discussed in Section 5.4. We will briefly discuss the coefficients of the explanatory variables estimated by Schneider. Stahl, and Struyk. The age variables draw the familiar first

TABLE 5-9: PERMANENT INCOME ESTIMATION (GERMANY)

Dependent Variable: Logarithm of Monthiy Net Income

VARIABLE:	HOUSEHOLD:	HEAD:	SPOUSE:
CONSTANT	7.42 *		
(1) DEMOGRAPHIC CHARACTERISTICS:			
AGE OF HEAD		0.016	0.002 *
AGE SQUARED		-. 0002 *	
HEAD MALE		0.189 *	
GUESTWORKER		0.051 *	

(2) EDUCATION:

NO SCHOOL DEGREE	$0.085 *$	0.048
MIDDLE SCHOOL (MITTLERE REIFE)	$0.194 *$	$0.036 *$
HIGH SCHOOL (ABITUR)	$0.268 *$	0.031
COLLEGE (VORDIPLOM)	$0.237 *$	0.048
UNIVERSITY (DIPLOM)	$0.353 *$	$0.128 *$

(4) PROFESSIONAL STATUS:

NUMBER OF WAGES	$0.303 *$		
SD. JOB AS FARMER		$-0.404 *$	
APPRENTICESHIP		$0.109 *$	$0.050 *$
MASTER CRAFTSMAN		$0.137 *$	0.035
SELF EMPLOYED		$0.237 *$	0.020
WHITE COLLAR	$0.141 *$	$0.290 *$	
BLUE COLLAR	$-0.001 *$	$0.228 *$	
UNEMPLOYED		$-0.177 *$	
RETIRED	$-0.378 *$	-0.087	
STUDENT		$-0.234 *$	0.006

(5) CONTROLS:

* $=$ SIGNIFICANT AT 99\%
increasing, then decreasing pattern of life cycle earnings. Education of the head performs as expected, both significant and with increasing magnitude for the improving educational status. Education of the spouse is measured with mixed results, mostly insignificant. Furthermore, human capital is indicated by the professional status. The number of wage and salary earners in the household contributes significantly to the household income, each additional wage at about 30 percent, whereas the combination of an industrial job at day with a second job as farmer ("moonlight farmer") has a sharp negative impact. Self employed or white collar status expectedly enhance; blue collar, unemployed, retired, or student status decrease permanent income. Again, the professional status of the spouse yields mixed, mostly unprecise results. Finally, Schneider, Stahl, and Struyk control for subsidies by receiving housing allowances or company housing, as well as location: the income differential between city center and suburbs is significant at about 3.6 percent.

5.6.3 Comparison

The regressions in both countries suffer from the lack of data, and we will only compare the predictions generated by the regressions. The third column of each block in Table 5-10 lists the distribution of actual current income versus predicted permanent income for both countries. Botn incomes are measured yearly, before taxes, and in 1977 Dollars. By construction, permanent income has a substantially lower variance. The distributional differences between west Germany and the United States, already discussed for current income in Section 5.2, remain the same for permanent income: the fraction of households with a yearly permanent income $\$ 8,000$ is 7.4 percent in the United States and only 3.2 percent in Germany. On the other hand, in the midale income classes ($\$ 8,000$ to $\$ 25,000$) the distribution is more even in Germany.

It is interesting to compare the correlation between ownership and income for both income concepts. In both countries, permanent income has a stronger impact on tenure choice than current income, as can be seen in the lower (greater) ownership ratio of permanent income at the bottom (top) of the income scale, compared with current income. This confirms the common wisdom of higher permanent than current income elasticities and the inclusion of permanent rather than current income into the demand analysis.

TARLE 5-10: DISTRIBUTION OF PERMANENT AND CURRENT INCOME

(1) CURRENT INCOME VERSUS OWNERSHIP:

Income Class	UNITED STATES SAMPLEIncome DwnershipDistribution Total Ratio			WEST GERMAN SAMPLE Income Ownership Distribution Total Ratio		
<3.0	1.04\%	52	61.18\%	0.078	4	66.67\%
<4.0	1.09	52	58.43	0.27	8	36.36
<5.0	1.33	55	50.93	0.91	34	46.58
<6.0	1.86	79	52.32	0.04	0	0.00
<7.0	2.36	101	52.60	1.56	48	38.40
<8.0	2.51	111	54.41	0.11	5	55.56
< 10.0	4.88	228	57.43	9.42	289	38.18
<12.5	8.04	394	60.24	8.19	260	39.51
<15.0	7.63	393	63.29	8.81	271	38.28
< 20.0	18.26	1129	75.98	25.66	841	40.79
<25.0	16.43	1106	82.72	15.10	470	38.75
< 35.0	19.18	1395	89.37	13.24	445	41.82
< 45.0	7.81	582	91.51	9.82	390	49.43
< 55.0	7.59	592	95.79	2.30	100	54.05
>55.0	0.00	0	0.00	4.49	221	61.22

(2) PERMANT INCOME VERSUS OWNERSHIP:

Income Class	UNITED STATES SAMPLE Income Ownership Distribution Total Ratio			WEST GERMAN SAMPLE Income Ownership Distribution Total Ratio		
<3.0	0.00\%	0	0.0\%	0.00\%	0	0.0\%
<4.0	0.07	2	33.3	0.04	0	0.0
<5.0	0.33	16	59.3	0.42	1	2.9
<6.0	1.47	58	48.3	0.56	1	2.2
< 7.0	2.20	79	44.1	0.65	7	13.5
<8.0	3.34	133	48.9	1.54	64	51.6
<10.0	7.95	349	53.9	17.47	591	42.1
< 12.5	13.05	663	62.4	16.73	500	37.2
<15.0	15.00	866	70.9	15.88	552	43.3
< 20.0	29.34	2016	84.4	21.18	684	40.2
<25.0	17.95	1360	93.1	12.01	389	40.3
< 35.0	9.12	713	96.1	9.99	441	54.9
< 45.0	0.17	14	100.0	2.45	84	42.6
< 55.0	0.0	0	0.0	0.77	54	87.1
>55.0	0.0	0	0.0	0.30	18	75.0

Yearly gross current and permanent income in thousand 1977 Dollars. The totals are based on a sample size of 8035 married couples in West German Urban Areas and 8139 white married couples in U.S. SMSA's.

5.7 Estimation of the Demand Equations

With the preliminary estimations of permanent income and hedonic indexes completed, we can proceed to estimate the NMNL-demand equations. The extensive preliminary work provided us with the basis for a common model for the United States and West Germany with directly comparable variables and units. We estimated four sets of regressions, two in each country: for the first two sets, we draw a choice based sample of the pooled population for each country, and estimated all six trees depicted in Figure 5-5 in addition to the multinomial logit model. For the second two sets, we stratified the basic sample of each country according to the six strata of age and location:
(1) CC,YO: City center, young married couples, head aged under 35
(2) CC,ME: City center, married couples, head aged between 35 and 50
(3) CC,EL: City center, elderly married couples, head aged over 50
(4) SU, YO: Suburbs, young married couples, head aged under 35
(5) SU,ME: Suburbs, married couples, head aged between 35 and 50
(6) SU, EL: Suburbs, elderly married couples, head aged over 50
Within each stratum, we selected a smaller choice based subsample for
estimation with the optimal tree discovered in the first regression
sets. This procedure allowed us to use relatively small sample sizes
(about 400 observations) without losing precision on the housing
choices with small market shares. To make up for the endogenous
sampling, we weighted the observations inversely to their sampling
ratio and proceeded as if we had an exogenous sample. This estimation
technique (WESML, Manski and Lerman, lg77) and the necessary correction
for standard errors is described in Chapter Two.

5.7.1 Pooled Sample: Optimal Tree Structure

Table 5-11 reports the estimation results for the pooled sample of the United States; Table 5-12 for those of West Germany. The performance of each tree is indicated by the value of the likelihood function presented in the first row in the tables. This likelihood is evaluated relative to the null model at the bottom of the table ("RHO_SQ") as well as the percentage of correct ex post predictions. Section 2.3.2 discusses the interpretation of these statistics. The estimated coefficients represent the taste weights in the linear indirect utility function (2.2) and can be transformed into elasticities according to (2.10). Finally, the dissimilarity coefficients translate into the inter-alternative substitution effects as discussed in Section 2.2.3.

Abstract

Three observations strike the eye: in both countries, the same hierarchical decision tree dominates; in Germany, the transition from simple multinomial logit analysis to this optimal nested model is more rewarding: however, all results are more precise in the American sample.

Figure 5-13 shows the pattern of performance and significance graphically. All trees can be distinguished statistically from the HNL-model by a likelinood test which is distributed chi-squared with six degrees of freedom, the number of dissimilarity parameters. In turn, all trees can be interpreted as restrictions of a common generalized extreme value model (GEV. McFadden, 1981) of the form (2.8)

TABLE 5-11: POOLED CHOICE BASED SAMPLE, WESML-ESTIMATES (USA)

| TREE $:$ | MNL | $T-U-S$ | $T-S-U$ | $S-T-U$ | $S-U-T$ | $U-T-S$ | $U-S-T$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LIK: | -280.61 | -269.63 | -269.88 | -273.83 | -272.82 | -274.75 | -272.57 |

(1) ALTERNATIVE SPECIFIC VARIABLES:

HEDONO	-1.3764	-2.0677	-1.9741	-1.3271	-1.3922	-1.5606	-1.6066
	(-5.25)	(-4.26)	(-4.55)	(-3.96)	(-3.96)	(-4.65)	(-5.22)
HEDONR	-2.5573	-4.8441	-4.5636	-2.9145	-3.0677	-3.0102	-3.4092
	(-8.11)	(-5.22)	(-5.16)	(-4.41)	(-4.87)	(-4.98)	(-4.81)
RETURN	0.0535	-0.0312	-0.0097	0.0382	0.0621	0.0369	0.0589
	(0.82)	(-0.27)	(-0.09)	(0.52)	(0.80)	(0.49)	(0.75)
CROWDS	-0.1886	-0.3790	-0.3432	-0.1734	-0.1745	-0.2334	-0.1972
	(-3.44)	(-3.37)	(-3.10)	(-2.01)	(-2.28)	(-4.51)	(-3.43)

(2) HOUSEHOLD SPECIFIC VARIABLES:

INC_OWN	$\begin{array}{r} 0.1759 \\ (3.14) \end{array}$	$\begin{array}{r} 0.0507 \\ (0.60) \end{array}$	$\begin{array}{r} 0.0997 \\ (1.18) \end{array}$	$\begin{array}{r} 0.1020 \\ (0.83) \end{array}$	$\begin{array}{r} 0.1766 \\ (1.60) \end{array}$	$\begin{array}{r} 0.1368 \\ (1.72) \end{array}$	$\begin{array}{r} 0.1721 \\ \left(\begin{array}{l} 1.69) \end{array}\right. \end{array}$
INC_SFM	0.0671	0.2316	0.1553	0.0848	0.0596	0.1058	0.0745
	(1.01)	1.88)	1.32)	1.30)	0.81)	1.42)	(0.98)
INC_14R	-0.1815	-0.3117	-0.2993	-0.1647	-0.1627	-0.2073	-0.1816
	(-2.29)	(-1.82)	(-1.80)	(-2.11)	(-2.07)	(-i.85)	(-1.80)
$\begin{aligned} & \text { AGE_OWN } \\ & * 10^{-} \end{aligned}$	-0.5434	-0.1771	-0.3322	-0.0855	-1.1320	-0.8134	-1.2329
	(-0.90)	(-0.23)	(-0.42)	(-0.17)	(-1.44)	(-1.17)	(-1.49)
AGE_SFM	1.3477	1.1049	1.4628	1.0142	1.6491	1.4462	1.7425
	(2.16)	(1.47)	(1.59)	(2.09)	(2.30)	(2.00)	(2.20)
AGE_14R	0.0589	-0.3321	-0.0608	-0.1359	-0.2663	-0.1777	-0.3572
	(0.06)	(-0.18)	(-0.03)	(-0.11)	(-0.24)	(-0.14)	(-0.26)
$\begin{aligned} & \text { AG2_OWN } \\ & * 1000 \end{aligned}$	1.2423	0.9336	1.0823	0.5839	1.8189	1.5042	2.0017
	(1.91)	(1.10)	(1.29)	(0.92)	(1.88)	(1.91)	(2.08)
AG2_SFM	-1.6818	-1.3697	-1.7155	-1.1665	-1.9571	-1.7429	-2.0991
	(-2.73)	(-1.82)	(-1.83)	(-2.31)	(-2.56)	(-2.40)	(-2.63)
AG2_14R	0.0800	0.6597	0.3716	0.2961	0.4183	0.3348	0.5134
	(0.08)	(0.36)	(0.21)	(0.24)	(0.38)	(0.25)	(0.37)

TABLE 5－11：POOLĖD CHOICE BASED SAMPLE，WESML－ESTIMATES（USA）
＝－＝－＝ー＝＝＝＝．．－ニー－
（3）ALTERNATIVE SPECIFIC DUMMIES：

O＿SF＿14	-7.5473	-13.0095	-9.6823	-4.6048	-8.4654	-7.7687	-8.5669
	(-1.93)	(-2.27)	(-1.47)	(-0.69)	(-1.64)	(-1.74)	(-1.84)
O＿SF＿5＋	-5.1823	-9.7826	-6.1457	-2.6792	-6.6825	-5.4892	-6.5924
	(-2.72)	(-3.45)	(-1.67)	(-0.75)	(-2.42)	(-2.32)	(-2.57)
O＿MF＿14	-7.2345	-11.0102	-7.8277	-3.1124	-8.1853	-6.9033	-8.0642
	(-2.22)	(-2.07)	(-1.30)	(-0.47)	(-1.52)	(-1.72)	(-1.94)
O＿MF＿5＋	-6.0281	-9.0941	-6.2969	-2.9078	-6.2275	-5.7448	-6.5197
	(-4.15)	(-3.69)	(-2.06)	(-0.89)	(-2.40)	(-2.59)	(-2.50)
R＿SF＿14	-2.6049	-4.2363	-0.9959	1.3766	-3.2005	-2.7521	-3.0756
	(-0.80)	(-0.88)	(-0.18)	(0.28)	(-0.86)	(-0.70)	(-0.74)
R＿SF＿5＋	-1.0764	-2.7777	0.0476	1.1024	-4.2145	-2.1269	-4.3937
	(-0.76)	(-1.13)	(0.02)	(0.61)	(-2.28)	(-1.17)	(-2.05)
R＿MF＿14	1.9062	2.5031	5.4261	5.5839	1.7697	2.4580	2.4728
	(0.77)	(0.56)	(1.13)	(1.29)	(0.61)	(0.73)	(0.69)

（4）DISSIMILARITY PARAMETERS（T－STATISTICS AROUND 1．0）：

TH＿0101	$\begin{gathered} 1.0000 \\ (0.00) \end{gathered}$	$\begin{gathered} 2.0533 \\ (1.42) \end{gathered}$	$\begin{array}{r} 0.9181 \\ (-0.15) \end{array}$	$\begin{gathered} 0.4866 \\ (-2.27) \end{gathered}$	$\begin{array}{r} 0.6603 \\ (-1.90) \end{array}$	$\begin{gathered} 1.3184 \\ (0.68) \end{gathered}$	$\begin{gathered} 0.7170 \\ (-1.10) \end{gathered}$
TH＿0102	$\begin{gathered} 1.0000 \\ (0.00) \end{gathered}$	$\begin{array}{r} 2.2287 \\ (1.53) \end{array}$	$\begin{gathered} 1.1359 \\ (0.40) \end{gathered}$	$\begin{gathered} 1.0598 \\ (0.19) \end{gathered}$	$\begin{gathered} 1.4883 \\ (0.85) \end{gathered}$	$\begin{gathered} 2.1746 \\ (1.67) \end{gathered}$	$\begin{gathered} 2.3410 \\ (1.64) \end{gathered}$
TH＿0201	$\begin{array}{r} 1.0000 \\ !0.00) \end{array}$	$\begin{array}{r} 3.6476 \\ (2.28) \end{array}$	$\begin{array}{r} 1.7588 \\ (1.39) \end{array}$	$\begin{gathered} 0.7479 \\ (-1.23) \end{gathered}$	$\begin{array}{r} 2.1029 \\ (1.94) \end{array}$	$\begin{gathered} 1.3742 \\ (0.73) \end{gathered}$	$\begin{gathered} 1.6029 \\ (1.48) \end{gathered}$
TH＿0202	$\begin{gathered} 1.0000 \\ (0.00) \end{gathered}$	$\begin{gathered} 1.6663 \\ (1.43) \end{gathered}$	$\begin{array}{r} 5.5940 \\ (2.07) \end{array}$	$\begin{gathered} 3.6865 \\ (1.41) \end{gathered}$	$\begin{gathered} 1.1668 \\ (0.44) \end{gathered}$	$\begin{gathered} 1.0697 \\ (0.23) \end{gathered}$	$\begin{gathered} 1.2285 \\ (0.56) \end{gathered}$
TAU＿01	$\begin{gathered} 1.0000 \\ (0.00) \end{gathered}$	$\begin{array}{r} 0.9259 \\ (-0.27) \end{array}$	$\begin{array}{r} 1.8699 \\ (1.33) \end{array}$	$\begin{gathered} 0.6832 \\ (-1.03) \end{gathered}$	$\begin{array}{r} 0.9618 \\ (-0.11) \end{array}$	$\begin{array}{r} 0.8115 \\ (-0.72) \end{array}$	$\begin{gathered} 1.2074 \\ (0.59) \end{gathered}$
TAU＿02	$\begin{gathered} 1.0000 \\ (0.00) \end{gathered}$	$\begin{array}{r} 2.2673 \\ (2.20) \end{array}$	$\begin{gathered} 2.5172 \\ (2.32) \end{gathered}$	$\begin{aligned} & 1.4645 \\ & (0.94) \end{aligned}$	$\begin{gathered} 0.7482 \\ (-1.35) \end{gathered}$	$\begin{array}{r} 1.1697 \\ (0.57) \end{array}$	$\begin{gathered} 0.9229 \\ (-0.26) \end{gathered}$
NOBS：	377	377	377	377	377	377	377
RHO SQ：	0.642	0.656	0.656	0.651	0.652	0.650	0.652
CORRECT：	76．89\％	78．40\％	78．40\％	76．56\％	76．48\％	77．14\％	75

TABLE 5-12: POOLED CHOICE BASED SAMPLE, WESML-ESTIMATES (GERMANY)

TREE:	MNL	T-U-S	T-S-U	S-T-U	S-U-T	U-T-S	$U-S-T$
LIK:	-490.99	-418.39	-423.88	-447.32	-478.24	-447.34	-479.40

(1.) ALTERNATIVE SPECIFIC VARIABLES:

HEDONO	-2.0699	-11.1418	-9.3458	-2.5215	-2.5256	-2.8547	-2.3419
	(-7.87)	(-5.53)	(-4.19)	(-5.91)	(-5.50)	(-11.1)	(-8.67)
HEDONR	-2.4206	-13.2527	-10.5991	-2.8063	-3.2451	-3.3627	-2.9411
	(-6.46)	(-4.00)	(-3.23)	(-5.60)	(-5.82)	(-8.26)	(-6.30)
RETURN	-0.0546	0.0594	0.0540	-0.0085	-0.0693	-0.0057	-0.0532
	(-2.53)	(0.94)	(0.92)	(-0.43)	(-2.21)	(-0.40)	(-2.19)
CROWDS	-0.0977	0.0242	-0.4716	-0.1888	-0.1877	0.0259	-0.1496
	(-0.94)	(0.06)	(-1.35)	(-2.74)	(-2.47)	(1.36)	(-1.79)

(2) HOUSEHOLD SPECIFIC VARIABLES:

INC_OWN	0.0407	-0.1685	0.0076	0.0416	0.0582	-0.0363	0.0478
	(1.71)	(-1.06)	(0.05)	(1.12)	(1.23)	(-1.30)	(1.22)
INC_SFM	-0.0587	-0.0859	-0.2165	-0.1130	-0.0841	-0.0595	-0.0733
	(-1.89)	(-0.39)	(-1.12)	(-2.07)	(-1.97)	(-1.50)	(-1.85)
INC_14R	-0.0632	-0.7135	-0.2352	-0.0634	-0.0658	-0.1545	-0.0826
	(-1.90)	(-1.28)	(-1.01)	(-1.60)	(-1.75)	(-2.48)	(-1.45)
AGE_OWN	0.9027	1.1970	0.1233	0.2656	0.7224	0.4444	0.5317
*10	(2.24)	(0.72)	(0.10)	(0.56)	(1.13)	(1.11)	(0.96)
AGE_SFM	0.0807	-0.2824	0.4862	0.5011	0.3907	0.2891	0.2807
	(0.15)	(-0.09)	(0.17)	(0.76)	(0.56)	(0.46)	(0.46)
AGE_14R	-0.8051	2.2728	-2.6354	-0.9136	-0.7072	-0.1082	-0.7904
	(-1.55)	(0.29)	(-1.13)	(-1.61)	(-1.18)	(-0.11)	(-1.20)
AG2_OWN	-0.6556	-0.5486	0.2077	-0.1643	-0.4207	-0.1810	-0.2789
*1000	(-1.64)	(-0.36)	(0.17)	(-0.36)	(-0.68)	(-0.47)	(-0.51)
AG2_SFM	0.0012	1.0275	0.0771	-0.3487	-0.2657	-0.1105	-0.1873
	(0.00)	(0.32)	(0.03)	(-0.55)	(-0.40)	(-0.18)	(-0.32)
AG2_14R	0.8679	-0.3025	3.0544	0.9197	0.7751	0.4782	0.8530
	(1.66)	(-0.04)	(1.30)	(1.65)	(1.32)	(0.50)	(1.31)

TABLE 5-12: POOLED CHOICE BASED SAMPLE, WESML-ESTIMATES (GERMANY)

(3) ALTERNATIVE SPECIFIC DUMMIES:

O_SF_14	-1.0219	4.5272	2.5825	0.4180	-2.4752	1.8103	-0.4063
	(-0.43)	(0.30)	(0.27)	(0.18)	(-0.82)	(0.50)	(-0.12)
O_SF_5+	-0.9606	12.5258	4.5345	0.4808	-1.4490	2.2662	-0.3293
(-0.51)	(0.68)	(0.54)	(0.25)	(-0.62)	(0.92)	(-0.13)	
O_MF_14	-0.6503	12.2380	5.5270	1.4559	-2.1118	4.3126	-0.1059
	(-0.34)	(0.82)	(0.58)	(0.66)	(-0.78)	(1.50)	(-0.03)
O_MF_5+	-3.0975	8.2310	2.5823	-1.7037	-4.2900	0.5331	-4.0728
	(-2.37)	(0.51)	(0.36)	(-1.25)	(-2.13)	(0.31)	(-1.91)
R_SF_14	1.6966	13.0461	4.7581	1.1652	0.6535	4.2933	2.0388
	(0.88)	(0.86)	(0.48)	(0.57)	(0.29)	(1.45)	(0.66)
R_SF_5+	0.3387	10.0395	0.6173	-0.1822	-1.1810	2.0400	-0.3158
	(0.27)	(0.53)	(0.10)	(-0.10)	(-0.62)	(1.00)	(-0.17)
R_MF_14	2.6783	16.2191	8.4049	2.7091	2.2445	5.5084	3.2308
	(1.79)	(1.10)	(1.02)	(1.77)	(1.36)	(2.20)	(1.21)

(4.) DISSIMILARITY PARAMETERS (T-STATISTICS AROUND 1.0):

TH_0101	1.0000	11.9006	7.1550	1.7605	0.9247	2.8748	0.8075
	(0.00)	(1.96)	(3.42)	(2.26)	(-0.30)	(2.57)	(-1.16)
TH_0102	1.0000	6.3372	7.332 .1	1.5579	1.5054	2. 3697	2.1988
	(0.00)	(0.63)	(3.74)	(1.13)	(1.23)	(3.96)	(2.68)
TH_O201	1.0000	8.4397	5.1846	2.6473	2.6438	2.2335	1.3246
	(0.00)	(2.84)	(3.39)	(2.22)	(1.88)	(1.87)	(1.04)
TH_0202	1:0000	12.5118	7.8569	2.5257	2.3853	2.9437	2.1199
	(0.00)	(1.27)	(3.20)	(2.10)	(1.89)	(3.05)	(1.97)
TAU_01	1.0000	8.1912	5.2373	0.4488	1.2882	0.2715	1.1079
	(0.00)	(2.85)	(2.09)	(-4.38)	(1.02)	(-9.17)	(0.44)
TAU_02	1.0000	4.4291	3.7735	0.7231	1.4458	1.2329	1.4341
	(0.00)	(3.13)	(1.09)	(-1.24)	(1.07)	(0.79)	(0.55)
NOBS:	442	442	442	442	442	442	442
RHO_SQ: CORRECT:	0.466	0.545	0.539	0.513	0.480	0.513	0.478
	67.57\%	65.36\%	67.32\%	68.13\%	68.48\%	64.88\%	68.03\%

FIGURE 5-13: CHI-SQUARED DISTANCES OF TREES

Note:
*** $=$ significant at the 99.5\% level
** $=$ significant at the 95.0% level

* $=$ significant at the 92.5% level

6 degrees of freedom
where G in (2.19) is replaced by a less restrictive function.

Abstract

All differences between MNL and the various NMNL-models are significant at the 99.5 percent level in West Germany, whereas in the United States only the trees with tenure choice at the uppermost level meet this criterion. However, of the remaining trees, all except one are significant at the 95 percent level, none has a chi-squared distance to the MNL-model below 92.5 percent. The trees can be divided into three groups according to the position of tenure choice. In the West Germany, the pattern is clear and simple: the further down the tenure choice, the worse the trees perform. In the American sample, the differences between positions of tenure choice are less pronounced and the clear order characterizing the German hierarchies is broken up. Once tenure choice is positioned, the trees can not be distinguishea statistically in terms of aominance of size or structure choice.

We draw two conclusions: unambiguously in both countries, the
tenure-structure-size choice sequence produces the most plausible
nierarchicai decision structure, and we will use this tree for our
stratified estimations in the following section. Second, nowever, the
general dominance of tenure choice is less clear in Germany, on one
side, once tenure choice is not at the top of the nierarchy, the
dominance of tenure choice continues in Germany, but not in the United
States. However, a closer look at the parameters in Table 5-12
reveals that the dissimilarity coefficients in west Germany are not
contained in the unit interval, indicating a more complicated
microeconomic interpretation than the theory outlined in the beginning of Section 2.2. In particular, the estimated relation can be interpreted as a mixture of different underlying trees, some with tenure choice at the top, other lower in the hierarchy. Because of the extent of this task, we were not able to identify a stratification of the sample which produces well behaved unique but different trees in each stratum. The large standard errors associated with the dissimilarity coefficients indicate such a mixrure of models rather than a failure of the utility maximization hypothesis per se.

In both countries and in all specifications, we observe significant coefficients for the hedonic prices, consistently larger for renters than for owners. We introduced the interaction of hedonic rents with tenure choice for two reasons: as mentioned in Section 5.5. the nedonic regressions (on the renter subsamples) did not pick up well the differences in structure type, that is the attractiveness of single-family homes. Second, even if there were no measurement differences, out-of-pocket cost may be perceived differently by owners anu renters. The general attractiveness of owning versus renting an object, e. g., the freedom of disposition, may interact with the price of the object.

[^0]Surprisingly, the nousehold size variable is significant in the United States but not in Germany. This resuit is in contrast to earlier studies, see Section 5.7.4.

The income and age pattern can be calculated by addition of different combinations of choice dimension dummies for each alternative. This yields the following preference ordering for tree T-U-S:

Germany:
(1) R MF 5+
United States:
(1) O_SF_5+
(2) $\mathrm{R}^{-} \mathrm{SF}^{-5+}$
(2) $\mathrm{R}^{-} \mathrm{SF}^{-} 5+$
(3) O-MF $5+$
(3) O-MF_5+
(4) O_SF_5+
(4) R_MF_5+
(5) R_MF_14
(5) O_SF_14
(6) R_SF_14
(6) R_SF_14
(7) O_MF_14
(7) O_MF_14
(8) O_SF_14
(8) R_MF_14

Clearly, in both countries an additional Dollar of permanent income is spent first on more size. But again, tenure choice is differently perceived in Germany than in the United States where more income always implies a higher tendency to own.

This Section was primarily intended to highlight the differences in the valuation of tenure choice between the two countries. We will discuss the numerical values of the coefficients translated into elasticities in the next Section where we stratify the samples as discussed above.

5.7.2 Stratified Sample: Age and Location

Having discovered the tenure-structure-size choice nierarchy as the optimal functional description of housing demand within our NMNL-framework, we now stratify the sample according to location within the SMSA (city center versus suburb) and into three age categories (below 35, between 35 and 50, and over 50). The latter stratification takes account of a possible interaction between age and all other variables, that is a shift in preferences through the life cycle (de Leeuw 1971), whereas the separation of the sample by location stratifies by social status and income class as well as supply factors. Results are reported in Tables 5-14 for the United States and 5-15 for West Germany; compare the out-set of this section for an explanation for the symbols used to denote the strata.

Stratification considerably improves the fit measured by the likelinood ratio ("RHO-SQ") or the percentage of correctly predicted choices in the strata of the city center and the couples over 50. For the young and middle aged couples in the suburbs we have relatively poor results. This holds for both countries. Except for those two strata, the German model now performs as well as the American model and has an even tighter fit for the oldest strata.

The results of the previous section pertaining to the tree structure carry over to all separate strata. The bottom rows of Tables 5-14 and 5-15 show the performing of the corresponding MNL-models. The differences are all highly significant (at the 99.5

TABLE 5-14: SAMPLE STRATIFIED ACCORDING TO AGE AND LOCATION (USA)

| STRATUM: POOL | CC,YO | CC,ME | CC, EL | SU,YO | SU,ME | SU,EL | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LIK: | -269.63 | -230.75 | -232.65 | -232.22 | -359.53 | -276.25 | -297.05 |

(1) ALTERNATIVE SPECIFIC VARIABLES:

| HEDONO | -2.0677 | -2.2485 | -1.9020 | -3.3301 | -1.0870 | -0.8438 | -0.9044 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (-4.26) | (-4.02) | (-3.61) | (-6.31) | (-8.67) | (-1.52) | (-3.99) |
| HEDONR | -4.8441 | -4.2474 | -2.9094 | -4.0330 | -3.3064 | -2.1411 | -1.7023 |
| | (-5.22) | (-7.22) | (-3.46) | (-5.73) | (-4.84) | (-2.56) | (-3.44) |
| RETURN | -0.0312 | -0.2246 | 0.0033 | 0.2337 | -0.1951 | -0.1798 | -0.0303 |
| | (-0.27) | (-3.31) | (0.05) | (4.05) | (-3.94) | (-2.63) | (-0.81) |
| CROWDS | -0.3790 | -0.2374 | -0.1099 | -0.2934 | -0.1997 | -0.0001 | -0.1412 |
| | (-3.37) | (-3.24) | (-2.88) | (-3.63) | (-4.07) | (-0.00) | (-2.74) |

(2) HOUSEHOLD SPECIFIC VARIABLES:

INC_OWN	0.0507	0.0679	0.1838	0.1456	0.2575	0.1738	0.2210
	(0.60)	(0.70)	(2.71)	(2.68)	(2.82)	(1.10)	(2.89)
INC_SFM	0.2316	0.1479	0.1210	0.2192	-0.0196	-0.0552	-0.0882
	(1.88)	(1.27)	(1.04)	(2.38)	(-0.17)	(-0.67)	(-0.80)
INC_14R	-0.3117	-0.2308	-0.2321	-0.1224	-0.1672	-0.3457	-0.1563
	(-1.82)	(-1.89)	(-2.44)	(-1.33)	(-5.51)	(-1.47)	(-3.26)
AGE_OWN	-0.1771	-9.3476	-0.2771	-0.3844	-5.6479	-15.4512	0.8244
	(-0.23)	(-2.84)	(-0.04)	(-0.63)	(-3.36)	(-8.34)	(1.50)
AGE_SFM	1.1049	6.4182	-5.8375	-4.6315	-3.1839	29.7565	2.5541
	(1.47)	(0.72)	(-0.27)	(-1.53)	(-0.11)	(17.09)	(1.95)
AGE_14R	-0.3321	-2.4372	0.1134	-3.1598	-4.9824	3.9929	1.9218
	(-0.18)	(-0.13)	(0.00)	(-0.72)	(-8.60)	(1.72)	(0.53)
AG2_OWN	0.9336	17.3716	0.5852	0.5070	11.2519	17.9575	-0.0804
	(1.10)	(2.61)	(0.08)	(1.01)	(3.36)	(11.77)	(-0.17)
AG2_SFM	-1.3697	-13.0038	6.9317	3.4476	7.7779	-35.3570	-2.4791
	(-1.82)	(-0.80)	(0.27)	(1.53)	(0.15)	(-26.6)	(-2.57)
AG2_14R	0.6597	3.8766	0.3978	2.8129	9.1134	-4.6284	-1.5555
	(0.36)	(0.12)	(0.01)	(0.81)	(23.70)	(-1.67)	(-0.57)

(3) ALTERNATIVE SPECIFIC DUMMIES:

O_SF_14	$\begin{array}{r} -13.0095 \\ (-2.27) \end{array}$	$\begin{array}{r} 1.4334 \\ (\quad 0.04) \end{array}$	$\begin{array}{r} 5.7648 \\ (0.06) \end{array}$	$\begin{gathered} 17.4194 \\ (0.84) \end{gathered}$	$\begin{gathered} 9.746 i \\ (0.25) \end{gathered}$	$\begin{array}{r} -20.1911 \\ (-4.48) \end{array}$	$\begin{array}{r} -13.6451 \\ (-0.77) \end{array}$
O_SF_5+	-9.7826	1.0910	9.3856	16.3250	5.1413	-13.4647	-6.4494
	(-3.45)	(0.08)	(0.27)	(1.48)	(0.13)	(-3.05)	(-1.03)
O_MF_14	-11.0102	6.4831	-8.7359	2.2890	2.7310	12.5749	-13.5431
	(-2.07)	(0.23)	(-0.05)	(0.17)	(13.72)	(0.02)	(-0.98)
O_MF_5+	-9.0941	3.9687	-9.0644	-2.4649	-3.3324	20.0976	-8.1960
	(-3.69)	(0.88)	(-0.71)	(-0.79)	(-38.0)	(0.03)	(-2.22)
R_SF_14	-4.2363	-4.7114	10.5676	20.3636	10,6962	-50.6275	-6.6906
	(-0.88)	(-0.14)	(0.13)	(0.99)	(0.28)	(-4.61)	(-0.41)
R_SF_5+	-2.7777	-13.2731	4.0935	9.1275	6.4102	-50.8433	-0.1667
	(-1.13)	(-1.06)	(0.08)	(0.86)	(0.17)	(-3.34)	(-0.03)
R_MF_14	2.5031	7.6133	1.4742	9.1840	9.4563	12.7632	-0.4020
	(0.56)	(0.30)	(0.01)	(0.67)	(5.74)	(1.87)	(-0.03)

(4) DISSIMILARITY PARAMETERS (T-STATISTICS AROUND 1.0):

TH_0101	$\begin{gathered} 2.0533 \\ (\pm .42) \end{gathered}$	$\begin{array}{r} 0.9267 \\ (-0.26) \end{array}$	$\begin{array}{r} 1.0671 \\ (\quad 0.20) \end{array}$	$\begin{gathered} 1.4208 \\ (1.34) \end{gathered}$	$\begin{array}{r} 0.8422 \\ (-1.00) \end{array}$	$\begin{gathered} 1.0073 \\ (\quad 0.01) \end{gathered}$	$\begin{array}{r} 0.9197 \\ (-0.39) \end{array}$
TH_0102	2.2287	1.5557	1.1187	2.0356	0.0010	4.0122	0.7073
	(1.53)	(0.81)	(0.27)	(2.12)	(0.00)	(0.04)	(-1.10)
TH_O201	3.6476	3.8981	5.6619	3.3670	2.2662	7.6243	1.3270
	(2.28)	(2.31)	(1.36)	(1.96)	(0.37)	(1.87)	(0.31)
TH_0202	1.6663	1.5150	0.5811	0.8088	1.2399	5.8375	2.1675
	(1.43)	(1.49)	(-1.94)	(-0.72)	(0.44)	(3.21)	(1.72)
TAU_01	0.9259	1.7742	1.9535	1.5887	1.3979	5.7624	1.6498
	(-0.27)	(1.35)	(2.26)	(1.16)	(1.64)	(0.03)	1.58)
TAU_02	2.2673	1.2685	0.7581	1.2421	1.2495	1.0075	1.4213
	(2.20)	(1.01)	(-0.61)	(0.76)	(0.83)	(0.02)	(1.02)
TREE:	T-U-S						
NOBS:	377	343	346	398	434	381	422
RHO SQ: CORRECT:	0.656	0.676	0.677	0.719	0.602	0.651	0.661
	78.40\%	79.59\%	80.35\%	82.59\%	74.38\%	77.52\%	79.14\%
MNL-PERFORMANCE FOR COMPARISON:							
LIK: RHO_SQ: CORRECT:	-280.61	-243.70	-253.30	-242.10	-365.20	-286.80	-299.80
	0.642	0.558	0.648	0.707	0.595	0.638	0.658
	76.89\%	79.27\%	78.93\%	82.50\%	74.43\%	76.23\%	78.37\%

TABLE 5-15: SAMPLE STRATIFIED ACCORDING TO AGE AND LOCATION (GERMANY)

STRATUM:	POOL	CC, YO	CC, ME	CC,EL	SU, YO	SU ${ }_{0} \mathrm{ME}$	SU,EL
LIK:	-418.39	-230.08	-405.44	-217.55	-414.63	-409.63	-291.59

(1) ALTERNATIVE SPECIFIC VARIABLES:

HEDONO	-11.1418	-7.1768	-7.1136	-8.3649	-10.8740	-6.0120	-5.4039
	(-5.53)	(-6.25)	(-6.84)	(-5.61)	(-4.11)	(-5.86)	(-4.79)
HEDONR	-13.2527	-6.6116	-9.2795	-11.5718	-13.1639	-7.5246	-8.1463
	(-4.00)	(-4.93)	(-5.40)	(-5.35)	(-3.31)	(-4.42)	(-5.93)
RETURN	0.0594	-0.0653	-0.0615	-0.1301	-0.1125	-0.0946	-0.1482
	(0.94)	(-1.13)	(-1.62)	(-2.41)	(-1.68)	(-1.91)	(-2.41)
CROWDS	0.0242	0.0684	-0.6622	-0.1659	-1.2894	-1.2236	-0.3242
	(0.06)	(0.18)	(-5.21)	(-0.61)	(-3.96)	(-5.26)	(-2.43)

(2) HOUSEHOLD SPECIFIC VARIABLES:

INC_OWN	-0.1685	0.2095	-0.0685	0.0424	-0.0257	0.0814	0.0238
	(-1.06)	(2.25)	(-1.11)	(0.49)	(-0.23)	(0.95)	(0.21)
INC_SFM	-0.0859	-0.3019	0.1372	-0.1078	-0.1066	-0.1516	-0.2231
	(-0.39)	(-2.49)	(1.33)	(-0.83)	(-0.29)	(-1.16)	(-2.44)
INC_14R	-0.7135	-0.3249	-0.2581	-0.3104	-0.2982	-0.3624	-0.4449
	(-1.28)	(-1.19)	(-3.25)	(-2.35)	(-1.94)	(-2.65)	(-3.16)
AGE_OWN	1.1970	-17.4918	14.7392	-0.7486	26.1750	3.2150	2.6209
	(0.72)	(-4.69)	(24.29)	(-0.46)	(28.75)	(0.81)	(0.78)
AGE_SFM	-0.2824	35.1461	-12.2237	-5.0913	18.7470	8.6190	-4.5715
	(-0.09)	(9.32)	(-1.76)	(-0.64)	(2.17)	(2.07)	(-0.46)
AGE_14R	2.2728	-40.0533	-17.9722	1.5316	-22.0170	6.9028	-3.9208
	(0.29)	(-2.25)	(-9.57)	(0.52)	(-2.95)	(1.26)	(-0.35)
AG2_OWN	-0.5486	32.2272	-17.2238	1.0017	-40.0000	-2.5016	-2.0388
	(-0.36)	(4.65)	(-16.1)	(0.82)	(-18.8)	(-0.52)	(-0.82)
AG2_SFM	1.0275	-64.0541	13.1820	4.1835	-25.1000	-8.1032	2.6955
	(0.32)	(-10.1)	(1.57)	(0.72)	(-1.49)	(-1.56)	(0.37)
AG2_14R	-0.3025	57.8748	21.6473	-1.4120	36.6000	-6.6932	2.9590
	(-0.04)	(1.50)	(7.44)	(-0.60)	(2.48)	(-0.94)	(0.34)

(3) ALTERNATIVE SPECIFIC DUMMIES:

O_SF_ 14	$\begin{array}{r} 4.5272 \\ (0.30) \end{array}$	$\begin{aligned} & 45.0187 \\ & (4.30) \end{aligned}$	$\begin{gathered} 25.2199 \\ (2.10) \end{gathered}$	$\begin{array}{r} 9.6873 \\ (0.50) \end{array}$	$\begin{gathered} -43.6420 \\ (-4.60) \end{gathered}$	$\begin{array}{r} -48.3300 \\ (-4.43) \end{array}$	$\begin{gathered} 27.5633 \\ (2.78) \end{gathered}$
O_SF_5+	$\begin{gathered} 12.5258 \\ (0.68) \end{gathered}$	$\begin{gathered} -32.5944 \\ (-2.15) \end{gathered}$	$\begin{gathered} -5.5253 \\ (-0.40) \end{gathered}$	$\begin{gathered} 18.8074 \\ (0.79) \end{gathered}$	$\begin{gathered} -65.9939 \\ (-9.39) \end{gathered}$	$\begin{array}{r} -24.3661 \\ (-6.22) \end{array}$	$\begin{gathered} 16.4734 \\ (0.38) \end{gathered}$
O_HF_ ${ }^{14}$	$\begin{gathered} 12.2380 \\ (0.82) \end{gathered}$	$\begin{gathered} 97.4145 \\ (5.48) \end{gathered}$	$\begin{gathered} 4.0762 \\ (0.95) \end{gathered}$	$\begin{aligned} & -1.4141 \\ & (-0.11) \end{aligned}$	$\begin{aligned} & -2.7157 \\ & (-0.28) \end{aligned}$	$\begin{gathered} -29.3015 \\ (-1.70) \end{gathered}$	$\begin{gathered} 8.0982 \\ (0.29) \end{gathered}$
$\mathrm{O}_{-} \mathrm{MF}{ }_{-}$	$\begin{gathered} 8.2310 \\ (0.51) \end{gathered}$	$\begin{gathered} 6.8571 \\ (0.20) \end{gathered}$	$\begin{array}{r} -33.3569 \\ (-11.9) \end{array}$	$\begin{gathered} 0.9284 \\ (0.15) \end{gathered}$	$\begin{gathered} -30.5816 \\ (-5.21) \end{gathered}$	$\begin{gathered} -12.2768 \\ (-1.25) \end{gathered}$	$\begin{aligned} & -8.8480 \\ & (-0.72) \end{aligned}$
R_SF_14	$\begin{aligned} & 13.0461 \\ & (0.86) \end{aligned}$	$\begin{gathered} 25.5750 \\ (2.48) \end{gathered}$	$\begin{gathered} 55.6639 \\ (4.50) \end{gathered}$	$\begin{gathered} 10.3353 \\ (0.43) \end{gathered}$	$\begin{array}{r} 0.3641 \\ (0.02) \end{array}$	$\begin{gathered} -39.1544 \\ (-3.84) \end{gathered}$	$\begin{aligned} & 38.1278 \\ & (4.50) \end{aligned}$
$\mathrm{R}_{-} \mathrm{SF} \mathrm{C}^{5+}$	$\begin{aligned} & 10.0395 \\ & (0.53) \end{aligned}$	$\begin{array}{r} -49.8580 \\ (-6.20) \end{array}$	$\begin{gathered} 21.6928 \\ (1.51) \end{gathered}$	$\begin{gathered} 15.5875 \\ (0.56) \end{gathered}$	$\begin{array}{r} -26.3631 \\ (-2.85) \end{array}$	$\begin{gathered} -19.4744 \\ (-2.06) \end{gathered}$	$\begin{aligned} & 19.3552 \\ & (0.59) \end{aligned}$
$\mathrm{R}_{-} \mathrm{MF} \mathrm{F}_{\mathbf{1}} 14$	$\begin{gathered} 16.2191 \\ (1.10) \end{gathered}$	$\begin{gathered} 74.8717 \\ (5.58) \end{gathered}$	$\begin{gathered} 35.5858 \\ (9.74) \end{gathered}$	$\begin{gathered} -1.3449 \\ (-0.16) \end{gathered}$	$\begin{aligned} & 36.2376 \\ & (3.39) \end{aligned}$	$\begin{array}{r} -17.7430 \\ (-1.62) \end{array}$	$\begin{array}{r} 17.7709 \\ (0.48) \end{array}$

(4) DISSIMILARITY PARAMETERS (T-STATISTICS AROUND 1.0):

TH_O101	$\begin{gathered} 11.9006 \\ (1.96) \end{gathered}$	$\begin{array}{r} 17.4521 \\ (1.08) \end{array}$	$\begin{gathered} 3.8013 \\ (3.07) \end{gathered}$	$\begin{array}{r} 3.5932 \\ (2.31) \end{array}$	$\begin{aligned} & 10.5537 \\ & (2.05) \end{aligned}$	$\begin{gathered} 4.5294 \\ (3.21) \end{gathered}$	$\begin{array}{r} 2.6661 \\ (2.76) \end{array}$
TH_0102	6.3372	11.4852	2.4881	2.1644	2.7304	2.1706	1.5683
	(0.63)	(0.56)	(2.02	(1.74)	(1.89)	(1.58)	(1.00)
TH_0201	439	5.0174	6.132	3.5413	4.283	0452	4.0054
	(2.84)	(1.33)	(3.48	(2.16)	1.23	3.91	.45
TH_0202	12.5118	. 9098	4.5335	5.0244	5.7484	5.2970	3.9442
	(1.27)	(1.39$)$	(3.85)	(2.91)	(1.93)	(2.82)	(2.64)
TAU_01	1912	4.7120	5.4953	3.5688	8.29	5.1430	5888
	(2.85)	(2.81)	(3.89	(3.42)	(2.75)	2.66)	(3.29)
TAU_02	4.4291	3.1176	4.0467	3.5663	11.4965	4.5360	1.6553
	(3.13)	(2.34)	(4.61)	(4.13)	(2.30)	(3.61)	(1.85)

TREE:	T-U-S						
NOBS:	442	302	443	361	396	403	389
RHO_SQ:	0.545	0.634	0.560	0.710	0.497	0.511	0.640
CORRECT:	65.36\%	74.29\%	69.22\%	81.52\%	57.11\%	64.39\%	79.19\%
MNL-PERFORMANCE FOR COMPARISON:							
LIK:	-490.99	-248.20	-445.10	-242.40	-482.30	-455.03	-314.80
RHO_SQ:	0.466	0.605	0.517	0.677	0.414	0.457	0.611
CORRECT :	67.57\%	72.42\%	68.69\%	82.80\%	55.55\%	65.86\%	78.9

percent level) with the exception of the young couples in American suburbs where this difference only passes the 90 percent mark. Most of the individual dissimilarity parameters exceed one but are measured with little precision, telling us that we have not discovered the correct specification to avoid estimating mixtures of hierarchies.

The taste coefficients for price and income can most easily be compared using the elasticity tabulations of Table 5-16. The elasticities refer to the percentage change of the probability to choose a housing alternative, when the price of this alternative or the household income is changed by one percent. The formula for the elasticities is given in (2.10). For each variable, the model produces an entire matrix of elasticities which describes the change in each choice probability i in response to a change of this variable in alternative j. For the poolea sample, the elasticity matrix for the hedonic rent and permanent income is presented in Table 5-17. All elasticities are evaluated at sample means and weighted according co the population shares to offset the effects of choice based sampling.

We will first study the complete matrices in Table 5-17 for the pooled samples. The hierarchy of the tree is reflected in the block structure of equal and unequal elasticities. The corresponding MNL model would have equal cross elasticities entirely within each row. The nested model does away with this pattern: if the price of any renter alternative goes up, all other renter alternatives are also less likely to be chosen. Of course, the own effect dominates the cross effects. This pattern holds in both countries. It can be

TABLE 5-16: OWN PRICE AND SUM OF INCOME ELASTICITIES OF MARKET SHARES

Market Share:\|	MS (1)	MS (2)	MS (3)	MS (4)	MS (5)	MS (6)	MS (7)	MS (8)
Stratum	Own Price Elasticities:							
POOLED	-6.80	-8.90	-5.92	-6.93	-5.83	-5.52	-8.05	-3.51
CC_YO	-6.52	-7.42	-8.89	-4.25	-3.64	-4.66	-1.73	-4.46
CC_ME	-6.16	-9.10	-6.98	-10.97	-4.17	-5.48	-4.86	-5.93
CC_EL	-8.45	-11.22	-8.58	-14.82	-6.25	-10.85	-5.63	-6.60
SU YO	-7.52	-11.11	-7.42	-15.04	-3.81	-7.08	-4.76	-5.03
SU_ME	-2.55	-4.44	-4.26	-9.64	-4.33	-4.06	-5.80	-3.88
SU_EL	-2.84	-5.21	-6.12	-12.55	-8.07	-5. 54	-8.49	-4.92
Stratum	Comprehensive Income Elasticities:							
POOLED	-0.50	0.24	-0.55	0.84	-0.08	0.96	0.09	0.80
CC_YO	1.07	1.31	1.70	2.06	-1.31	-0.51	-0.14	0.89
CC_ME	0.40	1.38	0.07	1.57	0.05	0.66	-0.52	0.30
CC_EL	-0.09	0.86	0.18	1.76	-0.49	0.48	-0.14	0.55
SU_YO	-0.06	0.28	0.01	1.29	-0.23	0.59	-0.06	0.55
SU_ME	-0.02	1.02	0.25	2.43	-1.33	-0.55	-0.95	-0.06
SU_EL	-0.57	1.14	0.21	3.13	-0.98	0.16	0.36	1.52

Market Share:	MS (1)	MS (2)	MS (3)	MS (4)	MS (5)	MS (6)	MS (7)	MS (8)
Stratum	Own Price Elasticities:							
POOLED	-2.36	-3.25	-6.44	-7.19	-7.59	-9.11	-10.70	-12.56
CC_YO	-5.10	-8.50	-3.93	-6.23	-7.36	-6.50	-7.53	-12.34
CC_ME	-4.14	-3.28	-3.91	-6.33	-6.59	-7.51	-11.63	-21.00
CC_EL	-5.50	-6.89	-6.55	-9.63	-8.44	-8.22	-11.94	-21.33
SU_YO	-2.26	-3.20	n.i.	n.i.	-6.52	-8.65	-8.29	-11.25
SU_ME	-1.71	-1.22	-0.64	-0.80	-4.13	-4.67	-6.70	-2.08
SU_EL	-1.88	-2.21	-3.12	-5.53	-4.24	-6.59	-4.68	-3.33
Stratum	Sum of Income Elasticities:							
POOLED	-0.22	1.54	-3.65	-2.03	-2.36	-1.37	-3.75	-1.59
CC_YO	0.21	2.49	0.03	1.38	-0.17	0.37	-1.49	-0.09
CC_ME	-1.14	1.81	-1.41	1.40	-2.11	-1.55	-6.01	-0.60
CC_EL	0.29	1.27	-1.10	-0.43	-1.59	-1.18	-3.85	-2.15
SU_YO	-0.06	1.94	n.i.	ת.i.	-2.24	-1.50	-2.24	-0.88
SU_ME	-3.25	1.73	-0.19	1.06	-4.10	-3.44	-4.55	-3.79
SUEE	-0.96	1.09	-0.25	2.42	-3.28	-1.86	-2.47	-1.60

Indices of Alternatives:

TABLE 5-17: MATRIX OF PRICE AND INCOME ELASTICITIES OF MARKET SHARES

(1) POOLED SAMPLE GERMANY:

Variable A	Alt.	MS (1)	MS (2)	ITS (3)	MS (4)	MS (5)	HS (6)	MS (7)	MS (8)
HEDONO	1	-6.794	-5.083	-4.641	-4.641	4.293	4.293	4.293	4.293
HEDONO	2	-6.151	-8.896	-5.617	-5.617	5.195	5.195	5.195	5.195
HEDONO	3	-1.679	-1.679	-5.922	-0.612	1.553	1.553	1.553	1.553
HEDONO	4	-0.274	-0.274	-0.100	-6.937	0.253	0.253	0.253	0.253
HEDONR	5	2.480	2.480	2.480	2.480	-5.834	-2.942	-0.841	-0.841
HEDONR	6	0.932	0.932	0.932	0.932	-1.106	-5.523	-0.316	-0.316
HEDONR	7	9.392	9.392	9.392	9.392	-3.185	-3.185	-8.051	-6.218
HEDONR	8	1.369	1.369	1.369	1.369	-0.464	-0.464	-0.906	-3.509
INC_OWN	1	-1.199	-1.199	-1.199	-1.199	0.875	0.875	0.875	0.875
INC_SFM	2	-0.418	-0.418	-0.289	-0.289	0.107	0.107	0.346	0.346
INC_14R	3	1.121	1.859	0.942	2.327	-1.063	-0.022	-1.129	-0.427
SUM ${ }^{-1}$ INCOME		-0.496	0.242	-0.546	0.840	-0.081	0.960	0.091	0.793

(2) POOLED SAMPLE USA:

A	A	MS (1)	MS (2)	MS (3)	MS (4)	MS (5)	MS (5)	MS (7)	MS (8)
HEDONO	1	-2.363	0.446	1.562	1.562	1.415	1.415	1.415	1.415
HEDONO	2	1.581	-3.247	5.542	5.542	5.020	5.020	5.020	5.020
HEDONO	3	0.097	0.097	-6.445	-2.905	0.088	0.088	0.088	0.088
HEDONO	4	0.085	0.085	-2.523	-7.189	0.077	0.077	0.077	0.077
HEDONR	5	1.109	1.209	1.109	1.109	-7.588	-3.367	-1.589	-1.589
HEDONR	6	0.786	0.786	0.786	0.786	-2.387	-9.107	-1.126	-1.126
HEDONR	7	2.059	2.059	2.059	2.059	-2.950	-2.950	10.701	-0.344
HEDONR	8	0.133	0.133	0.133	0.133	-0.191	-0.191	-0.02	12.564
INC_OWN	1	0.135	0.135	0.135	0.135	-0.452	-0.452	-0.452	0.452
INC_SFM	2	0.392	0.392	-2.506	-2.506	-0.433	-0.433	-1.617	-1.617
INC_14R	3	-0.744	1.015	-1.281	0.339	-1.470	-0.480	-1.685	0.482
SUS INCOM		-0,217	1.542	-3.652	-2.031	-2.356	-1.366	-3.754	-1.587

Elasticities at Sample Means and Frequencies, WESML-Weighted. Parameters from Nested Model T-U-S.
MS(i) denotes the market share of housing alternative i.
Indices of Alternatives:

1:	2:	3:	4:	5:	6:	7:	8:
O_SF_14	O_SF_5+	O_MF_14	O_MF_5+	R_SF_14	R_SF_5+	R_MF_14	R_MF_5+

Abstract

interpreted in the following way: if rental housing prices of one category go up, substitution goes more likely into owner-occupancy than into other rental housing. In owner-occupied housing, we observe different patterns: As contrasted to the United States, cross substitution within the owner market occurs in Germany. The magnitudes of the elasticities are similar, the Germans are more price responsive as homeowners, the Americans as renters, reflecting the higher propensity of Americans to choose an owner-occupied home even at a slightly higher price.

The income elasticities are composed of the elasticities with respect to each of the three income/choice-dimension interactions. They are tabulated at the bottom of each block in Table 5-17. The income elasticities reiterate the "American Dream" interpretation just given for the price elasticities and they, of course, reflect the preference pattern for an additional dollar income discovered above. A rise in permanent income in Germany will increase the consumption of large units independent of tenure and structure type, whereas in the United States the proportion of renters will decrease unambiguously and the income will be spent on large single-family homes. Income is measured against all other goods. Thus, the sum of all income elasticities reveals that housing as a composite commodity is a normal good in Germany, but an inferior good in the United States.

We now compare the basic price and income responses across strata, using the elasticities tabulated in Table 5-16. The differences between the two countries which we detected in the pooled
sample hold also in each of the strata, giving confidence in our
results. In general, the suburban households are less price
responsive than those living in the city centers, but more income
elastic. The differential in price responsiveness is very strong in
both countries, the difference in income sensitivity only in the
United states. All estimates show a life cycle dependence with again
reversed roles of price and income. The young and elderly strata are
the most price responsive, but the least income sensitive age group.
These age and location jatterns are remarkably similar for both
countries.

5.7.3 Sensitivity Analysis

Abstract

The results presented in this section rest on a fairly extensive set of intermediate calculations with numerous assumptions. Except for age, none of the variables used in the final demand equation are taken directly from the raw data. Thus, it is appropriate to briefly report some results from alternative specifications which are displayed in Table 5-18.

The use of current instead of permanent income slightly improves the fit in Germany, slightly worsens the fit in the United States. The price and crowding variables are virtually unaffected. Income coefficients sharply decrease in the United States. This is the expected direction, but the magnitude is unreasonably large. In Germany, there is little change. No change occurs in the order of preferences. All things considered, the use of current versus permanent income does not change our results qualitatively, and the quantities of the nedonic rent variables are robust to this change.

We performed another series of experiments to test the models' sensitivity with respect to the technique of imputing the attributes of nypothetical alternatives. Instead of constructing a not chosen alternative with the same number of rooms as the chosen one, we simply assigned it the mean attributes of this choice, including the mean number of rooms. This improves the fit and increases the magnitudes of most price and income coefficients, see Table 5-18. These changes are small. However, there is a danger of creating spurious

TABLE 5-18: SENSITIVITY ANALYSIS

MNL-Estimates, Pooled Samples.
(1) CURRENT VERSUS PERMANENT INCOME:

Variable:	GERMANY YPERM	YCURR	USA: YPERM	YCURR
HEDONO	-2.07	-2.12	-1.38	-1.18
HEDONR	-2.42	-2.49	-2.56	-2.57
RETURN	-0.055	-0.053	0.054	-0.012
CROWDS	-0.098	-0.095	-0.19	-0.18
INC_OWN	-0.0045	0.041	0.176	0.025
INC_SFM	-0.032	-0.059	0.067	0.0048
INC_14R	-0.089	-0.063	-0.182	-0.053
RHO_SQ \%CORRECT	$\begin{aligned} & 0.466 \\ & 67.57 \% \end{aligned}$	0.476 68.21%	$\begin{aligned} & 0.642 \\ & 76.89 \% \end{aligned}$	0.630 75.31%

(2) CONSTANT ROOM VERSUS AVERAGE NUMBER OF ROOMS:

Variable:	GERMANY: CONSTANT	AVERAGE	USA: CONSTANT	fVERAGE
HEDONO	-2.07	-2.22	-1. 38	-1.02
HEDONR	-2.42	-2.51	-2.56	-2.31
RETURN	-0.055	-0.060	0.054	0.015
CROWDS	-0.098	0.015	-0.19	-0.11
INC_OWN	-0.0045	0.029	0.176	0.035
INC_SFM	-0.032	-0.044	0.067	-0.010
INC_14R	-0.089	-0.069	-0.182	-0.052
$\begin{aligned} & \text { RHO_SQ } \\ & \text { \%CORRECT } \end{aligned}$	$\begin{aligned} & 0.466 \\ & 67.57 \% \end{aligned}$	$\begin{aligned} & 0.482 \\ & 70.52 \% \end{aligned}$	$\begin{aligned} & 0.642 \\ & 76.89 \% \end{aligned}$	$\begin{aligned} & 0.577 \\ & 68.90 \% \end{aligned}$

elasticities when we specify hypothetical alternatives unlikely to be relevant for the given household. In particular, the average number of rooms may be too large for a small, and too large for a small nousehold.

This relates to the issue of what the correct discrete categories are. There are obviously more than eight different nousing choices, and picking a relatively small number of alternatives means an implicit aggregation procedure of the underlying elemental alternatives. In a related study by Behring, Goldrian, et. al. (1983), we started from a large set of elementary alternatives and used different sets of aggregated alternatives and different aggregation weights. The results turned out to be very sensitive to the pooling of unrelated alternatives, in particular, spurious elasticities can be created by posing irrelevant hypothetical alternatives. The variable CROWDS is particular sensitive to the bunding of alternatives which is obvious given its definition depending on the number of rooms. In theory, there is a unique correct aggregation. This is the extension of the tree down to all elemental alternatives, and the corresponding estimation of the dissimilarity parameters bunding the elemental alternatives provides the correct weights for aggregation. In practice, the number of elemental alternatives is much too large to make this approach feasible. Given clear cut aggregates, however, the results were fairly robust to the choice of aggregation weights.

The discussion of descriprive statistics in Section 5.2 revealed substantial differences in the market shares of housing alternatives between the United States and West Germany, markediy in the tenure choice. How can they be explained? The endogenous variables -predicted market shares for each tenure-structure-size combination -are generated by the estimated parameters and the set of explanatory variables. We discussed the differences in the exogenous variables between the ewo countries in Section 5.2: the income and age distribution differ; a most stunning discrepancy occurs in the prices due to a greater land scarcity in Germany; and, a very advantageous tax treatment of homeownership in the United States. Given these differences in the explanatory variables, we still discovered a variety of differences in the estimates of the taste parameters, that is in the preferences of the German and the American households for different housing choices.

The normalization of all data to a common standard allows us to predict each country at the other countries tax lews or preferences. Thus, we can distinguish the consequences of differences in preferences from those in taxes or other exogenous variables as age and income. Table 5-19 presents the results. The first column denotes the baseline market shares of each of our eight housing alternative. These shares coincide with thi actual shares in the population, because the saturation of the demand model allows us to produce a perfect fit of the market shares. This procedure is

TABLE 5-19: PREDICTIONS: PREFERENCES AND TAX LAWS ==2
(1) GERMAN DATA

	German Baseline:	US- Preferences:	US- Tax Laws:	US Tax Laws/Equity:
O_SF_14	0.2108	0.0680	0.3685	0.3352
O_SF_5+	0.1591	0.3298	0.3901	0.3540
O_MF_14	0.0462	0.0005	0.0969	0.0925
O_MF_5+	0.0058	0.0005	0.0236	0.0221
OWN:	0.4219	0.3988	0.8791	0.8038
R_SF_14	0.1016	0.1177	0.0124	0.0245
R_SF_5+	0.0250	0.0731	0.0015	0.0036
R_MF_14	0.4096	0.3858	0.1018	0.1592
R_MF_5+	0.0420	0.0247	0.0053	0.0090
RENT:	0.5782	0.6012	0.1209	0.1962

(1) US-AMERICAN DATA:

Alternative:	$\begin{gathered} \text { US- } \\ \text { Baseline: } \end{gathered}$	German Preferences:	German Tax Laws:	German Tax Laws/Equity:
O_SF 14	0.2453	0.3380	0.2388	0.2387
O-SF-5+	0.5063	0.1352	0.4462	0.4460
O MF_14	0.0112	0.2990	0.0102	0.0102
O_MF_5+	0.0073	0.0223	0.0100	0.0099
OWN:	0.7701	0.7945	0.7052	0.7048
R_SF_14	0.0720	0.0760	0.0964	0.0964
R_SF_5+	0.0321	0.0225	0.0416	0.0416
R_MF_14	0.1193	0.0999	0.1436	0.1437
R_MF_5+	0.0063	0.0071	0.0132	0.0132
RENT:	0.2299	0.2055	0.2948	0.2952

All predictions with NMNL-model T-U-S, adjusted to fit aggregate shares exactly. Shares may not add up because of rounding.
discussed in Section 2.3.

Abstract

We performed three experiments: first, we predicted the German data with American preferences; second with the U.S. tax code; finally with the U.S. tax code in combination with the loan-to-value ratios observed in the United States. Then, we performed the analogous experiments on the American data base. These experiments represent a drastic interference with the steady state given by the cross sectional data. Therefore, they provide only qualitative guidelines and the quantities should not be taken literally.

Predicting either country with the other country's preferences does not change the tenure choice very much, nor are the proportions within the renter alternatives affected. However, there is a strong shift within the owner categories: large single-family homes dominate the American taste, whereas German preferences give a large share to condominiums and small one or two-family units. We may interpret this finding as a confirmation that the "American Dream" in fact is an important element of housing preferences in the united States.

The next experiments predict each countries housing consumption at its own preferences, but the other country's tax code. This produces a drastic shift into ownership in Germany, and only a much smaller corresponding shift towards rental housing in the United States. This can be explained by the peculiarities of the tax laws and by the discrepancy in the price of land. Germany has very high land prices in addition to higher structure costs. With the U.S. tax

Abstract

code, Germans can deduct a much higher proportion of their income than Americans do. In turn, the German tax code is most unfavorable to high house values relative to the American tax code, but the tax advantages are comparable to the United States for low priced structures and lots which are dominant in the United States. Thus, the change here is much smaller than the corresponding change in Germany

Finally, we may argue that the loan-to-value ratios are endogenous and respond to the tax changes introduced in the previous paragraph. Predicting each country at the other country's tax code and equity pattern produces the last column of Table 5-19. The German tax advantages from homeownership are independent of the loan-to-value ratio, so for the Americans living under German tax law little changes. The only changes come through the change in opportunity costs of equity. However, as estimated for the Americans, the RETURN coefficient is small and insignificant. In Germany, we observe two effects. Raising the loan-to-value ratio makes the American tax deductions even more valuable. However, the same time we decrease the return from homeownership by increasing the opportunity costs. Eoth effects depend on the marginal tax rate. If this is zero, the additional deductions have no value, but the opportunity costs are counted fully, leading to a.strong effect away from homeownership. If on the other extreme the marginal tax rate is one, all additional interest can be deducted, but the return from an alternative investment would be taxed away, making investment into housing very attractive. We estimated a positive coefficient of RETURN in the

```
German sample. With the nigh proportion of elderly homeowners with a
low marginal tax rate in Germany the first mechanism outweighs the
second, and we observe a decline in nomeownership as compared to U.S.
tax laws combined with German equity patterns.
```


5.9 Conclusions

Abstract

The main conclusion from both estimation and simulation is the confirmation of the often quoted "American Dream": Americans have a strong preference for large single-samily nomes, independent from the advantages granced by the U.S. tax code. Germans do not share this dream in this extent: they prefer owning to renting, but they consider large rental units attractive as well.

Second, Americans are nighly responsive to price changes in rental housing, less so in owner-occupied housing. Germans have the reverse pattern: their elasticity of choosing owner-occupied housing with respect to prices exceeds the corresponding elasticity to rent housing units.

Third, the market shares of housing alternatives can neither be explained by the preferences nor by the tax laws alone.

Fourth, an American-style tax law would have drastic effects in Germany because such a tax code has especially favorable consequences for the after tax costs of owner-occupancy, given the high land prices and structure costs in Germany.

Finally, we observe remarkable similarities as well: the pattern of price and income responsiveness by location and age neatly coincides in the two countries. The strata of the suburbs and of the middle aged couples are more income responsive but less price

```
sensitive than households in the city centers or of younger and older
age who react more on price changes relative to income changes. In
both countries, the same nierarchical choice pattern describes the
actual behavior best. Tenure choice is the primary dimension to
categorize housing choice. The choice of structure type and dwelling
size follow with no clear order in both countries.
```

On a more technical level, we conclude that in both countries the nesting of choices and the stratification of the sample is a rewarding method to achieve good estimation results. We succeeded in similar satisfactory ex post prediction accuracies and high likelihood ratio statistics in the United States and West Germany.
(1) These and all following summary statistics for nationwide U.S. housing consumption are quoted from Annual Housing Survey 1977. Part A: General Housing Characteristics, United States and Regions, U.S. Departments of Commerce and of Housing and Urban Development.
(2) These and all following summary statistics on housing choice, income, and age distribution are quoted from 1\%-Wohnungsstichprobe 1978, Heft 5: Wonnungsversorgung der Haushalte und Familien, Statistisches Bundesamt, Wiesbaden.
(3) We first deflate 1978 Dm into 1977 DM , then apply the exchange rate between $D M$ and Doliars of 1977 as reported in the Statistical Abstract of the United States, 10ist. Edition (1980), pages 488 and 927.
(4) These and all following summary statistics on rent levels are quoted from 1\%-Wohnungsstichprobe 1978, Heft 5: Wohnungsversorgung der Haushalte und Familien, Statistisches Bundesamt, Wiesbaden.
(5) Own tabulations from the One Percent Sample.
(6) The Urban Land Institute, Land Use Digest, Volume 14, No. 12, December 1981 (Single Family Improved Lot Price Median), and unpublished data, provided by the National Association of Home Builders.
(7) Unpublished disaggregate tabulations for 1978, provided by the West German Bundesministerium fuer Finanzen.
(8) See equation (2.2) in Chapter Two.

APPENDIX

FORTRAN Program for Nested Multinomial Logit Models

C - CALCULATES THE COVARIANCE MATRIX, CORRECTS FOR WESML ESTIMATION
C - ADJUSTS ALTERNATIVE SPECIFIC DUMMIES TO FIT AGGREGATE SHARES (*)
C - PLOTS 2-DIM. PARAMETER SPACES (*)
C - CALCULATES ELASTICITIES
C - TRANSFORMS PARAMETERS INTO MNL-FORMAT
C - CHECKS DERIVATIVES
C - CALCULATES LM-STATISTICS OF THE TREE PARABETERS
C - CHECKS COMPATIBILITY WITH RANDOM UTILITY MAXIMIZATION

C
C
FOR (*) THE PROGRAM USES THE GOLDFELD/QUANDT GQOPT-PACKAGE
C
C
C
C
C
C
C $\quad 0$ GQTRE
C 1,3 UPDATE
C 2 INDATA
C 2 PUNCH,CNTR, C OPTMOV, MATEV2
C
C
C
C
C
C
C
2 OPI

C 3,2 FUNC, FP, SP
C $4,2 \mathrm{CONT}$
C
C $\quad 4,3 \mathrm{LSFIT}$
C 5,4 SSQDEV,FPSSQD
C 6,5 CONTPS
(THE TERMINAL WILL PROMPT YOU FOR THE ACTUAL FILE-NAMES)

READING AND FORMATTING IS DONE IN SUBROUTINE INDATA.

c TO ONE IF AUXILIARY INFORMATION IS EXACT.

A2) ONLY FOR NALTFR>NALT:
(IAKTIV(I), $I=1, N A L T F R)$
(PROBFR(I), $I=1, N A L T F R)$
(JAKTIV(J), J=1,NALT)

WHERE IAKTIV=INDEX OF NALT ALTERNATIVES IN NALTFR PROBFR=RELATIVE WEIGHTS OF ALTERNATIVES JAKTIV=INVERS OF IAKTIV

A3) ONLY FOR RELSIZ > 0.0
(WEIGHT (J), J=1, NALT)

WHERE WEIGHT=RATIO OF AUXILIARY SAMPLE SHARE OVER MAIN SAMPLE SHARE OF RESP. ALTERNATIVE
B) EXPLANATORY VARIABLES:

B1) NX,NXD,NXM,NXA

WHERE NX = \# OF ALTERNATIVE-SPECIFIC VARIABLES AT LEVEL 3 (MIMICRY LEVEL 1 AND 2 VARIABLES AT LEVEL 3)
NXD= \# OF AGENT-SPECIFIC VARIABLES
NXM = SET OF DUMMIES FOR THE AGENT-SPECIFIC VARIABLES NXA= SET OF ALTERNATIVE SPECIFIC CONSTANTS

THERE ARE TWO DIFFERENT POSSIBILITIES TO DUMMY AGENT-SPECIFIC VARIABLES AND TO SET PURE ALTERNATIVE-SPECIFIC CONSTANTS:
(1) "STANDARD-DUMMIES"

NALT-1 DUMMIES WILL BE ASSIGNED TO EACH ELEMENTAL ALTERNATIVE EXCEPT THE LAST. SEE EXAMPLE ABOVE.
(2) "TREE-DUMMIES"

FOR EACH LEVEL OF THE TREE, NL1-1, NL2-1, NL3-1 DUMMIES WILL BE ASSIGNED. NOTE: THIS IS ONLY POSSIBLE FOR A SYMMETRIC UNDERLYING TREE (I.E., NL2=CONSTANT, NL3=CONSTANT, SEE BELOW). THIS IMPLIES AN ASSIGNMENT OF LESS THAN NALT-1 DUMRIES TO THE ALTERNATIVES, WHERE IN TURN EACH ALTERNATIVE CAN BE ASSIGNED UP TO THREE DUMMIES. THIS IS CONTROLLED BY THE MAP IN B2.

EIGHT COMBINATIONS ARE POSSIBLE:
(1) AGENT-SPECIFIC VARIABLES INTERACT WITH STANDARD-DUMMIES, NO ALTERNATIVE SPECIFIC CONSTANTS:
SET $N X D>0, N X M=0, N X A=0$
(2) AGENT-SPECIFIC VARIABLES INTERACT WITH STANDARD-DUMHIES, FULL SET OF NALT-1 ALTERNATIVE SPECIFIC CONSTANTS:
SET NXD $>0, \mathrm{NXM}=0, \mathrm{NXA}=1$
(3) AGENT-SPECIFIC VARIABLES INTERACT WITH TREE-DUMMIES, NO ALTERNATIVE SPECIFIC CONSTANTS:
SET NXD >0, NXM $=\#$ OF DUMMIES, NXA $=0$
(4) AGENT-SPECIFIC VARIABLES INTERACT WITH TREE-DUMMIES, FULL SET OF NALT-1 ALTERNATIVE SPECIFIC CONSTANTS: SET NXD > O, NXM = \# OF DUMMIES, NXA $=1$
(5) AGENT-SPECIFIC VARIABLES INTERACT WITH TREE-DUMHIES, SET OF ALTERNATIVE SPECIFIC CONSTANTS AS TREE-DUMMIES: SET NXD >0, NXM $=$ \# OF DUMMIES, NXA $=2$
(6) NO AGENT-SPECIFIC VARIABLES, NO ALTERNATIVE SPECIFIC CONSTANTS: SET $N X D=0$, NXM $=0$, NXA $=0$
(7) NO AGENT-SPECIFIC VARIABLES,

FULL SET OF NALT-1 ALTERNATIVE SPECIFIC CONSTANTS: SET NXD $=0$, NXM $=0$, NXA $=1$
(8) NO AGENT-SPECIFIC VARIABLES. SET OF ALTERNATIVE SPECIFIC CONSTANTS AS TREE-DUMMIES: SET NXD $=0$ O. NXM $=$ \# OF DUMMIES, NXA $=2$

IF NXA IS SET TO - 1 RATHER THAN TO 1. STANDARD-DUMMIES ARE NOT ESTIMATED FREELY TO MAXIMIZE THE LIKELIHOOD-FUNCTION, BUT ARE
SET AFTER EACH ITERATION TO MATCH THE AGGREGATE SAMPLE SHARES.
THE PROCEDURE, AS IMPLEMENTED, IS NOT GUARANTEED TO BE NUMERICALLY STABLE AND IS NOT NECESSARILY CONVERGENT. HOWEVER, IF THE PROCEDURE DOES CONVERGE, THE ESTIMATES ARE CONSISTENT AND EFFICIENT, BEING EQUIVALENT TO COSLETT'S CONCENTRATED ESTIMATOR. THE SAMPLE SHARES CAN BE MATCHED BY A NONLINEAR LEAST SQUARES PROCEDURE AFTER SUCC SSFUL LIKELIHOOD MAXIMIZATION; FOR THIS, SET NXA $=1$ AND SELECT THE ADJUST TASK.

THE CORRESPONDENCE BETWEEN ALTERNATIVES AND A SET OF TREE-DUMMIES IS DEFINED BY THE FOLLOWING MAP:

B2) ONLY FOR NXM > 0:
(MAP($1, J), J=1,3)$
(MAP (NALT, J) , J=1,3)
WHERE MAP $(I, J)=M$ IMPLIES THAT TREE DUMMY M IS PRESENT IN ELEMENTAL ALTERNATIVE I. UP TO J=3 DUMMIES CAN BE PRESENT. IF LESS THAN 3 DUMMIES ARE ASSIGNED, FILL THE REMAINING MAP (I,J) WITH ZEROES.
C) TREE STRUCTURE

C1) NLI
NL2 (I), I=1,NL1
NL3 ($1, \mathrm{~J}$) , J=1,NL2 (1)

C
C
NL3 (NL1, J) , J=1,NL2 (NL1)
WHERE NL1 = \# OF LIMBS (E.G., SEE FIGURE AT TOP: 2),
NL2 = \# OF BRANCHES FOR EACH LIMB (E.G.: 1,2),
NL3 = \# OF TWIGS FOR EACH BRANCH OF EACH LIMB,
(E.G.: 2 FOR LIMB 1 AND 4,3 FOR LIMB 2)
C2) NTAU, NTAU1, (LOCTAU(I), I=1,NTAU+NTAU1)
WHERE NTAU $=$ \# OF LEVEL 1 DISS. PARAMETERS (TAU),
TO BE OPTIMIZED OVER ("FREE"),
NTAU1 = \# OF LEVEL 1 DISS. PARAMETERS (TAU),
TO BE EQUALITY CONSTRAINED,
LOCTAU $=$ RELATIVE LOCATION (LIMB) OF THE TAU'S.
C3) NTH , NTH1 , (LOCLIM(I), LOCBRA(I), I=1,NTH+NTH1)
WHERE NTH = \# OF LEVEL 2 DISS. PARAMETERS (THETA),
TO BE OPTIMIZED OVER ("FREE"),
NTH1 =.\# OF LEVEL 2 DISS. PARAMETERS (THETA),
TO BE EQUALITY CONSTRAINED,
(LOCLIM, LOCBRA) = RELATIVE LOCATION (LIMB,BRANCH)
OF THE THETA'S.

NOTE: THE LOCATIONS OF FREE DISS.PARMS HAVE TO APPEAR FIRST IN LOCTAU, LOCLIM, AND LOCBRA, FOLLOWED BY THE LOCATIONS OF THE EQUALITY CONSTRAINT DISS.PARMS.
THERE IS NO PROVISION IN THE CONT-ROUTINE FOR INTER-NODE EQUALITY CONSTRAINTS.

NOTE: THE PROGRAM CHECKS THE LEVEL OF THE TREE BY CHECKING NTAU+NTAU1 AND NTH+NTH1.
If both are zero, the tree collapses to a simple mnl model.
IF ONLY NTAU+NTAU1 IS ZERO, THE TREE COLLAPSES TO TWO LEVELS.
IN EITHER CASE, SIMPLER FORMULAS ARE USED IN SUBROUTINE CONT.
NOTE: ALL INPUTS IN A) THROUGH C) ARE IN *-FORMAT
D) INITIAL VALUES

D1) NAME (1)
PARM (1)
NAME (NP+NP1) PARM (NP+NP1)
WHERE: NAME(I) = LABEL OF THE I'TH PARAMETER PARM(I) $=$ INITIALVALUES OF THE I'TH PARAMETER
$\mathrm{NP} \quad=$ TOTAL NUMBER OF FREE PARAMETERS
NP1 = TOTAL NUMBER OF CONSTRAINT PARAMETERS
D2) A BLank line to indigate end of input
the final cards of file 20 CONTAIN IN (A8,F15.9)-FORMAT THE
Labels and initialvalues of all those parameters, over which


```
C THE PROGRAM ALWAYS USES ANALYTICAL FIRST DERIVATIVES.
C
C
C CAN BE APPROXIMATED ACCORDING TO BHHH, BY SIMPLE FINITE
C DIFFERENCES; OR BY SYMMETRIC FINITE SECOND DIFFERENCES.
C ONLY FOR THE SIMPLE MNL-CASE, ANALYTIC SECOND DERIVATIVES ARE
C IMPLEMENTED.
C
```



```
C
C THE PACKAGE ALLOWS FOR THE MAXIMAL DIMENSIONS:
C
```



```
C PARAMETER
C * (MAXOBS = NUMBER OF OBSERVATIONS + 1 FOR MEANS,
C * MAXNP = TOTAL NUMBER OF PARAMETERS TO OPTIMIZE OVER,
C * MAXTH = 1ST ORDER DISSIMILARITY PARAMETERS AT LEVEL 2,
C * MAYTAU = 2ND ORDER DISSIMILARITY PARAMETERS AT LEVEL 1,
C * MAXNX = ALTERNATIVE SPECIFIC EXPLANATORY VARIABLES,
C * MAXHXD = AGENT SPECIFIC EXPLANATORY VARIABLE.
C * MAXNXM = NUMBER OF TREE-DUMMIES,
C * MAXLEV = NUMBER OF LEVELS,
C * MAXLIM = LIMBS AT LEVEL 1,
C * MAXBRA = BRANCHES AT LEVEL 2 FOR EACH LIMB AT LEVEL 1.
C * MAXALT = ELEMENTAL ALTERNATIVES,
C * MAXFRA = ELEMENTAL ALTERNATIVES IN AN UNDERLYING LARGER FRAME)
C
```



```
c
C ALL DIMENSIONS CAN EASILY BE CHANGED BY CHANGING THESE
C PARAMETER SETTINGS IN ALL ROUTINES THROUGHOUT THE PACKAGE.
C
C
IMPLICIT REAL*8 (A-H,O-Z)
C
    PARAMETER
    * (MAXOBS =2001,
    * HAXNP =50,
    * MAXTH =10,
    * maxtau =5,
    * MAXNX =10,
    * MAXNXD =5,
    * MAXNXM =20,
    * MAXLEV =3,
    * MAXLIM =5,
    * MAXBRA =5,
    * MAXALT =20,
    * MAXFRA =61,
    * MAXNXY=MAXNX+1, MAXNXR=MAXNX+MAXNXD,
    * MAXNPS=MAXNP* (MAXNP+1)/2, MAXALS=MAKALT* (MAXALT+1)/2,
    * MAXSTK=5*MAXNP*MAXNP+6*MAXNP+MAXALT*HAXALT+8*MAXALT)
C
```

REAL: 8 PARM (MAXNP), GRAD (MAXNP) , HESS (MAXNP, MAXNP),

* GRAD2 (MAXNP) , SCRA (MAXNP, MAXNP) , MBHHH (MAXNPS) , HESS2 (MAXNPS),
* THETA (MAXLIM, MAXBRA), TAU (MAXLIM)。
* WORK (MAXNP) , ZBAR (MAXNP), ZIZBAR (MAXALT, MAXNP),
* HINV (MAXNP, MAXNP) , AAUX (MAXNP, MAXALT) , BAUX (MAXALT, MAXALT),
* SCRAUX (MAXNP, MAXALT) , QAUX (MAXALT)

REAL* 8 EXB (MAXALT), EZG (MAXALT) , EYA (MAXLIM),
EINC2 (MAXLIM, MAXERA) ,EINCI (MAXLIM),

* \quad XB(MAXALT), ZG (MAXALT), YA (MAXLIM),
* INC2 (MAXLIM, MAXBRA), INCI (MAXLIM),
* DER2B (MAXLIM, MAXBRA, MAXNP) , DER1B (MAXLIM, MAXNP),
* DER2T (MAXLIM, MAXBRA, MAXTH) ,DERIT (MAXLIM, MAXTH) .
* DERIU (MAXLIM, MAXTAU)

REAL* 8 PMASKY (MAXNXD, MAXALT) , PMASKD (MAXALT), PDUMMY (MAXALT) , PNAME (MAXNP) , NDUMMY (MAXALT) ,

* PROB1 (MAXALT) , PROB2 (MAXALT) , PROBS (MAXALT) .
* DERIV1 (MAXALT, MAXALT) ,DERIV2 (MAXALT, MAXALT) ,
* PSUMI (MAXALT), Q3 (MAXALT),
* BSUM2 (MAXLIM, MAXBRA), Q2 (MAXLIM, MAXBRA)

REAL* 4 DATAI (MAXALT, MAXNXY, HAXOBS) , DATA2 (MAXNXD, MAXOBS) ,

* PSHARE (MAXALT, MAXOBS) , PROBFR (MAXFRA),
* PROB (MAXALT) , FREQ (MAXALT) , ACT1 (MAXALT) , ACT2 (MAXALT, MAXALT) ,
* ELAS (MAXALT, MAXALT, MAXNXR) ,ELAS2 (MAXALT, MAXALT, MAXNXR)

INTEGER MAP (MAXALT, MAXLEV) ,MAPLEN (MAXNXM) ,MAPTR (MAXNXM, MAXALT) ,

* MS3 (MAXLIM, MAXBRA), IAKTIV (MAXFRA), JAKTIV (MAXALT),
* NCT1 (MAXALT) ,NCT2 (MAXALT, MAXALT),
* IP1 (MAXLIM), IP2 (MAXLIM, MAXBRA),
* ACTTAU (MAXLIM) , ACTTH (MAXLIM, MAXBRA)

REAL * 4 FCNTR $(20,20)$
LOGICAL*1 $\operatorname{PCNTR}(20,20)$
LOGICAL LEVEL1,LEVEL2, LMAP (MAXNXM,MAXALT) ,STDDUM, NOALT, NOAGE,

* STDUMA,STDUMD, NALSTD,NAGSTD,NALTRE,NAGTRE, UNCON

CHARACTER*21 VERSIO
CHARACTER*20 TRFILE
C

```
COMMON / BSTACK / AINT(MAXSTK)
COMMON / BPRINT / IPT,NPRINT,NDIG,NPUNCH
COMMON / DPARM / NP,PARM,GRAD,HESS
COMMON / DIMEN / NALT,NALT1,NX,NXD,NXA,NXR,MXA,MTH,MTAU,NOBS
COMMON / DDISS / LOCTAU(MAXTAU),LOCLIM (MAXTH), LOCBRA (MAXTH),
*
    COMMON / DATAX / DATAI
    COMMON / DATAY / DATA2
    COMMON / DCOVM / MBHHH
    COMMON / DHESS / HESS2
    COMMON / DCONT / EXB,EZG,EYA,EINC2,EINC1,
        XB,ZG,YA,INC2,INC1,
        DER2B,DER1B,DER2T,DER1T,DER1U,
        ZBAR,ZIZBAR,UPP,LOW,
        MS3K (MAXTH) ,ML3K (MAXTH) ,MS2K (MAKLIM)
    COMMON / DSSQD / PROB1,PROB2,DERIV1,DERIV2
    COMMON / DCNTR / FCNTR,PCNTR
    COMMON / DMAIN / KANAL5,LEVCHG,PNAME,NTAU1,NTH1,NXA2.
*
                                NALTFR,PROBFR,IAKTIV,JAKTIV,
```

```
* NCT1,NCT2,ACT1,ACT2,IP1,IP2,ACTTAU,ACTTH,
*
GRAD2,SCRA,PSHARE,ELAS,ELAS2,PROB,FREQ
    COMMON / DWORK / WORK,PROBS
    COMMON / DELAS / PSUM1,PSUM2,Q2,Q3
    COMMON / DTREE / NTH,NTAU,THETA,TAU,LEVEL1,LEVEL2
    COMMON / DMAPP / NXM,MAP,MAPLEN,MAPTR,PMASKY,PMASKD,LMAP
    COMMON / DDUMM / STDDUM,STDUMA,STDUMD,NDUNA,NDUMD.
        NOALT, NOAGE, INDAGE (MAXNXD,MAXALT),
        NALSTD,NALTRE,NAGSTD,NAGTRE
    COMMON / DCONST / UNCON,PDUMMY,NDUMMY
    COMMON / DWESML / RELSIZ,WEIGHT(MAXALT)
    COMMON / DWESTK / HINV,AAUX,BAUX,QAUX,SCRAUX
C
C
C
C
C
    CALL START(NPRINT,KANAL5,KANAL6,UPP,LOW,VERSIO)
    WRITE (KANAL6,1) VERSIO
    FORMAT(//' GQTREE [VERSION ',A21,']'
    * /' =========================================='
    * //' ENTER TREE-INPUT-FILE >')
    READ (KANAL5,'(A20)') TRFILE
C
c
C
    OPEN (UNIT=20,STATUS='OLD',FILE=TRFILE)
c
C
    READ (20,*) NALT,NALTFR,RELSIZ
    NALT1=NALT-1
    IF (NALT.GE.NALTFR) GOTO 5
        READ (20,*) (IAKTIV(I),I=1,NALTFR)
        READ (20,*) (PROBFR(I),I=1,NALTFR)
        REAS (20,*) (JAKTIV (J),J=1,NALT)
    IF (RELSIZ.GT.O.0) THEN
    READ (20,*) (WEIGHT(I),I=1,NALT)
    ELSE
    DO 6 I=1,NALT
        WEIGHT(I)=1.0
    END IF
    READ IN NUMBER OF EXOGENOUS VARIABLES
    READ (20,*) NX,NXD,NXM ,NXA
    NXR=NX+NXD
    NXA2=NXA
    IF ( (NXA.GE.2.AND.NXM.EQ.0) .OR. NXA.LE.-2)
    * WRITE (KANAL6,*) 'WARNING: CONFLICTING CHOICE OF NXA AND NXM'
    UNCON=.TRUE.
    IF (NXA.EQ.-1) THEN
                                NXA=0
                                UNCON=.FALSE.
```

END IF
C
C SWITCHES FOR DUMMIES
C
STDDUM=. $F A L S E$.
IF (NXA.EQ.O) THEN
NO PURE DUMMIES TO BE ESTIMATED NOALT: = TRUE. NALTRE=.TRUE. NALSTD=. TRUE . STDUMA=.FALSE. NDUMA $=0$
ELSE
NOALT=.FALSE.
IF (NXA.GE.2) THEN
PURE TREE-DUMMIES
NALTRE=,FALSE. NALSTD=.TRUE. STDUMA=. FALSE. NDUMA $=$ NXM $\mathrm{NXA}=1$
ELSE
PURE STD.-DUMMIES STDDUM=.TRUE. STDUMA=.TRUE. NALSTD=. FALSE. NALTRE=.TRUE. NDUMA $=$ NAL,T1
END IF
END IF
IF (NXD.EQ.0) THEN
NO AGENT-SPECIFIC VARIABLES PRESENT
NOAGE=.TRUE.
NAGTRE=.TRUE.
NAGSTD=.TRUE.
STDUMD=.FALSE.
NDUMD $=0$
ELSE
NOAGE=.FALSE.
IF (NXM.GT.O) THEN
AGENT SPEC.VAR. * TREE-DUMMIES
NAGTRE=.FALSE.
NAGSTD=.TRUE.
STDUMD = . FALSE. NDUMD $=$ NXM
ELSE
AGENT SPEC.VAR. * STD.-DUMMIES STDDUM=.TRUE. STDUMD=.TRUE. NAGSTD=. FALSE. NAGTRE=.TRUE. NDUMD $=$ NALT1

END IF
END IF

```
C
C INDEX FOR AGENT SPECIFIC VARIABLES IN PARM-VECTOR
C
1 0
C
C READ IN MAP OF TREE-DUMMIES, IF ANY
C
    IF (NXM.EQ.O) GOTO 12
DO 11 I=1,NALT
    READ (20,*) (MAP (I,K),K=1,3)
C
C READ IN TREE STRUCTURE
C
12 READ (20,*) NL1
    READ (20,*) (NL2 (I),I=1,NL1)
    DO 13 I1=1,NL1
    ML2=NL2 (I1)
    READ (20,*) (NL3(I1,I2),I2=1,ML2)
    READ (20,*) NTAU,NTAU1,(LOCTAU(J), J=1,NTAU+NTAU1)
    READ (20,*) NTH ,NTH1 ,(LOCLIM(J),LOCBRA(J),J=1,NTH +NTH1 )
    READ IN INITIAL VALUES
C
C
    N1=NX+NXD*NDUMD+NXA*NDUMA+NTH+NNH1+NTAU+NTAU1
    IF (.NOT.UNCON) N1=N1+NALT1
    DO 15 I=1,N1
        READ (20,16,END=17) PNAME(I),PARM(I)
        FORMAT(A8,F15.9)
        CONTINUE
15
C
1 7
C
C
C
20 IF (UNCON) GOTO 29
N1=NX+NXD*NDUMD
DO 22 I=1,NALT1
    PDUMMY (I)=PARM (N1+I)
    NDUMMY (I)=PNAME (N1+I)
N2=N1+NNH+NTAU+NTH1+NTAU1
DO 24 I=N1+1,N2
    PARM (I)=PARN (NALT1+I)
    PNAME (I)=PNAME (NALT1+I)
24
CONTINUE
C
CLOSE (UNIT=20)
REARRANGE PARM-VECTOR FOR CONSTRAINT ESTIMATION
```

C LEVEL OF TREE
C
LEVCHG=0
3 0
C
C ACTUAL DIMENSIONS OF PROBLEM
C
C
C
C

```
    MXA = NX + NXD*NDUMD
```

 MXA = NX + NXD*NDUMD
 MTH = MXA + NXA*NDUMA
 MTH = MXA + NXA*NDUMA
 MTAU = MTH + NTH
 MTAU = MTH + NTH
 NP = MTAU + NTAU
    ```
    NP = MTAU + NTAU
```

```
    CHECK DIMENSIONS
    IF (NX.GT.MAXNX) THEN
                                WRITE (KANAL6,*) 'NX=',NX,' > MAXNX=',MAXNX
                        GOTO 9959
                        END IF
    IF (NXD.GT.MAXNXD) THEN
                            WRITE (KANAL6,*) 'NXD=',NXD,' > MAXNXD=''MAXNXD
                        GOTO 9999
                                END IF
    IF (NXM.GT.MAXNXM) THEN
        WRITE (KANALG,*) 'NXM=',NXM,' > MAXNXM=',MAXNXM
        GOTO 9999
        END IF
    IF (NTAU.GT.MAXTAU) THEN
        WRITE (KANAL6,*) 'NTAU=',NTAU,' > MAXTAU=',MAXTAU
        GOTO 9999
        END IF
        IF (NTH.GT.MAMTH) THEN
        WRITE (KANAL6,*) 'NTH=',NTH,' > MAXTH=',MAXTH
        GOTO }999
        END IF
    IF (NP.GT.MAXNP) GOTO }999
    IF (NALT.GT.MAXALT) THEN
        WRITE (KANAL6e*) 'NALT=',NALT,' > MAXALT=',MAXALT
        GOTO 9999
        END IF
    IF (NALTFR.GT.MAXFRA) THEN
        WRITE (KANAL6,*) 'WARNING: FRAME TOO LARGE'
        NALTFR=MAXFRA
        END IF
    IF (NLI.GT.MAXLIM) THEN
```

```
WRITE (KANAL6,*) 'NL1=',NL1,' > MAXLIM=',MAXLIM GOTO 9999 END IF
```

 NBRA \(=0\)
 DO 31 I1=1,NL1
 IF (NL2 (I1).GT.NBRA) NBRA=NL2 (I1)
 CONTINUE
 IF (NBRA.GT.MAXBRA) THEN
 WRITE (KANAL6,*) 'NL2=',NBRA,' > MAXBRA=',MAXBRA
 GOTO 9999
 END IF
 C
C INITIALIZE TAU AND THETA ARRAYS
C
DO 32 I1 $=1$: NLI
TAU (II) $=1.0$
ML2=NL2 (II)
DO 32 I2=1,ML2
$\operatorname{THETA}(I 1, I 2)=1.0$
32
C
C
UPDATE FREE DISS. PARAMETERS
CALL UPDATE (PARM,NP,*33)
C
C
C
DD $34 \mathrm{~K}=1, \mathrm{NTHI}$
$\mathrm{KK}=\mathrm{NTH}+\mathrm{K}$
IF (LOCLIM (KK).EQ.0) GOTO 35
THETA (LOCLIM (KK) ,LOCBRA (KK)) $=$ FARM (NP+K)
CONTINUE
MTAU1 $=\mathrm{NP}+\mathrm{NTHI}$
DO $36 \mathrm{~K}=1$, NTAU1
$\mathrm{KK}=\mathrm{NTAU}+\mathrm{K}$
IF (LOCTAU (KK).EQ.O) GOTO 40
TAU (LOCTAU (KK)) = PARM (MTAU1+K)
CONTINUE
C
C
THESE ARRAYS HELP SPEEDING UP THE LOOPS IN CONT
C
$40 \quad I B=0$
$I T=0$
DO 41 I1=1, NLI
START FOR TAU-LOOPS IN CONT
$\operatorname{MS2K}(\mathrm{II})=\mathrm{IB}$
$I B=I B+N L 2$ (II)
DO $42 \mathrm{~K}=1$.NTAU
DERIU $(I 1, K)=0 . D 0$
DO $43 \mathrm{~K}=1$, NTH
DER1T $(I 1, K)=0 . D 0$
DO 41 I2=1, NL2 (II)
C START FOR THETA-LOOPS IN CONT
MS3 (I1, I2) =IT
$I T=I T+N L 3(I 1, I 2)$

DO $41 \mathrm{~K}=1, \mathrm{NTH}$
DER2T (I1,I2,K) =0.DO
41
DO $44 \mathrm{~K}=1, \mathrm{NTH}$
NT11=LOCLIM (K)
NT12=LOCBRA (K)
C START FOR THETA-LOOPS
MS3K (K) =MS3 (NT11, NT12)
C LENGHT OF THETA-LOORS
44 ML3K (K) =NL3 (NT11, NT12)
C
c
c
DRIVER CALLS SUPERVISOR SUBROUTINE

CALL TASKS (PARM,GRAD,HESS,NP)
C
C
C
NORMAL EXIT

IF (LEVCHG.EQ.O) STOP
C
C

C
C
C
C
USEFUL FOR LEVELWISE ESTIMATION AND FREEZING OF DISS. PARMS
C
200 WRITE (KANAL6,251)
251 FORMAT (/' ENTER NEW NTH, NTH1 >')
READ (KANAL5,*) NTH,NTH1
IF (NTH+NTH1.EQ.O) GOTO 250
C
IF (NTH.EQ.O) GOTO 265
WRITE (KANAL6,261)
261 FORMET(' ENTER NEW LIMB, BRANCH-LOCATIONS FOR FREE THETA''S >')
READ (KANAL5,*) (LOCLIM (I), LOCBRA (I), I=1,NTH)
WRITE (KANAL6,*) 'INDEX AND INITIALVALUES OF FREE THETA''S:'
DO 262 I=1,NTH
WRITE (KANAL6, 209) I, PNAME (MTH+I), PARM (MTH+I)
C
265 IF (NTH1.EQ.O) GOTO 270
WRITE (KANAL6,266)
266 FORMAT(' ENTER NEW LIMB,BRANCH-LOCATIONS FOR CONSTR. THETA''S >')
READ (KANAL5,*) (LOCLIM (I), LOCBRA (I), I=NTH+1,NTH+NTH1)
WRITE (KANAL6,*) 'INDEX AND INITIALVALUES OF CONSTR. THETA''S:'
DO 267 I =NTH $+1, N T H+N T H 1$
WRITE (KANAL6,209) I, PNAME (MTH+I), PARM (MTH+I)
WRITE (KANAL6, 221)
READ (KANAL5,*) K,ANAME,APARM
IF (K.EQ.O) GOTO 250
PNAME $($ KTH $+K)=$ ANAME
PARM ($\mathrm{MTH}+\mathrm{K}$) =APARM
GOTO 270
C

```
250 WRITE (KANALG, 205)
205 FORMAT(/' ENTER NEW NTAU, NTAU1 >')
    READ (KANAL5,*) NTAU,NTAU1
    IF (NTAU+NTAU1.EQ.O) GOTO 290
209 FORMAT(I3,': ',A8,' = ',F9.4)
C
    IF (NTAU.EQ.O) GOTO 215
    WRITE (KANAL6,211)
211 FORMAT(' ENTER NEW LIMB-LOCATIONS FOR FREE TAU''S >')
    READ (KANAL5,*) (LOCTAU(I), I=1,NTAU)
    WRITE (KANAL6,*) 'INDEX AND INITIALVALUES OF FREE TAU''S:'
    MTAU=MTH+NTH
    DO 212 I=1,NTAU
212 WRITE (KANAL6,209) I,PNAME(MTAU+I),PARM(MTAU+I)
C
215 IF (NTAU1.EQ.O) GOTO 220
    WRITE (KANAL6,216)
216 FORMAT(' ENTER NEW LIMB-LOCATIONS FOR CONSTRAINT TAU''S >')
    READ (KANAL5,*) (LOCTAU (I),I=NTAU+1,NTAU+NTAU1)
    WRITE (KANALG,*) 'INDEX AND INITIALVALUES OF CONSTRAINT TAU''S:'
    DO 217 I=NTAU+1,NTAU+NTAU1
217 WRITE (KANAL6,209) I.PNAME(MTAU+I),PARM (MTAU+I)
C
220 WRITE (KANAL6,221)
221 FORMAT(' ENTER INDEX, NEW NAME, AND NEW INITIALVALUE FOR CHANGE'
    * ,' (ZEROES IF OK) >')
    READ (KANAL5,*) K,ANAME, APARM
    IF (K.EQ.O) GOTO 290
        PNAME (MTAU+K) =ANAME
        PARM (MTAU+K)=APARM
        GOTO 220
C
290 GOTO 30
C
C ERROR EXIT
C
9999 WRITE (KANAL6,*) 'ERROR: ACTUAL DIMENSIONS EXCEED MAXIMUM'
9998 FORMAT(/' NUMBER OF PARAMETERS : '
    * /' NX+(NXD*NDUMD) + (NXA*NDUMA) +NTH+NTAU = NP'
    * / 1X,I2,15,3I6,3I5)
    WRITE (KANAL6,9998) NX,NXD,NDUMD,NXA,NDUMA,NTH,NTAU,NP
    STOP
    END
    SUBROUTINE TASKS (PARM,GRAD,HESS,NP)
```



```
C
C SUPERVISOR PRDGRAM FOR THE TASKS OF GQTREE.
C
C AXEL BOERSCH-SUPAN VERSION MARCH 22, 1984
C
C NOTE: DYNAMIC DIMENSION NP FOR USE IN GQOPT-ROUTINES.
C
C
```

IMPLICIT REAL＊8（A－H，O－Z）
REAL＊8 PARM（NP），GRAD（NP）．HESS（NP，NP）

```
PARAMETER
```

- (MAXOBS $=2001$,
- MAXNP $=50$.
* MAXTH $=10$,
* MAXTAU $=5$,
* MAXNX $=10$.
* MAXNXD $=5$,
* HAXNXM $=20$.
* HAXLEV $=3$,
* MAXLIM $=5$,
* MAXBRA $=5$,
* MAXALT $=20$,
* MAXFRA $=61$,
* MAXNXY =MAXNX+1, MAXNXR=MAXNX+MAXNXD,
* MAXNPS $=$ MAXNP* $($ MAXNP +1$) / 2$,
* MAXDA1=MAXALT*MAXNXY*MAXOBS, MAXDA2=MAXNXD*MAXOBS)
REAL* 8 WORK (MAXNP) ,SCRA (KAXNP, MAXNP) ,
* MBHHH (MAXNPS) , THETA (MAXLIM, MAXBRA) , TAU (MAXLIM),
* PMASKY (MAXNXD, MAXALT) , PMASKD (MAXALT),
* GRAD2 (MAXNP) , PROBS (MAXALT) , PDUMMY (MAXALT)
REAL* 4 DATA1 (MAXALT, MAXNXY, MAXOBS) , DATA2 (MAXNXD, MAXOBS) ,
FDATA1 (MAXDA1) , FDATA2 (MAXDA2),
PSHARE (MAXALT, MAXOBS) , PROBFR (MAXFRA),
ELAS (MAXALT , MAXALT, MAXNXR) , ELAS2 (MAXALT, MAXALT , MAXNXR),
 * PROB (MAXALT) , FREQ (MAXALT) , CH,
 * ACT1 (MAXALT) , ACT2 (MAXALT, MAXALT)
INTEGER MAP (MAXALT, MAXLEV), MAPLEN (MAXNXM) ,MAPTR (MAXNXM, MAXALT) 。
* NLMST (5) , NCTI (MAXALT) ,NCT2 (MAXALT, MAXALT),
* IP1 (MAXLIM), IP2 (MAXLIM, MAXBRA),
* IAKTIV (MAXFRA), JAKTIV (MAXALT),
* ACTTAU (MAXLIM) , ACTTH (MAXLIM, MAXBRA)
LOGICAL LEVEL1,LEVEL2,LMAP (HAXNXM,MAXALT),
* STDUMA,STDUMD,STDDUM, NOALT,NOAGE, UNCON,
* NALSTD,NALTRE,NAGSTD,NAGTRE

REAL＊8 PNAME（MAXNP），NDUMMY（MAXALT），BLANK／8H／
CHARACTER＊1 TR1（100），TR2（100），TR3（100），TR7（100），TR8（100），TR9（100），

CHARACTER』8 MENAME (7)/'DA.FL.PO', QUADHILL', BHHH-COV'.'SIMP-COV',

* 'SYMM-COV'.'ANAL-COV'.'ADJUSTED'/.
* SUMME/'SUM '/
CHARACTER* 14 CHVER (5)/'FLETCHER ', DFP-ORIGINAL \cdot
* 'BROYDEN '. 'RANK-1-CORR. ',
*

CHARACTER* 5
CHARACTER* 4 CHDIF2 (4)/'BHHH','SIMP','SYMM'。'MNL '/
CHIST ($0: 3$)/'NONE ', 'DLNSR', 'LNSR ', 'STRCH'/
CHARACTER*8 CHSTOP (0:1)/'ENABLED ','DISABLED'/
CHARACTER* 18 CWESML (2)/' '.' (WESML-WEIGHTED)'/

```
    CHARACTER*20 TITLE,EMPTY/' '/
    CHARACTER*4 DASH4(MAXALT)/MAXALT*'----'/
    CHARACTER*7 DASH7(MAXALT)/MAXALT*'-------'/
C
C
    COMMON / DIMEN / NALT,NALT1,NX,NXD,NXA,NXR,MXA,MTH,MTAU,NOBS
    COMMON / DDISS / LOCTAU(MAXTAU),LOCLIM (MAXTH),LOCBRA(MAXTH),
    * NLI,NL2 (MAXLIM) ,NL3 (MAXLIM,MAXBRA)
    COMMON / DATAX / DATAI
    COMMON / DATAY / DATA2
    COMMON / DCOVM / MBHHH
    COMMON / DMAIN / KANAL5,LEVCHG,PNAME,NTAU1,NTH1,NXA2,
    * NALTFR,PROBFR,IAKTIV,JAKTIV,
    NCT1,NCT2,ACT1,ACT2,IP1,IP2,ACTTAU,ACTTH,
    GRAD2,SCRA,PSHARE,ELAS,ELAS2,PROB,FREQ
    * COMMON / DWORK / WORK,PROBS
    COMMON / DTREE / NTH,NTAU,THETA,TAU,LEVEL1,LEVEL2
    COMMON / DMAPP / NXM,MAP,MAPLEN,MAPTR,PMASKY,PMASKD,LMAP
    COMMON / DDUMM / STDDUM,STDUMA,STDUKD,NDUMA;NDUMD,
    * NOALT,NOAGE,INDAGE (MAXNXD,MAXALT),
    * NALSTD,NALTRE,NAGSTD,NAGTRE
    COMMON / DIFF2 / IDIFF2
    COMMON / DCONST / UNCON,PDUMMY,NDUMMY
    COMMON / DWESML / RELSIZ,WEIGHT(MAXALT)
C
    EXTERNAL FUNC,GRADX,DFP,SSQDEV
C
    EQUIVALENCE (DATA1,FDATA1), (DATA2,FDATA2)
C
C *** INITIALIZATIONS ***
C
    ISTRUC=0
    ISHARE=0
    ICOVAR=0
    IDATA=0
    IF (LEVCHG.EQ.1) THEN
                IDATA=1
                LEVCHG=0
                END IF
C
C *** ECHO TREE STRUCTURE, PARAMETER LAEELS, INITIALVALUES ***
C
940 WRITE (KANAL6,*) 'ENTER TREE-OUTPUT-FILE >'
    READ (KANAL5,'(A20)') TITLE
    IF (TITLE.EQ.EMPTY) TITLE='OUTPARMS'
```

```
9401 OPEN (UNIT=19,STATUS='NEW',FILEE=TITLE,ERR=9402)
    GOTO 9405
9402 OPEN (UNIT=19,STATUS='OLD',FILE=TITLE)
    CLOSE(UNIT=19,STATUS='DELETE')
    GOTO 9401
C
9 4 0 6 ~ F O R M A T ( 8 ( 1 2 I 6 ~ / ) ) ~
9407 FORMAT (8(12F6.3/))
9410 FORMAT(25I3)
9411 FORMAT(2I3,F10.6)
C
9405 WRITE (19,9411) NALT,NALTFR,RELSIZ
    IF (NALT.GE.NALTFR) GOTO 9420
    URITE (19.9406) (IAKTIV(I),I=1,NALTFR)
    WRITE (19,9407) (PROBFR(I),I=1,NALTFR)
    WRITE (19,9410) (JAKTIV(J),J=1,NALT)
9420 IF (RELSIZ.EQ.O.う) GOTO 9440
    WRITE (19,9407) (WEIGHT(I),I=1,NALT)
C
9440 WRITE (19,9410) NX,NXD,NXM,NXA2
        IF (NXM.EQ.O) GOTO 9442
        DO 9441 I=1,NALT
9441 WRITE (19,9410) (MAP(I,K),K=1,3)
C
9442 WRITE (19,9410) NL1
    WRITE (19,9410) (NL2(I),I=1,NL1)
    WRITE (KANALL,942) NALT,NL1,(NL2(I),I=1,NL1)
    WRITE (KANAL6,943)
942 FORMAT(
    *//' HIERARCHICAL CHOICE TREE WITH ',I2,' ALTERNATIVES:'
    * /, ----------------------------------------------------------
    * /' THE STEM HAS',I2,' LIMBS, EACH HAS'/9I3)
943 FORMAT(' BRANCHES, WHICH HAVE THE FOLLOWING TWIGS :')
    DO 941 I1=1,NL1
        ML2=NL2(I1)
        WRITE (19,9410) (NL3(I1,I2),I2=1,ML2)
941 WRITE (KANAL6,944) (NL3(I1,I2),I2=1,ML2)
944 FORMAT(' '.5I3)
        WRITE (19,9410) NTAU,NTAU1,(LOCTAU(J), J=1,NTAU+NTAU1)
        WRITE (19,9410) NTH ,NTH1 ,(LOCiIM(J),LOCBRA(J),J=1,NTH+NTH1)
        WRITE (KANAL6,945) NTAU,(LOCTAU(J),J=1,NTAU)
        WRITE (KANAL6,946) NTH ,(LOCLIM(J),LOCBRA (J),J=1,NTH)
        WRITE (KANAL6,947) NTAU1, (LOCTAU (J),J=NTAU+1,NTAU+NTAU1)
        WRITE (KANALG,948) NTH1 , (LOCLIM(J),LOCBRA(J),J=NTH+1,NTH+NTH1)
945 FORMAT(/I3,' FREE TAU''S':,' AT ', 5('(',I1,')':))
946 FORMAT( I3,' FREE THETA''S':,' AT ',10('(',II,',',II,')':))
947 FORMAT( I3,' CONSTRAINT TAU''S':,' AT ', 5('(',I1,')':))
948 FORMAT( I3,' CONSTRRAINT THETA''S':,' AT ',10('(',I1,',',I1,')':))
C
C ACTIVE (= FREE AND EQUALITY CONSTRAINT) DISS. PARAMETERS
C
    DO 9750 II=1.NL1
    ACTTAU(II)=0
    DO 9750 I2=1,NL2(I1)
```

```
9750
C
    DO 9751 K=1,NTH
9751 ACTTH(LOCLIM (K), LOCBRA (K))=1
    DO 9752 K=NTH+1,NTH+NTH1
    ACTTH(LOCLIM (K) , LOCBRA (K)) =2
9752
C
    DO 9755 K=1,NTAU
9755 ACTMAU (LOCTRU (K))=1
9756 ACTMAU (LOCTAU(K))=2
C
C PAINT THE TREE
C
    IC=0
    I=0
    IP1(1)=2
    IP2 (1,1)=2
    DO 9700 I1=1,NL1
        IF (II.EQ.1) GOTO 9701
        IC=IC+1
        TR7 (IC) = BL
        TR8 (IC) = BL
        TR9(IC)=BL
        IC=IC+1
        TR7 (IC) = BL
        TR8 (IC)=BL
        TR9(IC)=VB
        IP1 (I1) =IC+2
9701 ML2=NL2(I1)
    DO 9700 I2=1,ML2
        IC=IC}+
        TR7 (IC) = BL
        TR8(IC)=BL
        TR9 (IC) = BL
        IF (I1.NE.1.OR.I2.NE.1) IP2(I1,I2)=IC+1
        ML3=NL3(I1,I2)
        00 9700 I3=1,ML3
            I=I+1
            IN=MOD(I, 10)
            IC=IC+1
            TR7(IC)=CR
            TR8 (IC)=VB
            TRO (IC)=DG(IN)
            CONTINUE
    IFINIS=IC
C
    WRITE (KANAL6,9790) CR
9790 FORMAT(//' STRUCTURE : ',A1,' (F,C DENOTE DISS. PARAMETERS)')
    WRITE (KANAL6,9791) VB
    FORMAT(14X,100A1)
C
    IEND=IP1 (NLS1)
    DC 9710 IC=2,IEND
```

```
    TR1 (IC) =DA
    TR2 (IC) = BL
    TR3 (IC)=BL
    CONTINUE
    DO }9715\mathrm{ II=1,NL1
    IC=IP1(II)
    TR1 (IC)=CR
    TR2 (IC)=VB
    TR3 (IC) =VB
    IF (ACTTAU (II).EQ.1) TR3(IC) =FK
    IF (ACTTAU (I1).EQ.2) TR3(IC)=CK
    CONTIKUE
    WRITE (KANAL6.9791) (TRI(IC),IC=2,IEND)
    ERI币E (KANAL6,9791) (TR2(IC),IC=2,IEND)
    WRITE (KANAL6,9791) (TR3(IC),IC=2,IEND)
C
9 7 2 0
9725
9729
    WRITE (KANAL6,9791) (TRI(IC),IC=2,IEND)
    WRITE (KANAL6,9791) (TR2(IC),IC=2,IEND)
    WRITE (KANAL6,9791) (TR3 (IC),IC=2,IEND)
C
    WRITE (KANAL6,9792) (TR7(IC),IC=1,IFINIS)
    WRITE (KANAL6,9792) (TR8(IC),IC=1,IFINIS)
    WRITE (KANAL6,9793) (TR9(IC),IC=1,IFINIS)
9792
    FORMAT(13X,100A1)
9793 FORMAT(' CLUSTERING :',100A1)
    WRITE (KANAL6,'(A1)') BL
C
    IF (LEVEL2) THEN
    IF (LEVEL1) THEN
                WRITE (KANAL6**) 'TREE IS COLLAPSED TO ONE LEVEL'
                ELSE
                WRITE (KANAL6,*) 'TREE IS COLLAPSED TO TWO LEVELS'
                END IF
```

ELSE
WRITE (KANAL6,*) 'THIS IS A FULL THREE LEVEL TREE' END IF
C
C DISPLAY OF ALTERNATIVES AND DUMMIES

WRITE (KANAL6,9800)
9800 FORMAT(/' ALTERNATIVES AND DUMMIES:'

* /' INDEX LABEL LIMB BRANCH TWIG'/)

DO $9801 \mathrm{I}=1$,NALT
IF (.NOT.UNCON) ANAME=NDUMMY (I)
IF (UNCON.AND.NXA.NE.1) ANAME=BLANK
IF (UNCON.AND.NXA.EQ.1) ANAME=PNAME (MXA+I)
IF (I.EQ.NALT) ANAME=BLANK
WORK (1) = BLANK
WORK (2) =BLANK
WORK (3) = BLANK
IF (NXM.EQ.O) GOTO 9801
IF (MAP (I, 1).GT.0) WORK (1)=PNAME (NX+MAP (I, 1))
IF (MAP (I, 2).GT.0) WORK (2) =PNAME (NX $+\operatorname{MAP}(1,2)$)
IF (MAP (I, 3).GT.0) $\operatorname{WORK}(3)=\operatorname{PNAME}(N X+\operatorname{MAP}(I, 3))$

9801
9805
C
C
C
WRITE (KANAL6, 9805) I,ANAME, (WORK (J), J=1,3)
FORMAT (1X, I3, 4X, A8, 2X, A8, 2X, A8, 2X, A8)
NUMBER AND INITIALVALUES OF PARAMETERS
WRITE (KANAL6,951) NX,NXD, NDUMD, NXA, NDUMA, NTH,NTAU,NP

/' NX+(NXD*NDUMD) + (NXA*NDUMA) +NTH+NTAU = NP'
/ 1X,I2,I5,3I6,3I5
//' INITIALVALUES :'/' ------------------')
DO $952 \mathrm{I}=1$,NP
WRITE (KANAL6,953) PNAME(I),PARM(I)
CONTINUE
FORMAT(' ',A8,F15.9)
IF (UNCON.AND.NTAU1+NTH1.EQ.O) GOTO 9620
WRITE (KANALG,955)
FORMAT(//' CONSTRAINT :'/' ------------')
IF (UNCON) GOTO 957
DO $956 \mathrm{I}=1$, NALT1
WRITE (KANAL6,953) NDUMMY (I) ,PDUMMY (I)
CONTINUE
$\mathrm{N} 1=\mathrm{NP}$
IF (.NOT.UNCON) N1=N1+NALT1
DO $958 \mathrm{I}=1, \mathrm{NTH} 1$
$\mathrm{KK}=\mathrm{NTH}+\mathrm{I}$
WRITE (KANAL6,953) PNAME (N1+I), THETA (LOCLIM (KK), LOCBRA (KK))
CONTINUE
DO 959 I=1,NTAU1
$\mathrm{KK}=\mathrm{NTAU}+\mathrm{I}$
WRITE (KANAL6,953) PNAME (NI+NTH1+I), TAU (LOCTAU (KK))
CONTINUE

C MAPS FOR INDICES OF NON-STANDARD DUMMIES:
c
c
DO $9621 \mathrm{~K}=1$, NXM
MAPLEN (K) $=0$
DO $9625 \mathrm{I}=1$, NALT
M1 $=\operatorname{MAP}(1,1)$
$M 2=\operatorname{MAP}(1,2)$
$M 3=M A P(I, 3)$
IF (M1.NE.O) THEN
MAPLEN (M1) =MAPLEN (M1) +1
$\operatorname{MAPTR}\left(\operatorname{M1}, \operatorname{MAPLEN}\left(\mathrm{M}_{1}\right)\right)=\mathrm{I}$
END IF
IF (M2.NE.0) THEN
MAPLEN (M2) =MAPLEN (M2) +1
MAPTR (M2, MAPLEN (M2)) $=1$
END IF
IF (H3.NE.O) THEN
MAPLEN (Mi3) =MAPLEN (M3) +1
MAPTR (M3, MAPLEN (M3)) $=1$
END IF
DO $9625 \mathrm{~K}=1$, NXM
IF (K.EQ.M1 .OR. K.EQ.M2 .OR. K.EQ.M3) THEN
$\operatorname{LMAP}(\mathrm{K}, \mathrm{I})=. \operatorname{TRUE}$.
ELSE
LMAP (K, I) =. FALSE.
END IF
9625
CONTINUE
C
C FINISHED WITH PRELIMINARY WORK ON TREE-SPECIFICATION
c
969 ISTRUC=1
c
C *** DATA AND NUMBER OF OBSERVATIONS ***
C
900 IF (IDATA.EQ.1) GOTO 920
CALL INDATA (KANAL5, KANAL6)
C
NOBS $1=$ NOBS +1
IWESML=1
903 WRITE (KANAL6,904) NOBS, NALT,CWESKL (IWESML)
904 FORMAT ($/$ ' IDCASE $=1,15, '$, IDALT $=1.14$,
* /, SAMPLE FREQUENCIES AND MEANS : '.A18

| | |
| :---: | :---: |
| | DO $905 \mathrm{I}=1, \mathrm{NALT}$ |
| 906 | WRITE (KANAL6,911) DATAi ($1,1, \mathrm{NOBS1)}$, |
| | (DATA1 ($1, \mathrm{~J}+1, \mathrm{NOBS1)}, \mathrm{~J}=1, \mathrm{NX}$) . |
| | * (DATA2 (J,NOBS1), J=1,NXD) |
| 911 | FORMAT(' ',F6.4,12F10.4) |
| C | |
| | IF (RELSIZ.EQ.O.0 .OR. IWESML.EQ.2) GOTO 920 |
| C | |
| | IWESML=2 |
| | NOBS $1=\mathrm{NOBS}+2$ |
| | GOTO 903 |
| C | |
| 920 | IDATA=1 |
| | NOBS $1=$ NOBS +1 |
| C | |
| C *** | MENU **** |
| C | |
| 1 | WRITE (KANAL6,3) |
| 3 | FORMAT(/' HIT ENTER FOR MENU, 7 FOR STOP > ${ }^{\prime}$) |
| | READ (KANAL5,4) MENU |
| 4 | FORMAT (II) |
| | IF (MENU.NE.O) GOTO 8 |
| | WRITE (KANAL6,2) , |
| 2 | FORMAT(' SELECT FROM THE MENU :' |
| | * /' 1=ESTIMATION, 2=PREDICTION, 3=ELASTICITIES, 4=COVARIANCE,' |
| | * /' 5=LEVEL CHANGE, 6=DERIVATIVE CHECK, 7=STOP, 8=PRINT DATA,' |
| | * /' 9=LM-TEST, 10=TRANSFORM, 11=PLOT, 12=AIRUM, 13=SELECT DATA,' |
| | * /' $14=$ ADJUST SHARES > ${ }^{\prime}$) |
| | READ (KANAL5,*) MENU |
| 8 | GOTO ($100,200,300,400,9,500,99,600,700,780,650,790,620,800)$, MENU |
| C | $\left(\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 13\end{array}\right.$ |
| 5 | WRITE (KANAL6,6) |
| 6 | FORMAT(' IMPROPER ORDER OF OPERATIONS') |
| 7 | FORMAT(' INPUT ERROR') |
| | GOTO 1 |
| 9 | LEVCHG=1 |
| | GOTO 99 |
| C | |
| C *** | TASKS OF GQTREE *** |
| C | |
| C | **かt************** |
| C | * ESTIMATION * |
| C | ****************** |
| C | |
| C** | ITERATION PARAMETERS ** |
| C | |
| 100 | WRITE (KANAL6,101) |
| 101 | FORMAT (/' TYPE 1 TO OVERRIDE DEFAULT ITERATION PARAMETERS >') |
| | READ (KANAL5,'(II)') IQUERY |
| | IF (IQUERY.EQ.1) GOTO 105 |
| | ITER=NP/4*2 |
| | TOL $=0.001$ |
| | METHOD=2 |

```
        I YER=2
        IF (LEVELi) IVER=1
        IST=1
        IDIFF2=2
        IF (LEVEL1) IDIFF2=4
        ISPD=1
        IF (NP.GE.20) ISPD=2
        ISTOP (1)=0
        ISTOP (2)=0
        ISTOP (3)=1
        GOTO 110
105 WRITE (KANAL6,106)
106 FORMAT(' ITERATION
    * /, : ACCURACY > >
    * /' METHOD : 1 = DFP, 2 = GRADX >'
    * /' VERSION : 1-4 IN DFP, 1-2 IN GRADX >'
    * /' LINE-SEARCH : 0-2 IN DFP, 0-3 IN GRADX >'
    * f' 2ND DERIVATIVES: 1 = BHHH, 2 = SIMPLEE, 3 = SYMM..'
            , 1 4 = MNL >'
            f: : FREQENCY OF UPDATING >'
            /' CONV.-CKITERION: PARM (O=ENABLE,1=DISABLE) >'
            /: : GRAD (0=ENABLE,1=DISABLE) >1
                        - LIKL (0=ENABLE,1=DISABLE) >')
READ (KANAL5,*) ITER,TOL,METHOD,IVER,IST,IDIFF2,ISFD,ISTOP
IF (.NOT.LEVEL1.AND.IDIFF2.EQ.4) THEN
        WRITE (KANALE**) 'NO ANALYTIC 2ND UERIVATIVES IMPLEMENTED'
        IDIFF2=2
        END IF
        IVER2=IVER
        IF (METHOD.EQ.2) IVER2=IVER+C
        WRITE (KANAL6,115) ITER,TOL,MENAME (METHOD),CWESML (IWESML),
    * CHVER(IVER2),CHIST(IST),CHDIF2(IDIFF2),ISPD,
    * CHSTOP(ISTOP(1)),CHSTOP(ISTOP(2)),CHSTOP(ISTOP(3))
115 FORMAM(//' ',68('-')
* /' ITERATION : LIMIT='.I3,', ACCURACY='.F8.6
* /' METHOD : '.A8,A18
* /' VERSION : '.A14
/: LINE-SEARCH : '.A5
/' 2ND DERIVATIVES: 'A4,', UPDATE EVERY',I2,' ITERATION'
    /' CONV.-CRITERION: PARMS=',AB,', GRADIENT=',AB.
                                    '. LOGLIK='.A8
* /e,.68(1m. )
MATPRT=0
NLOOP1=20
    INFLG=0
    MAX=1
    NPSTOP=NP-NTH-NTAU
    IF (METHOD.EQ.1) THEN
                            NQ = NP*NP + 8*NP
                        NPINCH=18
                        NREAD=18
                            OPEN (UNTT=18,STATUS='SCRATCH')
                    SLSE
                        NQ = 4*NP*NP + 5*NP
```

```
                    IF (IVER.EQ.2) NQ = 5*NP*NP + 6*NP
                    END IF
        IF (.NOT.UNCON) NQ = NQ + NALT1*NALT1 + 8*NALT1
C
C** ITERATION **
C
        ITERAL=0
        NEVALF=0
120 CONTINUE
    IF (METHOD.EQ.1)
    * CALL OPT(PARM,NP,XLF, DFP ,ITER,MAX,IER,TOL,FUNC,PNAME)
        IF (METHOD.EQ.2)
        * CALL OPT(PARM,NP,XLF,GRADX, ITER,MAX,IER,TOL, FUNC, PNAME)
        ITERAL=ITERAL+ITERC
        NEVALF=NEVALF+IVALFU
        WRITE (KANALG,122) IER
122 FORMAT(//' *** OPTIMIZATION TEIMINATED *** IER=',I3
    * /' TYPE NR OF MORE ITERATIONS OR O TO STOP >')
        READ (KANAL5,*) IQUERY
        IF (IQUERY.EQ.O) GOTO }14
        ITER=IQUERY
        IF (MENHOD.NE.1) GOTO 120
            CALL PUNCH (PARM,NP)
            REWIND NPUNCH
            INFLG=1
            GOTO 120
C
C ** PRINT PARAMETERS, STD ERRORS AND T-STATS **
C NOTE: COVARIANCE-MATRIX = -INV (HESSIAN)
C
140 IF (IER.GT.O) GOTO 145
C
C RECALCULATE COVARIANCES
C
    MATPRT=2
    IREDO=1
    GOTO 420
C
C USE GQOPT-COVARIANCES
C
145 LK=NP*NP
    CALL OPTMOV (1,HESS,LK)
    CALL OPTMOV (3,GRAD,NP)
    CALL WESML (PARM,GRAD,HESS,NP,SCRA,FUNC)
    ICOVAR=1
C
150 XLFO = NOBS * DLOG(1.DO/DBLE(NALT))
    DOF = NOBS * NP
    AMSQGR = DOTV (GRAD,NP,GRAD)/DOF
    AMSQGR = DSQRT(AMSQGR)
    WRITE (KANAL6,151)
151 FORMAT(' ENTER TITLE >')
    READ (KANAL5,152) TITLE
152 FORMAT (A2O)
```

```
    WRIME (KANAL6,153) MENAME (METHOD)
153
    WRITE (19,180) TITLE,XLF,XLFO,ITERAL,NEVALF,NOBS,IER,
        * AMSQGR,(TRS(IC),IC=1,IFINIS)
        * AMSQGR,(TR9(IC),IC=1,IFINIS)
    WRITE (KANAL5,180) TITLE,XLF,XLFO,ITERAL,NEVALF,NOBS,IER,
    * AMSQGR.(TR9(IC),IC=1,IFINIS)
1 8 0
    FORMAT(/' TITLE : ,A2O
    * /' LOGLIKELIHOOD : ',F10.4
    * /' LOGLIKELIHOOD AT ZERO : 'F10.4
    * /' TOTAL NUMBER OF ITERATIONS : '.I10
    * /' TOTAL NUMBER OF EVALUATIONS: ' I10
    * /' NUMBER OF OBSERVATIONS : '.IIO
    * /' MEAN SQUARE GRADIENT (',I2,'): ',D10.4
    * //' CLUSTERING : ',65A1//)
C.
    IF (MATPRT.EQ.3) GOTO 430
    GOTO 1
C
C
    FORMAT(//' **** OUTPUT OF RESULTS ****'///' ',A8,' ESTIMATE'
    * .' STD-ERR T-STAT'/)
    N1=NP
    IF (.NOT.UNCON) N1=N1+NALT1
    I=0
    DO 160 II=1,N1
        IF (.NOT.UNCON.AND.II.GT.MXA.AND.II.LE.MXA+NAL'I1) GOTO 165
        I=I+1
        ZZZ = - HESS (I,I)
        IF (ZZZ.LE.O.) THEN
                STDERR = 0.0
                    TSTAT = 0.0
                    ELSE
                        STDERR = DSQRT(ZZZ)
                            TSTAT = PARM(I)/STDERR
                            IF (I.GT.MTH) TSTAT=(PARM(I)-1.0)/STDERR
                    END IF
    WRITE (KANAL6,161) PNAME(I),PARM(I),STDERR,TSTAT
    FORMAT(' ',A8,2X,F8.4,2X,F7.3,2X,F7.3)
    WRITE (19,162) PNAME(I),PARM(I),STDERR,TSTAT
    FORMAT (A8,3F15.9)
    GOTO 150
    WRITE (KANAL6,161) NDUMMY(II-MXA), PDUMMY (II-MXA)
    WRITE (19,162) NDUMMY(II-MXA), PDUMMY (II-MXA)
    CONTINUE
    DO 170 I=1.NTH1
        KK=NTH+I
        WRITE (KANAL6,161) PNAME(N1+I),THETA (LOCLIM (KK),LOCBRA (KK))
        WRITE (19,162) PNAME(N1+I),THETA (LOCLIM (KK),LOCBRA (KK))
        CONTINUE
        DO 175 I=1,NTAU1
        KK=NTAU+I
        WRITE (KANAL6,161) FNAME(N1+NTHI+I),TAU(LOCTAU(KK))
        WRITE (19,162) PNAME(N1+NTH1+I),TAU(LOCTAU(KK))
        CONTINUE
```

```
C * PREDICTION SUCCESS TABLE AND PROBABLITY SHARES
C
C
200 IF (IDATA.EQ.O) GOTO 5
    WRITE (KANAL6,202)
202 FORMAT(' TYPE 1 TO CREATE DATA-SET WITH PREDICTED CHOICES >')
    READ (KANAL5,'(I1)') IWRITE
    IF (IWRITE.EQ.1) THEN
        WRITE (KANAL6,203)
    FORMAT(' ENTER NEW DATA-SET NAME >')
    READ (KANAL5,'(A20)') TITLE
    IF (TITLE.EQ.EMPTY) TITLE='PREDICT'
    OPEN (UNIT=9,STATUS='NEW',FILE=TITLE,ACCESS='SEQUENTIAL'
                ,ERR=206)
    GOTO 205
206 OPEN (UNIT=9,STATUS='OLD',FILE=TITIE,ACCESS='SEQUENTIAL')
    CLOSE(UNIT=9,STATUS='DELETE')
    GOTO 204
    CONTINUE
    END IF
    XLFO = NOBS * DLOG(1.DO/DBLE(NALT))
    XLF = 0.DO
    XLP = 0.DO
    PCP = 0.DO
    UTIL = 0.DO
    Z4 = 0.DO
    Z5 = 0.DO
    MFAIL=0
    DO 201 K=1,NALT
        ACT1 (K)=0.0
        PROB (K)=0.0
        FREQ (K) =DATA1 (K,1,NOBS+1) *WEIGHT (K)
        DO 201 J=1,NALT
            ACT2 (K,J) =0.0
C
    NN1=1
    NN2=1
    INCREM=MAXALT*MAXNXY
    DO 210 IOBS=1,NOBS
C
C ACTUAL CHOICE
C
        I=O
        DO 211 II=1,NLI
        ML2=NL2 (I1)
        DO 211 I2=1,ML2
        ML3=NL3(I1,I2)
        DO 211 I3=1,ML3
            I=I+1
            IF (DATA1(I,1,IOBS).EQ.1.0) IC=I
            CONTINUE
        WT=WEIGHT(IC)
C
C PREDICTED CHOICE
```

C

NF=NFAIL
CALL CONT (FDATA1 (NN1) , FDATA2 (NN2) ,
2, PARM, NP, XLFI, WORK, PROBS , NFAIL)
NN1=NN1+INCREM
NN2 $=$ NN2 2 MAXNXD
IF (NFAIL.GT.NF) THEN
WRITE (KANAL6,212) IOBS,IC
FORMAT(' CONT: FAILURE AT IOBS=', I5)
IMAX=IA
GOTO 222
END IF
KLF=XLF+XLFI
UTIL=UTIL+WORK (1) *WT
PMAX $=0$. DO
110221 IA=1,NALT
PIA=PROBS (IA)
PSHARE (IA, IOBS $)=$ PIA
PROB (IA) $=\mathrm{PROB}(I A)+\mathrm{PIA}$ *WT
IF (PIA.LE.PMAX) GOTO 221
$P M A X=P I A$
$I M A X=I A$
CONTINUE
COMPARISON ACTUAL VS. PREDICTED CHOICE
IF (IC.EQ.IMAX) PCP=PCP+WT
ACT2 (IC, IMAX) $=A C T 2(I C, I M A X)+W T$
NCT2 (IC, IMAX) $=$ ACT2 (IC, IMAX) +0.5
ACTI (IMAX) =ACT1 (IMAX) +WT
IF (PMAX.LE.O.DO) GOTO 215
XLP=XLP + DLOG (PMAX) *WT
Z4 $=24$ +PMAX*WT
$\mathrm{Z5}=\mathrm{Z5}+\mathrm{PMAX} / \mathrm{FREQ}($ IMAX) *WT
WRITE DATASET WITH PREDICTED CHOICES
IF (IWRITE.EQ.1) THEN
DO $223 \mathrm{~J}=1$,NALT
IF (J.EQ.IMAX) THEN
$\mathrm{CH}=1.0$
ELSE
$\mathrm{CH}=0.0$
END IF
WRITE (9) CH, (DATAI (J,K+1,IOBS), K=1,NX),
(DATA2 (K,IOBS) , K=1,NXD)
END IF
C
210 CONTINUE
C
IF (IWRITE.EQ.1) CLOSE (UNIT=9)
$P C P=P C P / N O B S * 100.0$
WRITE (KANAL6,230) CWESKL (IWESML), ($J, J=1$, NALT)
FORMAT(//' PREDICTION SUCCESS TABLE',A18

```
    * /' =========================='
    * //' OBSERVED
        /' ALT. |',30I4)
    WRITE (KANAL6,231) (DASH4(I),I=1,NALT)
231 FORMAT (' ----\infty--+',30A4)
    DO 232 I=1,NALT
        WRITE (KANAL6,233) I,(NCT2(I,J),J=1,NALT)
        FORMAT( I6 ,' |',30I4)
        WRITE (KANAL6,231) (DASH4(I),I=1,NALT)
        WRITE (KANAL6,235) PCP,XLFO,XLF,XLP,UTIL
235 FORMAT(
    */' PERCENT CORRECTLY PREDICTED : ',F10.2.' s'
    */' LIKELIHOOD AT ZERO : ',F12.4
    */' LIKELIHOOD AT ACTUAL CHOICES : ',F12.4
    */' LIKELIHOOD AT PREDICTED CHOICES : ',F12.4
    */' UTILITY AT PREDICTED CHOICES : 'F12.4)
        WRITE (KANALG,240) CWESML(IWESML)
240 FORMAT(//' PROBABILITY-SHARES',A18
    * /' ===================='
    *//' ALT. ACTUAL DISCRETE CONTINUOUS'
    */' -------------------------------------------------------------------------
    DO 245 I=1,NALT
        MOBSV=FREQ (I) *NOBS+0.5
        ADISC=ACT1 (I)/NOBS
        MDISC=ACT1 (I)+0.5
        ACONT=PROB (I)/NOBS
    WRITE (KANAL6,246) I,FREQ(I),MOBSV,ADISC,MDISC,ACONT,PROB (I)
    FORMAT(I6,F9.4,I6,F10.4,I6,F10.4,F8.2)
    R-SQUARE-EQUIVALENTS (SEE DOMENCICH/MCFADDEN P.123)
C
    Z1=0.DO
    Z2=0.DO
    Z3=0.D0
    S1=0.DO
    S2=0.DO
    S3=0.DO
    E1=0.DO
    E2=0.DO
    E3=0.DO
    Z7=0.DO
    NFAIL=0
    ALT=1.DO/NALT
    DO 250 IOBS=1,NOBS
        DO 251 I=1,NALT
        IF (DATA1(I,1,IOBS).EQ.1) WT=WEIGHT(I)
        CONTINUE
        DO 250 J=1.NALT
        FIJ = DATAI (J,1,IOBS)
        FIJ = PSHARE(J,IOBS)
        PJ = FREQ(J)
        IF (PIJ.LT.O.DO .OR. PIJ.GT.1.DO)
    * WRITE (KANAL6,252) PIJ,IOBS,J
        FORMAT(' ERROR: PSHARE=',F10.4,' IN OBS=',I5,' AND ALT=',I3)
```

```
IF (PIJ.EQ.O) PIJ=PJ
IF (PIJ.EQ.O) NFAIL=NFAIL+1
R1 = (FIJ-PIJ)**2
R2 = (FIJ-ALT)**2
R3 = (FIJ-PJ )**2
Z1 = Z1 + R1*WT
Z2 = Z2 + R1/PJ*WT
Z3 = Z3 + R1/PIJ*WT
S1 = S1 + R2*WT
S2 = S2 + R2/PJ*WT
S3 = S3 + R2/PIJ*WT
E1 = E1 + R3*WT
E2 = E2 + R3/PJ*WT
E3 = E3 + R3/PIJ*WT
Z7 = Z7 + FIJ*(1.DO-ALT)/PJ*WT
CONTINUE
250
C
    R1 = 1.0-Z1/S1
    R2 = 1.0- Z2/S2
    R3 = 1.0 - Z3/S3
C
    R4 = 1.0 - Z1/E1
    R5 = 1.0-Z2/E2
    R6 = 1.0 - Z3/E3
C
    R7 = 1.0 - XLF/XLFO
C
    RB = Z4/NOBS
    R9 = Z5/Z7
C
    WRITE (KANAL6,253) CWESML(IWESML),R1,R2,R3,R4,R5,R6,R7,R8,R9
2 5 3
    FORMAT(
    *///' R-SQUARE-EQUIVALENTS:',A18
    * /' ========================'
    * /' WEIGHTS : NONE FREQ PROBS'
    * /' SIMPLE :', 3F10.5
    * /' EFRON''S :',3F10.5
    * /' MCFADDEN''S :': F10.5
    * /' SUCCESSES :', 2F10.5 )
    IF (NFAIL.GT.O) WRITE (KANALG,*) '# PROBS REPL. BY FREQ: ',NFAIL
C
    ISHARE=1
    GOTO 1
C
C
C * ELASTICITIES *
C
C
300 IF (ISTRUC.EQ.O) GOTO 5
C
    WRITE (KANAL6,302) CWESML (IWESML)
302 FORMAT(//' ELASTICITIES AT SAMPLE MEANS AND FREQUENCIES:',A18//)
C
```

```
    DO 3020 I=1,NALT
3 0 2 0
    FREQ (I) =DATA1 (I , 1,NOBS+IWESML)
    CALL ELAST(PARM,NP,FREQ,ELAS,NOBS+IWESML)
    WRITE (KANAL6,303) (I,I=1,NALT)
303 FORMAT(' VARIABLE ALT. '',16(' P('.I2,')':))
301 FORMAT(' ',14('-'),'+',16A7 )
    DO 304 K=1,NX
    WRITE (KANAL6,301) (DASH7 (I), I=1,NALT)
    DO 304 J=1,NALT
        WRITE (KANAL6,305) PNAME(K),J, (ELAS (I,J,K),I=1,NALT)
        FORMAT(' ',A8,' ',I3,' |',16F7.3)
    IF (NOAGE) GOTO 3061
    DO 306 K1=1,NXD
    WRITE (KANAL6,301) (DASH7(I),I=1,NALT)
    DO 307 I=1,NALT
        PROBS (I)=0.DO
    DO 308 J=1,NDUMD
        K=NX+(K1-1)*NDUMD+J
        WRITE (KANAL6,305) PNAME(K),J, (ELAS (I,J,NX+KI),I=1,NALT)
        DO 309 I=1,NALT
            PROBS (I)=PROBS (I)+ELAS (I,J,NX+KI).
        CONTINUE
    WRITE (KANAL6,305) SUMME,K1,(PROBS(I),I=1,NALT)
    CONTINUE
    WRITE (KANAL6,301) (DASH7(I),I=1,NALT)
    IF (ISHARE.EQ.O) THEN
    WRITE (KANAL6,*)
            'FOR INDIVIDUAL ELASTICITIES, RUN PREDICTION FIRST'
        GOTO 1
    END IF
C
    WRITE (KANAL6,310) CWESML(IWESML)
C
    DO 311 I=1,NALT
    DO 311 J=1,NALT
    DO 311 K=1,NXR
    ELAS (I,J,K)=0.0
    DO 312 IOBS=1,NOBS
    DO 313 J=1,NALT
        IF (DATA1 (J,1,IOBS).EQ.1.0) WT=WEIGHT (J)
        PROB (J)=PSHARE (J, IOBS)
        CALL ELAST(PARM,NP,PROB,ELAS2,IOBS)
    DO 314 I=1,NALT
    DO 314 J=1,NALT
    DO 314 K=1,NX%
        ELAS (I,J,K)=ELAS (I,J,K) rELAS2 (I,J,K) *WT
    CONTINUE
    DO 320 I=1,NALT
    DO 320 J=1,NALT
    DO 320 K=1.NXR
```

```
3 2 0
3 2 1
C
C
C
C
C
400
401
C
C RECALCULATION OF COVARIANCE-MATRIY
C NOTE: COV = -INV (HESS) = -INV (MBHHH) = -INV (-GRAD*GRAD')
C
420 CALL FP(PARM,NP,XLF,GRAD,FUNC)
    CALL SP(PARM,NP,XLF,GRAD,HESS,FUNC)
C
C
C
C
c
C
C
C
C
    INVERSION OF HESSIAN AND CONTROL OF EIGENVALUES
    IERINV=1
    CALL MATEV2(HESS,SCRA,NP,NP,MAXNP,IERINV)
```

```
    IF (IERINV.GT.1) IER=-8
    URITE (KANAL6,422)
430 WRITE (KANAL6,432)
432 FORMAT(' COVARIANCE-MATRIX :'//)
    DO 435 I = 1,NP
    DO 435 J = 1,I
        ZZZ = - HESS (I,J)
        WRITE (KANAL6,436) PNAME(I),PNAME(J),ZZZ
    FORMÁt (3X,A8, 3X,A8, 3X,G20.7)
        CONTINUE
    GOTO }
440 Fr.ITE (KANALS,441)
441 FORMAT(' INADMISSIBLE INITIALVALUES')
    GOTO 1
C
C
C
C
C
500 IF (IDATA.EQ.O) GOTO 5
    CALL FUNC(PARM,NP,XLF,*530)
    WRITE (KANAL6,501) XLF
```

```
501 FORMAT (/' DERIVATIVE CHECK : LIKELIHOOD = ',F10.4
    * //' HIT ENTER TO QUIT. IDIFF2=1-4 IF SECOND DERIVATIVES,'
    * /' 2 IF ONLY FIRST DERIVATIVES, 5 FOR CHECK OF SSQDEV >')
    READ (KANAL5,'(I1)') IDIFF2
    IF (IDIFF2.EQ.O) GOTO 1
    IF (IDIFF2.EQ.5) GOTO 540
    WRITE (KANAL6,502)
502 FORMAT(//' PARAMETER ANALYTIC DIFFERENCE')
    CALL FP(PARM,NP,XLF,GRAD,FUNC)
    CALL FDIFF(PARM,NP,XLF,GRAD2,FUNC)
    DO 510 I=1,NP
510 WRITE (KANAL6,511) FNAME(I),GRAD(I),GRAD2 (I)
511 FORMAT (1X,A8,10X,2D13.5)
    WRITE (KANAL6,512)
512 FORMAT(/' HIT ENTER TO QUIT. IDIFF2=1-4 FOR SECOND DERIV. >0)
    READ (KANAL5,4) IDIFF2
    IF (IDIFF2.EQ.0) GOTO 1
    IF (IDIFF2.EQ.2.OR.IDIFF2.EQ.3.OR.(IDIFF2.EQ.4.AND..NOT.LEVEL1))
    * THEN
        WRITE (KANAL6,*) 'ERROR: IDIFF2=',IDIFF2
        GOTO 1
        END IF
    CALL SP(PARM,NP,XLF,GRAD,HESS,FUNC)
    CALL SDIFF(PARM,NP,XLF,GRAD,HESS,FUNC)
C (NOTE: MBHHH IS NOT ALTERED BY CALLING SDIFF)
    KK=0
    DO 520 I=1.NP
    DO 520 J=1,I
        KK=KK+1
        ZZZ=MBHHH (KK)
        WRITE (KANAL6,521) PNAME(I),PNAME(J),ZZZ,HESS (I,J)
        FORMAT(1X,A8,1X,A8,1X,2D13.5)
        GOTO 1
530 WRITE (KANAL6,531)
531 FORMAT(' INADMISSIBLE INITIALVALUES')
    GOTO 1
C
540 IF (NXA.NE.1) GOTO 549
    N1=NX+NXD*NDUMD
    DO 542 I=1,NALT1
        PDUMMY (I) =PARM (N1+I)
542 NDUMMY (I) =PNAME (N1+I)
    CALL SSQDEV (PDUMMY,NALT1,SSD,*530)
    CALL FPSSQD(PDUMMY,NALT1,SSD,PROBS,PROBS,SSQDEV)
    ACC=0.00001
    WRITE (KANAL6,543) SSD
543 FORMAT(/' SUM OF SQUARED DEVIATIONS =',F10.4)
    WRITE (KANAL6,502)
    DO 545 I=1,NALT1
        PD=PDUMMY (I)
        PDUMMY (I) = PD+ACC
        CALL SSQDEV (PDUMMY ,NALT1,SSD2,*530)
        PDUMMY (I) =PD
        SQDIFF=(SSD2-SSD)/ACC
```

```
545 WRITE (KANAL6,511) NDUMMY(I),PROBS(I),SQDIFF
    GOTO 1
549 WRITE (KANALG,*) 'INADMISSIBLE NXA SETTING'
    GOTO 1
C
C
C * PRINT DATA *
C ******************
C
600 IF (IDATA.EQ.O) GOTO 5
    WRITE (KANAL6,601)
601 FORMAT(//' FIRST AND LAST OBSERVATION >')
    READ (KANAL5,*) IOBS1,IOBS2
    DC 606 IOBS=IOBS1,IOBS2
    DO 606 J=1,NALT
    WRITE (KANAL6.911) DATAI(J.1,IOBS),
    * (DATA1 (J,K+1,IOBS),K=1,NX), (DATA2 (K,IOBS),K=1,NXD)
    GOTO 1
C
C ************************************
C * ELIMINATE SINGLE DATA POINTS *
C *******&*****************************
C
620 WRITE (KANAL6,*) 'ENTER NUMBER OF OBSERVATIONS TO BE ELIMINATED >'
    READ (KANAL5,*) NSKIP
    WRITE (KANAL6,*) 'NOW ENTER OBSERVATIONS IN DESCENDING ORDER >1
    DO 621 ISKIP=1,NSKIP
    WRITE (KANAL6,*) 'IOBS >'
    READ (KANAL5,*) IOBSS
    DO 625 IOBS=IOBSS+1,NOBS+1
        DO 626 K=1,NXR
        DO 626 I=1,NALT
                DATAI (I,K,IOBS-1)=DATAI (I,K,IOBS)
            DO 627 K=1,NXD
                DATA2 (K,IOBS-1) =DATA2 (K, IOBS )
            CONTINUE
    NOBS=NOBS-1
    CONTINUE
    GOTO 1
C
C
C * PLOT OF CONTOUR LINES *
C
C
650 IF (IDATA.EQ.O) GOTO 5
    WRITE (KANALG,*) 'SELECT TWO VARIABLES TO PLOT, REST IS CONSTANT'
    DO 652 K=1,NP
        WRITE (KANAL6,653) K,PNAME(K)
    FORMAT(' ',I3,' = ',A8)
        WRITE (KANAL6,654)
654
    FORMAT(/' ENTER (1) TWO INDICES FOR THE TWO VARIABLES TO PLOT,'
    * /' (2) RANGE OF FIRST VARIABLE (XMIN,XMAX) >0
    * /' (3) RANGE OF SECOND VARIABLE (YMIN,YMAX) >')
    READ (KANAL5,*) IND1,IND2,XMIN,XMAX,YMIN,YMAX
```

```
        XLABEL=PNAME (IND1)
        YLABEL=PNAME (IND2)
        CALL CNTR(PARM,NP,IND1,IND2,XMIN,XMAX,YMIN,YMAX,
    *
            FUNC,XLABEL,YLABEL)
        GOTO 1
C
C
C
C
C
700 IF (IDATA.EQ.O) GOTO 5
    WRITE (KANAL6,701)
701 FORMAT(' 2ND DERIVATIVES: 1=BHHH, 2=SIMPLE, 3=SYMM. >')
    READ (KANAL5,*) IDIFF2
    WRITE (KANAL6,702)
702 FORMAT(' DEGREES OF FREEDOM (= # OF DISS.PARMS TO BE TESTED) >')
    READ (KANAL5,*) NP1
    IF (NP1.GT.5) THEN
                                    WRITE (KANAL6**) 'ERROR: NP1 > 5'
                                    GOTO 1
                                    END IF
    WRITE (KANAL6,703)
    FORMAT(' INDICES OF DISS. PARAMETERS IN PARM >')
    READ (KANAL5,*) (NLMST(I),I=1,NP1)
C
    CALL FP(PARM,NP,XLF,GRAD,FUNC)
    CALL SP(PARM,NP,XLF;GRAD,HESS,FUNC)
    CALL LMSTAT(NP,NP1,MTH,NLMST,GRAD,HESS,TEST)
C
    WRITE (KANAL6,709) TEST
709 FORMAT(//' LM-STATISTIC : ',F15.5/' ',30('-'))
    GOTO 1
C
C
C
    * TRANSFORM PARAMETERS TO BE COMPATIBLE WITH MNL (OBSOLETE) *
C *****************************************************************
C
780
    .IF (ISTRUC.EQ.O .OR. NTH.EQ.O .OR. ICOVAR.EQ.O) GOTO 5
    WRITE (KANAL6,781)
781 FOR&AT(///' TRANSFORMED VARIABLES :'
    * /' PARAMETER / SIM.COEFF : MEAN STD.ERROR T-STAT'/)
    DO 782 I=1,NX
    DO }782\textrm{K}=1,\textrm{NTH
        KP=MTH+K
        CALL TRAFO(PARM,NP,I,KP,HESS,C,SC,W)
        WRITE (KANAL6,783) PNAME(I),PNAME (KP),C,SC,W
    WRITE (21,783) PNAME(I),PNAME (KP),C,SC,W
    FORMAT(' ',A8,' / ',A8,' :',2X,F8.4,2X,F7.3,2X,F7.3)
    IF (NOAGE.AND.NOALT) GOTO 1
    IF (.NOT.STDDUM) GOTO 1
    K=NTH
    I=0
    DO 784 I1=1,NL1
    ML2=NL2(I1)
```

```
    DO 784 I2=1,ML2
        ML3=NL3 (I1,I2)
        IF (THETA(I1,I2).NE.1.DO) GOTO 785
            I=I+ML3
            GOTO }78
    K=K+1
    DO }788\mathrm{ I3=1.ML3
        I=I+1
        IF (I.EQ.NALT) GOTO 1
        IF (NOAGE) GOTO 786
            DO 787 M=1,NXD
                KK=(M-1)* (NALT-1) +NX+I
                CALL TRAFO(PARM,NP,KK,K,HESS,C,SC,W)
                WRITE (KANALG,783) PNAME (KK),PNAME (K),C,SC,W
                WRITE (21,783) PNAME(RK),PNAME (K),C,SC,W
        IF (NOALT) GOTO 788
            KK=MXA+I
            CALL TRAFO(PARM,NP,KK,K,HESS,C,SC,W)
            WRITE (KANAL6,783) PNAME(KK),PNAME(K),C,SC,W
            WRITE (21.783) PNAME(KK) ,PNAME (K),C,SC,W
            CONTINUE
        CONTINUE
            GOTO 1
C
C *********************************************
C . * AIRUM-CHECK (NOTE: SPECIAL CASE ONLY) *
C
C
C
C
C
C
C
800
C
    ISTOP(1)=0
    ISTOP(2)=0
    ISTOP (3)=0
    ITERLS=2*NAL.T
    WRITE (KANAL6,811)
    FORMAT(/' TYPE 1 TO OVERRIDE DEFAULT ITERATION PARAMETERS >')
    READ (KANAL5,'(I1)') IQUERY
    IF (IQUERY.EQ.1) THEN
    WRITE (KANAL6,812)
812
    * /' CONV. CRITERION (PARM,GRAD,SSD; O=ENABLE,1=DISABLE) >')
    READ (KANAL5,*) ITERLS,ISTOP
    END IF
    NQ=NALT1*NALT1+8*NALT1
C
N1=NX+NXD*NDUMD
DO 820 I=1,NALTI
```

```
820 PDUMMY(I) =PARH (N1+I)
    CALL LSFIT(PDURMY,NALT1,SSD,IERLS,SSQDEV,ITERLS)
    WRITE (KANALG,821) SSD,IERLS,ITERLS
821 FORMAT(//' ALTERNATIV SPECIFIC DURMIES ADJUSTED:"
    * /' SUM OF SQUARED DEVIATIONS:',F11.5
    * /' DA.FL.PO. ITERATIONS (',I2,'):',I11
    * //' DUMMY INITIALVALUE ADJUSTED VALUE')
    DO 822 I=1, NALT1
        WRITE (KANAL6,823) PNAME(N1+I),PARM(N1+I).PDUMMY(I)
823 FORMAT(' ',A8,3X,F9.4,9X,F9.4)
822 PARM (N1+I)=PDUMMY (I)
C
    CALL FUNC(PARN,NP,XLF,*830)
    DO }825\textrm{I}=1,N
        GRAD (I) =0.0
        HESS (I,I)=0.0
        ITERAL=ITERLS
        NEVALF=0
        IER=IERLS
        METHOD=7
        MATPRT=0
        GOTO 150
C
830 WRITE (KANALG,831)
831 FORMAT(' ERROR: FUNCTION UNDEFINED AT ADJUSTED DUMMIES')
    GOTO 1
C
840 WRITE (KANAL6,841) NXA
841 FORMAT(/' INCORRECT SETTING FOR ALTERNATIVE SPECIFIC DUMMIES:'
    * /' NXA = ',II,' .NE. 1 FOR CORRECT INITIALIZATION')
    GOTO 2
C
C ************
C * EXIT *
C ************
C
99 RETURN
    END
    SUBROUTINE START(NPRINT,KANAL5,KANAL6,UPP,IOW,VERSIO)
```



```
    KANAL6=6
    UPP=173.DO
    LOW=1.D-74
C
C PRIME
C
    KANAL5=1
    KANAL6=1
    UPP=22622.DO
    LOW=1.D-9824
C
C GQOPT OUTPUT
C
    NPRINT=KANALG
C
C LAST UPDATE
C
    VERSIO='03/30/84.15:43:52.Fri'
C
        RETURN
        END
        SUBROUTINE INDATA (KANAL5,KANAL6)
C
-
C DATA INPUT FOR GQTREE, CALCULATES WEIGHTED AND UNWEIGHTED MEANS
C CHECKS DATA AND MEANS FOR CONSITENCY
C KANAL5
```



```
IMPLICIT REAL*8 (A-H,O-Z)
C
    PARAMETER
    * (MAXOBS =2001,
    * MAXNX =10,
    * MAXNXD =5,
    * MAXALT =20,
    * MAXNXY=MAXNX+1, MAXNXR=MAXNX+MAXNXD)
C
    REAL*4 DATA1 (MAXALT, MAXNXI,MAXOBS) ,DATA2 (MAXNXD ,MAXOBS)
        CHARACTER*20 DAFILE
        COMMON / DIMEN / NALT,NALTI,NX,NXD,NXA,NXR,MXA,MTH,MTAU,NOBS
        COMMON / DATAX / DATA1
        COMMON / DATAY / DATA2
        COMMON / DWESML / RELSIZ,WEIGHT(MAXALT)
C STORAGE FOR MEANS : NDW = MAXOBS, THEN NOBS+2
C STORAGE FOR MEANS : NDW = MAXOBS, THEN NOBS+2
C
        NDD=MAXOBS-2
        ND1=MAXOBS-1
        NDW=MAHOBS
C
        WRITE (KANAL6,10)
10 FORMAT(//' ENTER DATA-INPUT-FILE >0')
```

```
    READ (KANAL5,'(A20)') DAFILE
    OPEN (UNIT=7,STATUS='OLD',FILE=DAFILE,ACCESS='SEQUENTIAL')
    WRITE (KANAL6,12)
```

IF (IC.EQ.O) WRITE (KANAL6,130) IOBS
FORMAT(' ERROR: NO ALTERNATIVE CHOSEN IN OBSERVATION',I6)
DATA1 (IC. 1, ND1) $=$ DATA1 $(I C, 1, N D 1)+1.0$
DATAI (IC,1,NDW) = DATA1 (IC,1,NDW) + WT
DO $140 \mathrm{I}=1$, NALT
DO $140 \mathrm{~J}=1$, NX
IF (ABS (DATA1 (I, J +1, IOES)). GT. 10000.0)
WRITE (1,141) J+1,IOBS,DATA1 (I, J +1, IOBS)
FORMAT(' DATA CHECK: X(IALT,K,IOBS)=',3I3,G20.10) DATA1 ($I, J+1, N D 1)=\operatorname{DATA1}(I, J+1, N D 1)+\operatorname{DATA1}(I, J+1, I O B S)$ $\operatorname{DATA1}(\mathrm{I}, \mathrm{J}+1, \mathrm{NDW})=\operatorname{DATA1}(\mathrm{I}, \mathrm{J}+1, \mathrm{NDW})+\operatorname{DATA1}(\mathrm{I}, \mathrm{J}+1, \mathrm{IOBS}) * W T$ DO $145 \mathrm{~J}=1, \mathrm{NXD}$ IF (ABS (DATA2 (J, IOBS)) .GT. 10000.0)

WRITE (1,146) J,IOBS,DATA2 (J,IOBS)
FORMAT(' DATA CHECK: Y(K,IOBS)=',2I3,G20.10) DATA2 (J, ND1) $=$ DATA2 $(J, N D 1)+\operatorname{DATA2(J,IOBS)~}$

```
DATA2(J,NDW) = DATA2(J,NDW) + DATA2(J,IOBS) *WT
```

C
NOBS=NOBS+1
100 CONTINUE
C
C SUMMARY
C
200 CLOSE (UNIT=7)
IF (NOBS.EQ.O) THEN
WRITE (KANAL6,*) 'ERROR: DATA-FILE EMPTY' RETURN
END IF
SUM $=0 . D O$
DO 220 I=1, NALT
SUM $=$ SUM + DATAI ($I, 1$, ND1) *WEIGHT (I)
DATA1 (1,1, NOBS +1) =DATA1 ($I, 1$, NDI) /NOBS
DATA1 ($I, 1$, NOBS +2) $=$ DATA1 $(I, 1, N D W) / N O B S$
DO $220 \mathrm{~J}=1$.NX
DATA1 ($I, J+1$, NOBS +1) $=$ DATA1 ($I, J+1$, ND1 $) /$ NOBS
DATA1 $(I, J+1$, NOBS +2$)=$ DATA1 $(I, J+1, N D W) / N O B S$
DO $221 \mathrm{~J}=1$, NXD
DATA2 (J,NOBS +1) = DATA2 (J,ND1) /NOBS
DATA2 (J, NOBS +2) $=$ DATA2 $(J, N D W) /$ NOBS
221
C
IF (DABS (SUM-NOBS).GT.1) WRITE (KANAL6,229) SUM,NOBS
229 FORMAT(" ERROR: WEIGHTS DO NOT SUM UP TO NOBS: ${ }^{\circ}$, G20.10,I10)
C
RETURN
END
SUBROUTINE UPDATE (PARM,NP,*)

REAL* 8 PARM (NP)
C
PARAMETER

* (MAXNXD $=5$,
* MAXNXM $=20$,
* MAXTH $=10$,
* MAXTAU $=5$,
* MAXLEV $=3$,
* MAXLIM $=5$,
* MAXBRA $=5$,
* MAKALT $=20$)

C
REAL* 8 THETA (MAXLIM, MAKBRA), TAU (MAXLIH),

* PMASKY (MAXNXD, MAXALT) , PMASKD (MAXALT) , P

INTEGER MAP (MAXALT, MAXLEV) , MAPLEN (MAXNXM) ,MAPTR (MAXNXM, MAXALT)
LOGICAL LEVEL1, LEVEL2,LMAP (MAXNXM, MAXALT) ,STDDUM, NOALT,NOAGE,

* L1,L2,L3,STDUMA,STDUMD,NALSTD,NALTRE,NAGSTD,NAGTRE

COMMON / DIMEN / NALT,NALT1,NX,NXD,NXA,NXR,MXA,MTH,MTAU,NOBS
COMMON / DDISS / LOCTAU (MAXTAU), LOCLIM (MAXTH), LOCBRA (MAXTH),

```
    * NL1,NL2(MAXLIM),NL3 (MAXLIM,MAXBRA)
    COMMON / DTREE / NTH,NTAU,THETA,TAU,LEVEL1,LEVEL2
    COMMON / DMAPP / NXM,MAP,MAPLEN,MAPTR,PMASKY,PMASKD,LMAP
    COMMON / DDUMM / STDDUM,STDUMA,STDUMD,NDUMA,NDUMD,
    NOALT, NOAGE, INDAGE (MAXNXD, MAXAL:T),
    NALSTD,NALTRE,NAGSTD,NAGTRE
C
C
C
    DO 8 K=1,NTH
    IF (PARM (MTH+K).LT.O.001) THEN
        PRINT 91,K,PARM (MTH+K)
        NFAIL=NFAIL+1
        END IF
    THETA (LOCLIM (K) , LOCBRA (K)) = PARM (MTH+K)
    CONTINUE
    IF (NTAU.EQ.O) GOTO 20
    DO 10 K=1,NTAU
        IF (PARM(MTAU+K).LT.0.001) THEN
            PRINT 92,K,PARM(MTAU+K)
            NFAIL=NFAIL+1
            END IF
    TAU (LOCTAU (K)) = PARM (MTAU+K)
    CONTINUE
C
20
IF (NXM.EQ.O) GOTO 90
C
DO 25 I=1,NALT
    M1=MAP(I,1)
    M2=MAP (I,2)
    M3=MAP (I, 3)
    IF (M1.NE.O) THEN
                            L1=.TRUE.
                            ELSE
                    L1=,FALSE.
                            END IF
    IF (M2.NE.O) THEN
                            L2=.TRUE.
                            ELSE
                            L2=.FALSE.
                    END IF
    IF (M3.NE.0) THEN
                    L3=.TRUE.
                    ELSE
                    L3=.FALSE.
                            END IF
    IF (NOALT) GOTO 2%
    P=0.DO
    IF (L1) P=P+PARM (MXA+M1)
```

```
    IF (L2) P=P+PARM (MXA+M2)
    IF (L3) P=P+PARM (MXA+M3)
    PMASKD (I)=P
26
27
25
C
90 IF (NFAIL.GT.O) RETURN 1
91 FORMAT(' ATTEMPT THETA('.I2,') = ',D12.4)
92 FORMAT(' ATTEMPT TAU(',I1,') = ',D12.4)
    RETURN
    END
C-----SUBROUTINE PACKAGE : FUNC,FP,SP,FDIFF,SDIFF
C
C AXEL BOERSCH-SUPAN SEP 06, 1983
C
C---m---------------------------------------------------------------------------
    SUBROUTINE FUNC(PARM,NP,XLF,*)
```



```
C
C ** THIS SUBROUTINE EVALUATES AND ACCUMULATES THE LIKELIHOOD FUNCTION
C
C ** FOR UNCON=.FALSE. IT ADJUSTS AFTER SUCCESSFUL EVALUATION THE
C ALTERNATIVE SPECIFIC DUMMIES TO FIT THE AGGREGATE SAMPLE SHARES
C
```



```
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 PARM(NP)
C
    PARAMETER
    * (MAXOBS =2001,
    * MAXNP =50,
    * MAXNX =10,
    * MAXNXD =5,
    * MAXALT =20,
* MAXNXY=MAXNX+1,
* MAXDA1=MAXALT*MAXNXY*MAXOBS, MAXDA2=MAXNXD*MAXOBS,
* MAXALS=MAXALT*(MAXALT+1)/2)
C
    REAL*8 WORK (MAXNP) ,PROBS (MAXALT) ,PDUMMY (MAXALT) ,NDUMMY (MAXALT)
    REAL*4 FDATA1 (MAXDA1) , FDATA2 (MAXDA2)
    LOGICAL UNCON
C
    COMMON / DIMEN / NALT,NALT1,NPARM(7) ,NOBS
    COMMON / DATAX / FDATA1
    COMMON / DATAY / FDATA2
    COMMON / DCONST / UNCON,PDUMMY,NDUMMY
    COMMON / DWORK / WORK,PROBS
```

```
    COMMON / BPRINT / IPT,KANALG,NDIG,NPUNCH
    EXTERNAL SSQDEV
C
    ILOOP=1
    NFAIL=0
    NOBSF=NOBS/10
    CALL UPDATE(PARM,NP,*10)
C
C EVALUATION OF LIKELIHOOD
C
10 NN1=1
    NN2=1
    INC=MAXALT*MAXNXY
    XLF=O.DO
    DO 100 IOBS = 1,NOBS
        NFAIL1=NFAIL
        CALL CONT(FDATA1(NN1),FDATA2(NN2),
                            ILOOP,PARM,NP,XLFI,WORK,PROBS,NFAIL)
        NN1=NN1+INC
        NN2=NN2+MAXNXD
        IF (NFAIL.GT.NFAIL1) IOBF=IOBS
        IF (NFAIL.GT.NOBSF ) GOTO 97
        IF (NFAIL.GT.NFAIL1) GOTO 95
        XLF = XLF + XLFI
        CCNIINUE
1 0 0
C
C SOLVE LEAST SQUARES PROBLEM TO FIT SAMPLE-SHARES
C
    IF (UNCON) GOTO 90
    ITERLS=2*NALT1
    CALL LSFIT(PDUMMY,NALT1,SSD,IER,SSQDEV,ITERLS)
    IF (IERnLT.O) GOTO 93
    GOTO 90
C
C ERROR HANDLING, EXIT
C
90 RETURN
C
93 WRITE (KANAL6,94) SSD,IER,ITERLS
94 FORMAT(' SHARES NOT EXACT: SSD=',D10.4,', IER=',I2,', ITERLS=',I2)
    RETURN
C
95 IF (NFAIL.GT.0) WRITE (KANAL6,96) NFAIL,IOBF
96 FORMAT(' FUNC: NFAIL =',I2,'. LAST OBS =',I4)
    RETURN 1
C
97 WRITE (KANAL6,98) NFAIL
98 FORMAT(' FUNC: ABORT B/O MORE THAN ',I4,' FAILURES')
99 RETURN 1
    END
```



```
    SUBROUTINE FP(PARM,NP,XLF,GRAD, FUNYC)
```



```
C
```

```
C ** THIS SUBROUTINE EVALUATES THE GRADIENT OF THE LIKELIHOOD-FUNCTION
C (HOWEVER, IT WILL NOT AND MUST NOT UPDATE XLF)
C
C ** FOR IDTFF2=1: THE BHHH APPROXIMATION OF THE HESSIAN IS PROVIDED
C [ NOTE: HESSIAN = -GRAD*GRAD' = - INV (COV) ]
C ** FOR IDIFF2=4: THE EXACT HESSIAN IS CUMULATED
C
```



```
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 PARM(NP),GRAD(NP)
C
    PARAPGETER
    * (MAXOBS =2001,
    * MAXNP =50,
    * MAXNX =10,
    * MAXNXD =5.
    * MAXALT =20,
    * MAXNXY=MAXNX+1, MAXNPS=MAXNP* (MAXNP+1)/2,
    * MAXDA1=MAXALT*MAXNXY*MAXOBS, MAXDA2=MAXNXD*MAXOBS)
C
    REAL*8 WORK(MAXNP) ,PROBS (MAXALT),HESS (MAXNPS),HESS2 (MAXNPS)
    REAL*4 FDATA1 (MAXDA1) ,FDATA2 (MAXDA2)
C
        COMMON / DIMEN / NPARM(9),NOBS
        COMMON / DATAX / FDATA1
        COMMON / DATAY / FDATA2
        COMMON / DWORK / WORK,PROBS
        COMMON / DCOVM / HESS
        COMMON / DHESS / HESS2
        COMMON / DIFF2 / IDIFF2
        COMMON / BOPT2 / ACC,R,PM1,IVAL,ITERL,ITERC,MX,IER
        COMMON / BDRINT / IPT,KANALG,NDIG,NPUNCH
        EXTERNAL FUNC
    C
        ILOOP=0
        NFAIL=0
        CALL UPDATE(PARM,NP,*92)
C
C EVALUATION OF GRADIENT (AND HESSIAN)
C
DO 5 I=1,NP
    GRAD (I) =0.DO
    IF (IDIFF2.EQ.2.OR.IDIFF2.EQ.3) GOTO 12
    LK = NP*(NP+1)/2
    DO 10 I=1,LK
        HESS (I)=0.DO
    NN1=1
    NN2=1
    INC=MAXALT*MAXNXY
    DO 100 IOBS = 1,NOBS
        NFAILI=NFAIL
        CALL CONT(FDATAI(NN1),FDATA2 (NN2),
            ILOOP , PARM ,NP ,XLFI,WORK,PROBS ,NFAIL)
    NN1=NN1+INC
```

```
NN2=NN2+MAXNXD
IF (NFAIL.GT.NFAIL1) IOBF=IOBS
DO 30 J=1,NP
    GRAD(J) = GRAD(J) + WORK(J)
30
C
IF (IDIFF2.NE.1) GOTO 50
IND=0
DO 40 J=1,NP
DO 40 K=1,J
    IND=IND+1
40
    HESS (IND) = HESS(IND) - WORK(J) * WORK(K)
GOTO 100
C
50 IF (IDIFF2.NE.4) GOTO 100
DO 55 K=1.LK
    HESS (K) = HESS (K) + HESS2 (K)
C
100 CONTINUE
C
    IVAL=IVAL+2
    IF (NFAIL.GT.O) WRITE (KANAL6.97) NFAIL,IOBF
97 FORMAT(' FP: NFAIL=',I4,' LAST OBS=',I5)
    RETURN
92 WRITE (KANAL6,*) , FP: DISS. PARM < 0.01'
    RETURN
    END
```



```
SUBROUTINE SP(PARM,NP,XLF,GRAD,SDERIV,FUNC)
C----~----------------------------m-----------------------------------
C
C ARRAY OF SECOND DERIVATIVES:
C
C ** IDIFF2=1 : FILLS BHHH-TRIANGLE MBHHH ON ARRAY SDERIV
C ** IDIFF2=2 : COMPUTES SIMPLE FINITE SECOND DIFFERENCES
C ** IDIFF2=3 : COMPUTES SYMMETRIC FINITE SECOND DIFFERENCES
C ** IDIFF2=4 : FILLS TRIANGLE WITH ANAL. DERIVS ON SDERIV
C
C FOR FINITE DIFFERENCES, GRAD HAS TO BE SUPPLIED
C
```



```
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 PARM(NP),GRAD(NP),SDERIV (NP,NP)
C
PARAMETER
    * (MAXNP =50.
    * MAXNPS=MAXNP* (MAXNP+1)/2)
C
    REAL*8 MBHHH(MAXNPS)
C
    COMMON / DCOVM / MBHHH
    COMMON / DIMEN / NPARM(9),NOBS
    COMMON / DIFF2 / IDIFF2
    COMMON / BOPT2 / ACC,R,PM1,IVAL,ITERL,ITERC,MX,IER
    COMMON / BSTACK/ A(1)
```

```
    COMMON / BOPT1 / NPARS,JH,JFP,JFP1,JSP,JSP1,JA1,JS
    COMMON / BFIDIF/ FDFRAC,FDMIN
    EXTERNAL FUNC
C
C
C
    IF (IDIFF2.EQ.2 .OR. IDIFF2.EQ.3) GOTO 40
    REFILL OF SDERIV (IDIFF2=1,4)
C
    IND=0
    DO 35 J=1,NP
    DC 35 K=1,J
    IND=IND+1
    ZZZ=MBHHH (IND)
    SDERIV (J,K)=ZZZ
    SDERIV (K,I)=ZZZ
    RETURN
c
C
C
40
C
C
C
C
C.
C
    COMPUTATION OF FINITE DIFFERENCES (IDIFF2=2,3)
```


RETURN

END

IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION AO (NP) , SPD (NP, NP) , FPD (NP)
COMMON / BOPT2 / ACC,R,DM1,IVAL,ITERL,ITERC,MX,IER
DO 90 I=1,NP
$A I=A O$ (I)
EI=DMAXI (DABS (AI)*.1D-3..1D-5)
11
$A O(I)=A I+E I$
CALL FUNC (AO,NP,AFU2,*85)
IVAL=IVAL+1
AO (I) $=A I-E I$
CALL FUNC (AO,NP,AFU1,*85)
IVAL=IVAL+1
$13 \operatorname{SPD}(\mathrm{I}, \mathrm{I})=($ AFU2-2.DO*AFUO+AFU1)/(EI*EI)
IF (I.EQ.1) GOTO 90
$K=I-1$
DO $80 \mathrm{~J}=1 . \mathrm{K}$

```
        AJ=AO (J)
        EJ=DMAX1 (DABS (AJ)*.1D-3,.1D-5)
80 AO (J)=AJ
    GOTO 90
    EI=EI/10.DO
    IF (EI.LE.1.D-1O) GOTO 130
    GOTO 11
    AO(I)=AI
    RETURN
125 AO(J)=AJ
130 AO(I)=AI
    IER=-2
    RETURN
    END
    SUBROUTINE CONT(DATA1,DATA2,ILOOP,PARM,NP,XLFI;WORK,PROBS,NFAIL)
C
C THREE LEVEL NESTED LOGIT MODEL
C ===============================
c
C CONTRIBUTION OF THE N-TH OBSERVATION
C - TO THE LIKELIHOOD (XLFI , ILOOP=0,1,2)
C - TO ITS DERIVATIVE (WORK . ILOOP=0)
C - TO THE HESSIAN (HESS , ILOOP=0 AND IDIFF2=4, MNL ONLY)
C - PROBARILITY-SHARE (PROBS, ILOOP=2)
C EXCEPT ILOOP=O, WORK(1) CARRIES UTILITY-LEVEL INCO
C
C NORMALIZED VERSION OCT 31, 1983 23.00 AXEL BOERSCH-SUPAN
C
```



```
C
C TREE STRUCTURE :
C
C LEVEL: DATA: PARMS: EXP(INCL.VALUE): DISSIMILARITY-PARMS:
C
```


*
*
COMMON / DHESS / HESS
COMMON / DIFF2 / IDIFF2
COMMON / DCONST / UNCON,PDUMMY, NDUMMY
COMMON / DWESKL / RELSIZ,WEIGHT (MAXALT)
COMMON / BPRINT / IPT,KANAL6,NDIG,NPUNCH

```
DUMP=.FALSE.
```

INNER PRODUCTS KB(I)
IALT=IZERO
$X B M=Z E R O$
DO $9 \mathrm{I}=1$, NALT
IF (DATAI (I).EQ.1) IALT=I
$\mathrm{XBC}=\mathrm{ZERO}$
NN1 $=$ MAXALT
DO $7 \mathrm{~K}=1$, NX
$\mathrm{XBC}=\mathrm{XBC}+\mathrm{DATA}(\mathrm{NN} 1+\mathrm{I}) * \operatorname{PARM}(\mathrm{~K})$
NN1 $=$ NN1 + MAXALT
IF (NAGTRE) GOTO 3
DO $4 \mathrm{~K}=1$, NXD
$\mathrm{XBC}=\mathrm{XBC}+\mathrm{DATA} 2(\mathrm{~K}) * \operatorname{PNASKY}(\mathrm{~K}, \mathrm{I})$
IF (NALTRE) GOTO 2
$X B C=X B C+P M A S K D(I)$
IF (I.EQ. NALT) GOTO 5
IF (NAGSTD) GOTO 6
DO i $K=1$, NXD
$\mathrm{XBC}=\mathrm{XBC}+\mathrm{DATA2}(\mathrm{~K}) * \operatorname{PARM}(\operatorname{INDAGE}(\mathrm{~K}, \mathrm{I}))$
IF (NALSTD) GOTO 8
$X B C=X B C+\operatorname{PARM}(M X A+I)$
IF (UNCON) GOTO 5
$\mathrm{XBC}=\mathrm{XBC}+\mathrm{PDUMMY}(\mathrm{I})$
$\mathrm{XB}(\mathrm{I})=\mathrm{XBC}$
$X B M=X B M+X B C$
CONTINUE
CHECK AND MEAN OF XB(I)
IF (IALT.EQ.0) GOTO 9005
$X B H=X B M / N A L T$
INCLUSIVE VALUES
I=IZERO
IB=IZERO
EINCO=ZERO
DO 10 I1=1, NL1
ML2=NL2 (II)
$T A=T A U(I 1)$
DINC1=ZERO
DO 20 I.2=1,ML2
$I B=I B+1$

```
ML3=NL3(I1,I2)
TH =THETA(I1,I2)
THT=TH/TA
DINC2=ZERO
DO 30 I3=1,ML3
    I=I+1
    CHOICE
    IF (I.NE.IALT) GOTO 40
        IC1=I1
        IC2=I2
        IBRA=IB
    INNER PRODUCT XB/TH
    /* NORMALIZE BY SUBTRACTION OF XBM */
    XBI = (XB(I)-XBM) / TH
    IF (XBI.GT.UPP) GOTO 9001
    XB(I) =XBI
    ZZZ=DEXP(XBI)
    EXB(I)=ZZZ
    DINC2=DINC2+ZZZ
    CONTINUE
LOWER LEVEL INCLUSIVE VALUE INC2(I1,I2)
IF (LEVEL1) GOTO 21
IF (DINC2.LT.LOW) GOTO }900
EINC2(I1,I2)=DINC2
DINC2=DLOG(DINC2)
INC2(I1,I2)=DINC2
DINC2=THT*DINC2
IF (DINC2.GT.UPP) GOTO 9002
ZG(IB)=DINC2
DINC2=DEXP(DINC2)
EZG(IB)=DINC2
DINC1=DINC1+DINC2
CONTINUE
HIGHER LEVEL INCLUSIVE VALUE DLOG(INCI(I1))
C
EINC1 (II)=ONE
IF (LEVEL2) GOTO 11
IF (DINC1.LT.LOW) GOTO }900
EINC1(II)=DINC1
DINCI=DLOG(DINC1)
INC1 (I1)=DINC1
DINC1=TA*DINC1
IF (DINC1.GT.UPP) GOTO 9003
YA(II)=DINC1
DINC1=DEKP(DINC1)
EYA(II)=DINCI
EINCO=EINCO+DINC1
```

```
10 CONTINUE
    IF (EINCO.LT.LOW) GOTO 9004
    INCO=DLOG (EINCO)
C
    XBC =XB(IALT)
    INC2C=INC2(IC1,IC2)
    INC1C=INCI(IC1)
C
C LOG LIKELIHOOD
C
    XLFI = XBC - INCO
    WORK(1) = INCO
C WRITE (KANAL6,9900) XLFI
C9900 FORHAT(' $X$ MNL-XLFI=',D14.5)
    IF (LEVEL&) GOTO 51
        THC = THETA(IC1,IC2)
        TAC = TAU(IC1)
        TH1 = THC/TAC-ONE
        XLFI = XLFI + THI*INC2C
        IF (LEVEL,2) GOTO 50
            TAI = TAC-ONE
            XLFI = XLFI + TAI*INC1C
C WRITE (KANAL6,9901) XLFI
C9901 FORMAT(' $X$ NMNL-XLFI=',D14.5)
C
50 IF (ILOOP.EQ.1) GOTO 5000
    IF (ILOOP.EQ.O) GOTO 70
C
C PROBABILITY-SHARES
C
51 DO 52 I=1,NALT
        PROBS (I)=EXB(I)/EINCO
        CONTINUE
    IF (LEVELI) GOTO }6
    I=IZERO
    DO 60 I1=1,NL1
        ML2=NL2(II)
        IF (LEVEL2) GOTO 61
        DINCI=(TAU (II)-ONE)*INCI (II)
        CONTINUE
        DO 60 I2=1,ML2
            ML3=NL3 (I1,I2)
            DINC2=(THETA(I1,I2)/TAU(I1)-ONE)*INC2(II,I2)
            DO 60 I3=1,ML3
                I=I+1
                IF (LEVEL2) GOTO 62
                PROBS (I) =PROBS (I) * DEXP(DINC1+DINC2)
                GOTO 60
                PROBS (I) =PROBS (I) * DEXP (DINC2)
                CONTINUE
    IF (ILOOP.EQ.O) GOTO 4000
    GOTO 5000
C
C SWITCHES FOR DUMMY
```

```
C
70
    IF (IALT.EQ.NALT) THEN
                                LDUMMY=.FALSE.
                                ELSE
                                LDUMMY=.TRUE.
                                END IF
C
C DERIVATIVES OF INCLUSIVE VALUES LEVEL }
C
C W.R.T. BETA
C
    I=IZERO
    DO 80 II=1,NL1
        ML2=NL2(I1)
        DO 80 I2=1,ML2
        ML3=NL3(I1, I2)
        DINC2=EINC2(I1,I2)*THETA(I1,I2)
        NN1=MAKALT
        DO 82 K=1,NX
            ZZ=ZERO
            DO 81 I3=1,%LU
                I=I+1
                ZZ=ZZ + EKB(I) * DATA1 (NN1+I)
81
                CONTINUE
            I=I-ML3
            DER2B(II,I2,K) = ZZ / DINC2
C WRITE (KANAL6,9907) I1,I2,K,DER2B(I1,I2,K)
C9907 FORMAT(' $X$ DER2B('.3I2,')='.D18.4)
            NN1=NN1+MAXALT
82 CONTINUE
C
    IF (NALTRE) GOTO }82
    DO 821 K=1,NXM
            ZZ=ZERO
            DO 822 I3=1,ML3
                I=I+1
                IF (LMAP(K,I)) ZZ=ZZ + EXB(I)
                CONTINUE
            I=I-ML3
            DER2B(I1,I2,K+MXA) = ZZ / DINC2
            WRITE (KANAL6,9907) I1,I2,K+NXA,DER2B(I1,I2,K+MXA)
            CONTINUE
821
C
823 IF (NAGTRE) GOTO }82
    DO 824 K=1,NXM
    DO 824 K1=1,NXD
            ZZ=ZERO
            KK=INDAGE (K1,K)
            DO 825 I3=1,ML3
                I=I+1
                IF (LMAP (K,I)) ZZ=ZZ + EXB(I) *DATA2 (K1)
                CONTINUE
            I=I-ML3
            DER2B(I1,I2,KK) = ZZ / DINC2
```

```
C
824
C
826
C
827
828
C
829
C
830
831
C
83
80
C
C W.R.T. THETA
C
C
86
C
C9921
85
C
```

```
WRITE (KANAL6,9907) I1,I2,KK,DER2B(I1,I2,KK)
CONTINUE
IF (NAGSTD) GOTO 829
DO 827 I3=1, ML3
\(I=I+1\)
IF (I.EQ.NALT) GOTO 828
DO 827 K1=1, NXD
\(\mathrm{ZZ}=\operatorname{EXB}(\mathrm{I})\) * DATA2(K1)
KK=INDAGE (KI,I)
DER2B(I1,I2,KK) \(=\mathrm{ZZ} /\) DINC2
NRITE (KANAL6,9907) I1,I2,KK,DER2B(I1,I2,KK)
CONTINUE
\(I=I-M L 3\)
IF (NALSTD) GOTO 83
DO 830 I3=1,ML3
\(I=I+1\)
IF (I.EQ.NALT) GOTO 831
\(\operatorname{DER2B}(I 1, I 2, M X A+I)=\operatorname{EXB}(I) / D I N C 2\)
WRITE (KANAL6, 9907) I1,I2,MXA+I,DER2B(I1,I2,MXA+I)
CONTINUE
\(\mathrm{I}=\mathrm{I}-\mathrm{ML} 3\)
\(\mathrm{I}=\mathrm{I}+\mathrm{ML} \mathrm{L} 3\)
CONTINUE
W.R.T. THETA
IF (NTH.EQ.O) GOTO 89
DO \(85 \mathrm{~K}=1\), NTH
NT11=LOCLIM (K)
NT12=LOCBRA (K)
\(\mathrm{I}=\mathrm{MS} 3 \mathrm{~K}(\mathrm{~K})\)
ML3 \(=\) ML 3 K (K)
\(\mathrm{ZZ}=\mathrm{ZERO}\)
DO 85 I3=1,ML3
\[
I=I+1
\]
\(Z Z=Z Z+\operatorname{EXB}(I) * X B(I)\)
DER2T(NT11,NT12,K) \(=-\) ZZ \(/\) EINC2 (NT11,NT12) / THETA (NT11,NT12)
WRITE (KANAL6,9921) NT11,NT12,K,DER2T (NT11,NT12,K)
FORMAT(' \(\$ \mathrm{X} \$ \mathrm{DER2T}\left({ }^{\prime}, 3 \mathrm{I} 2,^{\prime}\right)=\) ', D18.6)
CONTINUE
CONTINUE
DERIVATIVES OF INCLUSIVE VALUES LEVEL 1
W.R.T. BETA
DO \(93 \mathrm{~K}=1, \mathrm{MTH}\)
I=IZERO
```

```
    DO 93 I1=1,NLI
    ML2=NL2(II)
    ZZ=ZERO
    DO 94 I2=1,ML2
        I=I+1
        ZZ = ZZ + EZG(I) * DER2B(I1,I2,K) * THETA (I1,I2)
        DERIB(II,K) = ZZ / EINC1(II) / TAU(II)
    C
    C9908
    93
    C
    C W.R.T. THETA
C
    IF (NTH.EQ.O) GOTO 99
C
    DO 95 K=1,NTH
        NT11=LOCL.IM(K)
        NT12=LOCBRA(K)
        ZZZ = EINC2(NT11,NT12) ** ( THETA(NT11,NT12)/TAU(NT11) )
        ZZ = ZZZ * ( INC2(NT11,NT12)
        + THETA(NT11,NT12) * DER2T(NT11,NT12,K) )
        DER1T(NT11,K) = ZZ / EINC1(NT11) / TAU(NT11)
C
C9922
95
C
C W.R.T. TAU
C
99 IF (NTAU.EQ.0) GOTO . }92
C
    DO 921 K=1.NTAU
    NT1=LOCTAU (K)
    I =MS2K(NTI)
    ML2=NL2 (NT1)
    ZZZ=ZERO
    DO 922 I2=1,ML2
        I=I+1
        ZZZ=ZZZZ + EZG(I) * ZG(I)
    DERIU(NT1,K) = - ZZZ / EINC1(NT1) / TAU(NT1)
    WRITE (KANAL6,9211) NT1,K,DER1U(NT1,K)
    FORMAT(' DER1U(',2I2,')=',D14.5)
9211
    CONTINUE
C
920 CONTINUE
C
C DERIVATIVES OF THE LOG LIKELIHOOD (THREE LEVEL TREE)
C
    IF (LEVEL2) GOTO 200
C
C W.R.T. BETA
C
NN1 = MAXALT
DO 120 K=1,NX
    ZZ=ZERO
```

DO 121 I1=1,NL1
$\mathbf{Z Z}=\mathbf{Z Z}+E Y A(I 1)$ * DERIB(II,K) * TAU(II)
ZZZ $=$ DATAI(NNi+IALT)/THC - ZZ/EINCO

+ TH1 * DER2B(IC1,IC2,K) + TA1 * DER1B(IC1,K)
NN1 $=$ NN1 + MAXALT

120
C
123 IF (NALSTD) GOTO 129
NX1 $=$ MXA +1
DO $127 \mathrm{~K}=\mathrm{NXI}, \mathrm{MTH}$
ZZ=ZERO
DO 128 II=1,NL1
$Z Z=Z Z+E Y A(I 1)$ * DERIB(II,K) * TAU(II)
ZZ $=-Z Z / E I N C O$ + TH1 * DER2B(IC1,IC2,K) + TAI * DER1B(IC1,K)
WORK (K) = ZZ
IF (LDUMMY) WORK (MXA+IALT) $=$ WORK (MXA +IALTT) + ONE/THC
129

IF (NALTRE) GOTO 1223
DO $1221 \mathrm{~K}=1$, NXM
$\mathrm{K} 1=\mathrm{K}+\mathrm{MXA}$
ZZ=ZERO
DO 1222 II=1.NLI
$Z Z=Z Z+E Y A(I 1) * D E R 1 B(I 1, K 1) * T A U(I I)$
$Z Z=-Z Z / E I N C O$ + TH1 * DER2B(IC1,IC2,K1) + TA1 * DER1B(IC1,K1)
IF (LMAP (K,IALT)) $\mathrm{ZZ}=\mathrm{ZZ}+\mathrm{ONE} / \mathrm{THC}$
WORK (KI) =ZZ
CONTINUE

IF (NAGTRE) GOTO 122
DO $1224 \mathrm{~K}=1$, NXM
DO $1224 \mathrm{~K} 2=1$, NXD
K1=INDAGE (K2,K)
ZZ=ZERO
DO 1225 II=1,NL1
$\mathrm{ZZ}=\mathrm{ZZ}+\mathrm{EYA}(\mathrm{I} 1) * \mathrm{DERIB}(\mathrm{I} 1, \mathrm{~K} 1) *$ TAU (I1)
$Z Z=-Z Z / E I N C O+T H 1 * D E R 2 B(I C 1, I C 2, K 1)+T A 1 * D E R 1 B(I C 1, K 1)$
IF (LMAP (K,IALT)) $Z Z=Z Z+D A T A 2(K 2) / T H C$
WORK (K1) $=\mathrm{ZZ}$
CONTINUE
IF (NAGSTD) GOTO 123
$\mathrm{K}=\mathrm{NX}$
DO $125 \mathrm{~K} 1=1$, NXD
DO $125 \mathrm{~K} 2=1$, NALT1
$\mathrm{K}=\mathrm{K}+1$
ZZ=ZERO
DO 126 I1=1,NL1
$Z Z=Z Z+E Y A(I 1) * D E R 1 B(I 1, K) * T A U(I 1)$
$Z Z=-Z Z / E I N C O+T H 1 * D E R 2 B(I C 1, I C 2, K)+T A 1 * D E R 1 B(I C 1, K)$
WORK (K) $=\mathrm{ZZ}$
IF (.NOT.LDUMMY) GOTO 123
DO $124 \mathrm{~K}=1$, NXD
WORK (INDAGE (K,IALT)) $=$ WORK (INDAGE $(\mathrm{K}$, IALT $))+$ DATA2 $(\mathrm{K}) /$ THC
123 IF (NALSTD) GOTO 129
$\mathrm{NX} 1=\mathrm{MXA}+1$
DO $127 \mathrm{~K}=\mathrm{NX} 1, \mathrm{MTH}$
ZZ=ZERO
DO 128 I1=1,NL1
$\mathrm{ZZ}=-\mathrm{ZZ} / E I N C O+T H 1$ * DER2B(IC1,IC2,K) + TA1 * DER1B(IC1,K)
WORK $(K)=Z Z$
IF (LDUMMY) WORK (MXA+IALT) $=$ WORK (MXA +IALTT) + ONE/THC
CONTINUE

```
C
C W.R.T. THETA
C
    IF (NTH.EQ.O) GOTO 139
C
    DO 130 K=1,NTH
    NT11=LOCLIM(K)
    NT12=LOCBRA(K)
    ZZZ = -EYA(NT11) * DER1T(NT11,K) * TAU(NT11)/ EINCO
    IF (IC1.NE.NT11) GOTO 131
        ZZZ = ZZZ + TA1 * DER1T(IC1,K)
        IF (IC2.NE.NT12) GOTO 131
            ZZZ = ZZZ + INC2C/TAC + TH1*DER2T(IC1,IC2,K) - XBC/THC
    WORK(MTH+K) = ZZZ
    CONTINUE
130
C
139
    CONTINUE
C
C W.R.T. TAU
C
    IF (NTAU.EQ.O) GOTO 149
C
    DO 140 K=1,NTAU
        NT1=LOCTAU (K)
    ZZZ= -EYA(NT1) * ( INCI(NT1)+TAU(NT1)*DER1U(NT1,K) ) / EINCO
    IF (IC1.NE.NT1) GOTO 140
        ZZZ = ZZZ + INCIC + TAI*DER1U(IC1,K) - INC2C*THC/TAC/TAC
C
C9914
140 WORK (MTAU+K) = ZZZ
        FORMAT(' $X$ WORK(MTAU+',I2,')=',D14.5)
C
149 GOTO 5000
C
C DERIVATIVES OF THE LOG LIKELIHOOD (TWO LEVEL TREE)
C
C W.R.T. BETA
200 NN1 = MAXALT
    DO 220 K=1,NK
        ZZ=ZERO
        DO 221 I1=1,NL1
221
        ZZ = ZZ + DERIB(II,K)
        ZZZ = DATA1(NN1+IALT)/THC - ZZ/EINCO + TH1*DER2B(IC1,IC2,K)
        NN1 = NN1 + MAXALT
220 WORK(K) = ZZZ
C
    IF (NALTRE) GOTO 2223
    DO 2221 K=1,NXM
        K1=K+MXA
        ZZ=ZERO
        DO 2222 II:1,NL1
        ZZ=ZZ + DER1B(II,K1)
        ZZ = -ZZ/EINCO + TH1 * DER2B(IC1,IC2,K1)
        IF (LMAP(K,IALT)) ZZ = ZZ + ONE/THC
```

```
    WORK (K1) =ZZ
    CONTINUE
        ZZ = -ZZ/EINCO + TH1 * DER2B(IC1,IC2,K)
        WORK(K) = ZZ
    IF (.NOT.LDUMMY) GOTO 223
    DO 224 K=1,NXD
        WORK(INDAGE(K,IALT)) = WORK(INDAGE(K,IALT)) + DATA2(K)/THC
C
```

2221 C
2223 IF (NAGTRE) GOTO 222
DO $2224 \mathrm{~K}=1$, HXM
DO $2224 \mathrm{~K} 2=1$, NXD
K1=INDAGE (K2,K)
ZZ=ZERO
DO 2225 I1=1,NL1
ZZ=ZZ + DER1H(II,K1)
$\mathrm{ZZ}=-\mathrm{ZZ} / \mathrm{EINCO}+{ }^{\text {TH }} \mathrm{TH}$ * DER2B (IC1.IC2,K1)
IF (LMAP (K, IALT)) $\mathrm{ZZ}=\mathrm{ZZ}+\mathrm{DATA}(\mathrm{K} 2) / \mathrm{THC}$
WORK (K1) $=\mathrm{ZZ}$
CONTINUE
C
222 IF (NAGSTD) GOTO 223
$\mathrm{K}=\mathrm{NX}$
DO $225 \mathrm{~K} 1=1$,NXD
DO 225 K2=1,NALT1
$\mathrm{K}=\mathrm{K}+1$
ZZ=ZERO
DO 226 I1=1,NL1
W.R.T. THETA

IF (NTH.EQ.O) GOTO 239
C
DO $230 \mathrm{~K}=1$, NTH
NT11=LOCLIM (K)
NT12=LOCBRA (K)
ZZZ $=-$ DERIT(NT11,K) / EINCO
IF (IC2.NE.NT12) GOTO 231
$Z Z Z=Z Z Z+I N C 2 C+$ TH1 * DER2T (IC1.IC2,K) - XBC/THC WRITE (KANAL6,9923) K,ZZZ
C
C9923 FORMAT (' $\$ \mathrm{X}$ (WORK (MTH ${ }^{\prime}$ ', I2, ${ }^{\circ}$) =', D14.5)
231
230
IF (NALSTD) GOTO 229
$\mathrm{NX} 1=\mathrm{MXA}+1$
DO $227 \mathrm{~K}=\mathrm{NX} 1, \mathrm{MTH}$
ZZ=ZERO
DO 228 II=1,NLI
$Z Z=Z Z+D E R 1 B(I 1, K)$
$\mathrm{ZZ}=-\mathrm{ZZ} / E I N C O+$ TH1 * DER2B (IC1,IC2,K)
WORK (K) = ZZ
IF (LDUMMY) WORK (HXA+IALT) $=$ WORK (MXA+IALTI) + ONE/THC
CONTINUE

C

WORK $(\mathrm{MTH}+\mathrm{K})=\mathrm{ZZZ}$
CONTINUE

```
C
239 GOTO 5000
C
C DERIVATIVES OF THE LOG LIKELIHOOD (SIMPLE MNL-VERSION)
C
4000 NN1 = MAXALT
    DO 4020 K=1,NX
        ZZ = ZERO
        ZB = ZERO
        DO 4021 I=1,NALT
        DA = DATA1 (NN1+I)
        ZP = PROBS(I) * DA
        ZZ = ZZ + DATA1(I) * DA - ZP
        ZB}=\mathbf{ZB}+\mathbf{ZP
        CONTINUE
        NN1 = NN1 + MAXALT
        ZBAR(K) = ZB
    WORK(K) = ZZ
    IF (NALTRE.AND.NAGTRE) GOTO 4039
    DO 4036 K=NX+1,MTH
        ZBAR(K) = ZERO
    WORK(K) = ZERO
    DO 4031 K=1,NXM
    K1 = K + MXA
    DO 4032 M=1,MAPLEN(K)
        I = MAPTR (K,M)
        ZZZ = DATA1(I) - PROBS(I)
        IF (NALTRE) GOTO 4033
        WORK(K1) = WORK(K1) + ZZZ
        ZBAR(K1) = ZBAR(K1) + PROBS(I)
        IF (NAGTRE) GOTO 4032
        DO 4034 K2=1,NXD
                INDEX = INDAGE (K2,K)
                ZBAR(INDEX) = ZBAR(INDEX) + PROBS(I) * DATA2(K2)
                WORK(INDEX) = WORK(INDEX) + ZZZ * DATA2(K2)
        CONTINUE
    CONTINUE
C
4 0 3 9 ~ I F ~ ( N A G S T D ) ~ G O T O ~ 4 0 4 0
    K=NX
    DO 4030 K1=1,NXD
    DO 4030 K2=1,NALT1
        K=K+1
        WORK(K) = ( DATA1(K2) - PROBS(K2) ) * DATA2(K1)
        ZBAR(K) = PROBS (K2) * DATA2(K1)
    CONTINUE
C
4 0 4 0 ~ I F ~ ( N A L S T D ) ~ G O T O ~ 4 1 0 0 ~
    DO 4041 K=1,NALT1
        WORK (K+MXA) = DATAI (K) - PROBS (K)
        ZBAR (K+MXA) = PROBS (K)
4041 CONTINUE
C
```

```
C EXACT SECOND DERIVATIVES (SIMPLE MNL-VERSION)
C
4100 IF (IDIFF2.NE.4) GOTO 5000
    NN1=IZERO
    DO 4105 K=1,NX
    NH1=NN1+MAXALT
    DO 4105 I=1,NALT
        ZIZBAR(I,K)=DATA1 (NN1+I) -ZBAR (K)
        CONTINUE
C
4 1 1 0 ~ I F ~ ( N A G T R E ) ~ G O T O ~ 4 1 2 0
    K=NX
    DO 4115 K1=1,NXD
    DO 4115 K2=1,NXM
        K=K+1
        DO 4115 I=1,NALT
                DA=ZERO
                IF (LMAP(K2,I)) DA=DATA2(K1)
                ZIZBAR(I,K)=DA-ZBAR(K)
                CONTINUE
C
4120 IF (NALTRE) GOTO 4130
    K=MXA
    DO 4125 K2=1,NXM
        K=K+1
        DO 4125 I=1,NALT
                DA=ZERO
                IF (LMAP(K2,I)) DA=ONE
                ZIZBAR(I,K)=DA-ZBAR(K)
                CONTINUE
C
4130 IF (NAGSTD) GOTO 4140
    K=NX
    DO 4135 KI=1,NXD
    DO 4135 K2=1,NALT1
        K=K+1
        DO 4135 I=1,NALT
            DA=ZERO
            IF (K2.EQ.I) DA=DATA2(K1)
            ZIZBAR(I,K)=DA-ZBAR(K)
4 1 3 5
        CONTINUE
C
4140 IF (NALSTD) GOTO 4200
    K=MXA
    DO 4145 K2=1,NALT1
        K=K+1
        DO 4145 I=1,NALT
        DA=ZERO
        IF (K2.EQ.I) DA=ONE
        ZIZBAR (I,K)=DA-ZBAR (K)
4 1 4 5
        CONTINUE
C
C HESSIAN
C
```

```
4200 KK=IZERO
    DO 4205 J=1,NP
    DO 4205 K=1,J
        KK=KK+1
        ZZ=ZERO
        DC 4210 I=1,NALT
                ZZ = ZZ + ZIZBAR(I,J)*PROBS(I)*ZIZBAR(I,K)
                CONTINUE
            HESS (KK)=-ZZ
4205 CONTINUE
C
C APPLY WESML WEIGHTS TO LIKELIHOOD, GRADIENT, AND HESSIAN
C
5000 IF (RELSIZ.EQ.O.O) GOTO 9999
C
    WT=WEIGHT (IALT)
    XLFI=XLFI*WT
    IF (ILOOP.EQ.1) GOTO 9999
C
5001 WORK (I)=WORK (I) *WT
    IF (IDIFF2.NE.4) GOTO 9999
C
    KK=1
    DO 5004 J=1,NP
    DO 5004 K=1,J
        KK=KK+1
5004 HESS (KK) =HESS (KK) *WT
    GOTO 9999
C
C FAILURE DUE TO UNDER- OR OVERFLOW
C
9 0 0 1 ~ C O N T I N U E ~
    WRITE (KANAL6,*) 'XBI',XBI,' IALT',IALT'
    GOTO 9000
9002 CONTINUE
    WRITE (KANAL6,*) 'DINC2',DINC2,' IALT',IALT
    GOTO 9000
9003 CONTINUE
    WRITE (KANAL6,*) 'DINC1',DINC1,' IALT',IALT
    GOTO 9000
9004 CONTINUE
    WRITE (KANAL6,*) 'EINCO',EINCO,' IALT',IALT
    GOTO 9000
9005 CONTINUE
    WRITE (KANAL6,*) 'CH=0,IALT',IALT
C
9000 IF (.NOT.DUMP) GOTO 9998
C9000 WRTTE (KANAL6,*) 'DUMP OF LAST RECORD:'
    DO }9091 I=1,NALT
    WRITE (KANAL6,*) 'CH',I,DATAI(I)
    NN1=MAXALT
    DO 9092 K=1,NX
        WRITE (KANAL6,*) 'X ',DATA1 (NN1+I), PARM(K)
```

```
9092 NN1=NN1+MAXALT
    DO }9093\textrm{K}=1.NX
9093 WRITE (KANAL6,*) 'XD',DATA2 (K),PMASKY (K,I)
    WRITE (KANAL6,*) 'DU'.PARM (MXA+I)
    WRITE (KANAL6,*) 'XBI',XB(I)
9091 CONTINUE
    WRITE (KANAL6,*) 'TH`,(THETA(LOCLIM(I),LOCBRA(I)),I=1,NTH)
    WRITE (KANALG,x) 'TAU',(TAU(LOCTAU(I)),I=1,NTAU)
C
9998 XLFI=-1.D10
    NFAIL=NFAIL+1
C
9999 CONTINUE
    RETURN
    END
    SUBROUTINE WESML(PARM,GRAD,HESS,NP,SCRA,FUNC)
C----------------------------------------------------------------------------
C
C CALCULATES CORRECT COVARIANCE FOR WESML ESTIMATOR
C COVM = INV (HESS) * ( BHHH + ABA' ) * INV(HESS)
C RELSIZ = O.O: EXOGENOUS SAMPLING - NO CORRECTION NECESSARY
C RELSIZ < 1.0: CHOICE BASED SAMPLING WITH ESTIMATED SHARES
                                    (RELSIZ=MAIN SAMPLE SIZE/AUKILIARY SAMPLE SIZE)
    RELSIZ = 1.0: CHOICE BASED SAMPLING WITH KNOWN SHARES
    C WEIGHT = VECTOR OF AUX. SAMPLE SHARES/MAIN SAMPLE SHARES
C THE INVERSE HESSIAN HAS TO BE SUPPLIED IN HESS
C
C
C AXEL BOERSCH-SUPAN MARCH 21, 1984
C
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 PARM(NP),GRAD(NP),HESS (NP,NP)
C
    PARAMETER
    * (MAXOBS=2001,
    * MAXNP =50,
    * MAXNX =10,
    * MAXALT=20,
    * MAXNXY=MAXNX+1)
C
    REAL*8 SCRA(MAXNP,MAXNP),HINV (MAXNP,MAXNP), AAUX(MAXNP,MAXALT),
    * BAUX (MAXALT,MAXALT) ,QAUX (MAXALT),SCRAUX (MAXNP,MAXALT)
    REAL*4 DATA1(MAXALT,MAXNXY,MAXOBS)
    EXTERNAL FUNC
C
    COMMON / DIMEN / NALT,NALT1,NX,NXD,NXA,NXR,MXA,MTH,MTAU,NOBS
    COMMON / DIFF2 / IDIFF2
    COMMON / DATAX / DATAI
    COMMON / DWESML / RELSIZ,WEIGHT(MAXALT)
    COMMON / DWESTK / HINV,AAUX,BAUX,QAUX,SCRAUK
```

```
C
    IF (RELSIZ.EQ.O) RETURN
C
C
C
1 0
C
C
C
C ADD CONTRIBUTION OF AUXILIARY SAMPLE SHARE ABA TO BHHH MATRIX
C
    IF (RELSIZ.EQ.1.O) GOTO 200
C
C
```



```
C
C
    DO 110 I=1,NALT
    CALL FP(PARM,NP,XLF,GRAD,FUNC)
    DO 112 K=1,NP
112 AAUX (K,I)=GRAD (K)
    DO }113\textrm{J}=1,NAL
        BAUX(I,J)=-RELSIZ*QAUX (I)*QAUX (J)
        IF (I.EQ.J) BAUX(I,I)=BAUX(I,I)+RELSIZ*QAUX (I)
        CONTINUE
    CONTINUE
110
C
C
C
C
C
C
    CALL MATP (AAUX,NP,MAXNP,NALT,BAUX,MAXALT,NALT,SCRAUX,MAXNP)
    CALL MATPT(SCRAUX,NP,MAXNP,NALT,AAUX,MAXNP,NALT,SCRA,MAXNP)
C
C - MATRIX ADDITION BHHH + ABA'
C
    DO 130 I=1,NP
    DO 130 J=1,NP
```

$130 \operatorname{HESS}(I, J)=\operatorname{HESS}(I, J)+\operatorname{SCRA}(I, J)$
C PRE- AND POST-MULTIPLY INV. HESSIAN TO BHHH+ABA', STORE IN HESS
C
200 CALL MATP (HINV,NP,MAXNP,NP,HESS,NP,NP,SCRA,MAXNP)
CALL MATP (SCRA, NP, MAXNP, NP, HINV, MAXNP, NP, HESS, NP)
C
RETURN
END
SUBROUTINE ELAST(PARM,NP,PROB,ELAS,IOBS)

* (MAXOBS $=2001$,
* MAXNP $=50$,
* MAXNX $=10$,
* MAXNXD $=5$,
* MAXNXM $=20$,
* MAXTAU $=5$.
* MAXTH $=10$,
* MAXLEV $=3$,
* MAXLIM $=5$,
* MAXBRA $=5$,
* MAXALT $=20$,
* MAXNXY = MAXNX+1, MAXNXR=MAXNX+MAXNXD)
C

INTEGER MAP (MAXALT, MAXLEV) , MAPLEN (MAXNXM) , MAPTR (MAXNXM, MAXALT)
LOGICAL LEVEL1,LEVEL2,NOALT,NOAGE,NALTRE,NAGTRE,NALSTD,NAGSTD,
* STDUMA,STDUMD,STDDUM,LMAP (MAXNXM, MAXALT)
COMMON / DIMEN / NALT,NALT1,NX,NXD,NXA,NXR,MXA,MTH,MTAU,NOBS
COMMON / DATAX / DATAI
COMMON / DATAY / DATA2
COMMON / DTREE / NTH,NTAU,THETA,TAU,LEVEL1,LEVEL2
COMMON / DMAPP / NXM,MAP,MAPLEN,MAPTR, PMASKY,PMASKD, LMAP
COMMON / DDISS / LOCTAU (MAXTAU), LOCLIM (MAXTH), LOCBRA (MAXTH),
* NL1,NL2 (MAXLIM), NL3 (MAXLIM, MAXBRA)
COMMON / DDUMM / STDDUM,STDUMA,STDUND,NDUMA,NDUMD,
NOALT, NOAGE, INDAGE (MAXNXD, MAXALT),
NALSTD, NALTRE, NAGSTD, NAGTRE

```
COMMON / DELAS / PSUM1,PSUM2,Q2,Q3
COMMON / BPRINT / IPT,KANAL6,NDIG,NPUNCH
C SUMMATION OF ELEMENTAL PROBABILITIES TO SECOND LEVEL
ARRAY OF ELASTICITIES
DO 4O JM=1,NXM
DO 40 K1=1,NXD
DO 40 I=1,NALT
    ELAS (I,JM,NX+K1)=0.0
```

```
I=0
```

I=0
J=0
J=0
DO 50 J1=1,NL1
DO 50 J1=1,NL1
TA=TAU (J1)
TA=TAU (J1)
XLI=(TA-1.D0)/TA
XLI=(TA-1.D0)/TA
ML2=NL2 (J1)
ML2=NL2 (J1)
DO 50 J2=1,ML2
DO 50 J2=1,ML2
ATW=1.D0/THETA(J1,J2)

```
        ATW=1.D0/THETA(J1,J2)
```

C
C
11
C
$X B R=1 . D 0 / T A-A T W$
ML3 \because NL3 $(J 1, J 2)$
DO 50 J3=1, ML3
$\mathrm{J}=\mathrm{J}+1$
ABR=XBR*Q3 (J)
ALI=XLI*Q3(J)*Q2 (J1, J2)
$\mathrm{I}=0$
DO 60 I1=1,NLI
LL2 $=$ NL2 (I 1)
DO 60 I2=1,LL2
LL3 $=$ NL3 $(11, I 2)$
DO 60 I3=1,LL3
$I=I+1$
$E L=-\operatorname{PROB}(J)$
IF (II.NE.J1) GOTO 70
$E L=E L+A L I$
IF (I2.NE.J2) GOTO 70
$E L=E L+A B R$
IF (I.EQ.J) EL=EL+ATW

DO $72 \mathrm{~K}=1$, NX
$\operatorname{ELAS}(I, J, K)=\operatorname{PARM}(K) * D A T A 1(J, K+1, I O B S) * E L$
C
70
72
C

RETURN
C
90 WRITE (KANAL6,91) I1,I2,PSUM2 (I1,I2)
91 FORMAT(' PSUM2 (', 2I3,') =', D15.5) RETURN
END
SUBROUTINE LSFIT (PDUMMY,NALT1,SSD,IERLS,SSQDEV,ITERLS)
C
C
C FIT AGGREGATE SAMPLE SHARES BY LEAST SQUARES
C
C CAN BE CALLED AS INNER MINIMIZATION LOOP WITHIN AN C OUTER KAXIMIZATION OF THE LIKELIHOOD.

IF (NAGTRE) GOTO 75
DO $74 \mathrm{~K}=1$. NXD
DO 74 JM=1,NXM
IF (.NOT.LMAP (JM,J)) GOTO 74
K1=INDAGE (K, JM)
ADD $=$ PARM $(K 1) * D A T A 2(K, I O B S) * E L$
$\operatorname{ELAS}(I, J M, N X+K)=E L A S(I, J M, N X+K)+A D D$ CONTINUE

IF (NAGSTD) GOTO 60
IF (J.EQ.NALT) GOTO 60
DO $76 \mathrm{~K}=1$, NXD
K1=INDAGE (K, J)
$\operatorname{ELAS}(I, J, N X+K)=P A R M(K 1) * \operatorname{DATA} 2(K, I O B S) * E L$
CONTINUE
CONTINUE

C

```
c
C INPUT: PDUMMY(NALT1) INITIAL ALTERNATIVE SPECIFIC DUMMIES
C ITERLS MAXIMUM NUMBER OF ITERATIONS
C
C OUTPUT: PDUMMY(NALT1) ADJUSTED ALTERNATIVE SPECIFIC DUMMIES
C ITERLS NUMBER OF ITERATIONS USED
C
C
C
C AXEL BOERSCH-SUPAN MARCH 28, 1984
C
    IMPLICIT REAL:8 (A-H,O-Z)
    DIMENSION PDUMMY(NALT1)
    EXTERNAL FUNC,DFP,SSQDEV
C
    COMMON / BSTACK / A(1)
    COMMON / BOPT / IVER,LT,IFP,ISP,NLOOP1,IST,ILOOP1
    COMMON / BOPT1 / NPARS,JH,JFP,JFP1,JSP,JSP1,JA1,JS
    COMMON / BOPT2 / ACC,R ,PM1,IVAL,ITERL,ITERC,MX,IER
    COMMON / BOPT3 / JSMP,JF,JSPD
    COMMON / BSTAK / NQ,NTOP
    COMMON / BPRINT / IPT,NFILE,NDIG,NPUNCH
    COMMON / BLNSR / STEP1,STPACC,NLNSR
    COMMON / BSTOP / NVAR1,ISTOP(3)
    COMMON / BSTR / ST2,F1,ST3,F3,IEDGE
    COMMON / BPREC / RSMALL,ABSMAL
    COMMON / BINPUT / INFLG
    COMMON / BDFP / STPMIN,FMIN
C
C STORE PARAMETERS OF LIKELIHOOD MAXIMIZATION
C
    IVER7=IVER
    IFP7=IFP
    ILOOP7=ILOOP1
    NPARS7=NPARS
    JH7=JH
    JFP7=JFP
    JFP17=JFP1
    JSP7=JSP
    JSP17=JSP1
    JA17=JA1
    JS7=JS
    ACC7=ACC
    R7=R
    PM17=PM1
    ITERL7=ITERL
    ITERC7=1TERC
    MX7=MX
    IER7=IER
    JSMP7=JSMP
    JF7=JF
    JSPD7=JSPD
    IPT7=IPT
```

```
STEP17=STEP1
STPAC7=STPACC
NLNSR7=NLNSR
NVAR17=NVAR1
ST27=ST2
F17=F1
ST37=ST3
F37=F3
IEDGE7=IEDGE
RSMAL7=RSMALL
ABSMA7=ABSMAL
INFLG7=INFLG
STPMI7=STPMIN
FMIN7=FMIN
```

C
C RESET PARAMETERS WHERE NECESSARY
C
NPARS=NALT1
IER=0
IFP=4
MX=2
STPACC=ACC
NVAR1=NALT1
INFLG=0
PM1=FLOAT (3-2*MX)
ITERC=0
LASTOP=NTOP
C
C CALL MINIMIZATION ALGORITHM
C
IVER=1
ACC=0.01
ITERL=ITERLS
ITERC=0
IPT=2
CALL DFP(PDUMMY,NALT1,SSD,SSQDEV)
ITERLS=ITERC
IERLS=IER
C
C RESTORE PARAMETERS OF LIKELIHOOD MAXIMIZATION
C
NTOP=LASTOP
IVER=IVER7
IFP=IFP7
ILOOP1=ILOOP7
NPARS=NPARS7
$\mathrm{JH}=\mathrm{JH} 7$
JFP=JFP7
JFP1=JFP17
JSP=JSP7
JSP1=JSP17
JA1=JA17
JS=JS7
ACC=ACC7

```
    R=R7
    PM1=PM17
    ITERL=ITERL\}
    ITERC=ITERC7
    MX=MX7
    IER=IER7
    JSMP=JSMP7
    JF=JF7
    JSPD=JSPD7
    IPT=IPT7
    STEP1=STEP17
    STPACC=STPAC7
    NLNSR=NLNSR7
    NVAR1=NVAR17
    ST2=ST27
    F1=F17
    ST3=ST37
    F3=F37
    IEDGE=IEDGE7
    RSMALL=RSMAL7
    ABSMAL=ABSMA7
    INFLG=INFLG7
    STPMIN=STPMI7
    FMIN=FMIN7
C
    RETURN
    END
    SUBROUTINE SSQDEV(PDUMMY,NALT1,SSD **)
```



```
C
C SUM OF SQUARED DEVIATIONS OF AGGREGATE PROBABILITY-SHARES FROM
C OBSERVED SAMPLE-SHARES
C
C AXEL BOERSCH-SUPAN MARCH 27, 1984
C
C
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 PDUMMY(NALT1)
C
PARAMETER
* (MAXOBS =2001,
* MAXNP =50,
* MAXNX =10.
* MAXNXD =5,
* MAXALT =20,
* MAXNXY=MAXNX+1,
* MAXDA1=MAXALT*MAXNXY*MAXOBS, MAXDA2=MAXNXD*MAXOBS.
* MAXALS=MAXALT* (MAXALT+1)/2)
C
REAL*8 PROB1 (MAXALT) ,PROB2(MAXALT),
* DERIV1 (MAXALT,MAXALT),DERIV2(MAXALT, MAXALT),
* PARM (MAXNP) ,GRAD (MAXNP) ,HESS (MANNP,MAXNP)
REAL*4 FDATA1 (MAXDA1) , FDATA2 (MAXDA2)
C
```

```
    COMMON / DIMEN / NALT,NPARM (8),NOBS
    COMMON / DATAX / FDATA1
    COMMON / DATAY / FDATA2
    COMMON / DSSQD / PROB1,PROB2,DERIV1,DERIV2
    COMMON / DPARM / NP,PARM,GRAD,HESS
    COMMON / DWESML / RELSIZ,WEIGHT(MAXALT)
C
    ILOOP=1
    NFAIL=0
    CALL UPDATE(PARM,NP,*90)
    DO 10 I=1,NALT
        PROB2 (I)=0.DO
C
C EVALUATION OF PROBABILITY-SHARES
C
    NN1=1
    NN2=1
    INC=MAXALT*MAXNXY
    DO 100 IOBS = 1,NOBS
        CALL CONTPS(FDATA1(NN1),FDATA2(NN2),
    * ILOOP,PARM,NP,PDUMMY,NALT1,PROB1,DERIV1,NFAIL)
        DO 15 I=1,NALT
            IF (FDATA1(NN1+I-1).EQ.1.0) WT=WEIGHT(I)
            CONTINUE
        NN1=NN1+INC
        NN2=NN2+MAXNXD
        DO 16 I=1,NALT
            PROB2 (I) =PROB2 (I) +PROB1 (I) *WT
100 CONTINUE
C
    IF (NFAIL.GT.O) GOTO 90
C
C SUM OF SQUARED DEVIATIONS IN PERCENTAGES
C
    NN=NN1+INC
    SSD=0.DO
    DO 20 I=1,NALT
        ZZZ = (PROB2(I)/NOBS - FDATA1 (NN+I-1))*100.0
        SSD = SSD + ZZZ*ZZZ
        CONTINUE
20
C
    RETURN
90 PRINT 91,NFAIL
91 FORMAT(' ERROR IN SSQDEV:',I5,' FAILURES IN EVALUATION')
    RETURN 1
    END
```



```
    SUBROUTINE FPSSQD(PDUMMY,NALT1,SSD,DERIV,SDERIV,SSQDEV)
C--------------------------------------------------------------------------------------
C
C GRADIENT OF THE SUM OF SQUARED DEVIATIONS
C
```



```
    IMPLICIT REAL*8 (A-H,O-Z)
```

```
    REAL*8 PDUMMY(NALT1),DERIV(NALT1),SDERIV(NALT1)
```

C
PARAMETER
* (MAXOBS $=2001$,
* MAXNP $=50$,

* MAXNX $=10$,
* MAXNXD $=5$,
* MAXALT $=20$,
* MAXNXY=MAXNX+1, MAXNPS=MAXNP* $($ MAXNP+1) $/ 2$,
* MAXDA1=MAXALT*MAXNXY*MAXOBS, MAXDA2=MAXNXD*MAXOBS)
C
REAL*8 PROB1 (MAXALT) , PROB2 (MAXALT),
 * DERIV1 (MAXALT, MAXALT) ,DERIV2 (MAXALT, MAXALT),
 * PARM (MAXNP) , GRAD (MAXNP) , HESS (MAXNP, MAXNP)
REAL* 4 FDATA1 (MAXDA1) ,FDATA2 (MAXDA2)
C
COMMON / DIMEN / NALT,NPARM (8),NOBS
COMMON / DATAX / FDATA1
COMHON / DATAY / FDATA2
COMMON / DPARM / NP,PARM,GRAD,HESS
COMMON / DSSQD / PROB1,PROB2,DERIV1,DERIV2
COMMON / DWESML / RELSIZ,WEIGHT (MAXALT)
COMMON / BOPT2 / ACC,R,PMI,IVAL,ITERL,ITERC,MX,IER
EXTERNAL SSQDEV
C
ILOOP=0
NFAIL=0
CALL UPDATE (PARM,NP,*90)
DO $10 \mathrm{I}=1$, NALT
PROB2 (I) $=0$. DO
DO $10 \mathrm{~K}=1$,NALT1
DERIV2 $(\mathrm{I}, \mathrm{K})=0$. DO
c
C
EVALUATION OF PROBABILITY-SHARES AND THEIR DERIVATIVES
C
NN1 $=1$
NN2=1
INC=MAXALT*MAXNXY
DO 100 IOBS $=1$,NOBS
CALL CONTPS (FDATA1 (NN1) , FDATA2 (NN2),
 * ILOOP,PARM,NP, PDUMMY,NALT1,PROB1,DERIV1,NFAIL)
DO $15 \mathrm{I}=1$, NALT
IF (FDATA1 (NN1+I-1).EQ.1.0) WT=WEIGHT (I)
CONTINUE
NN1 $=$ NN $1+$ INC
NN2 $=$ NN2 + MAXNXD
DO $16 \mathrm{I}=1$, NALT
PROB2 (I) = PROB2 (I) +PROB1 (I) *WT
DO $16 \mathrm{~K}=1, \mathrm{NALT} 1$
DERIV2 $(I, K)=\operatorname{DERIV} 2(I, K)+D E R I V 1(I, K) * W T$
CONTINUE
C
IVAL=IVAL+1
IF (NFAIL.GT.O) GOTO 90

```
C
C SUM OF SQUARED DEVIATIONS IN PERCENTAGES
C
    NN=NN1+INC
    SSD=0.DO
    DO 20 I=1,NALT
    PROB1(I) = ( PROB2(I)/NOBS - FDATA1(NN+I-1) ) * 100
    SSD = SSD + PROB1(I)*PROB1 (I)
    CONTINUE
C
C
C
    DO 30 K=1,NALT1
    ZZZ = 0.DO
    DO 31 I=1,NALT
        ZZZ = ZZZ + 2.0 * PROB1(I)/NOBS*100.0 * DERIV2(I,K)
    DERIV(K) = ZZZ
30
C
    RETURN
90 PRINT 91,NFAIL
91 FORMAT(' ERROR IN FPSSQD:',I5,' FAILURES IN EVALUATION')
    RETURN
    END
    SUBROUTINE CONTPS(DATA1,DATA2,ILOOP,PARM,NP,
    *
                                    PDUMMY,NALT1,PROB1,DERIV1,NFAIL)
```



```
C
```


PARAMETER

* (MAXOBS $=2001$,
* MAXNP $=50$,
* MAXTH $=10$,
* haxtau $=5$,
* MAXNX $=10$,
* MAXNXD $=5$,
* MAXNXM $=20$.
* MAXLEV $=3$,
* MAXLIM $=5$,
* MAXBRA $=5$,
* MAXALT $=20$,
* MAXNXY=MAXNX+1, MAXNXR=MAXNX+MAXNXD, MAXNPS=MAXNP* (MAXNP+1)/2)
COMMON / DCONT / XB,ZG,YA,INC2,INC1,
* EXB,EZG,EYA,EINC2,EINC1,
* DER2B, DER1B, DER2T,DER1T,DER1U,
* ZBAR.ZIZBAR,UPP,LOW,
* MS3K (MAXTH),ML3K (MAXTH) ;MS2K (MAXLIM)
COMMON / DTREE / NTH,NTAU,THETA,TAU,LEVEL1,LEVEL2
COMMON / DMAPP / NXM,MAP,MAPLEN,MAPTR,PMASKY,PMASKD,LMAP
COMMON / DDUMM / STDDUM,STDUMA,STDUMD,NDUMA,NDUMD,
*
*

COMMON / BPRINT / IPT,KANAL6,NDIG,NPUNCH
C INNER PRODUCT XBETA, INCLUSIVE VALUES
c
c
I=IZERO
IB=IZERO
EINCO=ZERO
DO 10 I1 $=1, \mathrm{NL} 1$

```
ML2=NL2(I1)
TA =TAU(II)
DINC1=ZERO
DO 20 I2=1,ML2
    IB =IB+1
    ML.3=NL3 (I1,I2)
    TH =THETA(I1,I2)
    THT=TH/TA
    DINC2=ZERO
    DO 30 I3=1,ML3
        I=I+1
        INNER PRODUCT XB/TH
        XBI = ZERO
        NN1 = MAXALT
        DO 40 K=i,NX
            XBI = XBI + DATAI (NN1+I)*PARM(K)
            NN1 = NN1 + MAXALT
        IF (NAGTRE) GOTO 42
        DO 41 K=1,NXD
            XBI = XBI + DATA2 (K)*PMASKY (K,I)
        IF (I.EQ.NALT) GOTO 49
            XBI = XBI + PDUMMY(I)
        IF (NAGSTD) GOTO 49
        DO 43 K=1,NXD
            XBI = XBI + DATA2(K)*PARM(INDAGE (K,I))
        CONTINUE
        XBI = XBI / TH
        IF (XBI.GT.UPP) GOTO 9001
        XB (I) =XBI
        ZZZ=DEXP(XBI)
        EXB(I)=ZZZ
        DINC2=DINC2+ZZZ
        CONTINUE
    LOWER LEVEL INCLUSIVE VALUE INC2(I1,I2)
    IF (LEVEL1) GOTO 21
    IF (DINC2.LT.LOW) GOTO }900
    EINC2 (I\perp,I2)=DINC2
    DINC2=DLOG(DINC2)
    INC2(I1,I2)=DINC2
    DINC2=THT*DINC2
    IF (DINC2.GT.UPP) GOTO }900
    ZG(IB)=DINC2
    DINC2=DEXP(DINC2)
    EZG (IB) = DINC2
    DINC1=DINC1+DINC2
    CONTINUE
HIGHER LEVEL INCLUSIVE VALUE DLOG(INC1(I1))
C
EINC1 (II)=ONE
```

```
    IF (LEVEL2) GOTO 11
    IF (DINCI.LT.LOW) GOTO 9003
    EINC1 (II)=DINC1
    DINC1=DLOG(DINC1)
    INC1 (I1)=DINC1
    DINC1=TA*DINC1
    IF (DINC1.GT.UPP) GOTO }900
    YA (II)=DINC1
    DINCI=DEXP(DINC1)
    EYA(II)=DINCI
    EINCO=EINCO+DINCI
    CONTINUE
IF (EINCO.LT.LOW) GOTO }900
INCO=DLOG(EINCO)
C
C PROBABILITY-SHARES
C
51 DO 52 I=1,NALT
    PROB1 (I)=EXB (I)/EINCO
    CONTINUE
    IF (LEVEL1) GOTO 69
    I=IZERO
    DO 60 I1=1,NL1
    ML2=NL2 (I1)
    IF (LEVEL2) GOTO 61
    DINC1=(TAU (I1)-ONE)*INC1 (I1)
    CONTINUE
    DO 60 I2=1,ML2
        ML3=NL3(I1,I2)
        DINC2=(THETA(I1,I2)/TAU(I1)-ONE)*INC2(I1,I2)
        DO 60 I3=1,ML3
            I=I+1
            IF (LEVEL2) GOTO 62
            PROB1 (I) =PROB1 (I) :DEXP(DINC1+DINC2)
            GOTO 60
            PROB1 (I) =PROB1 (I)*DEXP (DINC2)
            CONTINUE
    IF (ILOOP.EQ.1) GOTO }999
    IF (LEVEL1) GOTO 4000
C
C DERIVATIVES OF INCLUSIVE VALUES LEVEL 2 W.R.T. DUMMIES
C
    I=IZERO
    DO 80 II=1,NL1
        ML2=NL2 (I1)
        DO 80 I2=1,ML2
        ML3=NL3(I1,I2)
        DINC2=EINC2(I1,I2)*THETA(I1,I2)
        DO 80 I3=1,ML3
            I=I+1
            IF (I.EQ.NALT) GOTO 80
            DER2B(I1,I2,MXA+I) = EXB(I) / DINC2
C WRITE (KANAL6,9907) I1,I2,MXA+I,DER2B(I1,I2,MXA+I)
C9907
                FORMAT(' $X$ DER2B(',3I2,')=',D18.4)
```

C DERIVATIVES OF INCLUSIVE VALUES LEVEL 1 W.R.T. DUMMIES
C
DO $93 \mathrm{~K}=\mathrm{NXA}+1$, MXA + NALT1
I=IZERO
DO 93 I1=1, NL1
ML2=NL2 (I1)
ZZ=ZERO
DO 94 I2=1,ML2
$I=I+1$
$Z Z=Z Z+\operatorname{EZG}(I) * \operatorname{DER2B}(I 1, I 2, K) * \operatorname{THETA}(I 1, I 2)$
DERIB $(I 1, K)=Z Z / E I N C 1(I 1) / T A U(I 1)$
WRITE (KANAL6,9908) II,K,DER1B(I1,K)
$\operatorname{DER1B}(I 1, K)=Z Z / E I N C 1(I 1) / T A U(I 1)$
WRITE (KANAL6,9908) II,K,DER1B(I1,K)
FORMAT(' \$X\$ DER1B(',2I2,')=', D18.4)
CONTINUE
DERIVATIVES OF THE PROBABILITIES (THREE LEVEL TREE)
IF (LEVEL2) GOTO 200
C

GOTO 9999
C
C
C
200

228
CONTINUE
c9908
93
C

DO $127 \mathrm{KK}=1$,NALT1
$\mathrm{K}=\mathrm{KK}+\mathrm{MXA}$
ZZ=ZERO
DO 128 I1=1, NL1
$Z Z=Z Z+E Y A(I 1) * D E R 1 B(I 1, K) * T A U(I I)$
$Z Z=-Z Z / E I N C O$
$\mathrm{I}=0$
DO 127 I1=1,NLI
ML2=NL2 (I1)
TA1=TAU (I1)-ONE
DC 127 I2=1,ML2
ML3 $=$ NL3 (I1, I2)
TH1 = (THETA (I1, I2) /TAU (I1) -ONE)
DO 127 I3=1, ML3
$\mathrm{I}=\mathrm{I}+1$
$Z Z Z=Z Z+T H 1 * \operatorname{DER2B}(I 1, I 2, K)+T A 1 * \operatorname{DER1B}(I 1, K)$
IF (I.EQ.KK) ZZZ = ZZZ + ONE/THETA (I1,I2)
DERIVI (I,KK) $=$ ZZZ * PROBI (I)
CONTINUE
DERIVATIVES OF THE PROBABILITIES (TWO LEVEL TREE)
DO 227 KK=1,NALT1
$\mathrm{K}=\mathrm{KK}+\mathrm{MXA}$
ZZ=ZERO
DO 228 I1=1,NL1
$Z Z=Z Z+\operatorname{DER1B}(I 1, K)$
$Z Z=-Z Z / E I N C O$
$I=0$
DO 227 II=1,NLI
ML2=NL2 (I1)
DO 227 I2=1,ML2

```
ML3=NL3(I1,I2)
TH1=THETA(I1,I2)-ONE
DO 227 I3=1,ML3
    I=I+1
    ZZZ = ZZ + TH1 * DER2B(I1,I2,K)
    IF (I.EQ.KK) ZZZ = ZZZ + ONE/THETA(I1,I2)
    DERIV1(I,KK) = ZZZ * PROB1(I)
    CONTINUE
    GOTO }999
C
C DERIVATIVES OF THE PROBABILITIES (SIMPLE MNL-VERSION)
C
4000 DO 4041 K=1,NALT1
    DO 4041 I=1,NALT
        ZZ = ZERO
        IF (I.EQ.K) ZZ = ONE
        DERIV1(I,K) = PROBI(I) * ( ZZ - PROB1(K) )
4041 CONTINUE
    GOTO }999
C
C FAILURE DUE TO UNDER- OR OVERFLOW
C
9001 CONTINUE
    WRITE (KANAL6,*) 'XBI',XBI
    GOTO 9000
9002 CONTINUE
    WRITE (KANAL6,*) 'DINC2',DINC2
    GOTO 9000
9003 CONTINUE
    WRITE (KANAL6,*) 'DINC1',DINCI
    GOTO 9000
9004 CONTINUE
    WRITE (KANAL6,*) 'EINCO',EINCO
C
9000 XLFI=-1.D10
    NFAIL=NFAIL+1
C
9999 CONTINUE
    RETURN
    END
    SUBROUTINE LMSTAT(NP,NP1,NP2,ND,FPD,SPD,TEST)
C---------------~-----------------------------------------------------------
C CALCULATES LM STATISTIC
    PARAMETER (MAXNP=50.
                                MAXNPS=MAXNP* (MAXNP+1)/2)
    REAL*8 FPD(NP),SPD(NP,NP)
    REAL*8 DL(5),DLB(5,MAXNP) ,DLL (5,5),DBB(MAXNPS),TEST
    INT'EGER ND(5)
C
C FILL FIRST AND SECOND DERIV W.R.T. THETA : DL,DLL
C
    DO 560 I=1,NP1
        DL(I)=FDD(ND (I))
```

```
        DO 560 J=1,NP1
        DLL(I,J)=SPD(ND(I) ,ND(J))
C FILL MIXED SECOND DERIV : DLB
C
561
C
C
C
    IND=0
    DO 562 I=1.NP2
    DO 562 J=1,I
                IND=INI+1
                        DBB (IND) =-SPD (I,J)
        (NOTE: NEED POS. DEF. MATRIX)
C
C
C INVERT DBB
C
    LK2=NP2* (NP2+1)/2
    CALL INV(DBB,NPZ,LK2,IER)
    IF (IER.NE.O) PRINT 565
    FORMAT(' DBB SINGULAR')
56
C
C REFILL INVERS OF DBB ON ARRAY
C
    IND=0
    DO 568 I=1,NP2
    DO 568 J=1,I
        IND=IND+1
        SPD (I,J) =-DBB (IND)
    SPD (J,I) =-DBB (IND)
568
C
C
C
    DO 570 I=1,NP1
    IND =(I-1)*NP2
    DO 570 J=1,NP2
        TEST=0.DO
        DO 571 K=1,NP2
        TEST=TEST*DLB (I,K) *SPD (K,J)
571.
570
    DBB (IND+J)=TEST
    DO 575 I=1,NP1
    IND =(I-1)*NP2
    DO 575 J=1,NP1
        TEST=0.DO
        DO 576 K=1,NP2
        TEST=TEST+DBB (IND+K)*DLB (J,K)
    SPD(I,J)=TEST
5 7 6
5 7 5
C
C FILL DLL - DLB*DBB(-1)*DLB' ON TRIANGLE
C
    IND=0
```


REAL*8 PARM (NP), THETA (MAXLIM, MAXBRA) ,TAU (MAXLIM),

* VMIN (9) , VMAX (9) , VMEA (9) ,V(9)

CHARACTER* 3 C(2)!'MAX'.'MIN'/
REAL* 4 DATA1 (MAXALT, MAXNXY, MAXOBS) , DATA2 (MAXNXD, MAXOBS)
LOGICAL LEVEL1,LEVEL2
COMPON / DIMEN / NALT,NALT1, NX, NXD,NXA, NXR, MXA, MTH,MTAU, NOBS
COMMON / DATAX / DATAI
COMMON / DATAY / DATA2
COMMON / DTREE / NTH,NTAU,THETA,TAU,LEVEL1,LEVEL2

IF (NALT.NE.7) RETURN
NFILE=1
DO $10 \mathrm{I}=1$, NALT
$\operatorname{VMEA}(I)=0 . D 0$
$\operatorname{VMIN}(I)=1.099$
VMAX $(I)=-1 . D 99$
T3=TAU (1)
T2=THETA $(3,1)$
WRITE (NFILE,300) T3.T2
FORMAT(//' COMPATIBILITY-CHECK'/' =======テ============1

* //' TH_OWNER = ',F10.4.' , TH_RENTER = ', F10.4)

LOOP ON DATA FOR VMIN VMEA, CHECK AT DATA

NEG=0
DO $1000 \mathrm{~N}=1$, NOBS

```
        XB4=0.DO
```

 DO \(20 \mathrm{~K}=1\),NX
 \(\mathrm{XB4}=\mathrm{XB} 4+\operatorname{DBLE}(\operatorname{DATA1}(4, \mathrm{~K}+1, \mathrm{~N}))\) * PARM (K)
 IF (NXD.EQ.O) GOTO 24
 DO \(21 \mathrm{KI}=1\), NXD
 \(\mathrm{K} 3=\mathrm{NX}+(\mathrm{K} 1-1) *\) NALT1 +4
 \(\mathrm{XB4}=\mathrm{XB} 4+\mathrm{DATA} 2(\mathrm{~K} 1, \mathrm{~N}) \times\) PARM (K3)
 IF (NXA.EQ.O) GOTO 29
 \(\mathrm{XB} 4=\mathrm{XB4} 4+\mathrm{PARM}(\mathrm{MXA}+4)\)
 C
C
OTHER ALTERNATIVES
DO 30 IT=1,NALT
IF (IT.EQ.4) GOTO 30
$\mathrm{XB}=0 . \mathrm{DO}$
DO $40 \mathrm{~K}=1$, NX
$\mathrm{XB}=\mathrm{XB}+\mathrm{DBLE}(\mathrm{DATA}(\mathrm{IT}, \mathrm{K}+1, \mathrm{~N}) \mathrm{)}$ * PARM(K)
IF (IT.EQ.NALT) GOTO 49
IF (NXD.EQ.O) GOTO 44
DO $41 \mathrm{~K} 1=1$, NXD
$\mathrm{K} 3=\mathrm{NX}+(\mathrm{K} 1-1) *$ NALT1 +IT
$\mathrm{XB}=\mathrm{XB}+\mathrm{DATA2}(\mathrm{~K} 1, \mathrm{~N}) *$ PARM $(\mathrm{K} 3)$
IF (NXA.EQ.O) GOTO 49

```
XB = XB + PARM (MXA +IT)
```

C
$X B \quad=X B-X B 4$
$V(I T)=X B$
VMEA (IT) $=$ VMEA (IT) $+X B$
IF (XB.GT.VMAX (IT)) VMAX(IT)=XB
IF (XB.LT.VMIN(IT)) VMIN(IT)=XB
CONTINUE
30
C
C
C

CHECK AT DATA

CALL GEV (V(1) , V(2) , V(3) , V(5) , V(6),T3,T2, G, DENS) IF (DENS.LT.O.DO) NEG=NEG+1

C
1000 CONTINUE
C
C CHECK AT MEAN
C
DO $31 \mathrm{I}=1$, NALT
$V(I)=V M E A(I) /$ NOBS
CALL GEV (V(1),V(2),V(3),V(5),V(6),T3,T2,G,DENS) WRITE (NFILE, 301) NOBS,NEG,DENS
301 FORMAT(//' NUMBER OF OBSERVATIONS:'.I13

* /' WITH NEGATIVE DENSITY :'.I13
* /' DENSITY AT MEAN :',D13.4//)

C
C ESTABLISH INTERVAL
C
DO $35 \mathrm{I}=1$, NALT
WRITE (NFILE, 302) I,VMIN(I), VMAX (I)
FORMAT(' INTERVAL V(s,I1,')-V(4) : [',F10.4,',',F10.4,']')
WRITE (NFILE,303)
303 FORMAT (//' CORNER: SIGN: G-FUNCTION DENSITY'

* /' '.55('-'))

C
C CHECK ON ALL CORNERS, ACCUMULATE PARTS OF INTEGRAL C

AMASS $=0 . D 0$
DO 50 I6=1.2
IF (I6.EQ.1) THEN
A6=VMAX (6)
ELSE
A6=VMIN (5)
END IF
DO 50 I5 $=1,2$
IF (I5.EQ.1) THEN
A5=VMAX (5)
ELSE
A5=VMIN (5)
END IF
DO 50 I3=1,2
IF (I3.EQ.1) THEN

```
A3=VMAY (3)
ELSE
A3=VMIN(3)
END IF
```

 DO 50 I2=1,2
 IF (I2.EQ.1) THEN
 A2 \(=\mathrm{VMAX}\) (2)
 ELSE
 A2=VMIN (2)
 END IF
 DO 50 I1=1,2
 IF (II.EQ.1) THEN
 A1 = VMAX (1)
 ELSE
 \(\mathrm{A} 1=\mathrm{VMIN}\) (1)
 END IF
 C
CALL GEV (A1,A2,A3,A5,A5,T3,T2,G,DENS)
SIGN $=(-1) * *(I 1+I 2+I 3+I 5+I 6-5)$
AMASS $=$ AMASS + SIGN/G
C
WRITE (NFILE,51) C(I1),C(I2),C(I3),C(I5),C(I6),SIGN,G,DENS
51 FORMAT(' $\left.1,3(\mathrm{~A} 3, ', '), \mathrm{O}^{\prime}, 2(\prime, \cdot, \mathrm{~A} 3), 2 \mathrm{X}, \mathrm{F} 4.1,2 \mathrm{X}, 2 \mathrm{D} 13,4\right)$
50 CONTINUE
C
WRITE (NFILE,52) AMASS
52 FORMAT(' ',55('-')/' MASS OVER THE INTERVAL: ',F10.4)
RETURN
END
SUBROUTINE GEV (A1,A2,A3,A5,A6,T3,T2,G,DENS)
C EVALUATES G=1/(JOINT CDF) AND JOINT DENSITY FOR GEV MODEL

IMPLICIT REAL* 8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
C
C G-FUNCTION
C
$\mathrm{Y} 1=\operatorname{DEXP}(-\mathrm{A} / / T 3)$
$\mathrm{Y} 2=\mathrm{DEXP}(-\mathrm{A} 2 / \mathrm{T} 3)$
$Y 3=\operatorname{DEXP}(-A 3 / T 3)$
$Y 5=\operatorname{DEXP}(-A 5 / T 2)$
$Y 6=\operatorname{DEXP}(-\mathrm{A} / \mathrm{T} / \mathrm{T})$
$\mathrm{H} 3=\mathrm{Y} 1+\mathrm{Y} 2+\mathrm{Y} 3$
$\mathrm{H} 2=\mathrm{Y} 5+\mathrm{Y} 6$
G $=\mathrm{H} 3 * * T 3+1 . \mathrm{DO}+\mathrm{H} 2 * * T 2$
C
C DERIVATIVES OF G-FUNCTION
C
H31 = H3** (T3-1.DO)
$\mathrm{H} 21=\mathrm{H} 2 * *(\mathrm{~T} 2-1 . \mathrm{DO})$
H32 $=$ H3** (T3-2.DO)
H22 = H2** (T2-2.DO)
H33 = H3** (T3-3.DO)

```
T31 = (T3-1.DO)/T3
T21 = (T2-1.DO)/T2
T32 = T31*(T3-2.DO)/T3
G1 = -H31*Y1
G2 = -H31*Y2
G3 = -H31*Y3
G5 = -H21*Y5
GE) = -H21*Y6
G12 = T31*H32*Y1*Y2
G23 = T31*H32*Y2*Y3
G13 = T31*H32*Y1*Y3
@56 = T21*H22*Y5*Y6
G123 = -T32*H33*\1*Y2*Y3
G5G6 = G5*G6
GG56 = G*G56
GSUM = G12*G3+G23*G1+G13*G2
GPRO = G1*G2*G3
```

C
C POWERS OF THE G-FUNCTION
C
GTO4 $=$ G**4
GTO5 $=$ GTO4*G
GTO6 $=$ GTO5*G
C
C DENSITY
C
S3 $=($ GG56-3.DO*G5G6)/GTO4
S4 $=$ (GG56-4.D0*G5G6)/GTO5
S5 = (GG56-5.D0*G5G6)/GTO6
DENS $=24$. DO*GPRO*S5 - 6.DO*GSUM*S4 + 2.DO*G123*S3
C
RETURN
END
SUBROUTINE TRAFO(PARM,NP,K,IND,HESS,C,SC,W)

C :** TRANSFORM PARAMETERS TO BE COMPATIBLE WITH MNL ***
C-MPLICIT REAL*8 (A-H, O-Z)
REAL*8 PARM (NP) ,HESS (NP,NP)
C
$A=$ PARM (K)
$S A=-\operatorname{HESS}(K, K)$
$B=$ PARM (IND)
SAB $=-$ HESS (IND, K)
$S B=-\operatorname{HESS}(I N D, I N D)$
$C=A / B$
$S C=(S A-2 . * C * S A B+C * C * S B) / B / B$
IF (SC.LE.O.) SC=1.DO
SC = DSQRT (SC)
$\mathrm{W}=\mathrm{C} / \mathrm{SC}$
C
RETURN
END

BIBLIOGRAPHY

```
**********************
**************************
***************************
```



```
*****&* *********
*****************)
```



```
****************
```



```
******* *********
***********************)
**************
```


Alonso, W. "The Demographic Factor in Housing for the Balance of this Century" in Goldberg, M. A. and Gerr, G. W. "North American Housing Markets into the Twenty-First Century." Ballinger, Cambridge, Mass (1983).

Amemiya, T. "On Two-Step Estimation of a Multivariate Logit Model." Journal of Econometrics 8 (1978).

Amemiya, T. "Qualitative Response Kodels: A Survey." J. of Economic Literature 19 (December. 1981).

Anas, A. "Residential Location Markets and Urban Transportation." Academic Press, New York (1982).

Baird, C. W. "Rent Control: The Perennial Folly." The Cato Institute, San Francisco (1980).

Barneti, "Using Hedonic Indexes to Measure Housing Quality." The Rand Corporation, R-2450-HUD (1979).

Behring, K., and Goldrian, G. "Dokumentation zum Projekt: Analyse und Prognose der Nachfrage nach Miet- und Eigentuemerwohnungen." Unpublished, Ifo-Institut fuer Wirtschaftsforschung, Muenchen (1983).

Ben-Akiva, M., and Watanatada, T. "Application of a Continuous Spatial Choice Logit Model." in Manski, C. F., and McFadden, D. (eds.) "Structural Analysis of Discrete Data with Econometric Applications." MIT-Press, Cambridge, Mass. (1981).

Beresford, J. C., and Rivlin, A. M. "Privacy, Poverty, and Old Age." Demography 3 (1966).

Berndt, E.; Hall, B.; Hall, R.; and Hausman, J. "Estimation and Inference in Nonlinear Structural Models." Annals of Economic and Social Measurement 4 (1974).

Bradbury, K. L., and Downs, A. "Do Housing Allowances Work?", Brookings, Washington, D.C. (1981).

Campbell, B. O. "Long Swings in Residential Construction: the Postwar Experience." American Economic Review 53 (May 1963) .

Carliner, G. "Determinants of Household Headship." Journal of Marriage and the Family 37 (1975).

Chiang, Y. S., Roberts, P. J., and Ben-Akiva, M. "Short Run Freight-Demand Models: Joint Choice of Mode and Shipment Size." Transportation Research Record 828 (1981).

Coslett, S. R. "Maximum Likelinood Estimator for Choice-Based Samples." Econometrica 49 (1981).

Coslett, S. R. "Efficient Estimation Of Discrete Choice Models." in Manski, C. F., and McFadden, D. (eds.) "Structural Analysis of Discrete Data with Econometric Applications." MIT-Press, Cambridge, Mass. (1981).

Coslett, S. R. "Efficient Estimation of Discrete Choice Models form Choice Based Samples." Ph. D. Dissertation. University of California at Berkeley (1978).

Daly, A., and Zachary, S. "Improved Multiple Choice Models." in Hensher, D., and Dalvi, Q., Identifying and Measuring the Determinants of Mode Choice. Teakfield, London (1979).
de Leeuw, F. "The Demand for Housing: A Review of the Cross-Section Evidence." Review of Economics and Statistics (February 1971) .

DePamphilis, D. "The Dynamics of Household Formation." Business Economics 12 (1977).

Domencich, T. A., and McFadden, D. "Urban Travel Demand." North-Holland, Amsterdam (1975).

Dubin, J. A., and McFadden, D. L. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption." Econometrica 52 (1984).

Eckart, W. "A Welfare Analysis of the German Tenants' Protection Legislation." Working Papers in Economic Theory and Urban Economics No. 8308, University of Dortmund (1983).

Eckart, W., Schulz, N., and Stahl, K. "Zur Wirkung des II. Wonnungsraumkuendigungsschutzgesetzes: Eine kontrakttheoretische Analyse." Working Papers in Economic Theory and Urban Economics No. 8309, University of Dortmund (1983) .

Eekhoff, J. "Zur Kontroverse um die oekonomischen Auswirkungen des Zweiten Wohnraumkuendigungsschutzgesetzes." Zeitschrift fuer die gesamte Staatswissenschaft 137 (1981).

Ermisch, J. "An Econometric Theory of Household Formation." Scottish Journal of Political Economy 28 (1981).

Follain, J. R. "Does Inflation Affect Real Behavior: The Case of Housing." Southern Economic Journal (January 1982).

Follain, J. R., and Malpezzi, S. "Dissecting Housing Value and Rent: Estimates of Hedonic Indices for Thirty-Nine Large SMSAs." The Urban Institute, Washington, D.C. (1980).

Goldfeld, S. M., and Quandt, R. E. "Nonlinear Methods in Econometrics." North Holland, Amsterdam (1972).

Goodman, A. C., and Kawai, M. "Length of Residency Discounts and Rental Housing Demand: Theory and Evidence." John Hopkins University Working Paper No. 108 (1982).

Guasch, J. L., and Marshall, R. C. "A Theoretical and Empirical Analysis of the Length of Residency Discount in the Rental Housing Market." University of California at San Diego Working Paper No. 83-4 (August 1983).

Hausman, J. A. "Specification Tests in Econometrics." Econometrica 46 (1978).

Hausman, J. A.. and McFadden, D. "Specification Tests for the Multinomial Logit Model." MIT Working Paper (October 1981).

Hausman, J. A., and Wise, D. "Discontinuous Budget Constraints and Estimation: The Demand for Housing." Review of Economic Studies 47 (1980).

Hendershott, P. H., and Hu, S. C. "Inflation and the Benefits from Owner-Occupied Housing.", National Bureau of Economic Research, Working Paper No. 383, (i979).

Henderson, J. V., and Ioannides. Y. M. "A Model of Housing Tenure Choice." American Economic Review 73 (March 1983).

Heckman, J. "Sample Selection Bias as a Specification Error." Econometrica 47 (1979).

Hickman, B. G. "What became of the building cycle?" in David, P. A., and Reder. M. W., "Nations and Households in Economic Growth: Essays in Honor of Moses Abramovitz." Academic Press, New York (1974).

Hsieh, D., Manski, C. F., and McFadden, D. "Estimation of Response Probabilities from Augmented Retrospective Observations." Mimeographed, Department of Economics, Massachusetts Institute of Technology (1983).

Hu, J. "An Econometric Model of Household Headship." Paper prepared for the Southern Regional Demographic Group (1980).

Jennrich, R. "Asymptotic Properties of Nonlinear Least Squares Estimators." Annals of Mathematical Statistics 40 (1969).

Kennedy, S. D. "Final Report of the Housing Allowance Demand Experiment." Abt Associates, Cambridge, Mass. (1980).

King, M. A. "An Economic Model of Tenure Choice and Demand for Housing as a Joint Decision." Journal of Public Economics 14 (1980).

Kitagawa, E. "New Life-Styles: Marriage Patterns, Living Arrangements, and Fertility outside of Marriage." Annals of
the American Academy of Political and Social Science 453 (1981).

Kobrin. F. MHousehold Headship and its Changes in the United States 1940-60. 1970." Journal of the American Statistical Association 68 (1973).

Kobrin, F. "The Fall in Household Size and the Rise of the Primary Individual in the United States." Demography 13 (February. 1976) .

Lancaster. K. "A New Approach to Consumer Theory." \{Journal of Political Economy (1966).

Laidler, D. "Income Tax Incentives for Owner-Occupied Housing." in Harberger, A. C., and Bailey, M. J. "The Taxation of Income from Capital." The Brookings Institution, Washington D. C. (1969).

Lee, L.F., and Trost, R.P. "Estimation of some Limited Dependent Variable Models with Application to Housing Demand." J. of Econometrics 8 (1978).

Li, M.M. "A Logit Model of Homeownership." Econometrica 45 (July 1977).

Loikannen, H. A. "Housing Demand and Intra-Urban Mobility Decisions: A Search Approach." Commentationes Scientarium Socialium 17 (1982).

Lowery, I. S. "Rental Housing in the 1980s: Searching for the Crisis." in Weicher, J. C. "Rental Housing: Is There a Crisis?" The Urban Institute, Washington, D. C. (1981).

MacMillan, J. "Draft Report on Mobility in the Housing Allowance Demand Experiment." Abt Associates, Cambridge, Mass. (1978).

Maisel, S. J. "Changes in the Rates and Components of Household Formation." Journai of the American Statistical Association 55 (June 1960).

Maipezzi, S., Ozanne, L., and Thibodeau, T. "Characteristic Prices of Housing in Fifty-Nine Metropolitan Areas." The Urban Institute, Washington, D. C. (1980).

Manski, C. F., and Lerman, S. R, "The Estimation of Choice Probabilities from Choice Based Samples." Econometrica 45 (1977) .

Manski, C. F., and McFadden, D. "Alternative Estimators and Sample Designs for Discrete Choice Analysis." in Manski, C. F.. and McFadden, D. (eds.) "Structural Analysis of Discrete Data with Econometric Applications." MIT-Press, Cambridge,

Mass. (1981).
Masnick, G. "rhe Demographic Factor in Household Growth." Joint Center for Urban Studies of MIT and Harvard University, horking Paper No. W83-3 (1983).

McFadden, D. "Conditional Logit Analysis of Qualitative Choice Behavior." in Zarembka, P. Frontiers in Econometrics. Academic Press, New York (1973).

McFadden, D. "Modeling the Choice of Residential Location." in Karlgvist, A. Spatial Interaction Theory and Residential Location. North Holland, Amsterdam (1978).

McFadden, D. "Quantitative Methods for Analyzing Travel Behavior of Individuals: Some Recent Developments." in Hensher, D., and Stopher, Po, Behavioral Travel fiodeing. Croom Helm, London (1979).

McFadden, D., and Richter, M. "Stochastic Revealed Preferences." Kimeographed (19\%9).

McFadden, D. "Econometric Models of Probabilistic Choice." in Manski, C.F.. and McFadden, D., Structural Analysis of Discrete Data with Econometric Applications. MIT-Press, Cambridge, Mass., (1981).

McFadden, D. "Qualitative Choice Models." in Griliches, Z., Kandbook of Econometrics. (1983).

McFadden, D., Hsieh, D., and Manski, C. F. "Coffee and Cancer: A Study of the Epidemiological Information Required for Economic Analysis of Health Policy." Himeographed, Department of Economics, Massachusetts Institute or Technology (1983).

McFadden, D., and Richter, M. K. "Stochastic Rationality and Revealed Stochastic Preference." Mimeographed, Department of Economics, Massachusetts Institute of Technology (1970).

McFadden, D., Train, K., and Tye, W. B. "An Application of Diagnostic Tests for the Independence of Irrelevant Alternatives Property of the Multinomial Logit Model." Transportation Research Record 637 (1977).

McFadden, D., Winston, C., and Boersch-Supan, A. "An Inventory-Theoretic Model of Mode Choice and Shipment Size Decisions in Freight Transportation." Mimeographed, Department of Economics, Massachusetts Institute of Technology (1984).

Michael, R., Fuchs, V., and Scott, S. "Changes in the Propensity to Live Alone 1950-1976." Demography 17 (1980).

Muellbauer, J. "Household Production Theory, Quality, and the Hedonic Technique." American Economic Review 64 (1974).

Murray, M. "Hedonic Prices and Composite Commodities." Journal of Urban Economics 5 (1978).

National Multi Housing Council "The Spread of Rent Control." Washington, D. C. (1982).

Noland, C. W. "Assessing Hedonic Indexes for Housing." The Rand Corporation, N-1505-HUD (1980).

Pitikin, J. "Trends in Household-Composition: The Nucleus-Concept." Paper presented at the Population Association of America (1980).

Pitkin, J., and Masnick, G. "Projections of Housing Consumption in the U.S., 1980 to 2000, by a Cohort Method." u.s. Department of Housing and Urban Development, Annual Housing Survey Paper (1980).

Pitkin, J., and Masnick, G., "Alternative Models for Cohort Methods of Projecting Housing Demand: Task 3: Econometric Model of Cohort Housing Consumption. \quad Joint Center for Urban Studies of MIT and Harvard University, Research-Report (May 1983).

Quigley, J. "Housing Demand in the Short Run: An Analysis of Polytomous Choice." Yale University Working Paper (1976).

Quigley. J. "What have we learnea about Housing Markets?" in Mieszkowski, P., and Straszheim, M., Current Issues in Urban Economics. The Johns Hopkins University Press, Baltimore (1979) .

Robinson, J. "The Economics of Imperfect Competition." London, Macmillan (1933).

Rosen, H. S. mousing Decisions and the U.S. Income Tax: An Econometric Analysis." Journal of Public Economics (1979).

Rosen, H. S., and Rosen, K. T. "Federal Taxes and Homeownership: Evidence from Time-Series." Journal of Political Economy 88 (1980) .

Rosen, K. T., and Jaffee, D. M. "The Demographic Demand for Housing: An Economic Analysis of the Household Formation Process." Paper prepared for the American Economic Association Meetings (December 1981).

Rosen, S. "Hedonic Prices and Implicit Karkets." Journal of Political Economy 82 (1974).

Rothenberg, J. "Heterogeneity and Durability of Housing: A Hodel of Stratified Urban Housing Markets." Paper Presented at the

Urban Economics Conference, University of Manchester, England (1979).

Rothenberg, T. J. "Efficient Estimation with A Priori Information." New Haven, Yale University Press (1973).

Schlicht, E. "The Tenant's Decreasing Willingness to Pay and the Rent Abatement Phenomenon" Zeitschrift fuer die gesamte Staatswissenschaft 139 (1983).

Schneider, W., Stahl, K., and Struyk, R. "Estimates of Households' Permanent Income: West Germany, 1978." Urban Institute Project Report 3171-1 (Nov. 1983).

Sheffi, Y. "Estimating Choice Probabilities among Nested Alternatives." Transportation Research 13B (1979).

Small, K. A. "Ordered Logit: A Discrete Choice Model with Proximate Covariance among Alternatives." Princeton University, Economic Research Program Research Memorandum 292 (December 1981).

Small, K. A. "The Scheduling of Consumer Activities: Work Trips." American Economic Review 72 (1982).

Small, K. A., and Brownstone, D. "Efficient Estimation of Nested Logit Models: An Application to Trip Timing." Princeton University, Economic Research Program Research Memorandum 296 (March 1982).

Smith, L. D., Rosen, K. T., Markandya, A., and Ullmo, P. "The Demand for Housing, Housenold Headshiprates, and Household Formation: An Incernational Analysis." IBER, University of California at Berkeley, Center for Real Estate and Urban Economics Working Paper No. 55 (October. 1982).

Sweeney, J. L. "A Commodity Hierarchy Model of the Rental Housing Market." Journal of Urban Economics 1 (1974).

Thibodeau, T. "Rent Regulation and the Market for Rental Housing Services." The Urban Institute, Washington, D. C. (1981).

Venti, S. F., and Wise, D. A. "Moving and Expenditure: Transactions Cost and Disequilibrium." NBER Working Paper (1982).

Wial, H. "A Multinomial Logit Analysis of the Household Formation Behavior of Young Unmarried Men." Mimeographed, Massachusetts Institute of Technology (January 1982).

Williams, H. "On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit." Environment Planning A.9 (1977).

Williamson, O. E. "Transaction Cost Economics: The Governance of Contractual Relations." Journal of Law and Economics 22 (1979).

Wheaton, W. C. "Life-Cycle Theory, Inflation, and the Demand for Housing." Mimeographed, Massachusetts Institute of Technology (March 1982).

[^0]: The return variable is insignificant, pointing to offsetting effects of opportunity costs and appreciation, or poor specification. Unfortunatly, the global appreciation rates used here lack a differentiation by location within a city which is not reported in the two samples.

