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DYNAMICS OF UNBALANCED DRILL COLLARS
IN A SLANTED HOLE

Olivier F. Rey

ABSTRACT

This study examines the side-cutting forces exerted by an
oil-drilling bit boring in a slanted hole and mounted on an
unbalanced shaft.

Appendix A shows how the partial differential equation for
the movement of the lower part of the drill string is obtained
and can be solved under certain assumptions. Appendix B deals
with the implementation of a computer program to get the
displacements of the drill collars and the side-forces that
stem therefrom.

The discussion of results investigates how sensitive the
rotating forces are to various parameters. The forces at the
bit and at the stabilizer are plotted out, and the curves show
the effects of driving torque, weight on bit, end conditions at
stabilizer, bit embedding, and eventually investigate several
mass eccentricity distributions.

In conclusion, a proposition is made for increasing

drilling efficiency and for a more thorough study that would
account for static forces more systematically.

Thesis Supervisor: Prof. J. Kim Vandiver

Title: Associate Professor of Ocean Engineering
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NOMENCLATURE

A Cross-section area of the drill-collars.

@yr...39 Dimensionless coefficients for the dimensionless

ordinary differential equations.

- —t

a(z) Component along U of CG.

— —

b(z) Component along V of CG.
C Centroid of the cross-section area, or mid-point of

inner diameter.
C Continuous choice coefficient for the boundary
condition at the stabilizers:
c = 0: pinned ; ¢ = 1: clamped. An "in between"
value is defined as ¢ = 1 - (QL/EI)/2N
C Coefficient of mud external damping.
Ce = lbs/(ft/s)/foot of pipe
C. Coefficient of internal (structural) damping.
Same units as Ce.
CM Mass coefficient = 1 + Mm/Ms
with Mm = mass of trapped mud + mass of volume of
mud diplaced by a solid cylinder of same outer
diameter (per foot).
Ms = mass of steel per foot.
Cir+--Cg Dimensionless constants corresponding to the
pentadiagonal complex conjugate finite-difference
matrix.

D Depth of the bit.



e'(z)

e (w)

EI

?
b1 (Fp1)

FD'
b2 (Fp2)

Fsl (Fsl)

s2 (Fs2)

kl

Complex eccentricity of the center of gravity.

e'(z) = a({z) + i b(2)
Dimensionless eccentricity: e(z) = e'(z)/L .
Flexural stiffness. For steel, E = 4.28 * lO9

lbs/ft2 .
Vector (complex) side-force exerted by the bit onto
the wall; corresponds to sé.
Same as above, but corresponds to Ig.
Vector (complex) side-force exerted by the stabilizer
onto the wall; corresponds to Sé -
Same as above, but corresponds to Lo-
Center of gravity of the slice.
Acceleration of gravity.
1l - GL/P
i“= -1.
Dimensional characteristic radius of the bit for
computing embedding restoring moment.
Dimensionless characteristic radius: k = k'/L
Length of concern, between the bit and the first set
of stabilizers.
Dimensional actual length of compression:
T, = Apg 1', cos ¢
= l'o/L
Dimensional effective length of compression:
T, = Apg h 1y cos ¢
=1',/L

Number of segments for discretization of the collars.
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r'(z,t)

r(w,tc)

s'(z,t)

s (w,T)

s¢(w,m)

T(2)

Vector orthogonal to the slice, tangent to central
line.
Origin of the trihedrals OXYZ and OUVZ, located at
bit.
Driving torgque.
Component of ° along m.
Component of 0 in the plane of the slice.
Complex dimensional displacement in rotating frame
Ouvz:

r' =u + 1i v.
=r'(z,t)/L .
In rotating frame, dimensionless complex solution
with the time-independent mass-eccentricity
excitation only.
Complex dimensional displacement in fixed frame OXYZ:

s' =x +1iy.
= g'(z,t)/L .
In the fixed frame, dimensionless complex solution
with the time-independent g.sin¢ excitation only.
Dimensicnal tensile force (compression) at cut z.
Dimensional actual compression at the bit.

Ty, = iW(l- /) - Trig}cost + Q.9DA

Dimensional effective compression (weight on bit) due
to the soil only

T, = §W(l- e/0) - Trig% cos = W, cos(b
Although To is the true compression at the bit, it is



XrYr2

Tl that appears in the ultimate equations.

Weight (tension) supported by the drilling rig.

Dimensional time.

Axes rotating about Z.

Dimensional coordinates of C(z) in OUVZ.

Total weight of the string in the hole, from the
bottom to the very top {(steel only).

Dimensionless cut along Z.

Apparent weight of drill string minus tension from
rig. See Ty

Fixed trihedral. Z intersects the centerline of the
pipe at the bit and at the stabilizers. OYZ is a
vertical plane.

Dimensional coordinates of C(z) in OXYZ.

Greek Symbols

Density of steel.

Density of surrounding mud.

Dimensionless time: w = w,t .

Mean slope of the hole between bit and stabilizers.
Rotation speed of the shaft.

Time-change factor: o, = (EI/AQCML")'/"



INTRODUCTION

The goal of this thesis is to address the side-cutting
forces exerted by an 0il-drilling bit boring in a slanted hole
and mounted on unbalanced collars.

Usually, when a bit undergoes too large a compression, the
behavior of the soil being bored makes it deviate from the
vertical, for some stability reason. Thus, the driller in
charge of the well is faced with two problems:

- On the one hand, if the bit is only lightly loaded, the
penetration rate is too slow. Consegquently, overall
drilling time and equipment wear are substantially
increased.

- On the other hand, if the bit is overloaded, the hole
tends to climb and to build up an angle with the
vertical. A potentially troublesome point is that the
contract issued by the o0il company and signed by the
driller may stipulate that the hole be not off the
vertical by an angle more than four or five degrees.

If the slope of the hole is ten degrees, even locally,
the conditions of the contract may not be satisfied.

Coming back to the subject of this study, oil drillers
have now discovered that when the last part of the drilling
string, just above the bit, is made up with an unbalanced pipe,
they can afford to increase the weight on bit without
jeopardizing the verticality of the hole, or even while
dropping angle if the hole has some slant already (World 0Oil,
1971 and 1978).

This study doesn't address the entire problem: in
particular, the very fact that unbalanced collars in a slanted

hole tend to recover the vertical is not explained. Answering

this question would require a deterministic solution of the

- 10 -



stabilizers

Q = 45-150 rpm

mud

L =60-100 feet |

Fig. 0 - Idealization of the Bottom~Hole Assembly.
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highly non-linear behavior of the soil being drilled through.
Furthermore, the model deliberately assumes that the local
slope of the hole as well as the transverse displacements are
small, and that the borehole walls are rigid and never hit by
the pipe. The effect of the drill string beyond the stabilizer
is assumed to be contained in the boundary conditions.

We shall concentrate on the part of the drill collars
between the bit and the first set of stabilizers. In order to
get the constraining forces at these two locations, the
displacement of the portion of the pipe between the stabilizer
and the bit is needed: the length of these drill collars is
typically 60-100 feet, and most of the time the collars remain
entirely in compression. This is why the collars are
thick-walled pipes, which are resistant to buckling. Mud is
pumped inside the drill string and drags away the debris
(Figure 0).

Appendix A is devoted to deriving the partial differential
equation governing the motion with respect to time of an
infinitesimal slice of the shaft at cut z. Special care is
given to the thrust of the mud. The shaft is supposed stable,
so the transient response is ignored. Here may lie the most
guestionable part of the model. However, assuming the shaft
stable permits steady-state solution to be obtained by
separation of the temporal and spatial variables.

As the separation of variables proves successful, appendix
B is devoted to the implementation of a computer program that

gives the forces exerted by the bit and the stabilizers onto

- 12 -



the sides of the wall. Program COLLAR is based on the
finite-difference method, which readily allows for the
non-trivial boundary condition considered. On the other hand,
as stated above, no allowance whatsoever has been made for the
pipe to undergo any type of vibration mode beside the overall
rotating motion.

After checking the validity of COLLAR with two intuitive
runs, the discussion of the results concentrates on the
rotating side-forces only. It shows how buckling torque and
buckling load can be found, investigates the effects of
boundary conditions at bit and stabilizers, and eventually
tests different mass eccentricity distributions. 1In

conclusion, orientation is given for further research.

- 13 -



DISCUSSION OF RESULTS

1. Presentation.

Emphasis has been given to the variation w.r.t. rotation
speed of the side-forces at bit and stabilizers, to the
prejudice of the fixed components. Because of the non-linear
behavior of the soil, the reason that unbalanced drill collars
tend to recover the vertical seems to be buried in these
rotating forces.

The underlying partial differential equation is the

dimensionless equation (A.27) derived in appendix A.10:

. —_‘3-—15 .
= .-9_—3' e (w) e." We — L .& ___1_4)- (1.1)
woz cM Lwol

The different parameters are explained in the nomenclature.

s = (x+iy)/L is the complex dimensionless displacement of
the shaft in the static frame 0X¥Z (figure A.l), and
e(w) = e'/L is the complex dimensionless eccentricity (Figure

A.2). Appendix A.ll shows that s can be cast into the form

s = s& + Se + s<P P Sg is the solution corresponding to the
. LR La2bkr
eccentricity forcing term .§Zz e(w) e % N

&g

- 14 -



and is the only contribution of interest for obtaining the
P S

rotating side-forces. Setting Sg = Ig-© @ , appendix A.1ll

also shows that r, is the particular solution of the ordinary

differential equation (A.34):

U -
dwt dw

Mg L QL dhe & 3¢ (g w)i_@ _ dre
4wt ET JML CM pr

l 1
| LGSt 7, = 2L o (w) (1.2)
wc'l- Ae CM wo Q’o?-

After obtaining the dimensionless solution Los appendix
B.2 demonstrates that the dimensional complex forces exerted

onto the borehole walls are :

|
)2
. FEE& = AQCMSL L i[@(w)-\-ecv,)] w dw

-‘P'\'T( ) +C_E_£(f‘:zf.)
AW Jyzo 12 \aw™/w=t

(1.3)

t

. F = AEC S?_LJI w)]clw - E.e. (1.4)

it Abab.

The parameter k = k'/L is a dimensionless coefficient that

- 15 -



allows for an embedding of the bit. The physical significance
of k' and the corresponding moment are explained in appendix
A.9.a and figures A.1l6 to A.19. The parameter c describes the
boundary condition at the set of stabilizers: its value is O
if pinned, 1 if clamped, and intermediate values may be

considered as exemplified in appendix B.l.2.b. Although only

c 0 and ¢ = 1 are presented here, the particular value

c 1 - (QL/EI)/2N was tried (Figures B.2 and B.3) with no
damping, Ce = 0. The corresponding force curves exhibited a
somewhat intermediate situation between pinned and clamped, but
the interesting result was that these curves were astonishingly
comparable to those with ¢ = 1 and Ce = 0, as if some damping
had been introduced.

All the cases presented here give the variation w.r.t.

. . — e
rotation speed of the magnitude of Fbit and Fsta’

along with
the variation of the phase angles. The examination of the
phase curves not only allows one to spot the resonances more
accurately, but also gives the relative phase shift between the
two forces.

The most favorable situaticn seems to be reached when
rotating forces are large at bit to increase efficiency, while
small enough at stabilizers not to damage the borehole wall.

It must be kept in mind that the bit advances into the ground;
consequently, the side-forces are exerted onto the formation
for only a few moments. A large rotating force at bit does not

-

necessarily imply a larger borehole.

- 16 -



Case & Q q) N c, , k' W
Figures | lbs*ft | deg | 1lbs/gal | 1lb*s/ft in 1bs | ©
Testing of the Program COLLAR
0
2 1
Effect of Torque
3 10000 0
4 10000 1
5 106 1
6 2.106 1
Effect of Weight on Bit and Bound. Cond. at Stabilizer
10000 10 12 10000 | 1
8 10060 10 12 30000 {1
10000 10 12 60000 1
10 10000 10 12 10000 | O
11 10000 10 12 30000 | O
Effect of Mud Damping
12 10000 10 12 0.8 30000 1
Effect of Bit Embedding
13 10 12 15 30000 |1
14 10 12 1000 | 30000 {1
Effect of Mass-Eccentricity Distribution (inches)
Same Parameters as in Case 8, Except e'(z):
0¢$2z ¢L/4<zL/2<z <3L/4<z KL
15 e'(z) = 0.1 0.1 -0.1 -0.1
16 e'(z) = 0.1 0.1 0.1 0
17 e'(z) = 0.1 0 0 0
18 e'(z) = -0.1 0.1 0.1 0.1
19 e'(z) = 0 0.1 -0.1 0
20 e'(z) = 0.1 -0.1 0.1 -0.1
Table 1 - Input Parameters for Example Calculatioms.
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The characteristics of the shaft considered are:

OD = 7.50 inches
ID = 2.81 inches (= 2'7 in)
L = 100 feet

@ = 15.2 slugs/ft "

Unless specified, mass eccentricity is constant over the
length:

e' = 0.1 inches.

The parameters for each case are in Table 1.

2. Testing of the Vvalidity of Program COLLAR,

The validity of COLLAR is tested in two cases where
results are almost known in advance: bit pinned - stab. pinned
(case 1, Figures 1) and bit pinned - stab. clamped (case 2,
Figures 2). As expected, in each case the curves undergo a
dramatic increase about two rotation speeds over the range of
rotation rates considered in the analysis, which correspond to
the first two critical speeds of the shaft in bending. To get
an idea of the accuracy of the numerical results, these
critical speeds are compared to those from theory. The
theoretical formula given below assumes zero tension throughout
the length of the shaft, whereas the tension considered by
COLLAR is equal to the weight of the collars at z = L and
linearly goes to zero at the bit. Thus we know in advance that

the critical speeds from COLLAR should be slightly higher.
Let V= 232 &I (rpm)
w12 ﬂ()

- 18 -



Theory gives:

L1, (rpm) .SZz(rpm)
case 1, pin-pin v (em*v
2
case 2, pin-cla éﬁqz7> v (7.069)"v

With Y being here 2.6737 rpm and the shaft being discretized

into N = 31 segments, one finds:

1, (rpm) L, (rpm)
Theory COLLAR Theory COLLAR
case 1, pin-pin 26.39 28.95 105.55 107.89
case 2, pin-cla 41.23 42.63 133.59 134.78

As expected, theoretical values are a little lower. 1In
each case, the two mode shapes given by COLLAR are drawn
(Figures l.c and 2.c). For case 1, they can be fitted exactly
by sinusoids. All these results confirm the conclusions of
prgvious studies showing that linearly varying tension hardly
affects resonance frequencies and mode shapes. However, the
effect of tension does appear in figure l.a. 1In this case,
both bit and stabilizer are pinned. If the tension were
constant, the forces would be always rigorously equal in
magnitudg, as was verified in a case, not shown here, where
<$ = 90° suppressed the contribution of the gravity forces.
For q>#=90°, the varying tension makes the two forces different

about the second critical speed.

- 19 -



3. Effect of Torque.

Although the exact value of Q is not known, the order of
magnitude can be obtained by referring to tables giving the
initial make-up torque at joints (Drilco, 1982).

Cases 3 and 4 are identical to 1 and 2, except that
Q = 10000 lbs.ft is now introduced: the out-of-plane
contribution of Q creates some phase modifications, but Q is
not large enough to cause a visible change in the magnitude of
the forces or in the natural frequencies. This result is
consistent with those of Eshleman and Eubanks (1969). These
authors show that things are not significantly modified until
QL/EI = 2. Using their notations, the parameter H = QL/EI as
it appears in equation (1.2) is, for case 4:

H = QL _ (oooo)(100) _ 4 033
EI 3.142¢ 107

6
Cases 5 and 6 test Q = 10 and 2.106 lbs.ft respectively,

although such high values are never actually used (figures 5

and 6).
Case| Q (1bs.ft)] H = QL/EI| Q. (rpm) S,
4 104 0.032 42.6 134.8
5 10° 3.2 41 130
6 2.10° 6.4 ? 118

For case 6, H is greater than the threshold 2w mentioned by

Golomb and Rosemberg (1961), and indeed buckling has most

likely occurred.

- 20 -



4. Effect of Weight on Bit and Boundary Condition at

Stabilizer.

As seen in appendix A.7, a parameter the driller can play
with, beside the rotation speed, is W, = apparent weight of
drill string minus tension from rig. The actual weight on bit
is T; = Wy cos$. Cases 7, 8 and ¢ were done with W, = 10000,
30000 and 60000 lbs, assuming a built-in condition at the
stabilizers.

From corresponding Figures 7, 8 and 9, we can notice a
left-bound shift of the natural frequencies: the first mode is
obtained successively at 35, 27 and 13 rpm, the second at 118,
112 and 101 rpm. Likewise, for Wb = 30000 lbs, compare case 8
(c = 1) to case 11 (¢ = 0). An idea of how critical the
situation is stems from the first natural frequency: the lower
it is, the closer the buckling. Theoretically, the shaft
buckles when the first natural frequency hits zero;
practically, the various vibrations undergone trigger buckling

well before the theoretical value is attained.

Case | W_ (1bs) c 2, (pm) K1y
7 10000 1 35 118
8 30000 1 27 112
9 60000 1 13 101
10 10000 0 21 92
11 30000 0 11 84

As expected, the shaft supports compression much better when

- 21 -



its upper end is clamped.

5. Effect of Mud Damping.

When the shaft is surrounded by mud, every slice is

submitted to a drag force that COLLAR sets egual to:

—_ —b
F = - C_ .V __.dz
mud e ©)

Actually, Fo

rod is better modeled by the non-linear expression:

—

- -1 N/
Frpd = 3 Ce ?m 5 \/(c) : \/(C)

For every rotation speed, every slice should be assigned a
different Cewhich depends on the unknown V, and consequently
several iterations should be performed to obtain a result for a
single case. However, in order to get a general feeling of the
effect of Ce’ the value Ce= 0.8 has been considered in case 1l2.

As a matter of fact, this value represents:

[N
C, =0.8 ~v i— S Ce(’z)d'?

When compared to Ce= 0, Ce% 0 limits the peaks and heightens

the minima, but the value Ce = 0.8 is too small to affect the

critical speeds significantly.

6. Effect of Bit Embedding.

A potential embedding of the bit is taken care of by
introducing a length k', which is the lever at which the weight
on bit is applied, thus creating a restoring moment (appendix

A.9.a). Since Q = 10000 lbs.ft is too small to have any effect

- 22 -



on the graph of the forces, Q is equated to zero sc that the
mode shapes at resonance are contained in a plane and can be
plotted out.

It appears that physically acceptable values for k', i.e.
on the order of the radius of the bit, have little influence,
if any, on the mode shapes, which look very much like those on
Figures l.c or 2.c. However, it can be verified that k' has a
stiffening effect by pushing up critical speeds, which allows
for more weight on bit before buckling. This is exemplified
dramatically in case 14, using the non-realistic value
k' = 1000 inches. In this case, the mode shapes indeed reflect

the effect of restoring moment (Figure 1l4.c).

Case | W_ (lbs)| k' (in)| ¢ Q, (rpm) L1,
11 30000 0 0 11 84
13 30000 15 0 12 94

8 30000 0 1 27 112
14 30000 1000 0 27 109

It is worth noting that figure l4.a is almost the negative of

Figure 8.a: the force at stabilizer of case 14 looks like the
bit force of case 8, and vice-versa. In case 8 one has stab.

clamped - bit pinned, in case 14 the stabilizer is pinned and

k' is so large that the bit is practically clamped. The

critical speeds are surprisingly close.

- 23 -



7. Effect of Mass Eccentricity Distribution.

So far, a uniform mass eccentricity distribution has been

used, namely one tenth of an inch over the entire length.
Assuming clamped stabilizer, various configurations have been
tested with the underlying intention to maximize Fbit in order
to increase drilling efficiency, while minimizing Fsta to
prevent the stabilizers from abrading the borehole wall. This
friction would increase the torque requirements and the
equipment wear, and diminish the actual weight on bit.

As will be seen in the following, one sometimes comes up
with a rotation speed that fulfills such requirements, except
that it may be as large as 200 rpm. In order to reduce this
"optimum" speed to a more practical value, one can increase L
or the weight on bit W,’ or decrease EI. However, this also
reduces the first natural freguency, which makes the shaft more
sensitive to buckling.

Case 15 excites the second mode:

e'(z) = 0.1 inches 0 £ z < L/2
-0.1 inches L/2 <z £ L
Figure 15.a shows how the second resonance is amplified, with a
peak width at 200 lbs larger than in any other case. After
this resonance, the force at stabilizer vanishes around 170 rpm
whereas the force at bit never goes below 140 lbs. However,
compared to case 8 that has a uniform distribution, Case 15

doesn't appear worth it. .

- 24 —



Case 16 is run with
e'(z) = 0.1 inches 0 € z ¢ 3L/4
0 elsewhere
Unlike other cases, Fstab remains small for a wide range of
rpm's, but F ., is not much larger either.
Case 17 considers e(z) = 0.1 inches 0 Z< L/4
0 elsewhere
It reveals a striking result: since the eccentricity of the
shaft is located near the bit, rotating forces were expected to
be greater at the bit than at the stabilizer. Going against

intuition, Figure 17.a shows that Foea is a lot greater than

a
Fbit after the second resonance. The case, not shown here,
where the lower half of the drill collars had a uniform
eccentricity of 0.1 inches looked very much alike. It is worth
noting that the shapes of the curves are very different from
Case 16, where the lower three quarters of the shaft are
eccentric.

For case 18, e'(z) = -0.1 inches 0 £ z { L/4.

0.1 inches elsewhere

The "optimum” speed seems to be around 190 rpm, with
F = 20 1bs and F

sta bit™
Another interesting configuration is tested in Case 19,

200 1bs.

with
e'(z) = 0 0 £z <L/4
0.1 in L/4 < z <L/2
-0.1 in L/2 < z < 3L/4
4] 3L/4 <z &L

- 25 -



At 195 rpm, Fsta 7anishes and Fp;, attains 320 lbs.

But from all the eccentricity distributions tried here,
the most spectacular is Case 20 with
e'(z) = 0.1 inches 0 ¢ z (L/4
-0.1 inches L/4 £ z ¢ L/2
0.1 inches L/2 < z ¢ 3L/4
-0.1 inches 3L/4 < z £ L
At 208 rpm, Fsta vanishes while Fbit = 750 lbs. As suggested
above, an attempt has been made to reach the same situation at
a lower frequency by taking L = 120 feet instead of 100 feet.
The corresponding figures are not shown here, but Fstab
vanished at 142 rpm while Fbit was 300 1lbs. This case,
however, was not conceivable either, for the first critical

speed had disappeared, indicating that buckling had occurred.
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8. Figuras 1 to 20.

Figure l.a - Testing of the Program COLIAR, c = 0
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T 1 1 [ N L A TR N B
0.0 5Q.R 100.02 16Q.0 2pR.R2

ROTATIONS PER MINUTE

ROTATING SIDE-FORCE: AT BIT _—
AT STABILIZER — —
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DEGREES

Figure 1.D
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2
2

Figure 1.c - Mode Shapes at Resonance

= 107.89 rpm

L1 =28.95 rpm

!
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Figure 2.a - Testing of the Program COLIAR, c =1
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DEGREES

Figure 2.b
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Figure 2.c - Mode Shapes at Resonance.

134.78 rpm
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Fig, 3.a - Effect of Torque, Q = 10000 lbs.ft
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Figure 3.b
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Figure 4.a - Effect of Torque, Q = 10000 lbs.ft
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Figure 4.b
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Figure 5.a - Effect of Torque, Q = 106 1lbs,.ft
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Figure 5.b
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Figure 6.a - Effect of Torque, Q = 2*106 1bs.ft
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Figure 6.b
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Figure 7.a - Effect of Weight on Bit
and Boundary Conditions at Stabilizer.
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Figure 7.b
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Figure 8.a - Effect of Weight on Bit and
Boundary Conditions at Stabilizer.
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Figure 8.
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Figure 9.a - Effect of Weight on Bit and
Boundary Conditions at Stabilizer.
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Figure 9.b
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Figure 10.a - Effect of Weight on Bit and
Boundary Conditions at Stabilizer,

Wb = 10000 1bs
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Figure 10.b
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Figure 1l.a - Effect of Weight on Bit and

Boundary Conditions at Stabilizer.
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Figure 11.b
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Figure 12.a - Effect of Mud Damping.

- ft .
c, = 0.8 lbs/(sec)/ft of pipe

420.2
o
@ zo2.2—
-
-
B R T T T T T T T T T T T [ T T 11
.o ER.R 120.2 160. 2 2p0.2

ROTATIONS PER MINUTE

ROTATING SIDE-FORCE: AT BIT E—
AT STABILIZER —— —

- 51 -



Figure 12.b
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Figure 13.a - Effect of Bit Embedding, k' = 15 inches
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Figure 13.b
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Figure 14,a - Effect of Bit Embedding, k'

1000 inches
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Figure l4.c - Mode Shapes at Resonance.

N, =109 rpm
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Figure 15.a - Effect of Mass~Eccentricity Distribution.

Same Parameters as in Case 8, except e'(z) = 0.1" 0¢£z<L/2
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Figure 15.Db
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Figure 16.a - Effect of Mass-Eccentricity Distribution.

Same Parameters as in Case 8, except e'(z) = 0.1" 0&£z<3L/4
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Figure 16.b
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Figure 17.a - Effect of Mass-Eccentricity Distribution.

Same Parameters as in Case 8, except e'(z) = 0.1" 0£z<L/4
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Figure 17.b
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Figure 18.a - Effect of Mass-Eccentricity Distribution.

Same Parameterc as in Case 8, except e'(z) = -0.1" 0£z<$L/4
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Figure 18.b
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Figure 19.a - Effect of Mass-Eccentricity Distribution.

Same Parameters as in Case 8, except e'(z) = O 0 £z4L/4
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Figure 19.0
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Figure 20.a - Effect of Mass-Eccentricity Distribution.

Same Parameters as in Case 8, except e'(z) = 0.1" 0£z<L/4
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Figure 20.b
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9.

Typical Printout from COLLAR.

One considers Case 8 at the "optimum" speed L= 119 rpm.

(See Table 1, page 17, and Figure 8.a, page 43).

THE COLLARS HAVE A BIT-STABILIZER LENGTH @ L= 100.00 FEET
AN INTERNAL DAMPING COEFFICIENT 3 Ci = 0.0000E+00 LBS/(FT/S)/FT OF PIPE
AN QUTER DIAMETER ¢ 0D = 7.50 INCHES
AN INNER DIAMETER ¢ ID = 2.81 INCHES
AND ARE ACTED UPON BY A DRIVING TORQUE ¢ @ = 10000.00 LBS % FT
ROTATING AT THE SPEED ! OMEGA = 1192.00 RPM
THE HOLE IS OFF THE YERTICAL BY AN ANGLE @ PHI = 10.00 DEGREES
AND FILLED WITH A MUD OF WEIGHT : RHOMUD = 12.00 LBS / GAL
AND OF DAMPING COEFFICIENT 3 Ce = 0.0000E+00 LBS/(FT/S)/FT OF PIPE
THE BIT HAS A CHARACTERISTIC RADIUS @ k' = 0.00 INCHES
AND SUPPORTS A NET WEIGHT @ Wb = 30000.00 LBS
THE SHAFT IS DISCRETIZED INTO ¢ N = 19 SEGMENTS (OF THE TYPE 4M-1)
THE BOUNDARY VALUE COEF. AT THE STABILIZER IS 3 C= 1,0000 (0 = PINNEDy 1 = CLAMPED)
THE MASS ECCENTRICITY IS FOR THE LOWER GQUART 3 E‘t = 0.100 INCHES AT 0.00 DEGREES
SECOND QUART E’2 = 0.100 INCHES AT 0.00 DEGREES
THIRD QUART @ E’‘3 = 0,100 INCHES AT 0.00 DEGREES
UPPER QUART @ E‘4 = 0.100 INCHES AT 0.00 DEGREES
THE DIMENSIONLESS DISPLACEMENTS S AND R ARE @
MAGNITUDE PHASE MAGNITUDE PHASE
I= 1% S8S= 0,1099E-02 » =-89.51 . R = 0.,1227E-04 » 2.36
I= 23 S= 0,2146E-02 » -89.55 , R = 0.,1896E-04 2.76
I=a 3% S = 0.309E-02 » -89.59 . R = 0.1649E-04 » 4,08
Ia 4% 853 0,3911E-02 » -89.63 » R = 0.,3546E-05 » 20.75
I= %% S = 0,4580E-02 » =-89.67 « R = O0.1979E-04 » 176.64
I= 6! S= 0.,5023E-02 » -85.70 + R = 0,5021E-04 » 178,97
I= 7¢ S = 0.%5287E-02 » =-89.74 . R = 0.,84106-04 » 179.63
I= 8¢: S= 0.5351E-02 » =-89.77 . R = O0.1148E-03 » 179.94
I= 932 S= 0,5219€-02 + -89.81 . R = 0,1438E-03 » ~179.88
1=10: S = 0.,4909E-02 » -89.84 + R = 0.1614E-03 » -179.77
I =113 S = 0.,4441E-02 » ~89.87 + R = 0,1669E-03 » -179.68
I =123 S = 0.,38496-02 » -89.90 « R = 0,1399E-03 » ~179.562
I=13: S = 0.,31696-02 » -89.94 . R = 0,1413E-03 » ~179.57
I =14 ¢ S = 0.,2446E-02 » -89.97 . R = 0.1142€-03 » -179.53
I=1% ¢ S = 0,17286-02 » ~%0.,00 . R = 0.8242E-04 » -179.48
I =16 S = 0.,1067E-02 » =90.03 . R = 0,5084E-04 » -179.44
I =17 S = 0,5204E-03 » =-90.06 . R = 0.2414E-04 » -179.39
I =18 S = 0,1449E-03 s+ =-90.10 « R = 0.6294E-05 » -179.31
THE FORCES AT THE BIT ARE @
FIXED COMPONENT : FBL = 0.5852E+03 LBS AT -8%9.94 DEGREES
ROTATING COMPONENT : FB2 = 0.1295E+03 LBS AT 0.43 DEGREES
THE FORCES AT THE STABILIZER ARE
FIXED COMPONENT ! FS1 = 0.1243E+04 LBS AT ~-%0.03 DEGREES
ROTATING COMPONENT : FS2 = 0.2678E+0L LBS AT -148.57 DEGREES
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CONCLUSION

When stabilizers enforce built-in conditions (c = 1),
results seem to indicate that best drilling ccnditions are
immediately after second resonance, when rotating forces are
large at bit and small at stabilizer. This holds also when the
shaft is only pinned at stabilizer, but in this case, forces
are small and too close to each other in magnitude.

However, rigid stabilizers cause large static force at
stabilizers and diminish the static component at bit, thus
reducing the pendulum effect when the hole is slanted.
Therefore, a further study should investigate more precisely
the best trade-off between the two following situations at bit:

large static force and small rotating force, or

small static force and large rotating force.
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APPENDIX A

DERIVATION OF GOVERNING PARTIAL DIFFERENTIAL EQUATION

A.1 Methodology

The two sets of axes used are shown in Figure A.l. The
fixed rectangular right-hand coordinate system is referred to
as OXYZ, where the origin O is the center of the lower face of
the bit. 2 intersects the centerline of the pipe at the bit
and at the stabilizers. (0Y,0Z) defines a vertical plane that
contains the acceleration of gravity g.

The rotating set of axes is referred to as OUVZ.

The method adopted is to isolate a infinitesimal slice of

the shaft and apply Newton's second law:

m’f = 7. E (A.1)
where:

cm not only represents the mass of the slice, but also

accounts for the added mass of nud,

slice,

-
. X is the acceleration of the center of gravity G of the
2

is the sum of the differential transverse forces. As
we suppose the displacements small, superposition
holds and we can address the different contribution
separately: effects of flexural stiffness, driving

torque, damping, mud, gravity, tensile force.
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Figure A.1 - Coordinate Systems Definition.
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Figure A,2 - Coordinate Notations.
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As seen in Figure A.2, the coordinates of the center of
surface C are:
u(z,t), v(z,t), z in OUVZ,
x(z,t), y(z,t), 2 in OXYZ.
G denoting the center of gravity of the slice, the
components of the offset vector CG are time-independent in
OUVZ:

—

— -
CG = a(z) U + b(z) V (A.2)

Before addressing systematically each force involved, let

us derive the expression of the acceleration :
—p T —p T~ 17—
X = dog = doo' + do'c (A.3)
ak* L™ Akt

It is considered that the bit buries itself into the
soil slowly and steadily. Therefore, the trihedral 0XYZ bound
to the bit undergoes a translation along Z and is galilean.

2 —t % -
d°00' =d z 2Z 1is neglected.

de> dg?
—_— re
In 0OXYZ, 0'G and °.L19.§are:
datt
x + o @St % - aSL” sk
- J}EZ . 1
0'G = y + b SinSLE (R3) 5 2= 4 _ Lt simsk (AL4)
det
oxvz| © OXYZ °

A.2 Effect of Flexural Stiffness.

Sign conventions are shown in Figure A.3.

Neglecting the rotatory inertia of the slice about any
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diametral axis, the equilibrium in the plane 0OYZ reads:
0.X = M +dM, -M, + d3 Z A(S,+435,)Y
——r
g = ou‘—‘l; + d=z Sy

Ng

ANY
=  dM, X+ L3 35, (-X

-8
Scalar multiplication by X gives SY - dMx
d3
and the net force acting onto the slice is J.Sy= d*M= ds,
t d22
Substituting for M, = — EI ﬂ‘l"’%‘t ?

(positive when the curvature in y is negative), one eventually

gets

&S, = -
b d’ﬁq

With the sign conventions of Figure A.4, equilibrium in

plane 0ZX reads:

-0 P -y — —
0.Y = My+dMy -—MY .;_d_} A( z+dsz)x
g —v —
% = d M\/ -+ d.} Sx /\ X
— —
-t d'H
Scalar multiplication by Y yields S, = - -z;f
and the net force acting onto the slice is oLs = - 21,3,
Substituting for M, = ez 4= 3
" g Y = ‘L}z

(positive when the curvature in x is positive), one finds

d,sz .-Etd_:f'i‘uf amd.

’

d.}‘o
44
. - EH/4" . Ty
- 2 % - 44
MLWL - EI 4P/ dny createn Fs—h‘ff." —ELdy 7.%. (AS)
OXYZ © oxyz.| O
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M>< + dM><

O

> X

Fifure A.4 - Sign Conventions in Plane 0ZX.
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A.3 Effect of Coupling Torque-Bending.

The very fact that the shaft is bent makes the driving
torque contribute to bending the shaft somewhat further. An
intuitive insight of the phenomenon may be easily reached as
follows:

Take a bar made of rubber and hold it with hands, say,
three feet apart. Then, without giving it any initial
curvature, twist it: apart from some superficial helicoidal
deformation, the center line of the bar remains straight
(Figure A.5).

However, if one gives the bar an initial curvature, as
shown in Figure A.6, one clearly sees on Figure A.7 that the
twisting moment causes the bar to bend out of plane. This
time, the centerline of the bar itself assumes a helicoidal

shape.

The actual situation is shown on Figure A.8.

L. - . —_ -t
The driving torque Q is decomposed in Q = Qn + Q

}

—

Q is the true axial driving torque,

is the component in the plane of the slice.
Q, is obtained by 6; =nA (a/\-ﬂ) , where 7 is the

tangent vector:
doee o
vy
A
z A

f Q

L)
\

I

R4 Rty
i
5o
I

OXYZ
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Figure A.5 - Twisting of a Straight Bar.

Figure A.6 - The Bar With Initial Curvature.

%:% ieft hond

right ' hand

Figure A.7 - Interaction Between Bending and Twisting.
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neutral -

Figure A.8 - Vector Decomposition of Driving Torque.
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—> —
In much the same way Mbend created F i jfer

2y
- 53

|

— — 'bsz
QP creates Ftorq = - Q d‘j ;b-; (A.6)

oxyYz o

A.4 Effect of External and Interral Damping.

According to Bishop and Gladwell (195%9a), damping can be
apprehended in two coexistent ways:

a. External damping.

The drilling pipe is surrounded by mud, both inside and

outside. This medium creates a force against the slice that is

assumed to be
————

F Tt ) d
ext. demp. = Ce ) v:.;.u':y of C) k4

that is

A.7)

Fue.dwmf. = —Ce_ J’?

Oaf: .

oXYZ

b. Internal damping.

The steel from which the pipe is rolled dissipates energy
as well. This structural damping depends only on the motion of
the pipe as seen by an observer tied to the rotating frame; the

solid rotational motion imposed to the pipe has no influence.

TherefOI:e, —D Fnamsvune
. - _ C. Aelative d3
int. dasmp. v velscihy of C
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that is

. < + Sl\y

= — Cd3 |y -1 (A.8)
O

int. dwy.

OKYZ

A.5 Effect of Transverse Mud Thrust.

In the field, except at the bit, the slice is subjected to
the pressure of the mud along its sides only. However, in
order to avoid clumsy calculations, we shall consider the slice
to be compietely immersed into mud, and then substract the
hydrostatic forces exerted onto the two material cross-sections

(Figure A.9).

Let H; = vector orthogonal to the upper side of the slice,

oiigin Cl

—

N, = vector orthogonal to the lower side of the slice,
origin 02

-A ]

z, = vertical ascendent axis (figure A.10),

hl = distance from C, to the surface (rig),

h2 = distance from C, to tre surface (rig).

In the case of complete immersion, the thrust is the

displaced weight of mud.

fong

Fvd = AB.3d35 2 +Ag. gk + Agmgﬂ'z (A.10)

-t

where
° S2/3 _(ox/2 &
. h o =/ %)%*4% - ( %)3 - ”%
z, = /:m¢ 3 n,= (3‘3/3})-5“.} 3 f'L9 = |- (37/3'3)7.-&;7:
0 Cos ¢ ' | ’ ) ’
XYz oxyz | oXYZ "1
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1
T

/T ]

‘Figure A.9 - Calculation of Mud Forces.

Figure A.10 -~ Notatlons for Action of Hydrostatic Pressure,
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(o]

(2%/2%) >4
-k Co:i LA h‘i) 3} " } %

Lz 4= C:,~ C1.;.: = CL%I(B}(F?)

Agm % {2‘*’1 +hey «[hy elha-h) ]y
A?m'} 3—2: vy +)'11(1"f1+7§_) +<A‘“¢ % r )N al,%,}

g
g
I

2t s Ax
o ety
[ A d ; h Y d%
F'_mud= gmgj/.)m¢+1;§__coscf>g
s ¢ - wsd  _—ping 2%
oxyz Y

Now, with Figure A.1ll, let us write hl in terms of 2z, and
the depth D of the bit:
For 0 £ z ¢ L, we have h, =D-zcos¢—ysin¢»
™ D - z cos 4)

_ }:‘2 — G A=
(p-3 =) = s ¢ =
— - Ay 3%y i .
od = AQ».}‘L? (I) %%4));;{_ wr $ o + Ain @ (A“)

311

oxyz | — smd 2%
¥y
A,6 Effect of gravity.
Since °
g - — /2!"\¢ )
s Tl e
the weight of the slice of mass Ae dz is:
— Qo
- d :
Fym*} = Ap g dy |ang (A.I?.)
oxyz | @ ¢
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surface

Figure A,11 - Depth of Section in Terms of D, z, v $.

‘\ Tz+ dz

Figure A,12 - Contribution of Tensile Force to Net Side-Force.
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A.7 Effect of Coupling Compression-Bending.

The exact location of the point where the tensile force is

applied doesn't matter. However, Figure A.12 considers that it

is located at the centroid.

Actually, the shaft is most likely to be in compressicn,
so T is usually negative.

The net Y-force is (Tg_;)s L}_(Tz—;) = _;_} (T ;i') OL?
it ¥ ¥

Similarly, the net X~force is ;2_ (T-Eff ) i}z
LS 232

To reach the normal tension T,

£ — —> —=
the forces T, 3., T, Fpug
—

and Fgravity are projected along Z, and the acceleration along

this axis is equated to zero:

0= Ty -Ty —Agadyamd T —Apg iy =

gé? - A 3_L€h.nh\¢ '33' + e Qm(#]

T(—ﬁ) = A %[em.Aﬁr\(!).‘a, + em#}] — To

where To is the true compression exerted onto the lower face of

the bit. According to the assumptions stated in the

introduction, y remains small compared to z and doesn't exceed

20 degrees, so we are perfectly justified in writing:
Th) = Apgedzy — To (A.13)
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o Tr*ig

I

% surface ——

mud thrust

(sides only) D
z=L

mMmud pressure
+ soil

Figure A.13 - Forces Exerted on the Entire Drill String.
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To can be reached by static analysis: Figure A.l13 shows
that beside T, the entire drill string is submitted to its own

weight W, the mud thrust, the tension T and the side-forces

rig’
due to all the various bearings along the pipe (stabilizers,
shock absorbers, etc.). t is assumed that these bearings have
no axial contribution.

To make calculations easier, Figure A.1l4 shows how the
hydrostatic force is introduced and ther substracted.

The mud thrust along the sides of the pipe together with
the hydrostatic pressure at the bit yields the standard

vertical buoyant force, equal to the weight of mud displaced by

the entire string. Projecting the forces along Z:

gTug._\«/ﬁ—Pm/e)}ccss#) +T, — Em g DA

To = e g DA 4 i\/\/ﬁ— ﬂ../e)- "‘3}&54) (. 14)

If one considers the case where the string is vertical and

o

the rig supports entirely the apparent weight of the pipe, one

—r:ag = \I\/ (1"' QM/(’)

has:

Although the drill string is suspended and the bit doesn't
touch the soil, one still has the hydrostatic compression, and
indeed To = 3" 3 DA

However, as will be seen later, the effective compression

that appears in the final equations is the reaction of the

soil, namely: gw (1- €m/€) - -T:u'«} % “*SCF ’
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hydrostatic \fo

Figure A.14 - Calculation of Forces on the Bit.

@ Ea surface ———

tension

compression

length

of concer&

O

Figure A,15 - Tension Variation Along the String.

- 90 -



/ T,
Introducing eo = —————— , we have

Apges¢
T(3) = Ae«gc@sqg(?—@;) (A.15)
l'o is a characteristic length of compression (Figure A.15).
Strictly speaking, 1'  is not the exact length over which
the collars are in compression, because the cross-section A and
the angle d) usually decrease toward the tcp, thus affecting the
local mean rate of change of tension Aeg cos 4) .

We finally get
N S35
Femp. = —Apgen$ dz 2522

oxyz - 1

(A.16)

A.8 Dimensional Partial Differential Equation:

a. In the Static Frame.

Recollecting the different contributions, equation{4.1l)

becomes
m d,_____’-;-c: = l:: + E + E + F
Akt st Eg. hrnts L
— -t -l
* Pt i+ Fo (A.17)

where m = mass of steel + added mass of mud = AQ CMdz.

Prejecting along X and Y only and dividing through by dz:

. AFCM[QE.—Q.SL"‘@sSLI::l:—EI %‘;_“’; - Q(-%%’) - Ce;; -C (-x. 4—.3'1\})

+ AT — ARt - Appe Pl 33 + Ayt 22
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.“ 2 4 3 . .
. A(,CM[lé—bSIAIhSlb] = -~ EI %3%' - Q %53. — Ce ! “CL(‘J"SLI’)

+ Agmg(:b-%coscja)g —_ A@'; aoé.:.%' - A€3 c.g4>(9,"7_.5)313'

EES

Tyt g - Alre) g emt

Using T = Aeglo' cosd):

. AECM['SE-a,Sfta.sSLL] = - Er =

>y
3_5“ +Q ;.; - C: _Q.\}, (C +C. )x

+ 3%[/\3‘3‘0“(’(’) (T"€ 33;\)_] + A((’ f’m)‘}“""‘f’ %:::

. AQCH[S—LSf'AihSLE]—vEIu' - Q’_’f A R (R

a3 3o ")‘3’
+ LAyt G (oo puy2h] + Alegmg b 3
— Ale-gm) g~ ¢

Here appears the quantity
T gy = {wm o) -T b =T,
Introducing h = 1 - ?m/e
and l'l = T

(A.18)
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the coefficient of the second order derivatives becomes
/
AQ}Q‘M<P(’D’ -4)

Reordering the terms:

ApCui +(Corc)x + C 2y +E1 2 _ %

D

3'5‘1 33}
+Agg%%¢i(@:—%)§; ~3_£} = EC a St oo SLE

. . '&

+A€%K(ﬁ({>§(9 )___ - __} Aec LSL/:uh,Slt -A(:?e\./)m()’

This equation can be conveniently handled if we work in a
complex plane located at the running cut z. Then, introducing

e'(z) = a(z) + i b(z) (e as in eccentricity)

s'(z,t) = x(z,t) + i y(z,t) (s as in static frame)

and dividing through by A§>CM, one finally obtains:

}S/ + Ce +C¢ Ja— ET ?_4__' o1 Q 3_3-/3/
Apcm A?CM 3'5 AECM 353
(A.19)
+ %P““s"’[(e ] A’
Cm 3 AQCM
= o e(g«)e, st _ L ghand
CM

The contribution of Q is multiplied by i, which expresses

the out-of-plane effect of Q on the bending. If we set
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emgo(SOCM=landh=l)
Q=20

¢ =M /2 , we obtain:

. AN . Co S
5+ CetSoy 4 ET XA G,
Aep Ae 934 AE

e .
__1,3,

which is the equation derived by Bishop and Gladwell (1959b,

= ot e,/(‘g) e

page 75, equation 76).

b. In the Rotating Frame.

An alternative form of (A.19) can be obtained in the
rotating frame;
Lt ) )
Let s'(z,t) = r'(z,t).e , where r' = u + i v (r as in

rotating frame), one has
. . Lk
s' = (r' + iQr').e
KR

L
s' = (r' » 2iQ2 1! -.Q."r').e

Substituting for s', $§' and s' into (A.19) yields

22 . e }q ! A4 3 /
"L’+[C°+C‘ +Z,F.SL]’L’ S Q%
AQCM AeCM 35 AﬁcM }-53

+ %”»M"’[(e;-;,)&'_?i']_[ntt Ceﬂ]z’ (8.20)
it

Cm & ARCH
/ R nin -1k
= _(lze(y) - E.C_j e
M
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A.9 Boundary Conditions and External Torques.

a. At Bit.

First, we assume that the bit remains centered about the

center of the hole:
s'(0,t) =0

An attempt has been made to account for a restoring moment
resulting from the embedding of the bit into the soil. The
total compression at the bit is To' but Tg includes the
hydrostatic thrust against the lower face of the bit, which
clearly cannot cause any moment (Figure A.16).

The magnitude of this restoring moment is taken equal to

Moest = K' Tp X

where T, = reaction of the soil only
i
= AQ}%QC"MP , according to (A.18),
and k' = dimensional characteristic radius of the bit,

k' depends essentially on two parameters, the shape of
the bit (Figure A.17) and the nature of the soil being drilled
through (Figure A.18): if the bit drills through an infinitely
hard soil, it cannot bite into the bottom of the hole, and k'
is equal to the radius of the bit. On the other hand, a very
soft soil has a small stiffness and can hardly apply a
restoring moment: in this case, k' is intuitively very small.

Figure A.1l9 helps derive the analytical expression for

—

Mrest'

When %% = 0 and ‘%% > 0, one has a positive X-borne moment.

When 3% { 0 and 3% = 0, one gets a positive ¥Y-borne moment.
%
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Figure A.16 - Computation of the Soil Contact Force, T,

k’~ O k’ large

Figure A.17 - Dependence of k' on the Shape of the Bit,



soil infinitely hard soil very soft
k~radius k’ small

Figure A.18 - Dependence of k' on the Soil Properties.

/ N My> 0
/ M, >0 ﬂ ’
X AN q;
(A_X)-O cnd(él’.))o (ﬁ?&)(O and (_él): 0
0Z) 4 0Z/it dZJhit 3Z it

Figure A.19 - Sign Considerations for Expressing

Restoring Moment, M.
the Restoring Moment, Mrest'
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¢
>y
-
= &T |-
ek 1 > (A.21)
0
oOXYZ

The rate of change of momentum is neglected, therefore the
relationship between the externally applied torqusz Qbit and EI

is provided by the usual approximation in strength material

theory:
— - 1>
Que An,, = EIL §}Of’ (A.22)
k.

—P - —_— -
But Qbit ==Q 2 + M ¢ (-Q Z is the reaction of the soil)

2T, 2
1 Y
3} T, 3
Eft = - 1 ?;}
oXYZ - CQ
A2/
Substituting for m = 29/ 3y 3
oxyz 1
relation (A.22) reads:
1 i
er ¥ - Q¥ _ 4T =
2yt % Yy
ET 3% =-Q@ 2 _ &'T %
oyt Y Y

As a conclusion one gets:
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Externally applied torque

6:;& = -L&'T;(E’}_) "Qz (A.23)

B_ﬁ’ =0
Boundary conditions
A'(oe) = O
, (A.24)
(B = kT L83
33t M (aE) EI ¥y Tlok)

b. At Stabilizers.

Firstly, let us consider the case of a fully built-in

condition.

QRx
. Q

Let Q = externally applied moment = ¥
ska. R

-

Substituting for ng, . = o into relation (A.22):

oxXYz2 1
%
R | 0\ | QW’ 5t
Qy, A o | = |-Q. = EI |[¥%
%L
°xYz Q ox111 oxYe o exyz | ©
—_ Qx = ET 3;:‘:
3
whence Qsta G = £z S
P
oxyz. Q
— >a >
As a conclusion Qsta = L ET ;—_;1_ (Le) + QzZ
A,(L/E) = o
Boundary conditiong (341
T)(L.e) = °



Then let us address the case of a pinned end.

o =

—n —t d -l ?:

Qs&a = Q = © ) an sta — g';';,~
oxyz IR oxyzl 1

The boundary conditions stem from relation (A.22):

Hence — —
Qsta = R =
Boundary conditions ,
Ay = ©
1, . )
(__’é\) = v _Q_ (3/“ )
322 [(L,b) (ve)

¥y

Now, we can allow for an end condition somewhere in
between clamped and pinned. To this end, a continuous

parameter c is introduced, such that

c 0 for a pinned end,

c 1 for a clamped end.

The actual effect of c on reality is investigated in appendix
B.1l.2.b. and in Figures B.2 and B.3.

Thus -

— Y =
Qsta = e EI(22 Sy TR Z (a.25)

with the corresponding end conditions:

A’{L,h.) - 0 (A.26)

(1-c>(1"3')_ 1 9.(3_9_) =0
3 EL\ >
(L . ? {c.8)

k)
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A.10 Non-Dimensionalization of the Problem.

Introducing
2 4
W, = EI/AQ CML
T = Wt
W = z/L
L 1 o
swe) = Az,e)/L (3 o= 50 =4 )
B'G / B'C"-
e(w) = e'(z)/L
!
k = k'/L ,
the equation in the static frame becomes
B+ Lexa i oo A, L er ¥
ApCy Wo Iw ET W?
0
SRR ik [ RN S 33] _Las
Cm L coot dw= 2 AR Cp, wt
= 2 e(w)e'RT | (& wind A2
Wt Cm  Lwe
with the associated end conditions:
B; z(o,t) = O
it (22 - _(_& ¥=t 4p .,.iQ_'-)(EE)
2wt /(o,m) cm Lwet ! EI /\3aw /(o,r)
(A.28)
n(1,Tt) = o
Stabilizer
1 -
(-e)iz) -t QL) =0
wH/ i) EL \ow/(11)
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Setting

@]
(1]

M 1

¢ =0

e (w) = 0, one gets
.e . 4 . 3
A+ Ce P }._,_A v _._QL ,B_/_B.
Ap o dwl ET w?
+ 2’% [(3 —W) }_Ai_ — E/.b. J = @] D)
Lowot L] I IW

which is to be identified with the results of Dubigeon (1973,
page 340, equation D) where it is to be noticed that the
conventions of this author are different and cause a sign shift
for the term 35;. Likewise, the dimensionless problem in the

L woz
rotating trihedral becomes:

- l, 3
ce . - . L
’L+[_C_ei°__+2L_%7,+?_'E+LS_?;_

AQCh Wo | dwh EI w?
1 ] .
+ & ?“‘"[(e-w))_’: _n]_Js il a2
e Lat ! Wt dw | w - A plm
) o
= L pind o
W, M Lot

with the similar end conditions

B't { m(ol.‘) = ©
i g }.:,.,4; - L\t
(BW‘)(Gﬂ)z '—(-C-; Tt "g’we + 1 ‘E)()W)foc) (A_ 50)
St&bi[fzerg =0 wrn
; Y
@“)(awt)m ry ("&’)(4,'1:) = ©
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A.l1ll Ultimate Dimensionless Formulation in Terms of

Ordinary Differential Equations.

As shown in parts B.l.4 and B.2.2, the forces at the bit
and the stabilizer are easily obtained when the displacements
are known. Since the purpose of this study is to get these
forces in the fixed trihedral, let us focus our attention on
equation (A.27).

Although one of the coefficients in (A.27) is not a
constant, the equation is linear and the principle of

superposition holds. Therefore, we can proceed as follows:

S = s, + S T sq, (A.31)
where:

Sh = general (transient) solution of the homogeneous
equation corresponding to (A.27). The shaft is
assumed to be stable, so Sy decays and vanishes.

Sa = particular (steady-state) solution of (A.27) with

. foks LT .
forcing term == e(w).e =" only. s_ is cast under
Wy .a
2=
the form s (w,t) = re(w).eL“°, so r, is the solution

of (A.29) with r = ¥ = 0.

s¢ = particular (steady-state) solution of (A.27) with
. - R geind . . .
forcing term -1 _< only. Since this term is
Cm L- woz

time-independent, s¢ is sought under the form sé(w,t)
= s¢(w), so s¢ the is solution of equation (A.27)
with § = s = 0.

As a conclusion, the solution for the displacements is

given by :

- 103 -



QLE
Sstady (Wrt) = S.(W) + r_(w).e (A.32)
state

where S¢ is the particular solution of the ordinary

differential equation

——— cr—

diny L1 QL PRV + & %“"’4’[({? )ol«/ba al/%}

Aw ETI  dw® Cn Lo LV dw? dw
(A.33)
‘L C;‘ Su A - 1: ‘e- rl'h ¢
ApCp W * M Lwt

and I, is the particular solution of the ordinary differential

equation

——— B ppmmav—

f‘l'_ql_"' . d're + Y ?“}Cb[(g- )A"Le J""e}

Adwh ET dw? L N N dwt dw
1 . T
e R L L D (A.34)
w,* AQC‘M“L Wor

Both s¢ and Lo satisfy the boundary conditions:

(1 (0) = Q

Bt Josay - _(i’». b R +L@L>
(d_—\,?- )(0) cn Luwgt (")
(A.35)
(Hh =0
Stabilizer v
39 ; QL(}Q — 0
-c)fo 1 -t 2=
( )(a ‘)ﬁ) ET ‘3w )ﬁ)

- 104 -



APPENDIX B

IMPLEMENTATION OF COMPUTER PROGRAM COLLAR

B.l1l Calculation of Solution S¢ -

1.1 Finite-Difference Formulation.

For ease of notation, the following coefficients are

defined:
(e ¥ = 'l: 3‘:.
1 EI
2, = & 3=t
CM pr’-
a, = -1 &St
AQCM c‘“oz
%, = -1 _-g\__ g,m'v\.¢
tm  Lwot
Qs = — 57': + 1 _.__C‘Sl
w AQCH w,"
- Kyky
e, = —
a, = —(fk 3m¢:£¢€ +1:9_L)=—a,-a,'e<%
CM Lwo" 1 EI 1 Z
The equations to solve now read:
dﬂﬁ9 + a d';/bé + a (& —W) d}/)¢
dwt Todw? o d*
— ay o + %3 Ay = &, (3'1)
dw
4 3 L
dwh dw?® dw?
— a, dre + 4. e = a, e(w) (B.2)
AW
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with the end conditions

q(o) = O (B.S)
Bit
d* 9 _ 4.1
(Z:v-’-')(ﬂ - (;'LT« Jio &%)
q(1) = 0 (B-5)
Stabilizer

(1-<) (O‘L'z‘j)m - % (M g = ° (®-¢)

Aw? dw

The method implemented is the finite-difference method,
which is a numerical method that easily applies to any type of
boundary wvalue problem. It consists in breaking up the
dimensionless shaft into N segments of length 1/N (figure B.1l).
Strictly speaking, equations (B.l) and (B.2) as they stand only
apply to 0{ w{1l: clearly, at w = 0 and w = 1, the side forces
from the fulcra have to be taken into account.

We start by solving for s¢ . From now on, Sé will be

referred to as s. Making use of the following approximations,

(%)J _ _r_;_[ - + A 1+00/NY)
(%:%)8 - N Ajt =2 F Py | +ol)
(2 ) = e e ¥ o S R
(%)} = N[y =g+ Gaj = gy + ]+ T ()



w=1¢ ]=N, stabilizers

Figure B.1 - Discretization of the Dimensionless Shaft.
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we can come up with a set of linear equations and solve for s
at every intermediate station j, where 1 £ j £ N-1.

Unknowns: The N-1 unknowns are Sis Sgr +es sSy.y-
Equations: Applying (B.l) at j =1, ... , N-1 provides N-1
equations involving S_1+ Sgr S1s <++ 1 SN—1s SNs SN+l From
equations (B.3) and (B.5), s, = sy = 0, and we are left with
N+1 unknowns only. At last, equations (B.4) and (B.6) allow us

to write S_1 in terms of Sy and sy;1 in terms of Sy-1+ SO

indeed we get a set of N-1 equations with N-1 unknowns.

1.2 Boundary Conditions.

a. At Bit.
The bit of the dimensionless shaft is at w = 3j = 0.

Equations (B.3) and (B.4) become

Ao = ©

NZ(/;_1 ~2A, + A, = a, %(—A" +A1)

Let

L, — 2N
g + > N
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We obtain S = 0

S-1 ag Sp

b. At Stabilizers.

The set of stabilizers of the dimensicnless shaft is

lccated at w = 1, or j = N. Equations (B.5) and (B.6) become

AN = ©
2
(1~C)N (/al,,,_1 'ZAN+AN+1) - % 'E"("’AN-1+AN+1) =0

vet a = a, + 201-c)N
— 2(1-c) N

9

b

We obtain

AN+e = %9 ANy

In order to get a physical understanding of the boundary

condition parameter c, let us investigate the effect of ~ on

the coefficient a,. Plugging in a, =i E&E into a,,
9 1 ET 9
2h2 (et 4 8L (1
- _ 4(1-c)°N “(Ez) — 1 ET (1-c) N
) tNYL (RN ey Nt RN
4 (1= N (22) 4 (- N+ (2L

(@L/EL)Y — 4 (1-c)* N* ]

= —1. exp {h<Aban,[ ;
4 & (1-0) N

As seen in Figure B.2, ag(c) describes almost entirely the

lower half of the unit circle in the complex plane. The effect

of ¢ on reality is described in Figure B.3.
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Ja\

imaginary part

representation of a

XS

in the complex plane

-1 = c=1-~ _j__.gng
2N EI

Figure B.2 - Representation of ag(c) in the Complex Plane.

c=0
(pinned)

c=1
(clamped)

Figure B.3 - Boundary Condition Model at the Stabilizer.
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1.3 Construction of the Finite~-Difference Matrix.

a. Differential Equation at j, 3¢ j { N-3.

With wJ. = j/N , one obtains:

A NY - & NP
-2 [ g ]
y 3 1 :
+ A1 [-4N*+a N -f-o.ze‘N - a, (d°;'_‘)N]
+ A [GNQ-—Zq,LﬁlN"+2.°«Z(SN +°b31

$Ag [FUNY—a NP ra NS, (5+1IN]

+ Ajrr [ NY & %’:l N;]

b. Differential Equation at j = 1.

sj-z =53 is replaced by ag.S; and

4 4 3
A, [“z (N —%‘ N3)+ 6N -2«.29, N™+2a N +q,3]
+ A, [—4; N"-q,,N3+ a,zg' NI—QL(I+%)N J

t AL NY e s Nt =
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c. Differential Equation at j = 2.

Here, sj_2 = s, = 0.

4 3 L
AL-aN* + a, NP+ a, € N —a, (2-L)N]
#2y [ 6N =24 &N + 4 g N +ay ]
4 2
+ 4 4N — e NP el NP —a, (24]) N

+/5L|[ NL'-Pﬁ'l N%]

z = %y
d. Differential Equation at j = N-2.
Sn+2 = Sy = 0-
Ay [N = 2 NP
Ay [—L}Nq +a, N> +q2€‘ NE a, (N—L-_;_) N]
t Ayy [ 6N¥ -2, N+ 2a, (N-2)N +a, |
+ Ay [_QN‘*_Ql N“>_,_q,zél Nz“c‘-z. (N—2+11)N] =

e. Differential Equation at j = N-1.

Sy = 0, and sj+2 = Sy+1 T 39 - Sn+1
4 a 3

+ AN-Z [—QN“' +a, N$+q'z,€| Nz—q,l(l\f-l-.i'.)!\[]

4 3 4 2
+ Ay [ag(N -’-;_'N )+6N'—2al N'+2 Q.L(N-\)N+Q,.5]:Q4
We get a pentadiagonal matrix.
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N

NN
AN\

Figure B.4 - Numerotation of the Diagonals.

c3+2a1N
+ ¢, ag

Cﬁ-Za}N

Cs

¢,~% (N-2)N

i, +2e, (N-IIN

+C5CL9

Figure B.5 - The Pentadiagonal Complex-Conjugate
Finite-Difference Matrix.




Let

c, = N - 2 NE
—4N* + a N1’+-q1€,N'L+",_ a N
Cy = 6N*-2a,8 N* + a, )
~4NY —a N>+, @ N'_ 1 a, N

2
NY & 2 N2
2

0
»o
I

(g}
&
]

O
0
i

Cn is the constant part of the coefficients of the matrix
in the m-th diagonal, the numerotation being explained in
Figure B.4. The matrix is shown in Figure B.5.

It is to be noticed that diagonals 1 and 5 for one hand,
and 2 and 4 for the other are complex conjugate with respect to

main diagonal 3.

1.4 Dimensional Forces at Bit and Stabilizers.

Once we get the displacements, we can have access to the
two side-forces Fbl(bit) and Fsl(stabilizer) as follows (we are
still solving the problem for s¢ ; when we get involved in

solving for r_, we shall call the corresponding forces sz and

e
Fsz)' The solution s corresponds to a static solution in the
fixed set of axes OXYZ. Figure B.6 shows the collars subjected
to:
ai . 1f -t —> — —
imensiona orces mFbl and -Fsz. Fbl and Fg, are
the forces exerted by the collars onto the borehole,

- distributed force —Aeg h sin¢ dz Y = -i Aeg h sin¢d—7b(,
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Figure B.6 - Static Equilibrium of the Drill Collars.

Figure B.7 ~ Discretization of the Mass-Eccentricity Distribution.

- 115 -



- dimensional moments

—_— / ! —_—

ML = —iR T (* _ oz (A3
b4 v 1 (d:zz )(0) &

_f\-'TS = 1c ETI (g_ll::/_é_') + QZ (A.25)
! oLs’- (1)

Fbl and Fg; denoting the complex forces, the two vector

equations of equilibrium read:

R

[]

1c Er(d.}_é')m - L{%T(‘LA)M -1 LFS'l + A€?‘R,/?W\‘# LLs/iy =0

d3? dy
Fey = ’%T da EI(A2"Y _{Apah L Ain
S1 T (d,?)( e (4,5 )(1) h € Z,A 4>
FH = —-1 A€<}‘Q\. L J)fh.¢ - ‘E1

Substituting for

AL = &

(%)(o) = _f;_'l_ [-/.)_1-1-/31] = ﬂ (1-<=t.3,)/é1
t AN 1

(OJL,*;-)G) = % [A~-1 M N+1] = (1+ ‘3\)/3

the expressions for the dimensional forces corresponding to s

become: F

= — kT N{1-a,) ET \2 iy Lo
S1 1 "‘T'A, +C = N (Hq.,)AN_‘ LAQ}QLE_ /ash.(#

Foy = _iAe}Q\.L,aint}D — Fsy
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B.2 Calculation of Solution r,-

2.1 Modification of the Finite-Difference Matrix.

As before, we shall refer to I, as r. If we replace s by
r, the foregoing reasoning holds entirely up to the two

following modifications:

- In the pentadiagcnal matrix, ag has to be replaced by

ag. This modifies the main diagonal only, where Cq is
2
now cy, = GN"—-Zq.la?,lN +

Lq
- The right-hand side excitation vector |: must be

ag & (1) “4

replaced by where e(j) refers to the

LS 'e(N-ﬂ

dimensionless eccentricity at wj = j/N .

2.2 Dimensional Forces at the Bit and the Stabilizer.

Having solved for (ry, gsee+s Ly_3), We can now obtain
the forces F;z andlﬁzz. An observer tied to the rotating frame
always views the collars at rest. However, his trihedral is
not galilean: although every slice is at rest, they all are
submitted to the dimensional acceleration-—-glz'[?&%)+'325>]-
If he considers now that each slice undergoes the fictitious
torce ApCy _Q.z('c'+e') dz, his trihedral becomes galilean and he
can safely make use of ordinary static analysis. He sees the

immobile collars subjected to:
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-

3 I3 —h
- dimensional forces —sz and 'Fsz ’

- distributed force A e C. SL° ('z,’-r—e,') oL'Y ;

- dimensional moments

-—

ML»?.

—
Msa

Fi2

vields:

~ Fs,

ic ET(d
dyr

Let

_ / dn/ o R

= -1 &'T (,L%)(o)"QZ (Analeg ko A.23)

= i J"___z’ 2. n o .
1C EI (d.;; )(1) + R (A a]og to A 25)

and Fg, denoting the complex forces, static analysis

L
sz. + AQCM Slz J"[‘Z;%)-i—eé%)] OLS’ = O

’)ﬁ) -L&T(‘;’”'){’) -iL FSz 'H.'AECM SILJO('L'+G') Y d,-j =

dz,

L
I, = | Rarein] 4y
L /
L, = j [ %o+t Z 4y
I]. and I2 can be calculated by the trapezes method. Replacing
r' = Lr
e' =L e
z(j) = jL/N, one obtains:

I:Sz = -&:T:, N(12-’-“-g\)7’ +c = - = N ﬁ*q')

sz =

+ AecM:L"IL

N-}

Aec:,w.sv_"'l1 ~ Fss
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In order to simplify the inputs, the program allows only
four different values for e', as shown in Figure B.7.
Consequently, the number of points is of the type 4m, and the

number of segments is N = 4m - 1.

B.3 Total Forces at Bit and Stabilizer.

One simply has

S YR

For = T + Fip-e
L SLE

- F -

;:Stq, — S4 +~ F;L . €
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