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Abstract

In a first set of experiments, a transient grating technique is used to detect

picosecond acoustic pulses in supported metal films. Crossed femtosecond laser pulses

generate acoustic responses with longitudinal components propagating normal to the film

plane and surface acoustic wave components propagating in the film plane. Surface

“ripple” associated with both components is detected through the diffraction of a probe

beam. The measurements yield enhanced information content for characterization of film

thickness and mechanical properties.

In a second set of experiments, phonon-polariton dispersion is characterized in

ferroelectric lithium tantalate and lithium niobate through femtosecond time-resolved

impulsive stimulated Raman scattering (ISRS). An improvement in the ISRS setup

permits optical heterodyne detection of the signals. In addition to substantially increasing

he sensitivity and accuracy of the measurements, the phase sensitivity of heterodyne

detection makes it possible to fully characterize the polariton wave after it has propagated

outside of the excitation region. The detection of propagating responses with heterodyned

[SRS is explored theoretically and experimentally. Discrepancies in earlier results

reported for these materials are resolved.

In a third set of preliminary experiments, a simple terahertz spectrometer is

demonstrated. Two, crossed femtosecond pulses drive a tunable, terahertz frequency,

polariton response in a ferroelectric crystal. The polariton is detected in a second crystal

following propagation through a liquid sample layer.
Finally, heterodyne ISRS is used to study phonon-polariton responses in thin

lithium tantalate crystals. Multiple polariton response frequencies are observed across a

range of wavevectors as the polariton wavelength approaches the crystal thickness. These

beating patterns are tentatively assigned to waveguide effects.
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Title: Professor of Chemistry
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Chapter 1. Introduction

Physics is often defined as the study of nature using math. More generally, the

scientist seeks to explain and understand nature in a quantitative way. Probing the manner

in which matter interacts with light has long served as a means to this end, beginning with

simple measurements of absorption spectra and extending to complicated, non-linear

optical experiments performed with multiple beams and perhaps even very short pulses of

light. The results from these experiments have played an important role in the

development of our understanding of nature, in everything from the formulation of

quantum mechanics to the search for the causes of the hole in the ozone layer.

In this thesis work, ultrashort pulses of light (~25 femtosecond duration) will be

ased to characterize the optical properties of a variety of materials (loosely defined as

substances with useful properties). Our general approach will be to use a first, short pulse

of light to drive an excitation (such as vibrations of molecules in a lattice) in a material,

and then to characterize the sample's response in the time domain (i.e., to “watch” the

behavior of the excited sample as time passes) via a second pulse of light. For a

vibrational response, the molecules in the sample may be thought of as a ball attached to a

spring. The first pulse of light acts like a hammer, causing the molecules to oscillate as a

ball attached to a spring might be caused to do. A probe pulse would then “watch” the

molecules vibrate up and down, just as one might imagine watching the ball bounce up

and down at the end of a spring. Returning to the general case, the sample's response may

be used as a guide in developing models (quantitative explanations) with the power to

correctly predict sample behavior, much as the frequency of a bouncing ball can be used

.0 determine the mass of the ball and the stiffness of the spring. It is from this process that



we hope to glean a fundamental understanding of the interactions in the materials that we

stud

For many different types of responses, a single excitation pulse, which is roughly

aniform across its spatial profile, will produce a response that is fairly simple to model.

However, some classes of material responses are dispersive (the material’s behavior at

one point in space is a sensitive function of its behavior at a different point that is a

macroscopic distance away). Examples of these types of responses include surface waves

on water, acoustic (sound) waves, and phonons (lattice waves) in ionic crystals. In these

cases, a spatially uniform excitation pulse may not be the simplest approach to the

problem. Imagine trying to develop an explanation for surface waves on water using two

different methods: first by dropping a large rock in the center of a lake and then observing

the wave pattern and second by observing the lake during many different wind and wave

conditions in which a variety of different wavelengths can be monitored. One can imagine

that. in order to develop a complete understanding of the water waves, it may well be

desirable to observe, say, the speed of many different wavelengths of surface waves (or.

in the parlance used throughout this work, to measure the dispersion curve of the surface

waves). To generalize, the behavior of a system is often much simpler when a response

with a specific, well-defined wavelength can be excited. In order to excite a response

whose wavelength can be changed in a controllable fashion, two pulses of light can be

crossed at an angle. The interference pattern, which results from the overlap between

these two beams, will have wavelength that can be controlled by adjusting the angle

between the two beams! In other words, by using two, crossed excitation pulses in place



of a single pulse, the material's behavior can be studied under a broad, controllable range

of “wave conditions’.

[he optical properties of an excited material are typically a sensitive function of

the amplitude of the excitation. For example, the index of refraction of a crystal whose

molecules have been driven by a pair of crossed excitation pulses will vary with time as

the molecules vibrate in the crystal. Because a crossed pair of pulses was used, the

displacement of the molecules will vary not only in time but also in space; for instance

the molecules that were positioned in the peaks of the interference pattern produced by

the excitation pulses will be oscillating at a relatively large amplitude while those

positioned in the nulls of the interference pattern will not be vibrating at all. This spatially

periodic variation in the crystal's refractive index (optical properties) can act as an optical

grating, diffracting a pulse that passes through it. This is, in fact, how the material's

response to the crossed excitation pulses is measured in general. A probe beam is

diffracted off of the transient grating (spatially periodic variation in the crystal's refractive

index which varies in time, hence the modifier transient), and the intensity of the

diffracted probe pulse is measured as a function of time in order to map out the response

of the sample to the two, crossed excitation pulses.

I'he primary impediment to the more widespread application of this technique is

that the intensity of the diffracted beam is proportional to the square of the amplitude of

the material response, as shown for a variety of different cases in Chapters 2, 3, and 5.

This makes it very difficult to characterize samples that have weak or complicated

responses, as illustrated in Chapters 3 and 4. In Chapter 3, the transient grating technique

is used to drive and detect acoustic pulses in metal films, a metrology method that can be



used to measure things like the physical properties of individual films in a multi-layered

film stack and the orientation of crystallites in a thin metal film. These experiments come

close to the weak-sample limits of the transient grating technique.

The transient grating technique can be significantly advanced and extended if the

diffracted pulse is mixed with another pulse of light. Called heterodyne detection, this is

the same method used in most FM radio receivers to decode the audio signal. Chapter 4

presents a heterodyne detection system consisting of an optical apparatus with a

diffractive optic as its distinguishing element and detection electronics, for the heterodyne

detection of transient gratings on a femtosecond timescale. This apparatus is shown to

produce results which are substantially better than those recorded from diffraction alone.

This apparatus is also shown to have improved resolution and to be quite easy to align.

In Chapter 5, the heterodyne transient grating technique is applied to the study of

lattice waves in the ferroelectric crystals. Ferroelectric materials have a permanent,

electric dipole moment (much like ferromagnetic materials have a permanent magnetic

dipole), as entire planes of ions in the lattice are displaced from their central positions.

Crossed laser pulses are used to drive and detect oscillations of these planes of ions.

through a process called impulsive stimulated Raman scattering. As the planes of ions

vibrate, they act as antennae, emitting radiation that, for certain spatial wavelengths (for

certain angles between the two, crossed pulses) will constructively interfere throughout

the crystal. As a result, the lattice wave couples to a light wave, and this mixed excitation

is called a phonon-polariton, as explained in Chapter 5. The dispersion curve for these

phonon-polaritons is very sensitive to the forces acting on these planes of ions, and

consequently to the interactions that lead to the material’s ferroelectricity. In Chapter 5,



the heterodyne technique is used to clarify contradictory results from past literature,

lending credence to a specific model for the lattice dynamics containing a two-well

potential energy surface for the motion of the ions. The heterodyne detection of

oropagating waves is developed both theoretically and experimentally and features of the

damping properties of the phonons-polaritons are explained. Finally, lattice waves at

many different frequencies are resolved all at the same time, further illustrating the power

of the heterodyne technique to characterize complicated responses.

Chapter 6 showcases preliminary experimental results from two promising future

applications of the heterodyne transient grating technique. First, a new spectroscopic

application of phonon-polariton excitation and detection, going beyond the study of the

phonon-polaritons, is made possible by the phase sensitivity of heterodyne detection. A

phonon-polariton is excited in one ferroelectric crystal, after which it is allowed to

propagate out of the crystal, into a liquid sample, and then back into another crystal where

it is detected in the usual manner. This can be used to learn about the optical behavior of

the liquid sample in the terahertz region of the frequency spectrum, which is difficult to

study by other means. Second, the improvements that heterodyne detection provides

permit an extension of the sample range to include ferroelectric thin films. Data are

shown from thin ferroelectric crystals showing clear waveguide effects.

I'he femtosecond time-scale, heterodyne detection of transient gratings is shown

to be a powerful tool for the characterization of ultrahigh frequency material responses.

I'he technique is applied here to the study of a broad range of complex materials, yielding

insights into the lattice dynamics of lithium tantalate and lithium niobate, the behavior of

propagating responses, and the terahertz frequency dielectric response of glycerol.



Chapter 2. Classical Description of Stimulated Raman Scattering

Theoretical descriptions of one type of ISS, impulsive stimulated Raman

scattering (ISRS), will be presented in this chapter. In this section, ISRS will be described

using the framework developed for frequency domain nonlinear optics. The purpose of

this section is to facilitate a mapping between nonlinear optics in the frequency domain,

where an abundance of accessible introductory texts and literature exists, to nonlinear

spectroscopy in the time domain, where, in this author’s opinion, there exists a marked

dearth of introductory material. In Chapter 3, a theoretical description of impulsive

stimulated thermal scattering (ISTS) in a transient grating configuration will be presented.

[n Chapters 4 and 5, heterodyne transient grating ISRS experiments will be.

The theoretical descriptions, especially those in later chapters, will focus upon the

relationship between the observables measured in ISS experiments and the behavior of

the physical properties of the material under study. This approach will culminate in a

description in which the act of probing the material response will be modeled as the

action of a filter upon the true material response. Well designed experiments lead to a

nearly transparent filter, while in other cases more substantial distortions can occur.

The objective of this section is to derive through classical mechanics an expression

for the electric field produced by impulsive stimulated Raman scattering from a collection

of polarizable harmonic oscillators. The strategy will be to first derive expressions for

continuous-wave (CW) excitation and probing, i.e., frequency domain stimulated Raman

scattering, following the treatment of Yariv !, and then to convert these expressions to

those for the case of temporally impulsive pumping and probing. This somewhat

circuitous route will be taken for two reasons: to draw upon intuition about traditional,



frequency-domain Raman scattering and to stress the connection between the time-

domain and frequency-domain treatments and information contents.

[n a Raman scattering experiment, an electromagnetic wave at frequency @, is

scattered by thermally excited vibrations of a sample. The scattered light is frequency-

shifted by the natural vibrational frequency, yielding signal that is detected at the Stokes

and anti-Stokes scattered frequencies @; =, —®, and ,° =, +®, Raman

scattering is defined as spontaneous when no light at frequency @, is present initially.

The amplitude of the scattered field at frequency @, is linearly proportional to that of the

anput field at frequency o,.

in stimulated Raman scattering, both @, and @, frequency components are initially

present in the excitation light field. Usually this is achieved through the use of two

distinct laser beams at the two frequencies. These two components exert a force on

Raman-active vibrational modes at the difference frequency @;—@,=w®, resulting in

coherent vibrational oscillations driven at that frequency. The coherent vibrational

response can then scatter a third, probe light beam in a fashion similar to the scattering of

light by thermal excitations in spontaneous Raman scattering. However, in this case the

vibrations are coherent, with the same spatial and temporal characteristics, so the

scattering can be thought of as “diffraction” and the scattered light is a coherent beam that

leaves the sample in a well defined direction.

Note that spontaneous and stimulated scattering processes involve change in the light

wavevector as well as frequency. The beams at frequency @, and w, are specified also by

their corresponding wavevectors k, and k,, and the scattering process involves a

1



vibrational excitation at the difference wavevector g = k, .k, as well as the difference

frequency @.
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Figure 2.1. A condensed phase system is modeled as a collection of damped, harmonic

oscillators in the derivation of the ISRS response.

The material will be modeled as a collection of N independent, polarizable harmonic

oscillators. This model can be used to accurately represent excitations like phonons and

molecular vibrations (and polaritons with several additional considerations). The analysis

will be two dimensional, with each oscillator being described by its position x, z and

normal vibrational coordinate Q(¢,7), see figure 2.1. The equation of motion for a single

oscillator 1s
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Here ay is the natural frequency of the oscillator, yis the damping constant, F(¢,7) is the

driving force and m is the mass or reduced mass of the oscillator.

First, expressions for the response of the oscillators to a CW optical field with two

frequency components @, and @, will be found, ignoring all effects of the field except

those which will be called the Raman force. The vibrational response to a temporally

impulsive optical field will then be derived, and finally the prescription for treating pump

pulses with an arbitrary electric field profile (e.g. femtosecond pulse sequences) will be

described. Second, the time dependent polarization resulting from the interaction of a

CW probe beam with the excited material will be found and used to derive the results for

a temporally impulsive probe. Again, the prescription for generalization of these results to

arbitrary probe electric field profiles will be laid out. Finally, the optical field produced

by this time-dependent polarization, the ISRS signal field, will be found.

T'he optical driving force produced by the pump beam will be derived by considering

he electrostatic stored energy density W in the oscillators:

W=LeQ)E-E (2.2)

 he Q(t,r) dependence of the dielectric constant € will be treated by writing the

dielectric constant in terms of the polarizibility «¢ which can be expanded around

Q(t,r) = 0, keeping only terms up to first order in Q(¢,7):

c=&amp;,(1+ Na(Q)) = a + vo + (%] 0 \
0

_.3)

5



I'he force is now given by

Ww do) —- —

IW od 2] E-EF(t, r)= | (2. 4

This force on the oscillators, proportional to the differential polarizability (dor/ 20), (a

purely phenomenological quantity in this classical treatment) will be referred to as the

Raman force.

in CW stimulated Raman scattering, the initial electromagnetic field contains two

sutical frequencies @, and @--

— I. doe-k7) 1. (epi
E(t.F)=—¢ Ee" $s J 425,E RT) Lee  Lien

For simplicity, the two components of the electric field will be assumed to be polarized in

the x direction (i.e., along the direction of the displacement of the oscillators), reducing

the problem to a scalar one. It can be assumed without loss of generality that w, &gt; @,.

The driving force is proportional to the square of this field, which contains sum and

difference frequency components. The natural frequencies @, of the oscillators, i.e., of

the Raman-active molecular or lattice vibrational modes, are much less than the optical

frequencies i.e., @, &lt;&lt; @,, ®,. Consequently, only the components of the Raman force at

the difference frequency w, — @, may be near resonance with the vibrational frequencies,

and only these terms may drive significant vibrational responses. Neglecting other

components, the Raman driving force is given by:

Pir) = 260 92) | teint cc
’ 9 0 ; e

(2 J



The problem is simply that of a driven harmonic oscillator, with traveling wave

solutions of the form:

_ _— ill —k VF

Dew (8,7) = Ocwe™™ ©)le f=ta)7 + c.c. 7)

given by insertion of (2.6) into (2.5). The coherent vibrational amplitude is:

2

Ne 22) |
2 ] (w, — Wyew = 2mwk—(0,— ®,) +iy

2.8)

Thus coherent vibrational oscillations at the difference frequency @, — w, are driven by

the two field components through stimulated Raman scattering. The largest vibrational

amplitude occurs when the oscillator is driven on resonance, i.e., @, —®, = ®,. The

vibrational energy imparted to the oscillator, i.e., the average power P absorbed from the

field, is given by the average of the force F(t,r) times the velocity dQ.,/4r and is

described in the usual limit yY &lt;&lt; wg by a Lorentzian function:

1
Plo —

(P) @% — Aw’ + i\w (2.9)

In “stimulated Raman gain” measurements, the intensity of light at frequency w, is

measured as frequency w,, and thus Aw, is scanned, revealing the Lorentzian response

with its maximum at the vibrational resonance frequency2. Through the stimulated

Raman scattering process, vibrational energy is produced as incident light at the higher

frequency @, is converted into scattered light at the lower frequency w,.

These expressions describe the dynamics of the coherent vibrational response

Ow(2,7) for the case of CW excitation. In impulsive stimulated scattering the excitation

L



field is that of an ultrashort laser pulse. For this purpose it will be useful to describe the

response in terms of a vibrational susceptibility 7:

Ne So)
Dew (t,7)=— =" yo, 0, JE, | [e"@er] +c.c. (2.10°

From (2.10), it is clear tha:

A) = (0—0.) iva =) (2.11

The spatial dependence of the response is described by the wavevector of the excitation

force g = k, =k,. We have assumed the susceptibility itself does not have any explicit

spatial dependence in the limit of optical wavelengths. Note that this assumption is valid

for molecular vibrations and most optic phonons, but not for acoustic waves or polaritons

whose resonance frequencies ay and dephasing or damping rates y are wavevector-

dependent.

Equation (2.8) describes the vibrational amplitude resulting from a driving force that

oscillates at any particular frequency @ = w, — @,. An impulsive (i.e., delta-function)

driving force contains equal contributions from all frequencies, i.e., a “white” frequency

spectrum. In order to find the response to impulsive excitation, the response to each

frequency is found using equations (2.10) and (2.11) and the contributions are summed:

Ne 2a) }
0,1.) =——"""% [ yw, - @,)E[ ee"dw,@,)+c. (212.

mY

Note that a femtosecond pulse is a moving "pancake" of light whose thickness is

given by the pulse duration times the speed of light. For example, a 33-fs pulse is just 10



microns thick, even though the spot size (i.e. the transverse dimensions) may be much

larger. In the limit of a true delta function excitation pulse, the pulse is infinitely thin! In

this limit, two crossed pulses only overlap at any time along a single line, regardless of

the spot sizes, as the pulses move forward so does the position of the line of overlap.

With a finite pulse duration, the pulses overlap and form an optical interference or

'grating" pattern across a region of space with finite width in the transverse dimension.

asually still much smaller than the spot sizes. The use of diffractive optics to produce the

two pulses and an appropriate imaging system to cross them 3 results in a large region of

overlap, essentially equal to the spot sizes, and therefore produces many interference

fringes, as will be described in Chapter 4. Here we will assume that an interference

nattern is formed in this manner, and we will not consider any effects of finite transverse

dimension of the interference region. This arrangement also allows us to assume that the

interference fringe spacing, or grating (or stimulated scattering) wavevector, is

independent of the frequency of any component of the pulse. This facilitates our use of

superposition to calculate the total vibrational response. This approach can be used

because the vibrational response, although a nonlinear function of the optical field, is

linear in the Raman force. Defining the fourier transform of y(w,—w,) as G(t),

equation (2.12) can be written:

05(t) = G(t)Fs(t) (2.13)

From this, it is clear that G(¢) is the impulse response of the system to the impulsive

Raman force. The response function to an impulse at r=0, hereafter referred to as the

impulse response function, is given by the fourier transform of (2.11):

at



G(t) =
(2 #2 gin(w,1). t&gt;0
vm

lo, t&lt;0
(2.14:

writing the underdamped frequency as @, = JO, - »? / 4. This gives the response of the

material to temporally impulsive excitation.

The material response to a general time-dependent pump electric field profile is

given by the convolution of the corresponding time-dependent Raman force F(t,7)

produced by the field profiles with:

Qp(t,7) = [Gy Fe—r, 7dr (2.15

Having derived the vibrational response driven through stimulated Raman

scattering, we now turn our attention to coherent scattering of probe light by this

response. The polarizability « of the oscillators depends on vibrational displacement

Q(t, 7) as expressed in equation (2.3) through the differential polarizability (da / A),

and therefore the coherent vibrational oscillations of the sample produce coherent

oscillations in the polarizability with the same spatial and temporal dependence as the

vibrational displacement. The induced polarization is given by the product of the

polarizability and the probe field:

P(t.7) = ,NUQ)E, (1,7) = eM a, + (2) o(t,7) Ec. 7) 2.16

This macroscopic polarization radiates the scattered field. The probe field

E(t,r)= (1/2)E_er") +c.c. is assumed to be weak (i.e., it does not significantly

excite any new vibrations). For simplicity, only the polarization induced by the Raman

a



force, or the term in equation (2.16) proportional to the differential polarizability, will be

considered. Assuming impulsive pump beams and assuming @, &gt;&gt; y for simplicity,

equations (2.13) and (2.14) can be combined with equation (2.16) to give the following

sxpression for the Raman polarization driven by the Raman force and a CW probe:

2

conve 2 |
Jo e 1? sin(@,t) A cos(gz) % | E er )~k,T) +c.c.Fell F) =~

ma

0 e re

x)y 2 -i(k~ky)F ] i(@,(1=1,)=k,F
GE |e E, xl" 7) +e)

(2.17)

Expanding this result illustrates the new frequency and wavevector components in the

Raman polarization:

2 2 2 da :

—£,7N°E | E| &amp;
Po(t,F)=— = ——t e Me

l Vv

lexpli(o, +0): - amd rk, J: “i(k, +4)

rexpl io, 4 ,)t ~ [2 +k, J: ~ i(k, = q)z
\

-exp i(o, — ,)t - {© 02 +k, J - i(k, +q)z
\

2xpl iw, — w,)t — i. @- cosf +k, ) ~ i(k, — q)z [vee]

(2.18)

t will be shown that this polarization radiates an electromagnetic field which is the ISRS

signal. The optical dispersion relation @ = |k|c requires that the Stokes scattered signal at

“ 7 _— q . .

lrequency @. = @, — ®, have wavevector k, — gl = —=. For crossed excitation pulses



that form a grating pattern, the probe beam can, at best, be incident at the “Bragg”

diffraction angle, i.e., phase matched, such that half of the terms in (2.18) obey this

condition. Once a choice is made from which side the probe beam will enter, only two of

the forms, e.g. the first and fourth terms in (2.18) meet this condition and radiate a signal

field; the other two would give equivalent results with the probe beam incident from the

other side. This polarization will radiate a signal at new signal frequencies ®, = w, — @,

and w,; = w, + ®, in a direction given by the “diffracted” signal wavevector. The time-

dependence of the signal field reveals the material response function G(z) whose

elucidation is the usual objective of an ISRS experiment.

In principle, the ISRS measurement might be conducted using ultrashort (impulsive)

excitation and a CW probe beam to produce the scattered field whose time dependence

would be analyzed by a fast photodetector and digitizing electronics. In practice, this

would require femtosecond time resolution in the detection system, and this is not

conventionally available. Consequently, the experiment is carried out with an ultrashort

probe pulse that is delayed by a specified time period #, following excitation, and the

signal generated from this probe pulse is used to measure the material response at just the

single time that is probed. Then the excitation-probe sequence is repeated with a different

time delay, and then with another, and so on, until the entire time-dependent sample

response is determined in a point-by-point fashion along the time axis. What is measured

at each time delay is the total amount of coherently scattered light i.e., time-integrated

intensity of the signal field is measured by a slow detector. In order to describe this, the

polarization produced by a temporally impulsive probe pulse will be found and used to

find the polarization response to an arbitrary pulse shape.
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The polarization produced by an impulsive probe field E; is found by integrating

sver all possible probe frequencies @,

Po(t—1,)= G()E’|E,|"S(t-1,) 2.19)

[he response of the polarization to an impulsive probe at f, is an impulse at #,, with an

amplitude proportional to the product of the electric field strengths and the time

dependent response evaluated at ¢,. The response of the polarization to a general probe

temporal profile can be found by convolving the probe field with the response function:

P(t.) = [GHEE s(t 1 - “dt (2.20)

Carrying out the integration gives:

Pi(t,t,)=G(t,)E,(t—1,)|E,| (2.21)

Finally, the ISRS electric field can be found by entering the time dependent Raman

polarization into Maxwell’s equations as a source term:

FEF) FEWH FEW (FR),
17 52 HET TAT

Making the usual slowly varying envelope approximation,

(2.22)

i.e.,

FE,(t,F) J E,(t,F) 9” E, (1,7)
— U,—27C&lt;&lt;*—2"theISRSfieldisgivenby:9.2 0 a2 EY given by

sks, 1

5B (1 F) = —(P) (2.23)

As explained above, the response function is typically recovered by repeatedly

performing the ISRS experiment as incremental variations in the probe delay #, are made.
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For each ¢, value, the intensity of the electric field produced by P,(z,7) is integrated by a

slow detector:

Sirs (8,) = [|G(t,)E, (t= 1, Fy(t,7)as 2 |

[n other words, the signal recovered in a typical ISRS experiment is the convolution of

the system’s response following excitation by the Raman force with the probe electric

field temporal profile. If the probe pulse as well as the excitation pulses are short enough

0 be considered “impulsive” i.e., if no significant vibrational motion occurs during the

pump and probe pulses. then the result can be simplified to:

S sas (1,) = |G, | | Fst,” (2.23,

In this case the signal directly gives the impulse response function. The signal is

proportional to the probe intensity and the square of excitation intensity.

Note that heterodyne methods, which will be described in Chapter 4, have been

demonstrated recently in which a strong reference beam propagates collinear and in phase

with the signal beam. In this case the signal and reference fields add constructively, and

the measured intensity is dominated by their product which is linear in the response

function and the excitation intensity, as well as the probe intensity.

Most of the present discussion has emphasized the transient grating geometry in

which crossed femtosecond excitation pulses are used and signal is produced by coherent

scattering, or diffraction, of probe light. However, in general ISRS excitation occurs even

when a single excitation pulse is incident on a Raman-active sample. Stimulated

scattering occurs in the forward direction, with higher-frequency components of the

incident pulse scattered into lower-frequency components still contained within the pulse



bandwidth. The probe pulse is collinear (or in practice, nearly collinear) with the

excitation pulse and the signal is still derived from Equation (2.18) with 6 = 0 and kp; =

0. Whether the coherently scattered probe light is Stokes or anti-Stokes shifted, i.e. which

of the terms in Equation (2.18) dominates, depends on the probe delay relative to the

excitation pulse. The results can be understood by considering the impulsive force exerted

by the probe pulse, which unlike the excitation pulse encounters the sample already

undergoing coherent vibrational oscillations. If the probe pulse arrives at the sample after

an integral multiple of vibrational periods, then it drives vibrational motion in phase with

that already under way, resulting in an increased vibrational amplitude. Therefore the

probe pulse imparts vibrational energy to the system and emerges red-shifted. If the probe

pulse arrives after, say, one-half the vibrational period, then the force it exerts opposes the

motion already under way and the vibrational amplitude is decreased. The probe pulse

takes vibrational energy away from the system and emerges blue-shifted. Thus the

spectrum of the transmitted probe pulse "wags" back and forth from red to blue at the

vibrational frequency. As we shall see, these time-dependent spectral shifts can be

detected readily, and represent just one of several observables through which the results

of ISRS excitation with a single pulse can be monitored.
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Chapter III. Transient Grating Detection of Picosecond Acoustic Pulses in Metal Films

[. Introduction

A variety of methods have evolved for optical generation and detection of acoustic

waves in bulk materials and thin films. Transient grating methods have been used

extensively in transmission and reflection modes to examine acoustic waves in roughly

the 10 MHz - 10 GHz frequency range I As shown in Fig. 3.1 for the case of a thin film

sample, two excitation pulses are crossed to produce an optical interference pattern with

fringe spacing A. Optical absorption and sudden heating at the interference maxima (the

transient grating "peaks") gives rise to thermal expansion which launches acoustic waves

of wavelength A that propagate in the plane of the film. The excitation pulse duration

must be short compared to the acoustic oscillation period to drive the transient acoustic

response, and is typically in the 100 ps range. The acoustic response is usually monitored

through time-resolved diffraction of probe light which occurs due to modulation or

ripple” of the film surface. This method has been used to examine properties of thin

films including elastic modulii and thickness.

pl

itm

ge

— &lt;&lt;
a

Substrate

Fig. 3.1 Schematic diagram of the transient grating experimental technique for generation

and detection of picosecond acoustic pulses.
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Alternate methods have been used to examine acoustic responses that propagate

normal to the plane of a thin film 8 In this case, a single excitation pulse has been used

to produce sudden heating at the film surface. Thermal expansion into the film launches

an acoustic wavepacket that propagates through the film and that may undergo partial

reflection back toward the surface upon reaching an interface. The wavepacket contains

many wavevector components, up to roughly the inverse of the film thickness or light

penetration depth into the sample. Typically, this yields corresponding acoustic frequency

components up to several hundred GHz. The excitation pulse duration must be short

compared to this high-frequency acoustic oscillation period to excite the full available

acoustic bandwidth, and typically is on the order of 100 fs. The return of the acoustic

wavepacket to the film surface is detected by a probe laser pulse, either through a strain-

induced change in reflectivity &gt;’ or via probe beam deflection resulting from surface

displacement8,

The use of transient grating methods to monitor through-plane as well as in-plane

acoustic propagation has been suggested’. In this case the through-plane acoustic

response is not localized at a single spot but is distributed throughout the grating pattern,

with maxima in acoustic intensity at the grating peaks. Picosecond pulse durations used in

thin-film grating measurements reported to date have proved too long to clearly resolve

any through-plane acoustic response. Femtosecond time-resolved grating measurements

in which both in-plane and through-plane acoustic propagation are monitored are reported

in this chapter. The transient reflection grating (TRG) technique offers two main

advantages: improved signal-to noise ratios and the ability to obtain through and in-plane

information simultaneously.

[I. Experimental

Because these experiments were performed prior to the development of the experimental

detection system introduced in subsequent chapters, the experimental apparatus and

detection electronics used here will be described in some detail. The apparatus is depicted

 |
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Fig. 3.3 Transient grating experimental apparatus. The y axis is normal to the plane of

the page; the x axis is in the plane. The incident beam is separated, using a beamsplitter,

into the pump (90%) and probe (10%) arms. The pump arm is further split by a 50%

beamsplitter. The pump and probe beams are overlapped spatially and temporally at the

sample.



schematically in figure 3.2. An amplified Ti:sapphire laser system producing 30-fs pulses

(wavelength 800 nm, energy 10 uJ, repetition rate 1 KHz ) was used. Two excitation

pulses, each of ~5 uJ energy, were overlapped spatially and temporally at the sample sur-

face at an angle of roughly 10°. The ~1 uJ probe pulse was variably delayed along a

stepping-motorized delay line and focused at the excitation region, making an angle of

~2° to the film plane normal. The incident probe angle was chosen to maximize the

diffraction efficiency, which falls off likecos@ with deviation from normal incidence,

while providing adequate spatial separation between the diffracted probe and the reflected

pump and probe beams. The excitation pulses were polarized vertically (i.e.,

perpendicular to the grating wavevector) and the probe pulse horizontally, and the spot

sizes were several hundred microns. The polarization of the probe pulse was chosen to

maximize scattered pump rejection at the photodetector. A wavevector filter, consisting

of a 10 cm focal length spherical lens with a pinhole (10-25 um) in the front focal plane,

was also used to prevent scattered light from reaching the detector. One of the excitation

beams was synchronously chopped at half the laser repetition rate for phase-sensitive

detection of the (horizontally polarized) diffracted signal. The signal was detected with a

photomultiplier (PMT) tube whose output was averaged, amplified with a lock-in

amplifier, digitized and then recorded on a PC for each mechanical delay line position,

with typical delay line steps of 100-200 um. A PMT was selected because of its high

sensitivity, however an amplified photodiode provides similar sensitivity with

considerably less noise, and was used exclusively in future experiments. A variably

delayed probe pulse was used to detect responses on a picosecond time scale, with the

otal temporal range limited to less than 1 ns by the length of the mechanical delay line.

h
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To monitor acoustic responses at longer times, a separate probe beam from a CW diode

laser (A=830 nm) was used. The diffracted signal from this probe beam was monitored in

real time with a 1 GHz bandwidth photodiode and digital oscilloscope, yielding the entire

slow part of the acoustic response with each excitation laser shot. The slow responses

were averaged and recorded. Signals were recorded using these methods with diffraction

ya : -8

efficiencies as low as 10°".

[he apparatus was typically aligned using the electronic response from a titanium-

nitride metal alloy film, because extremely high (several percent) changes in reflectivity

were observed in these materials following short-pulse excitation. This resulted in

diffraction efficiencies of 10™ which produced signal beams which could be observed

using an IR viewer. These bright beams could be easily aligned through the wavevector

filter and into the detector; optimization of the optical apparatus was also simplified by

these strong signals. A pump beam that had reflected off the titanium nitride sample was

propagated over a distance of several meters and its position was carefully marked. The

titanium nitride sample, which was held in a mount with two dimensional tilt control, was

removed and the desired sample was loaded onto the mount. The mount was adjusted

antil the pump beam reflecting off the new sample returned to the previously marked

spot, thereby ensuring correct alignment of the detector pinhole (see figure 3.2). It was

also found to be extremely critical that stray light entering the detector be kept at an

absolute minimum. In addition to the horizontal polarizer and the wavevector filter, this

was typically achieved by draping a thick felt sheet from the PMT to the spherical lens of

the wavevector filter and taping up all gaps in the felt.



(Il. Theory

The theoretical description of strain generation via impulsive light absorption in a

iransient grating experiment has been presented &gt; While this formalism yields the full

description of acoustic responses in a film/substrate system, in the limit that the optical

skin depth { of the metal film layer is much smaller than the transient grating fringe

spacing A, it is more instructive to treat the generation of in-plane propagating surface

acoustic waves (SAWs) and through-plane propagating longitudinal wavepackets

separately. The SAWs are standing waves which give rise to modulation or "ripple" of the

film surface, with the depth of modulation undergoing time-dependent oscillations at the

standing-wave frequency. This frequency depends on the grating period as well as the

film thickness and mechanical properties 3. The longitudinal waves result in modulation

of the film surface each time they return to the surface following partial reflection at an

interface. The timing of the arrival of partial reflections at the surface is influenced by the

film thickness and mechanical properties, but to first order not by the grating spacing.

Both the SAW and longitudinal acoustic wavepacket responses may be monitored

through diffraction of probe light.
[n the limit { &lt;&lt; A, longitudinal wavepacket generation can be considered within

1 one-dimensional model &gt;. The time and depth dependent strain is given by

M4:(2,1) =(-RoBLrv|7 . 1 et \
2WC 1-v 5¢ sgn(z —v,t)* (3.1)

where R is reflectivity, Q is pulse fluence, f is the thermal expansion coefficient, C is the

specific heat per unit volume, v is Poisson’s ratio, and v, is the longitudinal sound

velocity in the film. The z coordinate is taken to be normal to the film plane, zero at the

film surface, and increasing positively into the film. The first term describes the static

strain (neglecting thermal diffusion) resulting from the density change due to the steady-

-



state temperature rise near the film surface. The second term describes the bipolar strain

pulse propagating normal to the film plane with longitudinal acoustic velocity v, which is

caused by the density overshoot produced during impulsive heating.

Assuming no diffraction of the acoustic pulses, a z-propagating longitudinal

wavepacket with an initial periodicity in the x-direction will retain this form, giving:

27x
N43(2,1, x) = azo 22 ’ 3  Zz

The diffraction of a variably delayed probe pulse off this periodic structure is used to

interrogate 1,,(z,¢) for z close to the film surface. The strain pulse causes diffraction of

the probe through surface ripple, as discussed above, and also, in principle, via

photoelastic coupling through which the acoustic response gives rise to spatially periodic

changes in the sample reflectivity. The normalized diffracted signal intensity from the

surface, assuming A&gt;&gt;A, is given by the following expression:

yl
= irk iy (1) + RU (3 3,

where k, is the z component of the probe wavevector, h(t) is the surface displacement, R

is the complex reflectivity of the unstrained film and OR(t) is its strain-induced variation.

I'he two diffraction mechanisms have different dependencies on 77,,(z,t). The

time-dependence of the diffracted signal from the "ripple" diffraction mechanism is given

by ripple depth:

ho(8) = [Ma (2.0)dz (3.4,

To calculate the time-dependence of the signal from the photoelastic diffraction

mechanism, finite probe light penetration depth into the sample must be considered. It

Y



can be shown &gt; that the change in the reflection coefficient for light incident on a film

with z dependent strain is given by:
: 2z

IR(1) &lt; [ee kya: (2, 1)dz
a 4g ’

where k,; is the complex photoelastic constant of the metal (see Appendix 3A for

derivation).

[V. Results

Typical data from a nickel film are shown in Fig. 3.3. The solid curve in the main

figure shows data at short times recorded with the femtosecond probe pulse and delay

ine, while the inset shows signal recorded with the cw probe at longer times. Focusing

first on the solid curve in the main figure, two prominent dips at 75 and 153 ps,

corresponding to the return of the longitudinal wavepacket to the surface following

reflections from the film-substrate interface, are observed. The overlaid dashed line is a

nlot of surface displacement squared [ho (1)]” as given by Eq. (3.4), while the raised dashed

curve is a plot of |6R(2)|’ as given by Eq. (3.5), in both cases with only the acoustic
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Fig. 3.2 Transient grating measurements of picosecond acoustic pulses in a 2500 A nickel

film. Dashed curves show calculated signals for “ripple” (overlaid curve) and photoelastic

(raised curve) diffraction mechanisms. Nanosecond time scales presented in the inset

show oscillations due to surface acoustic waves.
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velocity and a multiplicative scaling factor as free parameters. The simulation does not

consider the thermoreflectance contribution to the signal, resulting in disagreement with

experiment at early times when the sample surface is at elevated temperature. Based upon

the excellent agreement between the form of the experimental data and the simulation of

hy (0), it is concluded that surface ripple is the dominant mechanism for signal

generation. This is consistent with an analysis of Brillouin scattering mechanisms for Ni

and Al '°. It should be also mentioned that in transient reflectivity measurements on

metal films such as Ni &gt;’, acoustic pulses yield much smaller signals than the

thermoreflectance response. In our experiment, acoustic pulse contributions are

comparable to the dc component of the signal which, again, is consistent with simulations

assuming the ripple diffraction mechanism. Note that the acoustic wavepacket duration in

the simulations is not a free parameter but is determined from the optical penetration

depth, 1.e., by the depth into the film that was heated by the excitation pulses to initiate

thermal expansion. Agreement between experiment and simulation shows that there is no

significant acoustic wavepacket broadening due to diffusion of optically excited electrons

prior to their relaxation and heating of the nickel lattice, in contrast to the results observed

in metals such as aluminum and gold with weak electron-phonon coupling and high

electron mobility £12

As shown by the inset in Fig. 3.3, on a longer time scale the dynamics of the

diffracted signal are dominated by slow oscillations due to counterpropagating SAWs.

The SAW frequency of 980 MHz is two orders of magnitude lower than the frequency

components of longitudinal wavepackets. This results from the fact that the SAW

wavelength is determined by the grating period A while the characteristic wavelength of

the longitudinal acoustic pulses is determined by the optical skin depth.



Fig. 3.4 shows examples of data taken from Al/TiW/Si multilayer film structures

along with simulations assuming a surface ripple diffraction mechanism(see appendix 3B

for simulation methodology). The simulations had to be run with several estimated
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Fig. 3.4 Transient grating measurements from aluminum/titanium:tungsten multi-layer

film structures. Experimental (solid) and simulated (dashed) acoustic response from (a)

A1(1000 A)/TiW(750 A)/Si and (b) Al(2000 A)/TiW(250 A)/Si bi-layer films.

parameters since the layer thicknesses and mechanical properties of TiW layer were not

known with a sufficient degree of accuracy. Reasonable agreement between measured and

simulated data again indicates that the signal is dominated by the surface displacement

contribution. Unlike nickel, non-equilibrium electron diffusion is not negligible in

aluminum’. Therefore the literature value of the optical penetration depth was doubled in

the simulation to provide a more accurate fit to the data.

An enhancement of the information content due to the ability to measure both

longitudinal acoustic pulses and SAWs simultaneously is an important advantage

compared to time-resolved transient reflectivity or deflection methods. To demonstrate

this, we used the data obtained from a nickel film of 0.71 + 0.04 um thickness (as

measured by scanning electron microscopy, see figure 3.5) on silicon ((001) surface) to

determine both longitudinal and transverse acoustic velocities in the film. Short time

IRG data from this sample were used to calculate a longitudinal acoustic velocity of

IE
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6100 + 340 m/s. The SAW frequency measured from the nanosecond time-scale data was

795 MHz, yielding a SAW phase velocity of 3395 m/s. This value is determined by the

elastic properties of the film and substrate and the film thickness. Using literature values

for the elastic moduli of Si and the measured value of vy, the SAW data yielded a value of

the transverse velocity v; of 3300£200 m/s. The uncertainty is due to inhomogeneities

across the sample.

Fig. 3.5. SEM image of a nominally lum nickel film on a silicon substrate.

The measured velocities are not consistent with the literature values for

polycrystalline nickel 14 vi=5630 m/s, vi=2960 m/s. To elucidate the reason for this

inconsistency, we performed an X-ray diffraction analysis of the sample (see figure 3.6),

which indicated a [111] preferential orientation of the nickel crystallites normal to the

film plane. The longitudinal acoustic velocity along the [111] direction of crystalline

nickel is 6240 m/s '*, consistent with experimental results. This illustrates the

applicability of this technique for assessment of film morphology.
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Fig. 3.6. X-ray diffraction analysis of a nickel film on a silicon (001) substrate illustrating

the preferential [111] orientation of the nickel crystallites normal to the film plane.

~

©

2
2)
c
O
Fr

C

 ASNJet

cdl

oo

J 3  ~ J

time (ps)

Fig. 3.7. Short time, ISTS data from nominal TiN(250 A)/Ti(250 A)/Al(1 mm)/TiN(500

A) film on silicon substrate. The transient grating technique is seen to easily resolve

oscillations from a sub-100 A film.
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Fig. 3.8. Transient grating ISTS data from a 2500 A titanium nitride film. High levels of

noise make the acoustic echoes difficult to resolve. The noise did not appear to be

Guassian; the signal-to-noise ratio did not improve as the square root of the number of

acquisitions.

Figures 3.7 and 3.8 show signal from a TiN(250 A)/Ti(250 A)/Al(1 mm)/TiN(500

A) film and from the titanium nitride film (2500 A) which was used as an alignment

standard. The first figure highlights the ability of the technique to monitor responses from

very thin films. The oscillations, which are clearly resolved, come from a layer which is

less than 100 A thick. The second figure serves to illustrate the ability of the technique to

measure weak acoustic reflections, but also to highlight a persistent noise problem which

plagued experiments with this apparatus. The high levels of noise shown in fig. 3.8 were

not reduced by extensive averaging. The reasons for this, and the solution to the problem,

will be the subject of Chapter 4

Bee



V. Conclusions

The transient grating experiment provides a new detection technique for ultrashort

acoustic pulses which is based on time-resolved diffraction of the probe light in contrast

to the transient reflectivity or deflection methods used in earlier studies. Sensitivity to

both in plane and through plane propagating acoustic modes makes this technique a

valuable tool for thin film characterization. Unlike the transient reflection or deflection

methods, this technique is background-free in the sense that in the absence of excitation.

there is no probe light incident on the detector. Consequently, the signal can be detected

on a single-shot basis using an optical streak-camera, which, for example, should be

advantageous for the study of laser-driven shock waves. In chapter 1, ISTS and ISBS

were championed for their ability to measure relaxation dynamics in liquids, up to

frequencies of roughly several gigahertz. Thin metal films can be used to overcome these

limitations by acting as acoustic transducers'®. Through-plane strain pulses contain

signnificant bandwidth up to several hundred gigahertz. Acoustic pulses in free-standing

metal films, brought into contact with a liquid sample, can be measured following

reflection off a metal-liquid interface and the complex impedance of the liquid can be

determined over a broad range of frequencies.

References

I. M.D. Fayer, IEEE J. Quant. Electron. QE-22, 1437 (1986).

2. T. Sawada and A. Harata, Appl. Phys. A61, 263(1995).

3. A.R. Duggal, J.A. Rogers and K.A. Nelson, J. Appl. Phys. 72, 2823 (1992); J.A.

Rogers, L. Dhar and K.A. Nelson, Appl. Phys. Lett. 65, 312 (1994).

J. J. Kasinski, L. Gomez-Jahn, K. J. Leong, S. M. Gracewski, R. J. D. Miller, Opt.

Lett. 13, 710 (1988).

5. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).

6. H.T. Grahn, H. J. Maris, and J. Tauc, IEEE J. Quant. Electron. 25, 2562 (1989).

7. O. B. Wright and K. Kawashima, Phys. Rev. Lett. 69, 1668 (1992).

4.

y
AL



8. G.L. Eesley, B.M. Clemens and C.A. Paddock, Appl. Phys. Lett. 50, 717 (1987).

9. Q. Shen, A. Harata, and T. Sawada, Jpn. J. Appl. Phys. 35, 2339 (1996).

10. B. A. Auld, Acoustic Fields and Waves in Solids; Vol. 1, (John Wiley &amp; Sons, Inc.,

New York, 1973).

11. R. Loudon, Phys. Rev. Lett. 40, 581 (1978).

12. O. B. Wright, Phys. Rev. B 49, 9985 (1994); V.E. Gusev and O.B. Wright, Phys.

Rev. B 57, 2878 (1998).

13. G. Tas and H.J. Maris, Phys. Rev. B 49, 15046 (1994).

14. Handbook of Physical Quantities; Vol. 1, edited by I. S. Grigoriev and E. Z.

Meilikhov (CRC Press, Boca Raton, 1995).

15. B. Ghebouli, A. Layadi, and L. Kerkache, Europ. Phys. J. Appl. Phys.3, 35 (1998).

16. G. Tas and H.J. Maris, Phys. Rev. B 55, 1852 (1997).

1C



Appendix 3A

First, consider the diffraction of a transverse magnetic (TM ) plane wave from a

sinusoidal, corrugated surface with a sinusoidal complex index of refraction modulation

caused by a propagation strain pulse. The following treatment of diffraction from a thin

crating follows closely that of Haus!. The surface is described by:

2mx

22,1) = hy(t) cos A (A.1)

Where h,(t) is given by the integral of the strain pulse at z=0. The index of refraction

variation is given oy:

on 27x
An(z,t,x) = ——133(2,1) cof 2)

MN » A

\

Ax(z,t,x)= a N:3(2,1) coo 2

(A.2)

(A.3)

[his can also be expressed as a complex dielectric constant:

e=(n+An+ix+iAx)? = e+ (n+ix)An+(in—K)Ax (Ad)

=e£+Ae
[his can be tied in with literature values of the photoelastic constant through the

expression:

A € (2,1) =k, (2,1) (A.5)

First, the change in the magnetic reflectivity of the film induced by the strain pulse must

be considered. Ideally, an expression for magnetic reflectivity should be found to solve

the diffraction problem, so the goal of this section is to find:

. 09) ’

rr
(A.6)

Begin with a three layer model which contains on air-metal interface and one metal-metal

terface at depth z’. The strategy will be to determine the magnetic reflection coefficient



Begin with a three layer model which contains on air-metal interface and one metal-metal

interface at depth z’. The strategy will be to determine the magnetic reflection coefficient

for this problem and then to sum up and coherently add the reflections in an integral for

each infinitesimal “interface” in the continuous strain pulse. The simple model is

illustrated below in figure 3A.1:
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Fig. 3A.1: Model for the determination of the magnetic susceptibility of a metal film with

an abrupt discontinuity in the dielectric constant at depth z’.

The reflection coefficient for a TM wave at the interface between materials with two

different dielectric constants is well know. For interface #1 in the case under

consideration:

. . c €
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Now consider interface #2. The objective will be to find an expression similar to (A.7)

and then linearize it with respect to A € which is assumed to be small. The angle of the

ransmitted probe beam is given by Snell’s law:

D. = an [&lt;e sin 0
€

(A.9)

[he reflection coefficient can be written in terms of the z-component of the wavevector in

medium 2:

a) (2)

k kT
r®_-_€_€+Ae

H kD Kk?
es,sf ein

ec e+A€

'A.10)

H? a

where I? = ro) The wavevectors can be written in terms of the dielectric constant and

he z-component of the frequency:

. [kT = (0®) to €

(kP] =(0P) poe +A) = (0?) pyle +A€)
0 = i

«® =? Jue +Ae) =? Ju, € LO HAE
21, €

(A.11)

(A.12)

(A.13)

(A.14)

[n (A.14), the second equality is correct to first order in A €. (A.10) can now be written:

0) J1oe oP Je  oPupAc

ro _ £ e+Ae 2 Ju,e(e+Ae)

NR IT
€ (e+Ae) 2u,e(e+Ae)

(A.15)

m2) _ OP, €(e+A e)[2(e +Ae)-2e-A e

TT 0p, e(e+Ae)2Ac+Ae)+2e+A€]

ro _2€t24e-2e-Ae__ Ae
HH  2e+2Aet2e+Ae 4e43Ae

(A.16)

A. 17)
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a _ O20€(e+Ae)[2(e+Ae)-2¢€ -A€]
I; = i TA ANA

oP ty€(€ +A€)[2(e +Ae) +2 +A€|

ro _ 2€ H2A€ —2€ —Ae _ Ae

BH ne2Ae2e+Ae4e+3Ac

(A.16)

(A.17

which is, again correct to first order in Ae. The final magnetic reflection coefficient that

: HY : .

is desired from the simple case is T'$}’ =o This can be found by determining the

transmission coefficient across interface #1 from both directions and by adding a phase

erm and a damping term to account for the propagation of the light:

2)_ OMAE _ ‘nL 37.(2) Ji- ro) fi- =)?
re =O feToe£27)exp(i22°kP)[1- (TF) J1- (TY) (A.

2

where rY is given by (A.7) with 8, replacing 8. and swapping &amp; with £ and vice versus.

In the more general case, A€ is a function of space (and time), in which case (A.18) can

be written :

(2)ri; (13) = 1- (TQ) J1-(F) [ Lhd @hD)0 ak Jue exp(={'z)exp(i22°k;”)dz’(A.19)

[t is assumed in this integration that the light is sampling the strain at a single point in the

x dimension because of the small incident angle. The magnetic field produced by

reflection from the strain pulse is then given by:

HY — rH"
_ H = (A.20)

Now the complete reflected field is given bv:

HO +H" =[TY+TP 0) JH (A221)



From (A.6), we now have the final result:

C,0)=T%Y +2) (A.22)

When the acoustic pulse is generated with crossed excitation pulses, the temporal and

spatial dependence of the magnetic reflectivity is given by:

27x
 (x,t) = ry (eos 2 | A.23)

With this, the diffraction caused by the acoustic pulse can be determined. The input field

can be described:

 = SH ol wrriti)] (A.24)

The boundary conditions impose the following conditions:

fl tte) Lo + H (x, Dp = 0 A.25)

The first term on the left is the field generated by the input field at the corrugated surface

of the film. The second term is the reflected field which must cancel the input field at the

film surface. The strategy will be to used this condition to find the reflected field. It will

se seen that the following expansion can be used to describe the reflected field:

oo om —i2rmx
—ik; ik m -

H.(x.2)=e Hy Re Rz le A
m=0

A.26)

To begin with, the corrugation and the x dependence of the reflectivity will be ignored.

The incident plus reflected field is given by:

 = H eo a [ee —T, (e™ (A.27)

The incident plus reflected field at the corrugated surface will now be considered,

ncluding the spatial dependence of the reflectivity:

Tu



H(z=h(x))=He™*

2x 27x

. —iki,ho(1)coo22) 2X ik;hg (eas 22
e A - 1 (cos 222 e A |

l

(A.28)

This can be expanded around A,(¢) =0:

ne:

eC =e” , —iae™” A x=1-iax

H = He 1-ik hy (1) cos (2) T,(f)cos (2) ik,hy(HT,(£)cos’z=|(A.29)

161

c0s(20)=2cos? 0-1

which simplifies to:

H =H" li Jey(OL, 1) ik, hy (1) +1, (2) Jeos|222 A

ik_h (OT, (£) o 4xA

(A.30)

which can be expanded to:

beer KPO(0)[ik(+Ty0] Se 2m
2 Hid g® 4g 2

ik,hy(OT, (¢ idmx dmx”
_kT (1) £0 re

(A5 ]

This entire field must be canceled by higher order diffraction. We are only interested in

first order diffraction, so combining (A.31) and (A.26) and neglecting all but the first

order terms gives the following expression:

o "iki X [ik hy (6) + T (DIT faz —i2zx
— A ey A/ r

—i27x i2nx }

FRe A e™ +R .e A e™* =0(A.32)



From this, it immediately follows that:

og” eR. H [ik h(t) + T,(1)]
(A.33)

I'he final magnetic field can be written:

H ol,
2

 —i27x

0p ix iki)z or|Je HE  (ikisho(1)+Ty(1) ‘A.34)

The electric field can be found from Maxwell’s equations:

VxH=iweE
= J J

VXyH =-x—H +y—H
dz 0 Tax

—a ] M2 3 7

F=_1 (0s ik, 2 — 127 H, = kp, X kyZ2 272 H,
ime’ A we we @eA

(A.35)

(A.36)

{(A.37)

The measured intensity is given as:

[= |Ef = (kP% kz 27;
 WE WE @eA

* lik, hy + Ty (0)
(A.38)

or, alternatively :

[=E[ = “kp2 _kz 277 v(k.) Bn+r, (of t 2k; hy(t)imag(Ty(1) (A.39)
 we we weA
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Appendix 3B: Multilayer film ISTS data simulation

Following absorption of a short pulse by an opaque material, the time and depth

dependent strain profile is given byl:

M3 (2,1) =x 23g

exp 230 =). ¢

forO&lt;z, &lt;vt

for vt &lt; z, &lt; 0

(B. 1

where v is the acoustic velocity and £ is the penetration depth of the hot electrons in the

material. The time and depth dependent displacement is given by the integral of the

strain:

u(z,t) = foo 2 i for O&lt;z&lt;vt
A" Zo — Vt Z — (zy —vt)

= [exp a dz, + [exp — dz, forvt&lt;z&lt;eoo

(B.z,

This simplifies to:

u=gon|227
(—(z. —vt)

= Eexp’ (2 vi)
&amp;

forO&lt;z&lt;vt

for vt&lt;7&lt;wo

(12.3)

In order to determine the contributions to the time dependent response of the

surface displacement from acoustic pulses which have undergone partial reflections from

interfaces and returned to the surface. the film structure will be modeled as depicted in

figure 3B.1.



Multi-Layer Film Model

Interface #1 Interface #2

Alr MediumA© Medium«

Interface #3

Substrate

a, a, a; a, a; a &amp;, aq a ay

b, Interface#l| b, b, [MediumA|b, _b, [Interface# b, _b, [MediumB|b, _b, |Interface#3} b,,

Figure 3B.1: A model for a multi-layer film structure.

Each interface and film will be treated as a four port terminal. Assuming that {&lt;&lt; d,, the

surface displacement pulse given by (B.3) can be fourier decomposed into plane waves:

A(W) = a | u(t)edt (B.4)

These u(w) will be taken as the inputs to the model, i.e.,

a, = ul) (B.5)

I'he desired outputs will be b, and b;. It will be assumed that #;=1, r;=-1 and that

he reflection coefficients are for waves propagating from left to right in the above

iv i



diagram. The reflection coefficients for waves traveling from right to left are the opposite

as for those traveling from right to left. Finally, b; and bj are ignored; their values are

not of interest and they are uncoupled from the rest of the system. Eight relations can be

written between input and outputs:

a, =b,+b.

iod, Jb,0=

b,—24 |b, +iwd , bex "0=-

0=-r/b,+b,~1b,

0=-t/b, +b, +1,b,

iad, 2ep 12sb, —0=

byid, J. +ex ;0=

)=-rb, +5.

(B 6)

(B.7)

(B.8)

(B.9)

(B.10)

(B  | 1)

(B.12,

(B.13]

where r, and t, are the reflection and transmission coefficient for the nth interface and the

f superscript on the reflection and transmission coefficients for the second interface

denote that the coefficient if for a wave propagating from left to right in figure 3B.1

(forward), while the r superscript identifies the coefficient for waves traveling from right

0 left (reverse). Defining several matrices:
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ind, | 0

0 0

3

J

. (iwd,
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J 0 J

0
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0

0

~

J

J

J

J

11

) 0

) 0O J

,

J 0O 0

J 0O 0

J

~

7

J

0

-exp lod,|

)

Va

N

}

.

0}

) 0

id,
ep 120

\

J

0

b=(b, b, b, b;, by b, b, by)

d=(a,c, 0 0 OO 0 0 OV

the eight expressions (B.6) to (B.13) can be recast in to a matrix form:

vb =a (B.14)

and M can be inverted to solve for b, and bs which will yield the contribution to the

surface displacement from partially reflected waves which have returned to the surface:

-a,| rr) exp] 220 1
B

 Oo = oo \

Cexp| 120 da
Va Vp )]|=

i YC 20d

+r] exp Be, +71, 1, €Xp wd, |
Va Vg)

(B.15)
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y

. . bh

A exp) 200 (rt pr on) orp 22% | ryy V

| oo SE — (BAG)

corp i20f42+ —r) exp 20d, ness 20d, +1Va Vp) Va Vg

where C = r] rr + tty

Finally, the values of the reflection and transmission coefficients must be

determined. Consider two materials A and B with acoustic velocities v, and v, and

densities p, and p,. Let there be a displacement wave source in material A. The

displacement in A can be written as:

Z Z
uo=ult—= tru t+

Va Va
(B.17

while the displacement in B is given by:

_ Zz

Ug =| t——

Vp
(B.18)

where r and t are the reflection and transmission coefficients of the interface and u is a

function which describes the displacement wave. The boundary conditions at the interface

require continuity of displacement and stress2. The stress is related to the displacement by

the expression:

J _-%

m3

ho

ou de
Taz = pl==

E=1-=
Va

Ets
Vv,

(B.19)

(B.20)
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I'he time and space derivatives of the displacement can be related by:

du_3udsdu_3%u_du
dt df dt dE  9rr 9&amp;7

(B.21)

and similarly:

Ou_ 3
tr JE”?

(B.22)

Also note that:

dint
Va

/’ 1
dé =—dx

(B.23)

Equation (B.19) can be written for the stress in material A:

0’ u(&amp; odu(&amp;

LE
ufi-2 | 2 a

= TVaPaT 2d rv, p, oy =

(B.24)

and for material B:

z \

2 t——

B V4

O33 =p Pp oy (B.25)

I'he boundary conditions require that (B.24) and (B.25) be equal at the interface (z=0).

Chis implies that:

“VPA TTY, P= Vp Ppl (B.26)

Continuity of displacement requires that:

I
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u TR +ru += u 1X +ru f+ =tu f+ (B.27

V4 Va V4 Va Ao Ve fo

which simplifies to:

[ = Vv +i (B.28)

Combining (B.26) and (B.28) yields the reflection and transmission coefficients:

re VaPa ~VePh

VaPAsTVePp

VAP

Ve PgVaPaTVg

(B.29)

(B.30)

The simulation approach is as follows. First, the penetration depth of the hot

electrons is estimated to be equal to the optical penetration depth, which can be

determined from the literature values of the imaginary part of the index of refraction of

the materials at 800nm. The values for the acoustic velocities of pure metals were also

taken directly from literature; values for alloys were estimated. The ISTS simulations

were written as Matlab m-files and example code for an Al/TiW bilayer film mounted on

a silicon substrate is presented in Appendix 3C. This is the code that was used to generate

the simulation results in figure 3.4b. The first 29 lines of the program are used to generate

properly spaced time arrays and to input the physical parameters of the film structure in

the indicated units. Line 33-39 determine the forward and reverse reflection and

rransmission coefficients according to (B.29) and (B.30).

The displacement pulse represented by (B.3) is defined in lines 43-45. The form

of the expression differs somewhat in the program because a quasi-static contribution to

displacement from the thermal expansion of the film is included in the code to facilitate

comparison between the simulation and the experimental results. In lines 50-57, the input



displacement pulse is fourier decomposed into plane waves. Lines 61-69 compute the bl

and b2 coefficients as described by (B.15) and (B.16). Lines 74-78 sum up the two

coefficients and take the inverse fourier transform. This result is squared to determine the

[STS signal which is proportional to the square of the displacement as shown in

Appendix 3A and the results are plotted.

It should be noted that the units on these plots, while in angstroms, do not

represent the actual value of the film displacement because the simulation does not take

into consideration the magnitude of the initial displacement caused by impulsive heating.

This simply means that the results from these simulations are correct to within a scaling

factor. Additionally, it should be noted that this was not the simulation approach which

was used to calculate the shape of the reflectivity signal for nickel in figure 3.3. The

program used to perform these simulations, also written as an m-file, computed the strain

as a function of time and depth. Because this approach required much larger matrices to

be stored, it was rejected in favor of the surface displacement treatment for general use.

However, the treatment was quite similar to that presented above with minor

modifications.
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Appendix 3C: Matlab code for ISTS multi-layer film simulations in m-file format

clear M pulse bl kA z t I signal;

*create the time row vector

tmin=-4095; %minimum temporal

tmax=4096; maximum temporal
tstep=1; $time steps in ps

tal=tmin:tstep:0; %create time

ta2=1:tstep:tmax;

define constants and physical parameters

lamda=8000; %wavelength of light in ang

kappa=4; %imaginary part of the index of refraction of the

stop layer
si=lamda/ (kappa*2*pi); %$1/e distance of the initial strain

pulse
vA=6.260e3; %$acoustic velocity in dispersionless medium

Y¥A:units=m/s

vA=vA/100; convert acoustic velocity to ang/ps

dA=2000; %depth of layer A: units=angstroms

densityA=2.70; %density of medium A in g/cc

ZA=densityA*vA; %acoustic impedance of medium A in

sg*ang/cm*ps
vB=6e3; %acoustic velocity in dispersionless medium

3B:units=m/s

vB=vB/100; convert acoustic velocity to ang/ps

dB=250; %depth of layer B: units=angstroms

densityB=15; %density of medium B in g/cc

ZB=densityB*VB; acoustic impedance of medium B in

3g*ang/cm*ps
vS=8.43e3; sacoustic velocity in substrate:units=m/s

vS=vS/100; convert acoustic velocity units to ang/ps

densityS=2.42; %density of substrate in g/cm

zS=densityS*vA; %acoustic impedance of substrate in

$g*ang/cm*ps

vector:units=ps

sdetermine reflection and transmission coefficients for

displacement pulse

rlt=1; %frequency independent reflection coefficient for

interface 1

r2=(ZA-ZB)/(ZA+ZB);%$frequencyindependentreflection
3coefficient for interface 2 (forward)

t2=1+r2; %frequency independent transmission coefficient

for interface 2 (forward)

r2t=(ZB-2A) / (ZA+ZB) ; frequency independent reflection

coefficient for interface 2 (reverse)



t2t=1+r2t; frequency independent transmission coefficient
for interface 2 (reverse)

r3=(2ZB-7ZS)/(ZB+2ZS); %frequency independent reflection
3coefficient for interface 3

t3=1+r3; %$frequency independent transmission coefficient
for interface 3

create displacement pulse vector:units=surface displacement

as a function of time in angstroms

pulse2=si-si*exp(-(VA.*ta2)/si)./2;
pulsel=si-si*exp((vA.*tal)/si)./2;
pulse=cat(2,pulsel,pulse2);
t=cat(2,tal,ta);
tsize=size(t);

stake the temporal fourier

displacement

transform of the surface

pulse=fftshift (pulse);
pulse=fft (pulse);
pulse=fftshift (pulse);

3calculate the frequency row vector:units=1/ps=GHz

omega=-tsize(2)/2:tsize(2)/2-1;

omega=2*pi*omega/(tsize(2)*tstep);

define the relevant output row vectors bl and b2

terml=-pulse.* (r3*r2t*exp(i*2*omega*dB/vB)-1) ;
term2=-

rlt*exp(i*2*omega*dA/vA).*r3.*t2t.*exp(1i*2*omega*dB/vB)*t2+r
lt*exp (i*2*omega*dA/vA) .*r3.*r2t.*r2.*exp (i*2*omega*dB/vB) ;

term3=-r2*exp(i*2*omega*dA/vA)*rlt-
r3*r2t*exp (i*2*omega*dB/vB) +1;
bl=terml./(term2+term3);
cerml=pulse.*(-1).*(-

r3*t2t*exp (i*2*omega*dB/vB) *t2+r3*r2t*r2*exp(i*2*omega*dB/vB
)-r2) .*exp (i*2*omega*dA/vA);
Zerm2=-

rlt*exp (i*2*omega*dA/vA).*r3.*t2t.*exp(i*2*omega*dB/vB)*t2+r
lt*exp(i*2*omega*dA/vA) .*r3.*r2t.*r2.*exp(1*2*omega*dB/vB) ;

term3=-r2*exp (i*2*omega*dA/vA) *rlt-

r3*r2t*exp(i*2*omega*dB/vB)+1;
pulse=terml./ (term2+term3) ;
clear terml term2 term3:

calculate inverse fourier transform of pulse+bl to

(determine the time dependent

J!



$surafce displacement following interaction with the

interfaces

bl=fftshift (bl+pulse);
bl=ifft (bl);

pulse=fftshift(bl);
pulse=pulse(tsize(2)/2:tsize(2));
t=t (tsize(2)/2:tsize(2));

compute ISTS signal

signal=abs (pulse) ."2;

figure (l) ;plot(t, signal);
axis ([-50 500 0 real (max(signal))+real (max(signal))*.5])



Chapter 4. Heterodyne Detection of Transient Gratings on a Femtosecond Timescale

[. Introduction

As mentioned at the end of chapter III and illustrated in figure 3.8, the noise in

much of the transient grating ISTS data taken from metal films appeared to be highly

non-Gaussian. It was clear from many experiments performed at this time that averaging

n scans did not produce a signal-to-noise ratio improvement of Jn, especially in samples

of poor optical quality. It was hypothesized at that time that unstable phase control

between the two pump beams in the optical apparatus depicted in figure 3.2 was

responsible for this non-Gaussian noise profile. The two pump beams were propagated

separately over distances of hundreds of centimeters and through and off of several optics

oefore being recombined at the sample. Because no active stabilization was incorporated

into the experimental apparatus, the optical path length traveled by the two beams was

certainly not constant to within a fraction of the 800 nm wavelength of the light. This

instability in optical paths resulted in an instability in the phase difference between the

two pulses when they were recombined at the sample, and this resulted in an instability in

the spatial phase of the transient grating produced by the sample’s spatially periodic

response. The phase of the portion of the probe field which diffracts off this transient

grating is a function of the grating spatial phase, and consequently the temporal phase of

the signal was also unstable.

I'he unstable grating phase, combined with excessive parasitic scattering, could

lead to non-Gaussian noise. For all of the metal films studied, the ratio of the diffracted

signal intensity to the intensity of parasitically scattered light was extremely low. Even

following spatial filtering, wavevector filtering, and polarization filtering, the intensity of
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parasitically scattered light, especially from the probe beam which could not be

polarization filtered, was high compared with the intensity of the diffracted signal beam.

Consequently, the electric fieled at the photodetector had contributions from multiple

sources:

. pump . probe :

E — EP? ump o' Pcattered + EP? robe o' Pscatered + E ' Vdiffracted
total scattered scattered diffracted 4.1)

All of these contributions interfere at the detector, which measures the intensity of the

total field. Recalling that all of the pulses are extremely short in duration and that the

experiments are carried out by repeatedly measuring the intensity of the total field at

different pump-probe delays as explained in Chapter 2, it is seen that the pump pulse will

only interfere with the probe and diffracted pulses at zero time delay between the pump

and probe. Consequently, when expressing the intensity of the field given by (4.1). cross

terms between the pump and both the probe and diffracted field will be neglected. The

intensity, which is proportional to the signal measured by the photodetector, is given by:

__ ypump probe probe iAp N
I total — I scattered + I scattered + Idiffracted + 2E E°" € (4.2 1

where AQ=@,..  .. — Pr.Contributions from the first two terms can be largely

suppressed by appropriate modulation and lock-in detection, although some Gaussian

noise will still bleed through. Two terms remain: Iggaceq Which is the desired signal and

background in the form of interference between the temporally coincident diffracted and

probe pulses. The non-Gaussian noise in the data arises from the presence of this last term

in (4.2) and the instability in ¢,...., which leads to instability in A@. Probe beam noise,

which is essentially Gaussian, enters into the measured signal through this interference

erm. The mean value of the noise in the signal, however, will fluctuate because of the

Pp



instability in A¢@. Fluctuations in A¢ which take place on a more rapid timescale than a

complete data acquisition will be impossible to average out and will appear as non-

Gaussian noise.

19]
t

Fig. 4.1. (a) The “pancake effect”. Femtosecond pulses split by a beamplsitter only

overlap over a fraction of the transverse spatial extent of the beams, reducing wavevector

resolution in ISS experiemnts (b). Diffractive Optic Apparatus. Pulses split with a

diffraction grating and imaged with a two-lens telescope overlap over the entire area of

the beams., improving wavevector resolution. In both cases, the pulses are depicted with

lines of equal phase. Reproduced from ref. 3.

A novel experimental apparatus which generates transient gratings with excellent

phase stability, without using any active stabilization, had just been developed for

research and industrial applications in the picosecond regime!2, The experimental

apparatus, depicted schematically in figure 4.1(b), relies on a diffractive optic in place of

a beamsplitter to separate the two pump beams. A binary phase grating which was etched

to optimize diffraction into the *1 orders is used as the diffractive optic. All other

diffraction orders are blocked and the phase mask is imaged onto the sample using a two

JL



lens telescope in an fi-(f;+f,)-f; configuration. An enormous potential advantage had just

been demonstrated for the use of this type of apparatus in the femtosecond regime3 (see

section II(1) below) and potential modifications of the technique to permit facile optical

heterodyne detection of the transient grating were just being developed in the picosecond

domain. Figure 4.2 depicts ISTS acoustic data, taken with the apparatus depicted in figure

4.1(b) and using a diffractive optic in place of a beamsplitter, from the same TiN sample

used to measure the data shown in figure 3.8. The data from figure 3.8, taken using the

apparatus shown in figure 3.2 which uses a beamsplitter to separate the pump pulses, is

plotted alongside for comparison. The acquisition times for both data sets were nearly

identical.

—
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Fig. 4.2. Comparison of transient grating ISTS data taken using a beamsplitter or a

diffractive optic to separate the excitation pulses. A dramatic increase in the signal-to-

noise ratio is observed in the data taken with the diffractive optic apapratus, which is

attributed to markedly improved phase stability of the transient grating.
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The data taken using the diffractive optic apparatus shows vastly improved signal-to-

noise ratio. The non-Gaussian nature of the noise was also observed to largely vanish,

with increased averaging producing enhanced signal-to-noise ratios. It will be the purpose

of this chapter to describe the use of the diffractive optic apparatus for the femtosecond,

heterodyne detection of transient gratings. This chapter will focus on both the optical and

electronic elements which were incorporated to produce an experimental system with

enhanced wavevector accuracy, optical signal amplification, and enhanced information

content, all while greatly simplifying optical alignment.

[he layout of this chapter will be as follows. In the first section, an optical

apparatus using diffractive optics to split and cross femtosecond pulses will be described

and the action of this apparatus on short pulses will be explored. The use of this apparatus

for the optical heterodyne detection of femtosecond timescale transient gratings will be

detailed. In the second section, a system of detection electronics (including photodiode

design, computer interfacing, and software) optimized for optical heterodyne detection

will be expounded upon.

II. Optical Apparatus

(1). How to make femtosecond pulses overlap

It is a well known fact that crossed femtosecond pulses that have been separated

by a beamsplitter have an overlap area that is much smaller than the transverse spatial

dimension of the beams because of the small axial dimension of the short pulses (a 35 fs

pulse is a 10 um thick “pancake”), as illustrated in figure 4.1(a). This phenomenon,

commonly called the “pancake effect,”# leads to a reduction in both wavevector accuracy

and diffracted signal intensity when performing transient grating experiments. As

JJ



determined from the diagram in figure 4.3, the width d of the overlap region between two

femtosecond pulses is roughly given by:

7
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(]

io
CC: 0H
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Fig. 4.3. Diagram of two, crossed femtosecond pulses.

where 7 is the pulse duration and c is the speed of light. The fringe spacing A of the

interference pattern created by the overlap between two pulses of wavelength A crossed at

an angle 281s:

A=—2
InfH

(4.4)

Consequently, for short pulses, the number of fringes produced in the interference pattern

created by crossing two pulses of duration 7 is angle independent and is approximately

given by the expression:

NT (4.5
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This leads to an angle dependent wavevector uncertainty of:

Sk = 4In2 _ 4In2 _4In2siné

ox d TC
(4.6)

Additionally, the diffraction efficiency, defined as the ratio of the power in the diffracted

field to the power in the input probe field, is quadratically related to the pulse fluence for

¥? processes like ISRS. Consequently, the diffraction efficiency for a given pump

power will scale as d’. Tt can be seen that the pancake effect becomes most problematic

at higher wavevectors, as the diffraction efficiency decreases like sin’@ and the

wavevector uncertainty increases like sin@ with increasing angle and increasing

wavevector. It will be shown that this limitation can be overcome through the use of the

optical apparatus depicted in figure 4.1.

A qualitative picture of the performance of the optical apparatus depicted in figure

4.1 can be obtained by considering a frequency domain picture. From (4.4), the

wavevector of the interference pattern created by crossing two beams is seen to be a

function of the crossing angle and the wavelength of the two beams. Short pulses have a

broad bandwidth, and when pulses are split with a traditional beamsplitter and then

recombined, all of the different wavelengths in the short pulse cross at the same angle,

producing a broad range of wavevector components in the interference pattern. In the

setup used in this work, the different wavelength components in the pulse split by the

srating are all diffracted and recombined at different angles, which produces a much

narrower wavevector distribution in the optical interference pattern.

The quantitative treatment of a diffractive optic apparatus presented here is a close

adaptation of that presented by Maznev?. The field of the input pulse, just before

AN



propagating through the diffraction grating, will be assumed to have a Gaussian temporal

profile

E =E, exp| -(t-2/¢)' I; |expliay(t-2/0)] 4.1

where a,isthecentral frequency of light, and 7, is a measurement of the pulse duration

related to the FWHM duration 7 by 7, =7v4In 2. This can also be expressed as a

superposition of plane waves:

Ez, T 2 2 . :

b= 2 | eso]-(0-a) 7; 14 |explio(t-iz/c)]dw (4
by

J)

Consider the diffraction of one of the plane waves, with electric field given by

E, =expliw(t—iz/c)]| from the diffraction grating. The field of the nth order beam

diffracted from a thin grating can be written’:

EP =A, expl ior —i( Jo? Ic —q )z—ig,x {4 )

where g, is the wavevector of the grating which is related to the grating period A by

9. TOA

2 : : : : :

4 . and A, is the complex grating amplitude. A symmetric phase grating was used

for all of the experiments in this work. Although A, is @dependent for phase gratings, for

a small frequency spread dw/@, &lt;&lt;1 this dependence may be neglected. Disregarding

diffraction. the action of the two lens system will be to image the field at the grating onto

the sample plane:

EW (0) =A, exp| it i, [(w* Ic —q2) 7 +i(q, IM)x-iLolc] (4.10

or

=



where z’is now the distance from the sample plane, M = f,/ f, is the magnification

ratio, and L is the distance between the grating plane and the z’plane with L&amp;/ ¢ being the

overall phase shift imparted to the wave upon propagation through the lens system. The

complete electric field for the nth order beam is given by the superposition of the plane

waves described by (4.10) into a Gaussian pulse:

E(w) = Eh exp(ig,x11) | doexp| (0a, ) 72 14]

&lt;expl ior’ —i[(@’ /c*—q IM) Z|
4.11)

where t'=t—L/c, which just reflects the fact that it takes the pulse a finite amount of

rime to propagate through the lens system. In order to determine the pulse duration at the

focal plane, it will again be assumed that dw/w, &lt;&lt;1 and that gq /M &lt;&lt; ®’/c” at all

frequencies at which E!” is significantly non-zero. In this case, the second term in the

ntegrand of (4.11) is approximately:

oxp| ior ~iy[[@” /c*-q; IM?) Z| =

| icq’?exp| —iw| t'— 7" c +—2—Pl 2M w |
(4.12)

Further, for frequencies close to ay, this expression can be further simplified using the

following relation:

. 2.7 . 2 7 . 2 7 7 2 7

cq, _ cq, 2 _ cq, 2 w+ cq, 2 pe

20M  20.M 20°M  20°M
(4.13)

These terms generate a constant phase shift as well as a linear and quadratic phase sweep.

The phase shift will not affect the form of the final expression and it will be suppressed.

[he linear phase sweep will produce an overall time shift of the pulse. This will also not

5/



affect the form of the final expression in an important way and it will also be suppressed.

The quadratic phase sweep will produce a stretching of the pulse. Combining (4.12),

(4.13) and (4.11) yields:

—00 M) [do w-a,) 72/4) | d exp| — —,) 7 |oo Ja exp (ig,x/ER @=\ ir
. 2

, rs cq,

xexpl io(t Si?27 fepb pe

(4.14

Completing the square and completing the integration:

[os-
(4 ’/ 2

&gt;&lt; explig,x/M)exprd lia (£'- Zlc)] (4.15,

2 7

where @=—In% The electric field has tilted fronts of constant phase with slope
20M?

oe , as seen in figure 4.3(b). The real part of (4.15) can be written in the form:
Ma,

2ocexp(ig,x/M )ex —=zie) ) [(C=Z1e)4p) [ia (121c)](4.16)
hi Pl 216077 +160” | PL

From (4.16), the new pulse duration will be defined as:

r’ =1, +160°/ 1,
2 4

_ 24 4c q, 72
a) 6ag42%

 ao M" tT;

(4.1/

This important result shows that, at the sample plane (i.e., z'=0), the pulse duration is

unaffected by propagation through the diffraction grating and lens system. The range over

which the pulse stays short is roughly given by:

Sag Led
: MT

Z| &lt;&lt; —2—=2
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Under normal experimental conditions, displacements from the sample plane of 1 cm

produce only a 10% change in pulse duration.

[n actual practice, all but the +1 diffraction orders are blocked. The electric field

orofile at the sample plane produced by these two pulses is given by:

E =2AE,cos(gx/M )exp(—t” 7; )exp(iwyt’)  ! 19)

The pancake effect has been completely eliminated! The interference pattern extends over

the entire transverse spatial dimension of the input pulse. The only limit on the spatial

=xtent of the interference pattern is the overall aperture of the optical system.

Experiments confirming these results were performed using 30-fs pulses output

from an amplified Ti:sapphire system operating at an 800 nm wavelength. The beams

were first crossed using mirrors and a beamsplitter, in an apparatus similar to that shown

in figure 3.2. They were then crossed using the apparatus shown in figure 4.1 which used

15 cm focal length spherical mirror and gratings with spacing A = 10 pm. The transverse

oecam diameter at the input of the optical system was 4 mm. Figure 4.4 displays an image

of the interference pattern at the sample plane using (a) a beamsplitter and mirrors, and

(b) using a diffractive optics and two lens imaging system. The diffractive optic system

clearly shows an enormous increase in the spatial extent of the interference pattern. In

figure 4.5, non-collinear second harmonic generation (SHG) between the two pulses is

imaged at the sample plane using both (a) the beamsplitter apparatus and (b) the

diffractive optic setup. Crossing two beams in a non-linear medium produces two SHG

beams which co-propagate with the transmitted fundamental and a third non-collinear

beam between the fundamentals. The image taken from the beamsplitter setup clearly

shows limited transverse spatial overlap between the two pulses (the “pancake effect” is

uy



Fig. 4.4. The interference pattern created by the overlap of two 30 fs pulses (a) split and

recombined with a beamsplitter and mirrors and (b) split with a diffractive optic and

recombined with a two-lens imaging system. The interference pattern created by the

pulses which passed through the diffractive optic apparatus extend over the entire spatial

extent of the beams. Reproduced from ref. 3.

Fig. 4.5. Images of non-collinear SHG from two, crossed 30 fs pulses.(a) split and

recombined with a beamsplitter and mirrors and (b) split with a diffractive optic and

recombined with a two-lens imaging system. The spatial extent of the SHG beam from

the diffractive optic system clearly extends over the entire area of the pulses while the

SHG image from the beamsplitter system is extremely narrow. Reproduced from ref. 3.

often exploited in this type of arrangement as a single-shot autocorrelator), but the image

taken from the diffractive optic setup shows overlap over the entire beam profile. Finally,

the pulse duration was determined by placing a thin glass slide in each of the two

diffractive orders and measuring the total non-collinear SHG intensity as a function of the



rotation angle of one of the two slides. The result is plotted in figure 4.6, where the pulse

is still seen to be short at the sample plane.

&gt; 8.
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Fig. 4.6. Autocorrelation of the pump pulse at the sample plane in the diffractive optic

apparatus. The optical apparatus does not introduce any dispersion into the pulse and the

pulse duration remains short. Reproduced from ref. 3.

I'he answer to the question posed in the title of this subsection is clear. The use of

a diffractive optic and a two lens imaging system is the preferred technique to cross two

femtosecond pulses for most applications. The beams remain short in the front focal plane

of the imaging system and they overlap over the entire spatial extent of the beam,

completely eliminating the “pancake effect”. An additional advantage is that the

alignment of this system is extremely simple. The system contains only three optics and

‘he two pulses are essentially guaranteed to overlap both spatially and temporally at the

sample plane.



(ii). The Diffractive Optic

The ideal diffractive optic would be a symmetric transmission grating blazed to

diffract entirely into the £1 orders. Properly design binary phase gratings approaching this

ideal and are easily manufactured. The performance and design of these gratings can be

understood from a qualitative perspective by modeling the phase mask as two

superimposed amplitude masks®.

a)

L

{

r

b)

l

i

Fig. 4.7. Diffraction from (a) a mask consisting of series of slits and (b) from a spatially

uniform mask that can be represented as the sum of two masks, with each mask

consisting of a series of uniformly spaced slits in which one mask is offset from the other

by the slit spacing. The effect of translating the mask by the slit spacing is to phase shift

the non-zero diffraction orders by Tt.

«



Consider an amplitude mask which consists of a series of slits, as depicted in

figure 4.7. The well-known diffraction pattern that this mask produces is also shown. If

this mask is replicated, and then the replication is displaced by the spacing between the

slits, this resulting pattern is just a uniform amplitude mask (see figure 4.7) which will

only produce the O™ diffraction order. From this result, it is apparent that the action of

displacing the grating by an amount equal to the spacing between slits shifts the phase of

‘he higher diffraction orders by .
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Fig. 4.8. Model for the diffractive optic which consists of the sum of two phase gratings,

offset from each other by the grating spacing d. Figure features distorted for clarity.

The field produced by the binary phase grating will be modeled as the sum of the

fields produced by two opaque amplitude masks: one displaced from the other in the

vertical dimensions by an amount equal to the spacing between slits and in the horizontal



dimension by some distance d, as illustrated in figure 4.8. It is assumed that d is much

less than the width of the slits. Let the field produced by the original (undisplaced) mask

when illuminated be E;. For all but the 0" diffraction order, the field produced from the

second mask will be related to the field from the first expression by:

EX = E™ exp(ir +iko) n=
-

4.20)

where k is the wavevector of the illuminating field and J is the optical path difference

between the two slits which, for a mask of index of refraction n surrounded by air is

0 =(n-1)d. The factor of x results from the vertical displacement of the second mask

while the kd factor shift results from the horizontal displacement. For the 0" order:

EL” = E® exp(ikd) (4.21)

[he total field, which is just the sum of E and E{” is given by:

EW =E" +E" exp(iz+ikd) n#0

=E™ +E" exp(ikd) n=0

I'he power diffracted into each order is proportional to the intensity of the fields:

[™ =2(E™) [1-cos(kd)] n#0

=2(E™) [1+cos(k8)] n=0

(4.22)

+.23)

Optimal design can be achieved by maximizing diffraction into the higher orders

‘maximizing 1-cos(kd )) while minimizing diffraction into the 0" order (minimizing

{+cos(kd)). This can clearly be obtain by setting kd =. In general, the optimal etch

depth d for light of wavelength A and a phase mask with index of refraction # is:

w
J wr



4=&gt;00 (4.24)

Assuming that the mask material is BK7 glass, which has n = 1.5, the optimal etch depth

is equal to A. Although this maximizes diffraction into all higher orders, the first
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Fig. 4.9. Design for the darkfield, chrome on quartz mask used to generated the

diffractive optics. Sequences of diffraction patterns were chosen to cover a range of

grating spacings from 2-100 wm.



diffraction order will be the strongest’. While masks which eliminate higher order

(|n| &gt;1) diffraction could certainly be designed, the ease of manufacturing binary gratings

overrides these considerations. The binary phase gratings described in this work were

typically found to diffract 70% of the energy of the incident field into the £1 diffraction

orders.

For experiments which require many wavevectors, entire sequences of masks

patterns with a range of grating spacings are produced because of the high setup costs of

the etching process. For this work, sequences of grating patterns were etched onto

industry standard 4 inch BK7 wafers by Digital Optics Corporation. Using standard

lithographic techniques, the desired mask pattern is transferred onto the wafers using a

custom designed, chrome on quartz darkfield mask, manufactured by Diamond Images.

The manufacture of these masks requires that the desired mask pattern be rendered in a

gds2 file. These files controls the electron beam that writes the pattern onto the

lithography mask. The gds2 file was created by Advanced Reproductions from a CAD

file created in house and shown in figure 4.9. This CAD file was co-created by the author

and Dr. Dora Paolucci. The wafer was cut into horizontal sections. Using these rows of

patterns, the grating spacing can be easily changed by simply translating the glass

substrate so that a selected mask pattern is situated in the beam path. This is another

significant advantage of using the diffractive optic setup to perform transient grating

experiments. Note that for applications needing fewer wavevectors, standard glass or

olastic phase masks are readily available at low cost.



(iii). Heterodyne Detection

The primary advantage that the transient grating technique enjoys over competing

iechniques such as pump-probe measurements which monitor transient reflectivity or

transmission is that the transient grating technique permits control over the wavevector of

the sample response. The major tradeoff for this advantage is loss of a linear relationship

between the sample response and the detected optical signal. This becomes especially

problematic in weakly scattering samples, in samples of poor optical quality, and in

samples in which multiple material responses are driven. It is well known that mixing the

diffracted field with a strong local oscillator field at the photodetector will linearize the

signal dependence on the material response in the transient grating technique. This can be

easily seen by writing the intensity of the total field measured at the detector, which is the

squared sum of the diffracted field E, e” and the local oscillator field Ee”, as seen

n (4.2) with E,, =E,.

[ =|Ene® + E pe? = 1, +1, +2E, Ey, cos(0, — 0,5) (4.25)

The first term gives a constant background signal which can be suppressed electronically,

the second term describes the usual intensity of the diffracted probe beam, and the final

cross term details the desired optical mixing. Techniques which seek to linearize the

signal dependence through the measurement of this cross term are referred to as

heterodyne detection techniques if the optical frequency of the local oscillator field is

different from that of the diffracted field and homodyne detection if the frequencies are

the same. The cross term is linearly related to the diffracted field and its magnitude is

proportional to the local oscillator strength. This can be independently controlled, which



permits the optical amplification of weak signals (by increasing Ep) and it becomes

possible to selectively probe the real or imaginary part of the sample response by varying

‘he phase of the local oscillator (by varying ¢, —¢,, ).

Che primary impediment to the more widespread application of these types of

optical field mixing techniques is the strict set of experimental requirements: the phase

difference ¢@, —@,, between the diffracted and reference field must be kept stable over

the entire data acquisition time, the diffracted and reference fields must propagate

collinearly, and both probe and local oscillator pulses must arrive at the detector

simultaneously. The phase stability requirement has typically required the use of actively

stabilized optical systems’-9 or diffraction from a thermal grating!® to provide the local

oscillator. This phase stabilization problem, however, is exactly the same issue that was

faced in stabilizing the grating phase in the ISTS measurements of thin films! There are

two phase stabilization requirements for heterodyne/homodyne transient grating

experiments: the grating phase must be stable, and the local oscillator phase must remain

stable relative to the probe phase. The former can be achieved simply by using the

diffractive optic apparatus to split and recombine the pump beam. The latter requirement

can be met by passing the probe pulse through the same diffractive optic setup as the

pump beams, as depicted in figure 4.10. The probe beam is split by the diffractive optic

into two beams, one of which continues on in service as a probe beam while the other

serves as the local oscillator. As shown in the diagram, the local oscillator beam passes

‘hrough the sample, unaffected to first order in ED, after which it propagates

collinearly and simultaneously with the Bragg diffracted pulse from the probe beam.

|.



Additionally, when the probe beam is passed through this apparatus, it arrives at the

sample automatically phase matched for Bragg diffraction off the transient grating,

greatly simplifying alignment. The intensity of the reference beam can be controlled by

inserting optical density filters into the reference arm. A glass plate (whose thickness

closely matches that of the OD filters) is then inserted in the probe arm. Rotation of the

filters or the glass slide provides fine control over the phase difference between the

reference and diffracted beams. Because the probe and local oscillator beams pass

through almost entirely the same optics, and because the transient grating phase is

extremely stable, no active stabilization is required in this apparatus.

phase
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Fig. 4.10: Side-view (a), and top-view (b) of the experimental apparatus for optical

heterdyne detection of transient gratings. Vertically displaced pump and probe beams are

split by a diffractive optic and recombined at the sample with a two-lens telescope. Lens

L1 is a cylindrical lens, focusing in the horizontal dimension, while L2 is a spherical lens.

L1 and L2 image the plus and minus 1 orders diffracted from the grating onto the sample

plane. L2 additionally ensures vertical overlap of the pump and probe beams. The phase

of the reference beam is adjusted by rotating a filter in the reference arm. The glass in the

filter is balanced in the probe arm by a glass slide.
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It is instructive to consider the form that expression (4.25) takes when the

sxperimental apparatus of Fig. 4.10 is used to heterodyne detect two counter-propagating,

plane-wave phonon-polaritons with frequency @,(see Chapter 5 for a description of

phonon-polaritons). Note that the local oscillator will often be called a reference field or

beam throughout this treatment to preserve historical consistency.(i.e.,E,, = E,) The

diffracted field takes the form:

 | D, (E? | |

E, = iI 4) Ee" [ef _ pilerao)] (4.26)

where E), is the probe electric field, D, (E 2) = 1, /1, is the diffraction efficiency which is

quadratically dependent on the excitation field E, , and wis the optical carrier frequency

of the probe beam. The two complex exponential terms describe Stokes and anti-Stokes

scattering from the two plane waves. Using the experimental apparatus shown in figure

4.10, the reference beam, with initial intensity I, loses energy through diffraction after

passing through the sample, so the reference beam at the detector Ix is given by:

[=I -D,(ENIge™1—cos(2m,t)|

Making the approximation that D, &lt;&lt; 1, the reference field is given by:

 DEX e|1-cos(2m,t) le”oo pgs DAE Time]
2F,

4.27)

(4.28)

This reference field is at a slightly different centered frequency than the Stokes and anti-

Stokes shifted diffracted field, leading to this technique’s sobriquet: heterodyne detection.

The signal is given by the sum of the square of (4.26) and (4.28):

J



I = Ep + Ef

= I + Dy (E21, ~ I )e™[1—cos(2,t)]

2 Da{EVEEyesinfa)coso+oD)
=I, +ol, +1, +E)

(4.29)

The first term on the right Ir, contributes a constant background, the second term is

proportional to the unheterodyned diffraction intensity, and Iy is the heterodyne signal.

Experimentally, Iz can be subtracted off and of, can be made negligibly small with a

suitable choice of reference intensity. The heterodyne term is seen to be linearly related to

the material response, having the same frequency and damping rate as the polariton. This

term can be selectively amplified optically by increasing the reference beam intensity.

Additionally, Iy is sensitive to the phase difference between the diffracted and reference

fields. It should be noted that in this experimental geometry, it is possible to completely

eliminate the diffracted term by setting Ig =Ip. This occurs because light diffracted from

the probe into the transmitted reference is exactly matched by light diffracted out of the

reference into the transmitted probe. Finally, (4.29) is only valid in the limit of small

diffraction efficiencies, and consequently, in the low excitation energy or thin sample

regime. The use of this experimental arrangement for the heterodyne detection of higher

order phenomena (hyper-Raman or multi-dimensional Raman for example) requires the

inclusion of higher order terms.

With the proper choice of reference beam intensity, heterodyne detection provides

optimal signal to noise ratios. Figure 4.11 plots the magnitude of noise in the reference

beam Olr , the magnitude of the signal terms I, +21, JI in (4.25), and constant

2



background noise (such as parasitically scattered light or electromagnetic interference in

‘he detector electronics) as a function of reference beam intensity. This
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Fig. 4.11. The magnitude of the heterodyne contribution (solid line), the reference noise

contribution (dotted line), and background noise contribution (dashed line) to the

measured signal are plotted as a function of reference intensity. Optimal signal-to-noise

ratios are obtained when the reference intensity is adjusted to maximize the difference

between the heterodyne term and the reference noise.

figure is a reflection of the tradeoff between amplification and noise in heterodyne

detection. In the limit that Eg = 0, the signal terms are equal to the diffraction intensity Ip,

which in this example is less than the background noise level making it very difficult to

detect. As the magnitude of the reference beam is increased, the signal term increases

above the background level at which point it can be easily detected. Continued increasing

wo)



of the reference beam decreases the ratio of the signal (which is increasing like Je ) to

the reference noise (which is increasing linearly with Ix) until the reference noise exceeds

the signal. Probing techniques which measure transient reflectivity or transmission are

identical, from the signal to noise perspective illustrated in figure 4.11, to heterodyne

transient grating measurements in which the reference intensity is equal to the probe

intensity, which clearly puts the measurements on the far right side of the plot where the

reference noise far exceeds the signal in magnitude. In fact such measurements typically

peak with signal levels AR/R or AT/T =10" (where R is reflectivity and T is

transmission) and with probe fluctuations on the order of 10% and must rely on averaging

of many repetitions to reveal the signal. Because the heterodyne transient grating

technique allows a continuous variation of the reference intensity, the optimal signal to

reference noise ratio, marked in the figure as point Ir optimal, can always be set with a

proper choice of reference beam intensity. While this represents an advantage over

conventional pump-probe techniques, this advantage can be mitigated to a large extent by

electronic subtraction of the reference noise. This capability is frequently incorporated

into pump-probe detection electronics, and it is incorporated into the heterodyne detection

slectronics described in the next section.
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Fig. 4.12. Comparison of ISRS heterdodyne versus diffraction detection of phono-

polaritons in LiTaOs. The diffraction is seen to oscillate and damp at twice the polariton

rate while the heterodyne signal oscillates and damps at the polariton rate. The ampltitude

of the heterodyne signal is substantially stronger.

[he advantages of the ISRS heterodyne, transient grating detection are illustrated

in figures 4.12, 4.13, and 4.14. In these figures, phonon-polaritons are excited in LiTaO;

using the experimental apparatus schematically depicted in figure 4.10. The experimental

apparatus used is similar to that described in Chapter 5. Here, the phase grating

wavelength is 10 um and the reference intensity is roughly equal to the probe intensity.

Figure 4.12 illustrates the advantages that linearity confers upon heterodyne data

compared with the diffracted signal. The diffracted signal is seen to be much weaker and

to oscillate and damp at twice the material rate, while the heterodyne signal is much

greater and it oscillates and damps at the same rate as the material. This provides a two-

fold increase in the number of resolvable oscillations, improving the frequency resolution
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Fig. 4.13. Heterodyne amplification of ISRS data from LiTaO;. The diffraction signal is

swamped by noise but the heterodyne signal shows clearly resolved oscillations.

of the technique. Figure 4.13 displays the ability of heterodyne detection to amplify a

signal above the background noise level. The diffracted signal is seen to be completely

swamped by noise from parasitically scattered pump light, while the heterodyne signal

shows clearly resolvable oscillations. Figure 4.14 highlights the advantages of signal

linearity when measuring samples with multiple frequencies. The LiTaO; crystal from

which this data was collected is extremely thin ~100 um, and the multiple frequencies are

robably the result of waveguide effects. The distinct beating patterns associated with

multiple frequencies are clearly evident in the heterodyne signal while they are barely

resolvable in the diffraction data.
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[TI. Detection Electronics

The detection of femtosecond timescale, heterodyned transient grating signals

presents several design challenges. Chief amongst these is the need to extract a very small

signal (the heterodyne intensity) from a large background (the reference intensity) in the

presence of noise. The noise primarily takes three forms: laser intensity noise, which

shows up in the detected signal via the probe beam, the reference beam, or the pump

beam, electromagnetic interference (EMI) which can couple into various stages of the

detection electronics, and laser pointing fluctuations. The laser intensity noise will be

considered first. For the case of ISRS, (4.25) can be rewritten with a substitution for Ip

which explicitly shows the dependence of the diffraction and heterodyne term on the

excitation intensity:

[ =D.GI

I,=1,+GD,I,+1,.[1,1.\[GD,

(4.30)

(4.31)

where Dg is the diffraction efficiency, G is the response generation efficiency and the

phase dependence has been suppressed in the heterodyne term for simplicity’s sake.

Including laser noise, (4.31) can be written:

[=I +681) +D,G(I, +61) (I,+61,)

+/D,G (I, +61.) (1, +61,)(1,+51,)
(4 IN

where OI is the laser intensity noise. It will be assumed that I, &gt;&gt;1, so that the

diffraction term can be ignored, that 61/1, =01,/1,=06I,/1,, and that I, eI, &lt;I,

The objective is to extract /D, (or something proportional to it) given Is. This can be

25



achieved by subtracting I, +01, from the measured signal and normalizing by I _+ JI,

where the x subscript indicates that any of the field intensities may be chosen. This can be

sxprassed.

I,—(I, +61, I,—(1,+6I,ore Ls=Uetdle) I~ +l) (4.33)
JG (I, +681,) (I +61,)(1, +61) (I +61)

This can be accomplished experimentally by using two photodetectors; one to measure

the signal intensity Is and the other to measure the intensity of Ig, Ir, or I,, any one of

which can be electronically amplified or attenuated to behave like I in (4.33). It will be

necessary to measure these values, perform the subtraction, and normalize on a shot-by-

shot basis because the laser has several percent “popcorn” noise which is essentially at the

| kHz repetition rate of the laser system.

Several considerations go into the suppression of EMI. The first is that high

impedance signal (essentially current pulses) like the output of a photodiode, should not

oe propagated over long distances where they are extremely susceptible to corruption.

This is especially true when these high impedance signals are being fed into a high

impedance input, like that of an op amp. The high impedance signals show be shielded at

all times and the entire circuit should be enclosed in a grounded metal box. Second.

because the duty cycle of a femtosecond laser is very low, it is desirable to gate the

optical signals to avoid averaging noise into the signal during times when it is known that

no real signal is present. The final source of noise, laser pointing instability, is very

difficult to eliminate. Using a long focal length lens to image the amplifier output onto

the sample improves the condition to a certain extent, but the problem still persists.
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Fig. 4.15. Circuit schematic for differential detection of optically heterodyned signals.

Gated, amplified diodes were constructed to achieve the best possible signal-to-

noise ratios. The circuit schematic diagram for these diodes, and the subtraction

zlectronics, shown in figure 4.15, and the actual circuit topology for the diodes is

presented in figure 4.16. Although most of the data presented in this work were taken

during the various prototyping stages of this system, only the final and most complete

detection system will be shown here. Comments will be added in the individual thesis

sections indicating the detection system used in each experiment. The current pulse from

the diode propagates less than two centimeters before being fed into the amplifier circuit.

The amplifier is a switched, gated transimpedance amplifier which is fabricated as a

monolithic chip (Burr-Brown IVC102). The laser Pockels cell trigger is used to close

gate S1, which passes the current pulse onto capacitor C1. This produces a voltage drop

across the input terminals of the op amp which is counteracted by the op amp output. This

action produces the desired conversion of the current pulse (high Z) to a voltage pulse

(low Z). The amplifier continues to integrate the current from the diode until switch S1is

opened ~100 ps later (a smaller value could certainly be used) and the circuit holds the

 nN



value of the integrated current as an output voltage until it is reset by applying a trigger to

gate S2. This is performed just prior to the arrival of the next pulse. The trigger is taken

from the trigger to the Q-switch trigger of the Nd: YLF laser which pumps the Ti:sapphire

laser amplifier. The circuit topology was mainly designed to shield the high impedance op

amp input from capacitively coupled noise, especially from the digital gates and the

power inputs. The op amp pin input was surrounded by analog ground and the digital

inputs were surrounded by digital ground!1.

Two amplified diodes were constructed as described above. One detects the signal

while the other detects an extraneous reflection of the excitation beam off a thin film

polarizer. This reflection is passed through a polarizer which can be rotated to optically
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Fig. 4.16. Circuit topology for gated, integrating, amplified photodiodes. The high

impedance input into pin 2 is guarded by an analog ground line and the TTL inputs into

pins 11 and 12 are isolated from the pin 2 inputs by an digital ground plane.

balance the two diodes. Analog subtraction is performed using an instrumentation

amplifier (Analog Devices AD624) to maximize common mode rejection. Analog

subtraction of the reference intensity, as opposed to digital subtraction, was chosen to

reduce the demands on the data acquisition (DAQ) board as very high digital resolution is



required to detect an extremely small signal on a large background. The output of the

instrumentation amplifier and the reference intensity were fed into two channels of a 12

bit Lab PC+ National Instruments DAQ board. The pump beam was synchronously

chopped at 500 Hz in these experiments, with the chopper being driven by a 500 Hz TTL

train produced, via a simple digital downcounter, from a 1 KHz train taken from the laser

amplifier (see 12 for more complete explanation). The state of this 500 Hz TTL line,

which reflects the chopper state, was input into a third channel on the DAQ board. The

board was set to measure on differential mode because of the TTL’s unique digital

ground. The ground of the amplified diodes was tied to the building ground which was

found to reduce EMI coupled into the circuit.

The input values at the DAQ’s channels were read into software using Labview.

Labview is a graphical programming language designed to interface with laboratory

equipment!3. The low level functions used to read in the data were written by Dr. Ciaran

Brennan and their operation is detailed in his thesis!2. The software described below

follows many of the same techniques applied by Brennan, with the exception of signal

aormalization. At the beginning of an acquisition, the laser intensity is monitored for 1s

to determine the mean and standard deviation. The user sets an intensity gate by inputting

the number of standard deviations from the mean that a pulse intensity can fall before the

entire data point is rejected. A range of delay line positions are input by the user. The

program positions the delay line at the first and then reads the voltage level on the three

input channels. The user inputs the number of pulses N that are to be collected at each

delay line position. N points are collected by the board and returned to software. The

software first determines if the pulse intensity falls outside of the defined standard
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deviation gate, discarding the excursive readings. The program checks the value of the

chopper state and either adds the signal channel value to a running total (unchopped) or

subtracts it (chopped). This performs the function of a lock-in detector. The value of the

m™ signal pulse I ¢ is normalized in the following fashion:

( N

2 |
N* (17) fs

(4.34)

This type of normalization factor has been suggested to be an improvement over simply

(1 c ) 14, The running total is divided by N / 2 and this value is assigned as 4/D, at that

position of the delay line. The delay line is then re-positioned and the procedure is

repeated for each point along the delay line range, to make up an entire scan. It was found

that the best signal-to-noise ratios are obtained by reducing N to a low value and

increasing the number of scans, because much of the laser noise is at a very low

frequency. Rapid scans, at a higher frequency than the laser noise, will affect the form of

the data less than fewer, longer scans at a lower frequency.

The linearity of the amplified diodes was tested by measuring the voltage across

the 50 MQ input impedance of an oscilloscope as a function of input light intensity which

was controlled by the rotation of a polarizer. The amplified diode circuit is linear up to at

least 2 V when loaded by 50 MQ. The performance of the diode pair and subtraction

circuit were also tested. Fifty milliseconds of diode output were recorded by a digital

oscilloscope, and the scan was converted into a histogram that was fit to a Gaussian

function. The FWHM of this Gaussian was defined as the system noise. The reference

and the probe noise were measured at between 1.7 % and 3.5%, which is consistent with



a measurement of 18% noise in the diffracted signal; all of these imply laser noise of

roughly 2.5% + 1%. The output of the subtraction circuit was found to have 5.7% noise,

which is within experimental uncertainty of the noise expected for the heterodyne term

alone. In other words, the circuit has completely removed the reference noise. Based upon

observations made during other experiments, the noise in the heterodyne signal exceeds

the noise in the diffraction signal when reference subtraction is not performed. It should

be noted that these tests were performed with prototype versions of the circuit described

above. The prototype circuit employed inferior shielding and the subtraction was

performed with a standard op amp subtraction circuit, which only should diminish the

circuit performance. The circuit described above will perform slightly better.

[V. Summary

An experimental system has been presented which has been shown to perform

near optimal detection of heterodyned transient grating measurements on a femtosecond

rimescale. This technique is ideal for many ultrafast, time-resolved measurements. It

provides wavevector control while maintaining linearity. It provides for optimal signal-to-

noise ratios. The optical system is easy to align and it eliminates the “pancake effect”,

nroducing much higher wavevector resolution. The detection electronics are shown to

still further maximize the signal-to-noise ratio. The range of accessible materials has been

greatly expanded to include weakly diffracting samples and samples of poor optical

quality. Signals from samples whose responses exhibit multiple frequencies are much

clearer and easier to interpret. This is an outstanding way to perform transient grating

experiments and it is a powerful tool in the study of nature with short pulses of light.
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Chapter 5. Heterodyned Impulsive Stimulated Raman Scattering of Phonon-Polaritons in

LiTaOs and LiNbO;3

[. INTRODUCTION

The low-frequency optic phonons of ferroelectric crystals have been studied

extensively because of their roles as soft modes in ferroelectric phase transitions and their

importance in nonlinear optical, electro-optical, and piezoelectric properties!. The very

large dipole moments associated with the soft modes give rise to the characteristically

high dielectric constants of ferroelectric crystals in the far-infrared spectral region. They

also result in the typically large splittings between longitudinal and transverse optic (LO

and TO respectively) phonon frequencies and the strong coupling of the TO modes to far-

infrared radiation. This coupling results in strongly mixed vibrational/electromagnetic

modes, phonon-polaritons, which propagate through the host crystals at light-like speeds.

The characteristic phonon-polariton dispersion properties are illustrated schematically in

figure 5.1.
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Fig. 5.1. Phonon-polariton dispersion in LiTaO;. The solid lines indicate the upper and

lower polariton branches. The dashed and dotted lines describe optical dispersion at low

and high frequencies respectively. The lower branch is primarily electromagnetic in

character at low wavevectors, and primarily mechanical at high wavevectors.
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Careful study of phonon-polariton dispersion can reveal important details of

ferroelectric crystal behavior including the progression from underdamped to overdamped

response near phase transition temperatures and interactions between the soft mode and

other lattice modes. To elucidate the dispersion properties, Raman spectroscopy of

phonon-polaritons? can be conducted at a range of scattering wavevectors achieved

through the use of variable scattering angles, usually in the 1-20 degree range. Extensive

studies of LiTaO; and LiNbO; have been carried out.3-14 More recently, impulsive

stimulated Raman scattering (ISRS) has been used for phonon-polariton characterization

in the time domain.!5-18 ISRS offers the advantages of facile characterization of heavily

damped or overdamped responses, good separation of phonon-polariton responses from

relaxational responses (which in the frequency-domain light scattering spectrum give rise

to central peaks that may overlap with broad low-frequency Raman features), and, as in

other coherent Raman scattering methods such as coherent anti-Stokes Raman scattering,

excellent wavevector resolution even at very small (&lt;1 degree) scattering angles as well

as the capability for monitoring phonon-polariton propagation through the host

crystal.16,17,19-21 In the most common ISRS arrangement, two ultrashort excitation laser

pulses are overlapped temporally and spatially within the sample to define the scattering

wavevector. They exert a spatially periodic, temporally impulsive driving force on

Raman-active modes, including phonon-polariton modes, whose frequencies lie within

che coherent excitation pulse bandwidth (i.e. whose oscillation periods exceed the

axcitation pulse duration). The resulting phonon-polariton oscillations and decay are



observed by coherent scattering (i.e. “diffraction”) of variably delayed probe light that is

incident at the phase-matching (“Bragg”) angle.

[SRS measurements have been conducted on several ferroelectric crystals.!5-18,21-

12 Detailed measurements of soft mode behavior near the phase transitions in KNbO3 and

BaTiO; revealed that the soft modes in these materials at all temperatures near the

transitions studied were strongly damped or overdamped but distinct from “hopping” or

relaxational modes that would be associated with order-disorder rather than displacive

phase transition character.21-23 Careful angle-dependent ISRS measurements of LiTaO;

revealed coupling between the soft mode and several other modes, evident through

wavevector-dependent peaks in the signal damping rate26-28 (analogous to wavevector-

dependent anomalous Raman linewidths, but often more easily revealed through the time-

domain measurements). Independent measurements of LiTaO and also LiNbO; yielded

somewhat different results!829-32, which were interpreted in terms of an extremely

anharmonic, triple well ferroelectric phonon potential energy surface, of the type first

suggested by Lines.#3-45 Important differences between the experimental approaches that

yielded conflicting results in these measurements will be discussed below.

In this chapter the results of extensive measurements of the phonon-polariton

dispersion properties in LiTaO; and LiNbOs3 are reported using a newly developed optical

neterodyne ISRS method.46-48 The new method couples excellent wavevector resolution

with simplification of the form of the data, resulting in unambiguous results for the

number and properties of modes that contribute to signal. This simplifies the

interpretation of signals from phonon-polaritons since both upper and lower branches as

well as multiple modes may be Raman active and may be observed through ISRS

ry;



measurements. The present results permit rationalization of the previous, apparently

contradictory reports and clarify the nature and number of phonon-polariton modes in the

two prototype ferroelectric crystals studied. Additionally, the phase sensitive nature of

heterodyne detection permits enhanced observation and characterization of polaritons that

have traveled outside of the excitation region

The chapter is organized as follows. Section II provides experimental background

that compares different ISRS methods and heterodyne approaches. Section III describes

the experimental conditions. Section IV presents measurements of phonon-polariton

dispersion properties in LiTaO3; and LiNbOs3, with attention focused on the 0-5,000 cm’

wavevector region in which contradictory findings have been reported. In Section V, a

detailed theoretical description of the heterodyne detection of propagating responses is

presented

[I. BACKGROUND: DIFFERENT ISRS METHODS AND RESULTS

(SRS measurements on phonon-polaritons have been conducted in several

different ways. The experiments can be classified roughly by the following criteria.

(1) The two excitation beams are produced through (a) reflective optics or (b) diffractive

optics.
(2) The probing beam is incident at (a) the excitation region or (b) a spatially distinct

region.
(3) Optical heterodyne detection is (a) used or (b) not used.

(3°) When optical heterodyne detection is used, the “reference” field arises from (a)

parasitically scattered light or (b) an independently controlled reference beam with

adjustable amplitude and optical phase.

[n the next sections, a theoretical formulation of the measurements is presented and the

effects of the possibilities elaborated above can be seen quantitatively. However the
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qualitative effects can be appreciated readily through consideration of the following

factors.

(1) As presented in Chapter 4.1(1), when a beamsplitter is used to produce two pulses that

are subsequently crossed at a sample, the region of spatial overlap is limited to a

narrow volume that is often substantially smaller than that determined by the spot

sizes. Since the ISRS scattering wavevector is determined by this transverse extent of

this interference pattern, the wavevector is better defined when diffractive optics are

ased. Use of a beamsplitter results in a far broader excitation wavevector range.

(2) When reflective optics are used for the excitation pulses, resulting as described above

in a small excitation region with relatively few interference fringes, there may be

some incentive to make measurements with the probe beam translated laterally away

from the excitation region instead of overlapped spatially with it since the

counterpropagating polariton waves may leave this region after a short time!8. For

wavevector regimes with high polariton group velocity and low damping rate, in

which the polariton wave can propagate into and through a spatially distinct probing

region without too much damping, this effectively doubles the total temporal range

over which the polariton wave can be observed since polariton entry into as well as

departure from the probing region are monitored, as illustrated in Fig. 5.2. If optical

heterodyne detection is used, this doubles the number of oscillations observed and

therefore improves the accuracy of frequency measurement. With diffractive optics,

very large excitation regions (substantially exceeding the region over which the

phonon-polaritons will propagate before being substantially damped away) can be

achieved. In this case, there are only two possible incentives to conduct the
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measurements with the probe beam at regions distinct from the excitation area: first,

small excitation beam spot sizes may be needed if the pulse fluence of a spatially

broad beam is insufficient to generate a detectable polariton response, or second, if

accurate measurements of polariton damping are desired in wavevector regions of low

damping and high polariton group velocity. It is still possible to probe at distinct

regions, if necessary by using small excitation spot sizes so that there is significant

phonon-polariton propagation outside the excitation region.

—_——

&gt;

©

MAA
(a)

&gt;
Ad

rm

GL
£

) (b)

| JWWWnass

 mdLF

5 20 25 30

time (ps)

Fig. 5.2. Heterodyne detection of propagating responses with the probe beam overlapping

the excitation area (a), and displaced from the excitation area by 1 mm (b). The amplitude

of the signal in (a) is twice that in (b), but the number of resolvable oscillations is greater

in (b).

(3) Without optical heterodyne detection, ISRS signals are proportional to the square of

the vibrational displacements4®. Heterodyne detection can linearize this dependence,

in some cases simplifying interpretation of the data’0. If probing is conducted away

from the excitation region, then without heterodyne detection one would expect to see

simply a gradual time-dependent rise and fall of signal as the propagating phonon-
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polariton wavepacket enters and passes through the probing region. With heterodyne

detection, one expects to see individual oscillation cycles in the signal, since the

optical phase of the coherently scattered field shifts by 180 degrees each time the

phonon-polariton wavepacket moves by half its wavelength while the phase of the

reference field is unshifted.

(3’) The form of the signal in any optical heterodyne measurement depends on the

relative amplitudes and phases of the signal and the reference fields. In general, it is

useful to adjust the reference field amplitude and phase such that constructive

interference with the signal field and the signal/noise level are optimized. This is

straightforward if there is a reference beam generated experimentally whose

amplitude and optical phase are readily controlled. If the reference field arises from

parasitically scattered light, then the form of the data may depend on variables like

the probe location, since the amplitude and optical phase of the reference field will

vary from one sample region to another.

Qualitative illustration of some of the effects described above is provided in figs.

5.3-5.6. Figures 5.3 and 5.4 show results obtained with the probe beam completely

overlapping the excitation region. Figure 5.3 shows data collected with the reference

beam equal in intensity to the probe beam at several different reference phases. At

reference phases of 0 and 180 degrees, the heterodyne term dominates and the data follow

the form of a simple damped sine wave. Figure 5.4 shows data collected with a reference

oeam intensity one one-hundredth that of the probe beam at a variety of phases. In this

case, the diffraction and heterodyne term are roughly equal and the data is seen to have

one contribution oscillating and damping at twice the material response rate and another
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Fig. 5.3. Heterodyne ISRS of LiTaO; with the probe beam overlapping the excitation

area and with the amplitude of the reference beam much greater than that of the diffracted

beam. The amplitude of the signal varies as a function of the reference beam phase.
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Fig. 5.4. Heterodyne ISRS of LiTaO; with the probe beam overlapping the excitation

area and with the amplitude of the reference beam roughly equal to that of the diffracted

beam. Oscillations at the fundamental and second harmonic of the material response

frequency are observed. The amplitude of the heterodyne component of the signal varies

as a function of reference phase.
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Fig. 5.5. Heterodyne ISRS of LiTaO; with the probe beam displaced 500 wm from the

excitation area and with the amplitude of the reference beam much greater than that of the

diffracted beam. At early times, the amplitude of the signal is a function of the optical

phase of the reference beam, while at later times, the phase of the signal oscillations is a

function of the reference beam phase.
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Fig. 5.6. Heterodyne ISRS of LiTaO; with the probe beam displaced 500 um from the

excitation area and with the amplitude of the reference beam roughly equal to that of the

diffracted beam. A substantial component of diffracted signal is present at early times.
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contribution whose dynamics are linearly related to those of the material response.

Figures 5.5-5.6 show data collected with the probe beam displaced from the excitation

region. In Fig. 5.5, the reference beam intensity is equal to the probe beam intensity and

in Figure 5.6, it is again attenuated by a factor of one hundred and the data are collected at

a variety of phases. In both cases. the data is seen to be more complicated than a damped

sinusoidal oscillation.

As these sets of measurements illustrate, the ISRS signal and its power spectrum

take on the simplest, and most accurate form when (1) the excitation region is large

giving rise to many oscillations, (2) the probe spot overlaps the center of the excitation

region, (3) optical heterodyne detection is used, and (3) the reference beam amplitude

substantially exceeds that of the signal field and the reference beam phase is adjusted for

maximized constructive interference with the signal field.

The interpretation of ISRS data at a fundamental level depends on the number of

nature of the phonon-polariton modes observed. Different results from LiTaO; and

LiNbO; have been interpreted in terms of very different models for the lattice potential

energy surface. Recent ab initio calculations find a double-well lattice potential along the

lowest frequency A; phonon coordinate,’ with a substantial potential energy barrier and

no direct experimental signature of more thanasingle minimum in which coherent

oscillations are occurring. Alternatively, an anharmonic triple-well potential model has

been used.1843-45.52 which was first postulated by Lines based upon work by Johnston

and Kaminow3 and was later reinforced by neutron scattering studies performed by

Abrahams et al.53 Based upon this three-well model, Bakker ef al.31 posited the existence

of a 32 cm’ tunneling resonance in LiTaO; to explain the appearance of several
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frequency components at various wavevectors in ISRS data from the lowest frequency A,

modes of LiTaO; and LiNbOs;. This model suggests that, in some cases, direct

experimental signatures of triple-well potentials may be observed.

II. EXPERIMENTAL

The experimental apparatus used in this work is schematically depicted in figure

4.10. The output of a 1-KHz repetition rate Ti:sapphire multipass amplifier was used for

the pump and the probe beams. The output was spectrally centered at 800 nm and the

pulses were 40 femtoseconds in duration. The vertically polarized pump and probe beams

were separated with a beamsplitter, passed through the experimental setup shown in

figure 4.10, and focused onto the sample. The co-propagating diffracted light and the

reference beam were sent into a photodiode and the resulting current pulse was amplified

and then detected with a lock-in amplifier. The pump and probe beams contained 10

microjoules and significantly less than 1 microjoule of energy respectively. The beam

spatial profile in the sample plane was well fit by a gaussian function with FWHM of 600

microns in the horizontal dimension (the dimension of the polariton wavevector) and a

FWHM of 130 microns in the vertical dimension. Diffraction efficiencies of around 1

percent were observed. The reference intensity was equal to the probe intensity,

oroducing a heterodyne amplification ratio, I / Ip of twenty.

In the experiments described below, 1mm thick, single domain samples of LiTaO3

and LiNbO; were used. The crystals were x-cut and polished to optical quality. The z axis

of the crystal, or the direction of the ferroelectric polarization, was oriented along the

direction of the excitation and probe fields’ polarization.
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IV. HETERODYNE ISRS RESULTS FROM LiTaO; AND LiNbO;

Heterodyne ISRS data taken were taken at many wavevectors in both LiTaO; and

LiNbO; from A; phonons excited and probed in (ZZ) geometry. Data from wavevectors

around the previously reported tunneling resonance? are shown in fig. 5.7 for LiTaOs.

The power spectra of the polariton response at all points in this wavevector range are well

fit by a single lorentzian lineshape function. A peak in the frequency domain response is

observed at 0.92 + 0.02 THz , which falls, within experimental error, in the previously

reported frequency gap2® which was assigned as an avoided crossing between the phonon-

polariton and a tunneling resonance. Throughout the entire wavevector range studied in

LiNbOs, all power spectra could be well fit by a single lorentzian lineshape function. No

evidence of avoided crossings was observed in this work for either LiTaO; or LiNbO; and

the previously reported polariton beats!829-32 were not reproduced.
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Fig. 5.7. Heterodyne ISRS measurements of the dispersive A; polariton in LiTaO; around

1 THz, (a)-(d). In (e), the power spectra of these data are shown. No beating patterns are

observed in the time domain data and single peaks are observed in the power spectra

which are well fit by single Lorentzian lineshapes.
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part of the dispersion (squares) is plotted along with the theoretically predicted dispersion

relation (solid line). (b). The imaginary part of the dispersion (squares) along with the

theoretically predicted dispersion relation (solid line). All material parameters used in

calculating the theoretical results were taken from literature. A single frequency below 6

THz was observed at all wavevectors.
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The dispersion and frequency dependent damping from this work are shown in

figures 5.8 and 5.9. The frequencies and damping rates were obtained from fitting the

power spectrum of the data to a lorentzian lineshape. The power spectrum was obtained

I)



by first subtracting any DC background from the data, second deleting the electronic peak

from the data set, third packing the data with zeroes to create a data array of 32,768

elements, and fourth applying a numerical FFT algorithm. The error in the measured

frequencies is estimated to be 0.02 THz while the error in damping measurements is

estimated to be 0.1 THz. The data were also fit in the time domain to a damped sine

wave using the Levenburg-Marquardt algorithm, but these results were found to be less

accurate than the power spectrum fit described above (see appendix SA). The wavevector

was determined by measuring the angle between pump beams using reflections from the

crystal surface and a precision rotation stage. The uncertainty in wavevector is estimated

to be 1 percent. The dispersion of LiTaO; is seen to be well described by a single

oscillator model. The dispersion of LiNbOj; is well described by a single oscillator model

for the entire region of the dispersion curve that was measured. Peaks in the frequency

dependent damping rate are seen in both LiTaO3; and LiNbOs. The peaks in LiTaOs were

previously assigned to strain induced couplings between A; and E phonons?28, but this is

anlikely given more recent studies showing no E phonons below 140 cm™. These peaks in

the damping rate have been assigned to multiphonon effects in previous Raman studies

based upon their temperature dependent intensities 1054, It should be emphasized that

these multiphonon effects are not related to the resonances reported in reference!8.29-32,

I'he damping rates, measured from the peak widths in the data’s power spectrum, appear

to be anomalous below 2.000 cm’!

Previous time domain studies have observed only a single polariton branch in

these crystals, primarily because an increasingly short pulse duration is required to excite

and probe higher frequency responses. The need is exacerbated without heterodyne

1 3



detection since the oscillations in the data are at twice the phonon frequency, requiring a

correspondingly shorter probe pulse duration for time-resolved observation. The short

pulse duration used here and the sensitivity of the heterodyne detection make it possible

to observe three nondispersive A; phonon modes in addition to the lower and upper

branches of the lowest frequency A; mode across a broad range of wavevectors in LiTaOs

as shown in figure 5.10. Note that the measurement provides access to each successive

higher-frequency branch with a successively higher minimum wavevector. This effect

arises due to the forward wavevector component of the excitations, which increases with

increasing frequency and with increasing phase velocity.”&gt; The identical wavevector

restrictions arise in conventional Raman spectroscopy of phonon-polaritons.&gt;®
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Fig. 5.10. Multiple A; phonon branches observed in LiTaOs. Four phonon branches,

including three non-dispersive phonons (circles, triangles, and diamonds) and the upper

(plus sign) and lower (squares) branch of the dispersive phonon, are shown. The solid

lines are the frequencies of the higher phonon branches reported in literature. The

wavevector offset in the higher lying phonon branches is a result of the fact that the

forward wavevector component becomes much more important at higher frequencies.
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V. THEORETICAL TREATMENT OF HETERODYNED ISRS DETECTION OF

PROPAGATING RESPONSES

In order to describe the heterodyned ISRS signal observed from propagating

responses, it is important to treat the polariton as a propagating wavepacket generated by

the non-linear interaction between two laser pulses with finite (Gaussian) spatial profiles.

This wavepacket is then detected by a probe pulse with a Gaussian spatial profile which

has been offset from the center of the excitation region. The theoretical approach of

Siegmann®’, followed closely in description of ISS experiments on propagating acoustic

modes!?, will be followed here as well.

[SRS will be broken down into two distinct steps: polariton generation and

detection. Both the excitation and the probe beams will be treated in the CW limit, which

introduces no difficulties when describing experiments using diffractive optics. Extension

to the case of pulsed lasers is straightforward but it unnecessarily complicates the results.

The field of a Gaussian excitation pulse propagating at a small angle to the z axis may be

written in the usual approximation as

1 —ik, (x —z6 ) +? : 26” :
E.x.v,z,)=E°| —— lexp| —e~—22¢/7_jk——4+x0 |lexpliowt) (5.1wr £121) {ir | 2(z+ib) Wel 2 oe p(ieot) 5.1)

where k, is the excitation wavevector, b =k, w; /2 is the confocal parameter, and wy is the

minimum Gaussian beam radius. If two excitation beams of slightly different frequency

w, overlap in the sample center and drive a phonon response at the difference frequency,

the spatial profile of the two-beam interference pattern is given by

12



2(x,3.2) =| E.(6,) El (-6,) + E.(6,) E.(-6,)] (3.2)

where the fields have been written as functions of incident angle for notational

convenience. For non-oscillatory responses, the spatial profile of this interference pattern

is mapped directly onto the spatial profile of the material response. For oscillatory

responses, the spatial profile of the material response acquires a forward wavevector

component because of the phase lag between oscillations at the front and rear of the

sample caused by finite light propagation speeds.&gt;&gt; Because a probe beam with the same

oropagation speed that is phase matched for Bragg diffraction will experience a constant

material response phase as it propagates through the samplel’, the forward wavevector

component will be suppressed in this treatment. The optical grating derived can be

interpreted as the effective grating existing for a probe pulse incident at the Bragg angle.

Finally, only the second term of equation (5.2) is important for a probe beam incident at 6

» and detected at -6,. The important part of the interference grating may thus be written

2 1 —ik, (x + 26 )* + y? ik, (x — 26 )' +?
(x,y,z) =|E)| ——exp| ————r——"—+——"2=+2k0,x|(53)Si5Y | | w.(2) P 2(z+ib) 2(z—ib)

where w?(z)=2b, lk (1+z°/b*). The length of overlap between the excitation pulses in

the z dimension is roughly given by [=w,/6, =7wj/N, A which is shorter than the

Rayleigh range 7w./Aby ~N; times, where Ny is the number of fringes produced by

crossing two CW beams or two pulses split with diffractive optics and recombined as

described in chapter IV. It can therefore be assumed that the excitation and probe beams

are collimated through the sample region and the grating will assume the simplified form

 8



2(x*+y* +677

g(x,y,2)= [4 Je [22+y+62) | i2k,6,x
Tow, WwW

(5 1

where w,=w(0). The extension to the pulsed laser case will change (5.4) in two ways.

First, there will be a convolution over the bandwidth of both excitation pulses that will

affect the overall intensity of the grating. Second, if reflective optics are used to split the

excitation beam, the spread of the grating in the x dimension will be reduced by the

“pancake effect”.

When the two excitation beams are crossed in a nonlinear medium the grating

pattern described in equation (5.4) will be mapped onto the spatial profile of the material

displacements Q(x,y,z) and the dielectric constant £&amp;,, through impulsive stimulated

scattering, and the material response will linearly alter the complex dielectric constant of

the sample, creating an optical grating. For the purposes of this work, the proportionality

between the interference grating and the material displacement can be expressed with a

phenomenological constant Gg, which is related to the differential polarizability of the

mode.2455 It will be assumed initially that the material response is static; propagation

effects will be introduced below. The small change in the dielectric constant £,, has the

same spatial profile as the interference grating

Zu (x, ¥,2) = £r.0(x, ¥,2) =£&amp;y,G;8 (x, ¥,2) (5.9)

and it is detected via diffraction of a third, probe beam arriving at an angle 6, which

lluminates the volume grating, generating a nonlinear polarization py;

Pw (x, ¥,2) = Xn€GE8 (x, y,2)E, (6,) |

-

or -
w)
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where the probe electric field E, takes has the form of equation (5.1). Both equations

(5.5) and (5.6) are nonzero only inside the sample volume.

[he electric field of the scattered probe can be determined from the paraxial wave

cual

[92 2

Ty 52 Jop x,y, i; 57 [Eo(x:3:2) Wh to Py (%, 52) (5.7)

where the nonlinear polarization acts as a source term on the right-hand side. One

approach to solving equation (5.7) involves first defining the transverse fourier transform

of the nonlinear polarization p,, (s,, 5,2)

ir (505,02) = | | pa (%,v,2)exp(i27s x +i27s,y)dxdy (5.8)

with a similar transform for the scattered electric field. The paraxial equation can be

transformed and integrated along the z dimension to give the transformed solution in the

far field limit for a sample of length L

_ &gt; L/2

£,(s.,s,.2) i 2 pli | exp(=ind,s’2) Py (5,5,,2)dz" (5.9)
\ 4 -L/2

where s* = 5% +s. The transformed nonlinear polarization may be written as the two

dimensional convolution of the transformed optical grating and probe electric field

Dai (8,58,,2) = ¥,.£G8(s,,5,,2)®E, (s,,5,,2) (5.10)

[he transform of the grating and the spatial profile of the probe are

TC| of? A 2 | (27s Vw?
2(5.05,, 0 =|] exp| 2 (27s, +24.) Jess —— 2 (5.11)

 P
l af

»



ik 76? 2

\

XP
} (272s, ) Ww,

4

(5.12)

where terms which vary slowly along the z coordinate over the distance L (which will

contribute almost nothing to the integral in equation (5.9)) have been neglected. At this

point, the effects of response propagation and displacement of the probe from the center

of the excitation region can be easily introduced. In the case of phonon-polaritons and

other propagating excitations in which two, counter-propagating wavepackets are excited

ISRS. the dynamic grating may be written

g(x, y,2.1) =—[g(x+w, y,2)—g(x—vt,y,2)] (5.13)

where v is the group velocity of the polariton wavepacket. Similarly, horizontal

displacement of the probe beam can be accounted for by changing x to x-d in equation

(5.1). The transforms of these new functions can be determined by applying the fourier

shift theorem to equations (5.11) and (5.12), yielding

2

—w? 9 2

§(5,,5,,2) = ~~ exp| (2s, + 210 exp - (273) Ye
(5. 1

&lt;[ exp (i27s, vt) —exp(—i 27s,vt) |

&gt; ‘i2,(8,,8,,2) = TE, ext ik,z6, 25 [XP —(27s, —k,0 )' Ze
vor] 4

&lt;eXrT.
(25,) 2xp(i27s,d)

(5.15)
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Equations (5.14) and (5.15) are convolved and inserted into (5.10) to obtain the transform

of the nonlinear polarization

_ 43 2 2d? .

Bae (5,.5,,2) = Txaw AnCe IE] E, exp [24 2 bolus,
2, 2 : yy

4(w? +2w2) w, Ww,

-exp

2.2 . .

YM ons +2k,6, kg, + L124
4(w? +2w?) w, Ww,

2.2 ik 6?

as fx 52% Aw +2w)) 2
|

2Xp

exp (-ivi2k,6,)

exp (ivt2k,6,)

5.16)

The nonlinear polarization will radiate a diffracted field in the direction set by

conservation of the x component of the wavevector. Equation (5.16) is proportional to the

field diffracted from a thin grating at position z in the sample. Integration along the

sample depth, as expressed in equation (5.9), will impose a conservation of the z

component of the wavevector which grows gradually stricter as the sample thickness is

increased. This produces the familiar Bragg angle phase matching condition for thick

gratings, which is expressed below as a filter F(6,,s,) imposed on the nonlinear

yolarization and, consequently, on the diffracted field:

d



E ere 6,). k,(id
: expd

~ 4)o| 2Aexoo) = 1—+2; (5.5,D

| exp. of2m +k 0, —k,0,— 212d
w, Ww,

exp (—iayt)

~eXp: —w| 2s +2k,0,—k 0, plave_i2d
) \ Ww, w, , xpi) |

(5.1 7

)(Pz)|F(6,52rs, |2xpl —w(

Ao 87
Ww? +2w’ Xn€G

( 2

SE Jee
[(27s) -k262|L

4k,

F(6,,s,)=— (275) —K26?
pr

 [0 ®+)]

0 -esnf i ——r 7
7 2k, |

2.2

po eWp

4(w? +2w?)

w, =v2k.0

The two bracketed exponents describing the s, distribution contain real terms, which

describe the direction in which the diffracted beam propagates (this expresses the x

coordinate conservation), and imaginary terms which describe the position of the beam

center along the x coordinate of position space. It is clear that ay is the material response

frequency and P(z) is the z component of the wavevector which varies with s, and s, in

-
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order to satisfy the requirement that k; =k? +k’ +k}. The diffraction and heterodyne

terms can be determined from equation (5.17). The signal measured at the detector is

proportional to the power contained in the respective fields, where power is defined as the

lime averaged magnitude of the complex Poynting vector integrated over s, and s,.

Assuming that the probe beam is reasonable well collimated and is incident at the Bragg

angle, and that the sample is not extremely thick (more specifically, that the

2k,0,)" \&amp;
conditionL&gt;&gt;20)J5, does not hold), the filter function is approximately equal to

TA,

anity at all significant wavevectors and it can be ignored. The power in the diffracted

field 1s given by

P, = A’exp
 4(vt-d)

TT 2

w, +2w, |

—4d* —4y?t?2A’ex [_4d® exp| ———— |cos(2m.t

p i) o| 5 | ( ot)

, | a(vt+a)

+ A’exp mT Touti
e p

te

(5.18)

where

[on] 2p 0|70

Xn. EGE or Ire)
A=— =

Woy

T'he first two terms represent the detection of traveling waves outside of the excitation

area. These terms exhibit no oscillations and are at a maximum at the point in time when

the wavepacket center coincides with center of the probe beam. The final term describes

the detection of the standing wave in the excitation region. This term is reduced with time

as the wavepackets propagate outside of the excitation area, it is reduced if the probe

beam is displaced from the center of this region, and it oscillates at twice the material

33
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response frequency. When the probe beam overlaps the excitation area, i.e., d=0,

equation (5.18) simplifies to

P, =4A’exp
4v°f

Ww’ + 2w’
sin’ (2a?) (5.. )

as expected. The ratio between the amplitude of signals detected at d=v¢=0 and d=vt~co is

4:1. The contribution of the heterodyne term, with a reference field

E
R (smm.+2) =E° = €X|=]2 exp(idk0expl—w( 2es,

-w, i2d

exp 2am +2k,0,-k,0, ~ 7 | exp(ip) P(z)

(S {)

to the total power. at any position along the z dimension, is

£ ] : £1 | Re[E,Ej + EE, |ds,ds,+ EpE "2 Es —oo

Ww. +w,
= peli Wt + @) + ex) p

2 ( yin) S
2 w?’] exp :A

8.2 °

where

DH) 0 [7570

w="8 re STRwa Al w? (w2 + w ’

[n the limit that d=0 or vt=0, equation (5.21) reduces to

2

2(¢) in(ay)cosP, =-2A" cXp “Ww | i
(5.22)

where &amp; = vt for the case that d=0 and &amp; = d for the case that v¢=0. The two counter-

propagating polaritons produce a standing wave in the excitation area at early times and at

zero probe displacement which oscillates at the material response frequency, as described

|



by equation (5.22). The amplitude of this expression is a function of the reference phase,

and it has a value of 2A” when @ =0°,180°. When the two wavepackets are detected after

having propagated outside of the excitation area, there is no longer any substantial

interference between them and only one of the two terms in equation (5.21) contributes.

The phase of the oscillations of this term is a function of the reference beam phase; the

amplitude is A” for all reference phases. When the probe beam partially overlaps the

excitation area the amplitude of the early time signal and the phase of the oscillations in

the late time signal will be a function of the reference beam phase. Consequently, at a

range of reference beam phases, the phase of the observed oscillations will shift with

time, even though the underlying material response creating the signal is entirely linear

and has a constant phase. This can produce a distortion of the power spectrum of the

signal when d # 0 and artificially alter measurements of frequency and damping based on

lineshape analysis. It must be emphasized, however, that these types of effects do not

appear to be able to reproduce the results of ref. 18.2932, in which multiple peaks were

observed in the power spectrum, not mere distortions. It should also be noted that the

exponential decay factors describing response propagation outside of the probe beam area

are slightly different in equations (5.19) and (5.21), with the apparent damping produced

by response propagation being equal to

Meo
F w+ 2w

4
(5.23)

for the diffraction term and

A 2
P 2 2

Ww, +w,
(5.24)
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for the heterodyne term. The overall factor of 2 difference between the two damping

terms clearly results from the fact that the diffraction and heterodyne terms are

quadratically and linearly related to the material response, respectively. The difference in

the denominators is explained by the fact that the center of a beam produced by

diffraction from a propagating response shifts in time, reducing the overlap between the

diffracted and reference fields at later times and increasing the apparent damping.

VI. CONCLUSION

A new optical apparatus has been used to perform heterodyne ISRS measurements

of the complex dispersion of phonon-polaritons in lithium tantalate and lithium niobate.

This apparatus greatly simplifies and improves the optical heterodyne detection of light

diffracted from transient gratings by providing for facile experimental alignment,

controllable reference beam (local oscillator) intensity and phase, and by markedly

increasing the potential wavevector resolution. Heterodyne detection is shown to enhance

ISRS: the form of the data is simplified, especially when multiple frequencies are present;

signals can be optically amplified leading to improved sensitivity; and, phase information

can be obtained about responses which have propagated outside of the excitation area. A

theoretical analysis of the heterodyne detection of propagating responses is presented and

it is shown that frequency and damping measurements that rely upon either time domain

fits to damped sine waves or power spectrum fits to Lorentzian lineshapes are most

accurate when the response is probed either completely within the excitation area, or at

late times after the two counter-propagating responses have traveled far enough apart that

there is no substantial overlap between them.
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The phonon-polariton response has been extensively investigated in both LiTaOj3

and LiNbOs. The polariton dispersion of LiTaO; and LiNbO3 has been elucidated in

detail. The complex part of the dispersion has revealed the coupling of the lower

polariton branch to other phonon modes of the system in LiTaO; and LiNbOs. The

dispersion of four transverse optic phonon modes in LiTaO3 has been measured across a

broad range of wavevectors. Heterodyne detection has been used to perform the phase

sensitive detection of polaritons which have propagated outside of the excitation region.

Their specific results for LiTaOs; and LiNbO; from Bakker, et. al. were not

consistent with frequency domain Raman measurements nor with inelastic neutron

scattering, both of which are sensitive enough to detect effects of the magnitude observed

by Bakker, et. al. Additionally, the model used to explain the polariton beats is

inconsistent with ab initio calculations which clearly indicate a two, and not three, well

potential for this lowest frequency A; phonon! In the present work, heterodyne

detection is performed with control of the reference field phase and amplitude, with

increased wavevector accuracy, brought on by the use of larger spot sizes and diffractive

optics, which leads to increased accuracy of frequency and lineshape determinations, and

with no displacement of the probe beam from the excitation area. The polariton beats

observed by Bakker, et. al. are not reproduced. Although no definitive explanation for the

previous results can be given, it is suggested that they may be caused by sample specific

effects (some type of defect states, for example), or that they may be an experimental

artifact caused by a temporally unstable and spatially inhomogeneous local oscillator

rhase.
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The advantages brought on by heterodyne detection substantially broaden the class

of possible applications for ISRS. The simplification in data form and the increased

sensitivity extend the range of samples and excitations suitable to study to include weakly

scattering bulk crystals, thin ferroelectric films, and surface excitations and effects in bulk

and thin film samples.

REFERENCES

l M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and

Related Materials (Clarendon Press, Oxford, 1977).

) A. S. Barker and R. Loudon, Rev. Mod. Phys. 44, 18-47 (1972).

W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045-1054 (1968).

Y. Okamoto, P.-c. Wang, and J. F. Scott, Phys. Rev. B 32, 6787-6792 (1985).

J M.-S. Zhang and J. F. Scott, Phys. Rev. B 34, 1880-1883 (1986).

6 J. L. Servoin and F. Gervais, Solid State Comm. 31, 387-391 (1979).

7 A. F. Penna, A. Chaves, P. d. R. Andrade, and S. P. S. Porto, Phys. Rev. B 13,

4907-4917 (1976).

8 A. F. Penna. A. Chaves, and S. P. S. Porto, Solid State Comm. 19, 491-494

(1976).

9 A. F. Penna, S. P. S. Porto, and E. Wiener-Avnear, Solid State Comm. 23. 377-

380 (1977).

10 C.Raptis, Phys. Rev. B 38, 10007-10019 (1988).

11 U.T. Schwarz and M. Maier, Phys. Rev. B 53, 5074-5077 (1996).

12 U.T. Schwarz and M. Maier, Phys. Rev. B 55, 11041-11044 (1997).

13 U. T. Schwarz and M. Maier, Phys. Rev. B §8, 766-775 (1998).

14 Y. Tezuka and S. Shin, Phys. Rev. B 49, 9312-9321 (1994).

15 D. H. Auston and M. C. Nuss, IEEE J. Quantum Electron. 24, 184-197 (1988).

16 P. C. M. Planken, L. D. Noordam, J. T. M. Kennis, and A. Lagendijk, Phys. Rev.

B 45, 7106-7114 (1992).

17 T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson. J. Opt. Soc. Am. B 9,

2179-2189 (1992).

18 H.J. Bakker, S. Hunsche, and H. Kurz, Rev. of Mod. Phys. 70, 523-536 (1998).

[9  Y.-X. Yan and K. A. Nelson, J. Phys. Chem. 87, 6240-6256 (1987).

}

1



20 Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257-6265 (1987).

21 T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen,

and C. Warde, Science 258, 770-774 (1992).

22 T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jenssen.

and C. Warde, Phys. Rev. B 50, 8996-9019 (1994).

23 T. P. Dougherty, G. P. Wiedderrecht, and K. A. Nelson, Ferroelectrics 164, 253-

264 (1995).

24 L.Dhar, J. A. Rogers, and K. A. Nelson, Chemical Reviews 94, 157-193 (1994).

25 L. Dhar, B. Burfeindt, K. Nelson, and C. M. Foster, Ferroelectrics 164, 1-13

(1995).

26 G. P. Wiederrecht, T. P. Dougherty, L. Dhar, and K. A. Nelson, Ferroelectrics

150, 103-118 (1993).

27 G. P. Wiederrecht, T. P. Dougherty, L. Dhar, and K. A. Nelson, Ferroelectrics

144, 1-16 (1993).

28 G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A.

M. Weiner, Phys. Rev. B 51, 916-931 (1995).

29 H. J. Bakker, S. Hunsche, and H.Kurz, Phys. Rev. Lett. 69, 2823-2826 (1992).

30 H.7J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 48, 13524-13537 (1993).

31 H.J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 48, 9331-9335 (1993).

32. H.J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 50, 914-920 (1994).

33 D.H. Auston, Appl. Phys. Lett. 43, 713-715 (1983).

34 D. A. Kleinman, and D. H. Auston, IEEE J. Quantum Electron. QE-20, 964-970

(1984).

35 D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev.

Lett. 53, 1555-1558 (1984).

36 O. Albert, M. Duijser, J. C. Loulergue, and J. Etchepare, J. Opt. Soc. B 13, 29-33

(1996).

37 D. P. Kien, J. C. Loulergue, and J. Etchepare, Opt. Commun. 101, 53-59 (1993).

38 P. Grenier, D. Houde, S. Jandl, and L. A. Boatner, Phys. Rev. B 50, 16295-16308

(1994).

39 J.C. Loulergue and J. Etchepare, Phys. Rev. B 52, 15160 (1995).

10 P. Grenier, D. Houde, S. Jandl, and L. A. Boatner, Phys. Rev. B47, 1-4 (1993).

4 D. P. Kien, J. C. Loulergue, and J. Etchepare, Phys. Rev. B 47, 11027-11030

(1993).

42 J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E.

Kugel, Phys. Rev. B 41, 12362-12365 (1990).

43 M.E. Lines, Phys. Rev. 177, 812-818 (1969).

#4 ML. E. Lines, Phys. Rev. 177, 797-811 (1969).

45M. E. Lines, Phys. Rev. 177, 819-829 (1969).

DSfa’



46 A. A. Maznev and K. A. Nelson, Opt. Lett. 23, 1319 (1998).

47 J. A. Rogers, M. Fuchs, M. J. Banet, J. B. Hanselman, R. Logan, and K. A.

Nelson, Appl. Phys. Lett. 71, 225 (1997).

48 G. D. Goodno, G. Dadusc, and R. J. D. Miller, J. Opt. Soc. Am. B 15, 1791

(1998).

49 Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391-5399

(1985).

50 H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dvnamic Gratings

{Springer-Verlag, Berlin, 1986).

51 I. Inbar and R. E. Cohen, Phys. Rev. B §3, 1193-1204 (1996).

52 D.P. Birnie, J. Appl. Phys. 69, 2485-2488 (1991).

53 S.C. Abrahams, E. Buehler, W. C. Hamilton, and S. J. Laplaca, J. Phys. Chem.

Solids 34, 521-532 (1973).

54 Y. N. Polivanov and S. N. Poluektov, Sov. Phys. Solid State 20, 2014-2015

(1978).

55 C. Brennan, Thesis, Massachusetts Institute of Technology, 1997.

56 R. Claus, L. Merten, and J. Brandmuller, Light Scattering by Phonon-POlaritons

(Springer-Verlag, Berlin, 1975).

57 A.E. Siegman, J. Opt. Soc. Am. 67, 545-550 (1977).

DA



Appendix SA. Analysis of heterodyned ISRS data from phonon-polaritons

A classical, linear, single oscillator model was observed to accurately fit all of the

data collected from both LiTaO; and LiNbO; at all wavevectors. The following model

and its prediction follow closely the presentation of ref. 1. The objective will be to

determine the trajectories of a ring of N charged, coupled oscillators in planes spaced a

distance a apart from one another, which are oscillating in a harmonic potential energy

well and which are coupled to an optic field. Begin by first ignoring the coupling to the

optical field which will be introduced phenomenologically later on. Consider the first

non-zero term in the expansion of the potential energy surface about its equilibrium

position. The motion of the oscillators can be determined with the following equation of

motion:

N N N

Y (Gan - q,) = —3 Y (4 = q,) = YD (Goan = q,)
v=] =] s=]

(A.1)

The following notation is in use: g; is the time dependent displacement of particle s in the

ring. The individual displacement coordinates will be transformed to coupled phonon

coordinates:

nw

g. =N""Y 0 eek

n=1

(A.2)

Examining (A.1) term wise:

N

. - —1/2 s ik(s+1)a iksa

Jou—qs=N Y0,]e —€ ]
$ $ &amp;

v ee . .

NV “ard &gt; 0," (e* _1)
r=1

(A.3)
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N

gd. —q, = NY 0," (e™ _1)
k=1

J —g. = NY 0, (e™ _1)
 et

(A.4)

(A.5

Equation (A.1) can be written:

x 2 J k(n) k(n) —0) ©
—- ik(n)sa ik(n)a _ 0 tk(n)sa ik(n)a

&gt; N &gt; Oem le -1]= —2 &gt; Orme Le ’ -1]
s=1 n=} N s=1 n=l

y N N . ‘ ’
ik(n)sa ik(n)a

- = D&gt; Quw® [Le ~1]
N s=1 n=1

(A.6)

which can be rewritten as follows for any » in the summation:

. » 2

Orn) [0 _ &gt; plk(msa — 0 Qin) [ee _ 1» pk(msa
V N s=I1 V N s=l1

a, k &lt;] ik (n)s

3 ~ Orem [e (n)a -1]Y é (n)sa

"A./

which simplifies to:

Oven | ik n)a 1 | Os n | ik n)a 1 |

! = ( ) ( | pik(n)a l |

(A.3

The strategy will be to solve for the equations of motion for the case in which the

oscillators ride in a harmonic potential, but are coupled to an EM field, i.e., solve the

classical. linear phonon-polariton problem.

Begin by rewriting (A.8), introducing a phenomenological coupling with the

electric field (i.e. the ions are charges and can act upon and be acted upon by the field).

and assuming a vector notation:

oir} _ 9 = -

Dim == Oy (y+ YQ +b,E , Fr

 ND
7
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Maxwell’s equations will also have to be considered, and a phenomenological

relationship between the polarization and the electric field is posited:

P= 5,0, + bE

V.D=V (E+47P)=0

V.-H=0

UxBE=_1g4
re

Ux =L(E+47 P)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

First, consider the static extreme, which allows the neglection of Maxwell’s equation

which are not necessary in electrostatics. Consider solutions of the form:

E = E,exp(-iwt)

A _ No .

Qin =O, exp(—imt)

P = Pexp(—iwt)

Substituting (A.15), (A.16), and (A.17) into (A.9), (A.10):

-Q 20 = b, 09 —iw yQ© + bE

P= b,, OQ; +b, E

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

From (A.18):

_ b _

of ( 12 E
“Wb, —0 tiny

(A.20)

From (A.19), (A.20):

0



p—( er\ -b,—@+iwy
(A.21)

Comparing with the definition of dielectric displacement :

D=E+4xP=¢kE (A.22)

we have:

e ~ 1+ dnb, +—bb
-b,—0 +iwy

(A.23)

n the @=0 limit, we have:

£~=1+4rb, + lab (A.24)

in the @=occlimit:

£ =1+4nb,, (A.25)

and set ap as the peak in the real part of the dielectric function:

1) ==" (A.26)

(A.26) can be also be chosen to include the damping term (it is the other peak in the

response function), but (A.26) will be kept as is to keep with historic convention. It can

oe written by inspection of (A.23), (A.24), and (A.25):

b., =—w,’

b,=b, (ee -
| 4dr Do

~1
 a

4m

(A.27)

(A.28)
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Wo, (EE)
E=€ t—p—

 WD, —0+iOy
(A.30)

Returning to the dynamic problem, (A.11)-(A.14) will be considered and solutions of the

following form will be assumed :

0=050

P=F

E=F

A=

, 0 GA)? +c.C. (A.31)

[nserting (A.31) into (A.9)-(A.14):

50, — i070, +b,ENO _ © _ +b
~Q ‘Os = by, Orin lw YOim 12

P= by OQ, +b,E

ik -E+4rmik-P=0

k-H=0

kxE=-LwH

Ex =1(~iwE -4nioP

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

Equations (A.32) and (A.33) will reproduce (A.20) and (A.21). From (A.21) into (A.34):

(k-E)-- amb, +0}—b,—@° +iwy
(A.38)

it can be shown that the k -E =0case corresponds to the transverse phonon-polariton

while the case is which the bracketed term equals zero corresponds to the uncoupled

longitudinal phonon and photon. Consider just the polariton (transverse) case:

y
a —



a (A.39)

k,E,H form a right handed coordinate system and from (A.36):

 FH

IL

L
r (A.40)

and from (A.37) :

tH = —2(E +47 P) (A.41)

From (A.40), (A.21) into (A.41):

2 2

KE Athy,
[0] —@=b,+iwy

(A.42)

This provides the well known polariton dispersion relation. The vector notation will be

dropped at this point. In the impulsive limit, the Raman force has the effect of preparing

the polariton with a spatially varying initial velocity distribution. We’ll assume that we’re

in the classical T=0 limit. Combining these two statements gives the following initial

conditions on the problem °

On

-1/2

£.—€._ .

Ee I(7)i

RelO(t=0)]1=0

(A.43)

‘A 44)

The ISRS driving force is applied by an optical field with intensity profile

[(F)=1, cos(gr) ‘Ad;

From (A.43) we get

-1/2 .

EE l

pe =—TTE,E Cram, Z0 Te 1,
: 4r 0

0 =0 fork(n)#q

(A.46)
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T'he temporal polariton response to a driving force with wavevector q is a damped

sine wave with a frequency given by the real solution (A.42) and damping given by the

imaginary part of (A.42). In order to compare ISRS experimental data with the

predictions of this model, it will be necessary to determine if the polariton response at a

given wavevector can be well fit by a damped sine function with frequency ay and

damping y and to determine if ap and y have the wavevector dependence predicted by

(A.42)

Three methods were employed to determine the frequency and damping from

experimental ISRS data. First, the data were fit in the time domain to a damped sine

function using the Levenburg-Marquardt algorithm. Second, a power spectrum estimation

was taken of the data using the conventional FFT algorithm (see Chapter 5), and this was

fit to a Lorenzian function (see description below). Third, a power spectrum estimation

was taken of the data using the maximum entropy method (MEM) and this frequency

domain result was fit to a Lorenzian lineshape. The effectiveness of each method was

evaluated based upon several considerations. A sample data set (without noise) was

generated from known parameters and the data were fit using all three methods. The

MEM performed poorly, routinely underestimating the linewidth by 10%. Additionally,

the MEM produced spurious peaks when greater than 50 poles were used. Accordingly,

‘he MEM was rejected for this application. Both of the other techniques performed well

when fitting the sample data set. In data sets in which multiple frequency components

were present, the time domain fit performed poorly, even when additional damped sine

functions were added to the fit function. These fits were extremely sensitive to the initial

parameter estimates and there appeared to be considerable coupling between various

[32



parameters in the fit function. Consequently, the time domain fit was rejected for this

application.

A conventional fast fourier transform algorithm, written in C, was used to perform

‘he power spectrum estimation of the data. The functional form of the power spectrum of

a damp sine wave will be shown to be a Lorezian lineshape. Consider the power spectrum

of the heterodyne signal I.(f)=sin(w,z)e "where @, =+Ja,~7&gt;/4. The fourier

transform is given by:

Ij(@)= | sin(w,t)e™ eat (A.47)

which can be simplified to:

1 -, —1y/2
[(@) =a

5(@) 20-0 +iyw—7y' 14 (A.48)

The power spectrum is given by"

PS =|I,(@F=3 day(—w,)’ + v:w®
(A.49)

For w approximately equal to ap, this can be expressed as a Lorenzian function:

1 1
PS=-— =

d4(m—a.) +2 =Li
(A.50)

The power spectrum of the data was fit with the Lorenzian function from (A.50) using the

Levenburg-Marquardt algorithm in Origin, a commercial spreadsheet package.

It is important to note that the wavevector of the optical interference pattern k, is

not equal to the wavevector of the polariton, because of the forward component required

hy wavevector conservation”. In order to determine the polariton wavevector, the forward

2,



component of the wavevector kr must be found. Assume that the sample has index of

refraction n, and that the sample is surrounded by air n=1. The incident angle of a beam

will be denoted 6; while the angle in the material will be 8.. The forward velocity of light

in the sample is given by:

2 c’

(vi) ===
n, cos 6,

cl

- n?(1-sin’6,)

TT ann

2 sin” 6,
ny 1=—o—

n,

2
c

Tr 2p
ni —sin“ 0g,

(A.51)

The forward wavevector component is given by:

co 0° _o*(n] sin’)

Tye
(A.52)

[he total polariton wavevector k, can be found from:

K =f7 kitke =
[w? (n?— sin 6,) Ag?

2. =r (A.53)

where k, =2m/A is the interference grating wavevector. The procedure for determining

the polariton wavevector will be to measure 6, at the sample, to measure @ from the

power spectrum of the data, and then to determine the polariton wavevector according to

(A.53;.
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Chapter 6. Future Work and Conclusions

[. A simple terahertz spectrometer

Light in the far IR spectral region is rapidly evolving as a valuable tool in the

spectroscopic study of liquids!-3, dielectrics®, gasses&gt;-7, semiconductors®®, and

superconductors!0:11 and as an illumination source for the chemically sensitive imaging

of everything from integrated circuits to biological samples!2-14, Spectroscopy in this

terahertz (10'* hz) frequency regime is especially potent in liquids, where it probes

properties on length and time scales in between those characteristic of bulk dielectric

responses and intermolecular motions. In glass-forming liquids, the terahertz dielectric

response is crucially important. Theoretical predictions 15:16 have been made concerning

it, but ordinary dielectric spectroscopy only gets to around 100 GHz with standard

techniques and up to 400 GHz!7only with considerable difficulty. “T”-ray imaging, or

imaging of objects with terahertz radiation, has a diverse range of potential applications

including trace gas analysis, safe packaging inspection, and biological imaging. Polar

liquids, such as water, tend to strongly absorb terahertz radiation while most dry,

nonmetallic materials are highly transparent, motivating a demonstrative application of

“T”-ray imaging to the mapping of water in leaves!3

I'he experimental challenges involved in the generation and detection of terahertz

radiation stand as the main impediments to its more widespread application. Microwaves,

which border “I”-rays on the low frequency side, are typically generated using high

frequency electronics while infrared waves, on the high frequency border, are generated

by light sources, usually via blackbody radiation or lasers. The fastest electronic devices

uperate at around 100 GHz and the intensity of blackbody radiation is extremely dim

A a’ /



much below 10 THz, leaving a substantial gap that has just recently been bridged with a

practical source. The illumination of photoconducting dipole antennas with femtosecond

optical pulses was shown to radiate broad bandwidth, coherent bursts of light with

substantial spectral density from 100 GHz to 5 THz. 18-23 This terahertz radiation, which

was propagated through free space, could be focused or collimated using far IR optics

(typically large gold reflectors), passed through a sample, and detected using another,

similar photoconducting dipole antenna, which is gated by a variably-delayed

femtosecond pulse. The spectroscopy and imaging applications discussed above were all

performed with this general technique, whose main drawbacks are its requirements for

far-IR optics, carefully fabricated, complex photoconducting dipole antennas, and, for

some applications, the extremely broad bandwidth of the THz burst.

i y

z

Nd

- Hr a

 &lt;Q &lt;¢

Ns

Fig. 6.1. A schematic drawing of a simple terahertz spectrometer. Phonon-polariton are

excited in one ferroelectric crystal, propagated through a liquid sample, and detected in a

second crystal .

Figure 6.1 depicts an alternate apparatus for conducting terahertz spectroscopy of

liquids that has only visible light pulses as inputs and outputs and that requires no far-IR

optics or special antennas. In this apparatus, two femtosecond pulses in the visible region

fo.



of the spectrum are interfered in one LiTaO; crystal, driving a mixed mechanical-

electromagnetic wave via impulsive stimulated Raman scattering?4-26, Called a phonon-

polariton, this wave has the same spatial periodicity as the interfering pulses, and it is

frequency tunable between roughly 0.5-6 THz by adjusting the periodicity. Propagating

through the crystal at one-sixth the speed of light in air, the polariton is partially coupled

(~50% of the EM energy would be coupled into water) into a liquid sample. It enters a

second LiTaO; crystal where it is detected by monitoring of the heterodyned diffraction

(see Chapter 4) of a variably delayed, visible probe pulse with a conventional silicon

photodiode. Preliminary data are plotted in Figure 6.2, where the responses from

polaritons that have and have not propagated through the liquid sample layer are plotted

together for comparison. The attenuation and phase shifting of the electromagnetic

portion of the polariton caused by propagation through the liquid can clearly be

determined from these data, which reveals the dielectric response of the liquid in the

terahertz regime. It must be emphasized that the terahertz radiation never leaves the

crystal-sample-crystal assembly, only visible light is used, and no IR optics or detectors

are necessary

[his technique possesses many advantages. The terahertz radiation is tunable and

the bandwidth is controlled by simply adjusting the spot size of the excitation beams.

Both the real and imaginary part of the dielectric constant can be measured

simultaneously. Finally, the high intensities of the polaritons should make non-linear

optical measurements, such as hole burning and pump-probe spectroscopy, a real

bossibility.
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Fig. 6.2. A terahertz bandwidth polariton wavepacket detected after propagating through

only LiTaO; (dotted line) or a LiTaOs-glycerol-LiTaOs cell (solid line). A 65 um garting

spacing (a) corresponding to a frequency of 0.7 THz and a 75 pum grating spacing (b)

corresponding to a frequency of 0.6 THz are shown. The glycerol layer was ~250 pm

thick and the polariton was detected after propagating 1mm. The inset plots the power

spectrum of both wavepackets.
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Several crucial experimental variables were left uncontrolled in the demonstrative

experiments the results of which are shown in figure 6.2. The spacing between the two

crystals was on the order of 1mm but was not known to a high degree of accuracy. A

special sample cell has been fabricated to increase the degree of accuracy to which this

spacing is known, and experiments with this cell will soon be performed. A second,

serious omission was the failure to measure the incident angle of the beams upon the

sample. At the low wavevectors used in these experiments, the polariton has a substantial

forward wavevector component (see appendix SA) as illustrated in figure 6.3 and the

nolariton propagates through the crystal at a significant angle (~20°) with respect to the

crystal face. Because of the extreme refractive index mismatch between the ferroelectric

crystal and the liquid sample, the magnitude of the polariton transmission through the

crystal-liquid interface is a strong function of the angle between the crystal y-face and the

polariton (see figure 6.4). Assuming that the bisector ofthe incident beams is normal to

the crystal’s x-face, the polariton will undergo total internal reflection from the crystal-

liquid (&amp;=5) interface, which implies that this angle was at least ten degrees in the

experiments whose results are shown in figure 6.4. It will be important to carefully

control this angle when these experiments are repeated. Additionally, the angle between

bisector of the incident beams and the x-face of the crystal should be set quite high to

maximize transmission through the two interfaces. Finally, it will be important to model

the effect that polaritons reflected off of the back face of the crystal have on the form of

the heterodyne signal, a task that will also be required in the analysis of the thin crystal

data presented below in section II.
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frequency (TH2)

Fig. 6.3. A plot of polariton angle with respect to the y-face as a function of frequency for

LiTaOs. The polariton wavevector picks up a substantial forward component at low

frequencies.

5
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anale

Fig. 6.4. The reflectivity of a LiTaOs-liquid (n=5) interface is plotted a function of

polariton angle. Total internal reflection sets in at roughly 22°.
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In conclusion, potential applications of a newly developed experimental method

for generation and detection of narrowband, frequency-tunable, high-power terahertz

radiation and shaped terahertz waveforms were explored. This technique will provide

relatively simple access to a host of properties of fundamental and applied interest in an

extremely broad range of samples.

[I. Heterodyned ISRS from thin LiTaO; crystals

Ultrafast spectroscopic studies of thin ferroelectric films are expected to reveal

interesting new phenomena: polariton surface and waveguide modes as well as coupled

poalriton modes in hybrid ferroelectric-semiconductor structures should all be observed.

Because the diffraction efficiency from a 1 mm crystal will be a factor of 10° greater than

that from a 1 um film, considerable detection sensitivity is required to monitor these

polaritons responses in thin films. In addition, the surface, waveguide, and coupled modes

are all expected to exhibit complicated responses consisting of many frequencies.

Heterodyne detection is an ideal method for studying thin film responses as it provides

exceptional sensitivity and signal clarity.

Devices consisting of ultrafast laser systems and ferroelectric materials have

considerable potential in the fields of high bandwidth signal processing and optical

communication, and ferroelectric DRAMs already enjoy commercial use. In general,

higher bandwidth will be possible with signals written into phonon-polariton

wavepackets, which can contain bandwidths of up to several terahertz. Optical readout of

the wavepacket would be performed (after propagation or manipulation of the polariton)

oy a probe beam set in spatially distinct region of the device. Practical devices will likely
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be built from thin (~1 wm) ferroelectric films because of the relative ease of fabrication of

such films compared with bulk crystals. Additionally, the polariton response of a thin film

is expected to differ markedly from that of a bulk sample, as waveguide effects are

expected to become prominent as the sample thickness approaches the polariton

wavelength?’

[n this section, preliminary ISRS results from ferroelectric films are presented,

with data collected from a 100 pm LiTaO; at a range of low wavevectors being reported.

A crystal of this thickness is expected to show properties between that of the thin film and

the bulk. Data from several wavevectors are presented in figure 6.5, alongside data

collected from a 1mm thick crystal in figure 6.6. At these long polariton wavelengths (50-

100um), the polariton response from the 100 pum crystal is already seen to be quite

different from that of the bulk sample. Multiple frequency components are observed in all

wavelengths from 50-100um. While these data yet been quantitatively modeled, it is

likely that the beating patterns are a consequence of the onset on waveguide behavior. In

these crystal samples, which are still reasonable thick by waveguide standards at 100m,

it should be possible to model the signal by considering the polariton as a wavepacket

repeatedly reflecting off of the front and back crystal surfaces. In this case, it will be

necessary to determine the diffraction efficiency from a sample with an arbitrary, depth

dependent, refractive index profile.

Excellent signal to noise ratios were achieved with acquisition times of roughly 10

minutes and excitation beam intensities of between 10 and 75 WJ / pulse (horizontal spot

sizes of FWHM~800 nm). With increased excitation beam intensities, decreased spot

A



sizes, and/or the use of lasers with higher repetition rates, the goal of achieving rapid

polariton response characterization from 1 um films appears to be quite plausible.
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Fig. 6.5. Heterodyned ISRS data from a 100 um LiTaO; with three grating wavelengths

shown: (a) 89 um (b) 68 um (c) 44 um. Beating patterns, assigned to waveguide effects,
are visible at all wavevectors.
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[II. Conclusions

An optical apparatus has been developed for the femtosecond time-scale,

heterodyne detection of transient gratings using a diffractive optic to split the reference

and probe beams as well as to separate the excitation pulses. This apparatus maintains

phase stability amongst all beams over long periods of time, permitting optical

heterodyne detection to be conducted without active stabilization. The apparatus also

features improvements in transverse wavevector resolution and ease of alignment

compared with traditional, beamsplitter based transient grating methods. Additionally, an

electronics system has been developed for computer-controlled, 1 kHz acquisition of

short-pulse heterodyne transient grating data.

This apparatus was applied to heterodyne ISRS studies of the A; phonon modes of

the prototype ferroelectrics LiTaO; and LiNbOs;. This work served to clear up

contradictory results and provide further validation for a double-well model of the

potential energy surface of the lowest frequency A; phonon-polariton in the two crystals.

The behavior of this mode, which takes the ions from their position in the paraelectric

phase to their position in the ferroelectric phase, is extremely important to understand, as

it provides clues about the origins of ferroelectricity in these materials. The heterodyne

[SRS technique was used to map the complex dispersion of all four A; modes of LiTaOs3

across 16.000 cm’. A Fermi resonance between the lowest frequency A; phonon-

polariton and a 140 cm’ E symmetry phonon was suggested as the cause of an anomolous

peak in the imaginary part of the LiTaO; dispersion. Finally, the heterodyne detection of

propagating responses was investigated both theoretically and experimentally.

1



Heterodyne ISRS data were seen to take their simplest form when propagating responses

were measured either in the excitation region or completely outside of it, as phase shifts

in the time domain are expected for intermediate probe displacements for many values of

-eference phase.

A simple terahertz spectrometer was built using only visible light as its inputs and

outputs. This device, which took advantage of the improved sensitivity of the heterodyne

ISRS technique, changed the role of propagating polariton waves from passive

participants in studies of the host medium to active actuators in the study of the terahertz

dielectric properties of the polar liquid glycerol. The dielectric properties in this region of

the frequency spectrum provide important information about properties of the liquid that

fall between the bulk elastic and the microscopic, information that is critical in

anderstanding the liquid-glass transition.

Heterodyne ISRS data were collected from thin LiTaO; crystals. These data show

the apparent onset of waveguide behavior in phonon-polaritons as the polariton

wavelength approaches the crystal thinckness. For a broad range of materials and

prospective photonic devices, thin film samples and structures represent the only

vlausible fabrication options, making the ability to collect and understand data from such

systems necessary for continued develpoment in these areas.

The transient grating technique has been applied to the detection of surface and

bulk through-plane acoustic waves in metal films. Surface displacement was shown to be

the primary diffraction mechanism in both nickel and aluminum. A computational

method was developed to simulate through-plane ISTS data from multi-layer metal film

structures. Transient gratring ISTS was shown to be a metrology tool capable of

Aaw: I



extracting information about the morphology of metal films and the thicknesses of

individual layers in multi-layer film stacks.

The femtosecond time-scale, heterodyne transient grating technique extends our

ability to study nature with light. Gigahertz and terahertz bandwidth responses have been

studied and presented from metal film structures, bulk and thin film ferroeletrics, and

polar liquids, which highlight the method as a valuable tool in the study of complex,

dispersive materials. It has been shown that projects incorporating this technique have

made important contributions to science, and early results indicate that they will continue

to do so well into the future.
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