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ABSTRACT

Charles Parsons has argued, roughly as follows, that
we cannot succeed in quantifying over all collections.

We seem bound to adopt a métatheory for ZF in which truth
for 27 is definable. But if we try to define truth for

ZF without recourse to semantical notions, we must admit
quantifiers over proper classes. But then the domain of
these class quantifiers may not seem to contain all collec-
tions, since we must in turn obtain a truth theory for this
class theory. So we seem never to arrive at a theory in
which we can talk about all collections.

I contend that we can do quite will with a theory in
which satisfaction for the formulas of ZF is inductively
defined; this theory will not embroil us in proper classes.
We can determine in a sense directly, I argue, that the SAT
predicate is well defined.

Parsons has constructed a translation from NB (Von

Neumann-Bernays set theory) into ZF plus its truth theory.
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Can this translation be taken to provide an ontological
reduction, or can it be so modified that it does? If

it can, then in adopting ZF plus its truth theory we are
perhaps already admitting, however unwittingly, the proper
classes of NB. For if we reduce one ontology to another,
we in effect show that in adopting the second ontology

we are thereby committed to the first.

I propose some constraints on the way in which the
relevant structure of a theory must be preserved in that
of another for there to be a genuine reduction. On this
score, the would-be reduction of NB to ZF plus its truth

theory is seen to fall short.
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Chapter I

Paradox and Second Order Quantification

In a number of papers,l published several years ago, but
unfortunately little discussed in philosophical jourmals,
Charles Parsons presents a case for the view that we cannot
succeed in making our quantifiers range over all collections.
Much of the evidence for this case consists of considerations
arising from the liar paradox. Currently, most of the indus-
try generated by the liar paradox seems to be directed towards
Kripke's theory of truth;zthis might create the impression that
Kripke's theory somehow superceded Parsons' reflections. Such
an impression, I am convinced, would be mistaken., For while
most recent discussions of the Liar paradox are like Kripke's,
ccncerned with its consequences for the theorxy of natural langu-
age, there is a wider question of its impact on languages in
general. Even if we can construe the truth predicate in natur-
al languages so that, given the expressive power of natural
languages, no liar paradox can arise, in a formal language with
greater expressive power the same technique may not suffice.
Insofar as we wish to maintain that such stronger formal langu-
ages are meaningful, we are still faced with the problem of
avoiding paradox. At this juncture, Parsons' observations be-
come once more relevant,

One way to see precisely how the difriculty described in
the paragraph above can arise is to consider the inadequate

expressive power of the languages Kripke constructs in his ctheory



of truth. Hence I will begin this paper by focussing on Kripke's
theory. Once the nature of the problem I have indicated is more
clear, I will discuss in the body of the paper some aspects of
the impact of the liar paradox on ontology, epistemology, and the
philosophy of mathematics. In particular, I will address at
length the question: must our quantifiers take as values only
collections from a limited portion of the mathematical universe?
This will involve me in a careful examination of Parsons' argu-
ments on this score. I shall argue that considerations originat-
ing from the liar paradox alone should not compel a platonist to
the view that quantifiers may not range over all collections.
Kripke's theory of truth is basically an attempt to con-
strue the truth predicate of natural language in such a way as
to account for uses of certain English sentences in which 'true'
occurs, namely those sentences which talk about other sentences
in which 'true' also occurs. Tarski had defined 'true' in his
systems in such a way that this sort of thing could not happen.3
On Tarski's theory, if a sentence A talks about: the truth of
sentence B, then the notion of truth used in sentence A has a
higher index than any that is used in B. But then sentence B
could not in turn talk about the truth of sentence A, since any
notion of truth in B must, in consequence, have both a lower and
a higher index than any in A, These restrictions hold for Tarski's
systems essentially because in these systems the truth predicate
is 'bivalent'; that is, it is always defined, so that for any

object in the domain, that object satisfies either the truth



predicate, or its negation. Civen that these systems can
express their own syntax, the truth predicates must be indexed
in a hierarchy in order to escape the liar paradox. Kripke's
theory develops suggestions advanced by a number of philoso-
phers (e.g., Martin, Putnam, Harman) that a natural language
be considered to contain its own truth predicate, and that
paradox be scotched by allowing truth value gaps in the inter-
pretation of the truth predicate. There are various consider-
ations that make it desirable to construe natural language iu
this way. First, it is quite difficult to understand the claim
that natural languages are inconsistent, which is what Tarski
believes. In fact, only theories can be inconsistent, and
natural languages are not theories., It seems that natural
language is best taken as a syntactical system with different
interpretations on different occasions. Second, it is evident
that natural languages do not possess diverse truth predicates
arranged in a hierarchy as Tarski's systems would have it,
since there is just the word 'true' (or whatever) and no 'truej',
'truez', etc., as in Tarski's languages. Third, there is the
sort of phenomenon which Kripke adduced, viz,, talk of the kind
which went on during Watergate (to be more fully described
shortly), Fourth, truth value gaps evidently appear in other
contexts in natural languages, e.g., failure of presupposition,
vague terms,

Kripke's theory of truth is a precise formula+tion of a

language which has its own truth predicate and 'avoids paradox'
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(i.e., has an interpretation). A Kripke language may be con-
structed in the following way.® One starts out with an inter-
pretation of all the sentences in the language except those
with the term 'true' in them. Then, if a sentence is true

in this interpretation, its Godel number goes into the ex-
tension of the truth predicate; if it is false, its Godel
number goes into the antiextension of the truth predicate,
where the antiextension of a predicate is the extension of its
negation. Once this is done, new sentences are thereby deter-
mined to be true or false in the interpreted language, since
some sentences in which the term 'true' occurs now will have

a determinate truth value. The Godel numbers of these sentences
are in turn thrown into the extension and antiextension, re-
spectively, of the truth predicate, This process is iterated
as often as possible. Since there are only countably many
sentences, it can go on only countably many times before no new
sentences are determined to be true or false.

As Kripke points out, in such a language it would be
possible to discuss, e.g., Watergate, For in Watergate it
happened often enough that a sentence was used, containing the
term 'true', which talked about a sentence also containing
'true'. Kripke's theory shows how 'true' in these sentences
can be understood univocally. Because there are such situa-

tions as Watergate, there is some evidence that 'true' is

*This will be a so-called minimal fixed point Language.



sometimes employed in the manner Kripke indicates. Watergate
was not unique in this regard, of course; Kripke's theory could
be motivated without Richard Nixon,

Kripke notes that his languages are incompleve in certain
ways, however. There are predicates we would want to hold as
intuitively meaningful, which cannot be expressed in his language.
Now, the fact that there will be some predicates which cannot
be captured on a fixed interpretation of a countable language
may appear to have a simpler explanation, For there are, e.g.,
more than countably many subsets of w; covresponding to each
such subset is a property of natural numbers. But for every
property of natural numbers, there is a predicate in some
language which expresses that property, that is, has that sub-
set as its extension. Against this, however, observe that while
it may be true that there is some such predicate in some language,
this language and this predicate may be recalcitrant to any
effort to understand them, in that we may have no intuitive grasp
of the primitive predicates of this language. It is, of
course, difficult to exhibit such a predicate; for once one has
fully described a predicate, it must surely fall in among
those predicates that we do grasp. But the consideration of
cardinality seems to effectively rule out the possibility that
we can understand every predicate over the natural numbers,

In any event, we can understand the predicates that I take to
be inexpressible in natural language.

Thus, for example, some sentences will never get a truth

value defined in the process T have delineated, e.g., the liar



sentence "I am not true.'" We grasp perfectly well what it
means for a sentence not to be defined: Kripke himself has ex-
plained it; yet in Kripke's languages there is apparently no
predicate which has as its extension all and only the sentences
whose truth value is undefined. Moreover, there is certainly
no predicate in his languages which has as its extension just
those sentences which are eigher false or undefined, and this
predicate is also meaningful to us, Hence, insofar as we insist
on comnstruing natural language so that it is interpreted in

the way Kripke delineates, natural language appears unable to
express all intuitively meaningful predicates.

One might try to stave off the conclusion that natural
language cannot express all such meaningful predicates. As T
have already indicated, it is reasonable to take a natural
language to be flexible enough for its predicates to have a
variety of extensions in a variety of circumstances. That
the analogous thing holds for demonstratives is obvious.

One might hope that this flexibility would allow natural language
to express each of these meaningful predicates, although of
course on distinct uses. The truth predicate in particular,

as well as 'x is not true', may on diverse occasions have

diverse uses. 8o one might try to use 'x is not true' at times
so that its extension contains precisely those sentences eicher
false or undefined in the Kripke language., Paradox would be
warded off because, although the sentence 'this sentence is

not true' would be interpreted as being not true, (where not



true; is the new interpretaticn of 'not true') no argument
shows that the sentence is also true; . For one could not

infer that since this liar sentence says that it is not trueq,
it therefore says something true,, that is, true as on the

old interpretation. What it does say is something true,,

where true, is the notion of truth for the language with 'true'
interpreted as true; .

Now can we proceed to interpret 'true' as true,? I be-
lieve that to do this would violate some intuitions about how
the liar sentence should be understood. For it would turn out
that the liar sentence would not, in an important sense, talk
about itself. Thus, suppose we do use 'true' to mean true,.

As I have remarked, the liar sentence then gets into the exten-

' because it is in the

sion of 'true' in the sense of 'true,
extension of 'not true' in the sense of 'not truel'. Hence,
the fact that it is not in the extension of 'not true' in

the sense of 'not truez'

(however the sense of 'not truez'
is precisely explicated) is also because it is in the exten-
sion of 'mot true' in the sense of 'not truel'. That is,
the liar sentence fails to get into the extension of its own
predicate not because of the interpretation its predicate
presently has, but instead because of the extension its pre-
dicate used to have. Thus, the liar sentence does not talk
about itself being under its actual interpretation. Rather,

it talks about itself being under a different interpretation,

In general, in taking 'mot true' to mean not true,, any



sentence in which 'not true' appears, and which refers to

other sentences in which 'not true' occurs, attributes to these
sentences a different interpretation of 'not true' from that
which it possesses itself. This situation is unacceptable,
inasmuch as what the liar sentence or a similar sentence does
in natural language, if it does anything, is to talk about its
truth value under the interpretation it in fact has. The

only way in which a natural language could accommodate the
above sort of interpretation would be if it contained two dis-
tinct words, 'true' and 'truel', and surely this no natural
language does. It may seem odd that the expressive limitation
of natural language should arise out of what appears to be a
syntactical limitation, the absence of 'truel', or the likea,
from the vocabulary. But given that 'true' cannot accommodate
every notion of truth, as I have just argued it cannot, it is
just such a ''syntactical" limitation that would confine the
expressive capacity of natural language. Observe, moreover,
that adding only the words 'truel' and/or 'truez' to English
would not really ameliorate the situation, The sort of problems

' would

which led to the introduction of 'truel' and/or 'true2
visit in turn this new language, and call for the annexation
of 'true3', 'true4', etc,

At any rate, that not all intuitively meaningful predicates
can be expressed in a natural language is not, as far as I can

see, any cause to despair. There is no apriori reason to sur-

mise that it should be otherwise, In any event, there plainly



are formal languages in which thes. diverse predicates can

be expressed., But the issue then arises; is there any problem
dealing with the liar paradox within formal languages? It
would seem, in the face of Tarski's way of defining truth,
that there is not: for apparently, we can always set up truth
theories for a language, a la Tarski, in which it is under-
stood that the truth predicate does not apply to the meta-
language itself., This view at first glance seems to offer
ccmfort and security, but look again. In the case of set
theory, it is not clear what a Tarski-style truth theory

comes to. Tarski showed how, in languages of a restricted
class; truth theories can be constructed. If the range of the
quantifiers is a set, and we understand the primitive pre-
dicates of a language, then we can set up a truth theory for
that language, without recourse to semantical notions., tlow-
ever, on a standard construal of the language of ZF, the

range of the quantifiers is not a set, not a collection of

any kind. There will be no way of eliminating semantical
notions in a truth theory in the typical Tarski fashion. An
example of a typical Tarski-style truth theory may help to
explicate this point. Suppose a truth theory for the language
of arithmetic is sought. The range of the quantifiers is a
set, the set of all numbers., The Tarski style truth theory

is effected in a theory in which some set theory is present,
First, a conjunction of open formulas, call it A(x), is

defined:
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L) Ya¥s Vivi¥ (n= Ty 58, = ns>e X € ($); + (8) = ()
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An explicit definition of satisfaction can be given:
Sat (x,8)¢&> Ay LAY &<ty ey)
From this, we get truth for closed formulas:
‘@ isteve «> 3s Sat ("¢ s)

Why does this method miscarry for the language of ZF?
Well, let us endeavor to succeed., lere is the obvious attempt:
Define A(x) as the conjunction of (1) - (4) below.

1) Vs¥n¥i¥j (n= "x € ! = (<n,shex € (5); € ¢s);))
2) Vs ¥n (n="9 v @7 = (a9 eXen (L, sHeX VLY, ) € XM
3) ¥s ¥ (n=T-47 o (K ex 3y, sdex v Myl sHex))

4) Vs ¥V (n= "Iy = (en,$) ex > 3575z excepl) pissibly af the o pluceds

Ve
This condition A(x) is true in ZF of no set whatsoever; % ce *M)

Bgy(ﬁqiiuy) is satisfied by no set. A(x) has no solution

because for condition (1) to be satisfied by a set, that set

would have to contain pairs of formulas and sequences where

the sequences are of arbitrarily high rank. This no set can do.
Hence, we cannot hope to do a strict Tarski-style truth

theory in which we can do away tw7ith semantical notions, but must

settle for some rough analogy. What this analogy is, we shall
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presently consider. Let us remark in advance, however, that
certain hard problems lie in wait. Are there theories which

we are willing ro accept, but whose truth theories involve
principles that we cannot justify, and whose truth theories

we therefore are indisposed to admit? If we do assent to some-
thing like a Tarski style truth theory for any theory, does this
decision have any undesirable ontological consequences? Par-
sons has shown that what he calls NB (Von Neumann Bernays set
theory) and even NB+ (the extension of NB that allows impredica-
tive class formulas in set separation axioms) are translatable
into ZF plus a certain Tarski-like truth theory for ZF. The
ontology outstrips that of ZF; must we concede to this ontology
if we accept ZF plus its own truth theory? Parsons at times

is quite sympathetic with the view that we should; he proposes
at one point that assenting to such an ontology might require

in turn admitting an even richer ontology, and further that the
ontologies we should embrace are indeed essentially open ended.
Parsons even goes so far as to proffer this as possible evidence
that the quantifiers of set theory should be understood in a
quasi-intuitionistic manner,.

Still another difficulty is this. Assume there is an
openended character to the theories we are willing to affirm,
viz., when we hold a theory we will hold its Tarski-like
truth theory., How should discourse about all theories, or all
interpretations be construed, when ostensibly such discourse

must be in the language of some particular theory? Paradox



-12-

appears to be close at hand. This problem is in a way the
most intriguing of all, bucr it owes its special intrigue
to its being the most perplexing. TFortunately for me, it
is not germane to the central issues of this paper.

Now, before attending to the question, 'What kind of
truth theory, similar to that of Tarski, can be constructed
for set theory?' it is important to see that a truth gap
truth theory is of no avail in any attempt to evade the pro-
blems facing the construction of a Tarski like truth theory.
For there would be no point insisting on a Tarski like truth
theory for set theory if a less problematic alternative exists.
One way to see the futility of employing a truth-value gap
approach to handle these problems is to answer the question:
is there a way out of the liar paradox, that works for both
natural and formal languages, by means of some tructh value
gap approach? I shall show that, in an important sense, there
cannot be, although of course there doubtless is some resolu-
tion of it for natural languages (perhaps Kripke's theory
constitutes such a resolution). What I wish to argue 1is that
with very minor assumptions about what predicates we find
meaningful, a language under a fixed interpretation cannot
express all of the meaningful predicates there are. This
is the sense in which the liar paradox cannot be got around.
One might put this conclusion thus: there are no universal
languages,

Suppose: (l) if we find a language meaningful then we
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can create a predicate and a language and interpret them in
such a way that the extension of the predicace in that langu-
age will be exactly the true sentences of that first language;
(2) if there is a language in which a predicate is meanirgful
and has a certain extension, then there is a language in
which that predicate occurs, with the same extension, and in
which there is what I shall call the complementary predicate
of that predicate., The complementary predicate Al of a
predicate Ajy is a predicate which has in its extension just
those things which Ag does not. In such a metalanguage it
is impossible that the predicate having as its extension the
true sentences in the object language could be expressing
its own truth predicate. Suppose otherwise. Then the
sentence 'This sentence is not true' (where 'not true' is the
comp lementary predicate of 'true') cowld nct be in the exten-
sion of the truth predicate or of its complementary predicate,
yet by hypothesis must be in at least one. The metalanguage,
hence, must have greater expressive power than the object
language.

It is noteworthy that this result holds in a very wide
variety of cases., Thus, even if there were more than one
way for a predicate to be undefined (even infinitely many),
the possibility of such a language being its own metalanguage
is precluded, for no mention is made of undefined predicates
in the statement of the conditioms,

How plausible are these conditions? Certainly prima
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facie they are eminently reasonable. Consider condition
(1). It is difficult to see how we could find a language
meaningful, and yet not grasp the notion: sentence which is
true in the language. But it seems that our grasping this
notion consists in, or at minimum would involve, being able
to intend some language so that one of its predicates has
as its extension just the true sentences of the first
language.
Condition (2) also seems ineluctable. If we can under-
stand a predicate, we are able, it would appear, to intend
the predicate in a determinate way to apply to certain en-
tities and not to apply to others, But this is in some sense
to split the universe into two mutually exhaustive parts.
And if we can envision the universe as being chus split, then
surely we could employ a language in which there are two
predicates, one of which has as its extension one part of the
split, and the other, the other part. But this is just
condition (2). In fact, our way of construing predicates
seems to be closed in other ways, too. Thus, there is closure
under unions and intersections as well as czomplementations.4
Granted, then, the inevitability of these two conditions,
we are driven to conclude that the series of languages that
we should acknowledge as meaningful is essentially openended,
This, I claim, entails that the series of truth theories we
should assent to is also openended, For if a metalanguage

for a language is meaningful to us, there is reason to surmise
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that that is so in vixtue of our having adopted the correspond-
ing truth theory for that language. Or, more
weakly, if we hold the metalanguage for an object language

to be meaningful, at the very least we appear to be obliged

to hold the corresponding truth theory for that object
language. Since, as I have argued, there is an openended
series of metalanguages we find meaningful, there must be a
corresponding openended series of truth theories that we are
obliged to adopt.

The upshot of the above is this, Given any theory, we
are willing to adopt a certain metalanguage for the language
of that theory. In this metalanguage, there is a bivalent
truth predicate strong enough to provide a notion of truth
for the language of the theory. This bivalent truth predicate
is not captured in the Kripke language. Moreover, the truth
theory for chis theory will be in the style of Tarski, at
least in the important respects, and we are obliged to accept
that truth theory. Hence, a truth theory analogous to
Tarski's is de rigueur, however troublesome to formulate in
particular cases, as with the case of set theory.

There is a more fundamental reason that Kripke's theory
of truth offers no salvation from the difficulties with
setting up a typical Tarski truth theory for the language
cf set theory. The first step in the process by which the
truth predicate starts to get its partial definition a la

Kripke is this. The sentences in the ground language are
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determined to be true or false by the interpretation that
is given them; then the Godel numbers of these sentences
are placed in the extension and anti-extension, respective-
ly, of the truth predicate. But if the ground language
under question is the language of set theory, from the
standpoint of what background theory are w2 going to deter-
mine that any given sentence of set theory is true? To do
this is, in effect, to have a Tarski like bivalent truth
theory at hand for the language of set theory; but It is
precisely the problem of getting this that now vexes us.
However, my points regarding the inadequacy of a truth
value gap approach are still relevant. For suppose we could
somehow get our hands on a Kripke language for set theory,
and we were satisfied that all the notions of truth we would
ever desire to express were expressed in that language.
Suppose also that we grant Parsons' suggestion that if we
adopt a Tarski like truth theory for the language of a theory,
we must admit subcollections of the domain of the quantifiers
in that language. Then, although the quantifiers in cthe
language of ZF might not be able to range over all collec-
tions, it is at least conceivable that there would be only
& many more ranks of collections, where « is the fixed point
for the Kripke language. Thus, corresponding to each level
in the construction of a Kripke language would a Tarski-style
truth theory for the language of that level; and corresponding

to each such truth theory there would be a new rank of
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collections to which we commit ourselves, as Parsons
recommends, When the levels run out, so do the ranks.
Perhaps some new set theory, with distinct quantifiers for
each of these ® many new levels, would have quantifiers
ranging over all collections. But, of course, all this
would be a possibility only if the suppositions with which
I started were true, and at least the first is not.

Let us resign outselves then to an openendedness in
the truth theories we are willing to accept. Now at first
blush this openendedness might be thought to be purely
ideological. For in accepting a stronger theory we are not
in general compelled to embrace a larger ontology. However,
Parsons has set forth some reasons (which I have sketched)
to hold that, in the case of truth theories for set theories,
we should embrace stronger ontologies as we embrace stronger
ideologies. I shall now examine these reasons.

As I have already observed, Parsons shows that a truth
theory for ZF plus ZF is of the same strength as the exten-
sion of von Neuman-Bernays set theory by allowing impredica-
tive class formulas into the set separation axiome; the
two theories are intertranslatable., Parsons considers this
to be eviderce that accepting the truth thecry for ZF in-
volves us in adopting also the ontology of NB+. However,
why thils should be so is not clear, It is certainly not
obvious that the existence of the translation shows that we

must adopt NB+ or even NB if we adopt ZF plus its truth
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theory. It is true that even in accepting the truth theory
for ZF plus ZF we will be constrained to embrace certain
entities which were not, in a certain sense, forced on us
by ZF alone. Thus, in ZF plus its truth theory, separation
is strengthened by allowing formulas composed out of the
satisfaction predicate for ZF to separate off sets. This
strengthening must be allowed if we are to prove certain
trivial facts about ZF, e.g., that all provable formulas of
ZF are true. So we can prove in this theory (which hence-
forth will be called ZFT) that certain sets exist which iIn
ZF alone we were unable to prove. However, the sense in
which we must accept new entities in this case is apparent-
ly quite different from the sense in which we must if we
adopt NB or NB+. For we consider the quantifiers of ZF to
range over all the entities which we can prove to exist
in ZFT; we are merely unable to prove in ZF that these
entities exist., In contrast, the second order quantifiers
of NB or NB+ range over entities that seemingly could not
be in the range of the quantifiers of ZF, or ZFT.

Granted this difference between the theories NB and
NB+ on the one hand, and ZFT on the other, what are the
considerations which would lead us to adopt ZFT or NB or
NB+?

To appreciate the significance of this question, perhaps
it is best to consider the consequences of the view that

since we should adopt ZFT, we should admit also NB or NB+.
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On this view, we do not by adopting ZF alone succeed in
having our quantifiers range over all collections; the
proper classes of NB and NB+ elude our attempt to quantify
over all collections. And a further consideration makes
our predicament particularly vexing. It would appear that
the same reasons which led us to adopt NB or NB+ will lead
us ultimately to adopt a larger ontology than that of NB(+).
For insofar as the truth theory for NB(+) is a theory we
should accept, there is again the issue: should we accept
the extension of NB(+) by collections over all
the classes of NB(+), or NB(+) plus the truth theory for
NB(+)? Evidently, if there was reason to opt for NB(+)
over ZFT, this reason will suffice to motivate the higher
order extension of NB(+) just described as the appropriate
choice, Since the truth theories which we should adopt are
openended, and since in the train of each new truth theory
woiild come an expanded ontology not in the range of the
quantifiers of the previous theories, the range of our quan-
tifiers seems to be openended. It is this situation which
leads Parsons to suggest that the quantifiers of set theory
might best be understood in a quasi-intuitionistic manner,
It behooves us, then, to see how cogent are the reasons
for choosing NB or NB+ over ZFT at the very onset. I
shall argue that for one with strong platonist leanings,
there is no compelling consideration to prompt the adoption
of NB or NB+, or rather that there is none arising out of

the adoption of ZFT.
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The platonist usually believes that we can use our
quantifiers to take on any colleccion as a value, if we
so intend our quantifiers. For the domain of all collec-
tions is a well determined totality which exists independent-
ly of us, and insofar as we can succeed in referring to
mathematical objects at all, we would seem to be able to
talk about everything in this totality at once. There are
those philosophers, for example Jonathan Lear> and Parsonsé
who assert that we cannot quantify over all collections be-
cause we cannot have certain kinds of intentions towards
all collections, and failing these intentions toward a
collection we cannot have it as a value of our variables,
Againsc such a view I will argue at a later time. I will
now deal with the question whether a standard, staunch
platonist who wants to maintain that we can make our vari-
ables range over all collections should be moved by consid-
erations coming from truth theories to give up this posi-
ticn. I think not; let me explain why,

I shall begin by showing in some detail what ZFT is
like, To start with, one adds to the language of ZF a dyadic
predicate 'Sat(x,y)'. One then defines satisfaction in ZF
inductively thus;:

1) ¥sV¥n ¥i¥j {n =%/ & X' =5 ( Sat (n,$) e €3); € ;)

2) Vs ¥n (n= =@ — (Sat(n,s) © = Sat (4 5))

3) Ys¥a (nz"Q, v @' = (Sat (w,s) e (Sat (o) v Sat (¢, H))

4) \fs¥naVi (n= '3x°~qt"-> CSat(n, )€ Bs'=s excepk; possibly)
at te it glace & Satly, <))

5\ YwnVs (Sﬁt‘\'b\,ﬁ") n s fhe Gode\ # of adtorwmuly of ZF‘\
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Inasmuch as we are already committed to ZF, we can consider
the clauses of this inductive definition of satisfaction to

be added as axioms to ZF. As usual, truth is defined for

any closed formula ¢ as follows: ¢ is true if there exists

a sequence s such that Sat (s,9¢ ). However, we should

note that this system just as it stands is inadequate to

prove certain elementary facts about ZF: e,g., that all the
theorems of ZF are true. To prove these facts, it is necessary,
as I have previously noted, to allow formulas in which the Sat
predicate appears to be used in the axiom schema of separa-
tion. Now is there any way of justifying this further ex-
tension of ZF? Moreover, in order to show even that all the
Tarski biconditionals are provable, we must permit use of
mathematical induction with formulas built up out of the Sat
predicate: how is this justified? Parsons finds this second
question difficult, As it turns out, there is an important
connection between the two questions,

Let us deal with the first question; this will lead
naturally into a discussion of the second. I am persuaded
that, if we allow the Sat predicate in separation, it is in
virtue of a certain kind of mathematical induction involving
the Sat predicate that we do so, For, as I shall argue,
there is a use of mathematical induction that justifies the
belief that Sat is a well defined predicate; and a predicate
may be employed in separation just in case that predicate is

well defined. This last claim warrants some explanation,



In order to permit a predicate in separation, it would seem
enough that the predicate is used so that it applied deter-
minately to each object in its domain. That is, we must
assure that its usage is not such that there is an object

of which the predicate cannot either be said to apply or
said not to apply. That this condition should suffice
comports well with our intuitions about sets. In ZF, once

a set appears at a certain rank, all of the subsets of that
set appear also, and any formula of set theory, even one in
which there are parameters and unbounded quantifiers, can
separate off a subset of that original set; or, more pre-
cisely, such a formula will allow us to see that this subset
must exist. Because of what Paul Bernays has called the
combinatorial nature of sets (whereof more later), we can
see a subset of a given set must exist, so long as we can
conceive some series of ''decisions', putting members in

and excluding members from the subset., This series must,

of course, be consistent and apply in a determinate way to
each object in the original set. There are predicates of

ZF that contain unbounded quantifiers for which nothing short
or checking the entire universe of sets will allow us to
determine whether they hold of a particular set., Nomethe-
less, since the formula is used in such a way that for every
value of the free variable it is fixed whether it holds or
not, we can take that formula to provide decisions about

each member of the starting set whether or not it is to be in
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the subset; hence the subset should be said to exist.

Now there is nothing special in all this about the
formula that performs the separation being a formula of set
theory. Any formula that made these decisions in a similar
fashion would cut off subsets alsn, In particular, then,
if the Sat predicate is thus well determined in its applica-
tion, it too should be allowed in separation. Some predicates
do occasion doubt as to how satisfactory they would be in
separation, because we lack confidence that their usage is
determinate. Later in this paper I will discuss in some
detail a certain predicate 'R(x,y)' that is to be true of
each nonempty set and precisely cne member of that set,

There I argue that the predicate is not so definite in its
usage that we can really be said to pick out a unique inter-
pretation for it. For this reason, 'R(x,y)' would seem
unsuitable as a predicate to be used in separation (in

fact, it seems unsuitable as a predicate to be used at all,
as I shall later urge).

I shall deal shortly with the question: why believe that
the Sat predicate is well determined? But first, note that
it is this question that should occupy a philosopher concerned
with a '"scientific" definition of truth, and not the question:
Can we eliminate semantical notions? What Tarski showed in
CTFL was that semantical notions, for certain languages,
could be done away with in favor of set theoretic predicates

along with the primitive predicactes of the language in question,
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Our confidence that these set theoretic and primitive predicates
are well determined, transfers onto the notions of truch and
satisfaction, which are explicitly defined in terms of these
predicates. But there should be nothing suspect about semanti-
cal notions that cannot be eliminated, so long as we have
some sort of guarantee that the notions are well determined:
defining semantical in terms of set theoretic and certain
primitive notions is merely a special way of obtaining this
guarantee.

We can show that the predicate Sat is well defined, if
we permit mathematical induction on the Sat predicate. To
allow this, however, is somewhat problematic, for induction
on a predicate is usually warranted only on predicates already
secured to be well defined. Now I think there is a circle
here, but a benign circle. It will be helpful here to pre-
sent in some detail this proof that the predicate is well
defined.

The Sat predicate is intended to be implicitly defined
by the axioms in which it occurs, Ordinarily, to demonstrate
that a predicate occurring in such axioms is indeed implicit-
ly defined, one presents a certain kind of uniqueness proof.
First, one shows that the predicate has at least one extension,
and then that it has at most one extension. But showing a
predicate has an extension usually comes down to showing
there is a certain collection. This collection is such that,

if its members are taken to be precisely those objects that



satisfy the predicate, then the axioms in which the predicate
occurs are true. Likewise, proving that a predicate has at
most one extension is to prove there is at mcst one such
collection. TIn the case of the Sat predicate presently under
examination, however, neither of these things can be demanded:
for precisely what is at dispute is the existence of fhese
collections. This does not mean there is nothing left to
hope for. One can still prove that if Satl and Sat2 are two
predicates that satisfy the axioms set forth on page 20, then
(x) (y) (Satl(x,y)6—+Sat2(X,Y)). One can prove also that
whatever we would want to satisfy the Sat predicate does.
Formally, this latter is just to show the Tarski bicondi-
tionals for all formulas of ZF are provable. Let us turn
to these proofs,

First, to show that (x) (y) (Satj(x,y)¢—Sat,(x,y)).
We use induction on the complexity of the formulas ¢. Suppose
¢ is of the form 'x;_ex; and sat; (’xiexf, s ); since axiom
(1) on page 20 holds of Saty, (s);€ (9);. But this same axiom
holds of Sat2 also; hence Sat2 ('x;ex;,s ). Symmetrically,
if Sat, ('xacx{u s ), then Sat (’xierfn s ). The inductive
cases run just as smoothly, If ¢=-¢'. Satl ('—-?’", S$) &

—Sat; ("4’", 5) € = Sat, ("7, s) & Sa'!',\(""‘l”, s)

TS lf: ¢vY, , Sq‘t,('d’"' s) & Sa‘i“(’%?,s\v Sat, ("q:’g)(-a

¥ Seb, (W 8) v Sat, (9,7, sV > Sat, (97, <)

T = 3@, Sat, (8, ) e> Asxs Sat, (¥ ) € I'gs Sat (W, s) >

. & 5‘\‘*‘..("{!', 8)
The demonstration that the Tarski biconditionals for
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all formulas are provable falls out directly from the
inductive axioms for Sat., For atomic formulas, the Tarski
biconditionals are provable, because it is precisely this
that (1) states. The inductive cases are only slightly
more involved. Let us handle just the quantifier case. So

Y(s;,, 840, ,S
let ¢=3:.’.LP . Then, by inductive hypothesis, - Vs <Sq“.<,.4’.: ;)’J‘I\ ">

So, YVs(z 5’-_:,:— S Sqf‘(_’l‘m, <) ﬁgs'&:g */J(Sj.,su, S But this

is equivalent to: Vs (3‘5”—2-’8 Sat ("'/’, sYer Fx; ‘P(SJ”SJ,‘...,X;’.. ' g:‘")
where (= |, , some K£=n. But by axiom (4), |7 St (Ta ¢ s)e? 3s 5 Sty
Hence s (Sat Lf_aij: Y Ixe (s_',,) Siay e, X, gJ"\») which was to

be proved. By induction, we may now conclude that all Tarski
biconditionals are provable.

The inductive proofs above are quite trivial, just as one
would anticipate, for they reflect exactly the inductive
definition of Sat. As I have remarked, ordinarily one would
hesitate to admit induction on a predicate not -
known beforehand to be well defined; but in the case of a
predicate inductively defined, it does sometimes seem permissible,
For accepting the inductive definition of a predicate and
accepting these particular inductive proofs using that predi-
cate seem to be two aspects of the same intuitive insight.

This insight is the recognition that, if a predicate is
inductively defined, then there is just one predicate thus
defined,

At all events, the proofs above do at least serve as

some kind of formal reassurance that the Sat predicate is well
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defined. Certainly, things would be less propitious if no

. ./ .
such proof were forthcoming. In the case of RC&yﬁ there
is indeed no such proof to be found, and our confidence that
the predicate is intended '"uniquely' by us is thereby under-
cut, along with any belief that induction involving this
predicate is appropriate,.

What does Parsons have to say about the issue: how can
we justify mathematical induction involving the Sat predicate?

What seems to be required here is that definitions

by induction on the natural numbers should be understood

and accepted directly or explained by an argument not of

a second order character. The first course is certainly

conceivable and seems a reasonable course in dealing with

a single inductive definition such as that of satisfaction,

However, it renounces the attempt to state the principles

involved, and it is hard to see how to do that without

quantifying over properties or classes or related entities
such as propositions or proofs. It seems to me that

there might be some alternative that would use the no-

tions of meaningfulness and truth in a way different

from the usual uses in formal semantics, in that their

extensions would be gradually constructed rather than

being definite for a given context.’

This passage is not without its difficulties in interpreta-
tion. The penultimate sentence in particular is ambiguous.
When Parsons writes 'it is hard to see how to do that . ., .'
does 'that' refer to the renouncing of the attempt to state
the principles involved, or the attempt to state the principles
involved? 1 suspect that Parsons intends to say only that
the attempt to state the principles involved requires talk
about properties, classes, propositions, or proofs. But then
Parsons must be taking it as obvious that to renounce the

attempt to state the principles involved is to do something
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inappropriate; for at no point does he take further account
of the possibility of justifying inductions directly., Since
an obligation to state the principles involved seems so
little obvious to me (indeed I think that, strictly speaking,
there are no such principles), I believe it best at least to
consider the alternative interpretation of the sentence,

So, for the moment, let us take the sentence in this alterna-
tive way.

On this interpretation, Parsons thinks that the obstacle
to accepting directly the inductive definition of satisfaction
(or, presumably, the inductive definition of anything) is the
difficulty expressing certain principles which are implicit-
ly renounced. It is not clear, however, that in accepting
directly induction on natural numbers, we are somehow con-
strained by that very act to renounce the sorts of principles
Parsons claims we are. Presumably, in directly accepting
induction on natural numbers for particular predicates, we
are doing something entirely positive. We are not in the
act icrself claiming implicitly or otherwise that, e.g., we
cannot state that induction is allowed on any class (in the
sense of NB or NB+), as Parsons seems to intimate. Indeed
there is nothing about our position to require us to make such
a claim at any point., Quite to the contrary, our position
would be one in which we would not talk about classes (or
"related entities'") at all, Rather we would largely restrict

our comments to those things which we allow to exist, viz.,
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sets. If we were ever to talk about classes, it would be
in the same spirit that one might talk about Pegasus or
phlogiston even when one does not believe such things exist,
It is especially strange that Parsons should think that
we must renounce the attempf to state certain general prin-
ciples in accepting induction directly because he himself
shows very effectively that there is no formalization that
fully captures our intuitive idea of mathematical induction.
If there is no formalization, of any order, which can cap-
ture all of the intuitive idea, then there is no general
principle, one would think, that would express mathematical
induction as we {ntuitively understand it., But then in
recognizing that this is so, we do not somehow embrace or
even fail to embrace a general principle which supposedly
would capture mathematical induction; we are in the course
of perceiving that there is no such general principle.
We cannot be renouncing the attempt to state the principles
involved when our very stand is that there are no general
principles involved, hence none to renounce the attempt co
state, Our intuitive concept of mathematical induction is
openended; given any formulation, there is a property not
expressible in that formalism for which we would also allow
mathematical induction. Granted this, we must accept the
different versions of mathematical induction theory by
tl.eory, not all at once, When we license mathematical

induction on the Sat predicate directly, we are merely taking
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one of the never ending steps in this theory by theory
enrichment of induction,.

In the final sentence in the passage from Parsons, he
suggests there may be a way to justify induction without
second order reasoning: evidently, by somehow having the
extension of the truth predicate gradually constructed;
Parsons says nothing more about what this possibility might
come to. I confess to being unable to understand this
alternative well enough to pursue it further. For my
purposes however, it is not important that I do pursue it.

It is enough that Parsons' misgivings about accepting induc-
tion directly do not appear well founded. For the "justi-
fication" I have set forth for induction on the Sat predicate
is just that it is seen to be warranted directly, in a

sense. As I have already observed, however, this direct
warrant is unusual because it requires the Sat predicate to
be well defined, and, for a formal demonstration of this
latter fact, induction on the Sat predicate must be employed.
It is indeed the very presence of a circle here that inclines
me to say that we accept the legitimacy of both the inductive
definition of Sat, and of the use of induction on Sat directly,.

We have not so far been confronted by a knockdown argu-
ment that shows induction on a predicate cannot be endorsed
directly. But maybe to expect this is somewhat to miss the
point. Perhaps the idea is rather that there is a certain

artificiality in directly accepting such induction. Thus,
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conceivably, whenever we motivate, in the privacy of our own
hearts, first order induction, we invoke the existence of
subcollections of the domain of the quantifiers. We may

for the outside world expunge all talk of these subcollec-
tions; however, to ourselves, in understanding induction,

we may mutter: but still they must exist. Now I think it is
true that we sometimes do appeal to second order reasoning
in order to motivate first order induction; for example first
order induction in Peano arithmetic might on occasion be
secured in our minds by the recognition that the principle
of second order induction in second order PA (PAZ) is legi-
timate. However, the second order quantifiers of PA2 range
over entities of whose existence we feel totally assured;
hence, the naturalness of the transition to second order
reasoning does not seem to count for much,

But the motivation of first order induction for the
formulas of ZF does not appear to involve appeals to higher
order reasoning. To see this, it is illuminating to consider
how mathematical induction is proved for the formulas of ZF,
The proof that induction holds for all formulas of set theory
is brief enough to include here. What is to be proved is
that, for any formula ¢ in the language of ZF, (¢(0) &

W& (% 1S an inteqer = (Px) — POt W (x 16 an mieqer - ¢()<)))
Well, suppose not, for formula ¢. Then consider A={x|xis an
integer&“¢‘&3 . By foundation, there must be a minimal x

in the sense of in this set, Since the ¢ relation among
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numbers is just the & relation, we have picked a minimal
such x in the sense of € also. Clearly this x is not 0,
since by hypothesis gko\ . Hence, x = y+l1 for some y.
Since y < x, y is not in A. So ¢¢), But gy)->¢l). So ¢é<).
Contradiction, since X€A.

Is there something wanting in this proof? If, in some
corner of our minds, we always sought second order reasoning
when induction was being justified, we would surely not be
altogether comfortable with the proof just as it stands.

For the proof has an entirely first order nature. One
possible point of weakness in the proceedings might be
simply this, The first order principle of induction, even
to be asserted, requires the assertion of an infinite

number of formulas at once, one induction matrix for each
formula of set theory. Being finite beings, how can we do
this? And if we can do it, is it not because we see each

of these instances as following from the second order prin-
ciples cf induction, which, of course, can be stated in a
single sentence? I fail to be convinced by this line of
argument. (G. Boolos has an unpublished paper that
addresses, among other things, an issue related to this sort
of issue. My objections on this score owe much to his argu-
ments there.) Consider the first order schema /oq((:x - F,‘)\ .
Suppose I have a particular language at hand, and I wish to
assert at once all of the instances of that schema in that

language. T know what all the formulas are: I know what it



-33-

would be and how to assert each individual instance; I
also desire to assert each instance, and, finally, to
assert all the instances at once, What could prevent me
from doing this last?

I may further recognize that ’Q()(Fx-»l:x‘)‘is valid.
Does my insight that this is so depend in any way on an
implicit acknowledgement that{F)e)(Fx —» Fx) is valid? I
see no reason to think it does. For there is nothing
peculiarly collection-theoretic in my intuition that
‘@(Fx » Fx)' is valid. Thus, it is not that I first
set before my mind all subcollections of the diverse
domains for the variable, and then observe that if x
is some such collection, it is in that very same collection,
Now if there were some use of the combinatorial nature of
such collections tacit in my intuition that ‘(X)(Fx = Fx\\
were valid, then I would indeed be resorting to the second
order version to underpin this intuition. However, no such
use slips in, as far as I can see. Rather, there is noth-
ing more involved than the characteristically boolean
properties that predicates have; in this case, the property
is particularly trivial: viz., if a predicate holds of an
object then it holds of that object, It is true that
recognizing this schema to be valid may oblige us to make an
extensive survey, of an infinite number of first order
predicates, and perhaps this is thought to be problematic.

But it is no more problematic than the alternative, which is



-34-

to survey an infinite number of subcollections of the
domains.

Let us return to the case of induction for the language
of ZF, and note the parallels. We of course have a clear
idea of what a formula of ZF is; we understand and wish to
assert the induction matrix for each formula, for we see
they each hold. Why can't we assert them all simultaneous-
ly? There should be no difficulcy here, if there was none
for ‘()(Fx— F¢). What, then, about motivating first order
induction: does that involve the second order version? As
with the intuition that ,(X\(Fx~>Fv)‘is valid, there appears to
be no essential use of collection theoretic reasoning.

For each individual formula of set theory, we can run through
the proof stated above, and see that it applies, and that
therefore the induction matrix for that formula holds. But
we can also survey all these proofs at once; or at least we
can if we can survey all of the relevant subcollections of
the domain, as we would have to if we were to appeal to

second order induction.

'to

'All this may be well and good,' one might demur,
motivate the use of induction for formulas of ZF, But these
formulas are significant independently of the use of induction
on them., The Sat predicate is not so blessed; precisely its
significance is in dispute.' Now certainly there is this

important difference between motivating induction formulas

of ZF and doing it for the Sat predicate. But the point is
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that there is no precedent for turning in the direction of
second order reasoning to motivate induction on the Sat
predicate; hence we should not apriori expect the justifica-
tion to come from that quarter.

Of course, the Sat' predicate is special, being induc-
tively defined in the way it is, and this may call for
second order reasoning in its case, but the intuition under-
lying our endorsement of the Sat predicate as well defined
does not appear genuinely collection-theoretic. Here again,
no strictly combinatorial principles seem to intrude, To
secure this claim, consider a typical inductive definition.

Suppose I inductively define formulas in the proposition-
al calculus. I say that 'p', pl', 'pz',... etc, are all
formulas; further, iftrl, and 4?2 are formulas, so are
'—LP‘-" r\ﬂ vq»’;' and rLr' g,q)‘" ; finally, nothing is
formula unless obtained by one of these steps. To under-
stand this definition, we may imagine what may he metaphori-
cally described as a certain infinite process. This process
begins with the sentence letters 'po', 'pl', ..., etc,'
from these, it goes on to create new formulas, e.g., ‘(p,v 95)‘)
ﬁ-Pq,\; from this stage, it advances to generate still
more formulas, e.g., '('PH,V(P.,V p‘\\; and so forth., Now
suppose we¢ come across some object, say Y*puv (pov\\\
and we want to determine whether it is a formula, First, we

check that it is built up from a finite number of occurrences
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NNy .
,&,“‘ . . It is; so we check

of 'P;"PJ...,'V
whether it is ever reached in this infinite process. Well,
we may reason, if it were reached at some stage, then, since
'v' is the main connective, at the previous stage'-p ' and
'(?&’)' must have been established to be formulas. But let
us examine '(p,v)'- At what stage could this have been
reached? As before, formulas with 'v' as the main connec-
tive must have a wff on either side of them '(@,v)' does not,
Hence this expression is not a formula; but then neither is
f— PV (ng\\‘. We obserxrve that this method applies for
any object, so that it will determine whether or not that
object is formula.

Now at what point, if any, is collection-theoretic
reasoning employed in this definition, or in seeing that
the definition works? Let us examine the important steps.
No assumption is made that, at the start, 'po‘, 'pl', 'pz’,
etc., are all contained in some collection. The definition
could just as easily have begun by letting, say, each of the
ordinals be a sentence letter; this sequence we would have
comprehended quite as well. When we set before our mind
this infinite process, it is not that we must suppose there
is a collection that corresponds to the completion of this
infinite process, gathering up all the formulas generated

along the line., It seems unnecessary also that at each stage

on the way there be a collection that contains all the formulas
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generated so far. Indeed, it strikes me as no more obligatory
to suppose that for each of these stages, or for the completion
of all the stages, there be a collection of the formulas obtain-
ed at those points, than it is to assume that the iterative
process in set theory must be captured by some collection,

Finally, consider the insight that the definition works.
Take an arbitrary object. Whether or not it is built up of
a finite number of occurrences of '—\, ’V\, ’5\, ’Po\ ,’P:,,P,\ etec,,
is surely not something that entails second order reasoning.

If it is so constructed, the steps required to reduce it either
to subparts that are not formulas, if it is not a formula, or
to sentence letters, if it is, invoke nothing collection-
theoretic. And neither, it seems, does the insight that this
method does the job for any object;

Now the inductive definition of Satisfaction is really no
different from this in its motivation. The first step differs
somewhat, inasmuch as there are countably many sentence letters,
but more than set many pairs for which the Sat predicate holds.
But this inessential divergence can be remedied by taking, as I
suggested, all ordinals as sentence letters in the inductive
definition of a formula,

Enough, then, of all this. Perhaps there are other reasons
for thinking that accepting ZFT is tantamount to accepting
NB or even NB+. I shall present another possible defense of
the view, but it will take some work to motivate, We know

that for any first order theory which is consistent, there is a
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model in the natural numbers; this is in essence the content
of the Lowenheim-Skolem theorem. But if this is so, how is
it that we succeed in picking out sets as the domain over
which our quantifiers range, and not numbers as this model
would provide? Moreover, why is it that we do not take the
Lowenheim-Skolem theorem as a reduction of sets to natural
numbers? An obvious response is Quine's: we do not effect a
genuine reduction because there is a serious price paid in
ideology for the savings in ontology. No matter which model
of ZF with its domain consisting of the natural numbers we
choose, we have the following predicament, There will be
relations among the numbers that are, in these models, the

interpretations of formulas in the language of ZF, yet are not

expressible by any formula in the language of arithmetic. Thus,
granted cthat the ideology of ZF must be considerably more
powerful than that of arithmetic, why think that we can get
away with a weaker ontology merely by pointing to the conclu-
sion of the Lowenheim-Skolem theorem? Isn't to embrace the
stronger ideology, in effect, to embrace the stronger ontology?
Quine puts the point this way:

Blanket pythagoreanism on these terms is unattrac-
tive, for it merely offers new and obscurer accounts
of old moves and old problems. On this score again,
then, the relativistic proposition seems reasonable;
that there is no absolute sense in saying that all
the objects of a tihleory are numbers, or that they are
sets, or bodies, or something else; this makes no
sense unless relative to some background theory. The
relevant predicates--"number", ‘'set', "“body'", or what-
ever--would be distinguished from one another in the
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background theory by _the roles they play in the
laws of that theory.

Quine himself insists that a proxy funaction be available
for there to be a genuine ontological reduction, and this
clearly is not present in the case of the purported reduction
of sets to numbers. (There are reasons to doubt that this
requirement is sufficient, however, as I shall argue later
in the paper.)

The same sorts of considerations that vitiate any attempt
to reduce sets to numbers might be adroitly parlayed to try
to show we are committed to KB or even lB+, For the ideology
of ZFT, to which we are committed, clearly outstrips that of
ZF by itself. There are relations expressible in ZFT not
expressible in ZF alone; viz,, those which involve the notions
of truth or satisfaction. Granted this increase in ideology,
it is not implausible that it actually commits us to a stronger
ontology. And since there is a translation from NB(LB+) into
ZFT, embracing the ideology of ZFT is in effect to embrace that
of NB(NB+). But if we have NB(NB+) as our background theory,
or something that it is translatable into, namely ZFT, we
appear to be embroiled in the universe of NB(NB+). For, to
employ Quine's point, there appears to be no absolute sense
in saying that there are, or are not, proper classes; from the
standpoint of NB(NB+) as a background theory, there of course

will be,

The reader has surely already noted the obfuscation present
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in this argument as it stands. In essence, the argument pro-
ceeds thus: to be committed to the ontology of a theory is
nothing more than to be committed to its ideology; we are
committed at least to the ideology of ZFT; but NB(NB+) is
translatable into ZFT: therefore, we are committed to those
entities to which NB(NB+) would commit us, However, the argu-
ment elides the critical question: given that WB(MB+) and ZFT
are translatable, the first into the second, in the sense in
which they are, which ontology should we accept? Evidently,
the idea behind the argument is that, if we accept a theory,
we are committed to all the entities that that theory, or any
theory translatable into it, alleges that there are.

At first blush, this might appear to fly in the face of
what goes on in the case of ontological reduction. For pre-
sumably when we reduce one ontology to another there are two
theories, one of these translatable via a proxy function into
the other, and the former theory claims there are certain
things the latter does not., We consider this translatabi’ . -
of the one into the other to show that we can dispense with the
one ontology in favor of the other. But in fact, it is not
clear that this is the best way to understand ontological re-
duction. Let us consider a paradigm case of ontological re-
duction, the reduction of number theory to set theory. Now
it will be convenient, for later purposes, to transform the

reduction into one between two equivalent theories. So construct
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a two sorted theory, in which one kind of quantifier ranges
over numbers, and the other kind of quantifier ranges over
sets. That part of the theory which has quantifiers over

sets would have the power of ZF; the part which has quantifiers
over numbers would be of the strength of PA., In the two sorted
theory, '3 € 5' for example would not be meaningful; while it
would be in the proposed theory to which the two sorted theory
would be reduced, ZF. For all that, however, under the usual
translation the two theories would be equivalent. So here we
might seem to have a case in which there are two intertranslat-
able theories, one of which holds there are things which the
other does not. And we surely consider this an ontological
reduction.

But is there good reason to say that the two sorted theory
claims that there are certain entities which ZF does not? May
we not take the result to be precisely that numbers, over which
one set of quantifiers in the two sorted theory range, just
are sets? To put it differently, the results might be under-
stood to show that any belief we might have had, while accepting
the two sorted theory, that numbers were distinct rrom sets, is
mistaken; in fact numbers are nothing but sets. (Of course, if
we had had this belief, it is not something that the two sorted
theory alone commits us to or should persuade us of.,) The pro-
9

posal here is not that numbers are objects in the sense of Frege,

Rather, the point is that in committing ourselves to ZF alone,
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we are not escaping commitment to numbers, In holdihg ZF,
we are as much committed to numbers as we would be in
adopting ZF+PA; this is what the ontological reduction is
taken to show,

Assume, then, that ontological reduction between
theories involves precisely a demonstration that certain
entities of sort A are really certain entities of sort B,
Where does this leave us with regard to NB(NB+) and ZFT?
It might appear to show that we are not avoiding the
ontology of NB(NB+) by accepting ZFT; for the ontology of
NB(NB+) might somehow be the ontology of ZFT.

Although the suggestion that NB or NB+ can be reduced
to ZFT may seem rather bizarre, it will be instructive to
deliberate this question., Aside from its direct consequences for
the question of our obligation to admit proper classes, we shall
see that, in considering it, there is much to be learned that will
bear on what we have already covered. Moreover, while the proposal
may appear at best something of a curiosity, it is difficult to
abjure on principled grounds. At any rate, this proposal shall

occupy us in the last chapter of this thesis,
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CHAPTER II
TRUTH THEORIES AND THE HIERARCHY OF V

1

In '"Sets and Classes,''™ Parsons observes that there

is a translation between NB+ and ZFT.* What Parsons calls
NB+ is not what is usually intended by the term., Ordinarily,
by 'NB+' is meant Kelley Morse set theory: the extension

of NB obtained by allowing bound class variables in the

class existence axioms. For Parsons, NB+ is the theory got
by extending the replacement axioms (for sets) to include
those with bound class variables. This is a much weaker
theory than Kelley Morse set theory; how much weaker may best
be seen by a proof that the translation from NB+ (as Par-
sons intends the term) to ZFT fails as a translation from
Kelley Morse set theory into ZFT, The translation Parsons
has in mind is this. Take a formula of NB+. We can con-
sider "(VY)' to be defined as '~(3Y)-'. Now wherever
AY(-+Y ') occurs, replace it with3,3Is(:-+ §ulSat(nsi - )
sV is the sequence just like s save that u is sub-
stituted at the Oth place, Eliminate the abstract, which is
virtual. This formula will be true in ZFT if the original
*By ZFT I mean what I meant in the first half of my paper.
Take the language of ZF; add a two place predicate Sat(x,y).
Adjoin the ZF axioms which define inductively satisfaction

for the formulas of ZF. Finally allow formulas built up out
of Sat(x,y) to be used in replacement axioms.
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formula was true in NB+ (on a standard notion of truth for
NB+) .

Suppose the same translation worked for Kelley Morse
set theory. I claim the following is provable in Kelley
Morse:

1) AXVa ¥s — LW (v e X &> SAT (w, s N1

Here SAT(x,y) is a predicate of NB+ (hence of Kelley Morse)
that expresses satisfaction for formulas in ZF, obtained in
the manner Parsons suggests. The translation of 1) is

2) gn.:‘ls' VY Vs — LYu (Sat (m.,g“"")e—) SATY (m, s )]
where SAT* is the translation of SAT. Hence, by quantifier
logic there is a n,, S5, U, such that

3) Sat (wo, $,Y*) &5 SATY (wn,, s2%)

But consider: in Kelley Morse all the Tarski biconditionals
for formulas of ZF are provable, and since Kelley Morse is
not &-inconsistent, n_ must be the godel number of a genuine

)
formula, say @. Hence,

o,V
4) SAT(V\O'SO' °) & CP("O) Xi,y, x'(/uo/s‘:l'”l‘sk)
is provable. But its translation 5) should then be provable
in ZFT.
* o,v,
5) SAT (“o,so'°)HC€("¢»"£»"';"M/UM‘i:"'/‘h)

Yet in ZFT, all Tarski biconditionals are provable, including

6) SQ". (“., SOO'UO)H ‘e(xo’ x(:l ..,’ x“/uo' s‘v.,'..’ S“)
But 5) and 6) give us

D SAT*(no, s3'Y°) & Sat (w,, s2%)

which contradicts 3).
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It remains to show that 1) is provable in Kelley
Morse. 1In essence this is just an application of Cantor's
proof that there are more members in the power set of a set
than in the set itself,
Proof of 1). Suppose to the contrary that
8) VX Inds [(v)(ve X <3 SAT(n, 571
Define A thus:
9) A= $4ms>] AT (W CSAT (n, ¥y ve) & <D EY) ]
A must exist in Kelly Morse. By our hypothesis, there is a
n,, and a s1 such that
10) Vo (ve A €3 SAT (n,,s°))
Suppose <mn,,s,5>€A, Then 3Y LVu (SAT (V\.) S,o'“)(—-) UGY)A-OMS,)‘Y.:
But any such Y must, of course, be identical to A; hence
(n,,s.)ﬂ ' . Suppose now that {w,s% # A. Well then 8)
must be true by EG on A. But then {w,,s>€A. Contradiction.
We can see how far short of Kelley Morse set theory is
ZFT (and NB+). Now let us consider the following. Suppose
we start out with ZFT, recognize its equivalence with NB+,
and then go on to adopt NB+; next we establish a truth theory
for NB+, recognize its equivalence to a further super-class
theory, and suppose we iterate this process as often as we
see fit. What will the structure we get by these means look
like? We shall see that it bears no great resemblance to a
continued iteration of the ranks of V. Reflect on the implica-
tions of this fact. Parsons' argument that we cannot quantify

over all sets might be put thus. We seem to need a truth
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theory for ZF; but this truth theory requires for its
justification (or is equivalent to a theory which includes)
proper classes. But these proper classes are similar to

a continuation of the iterative hierarchy, Yet once we
introduce new ranks in the iterative hierarchy, we should
continue as the axioms of replacement and power set would
require, Isn't the most plausible way to make sense of
this situation to hold that our quantifiers never really
range over all sets, but only over Vg for someo(?

Parsons' argument is seriously undermined if we see
that the justification for a truth theory, even if it in-
volved us in proper classes, and superclasses, etc., at
no point involved us in a commitment even to one additional,
complete rank of collections, For then there is little
temptation to see the level of proper classes as a continua-
tion of the iterative hierarchy. And certainly there will
be no impetus to start applying the axiom schema of replace-
ment if even the level of proper classes is not a plausible
candidate for having been obtained (in part) by a full
blooded separation axiom. Let me explain this last point,
The principle which most clearly exhibits the combinatorial
feature of collections is the axiom schema of separation
(or, in a more powerful way, the axiom schema of replacement).
The power set operation by itself does not really provide us

with the combinatorial aspect, since the set of all subsets
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may be very small if we don't permit strong principles
for separating off subsets. Rather, the power set axiom
is best understood as merely a principle for iterating
new levels of sets. The axiom of separation arises from
the idea that a subset of a set should be held to exist,
no matter how the 'decisions' to include and exclude mem-
bers of the original set are made, so long as the decisions
are made for all members, and the decisions are consistent
(that is, there are not two decisions, one to throw the
member in, and one to throw it out). The axiom of replace-
ment is motivated by a kind of extension of this reasoning.
It has, I think, been insufficiently recognized to
what extent ZF embodies an iterative-combinatorial concep-
tion of set, and not just an iterative conception of set,
Thus as I have said separation and replacement can be
justified on combinatorial grounds but not on purely itera-
tive grounds. In addition the axiom of choice, while of
course independent of ZF, purports (rightly, I think) to
be justified combinatorially, and again is not justified by
the iterative conception alone. Similar points hold, I
believe, for higher axioms of infinity, e.g., the existence
of a strongly inaccessible cardinal. But more on this in
the next chapter of my thesis.
Now the extension of ZF, described above by proper

classes, then by super-classes, then by super-super-classes,
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etc., will never give us a full rank of collections at the
level of proper classes. What I mean by a full rank of
collections is that at least the existence of impredicative
classes should be provable; that is, that at least Kelley
Morse set theory be provable. Given that this extension
is so impoverished combinatorially by comparison to Kelley
Morse set theory, we have little reason to conclude the
quantifiers of ZF should be understood to range over a set,
For the next rank above the level of the quantifiers would
in this case include even impredicatively defined subsets
of the set which is the range of the quantifiers; the com-
binatorial feature of sets here would require that such sub-
sets would exist. But there is no impetus to think that
the collections we get by the iteration above described are
so closed, for their motivation is entirely different in
character; they need only provide a backdrop against which
certain truth theories may be developed. Since the combin-
atorial feature of sets is an entirely central one in our
conception of the sets in ZF, there seems to beno absolutely
compelling ground, deriving from our acceptance of this
hierarchy, to believe that the range of the quantifiers of
ZF should be construed as a set,

Let us see more technically what my claims come to.
Precisely, the third order theory we might adopt, in order
to have a theory that does for NB+ what NB+ did for ZF,

is this, The new, additional class axioms are all instances
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of ‘:\)('W'(‘(‘e e Q(Y‘))where @ is any formula of NB+,
X2 is a third order variable, and Yl is a second order
variable ranging over the classes of NB+. Now, if we

are going to prove that induction on formulas of this new
theory works, as we must if we are to prove, e,g., all
provable formulas of NB+ are true, then we must add the
following replacement axioms,

Vx Aty @ (x,v) > Yudv Wev Vy (€ (x,y) &> yev)

for all formulas @ of the new third order theory. Note
that we have this replacement axiom only for sets. We could
have thrown in a (kind of) replacement axiom (which just

amounts to a separation axiom schema) for proper classes as

well, thus:
Ve 3lv @Cx,v) =5 VUIV WKeU ¥y (@(x,y) 4> ye V)

X (ov, equivalently, - — Iy vy Vy (€(x,v) &> yev) )
where

is a formula of the new theory. This axiom implies, of
course, Kelley Morse set theory. But we do not have to add
this axiom to prove the semantical facts we set out to prove
in the first place; for the syntax of NB+ can be completely
coded up in ZF (in fact, in the set of hereditarily finite
sets). For this reason, to show that e.g. all provable
formulas of NB+ are true we need only the axiom of replacement
for sets (indeed, we need only the related axiom of separation
for subsets of e). If we were to adopt this axiom, it would

have to be for reasons other than those which originate from
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our desire for semantical theories,

We may develop fourth order, fifth order, etc.,
theories analogous to this third order theory. A natural
question to ask is: how high up do we want to have these
theories to be iterated? Presumably, as high as we want
to accept the corresponding truth theories. But how high
up is that? 1In the first half of my paper, I was cagey
about this issue; I intend to remain cagey. However, let
me note some extenuating circumstances for being this way.
To begin with, it is not clear that this question admits
of a definite answer; nor is it clear that if it did have
a definite answer that we would ever be able to know it,
Since it does appear that if we accept a given truth theory,
we will accept a truth theory for that theory, a definite
answer to the question must take the form of a least upper
bound on the levels of the truth theories we should (or
mighﬁ)adopt. Now perhaps there is no way we could give the
expression 'theories we should (or mighc) adopt' a content
determinate enough that such a bound could reasonably be
thought to be fixed., But suppose we did think such a bound
were determinate. We are all familiar with the arguments
that we may be like certain Turing machines, in the theorems
we can prove, but cannot know which Turing machines we
are like.2 A similar argument might show that, though there

may be a definite answer to the question of how high up we



51

can go with our truth theories, we can never know that
answer to be the answer,

One might hope thai.. even if there is no least upper
bound, or if there is one but we cannot know it, we can at
least know some upper bound. The level of the first uncount-
able ordinal might appear to be such a level. For it might
seem that we cannot continue beyond a countable level, be-
cause the natural way of doing this would require us to
embrace a theory with an uncountable language. But we can
understand only countable languages; hence the relevant
truth theory would be in an important sense unintelligible
to us. (The truth theory would have to have an uncountable
language if all the Tarski biconditionals for the languages
below the uncountable level are to be provable,) I am not
entirely convinced, however, that we cannot understand an
uncountable language as neatly formulable as this,

But in any case, it is fair to say that we cannot go
to a level so high that (speaking somewhat loosely) there
are more (cardinally) such levels than there are ordinals
in the range of the ZF quantifiers, Not, at least, unless
we have already determined there are more (cardinally)
ordinals than there are ordinals in the range of the ZF
quantifiers, For if we have never had any reason to believe
that there are cardinally more objects in the universe than

there are ordinals in the range of the quantifiers of ZF,



what reason could we have to iterete the truth theories more
times than there are ordinals in ZF?

At this point, observe what Kelley Morse set theory
does in one fell swoop: provide an ontology of objects
greater in cardinality than all the objects in ZF. It was
essentially a proof of this fact that showed the would-be
translation of Kelley Morse into ' failed. It is fairly
easy to see that, since we can iterate these theories only
as many times as there are ordinals in ZF, these class
theories will never commit us to more than the number of
objects in the universe of ZF.

These cardinality considerations suggest quite power-
fully how different is a commitment to the sorts of class
hierarchies that truth theories might seem to require from
a commitment to just one more full level in the iterative-

combinatorial hierarchy.

Another way to see the disparity between the combinator-
ial notion of collection and an essentially predicative notion
is to consider the following possibility, set forth by Parsons.
Suppose we take ZF, extend its language to include new primi-
tive predicates, and permit replacement for formulas built up
out of these predicates. We can then set up a class theory
which assumes the existence of a class corresponding to the
interpretation of each new primitive predicate, and to the

interpretation of each new compound predicate got by first
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order operations. Parsons says that unless we are engaged
in 'obvious cheating', such as postulating for each impredi-
cative class a new primitive predicate that will have that
class as its extension, he does not see how we could get
thus all impredicative classes,

Now the proof of the failure of the translation between
Kelley Morse and ZFT can be extended to a proof of something
much stronger; it can be utilized to show how obvious such
cheating must be: even if we allow as many new primitive
predicates as there are objects on ZF, and each of them has
a distinct interpretation, we cannot get from them all
impredicative classes, Hence, to cover all impredicative
classes in the manner Parsons outlines, one would have to
assume the existence of a syntax as grand in proportions as
the level of impredicative classes would be. What is
specially noteworthy about this fact is how quickly the
attempt to develop, predicatively, an impredicative class
theory runs aground, for one might imagine that it would
be in the realm of semantics that problems would first arise,
in particular with regard to the question of how we could
succeed in intending the primitive predicates so that their
extensions taken together, covered all impredicative classes.

Despite all I have shown, one might still argue thus,

The best way to take the new levels of collections in the



theories described before is to see them to be continued
levels in the iterative-combinatorial hierarchy. Meraly
because we cannot prove that any of these levels are full
levels does not mean we cannot extend our theories and take
them to be such. And taking the range of the quantifiers of
ZF to be a set seems neater than to adopt this somewhat
repugnant hierarchy of stunted ranks,

There is some merit to this argument, I think; but
I shall use the argument to opposite effect, For I intend
to show that it is not reasonable to commit ourselves to
proper classes of any kind, not even those of NB, But this

I will do in the last chapter of my thesis,
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CHAPTER III

For years, W. V. Quine has held that in view of
Russell's paradox, no one set theory should enjoy pre-
eminence. It is something of an embarrassment to Quine's
position that logicians are, on the whole, seriously inter-
ested in just one set theory, ZF (and its conservative exten-
sion, NB). One naturally expects the logicians' fascination
to be explained by a particularly compeliing notion of set em-
bodied in ZF. And one is not disappointed. This notion of set
has been described as the iterative conception of set. Now
while I agree that ZF expresscs an iterative conception, I am
persuaded there is another aspect of the sets of ZF not aptly
depicted as iterative. Following Bernays,l I shall call this
aspect the combinatorial. On iterative grounds alone, the re-
placement axiom, the separation axiom, the axiom of choice,
and possibly even the axiom of union are problematic. But the
combinatorial feature straightforwardly justifies these axioms,

Two axioms, the axiom of foundation and the axiom of
power set express that aspect of sets that I call iterative.
The power set axiom by itself epitomizes a very important
proper part of this conception, what one might term quasi-
iterative. The axiom of foundation constrains how it is that
sets can come to be. The core idea may be put in a metaphor:

if we can discern a set, we can set up a ladder to get to it.
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That is, metaphor excised, all the members of a set are
ontologically anterior to the set itself. Hence there can

le no set that has itself as a member, no set one of whose
members has it as a member, no set one of whose member's
members has it as a member; etc. More strongly, there is

no set with an infinitely descending €-chain, so thatu.exzexléxo.
This last principle is reasonable, since if a set depends for
its existence on its members, it seems unacceptable to shift
the burden without end: in time we must come to an object

that stands on its own. The axiom of power set does not

impose constraints, but rather provides for ¢he creation of new
sets from old; if we have a set, we can get from it the set

of all its subsets. Significantly, of these two principles,
the axiom of foundation was the later to be conceived and
admitted in the development of ZF. It is significant because
the axiom is purported to be the most decisive in ruling out
Russell's paradox, and is almost the soul of the iterative
conception. One can only wonder: if this axiom is so much
what ZF is about, what picture stood behind the set theory
proposel by Zermelo, before this axiom was even thought of?

For Zermelo's theory was only quasi-iterative: it sanctioned
the generation of powerful new sets from given sets, but offer-
ed no explanation of how the given sets came to be given.,
Moreover, in an even earlier prefiguration of ZF, the partial

system Cantor set out in his 1899 letter to Dedekind, not even
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the power set axiom is inrluded. Such considerations set

one directly to muse about what is really afoot in ZF. 1In
this doubtful state, it behooves us to look with care at the
historical development of ZF. For this history well reflects
the intuitive motivation of the conception of set in ZF,

One learns in philosophy classes, and in mathematical
logic classes as well, that it was Russell's paradox that laid
to rest the "logical" concept of set. On this concept, for
any predicate, there is a set that is its extension. [or
Frege's attempt to reduce mathematics to logic, Russell's
paradox was catastrophic; for though perhaps arithmetic did
not really totter, Frege's program certainly did. This con-
frontation between Frege's would-be reduction and Russell's
elegant paradox is fascinating--indeed too fascinating., For
the thrall it has exerted over philosophers of mathematics has
tended to obscure the paradox that I believe actually lies be-
hind the development of ZF., I am talking about the Cantor
paradox.

It should come as no surprise that it should be Cantor
who first saw what direction set theory should take, and that
he should isolate the paradox that was the source of the
difficulty with the "logical" notion of set, For fundamentally
Cantor was not engaged in some program in epistemology and
metaphysics, as was Frege; rather, he was trying to make out

what sets were. While the logical notion of set is rightly
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so called in the case of Frege, since he was preoccupied by
logical principles, for Cantor it is more befitting to regard
the unlimited comprehension axiom as formulating a naive notion
of set. Wrestling with this concept, he saw, quickly enough
in view of the subtlety of the issues involved, it was a no-
tion that could not be sustained, and must be replaced by a
more sophisticated notion. In reaction to Russell's paradox,
there is a tendency, quite natural if one is approaching the
unlimited comprehension axiom from Frege's point of view,

to ask the following question: Since Russell's paradox has
laid low the full comprehension axiom, how must we restrict
this axiom to get one that will not burgeon into a contradic-
tion, and yet will be as close an approximation to this axiom
as possible? This tendency is natural from Frege's point of
view, since for Frege the justification of the comprehension
axiom is chiefly logical, and one wants to save as much of
logic as one can. Quine, evidently, has inclined to view the
situation with the logical (alias naive) notion of set in just
this light, and has asked precisely the above question. No
wonder, then, that Quine's way out of Russell's paradox in NF
is to impose a purely syntactical constraint that seems to let
as many predicates appear in the compreheasion axiom as consis-
tency will suffer (and, in its first formulation, Quine's con-
straint allowed more) .

For Cantor, the chief antinomy to come to terms with was



59

not really Russell's, but one just a few steps removed from

it: If every set has less cardinality than its power set,

then the set of all sets, which is its own power set, must

have greater cardinality than itself. A natural response to
this antinomy (though probably not to Russell's) is that

there cannot be a set of all sets, because there are too many
sets. For a condition on a multitude being collected together
into a set is that it have a determinate number of members, a
fixed cardinality; but precisely this the set of all sets could
not have,

Now from Cantor's 1899 letter,2 it is clear that the
consideration of cardinality seemed to him decisive in deter-
mining whether a set exists. In the face of his paradox,
Cantor held firm on the following principles: a multitude is
a set if it has the same cardinality as a set; all sub-collec-
tions of a set exist as sets; the union set of a set exists,
These principles show up in ZF, of course, as the axioms of
replacement, separation, and union. What, if anything, do
these principles share? They are combinatorial,

What is it for a principle to be combinatorial? On the
finite level, combinatorics studies the number of elements in
certain sets, the relative sizes of various sets, the number
of all the possible permutations of a set meeting certain con-
ditions. In a word, combinatorics is concerned with issues of
cardinality, particularly as they bear on permutations of a

set, The last business with permutations epitomizes one
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feature that is to be transferred from the finite case to the
infinite. Bernays puts the point thus:
Passing to the infinite case, we imagine

functions engendered by an infinity of independent

determinations which assign to each integer an integer,

and we reason about the totality of these functions.

In the same way, one views a set of integers as the

result of infinitely many acts of deciding for eagh

number whether it should be included or excluded.
The axiom of separation is justified on these grounds: given
a set, for a particular member x, either ¢(x) holds or it
does not; this formula will ''decide" for it whether it is to
be included. But so also is the axiom of choice. Consider
this formulation of the axiom of choice: For any x, if x is
a relation with domain u, then there is a subrelation of x,
with domain u, which is a function, Why is this at all plau-
sible? We may imagine a certain series of independent "deci-
sions", one decision for each ordered pair in the relation x,
In this series, as it turns out, for each first coordinate in
some ordered pair in x, there is exactly one ordered pair with
that first coordinate decided to be in the subset of x. If
decisions to include and exclude members are independent of
each other and basically arbitrary, how could it be that there
would not be such a series? That we cannot define this series
by a separation axiom should not erode our confidence in the
existence of such a series.

Now it may seem that to assume such a series 1s at any

rate exactly equivalent to the belief in the axiom of choice,
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and so cannot justify such a belief., But this is to misunder-
stand how this consideration is intended to underpin the axiom
of choice. Mark here the analogy with the motivation of mathe-
matical induction. One often hears induction formulated in

the following way. If O has a property P, and if whenever n
has P, ntl has it, then all numbers have P, But in our more
reflective moments, we likely wish to rid ourselves of property
talk; and we certainly wish to extirpate the assumption that
corresponding to every predicate there is a property, for that
way lies inconsistency. Yet once we try to cast this principle
in some formalized language, we see we can never fully capture
the intuitive content of the original principle. Certainly

no first order formulation covers all of it, since for any
first order language, it is obvious enough that there will

be predicates not expressible in that language. And the

second order formulation is no better in this respect, inasmuch
as there are predicates, in particular the truth predicate of
the second order language, which cannot be expressed in the
second order language. And so on for even higher order lan-
guages. Does this mean that the principle as originally

stated cannot serve as a heuristic, motivating in a sense the
sundry formal extensions of mathematical induction? We might
try perhaps to salvage the full generality of the original
intuitive principle, without the imperfections of that principle,

thus: For any predicate ¢ in any language we find meaningful,
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if @ (0) holds, and if whenever ¢(n) holds, so does ¢(ntl),
then for all n, #(n) holds. But this principle is only as
transparent as the expression 'in any language we find mean-
ingful', and how to construe talk about all such languages

is a problem notorious for its intractability: the crew of
heterological paradoxes lurks here. So if we are to find

some way to indicate the generality of the principle of mathe-
matical induction, we must settle for something that is heuris-
tic, something schematic.

Now it is just such a role that the talk of independent
decisions plays, in suggesting one aspect of combinatorial
closure. If such discourse seems more nebulous than the in-
tuitive statement of induction, it is because combinatorial
closure is by its very nature a less tidy notion. An intui-
tive statement of a general separation axiom, e.g., for any
property P and any set z, there is a subset of z of precisely
those members of z that have property P, is in closer analogy
to the case of mathematical induction. But the essentially
non-predicative nature of combinatorial closure will not yield
a heuristic principle that can be as neatly formulated as
that for mathematical induction., Nor does this intuitive
statement of the separation axiom indicate its fundamental
justification. Such justification derives from the more basic

picture that lies behind the axiom of choice also.
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Go back, now, to the case of the axiom of choice and
the picture of the series of independent decisions that purports
to justify it. Asserting the existence of the series of
decisions, which was described before and which would justify
the axiom of choice is very much like assuming the axiom of
choice itself. But the overall picture does give us reason
to believe in the existence of the series. For it seems such
pictures serve not only to instruct, but also to justify, in
that the pictures enable us to motivate the axioms,

I should say a word about the axiom of union, This
axiom is one whose ground appears to be as much iterative
as it is combinatorial. For if at some rank we have a set,
then its members must all have been present at a rank below,
and therefore all its members' members present at even lower
ranks. If at each new rank we form all subsets of sets in
lower ranks, surely the union set will be there! But here,
as With separation, the catch is this: how are we to ascertain
what all the subsets of a set are? The point of calling this
principle is part combinatorial is well exhibited in an inde-
pendence proof for the axiom of union: for there what the
axiom would do is obtain a set of greater cardinality than
all the sets of the model. The independence proof is simple
enough, Let the model be the set of all sets which are here-
ditarily less than EL,in cardinality. Interpreting ‘€' as €,

all the axioms of ZF are true in this model, save for the
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axiom of union., For the set {En‘guwould be a member of
[ V)

the model, but its union, ELU, would not.

But what of the axiom of replacement? Here is a stick-
ing point for any purely iterative conception of set. For,
as Parsons has remarked, even if we allow that there are
ranks as high as each well ordering generated in the itera-
tive conception, we cannot get the generality of the axiom of
replacement. 1In due time, I shall challenge the claim that
the iterative conception can by itself support the existence
of ranks corresponding to such well orderings. But remark
that even on this generous interpretation of the iterative
conception, we see we cannot get the axiom of replacement
genetically; that is, given that we have iterated the ranks
of V up to Vg, there is nothing in the structure of Vg, no
encoded "information', that would lead us to conjecture ranks
as high as the axiom of replacement would furnish us., The
axiom of replacement permits us to focus exclusively on
cardinality considerations in postulating further ranks. By
'cardinality' here is not of course meant the existence of a
1-1 function, as an object, but of a functional, that is, a
formula F(x,y) of ZF such that (x) (E!x)F(x,y). Otherwise
the axiom of replacement would follow trivially from separation.

Since so much of ZF is not accounted for on the itera-
tive conception, should this conception of set be abandoned?

No:; supplemented with the combinatorial aspect of sets, it
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stands. On the combinatorial notion, as I am portraying it,
if there are not too many things associated with the members
of a given set, then all those things are bound up into a
set. And what is a straightforward way of making a restric-
tion on how many things per member there can be? By permitting
only one thing associated with each member. The idea behind
replacement is in a certain sense the converse idea of the
thought the Cantor paradox led to. The Cantor paradox
demonstrated there were too many sets for them all to be
collected into a set. This principle says that if there are
not too many members of a multitude, then that multitude is
a set.

Now the combinatorial principles are of course concerned
with issues of cardinality, and the axiom of replacement gives
guarantees of the existence of certain sets based on considera-
tions of cardinality. This suggests that the axiom of replace-
ment may be classified as combinatorial. But suggestion is not
enough; we want more feeling for how this picture works. The
reflections belcw may help here,.

The paradoxes occasioned our fall from Cantor's original
paradise. After this debacle, Quine has it, we can only
strive variously to recapture in our set theories what we
can of the formerly exalted status of the naive notion.

Now there may be some justice in the feeling that, after the

paradoxes, we are seeking to regain what we can, but not able
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to get everything. But only one such program appears to be
well motivated, that of Cantor and Zermelo. The idea of V

may be construed, somewhat quaintly, as a regulative principle;
V thus becomes a kind of tower of Babel, if not a paradise it-
self. Once cardinality was seen to figure so crucially in
sethood, the axiom of replacement was a first natural step to
restore some of the bygone strength to the new set theory.
Other such devices are the sundry higher axioms of infinity
that demand increasing height to the universe. These higher
axioms of infinity assert the existence of diverse sorts of
cardinals, for example, an inaccessible cardinal, a Mahlo
cardinal, a measurable cardinal, a compact cardinal, 1In all
such cases, the properties the cardinals are to possess are
generalizations of properties that @ has, So far, there are
no incompatible large cardinal axioms. But the fact that V=L
is inconsistent with the existence of a measurable cardinal
intimates this might happen. What this result suggests is

that the impossibility of a measurable cardinal in L is due

to the narrowness of L, inasmuch as L cannot contain a measure
for any cardinal. That is, 'There exists a measurable cardinal'
implies a certain kind of breadth to the universe as well as a
certain height, There is then the possibility that a new
higher axiom of infinity would entail a different, incompatible
filling out of the ranks of the universe, Such a possibility

indicates that the combinatorial notion of set is not entirely
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determinate; but this should not amaze after Godel's in-
completeness theorem.

The axiom of constructibility has to most set theorists
seemed a very implausible one. But to take such a view is
to have a peculiar idea of how the ranks of V must be fleshed
out., It is in essense a rejection of the notion that the
existence of a set depends in any way upon definability, and
is an embracing of the opposing, combinatorial picture, on
which sets will exist in as arbitrary ways as we can conceive,
Indeed, even the Continuum Hypothesis, which to Cantor and
Hilbert appeared clearly true, but just in need of proof, is
becoming ever more viewed with scepticism, Such scepticism
has its roots in the arbitrariness of hcw subsets of a set may
"come to be'". Thus Cohen has this to say:

A point of view which the author feels may
eventually come to be accepted is that CH is ob-
viously false. The main reason one accepts the
Axiom of infinity is probably that we feel it
absurd to think that the process of adding only
one set at a time can exhaust the entire universe.
Similarly, with the higher axioms of infinity.

Now #1 is the set of countable ordinals and this
is merely a special and the simplest way of gen-
erating a higher cardinal. The set C is, in con-
trast, generated by a totally new and more power-
ful principle, namely the Power Set axiom. It is
unreasonable to expect that any description of a
larger cardinal which attempts to build up that
cardinal from ideas deriving from the Replacement
Axiom can ever reach C. Thus C is greater than
o, Hw ) A'n where # = ®4.etc. This point of
view regards C as an incredibly rich set given to
us by one bold new axiom, which can never be
approached by any piecemeal process of construction.



68

Perhaps later generations will see the problem

more clearlz and express themselves more

eloquently.
Now Cohen in this passage maintains that the '"incredibly rich
set C'" is given to us by the power set axiom, and of course
this is in part accurate. For without the power set axiom
the multitude of subsets of a set would not be a set. But
the '"incredible richness' of this set originates elsewhere,
namely in the diversity of ways a subset of a set can come
about.

I have spoken here of how sets ''come about'; and I
have spoken also of series of independent ''decisions'" which
separate off subsets. Such talk may seem to intimate a certain
constructive element in our concept of set. But to take such
talk this way is precisely to misunderstand it. For a salient
feature of the combinatorial notion is just its separation of
the conditions of sethood from anything mind dependent: the
combinatorial view of sets is the most full-bodied expression
of mathematical platonism. That we should revert to anthropo-
morphic and physical metaphors in our attempt to delineate
this concept is not be marveled at; it is difficult to see how
we could at first come to grips with it, without idealizing
certain actions and human capacities. Thus the talk of a seriles of
independent decisions is intended to convey how the existence
of a set is determined entirely by what obtains 'out there',

And when I say that a subset of a set comes about by such a
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series, I am rather tracing the progress of our recognition
that this subset must exist than describing some metaphysical
process of generation. There is one point at which it may
seem appropriate to depict sets as being generated; this
lies in the more strictly iterative aspect of sets of ZF.
However, even here it is quite metaphorical to portray it
as generative. To this point I will return. 1In any case,
ideally, after getting a handle on the concept of set, our
intuitions will be so sharpened that metaphors will be no
longer necessary.

The suggestion Cohen makes in the passage quoted links
up in a remarkable way two seemingly disparate aspects of
the combinatorial notion: the breadth of each rank of V, and
the height of V. The proposal would regard the successor
ranks as so broad that, speaking loosely, all the power of
replacement on ordinals that can be described at that rank
could not furnish a cardinal large enough to match the rank
itself, Hence, when replacement is used on that rank, as it
can be when it is gathered up into a set at the very next rank,
it shoots up the height of the universe more than could be
dreamt of before.

While Cohen's thought seems prompted by combinatorial
considerations, such could also be invoked against it. Thus
if there are so very many subsets of a set, won't there be just

a tremendous number of functions generated at each rank? And
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might not these functions serve to press down the cardinality
of the power set of a set? To defend Cohen's view, one must
appeal to complicated intuitions about how it is much easier
to bring about random sets than functions from sets into
very proper subsets. I think such an intuition can be defended.
For the combinatorial notion seems to be like a principle of
greatest entropy: mathematical objects, that is, sets, are
as disorganized and unsystematic in the ways they come to be
as possible; and the geuneration of functions that suppress
cardinality seems to imbue this generation too much with a
sense of order and method.

A generous reader may forgive this unrefined specula-
tion. At all events,, suffice it here to remark the close
tie between the perceived height and the breadth of the uni-
verse: for depending upon how we take the ranks to be filled
out, the apparent height of the universe may vary dramatically,
The interrelationship of the perceived height and breadth is
subtle and coﬁplicated. Thus, as I have pointed out, the
assertion of the existence of a measurable cardinal, while to
all appearances an axiom about the height of the universe,
would imply something about its breadth. But what is more
remarkable is that the axiom requires that /2“7L be a count-
able ordinal, that is, that there be functions in the universe
(obviously nat in L) that map @ onto / 2%/ b Thus if a measur-

able cardinal exists, the structure of L is collapsed into a
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meagre residuum. So in a sense we have come full circle,

An axiom ostensibly about the height of V shows that the ranks
of V must have a rich kind of fleshing out. And the sort of
breadth these ranks have demands in turn that fain the uni-
verse be extraordinarily high, namely, much higher than /2“7L.

Another striking result is this., The axiom of determi-
nacy (AD), an assertion at its base about the power set of @,
that is, about V,,, implies properties for cardinals lying
far above Vg4 . For if AD, then ﬁ'and f4,are measurable, SL
(n»2) are Jonsson, and & is Rowbottom.” Here we see what im-
pact a statement quantifying over the members of a very low
rank may have upon the height of V.

Of course, another consequence of AD is that the axiom
of choice is false. And it may seem ironic that I should claim
the axiom of choice is justifiable combinatorially, when AD is
precisely a generalization to the infinite of a principle of
finite combinatorics. At this juncture, there is little else
to say than that there are more and less credible generaliza-
tions from the finite; indeed there are generalizations from
the finite that are provably false. As far as I can tell, AD
has no intrinsic plausibility as a generalization from the
finite. The manner in which the finite case of ''determinacy"
gets its plausibility seems to be clearly inapplicable to the

infinite case. The finite case can be proved because one knows

that a schema equivalent to it, is true, by quantifier logic:
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namely, one takes the negation sign in front of the matrix
F(x"y“ ...'X"'Yn) in the second disjunct, and drives it to

the front of the disjunct, getting
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which is of course true by excluded middle. But the Axiom of
Determinacy would be equivalent to a schema containing an in-

finite number of quantifiers in front of a matrix:
(‘(\\G\'D” ’ (Yn)(:-\y.h-- * F LX.’ Yo't Xw, Ya, o ) v
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But how do we get an analogous result here? If we try to
drive the negation out, where does it go? There is an infinite
series of quantifiers in front of the matrix, and no latest
place for the negation to land. The non-wellfoundedness of
the series of quantifiers seems to destroy any credibility
for AD that might derive from the finite case. The status
of AD seems to be strictly one of a hypothesis entertained and
worked with. I can contrive no intuition that would indicate
P@) to conform to the axiom of determinacy. On the other
hand, strong intuitions recommend the axiom of choice; we can
easily conceive how the sets which verify the axiom of choice

would arise.
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I have said that the combinatorial notion of set is
the most full-bodied form of mathematical platonism. It is
in this light that one can perceive the common elements in
its claims about the height of V, and about the breadth of V.
In both cases, it holds V is as large as possible, is created
in as arbitrary ways as possible. For inasmuch as this creation
goes on out in mathematical reality, why should V not be just
extraordinarily luxuriant? A consequence of this view of sets
is that our knowledge of what V actually looks like is incon-
ceivably impoverished. Perhaps it is this sort of view that
led Godel to the unusual position that the reflection principles
should be accepted as intuitively obvious because of the un-
knowability of the absolute.

Some philosophers have taken the paucity of our knowledge
of V to imply that we can never even refer to all sets. For,
so the argument goes, our beliefs about sets are ineluctably
so deficient that we can always construe our quantifiers to
range over Vg for some X, and preserve all our beliefs. Why
then not understand our quantifiers as ambiguous as to the
height of the domain over which they range? Somehow, on this
view, we do succeed in quantifying over all subsets of a set,
if we quantify over the set itself, despite the fact that we
may have very little idea of the details of how, say, the
power set of a given oxrdinal is filled out. I find the

difference between the ways the two cases are dealt with to be
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unfounded. Let us return once more to measurable cardinals,
Had we not conceived of such a cardinal, would this mean our
quantifiers might be considered to range over a set V. for k
measurable, or rather over a kind of inner model of ZF in
which a measure for this ordinal did not exist? This question
does not appear to admit a determinate answer,

One can see this point another way. Recall the result
that AD impliesfﬁiﬁ measurable. AD can be construed as en-
tailing that P(a) is extremely ''thick'. Suppose one for some
reason were to doubt AC (as some do), and had not yet envision-
ed either AD or measurable cardinals, and, bizarrely enough,

AD were true. Now surely we will have managed to refer to fi.
So i there were vagueness about what one's quantifiers were

to range over, it would be better understood as vagueness with
respect to how many subsets of e they would range over,

rather than w.r.t. the height of the universe. Of course, in
the presence of choice it is possible to prove that if k is

the first measurable cardinal, then there are k many inaccessible
cardinals beneath it. And so if AC is true, as surely it is,

a measurable cardinal is secured to be very high., But the
result with AD may serve to suggest that exactly how high it

is seen to be may depend critically on our assumptions about
how the ranks of V should be fleshed out. And so the purported
ambiguity of our discourse is not to be pegged exclusively on

neight.
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Maybe some who believe there is this vagueness in our
quantifiers are not easily troubled, and will not blanch at
the possibility we cannot quantify even over all subsets of,
say, & . But it strikes me as more reasonable to surmise that
we can so quantify, and that we can moreover quantify over
all sets whatsoever. That I should not know how high V is or
how wide it is, or more generally what are the truth values
of the infinitely many formulas of ZF does not surprise me,
nor does it make me any less inclined to think I am in ZF
talking about all sets in V. After all, I do know this much
about each set in V: the axioms of ZF hold for it. Why should
not this knowledge avail in trying to talk about all sets?

The incompleteness of my knowledge of V does not detract

from my intention to be talking about all of V. This intention
can be made so explicitly and emphatically that it would seem
mildly perverse to go ahead anyway and construe my quantifiers
over some set, instead of over all sets. For if sets really

do exist independently of the mind, a belief the platonist
holds so dear, how is it that this intention can miscarry?
Jonathan Lear has argued6 that if we do not have the appropri-
ate intentions toward a set we cannot quantify over it, For
example, if we have never conceived of inaccessible cardinals,
we cannot be said to have one in the range of our quantifiers,
Now Lear never spells out what the suitable kinds of intentions

are. While Parsons seems to have a view similar to Lear's in
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this respect, he is no more explicit on this issue than Lear.
And yet it is entirely critical to their claims that this be
made clear.

Both Parsons and Lear presuppose that we can somehow
succeed in quantifying over all subsets of @, and that, in
fact, if we can quantify over a set, we can quantify over
all the subsets of that set, They need this first, weaker
assumption to lend their view any credibility; failing the
assumption, there is no ground for believing we are not quanti-
fying only over a countable standard model of, say, all the
true sentences of ZF. For there is only one way to assure
that our quantifiers are not understood in this manner. We
must be able to quantify over a subset of w that codes up a
function that collapses this countable standard model. The
basic task facing a defense of Parsons' and Lear's view, then,
is this. On what principled grounds can we say we can quanti-
fy over all subsets of (say) w , which would not lead us to
believe we can quantify as well over all sets whatsoever?
Already I have urged that the connection between the height
and the breadth of the universe is too intimate to make plaus-
ible the claim we can be confident we are quantifying over
all sets in a rank, and be in doubt as to whether we are
quantifying over all cardinals,

Let me further explicate some of these points. Return

to the issue of intentions. In ZFT 4 choice it is easy enough
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to prove there is a standard model for all the true sentences

of ZFC. For example, if there is a measurable cardinal,

there will be an ordinal in this model that satisfied 'x is

a measurable cardinal'; and it will be true in this model that
there are as many inaccessible cardinals, in the sense of the

model, beneath this ordinal as there are members of the ordinal,
All these splendid properties of this ordinal are cheaply got,
however, by excluding any subsets of w that would vitiate the

structure. But what intentions are not captured by this model?

All the truths of ZF are true here; hence in particular all
the sentences we might ever believe in the language of ZF
about the diverse ranks of ZF are true. So we are nut off
from telling this story: we cannot be quantifying over all
subsets of @ because there are sentences we might accept
about P(w) that are perhaps decided the wrong way in this model
(certainly a possibility if we seek only a model for the
theorems of ZF or some recursive extension thereof), Such a
story would be of dubious value in any case, since a like story
could be proferred on behalf of the view that we cannot take
our quantifiers to range over Vk for some k. That is, we may
in time adopt certain higher axioms of infinity, and yet they
might be false if we take the range of the quantifiers to be
some Vk that makes true all those axioms we accept now,

If there are principles that make it seem reasonable

that we can quantify over all subsets of a set, but not over
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all ordinals, they would seem to have to do with our somehow
having a much firmer grasp of what an arbitrary subset of a
set is, than we have of the autonomous, unconstrained genera-
tion of new ranks. Now it does impress me as correct that
there is some metaphysical difference between the manner in
which a subset of a set depends for its existence on the orig-
inal set, and the manner in which the existence of a set de-
pends on its members. Indeed, one might say that a subset
of a set is in no way conditional on the set for its existence,
but only on that subset's members. But I do not see how to
parlay this ontic difference into a relevant epistemic one.
If one has the idea that somehow we have to gather up the
members of a set into that set, at each new rank, for these
members to constitute a set, then it might be that there would
be an open-endedness in how high we can quantify. But this
is to see sets as at the core constructive, and the platonist
will have no truck with that. However, I think it is this
picture that operates in the back of one's mind when one thinks
we cannot quantify all the way up. Once we divest ourselves
of this picture, and acknowledge the independence of such
set '"generation'" from our own minds, the openendedness in
just one direction seems baseless,

There is but one other way to try to drive a wedge
between the two different cases. And that is to observe that

the cardinality of the subsets of a set, even taking into
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account our use of replacement, will never furnish us all the
iterations of new ranks that there are, And the number of
such iterations is so stupendous that we cannot encompass them
at once, while the number of subsets of a set, however arbi-
trarily engendered, we can. Here I can but invoke once more
Cohen's suggestion to try to undermine this move, For it may
be that there is no way we can attain the cardinality of the
power set of a set working up by replacem:2nt from below. Yet
we do think we understand what an arbitrary subset of a set 1is,

I would like to pursue now scme further issues about
the combinatorial notion. Parsons believes that Wang has
captured the motivation for replacement when Wang says that:

Once we adopt the view point that we can

in an idealized sense run through all members

of a given set, the justification of SAR (i.e.,

replacement) is immediate. That is, if, for

each element of the set, we put some other given

object there, we are able to run through the re-

sulting multitude as well. In this manner, we are

justified in forming new sets by replacements, 1If,

however, we do not have this idea of running through

all members of a given set, the justification of

the replacement axiom is more complex.
Now I see the justification of the replacement axiom as aris-
ing more basically from the cardinality principle: if there
are not too many sets in a multitude, they are bound up into
a set., On my view, though perhaps not Cantor's, this basic
picture would support not only replacement, but also power set

(in conjunction with separation). In this latter case we know

the set obtainred is of greater cardinality; perhaps of
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fantastically greater cardinality. In Cantor's 1899 letter

to Dedekind, he proposed what was essentially the axiom of
replacement, but curiously not the axiom of power set, as

part of a new foundation for set theory. Now it may be this
was just an oversight of Cauntor's, On the other hand, it
might have been in acknowledgement of the force of the power
set-separation principle that he hesitated. For how could he
know that in general, if one took a set, and then formed its
power set, one did not go to a multitude so large as to be an
"inconsistent multiplicity'? Or that the upshot of a repeated
use of this principle was not such a multitude? It must have
seemed quite evident to Cantor that the multitude of natural
numbers was a set, and that arbitrary submultitudes of the
natural numbers must be sets; for this much must, evidently,
be true if analysis is to be at all possible, But analysis by
itself does not require the existence of the set of all sub-
sets of @ . Even Cantor's proof that there are more real
numbers than there are rational numbers goes through unimpeded
inside of classical analysis; here there is no obligation for
the subsets of @ all to be fastened up into a set, So in
postulating such a thing one must have the temerity to step
beyond what classical mathematics would seem to uphold. 1In
view of Kronecker's attack on Cantor, and Kronecker's claim
that only the natural numbers really existed, it must have

been difficult enough for Cantor to sustain even what analysis
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seemed to demand.

However fair the foregoing may seem as a reconstruction
of Cantor's views in 1899, it well represents a possible rest-
ing point in the development of the notion of set in ZF. The
position is actually quite conservative, despite its embracing
the axiom of replacement; for lacking the power set axiom,
there is no way to engender sets of high cardinality.

What is all this in service of? Simply this. Parsons
asserts Wang has, in the passage quoted, put well the intuitive
underpinning of the axiom of replacement. But insofar as one
sees the axiom as a principle whose chief purpose is to assure
sethood by forestalling any explosion into an inconsistent
multitude, a more fundamental picture would seem to underlie
it. It is not that we, in some sense, take each element of
the original set, replace it with its associated set, and then
see that the resulting multitude is bound up into a set. The
act of replacement does not figure importantly in our counte-
nancing the multitude as a set; it is rather that we infer it
is a set because we see it cannot have surged into an incon-
sistent multiplicity, since there is no surging at all. This
is perhaps a rather subtle distinction; but it seems to adhere
better to the underlying picture that justifies higher axioms
of infinity, the axiom of choice, and separation. The follow-
ing point may focus the distinction I have in mind. Our in-

sight that a multitude is a set should, not the ideal case,
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follow strictly why it is that that multitude is a set. Now
the act of replacing each member of a set with that member's
correlated set is not something that presumably transpires
out in mathematical reality. Or, to remove the metaphor, the
existence of the new set is not contingent in any way upon
the existence of the old. As I have urged before, the only
juncture at which it is clearly proper to speak of such
contingency is when a set is said to depend for its existence
upon its members. To repeat, replacement is best understood
as capturing in part the idea that the iteration of levels
occurs as often as we can conceive; this viewpoint makes it
one with the higher axioms of infinity and separation in its
deepest motivation.

In a footnote, Parsons criticizes Boolos (1971)8 for
not having seen the ranks of V and the sets of V as being
formed in a certain fashion together, so that if a well order-
ing were to come about in some rank in V, there should be a
rank as high as that well ordering. But the motivation for
replacement, as I have set it forth, would vindicate Boolos'
original approach. For there is no sense in which the
existence of a well ordering should oblige us to believe there
is a rank as high, short of adopting the combinatorial notion,
that justifies at once the full force of the replacement axiom.
It is not as if such well orderings should be conceived to

generate the new ranks, as Parsons' criticism apparently
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presupposes. One thought that might seem, even so, to en-
courage taking well orderings to generate new ranks is this.
If there were not such ranks, there would not be an ordinal
for every well ordering, on von Neumann's identification of
the ordinals. But this is a frail reed to rest so much upon,
inasmuch as it is quite easy to identify the ordinals with
certain equivalence classes of well orderings, using Scott's
trick.

A parting remark on a very different issue. Parsons
entertains the following possibility. Clearly we can con-
struct a theory of ordinals that will not have the full power
of ZF. Suppose then that we take all ordinals as individuals,
rather than obtaining them in the usual fashion by set theoretic
means. Then it seems appropriate to operate upon these
ordinals as we would upon any multitude of indivuals, and
gather together in particular the set of all ordinals. But
when this is done, it seems we can develop a version of the
Burali Forti paradox, by defining a new relation<g, which is
a well ordering:

XY iff x,y are ordinals which are individuals, and x<y on
that ordering relation, or y is the set of all such ordinals,
and xe€y,
On this definition, the set of all ordinals will be greater in
the sense of € than all ordinals; but £ is a well ordering;
hence the set of all ordinals would have to be ordinally great-

er than itself, since it would be an ordinal. Contradiction,
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A certain observation will obviate fthis would be
contradiction. We can in the typical fashion reduce ordinals
to the sets of ZF. This means that ordinals just are sets;
that is, to be committed to an ordinal is to be committed to
sets. Of course, there are multifarious ways to identify
ordinals with sets. But the fundamental point is that sets

exhaust the mathematical universe (with the possible excep-

tion of categories); the reductions of the several branches

of mathematics, including any theory of ordinals, to set
theory should be taken to demonstrate just this fact., 1In
consequence, it is no more legitimate to construe all ordinals
as individuals from which sets can be formed than it would be
to construe all sets as individuals from which new sets can be

formed. And this latter we surely deem to be wrongheaded.
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CHAPTER IV

The translation Parsons constructs between ZFT and

1 In ZFT,

NB, in the direction that concerns us, is this.
classes are understood as pairs (n,s), n a formula of ZF, and
s a sequence of sets. Take any occurrence of 3Y('+-Y--9),
replace it by

3w s ¢ £X| Sat (nys@*)T )
then eliminate the abstract., How convincing is this transla-
tion as a demonstration that classes just are such pairs? One
problem with such an identification of classes with pairs is
that, under the translation Parsons sets forth, for each class
there will be more than one pair corresponding to it. Thus,
the universal class will correspond to any pair of the form
('k=£‘s), regardless of the sequence s, on this translation.
In this respect, the translation differs markedly from that of
PA + ZF into ZF, since in the latter translation there is but
one entity in ZF correlated with each number. It is true that
there is a variety of ways to identify numbers with sets; we
can use von Neumann's method or Zermelo's; but the relevant
fact is that on a given translation there is a unique set
correlated with each number. But if there is this failure in
uniqueness, some question exists as to whether the translation

provides an ontological reduction., What we might be seeking,

in order to effect a reduction, is a proxy function, in the
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sense of Quine.2 That is, as Quine puts it:

We specify a function, not necessarily in the
notation of @ or 0' [the reduced, and reducing
theories, respectively] which admits as arguments
all objects in the universe of 0 and takes values
in the universe 0', This is the proxy function,

Then to each n-place primitive predicate of 8, for

each n, we effectively associate an open sentence

of ' in n free variables, in such a way that the

predicate is fulfilled by an n-tuple of arguments

of the proxy function always and only when the open

sentence is fulfilled by the corresponding n-tuple

values.

Now is there a way of modifying Parsons' translation
so that it does give a unique entity for each class? There
is, but the most natural way of changing the translation
presents some serious difficulties, Since Parsons' trans-
lation is one-many, the straightforward manner of altering
it would be to pick out one of the many pairs related to
each class as its proxy. However, as even the language
hints, at least the axiom of choice is inextricably involv-
ed in this maneuver; indeed, as we shall see, an even more
powerful principle is demanded. Now, to begin with, it
would seem troubling for a principle like choice to be
required for this sort of translation to be effected:
intuitively, such a reduction would not appear to rest on

such an axiom; if classes are sets, the axiom of choice

should not be needed for us to see this is so,
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Hence if it were NB+ plus AC which were being reduced to
ZFT + AC, the reduction would already be suspect because of
the presence of choice. However, as I have noted, to choose
a unique pair for each class demands an even stronger back-
ground theory than ZFT + AC, namely what I shall call ZFT+
+ WO. While we are not compelled to use this stronger theory,
save if we wish to single out a pair among those that Parsons'
translation furnishes, as the correlate of each class, we shall
be instructed by examining this alternative,

ZFT+ + WO is the following theory. Take the language
of ZF and extend it by adding a two place predicate, R(x,y).
Then WO is the principle:

Va (af ¢ = (31v)(vea & Rea,0))
To get ZFT+, enrich the truth theory by adding a clause for
primitive predicate R(x,y), supplying a truth theory for the
extended language; finally, let separation be extended to in-
clude this new predicate, the strengthened Sat predicate, and
first order compounds thereof.

Now we seek to reduce ZFT+ + WO to NB + AC+, Here AC+
is the following theory, closely analogous to WO:

AR Ve (x# ¢ > (@) (vex & <x,v> €R))
However, despite the strong formal similarities between AC+
and WO, we shall encounter reason to doubt that the plausibility
of appending AC+ to NB should confer any merit upon the addition

of WO to ZFT,
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We want to find a proxy function between classes and
pairs. As Quine points out, this must be done from a back-
ground theory that asserts that both exist. The background
theory here, then, will be one that has at least the power
of NB + AC+ + ZFT++WO. This is similar to the reduction of
PA + ZF to ZF. For there the background theory is PA +ZF,
which via a proxy function effects its own reduction to ZF,
This latter reduction is accepted in the spirit of reductio
ad absurdum, as Quine says; from a theory that embraces num-
bers and sets, we show that there is no need for anything but
sets, The same motivation is present in our attempt to re-
duce NB + AC++ ZFT+ + WO to ZFT+ + WO. In any case, the
translation proceeds thus. In our background theory, NB +
AC+ + ZFT+ + WO, we have the relation R such that for every
nonempty set a, there is a unique u such that R(a,u) & ue€a.
Analogously to what Parsons shows, for every class X in NB +
AC+, there will be some pair (n,s) such that

Vx ( Sat (n, $s2*) > xeX)
where Sat is obtained from ZFT+. For each class X, take the
set of all pairs of minimal rank which thus correspond to the
class. Using relation R, choose for each class a member of
the set so obtained for that class, That member will be the
unique pair in ZFT+ + WO that corresponds to it. The rest of

the translation goes through pretty much as before: we replace

all occurrences of (3\()( “*¥X+++) by
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(B[ x codes vp a class 3 C- - - §21 Sak (o4 )~ )] *

Again, the abstract is eliminated. On this translation, the
proxy function F(X,z) would be defined thus:
F(x,2)& 3 [W (yev € V2 (2€ X Sat (oIS y is of winrank &

Let us now review the circumstances that drove us to 8‘““0‘%
consider NB + AC+ and ZFT+ + WO in the first place. We were
rightly committed to ZFT; but NB was translatable into ZFT.
We speculated that to be committed to the entities of ZFT
might be the same as being committed to the entities of NB,
in view of the translation. However, it seemed that this final
conclusion would not follow unless we could somehow reduce
NB to ZFT, and this required a proxy function; such was not
possible on Parsons' translation. In order to bring about
the proxy function in a natural way, we adopted ZFT+ + WO,
So, unless we are committed to ZFT+ + WO, and not merely to
ZFT, we are not committed in virtue of the new translation to
the existence of classes,

How credible, then, is ZFT+ + WO? Not credible at all,
I am convinced. And the details of the defence of my answer
are of considerable interest to us. I call WO by that name
because it is equivalent to the existence of a definable well
ordering of the universe of sets. WO may at first blush

appear rather more appealing than V=L (which in a sense

*Here 'x codes up a class' is the obvious expression.
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implies WO, since ZF + V=L + WO is a conservative extension

of ZF + V=L), but in fact WO imposes a neatness on the uni-
verse that is, insofar as we treat it as a primitive predicate,
even more difficult to believe. For the formula R(x,y) that
allots us our definable well ordering is not a formula of

set theory, as is the formula 'x< y' that well orders the
constructible universe; it is a primitive formula that we
somehow manage to intend so that it well orders the universe.
But how could we have such a nature, and the universe of sets
have such a nature, that we could succeed at this?

Now a result of Easton's implies that ZFT+ + WO is not
equivalent to ZFT + the axiom of choice for sets.4 But one
might think that, despite the fact that ZFT+ + WO is strictly
stronger than ZFT+ + AC, the intuitions underpinning AC could
be extended to justify an axiom like WO. After all, the WO
principle seems to play a role in ZFT closely analogous to
the role played by AC+ in NB, and powerful set theoretic
intuitions support AC+ in the context of NB. Why may they
not be taken to sustain WO in the context of ZFT? However,
this line of argument would be misguided, I think, and it is
of some importance to recognize why. Our set theoretic in-
tuitions do indeed tend to uphold AC+ for NB; but these are

intuitions about collections, not about extensions of predi-

cates. We will allow there is a class that codes up a func-

tional from each set to exactly one member of that set, but
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this, I am persuaded, is because we see classes to be collec-
tions and therefore closed under many of the same operations
sets are, Consider that when we ground the existence of such
a class, we certainly do not go about it in the following
fashion. First, we see that we can intend a predicate to be
true of precisely each set and a unique member of that set;
then we proceed to recognize the class that is the extension
of that predicate.

Rather, our justification would advance thus, Once
a collection is given, the subcollections that also must exist
come about in pretty much arbitrary ways, (Of this macter I
shall be writing at length in auother portion of my thasis.)
Now there is in NB a class that codes up the relation between
each set and all the members of that set. Why should there
not be a class that would be the subcollection of this coded
relation got by restricting it to a function? This sort of
justification appeals very strongly to what Paul Bernays had
depicted as the combinatorial character of sets or collections.

As suggested above, it is difficult to see how one could
somehow intend outright a primitive predicate so that it would
be true of exactly each set and a unique member of that set;
and it is difficult also to see how one could build up a com-
plex predicate that would do the same job starting ouf with

primitive predicates that are intuitively acceptable. 1In view
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of this, one would anticipate that from the standpoint of ZF
or ZFT, in which all collections are sets, and not proper
classes, there would be no way to justify the use of a
predicate as WO requires: the relevant combinatorial prin-
ciples would not apply for a mere extension of a predicate,

As I have observed earlier, predicates do have certain closure
properties: for example, if there is a language meaningful to
us containing a predicate with a certain extension, then

there is a language meaningful to us containing a predicate
whose extension is the complement of that extension. How-
ever it may be that we are able to do it, we are able to in-
tend predicates so that the complementary predicate of a
predicate has meaning if the predicate has it. In general,
moreover, predicates are closed in this manner under the
Boolean operations union, intersection, complement. These
principles are quite distinct from the combinatorial principles
applying to sets, since, for instance, we do not believe

sets are closed under complementation: the complement of the
empty set would be a set containing everything,

The observations above are relevant, though we do not
have to use ZFT+ + WO to effect a translation, because they
indicate a certain view on which the point of NB is not simply
to supply certain entities, namely classes, as extensions of
all the predicates of ZF. For if this were all that would

ground NB, then NB + AC+ would not seem an intuitive exteusion
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of NB, inasmuch as the motivation for AC+ is so different
from what predicative considerations alone would allow.
Parsons, in ''Sets and Classes' argues that it is precisely
as a way of giving any extension of a predicate a correspond-
ing class that NB is adopted. This view, if correct, would
seem to confer a certain credibility upon his conclusion
that the quantifiers of set theory should be construed in-
tuitionistically, by the following argument., Suppose the
classes of NB are to be understood as merely the extensions
of predicates of ZF. Now we are surely committed to ZF, and
to the meaningfulness of the predicates of ZF, that is, to
the fact that the extensions of the predicates of ZF are
determinate. Since NB appears to be just a convenient way
of capturing these commitments, we seem bound up with the
classes of NB as objects. But the classes are set-like ob-
jects, and once we have allowed predicative classes, most of
the same operations under which sets are closed would apply
also to these classes. A natural next step would be to grant
that the class asserted to exist by AC+ does exist. After
that, there would seem to be little to prevent us from going
further and countenancing impredicative classes, and, after
that, little to stop us from taking all collections of
classes to exist, etc. Intuitionistic-like quantifiers seem
then to be forced upon us.

By now, it should be evident how to block such an argu-
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ment. Either talk of the classes of NB is to be understood
merely as a kind of shorthand for talk of the extensions

of predicates in ZF, or talk of the classes of NB is to be
interpreted as referring to set-like entities, with the
combinatorial properties such entities must possess. In the
first case, there is no reason to proceed from our acceptance
of NB to an adoption of, say, NB + AC+. For that would be

to treat the extensions as set-like objects, and by hypothesis
we have avoided.that. On the other hand, if the classes of

NB are construed as set-like objects, then probably we want

to advance to NB + AC+. We might want to go further to impre-
dicative classes; but this move is not usually made, precisely
because this would open up the iterative process once again

on these classes. F. R. Drake, in Set Theory, puts the point

this way:
This impredicative extension (Kellg-Morse
Set Theory) has an unsatisfactory nature
from the point of view of the cumulative type
structure. If we consider V to be the universe
of all sets, then classes are. subcollections
of things from V; if we quantify over
classes, this implies that we have the collec-
tion of all classes to talk about, and the
collection of all classes would be exactly

the thing we should take as the next level,
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following all the levels used to make up V.

In other words, talking about all classes

i1s tantamount to saying that we have not.

taken all levels, with no end, but we have

another one, the level of classes, which we

have notused for making sets. From this

point of view, it is more natural to regard

classes as not forming a completed collection,
so that we should not quantify over classes.5

Now we should take with a grain of salt Drake's claim that

we are in Kelley Morse set theory talking about the collection

of all classes; for his purposes, it suffices that we must
be talking about all (with a very broad sweep of the hands)
classes in Kelley Morse set theory. At all events, since any
intuition that would uphold AC+ would evidently uphold Kelley
Morse set theory, and since Kelley Morse set theory clearly
does suggest further levels, it seems best to stop the regress
at its root: the idea that the class quantifiers of NB should
be construed objectively. |

My own preference is to adopt NB, but interpret its
cléss quantifiers in a semi-substitutional fashion, an alter-

6 This approach would

native Parsons outlines at one point.
seem to absolve us of any ontological commitment to proper
classes in employing the theory of NB. Precisely because NB,

with its class quantifiers construed objectually, is so
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delicately poised on the brink of the excessive ontological
commitment of Kelley Morse set theory, and because the in-
tuitions that ground this delicate position are so tenuous,
doing away with the extra ontological baggage of NB is for
me the favored course. But naturally, if to be committed
to ZFT is in itself to be committed to the ontology of NB,
then this position is not tenable anyway; so let us return
to this question.

How can a one-one translation directly between NB and
ZFT be obtained? For each class, there is a set of pairs of
minimal rank that corresponds to that class on Parsons'

translation. Let this set be identified with the class.

Whenever there is an occurrence of RYC Y eee) , put
in its place:

3x Lx codes up a class & Ivex [+ 1y] Sat ((v)o, (M) -~ ]
where again the abstract is purely virtual. 'x codes up a

class' is defined: x codes up a class €=
* V\),v ex [VY ( Sat ((u).’ <°)| :V)‘_) Sat ((V)o )Mo'v“] & v

& Yv,v 6% (Rankty): Rank(v)) £
- aukv €% LeRank v < Rank V)1 & Yy (Sat(y,, v V) e Sat(v, v

The proxy function F(X,y) is the formula:

y codes up a class & 3\!6\,‘(0 (Ve ¥ &> Sat (xo,x,“"’))
It should be noted that we cannot prove, in our present back-
ground theory, (X) (E!y)F(X,y). But it is clear that this

formula is true on the usual construal of the class quanti-
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fiers in NB. If truth does not seem to suffice, we can
always retreat to the metatheory for NB and prove it there.
Now this last move may seem unsatisfactory, since it may
seem to go beyond the spirit of reductio ad absurdum in
which the reduction is to take place. Perhaps we can cheer-
fully say: from a theory with objects A we can see their
superfluity. But our cheer may wane if we must draw on the

force of its metatheory to prove the superfluity of objects

A. Nonetheless, I think there is a redeeming feature in
the present case. After all, we do have a proxy function,
and a proxy function expressible in the original theory, NB.
No danger of Pythagoreanism lurks if we adopt the above move
for such cases. TFor example, while from the standpoint of
ZFT one can prove the existence of a model in the numbers
for all the truths of ZF, we do not thereby get a proxy func-
tion: cardinality considerations rule out this possibility.
lMoreover, no arithmetical predicate expresses the relation
that is the interpretation of '@' in this numeric model of
ZF. But there is a predicate in ZFT (shortly to be defined)
that expresses the relation that is the interpretation of '€’
(of NB) among the proxies for the classes of NB.

Let us suppose that the retreat to the metatheory
described above is unproblematic. Can we then take the

translation to effect an ontological reduction?
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One first blush objection to the claim that there is
a reduction might be put this way. There is a striking
difference between the reduction of PA + ZF to ZF and that
purported between NB and ZFT. PA + ZF is a two sorted
theory in which there is no presumed overlap between ranges
of the two kinds of quantifiers. But there is an intimate
connection between the two kinds of objects, sets and classes;
for all sets are classes; moreover, a proper class is under-
stood to be distinct from any set--thus, for example, it is
a theorem of NB that Wy (X# $yly=y 3) . Hence, 3YWx (,‘#Y)
In addition, the members of a proper class run all the way up
the cumulative hierarchy; the proper class itself appears at
no level in that hierarchy. What makes the reduction of num-
bers to sets entirely natural is just the failure of overlap
between the laws that the two sorts of things, sets and num-
bers, must obey. Because we have no (or confused) intuitions
about whether or not '3€5' is true, we have no serious mis-
givings when the entities identified with 3 and 5 bear or do
not bear the € relation to each other; likewise, we are not
disturbed if @G+ §@3= {i‘;!or not.

It may seem tb some that we do have intuitions about
the truth of '3€&€5'; namely, we can see it must be false; no
number has any member. But I question whether the intuitions here
appealed to have quite the character ascribed to them. I

suspect that if we recoil at the suggestion that '3€&5' is
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true, it is because we do not see a number as the sort of
thing that could have members; that is, our reaction to

the claim that 3 is a member of 5 is that it is senseless,
not that it is false. But, if this is so, then that very
fact, paradoxically, should allow us to take '3 €5' as true
or false indifferently. For on the translation g must hold
or not hold between the proxies for 3 and 5, and since our
intuitions are at base opposed to the sense of '3€5', we
oppose those intuitions equally, whether we have '3€5'

come out true or false.

In any case, we are not in a comparable situation
with sets and classes. We do not want it to be that, some-
how, the proxy in ZFT for the universal class of NB should
be of lower rank in ZFT than the proxy for HF. And yet
under the translation I have constructed it seems to be so.

It is not clear, however, what to make 6f this objec-
tion. True, the set corresponding to the universal class
will be of lower rank in ZFT than the set corresponding to
HF. But the set identified with the universal class will
certainly not be of lower rank than that set in ZFT that

corresponds to HF of NB, on the translation of the € relation.

This point may be more perspicuously put this way. Suppose
. x and y are sets in ZFT that code up classes. Then we say

that x and y bear @ to each other on the translation (xenny) iff

Jvzex [Wy (ev e Sat (@, ")) & ey Sat((v), 1 (N>)]
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On this translation of the € relation, it is trivial that
the entities of ZFT will bear e“‘ to each other when and
only when they are so required by NB. Thus, the proxy for
the universal class does not beax'en. to anything whatsoever
in ZFT, and in that sense is not a ''set'. Just because the
proxy function is a proxy function, we can expect to recover

the new @ relation, €, to set things right among the en-

.
tities correlated to the several classes.

It is not immediately obvious how effective this reply
to the objection is. The reply seems to entail that no
translation via proxy functions can have counterintuitive
results of the kind delineated in the objection, since always
(evidently), the various relations in the reduced theory can
be recovered as the € relation was, and our intuitions with
respect to these recovered relations are of course exactly
as they should be.

Let us consider another problematic case of reduction
that follows in some respects the same general pattern of the
alleged reduction of classes to sets, and see how the reply
fits. We shall start with a theory that also has two sorts,
where everything of the first sort is also of the second,
but there is something of the second sort not of the first.
Construct a theory exactly like ZF, save that it claims pre-
cisely one individual exists. This theory has two sorts,

individuals and sets on the one hand, and individuals on the
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other. Each sort has its distinctive variables, ranging
over the obvious domains. Extensionality for sets will not
be lost, since an axiom will be:

YWz (- 3a (xzq vzza)—=> Vy (vyéx € yer) > x=2))
Where a is the variable for individuals, and x, y, and z
range over both individuals and sets. We than take it as

a further axiom that (a)-Qx)(v€avaz¢). A proxy function
from the ontology of this theory to that of ZF is pretty
obvious. Send the unique individual a to the empty set;
send the empty set to the singleton of the empty set. Now
suppose all the members of a set x in this new theory have
been assigned a set in ZF: then define the proxy of x to be
the unique set containing all the proxies of its members;

that is, the proxy functional F(x,y) is:
tw - - §
e eo@6)(§: Teey=s Virankoia| ia):¢ 2 {1433

S Y (2fq L2749 £4) = (fw)lveald) & &x):y)
We say that Xe‘y (where x and y are proxies) iff y#3¢§& X€y .

Is this a reduction? Of course, the rejoinder to the
objection would imply that it is; indeed the suitable &, re-
lation is exhibited. I find myself somewhat reluctant to say
that it is not. Now, one's first reaction may be to say that
since the theory with the individual assumes there is an
individual and ZF does not, and since individuals differ so
in their properties from sets (individuals do not have unions

with sets, after all'), the translation does not make for a
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reduction. But, against this, imagine the theory of PA +
ZF were altered in just one particular, namely, Ww=3n(xew)&Vulng 8)
were taken as an axiom (and therefore, of course, taken as
well formed, unlike before). Would the addition of this
axiom preclude the reduction of PA + ZF to ZF? Although von
Neumann's and Zermelo's identifications of numbers with sets
would no longer work, many straightforward identifications
would; and I am inclined to the view that we would get a re-
duction under these identifications. A way of construing
these identifications is again with a mind toward reductio
ad absurdum: Assuming numbers are distinct from sets, even
as axiomatic in our to-be-reduced theory, we can show they
need not be taken as distinct. Similarly, we might under-
stand —3x(xea)d a#g in ZF plus the individual, and in some
such way 3‘(WC{¢!) in NB.

Perhaps at this point the discussion of whether there
is an ontological reduction between NB and ZFT is becoming a
bit too diffuse. We seem to be clutching at intuitions that
would go one way or the other on the particular cases. Some
reflection on more general considerations seems in order.

When it is in mathematics that one sort of object is
reduced to another must be a vexing question, sinée the notion
of mathematical object is vexing. Our connection to any
mathematical objects, if they indeed exist, is decidedly

tenuous; but to determine that a particular object, say the
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universal class, can or cannot be viewed as identical to the
ordered pair ("x:x’, $» may seem to rest too much on this
already frail link. It is in any event quite obvious that
our conception of a successful mathematical reduction and
our notion of a mathematical object are so bound up that we
must deal with them both to deal with either. We shall
start with some thoughts about mathematical objects.

Naively, the most appealing view on the ontological
status of mathematical objects is, perhaps, a platonism of
the sort Godel espoused. Godel's position is that mathemati-
cal objects exist independently of us and constitute a well
determined totality. As with physical objects, what mathe-
matical objects there are is determined by the nature of the
external world. Every sentence in the language of mathematics
has a determinate truth value, whether we can determine it
or not, if we intend our sentences in the natural way, so
that universal quantifiers range over all collections (i.e.,
all mathematical objects), and '@' is interpreted as member-
ship. Indeed, it may seem difficult to separate Godel's view
that the world of mathematical objects forms a well deter-
minéd totality from this view that we céﬁﬂsg intend our
quantifiers and our primitive predicate(s). For it may seem
constitutive of the notion of a well determined totality that
we are able to employ such intentions; if we cannot in

principle find out the truth value of all the sentences we
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use, we can accomodate this by thumping hard on the distinc-
tion between ontology and epistemology; but if we cannot in-
tend our quantifiers to range over all objects, or our primi-
tive predicates each to have a unique interpretation, does
it make sense to speak of the world out there as being none-
theless entirely well determined? In a few pages, we will
consider this question at length.

In any case, there will be more on this in due time.
Now let us observe that if we can employ our quantifiers and
primitive preaicates as Godel thinks we can, then the truth
values of all our mathematical sentences are determined. This
seems trivial enough to see, by induction. Suppose that @ is
of the form (’),v WY, or -n(p. Then if it is determinate whether
s satisfies ¢ and ¢5_and 9? , then so is it whether s satis-
fies ? : it is not the truth functions that make for possible
indeterminacy of truth wvalue (or, more precisely, safisfaction
value). Now assume that it is determinate for any sequence
s, whether or not it satisfies Q?(x). Then, inasmuch as we
can so intend the universal quantifier that it ranges over
all objects, the satisfaction value of Yk @Pf) must be fixed
by that intention. For this, evidently, is what it would
mean to succeed in referring to all objects. Indeed, in the
usual case, when philosophers say that a certain mathematical
sentence is indeterminate, it appears to be the interpretation

of the quantifier that they question. For example. one often
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hears the continuum hypothesis is indeterminate for the
following reason. How do we know that for any set of subsets
of @ , there will exist a one-one correspondence between
that set and either @ or the set of all subsets of w 26
For what, proceeds the objection, is to be included under
the 'any', the 'all', and the 'there exists'? 1In fact,
routinely when the independence of the CH or AC or virtually
any other assertion is proved, it is accomplished at least
in part by changing the domain of the starting model, and
therefore the interpretation of the quantifiers.

Finally, there are the atomic predicates. It might
seem that the atomic predicates, surely, are unambiguous in
their interpretation. For instance, given sets a and b, it
would appear perfectly determined from what we mean by 'g'

whether a b or not. However, there are an infinite number

of relations involving sets that are completely isomorphic

‘to the @ relation; that is, there is a one-one map F from
VtoV such that xeéy iff F(x) é’,F(y). An example of such

a map can be obtained by the following device. Define X €,y
thus: | |
x@y 1ff x=<uy) & y=<w,\) €uew. Let F(x) = &%) .

Then, clearly, this new G, relation is isomorphic to the old
€ relation; hence, precisely those sentences will be true in

this model interpreting '€' as €y as would be interpreting
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'¢' as @ . Now are our intentions about how we mean '@’

so unequivocal that they pick out the ''real" @ relation of
V, and not the € relation of the new interpretation? It
is rather difficult to escape the conclusion that, at least
to some extent, our intentions in using '@' are vague, and
that in particular they cannot discriminate between € and€,.
One might respond to this: But we do have the intuition
that we know perfectly well what '€' means, as we ordinarily
use it; we mean member of, and clearly the €4 relation is
not that relation! But is this sort of intuitive appeal any-
thing more than a retreat to a background theory in which 'g'
is already understood? Naturally, from the standpoint of a
background theory in which we have already at hand a certain
€ relation, and concomitantly a certain universe V, the dis-
tinction between € and €, is quite straightforward. But
the problem is that our use of the background theory might
not be such that the '@' predicate in that theory must be
interpreted as € and not €,

With regard to physical objects, one's intentions seem
to suffer less from this sort of vagueness. In that realm,
the palpability of the objects, which allows such devices as
ostension, seems to fix intended interpretations rather more
decisively. If we want to rule out as unintended certain
interpretations of some predicate that holds between macro-

scopic objects, we can very often point to some objects that
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would be related under the unintended interpretation, and

then deny that they are in the extension of the predicate

as we wish to construe it. Ostension of this kind is

evidently not available to us for mathematical objects. At
best, we can employ what Quine calls deferred ostension,

e.g., pointing to the symbol '¢' and meaning to refer to §.

But deferred ostension is of little help here, inasmuch as

the difficulty then becomes to show we have managed to refer

to one mathematical object and not another when we point to
'"$'. To use another example, suppose we wishéd to rule out

the ewlrelation as inappropriate as an interpretation of '€',
in a manner like that described for predicates of macroscopic
objects. We might point to '<¢,1) ' and then to '¢§¢3 1) !

and finally deny the two entities thus referred to by deferred
ostension bear the € relation to each other. But what is it
we have referred to by pointing as '(¢,\)' and ﬁ({¢L|y?

Are they<¢,\) and {56}, 1Y or rather ¢ and 3637 If the latter,
then we have done something we are concerned to avoid: ruling
out the genuine € relation as a possible intended interpreta-
tion of '@'. Now how it is, exactly, ostension might work well
for macroscopic objects, and not so well for mathematical ob-
jects, is a problem of considerable subtlety; most often, such
an account appeals to causal connections between us and physical
objects. There are those, however, who have no truck with this

or any other way of making a distinction between how we refer
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to physical objects, and how we refer to mathematical objects:
perhaps Putnam, in '""Realism and Reason'" and in ''Models and
Reality'", can be read to support this position. I am per-
suaded that there is an important difference between the two
cases; what this difference is should soon become evident.

But first we must discuss what mathematical objects might be,
and why they are both problematic and inevitable.

The math:matical objects picture that to Godel is flesh
of his flesh and bone of his bone is one difficult to assimil-
ate for others. Those of us who have said in our hearts there
is no transcendent reality will not sit comfortably with this
view; for the differences between mathematical and transcendent
objects are less profound than their similarities; both trans-
cendent and mathematical objects are not locatable in space
and time; both are causally inert; both are eternal, And
yet there are not in the field many credible alternatives
to a belief in mathematical objects. Kreisel has said that
for a philosopher of mathematics what is at issue is not the
existence of mathematical objects, but the existence of mathe-

matical objectivity.7

Perhaps. But here we are, stuck, it
seems, with theories that say there is a set of all numbers,
there is an uncountable cardinal, and more embarrassingly
extravagant things even than these. And it is difficult to
make out how we are going to avoid taking these sentences to

mean exactly what they appear to say. Indeed, the only view
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that appears to get round the mathematical objects picture
is the one proposed by Putnam, and lately taken up by Par-
sons, on which the notion of possibility assumes the burden
of supporting mathematical objectivity. Insofar as we have
serious doubts about the notion of possibility, this move
avails us nothing, however. Intuitionism, which might seem
to offer succor in this extremity, seems in fact no less
otherworldly in its commitments than platonism. For intuition-
ism is scarcely a species of finitism: the varieties of mental
constructions that must be real for intuitionism to be plaus-
ible already far outstrips any mental constructions we actually
have or ever will have. On the score of remoteness from the
everyday world, intuitionism seems no better off than platonism.
Evidently, some think Quine has a kind of platonism
that avoids the problems with trancendence troubling Godel's
more ''maive' view. I do not see this. Quine's view is that
we need to posit mathematical entities in order to do physics,
and we need to do physics in order to explain sensory stimula-
tions. So it is only the program of accounting for such stimu-
lations that leads us to posit mathematical entities. This
supposed fact is purported to make empirically respectable
the existence of mathematical objects. But it seems really
not to bear on the issue at all. For we surely feel an obliga-
tion to explain how it is we can know anything about the

physical objects we posit, over and above observing we must
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assume them in any explanation of sensory experience. That
is, the task of explaining how we come to know about physical
objects is one undertaken chiefly by physiologists, neurolo-
gists, and neuropsychologists. The task of accounting for

our sensory experience is more in the province of the physi-
cist, the chemist, the biologist, etc. Insofar as these two
tasks are separate, we will not discharge our obligation to
explain how we come to know about physical objects by account-
ing for our sensory experience. It may be said that the total
science that encompasses both these enterprises manages to
fuse them into one. But certainly the orientations of the two
endeavors are quite distinct: one starts with sensory stimu-
lations as given, and proceeds to posit various objects to
give these stimulations coherence and intelligibility; the
other starts with the physical objects as given, and attempts
to show how they interact with our sensory organs, and how our
sensory organs interact with our nervou. system to furnish

us with just those sensory experiences we have. And so long
as the orientations are different in this way, we may ask:

How is it we are exempt from an obligation to show how, assum-

ing mathematical objects as given, we can come to know about

them? This question Quine's view does not address.
There is a certain historical irony in the attention
nowadays paid to the problem of how we can come to know about

mathematical objects., For this problem is the inverse problem
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of one Descartes dealt with. Descartes was at great pains

to explain how it is that we, as immaterial substances,

could manage to perceive the material world, In our more
naturalistic age, we are instead perplexed by how we, as
material objects, can have knowledge of immaterial mathe-
matical objects. Descartes dealt with his problem by lo-
cating the scene of interaction between the immaterial mind
and the material world in the pineal gland. Doubtless some
philosopher, alert to the relevance of bygone philosophy to
contemporary thought, will find in the pineal gland a solution

to our problems, mutatis mutandis,

At all events, Mark Steiner has a different way out of
our present difficulty;8 in my estimation, no more viable.
His idea is in brief this. To give a causal account of how
we acquire knowledge of something, we must appeal to some
background theory. But ''the axioms of analysis, as inter-
preted by the platonist, will indeed necessarily be used in
whatever causal explanation can be given of our belief that
the axioms, again as interpreted by the platonist, are true,
This somehow absolves us, on Steiner's view, of providing
further explanation. I fail to understand this. Presumably,
any background theory that we would employ to give a causal
account of our knowledge of physical objects would assume

their existence. But does the presence of such an assumption
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in itself qualify the theory as an explanation of this know-
ledge? No: we demand more of the theory; the theory must
show how it is that physical objects interact with us. Our
current puzzle is precisely this: What account of our inter-
action with mathematical objects can be obtain, or why should
no such account be sought? To require a causal account of
our "interaction'" with mathematical objects seems out of the
question; even to demand an account of our "interaction" is
to ask too much. But what is left?

We see, then, some of the difficulties accompanying the
view that we can know about mathematical objects. These diffi-
culties in epistemology may derive from difficulties in the
philosophy of language. Lately, many philosophers have grounded
the claim that knowing about an object requires some special
causal connection to it, in the more basic claim that even to
refer to an object requires such a connection. The plausibility
of the causal theory of reference places a great onus on the
platonist. He must explain how we can refer to mathematical
objects, and how we can indeed intend our predicates so that
they pick out appropriate relations. As I have noted, Godel
had the somewhat quaint view that we can employ the language
of mathematics, i.e.,, the language of set theory, so that it
picks out a unique intended interpretation. But Godel himself
did not seem to take this view with great seriousness at all

times. When arguing for the determinateness of the truth value
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of CH, Godel feels compelled to say we can develop intui-
tions about axioms that would decide CH, and to say it is

in part the possibility of such intuitions that gives the
question of the truth value of CH meaning. At no point does
Godel propose an argument to show that, for any sentence of
set theory, such intuitions may be forthcoming. If, as Godel
claims, the term '€@' picks out but one relation, the member-
ship relation, why do we need such intuitions to give the
question of the truth value of CH meaning? In fact, if '€'
picks out just one relation, it seems clear it is not the
possibility of such intuitions that serves to do this. For
suppose all the sentences of set theory were determined by
such intuitions; there would yet be an infinite number of
relations '@' could be interpreted to mean, with all true
sentences coming out true on each such interpretation. If
we can so employ '&' that it latches onto a unique relation,
that we can do so must not be only because we determine the
truth values of the sentences of set theory. Indeed, it
seems Godel makes a move subversive to his view when he looks
to intuitive axioms to fix the truth value of CH. For he
thereby implies our acceptance of theories plays the primary
role in effecting the interpretation of our predicates., But,
evidently, if we are to secure a unique interpretation for
the '@' predicate, we must conceive the enterprise of inter-

preting language to be largely independent of what theories,
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in detail, we adopt.

I say "in detail'" here, because it may be that the
enterprise of interpreting language unjiquely cannot get
moving, unless we hold some appropriate theory., Thus, it may
be if we do not hold ZF, or some significant subset of ZF,
we do not have good enough a grasp of '€' to give it any
interpretation, much less a unique one. But, certainly, if
we are to obtain a unique interpretation for '@', we must
at some time go beyond the consideration of theories we do
or might adopt.

Godel has more to say about the determinateness of
the truth value of CH. If an axiom is fruitful, Godel claims,

we have a prima facie obligation to accept it; and, since

such an axiom might decide CH, the truth value of CH is ground-
ed in this fashion as well. This view is particularly vexing.
There is the problem just mentioned, the implicit assumption
that we can fix the interpretation of language only via the
theories, in detail, we accept. Again, for Godel, this
assumption has intolerable consequences. But aside from this

problem, there is another. Why should we take the fruitfulness

of an axiom as evidence for its truth? This is a serious
difficulty, because there might well be a pair of sentences
with the following feature: one sentence in the pair decides
(fruitfully) certain open questions in one direction; the

other sentence decides (fruitfully) the very same questions in
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the opposite direction; and both sentences are consistent
with everything we believe. I can descry no reason to rule
out such a pair. Indeed, if one is unsure of AC, AD and V=L
will constitute such a pair; for AD requires AC to be false,
and V=L requires AC to be true,

Let us now draw a certain inference from our discussion
of Godel, It is highly dubious that considerations of fruit-
fulness (even if allowed) combined with considerations of
intuitive evidence, could ever decide the infinite number of
sentences of set theory. We are only finite beings, and the
human race probably will not survive forever, And, should
humans not as a race always be around, it seems obvious that
only a recursive set of axioms will be intuited, or be found
fruitful. But even if we did continue on endlessly, we would
be little better off, at least in an endeavor to secure the
"ruth values of all mathematical sentences., For when one
comes to appreciate the general applicability of diagonal
arguments, one begins to suspect the worst: There are
sentences of set theory that, 1) do not follow from anything
we, as finite beings, can manage to intuit, because they are
so complex, and, 2) will not be fruitful for any questions
less complex than themselves. But the existence of such
sentences would, even if we should live forever, make it
impossible to determine the truth value of each sentence of

set theory at some time.
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From the foregoing, we may conclude that none of the
set theories to which we do, or even might assent are complete.
But suppose we can pick out a more select group of interpreta-
tions than that consisting of those interpretations compatible
with the theories we do or might accept. It cannot be that we
pick out some group of interpretations consisting of all inter-
pretations compatible with some complete theory; for there is
no complete theory involved in our attempt to fix an inter-
pretation. Rather, our attempt, if successful, must be a
direct matching up of a predicate and a relation. Once it
is granted that there is no way of achieving this reference
to a unique relation, we seem stuck with an unappealing view,
Namely, we cannot rule out a relation as an interpretation of
a predicate if such an interpretation is compatible with those
theories we might ever accept.

Now let us see the relevance of the foregoing to the
issue of ontological reduction. There is at first blush,
and I believe on later blushes, a connection between two
questions, Suppose we are committed to a certain theory.
Consider the ontology of this theory. A number of maps will
exist that go from this ontology into or onto itself. A great
many of these maps (an infinite number in general for theories
with infinite ontologies) will preserve the truth values of the
sentences of the theory under some translation of the predicates;

of the maps that preserve truth, many will preserve further
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important properties. Now one might take a select pcntion

of these maps to show that our commitment to the ontology

of the theory is no different whether we embrace the original
structure, or the structure we get by the map; this despite

the fact that the new structure may look very different from

the original structure, from the point of view of the original
structure. Which maps can occasion this sort of "indeterminacy"
is the first question. Now Quine allows that any one-one map
expressible in the theory will count as such a map. I will
argue that this is too generous.

In any event, the second question has to do with
ontological reduction. When one theory is reduced to another,
the structure of the reduced theory is mapped via some func-
tional into the reducing theory. Typically, this functional
can be expressed in the reducing theory. Given two theories,
and the ontologies of these theories, there may be any number
of maps between these two ontologies that preserve the truth
of the sentences in the first theory, under some translation
of the predicates, Which of these maps are to count as provid-
ing ontological reductions? This is the second question,

Here Quine again allows that any map expressible in
the reducing theory will effect a reduction. Quine's consis-
tency in his treatment of the two cases I admire, and is pre-
cisely to my purpose; I disagree only about the promiscuous-

ness of his constraints in both cases. Shortly I shall pre-
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sent some further constraints for both cases; constraints
that must come to play precisely because of such cases as
the failure of the would-be reduction of NB to ZFT. For now,
let us attend to the unity of these two questions,

To take the two questions to be ultimately one is to
reinforce the view of ontological reduction I set forth in
the first chapter, There I urged that to show one ontology
can be reduced to another is to show that commitment to the
reducing ontology requires commitment to the reduced ontology.
For consider how we would justify seeing these two questions
as one; presumably, it would proceed like this. 1) Cases
of ontological reduction just are cases in which commitment
to the reducing ontology requires commitment to the reduced
ontology. 2) The case of the ontology of a theory being
mapped into itself, in which commitment to the structure
obtained by the map is the same as commitment to the original
structure, is but a degenerate case of 1); that is, when a
theory's ontology is mapped into itself, the theory is its
own reducing theory, and to be committed to the ontology of
this theory is to be committed to the ontology of the theory
that has been mapped into itself, namely, its own ontology.
Perhaps an example will be of some service here. Suppose we
show in Peano Arithmetic that all even numbers can, on the
appropriate map, and translation, model PA. Then, considering

the reducing theory to be PA, we can say that to be committed
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to its ontology requires commitment to the ontology of the
theory modelled in it; this theory is, of course, PA itself.
That is, from the standpoint of PA, one can see that commit-
ment to its even numbers is the same as commitment to all its
numbers; this is what an ontological reduction of numbers to
even numbers would mean.

As an aside, let me observe that, with the preceding
in mind, we can obviate a certain argument of Leslie Tharp.
He writes:

It is rather startling to reflect that there

are many self-reducing theories, and in fact

the most important theories have this prop-

erty (the property of being able to model

themselves in a proper subdomain). For

example, the set of numbers larger than 16

can be proved in arithmetic to form a do-

main of a model of arithmetic. A similar

situation results in set theory if one lets

{¢s take the role of ¢ and extends the

correspondence in the obvious say; here the

same relation is used in the submodel as in

the starting model. No one could maintain

that these are interesting examples of re-

duction; so they are instructive in that they

tend to illustrate what reduction cannot be

about.9
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Now I do not know if I can maintain that Tharp's examples
are generally interesting cases of reduction; I find them
interesting; but more to the point, I find them to be cases
of reduction.

Now let us observe that, in tases of ontological re-
duction, we seem to require something quite strong: all
true sentences in the language of the reduced theory must
be true on the furnished translation into the language of
the reducing theory. This might seem to leave us in an odd
situation. On the one hand, we have granted that there is
a sentence of set theory such that our use of '@' is indiffer-
ent to whether the interpretation of '@' makes that sentence
true, or whether it makes it false; let us say that CH is
such a sentence. On the other hand, we are presently claim-
ing that if the ontology of ZF were to be reduced to another,
all true sentences in the language of ZF must be true on the
provided translation into the language of the reducing theory,
including CH, or the negation of CH, whichever (unknown to
us) is true. But this situation may not be as unnatural as
it may appear. Ontological reductions hold, at the base,
between structures, ontologies; the indeterminacy that may
exist in the interpretation of our language arises from a
relation between words and structures. The strictures for
ontic reduction we might thus expect to be more severe rhan

those for the fixing of interpretations of our language;
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for these two would seem to differ in much the same way as
what there is differs from what we can know.

I think that more than truth must be preserved in
any map and translation that would provide an ontological re-
duction; indeed, I think the preservation of truth derives
from the fact that more basic, algebraic features must be
preserved. But let us return to the cases of clearcut, and
possible reductions we had considered earlier. One valient
feature of the reduction of PA + ZF to ZF is the naturalness
of the transition from the ontology of the one to the ontology
of the other. The manner in which the number theory of PA +
ZF is embedded into the € structure of ZF is quite nice alge-
braically, in the way that the & structure reflects the opera-
tions of successor, addition, and multiplication, Paul
Benacerraf, in ''What Numbers Could Not Be'", argues that if
a progression is to model the natural numbers, that progression

10 This constraint strikes me as reasonable,

must be recursive.
although perhaps requiring some reformulation; I believe that
the progression must be computable, because the structure that
is embedded into ZF must derive its features in a direct way
from the structure of ZF itself. Thus the progression of
numbers is certainly recursive from the standpoint of PA;

but then the structure that is embedded in ZF, which is to model

PA, must derive its recursiveness straightforwardly from

computable relations in ZF.
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Now the notion of recursiveness is ordinarily defined
using arithmetical predicates. Hence it may seem wrongheaded
to insist that the relation between the proxies of each num-
ber and its successor be recursive; that notion could only
make sense, presumably, after the translation has been effect-
ed. That is, a relation is recursive depending on whether it
can be expressed by certain simple arithmetical predicates;
the progression of proxies for numbers, whatever that pro-
gression may be, is clearly going to be one of these, under
the translation of the arithmetical predicates,

I think the nerve of Benacerraf's point, however, is
unaffected by the foregoing consideration. The basic intui-
tion lying behind Benacerraf's point is, I think, this. It
is appropriate to identify the progression of numbers with,
say, the progression of the ordered pairs that standardly
code up formulas. But it is not appropriate to identify the
progression of numbers with the subprogression of the arith-
metical truths, since this new progression is too complex
in its nature. Now this complexity can be adequately charac-
terized strictly from the standpoint of set theoretic notions,
without introducing the notion of recursiveness. For the
basic notion of computable function can be understood from
this standpoint; indeed, the notion of computable function 1s

par excellence a notion that seems to be amenable to formula-

tion in many ways, with recursive function being just one such
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formulation. The notion of computable function, in its
perhaps most intuitive characterization, is cast in terms of
finiteness, and the notion of finite can be captured in set
theory. The characterization I have in mind is this: A
function is computable if it takes finite objects to finite
objects using an algorithm, which is of finite length. It
is thus quite easy to formulate the notion of a computable
function using strictly the language of set theory. And it
is, of course, quite easy to show that the progression of
arithmetic truths is not computable. So from set theory wc
can see that some progressions are less complex than others,
We recognize that the relation between a number and its
successor should be as simple as possible; hence we insist
that the relation be a computable one.

Perhaps another example will help convey the point
about how structures should be embedded to effect reductions,
I have presented what I take to be a reduction of ZF to ZF,
using the map x---)(x,1). Why do I consider this a reduction?
Consider the new relation that interprets '€' under the trans-
lation; that is, the relation 6* such that

XY 3udv (R2<u, s Yy, ) Lvev)
This new € relation must derive its important mathematical
properties from like properties of the relations of ZF. And
this, of course, it does: for example, the well-foundedness
of €4 comes about in a direct manner from the well-foundedness

of @ .
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Contrast, now, the case of NB and ZFT. One sees how
unnaturally the € structure of NB is reflected in ZF, under
the map and translation furnished, in the artificiality of
the definition of €y there is virtually no important rela-
tion between those things related by € under ZFT and those
related by €~.. For the 6,,0 relation involves the Sat pre-
dicate in its definition, and indeed in any translation be-
tween the two theories the Sat predicate or the like would
be involved essentially. Symptomatic of the radical rearrange-
ment of entities under €.g is the fact that the proxy in ZFT
for the universal class of NB is, under € in ZFT, only
finitely high; this despite the fact that the universal class
is as high, in the € structure of NB, as is possible. Now
perhaps if this were the only anomaly, we would still be will-
ing to call it a reduction; but such anomalies are systematic
and inescapable, and I am persuaded that we are loath, for
this reason, to think NB can be reduced to ZFT.

In addition to the foregoing considerations, which are
rather subtle, and clearly not yet fully developed, there are
more obvious considerations bearing on the establishing of
ontological reduction. Certainly, one necessary condition
of ontological reduction would be this: The reduced structure
and the structure that mirrors it in the reducing structure
must have the same cardinality. Or at least this is so if we

do not have demonstrably superfluous entities running about,
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as in the case of certain structures that Richard Grandy

has contrived. Such cases are easy enough to mark off from
the rest that they can safely be considered a separate species,
as Quine argues.

In any event, the proxy function requirement Quine
imposes, and which we have considered, may be seen as, in
part, a way of preserving cardinality from the reduced struc-
ture to its mirroring structure. But there is more that can
be said for it. It figures, in an obviously crucial fashion,
in providing this mirroring structure, and in guaranteeing
that it will mirror in the strongest possible manner; that

is, that it will be isomorphic to the reduced structure.
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