
AERODYNAMICS OF WIND TURBINE WITH TOWER

DISTURBANCES

hy

536. 1G Y. CoAUIN

B.S., Seoul National University
(1975)

SUBMITTED IN PARTIAL FULFILLMENT

OF THX REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

Iof the

VIASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1978

7c) Massachusetts Institute of Technology 1978

Signature redacted
Departme&amp;t ofZherorfiutics and (Astronautics

January 39,1978

Signature redacted
’ Thesis Supervisor

Signature of Author

Tertified by

z . » eo

Signature redacted
© Chair, Departmental Grag@ate Committee

Archives

MASSACHUSETTSIvTiTuTE

Accepted by

JUL 6 1978

LIBRARIES



AERODYNAMICS OF WIND TUPBINE WITH

TOWER DISTUPBANCES

yt

SONG YQUNG CHUNG

Submitted to the Department of Aeronautics and Astronautics

on May 30, 1978, in partial fulfillment of the requirements for

the degree of Master of Science

ABSTRACT

Lifting line theory which is the counterpart of Prandtl's

lifting line theory for rotating wing is employed for the overall
performance analysis of a horizontal axis wind turbine rotor oper-

ating in a uniform flow. The wake system is modeled by non-ricid

wake which includes the radial expansion and the axial retardation

of trailina vortices,
For the non-uniform flow which are caused by the around, the

tower reflection, or the tower shadow, +he unsteady airloads

acting on the turbine blade are computed, nsing liftine line theory

and a non-rigid wake model, An equation which gives the wind profile

in the tower shadow region is developed. Also, the equations to

determine pitch angle control are derived to minimize the flapping
moment variations or the thrust variations due to the non-uniform

flow over a rotation

It is concluded that the models developed can predict the

overall performance coefficients for uniform flow and the unsteady

airloads for non-uniform flow which are in good agreement with

experimental data. The unsteady airloads are found to have the

same form variations as the wind profile on the rotor disk plane,
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NOMENCLATURE

3 1ift curve slope

coefficients of bound circulation series

(r =3A sin*jé6 )

number of blades

blade chord

A

D

Ca

“dt

r

“p

Crp

drag coefficient of blade

drag coefficient of the tower

power coefficient, Cy = p/p RUS

thrust coefficient, Cg = I/p=RZUS

1ift per unit length of blade

flapping hinge offset

(W eng’ © )2 where Wyend = /3g/2PR is pendulum

frequency of blade

index to denote control point

11

N

"y
 YT

3

Ly blade moment of inertia

K1

Ko
characteristic constants of wind profile equation
for a given tower

root constraint£3
, distance from hinge offset to blade tip nondimensioned by R

lock number, LN = aceRY/Ip

thrust coefficient, Lp = 1/pm2R"

Lio coefficients of thrust coefficient series

m mass per unit length of blade

MA aerodynamic moment about an offset flapping hinge

moment due to gravity about an flapping hinge

inertia moment about an flapping hinge

= LL o%(1+ 15-3

Vl o

Vig

Va



2 rotor radius

position vector from vortex element to point where induced

velocity is going to be computed

radius of the tower

static unbalanceofblade

C+

t

9

-&gt;

3 position vector from center of coordinate to vortex element

1% free stream velocity on rotor disk plane disturbed by tower

total velocity on blade§)

Ip

Ig

Joo

velocity perpendicular to rotor disk plane

in-plane velocity perpendicular to blade

undisturbed free stream belocity

13 total velocity at i-th control point

velocity reduction function

inflow velocity,V= Uy/ QR

induced velocity perpendicular to rotor disk plane

in-plane induced velocity

radial induced velocity

radial induced velocity on rotor disk plane

7%

*

ny
*

Na

i¥ 0)

x angle of attack

rigid body flapping angle

coefficients of rigid body flapping angle series

 wv average bound circulation over a rotation

3

Bn

3 bound circulation at i-th control point

ATp half of maximum bound circulation variation over a rotation

spanwise coordinate (non-dimensioned by R)

re
non-dimensional distance from center of rotation to blade

root cut

non-dimensioned by NAR
Ld



El

2

0

A a

Ao

angular coordinate to denote spanwise position

coefficients of blade pitch angle series

blade pitch angle

inflow angle

induced inflow angle (=XW/ 1)

absolute inflow angle (&amp;¥ U,/7 )

density of air

advence ratio

kinematic viscosity of air

so0lidity.o=7R/bc

azimuthal angular coordinate of vortex element from blade

bn

ob"
lal

phase angle between flapping angle series and inflow angle
series

phase angle between pitch angle series and inflow field series

azimuthal angular coordinate

2 rotational speed of wind turbine rotor
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SECTION 1

INTRODUCTION

For uniform steady flow about a wind turbine, lifting line

theory which is the counterpart of the Prandtl's lifting line the-

ory for rotating wing is employed in the analysis for a rotor blade

in an effort to improve the theoretical prediction of power and

thrust. The wake region is divided into three regions, namely, the

near, intermediate , and far wakes. At the junction between the

near and intermediate wakes, the neighboring two vortices are merged

together. Again, at the junction between the intermediate and the

far wakes, all trailing vortices are assumed to be rolled-up into

the root and tip vortices. The wake geometry is prescribed at equal

angle spacings and the blade is divided into a number of segments

according to cosine law. Each segment is represented by a constant

strength bound vortex whose strength is determined at a control

point which is located at equal angle center of that segment. The

wake geometry used in the analysis includes the linearly varying

velocities induced on the tip or root vortex in the first spiral

and the radial movement of them. The results obtained with this wake

geometry are compared with those obtained with the semi-rigid wake

assumption. The computer program for the steady flow analysis perm-

its the evaluation of several wake geometries ranging from the cla-

ssical helicoids, the semi-rigid wake to the radially expanded,

variable-axial-velocity geometry. The inboard trailing vortices

may be unrolled or fully rolled in the last two wake geometries.

The importance of the correct axial and radial positioning



of the tip vortex was noticed in ref.[4). The disagreement of the

theoretical predictions using the classical wake geometry with

experimental results is mainly due to the neglect of the rapid

contraction of the slipstream under a hovering rotor which places

the vortex system close to the rotor blades”. The free wake analysis

was introduced in [14] to account for the significance of blade

wake interference and the influence of blade number. The cross

section view of the calculated wake geometry (ref.14) shows that

the outer end of the vortex system, that is, the vortex emanated

at blade tip becomes the center of the rolled-up concentrated tip

vortex.

For the unsteady nonuniform flow which is inevitable due to

wind shear, and tower reflection or tower shadow, the non-linear

variable-axial-velocity induced on the tip or root vortices are

computed for each azimuthal increment within the first spiral.

The calculations show that the velocity induced on the tip vortex

increases sharply and is almost doubled within the first spiral.

After that induced velocity remains relatively unchanged. This

means that the retardation of the tip vortex occurs and momentarily

it expands behind the rotor. This radial expansion is computed from

the condition of constant mass flow inside the cylinder bounded by

the tip vortex. Tower effect is included in the analysis through

the nonuniform flow field on the rotor disk plane caused by the

tower reflection or its shadow. The distortions of the trailing

vortex system due to this nonuniform flow is, also, included. But

in the tower reflection case, the vortex-tower interaction is

10



neglected because it occurs after several spirals of the tip

vortex, The shed vortex lines in the far wake are positioned by

the connecting lines of the points determined by the velocities

induced on the two control points near the tip or the root. In

the rigid or semi-rigid wake the shed vortex was located by the

tip and root vortices. The trailing vortices are permitted to have

varying directions and strengths,

The equations are derived to determine the blade pitch angle

required to minimize the flapping moment variations, or the thrust

variations over a rotation, All blade are assumed to be rigid.

For the tower shadow case the rigid body flapping angle is calcul-

ated and its effects are evaluated,

Miller, R.H. in [2] has pioneered the unsteady harmonic air-

load computation for the forward flight of the helicopter with

rigid wake geometry. Unsteady airloads acting on rotor blades were

predicted satisfactory and their orgins were discussed in[l1]and[3] .

The concept of the semi-rigid wake geometry was introduced in those

reports, Scully, M.P, in [6] has done the free wake analysis for

the helicopter forward flight, where the induced velocities on the

first two spirals of the tip vortex were computed in order to loc-

ate the tip vortex and the inboard shed wakes were positioned by

the rigid wake geometrv

11



SECTION 2

STEADY AERODYNAMICS

The bound circulation which describes the blade as a 1lift-

ing line is represented by a Fourier sine series. The velocities

induced by the prescribed wake are computed at control points on

the blade as a function of the coefficients of the bound circu-

lation series. These coefficients are calculated from the matrix

equation which are formed according to the Kutta-Joukowsky theo-

rem. The multiplication of these coefficients with the influence

coefficients yields the induced velocities on the blade. From

these non-uniform induced velocities and the free stream velocity

the wake is generated within the framework of the assumed geometry.

New influence coefficients, induced velocities and bound circula-

tion are obtained from this new geometry. This procedure is usua-

lly iterated three times to get the converged bound circulation

and induced velocities. The usual strip analysis gives the perf-

ormance coefficients of the wind turbine.

2.1 Lifting Line Theory

Bound circulation along the blade is represented as a sine

series. The velocity induced at each control point on the blade

by the wake system is computed as a function of the coefficients

of the bound circulation harmonic series.Then, the induced angle

of attack is obtained at each control point as a function of

those coefficients. The angle of attack calculation also includes

~ontributions from the pitch angle, the rotational velocity

12



of blade and the free stream velocity.

All of the above contributions are included in lifting

line equation at each control point, which generates a system

of linear algebraic equations for the coefficients of bound

circulation series as follows. The sectional 1ift at a control

point on the blade is given by Kutta-Joukowsky theorem.

iL = pUTD = —-PUZ a-aC (2.1)

Jaro a = @ + An +t As as shown in fig.2.1

J
— Sa; wc&gt; As Cj;

(2.2)

re

4 UacC( optA+Aj (2.3)

I'he influence coefficients ( j are computed from the equ-

ation derived in the appendix. Aj is the coefficients of bound

circulation series, that is.

N . A

Py = &gt; 43 sin (J © 0;)
I=L

N is the number of control points on the blade

(2.4)

The spanwise coordinate on the blade, 7;, is transformed

into a polar coordinate, vu; , which varies from 0 to 1] according

to the following transformation equation

7: = M,.,+ 0.5 (1- cos ©)

(See fig. 2.2 for details.)

During the intermediate calculations every value was non-dimens-

ioned by the distance from the rootcut to the blade tip. In the

13



final output the non-dimensional parameter was switched to the

blade radius. Introduction of equations (2.2) and (2.4) into (2.1)

gives the desired linear algebraic equation for the coefficients

of circulation.

N .

2A; sin (j-0;) =
=

N i . . Oe 1 yr — 1 4

&gt; Ag [sin (3-9) - 3U5-ai.030i5/n;|= 3Us 250 Cy (05+ Agg
J=1

N

2.4 “137 D i

This equation is valid at each control point (i). Therefore, it

gives the following matrix equation.

[«] 1a} ={n; }

{a:b = [og 105) (2.5)

Here, in-plane induced velocities were neglected because the

effect of these velocities on the results was shown to be negli-

sible in[ 7].

In generating equation (2.5), Us is a function of induced

velocity and Ci ; is a function of wake geometry which is determ-

ined from induced velocity distribution within the assumption

for geometry. That means an iterative procedure, as described

below, must be employed to compute the actual

Iteration Procedure

1. Bstimate induced velocities

2. Calculate Uj

14



3. Generate wake geometry

4, Calculate influence coefficients Gi 3

5. Solve equation (2.5)

6. Calculate induced velocities from equation (2.2)

7. Repeat step 2-6 untill the solution converges

Knowing the proper induced velocities a strip analysis is

used in calculating the thrust and power distribution. Experimen-

tal data for section lift slope and drag can be used. Wind turbine

rotor in this analysis can have any number of blades which can

have an arbitrary distribution of taper and twist.

Ref.[ 9] applied the vortex lattice method to propeller

blades with a single bound vortex located at the quarter-chord

point and the control point at the three-quarter chord point of

each blade section. For non-rotating rectangular wing [8] shows

that lifting line theory with trailing vortices arranged by equal

angle dist&amp;nce and control point at the equal center between them

converges faster and 1s more accurate than other vortex lattice

methods.

22 Wake Geometry

The prescribed wake geometry resulting from a series of

investigations of model rotor wakes was successfully applied to

the calculation of helicopter rotor hover performance with 1lift-

ing line theory in [4] and lifting surface theory in [5]. At the

present time, there is no wake geometry available for the wind

rotor which has been developed from such experimental studies.

1 5



Hence ,two major features from the prescribed wake geometries

for helicopter rotor hover performance analysis are incoperated

in the calculation of wake geometries,

First, the tip vortex axial settling rate (or velocity)

was doubled when the tip vortex passes beneath the following blade.

This doubling is predicted by momentum theory and in vortex theory

can be explained by the effect from the trailing and bound vortex

system of that blade generated during that portion of the cycle

preceeding the following blade passage. For wind turbine rotor the-

re is the same effect on the tip vortex from the following blade's

trailing and bound vortex system, Also, the equation derived in [12]

show that the thrust predicted by simple vortex theory for the rotor

with an infinite number of blades will be equal to that estimated

by momentum theory when the axial induced velocity on the tip vortex

is taken gver the rotor disk.

The second feature is that the point of maximum wake contrac-

tion is reached at the end of four times the azimuthal angle between

adjacent blades?s11 In the analysis the maximum wake expansion

point for the wind turbine rotor is taken to be the maximum wake

contraction point for the helicopter rotor.

The radial induced velocity (Wo) at the blade tip on rotor

disk plane is computed as follows. The tip vortex begins to move

radially with that velocity when it is trailed from the blade. It

is assumed that the tip vortex radial velocity decreases linearly

to zero when it reaches the assumed maximum expansion point. There-

fore, the radial velocity of tip vortex is

16



We = Wy,—(87/p)
(2.6)

where W,is the radial induced velocity at the blade tip in the

rotor disk plane, b is the number of blade and ¢ is the azimuthal

position of vorteX. The maximum expansion distance is given as

follows for b = 2.

d (Pp) = Wro¢— Pus
S17

dmax CP =4T) = 27 wig (2.7)

The radial movement of tip vortex is due to the radial velocity

induced by the spiral tip vortex below the rotor disk plane as

shown in fig. 2.3 . In fig. 2.3 the radial velocity of tip vortex,

C is decreased due to the radial velocity induced by the vortices

trailed since tip vortex C had been trailed, that is, vortices A

and B. The tip vortex moves radially until the radial velocity

induced by the almost helical vortex below that vortex is balanced

by the radial velocity induced by the spiral vortex above it. After

the tip vortex reaches its maximum expansion point, it begins to

contract much more slowly than when it expands just below the rotor

disk plane. This is due to the fact that the radial velocity induced

by the lower helical vortex ceases to dominate over the velocity

induced by the upper sprial vortex because of wake diffusion due

to the viscous effects. Since this tip vortex begins to contract

relatively far below the rotor disk plane and very slowly, its ef-

fect on performance and thrust can be neglected. Experimental inv-

estigation in [11] shows for helicopter hovering rotor that the

17



wake system contracts first and then expands very slowly.

This radial movement of rolled-up tip vortex has a fairly

large effect on power results because the axial velocity of tip

vortex is influenced by the radial position of tip vortex and the

induced velocity near blade tip is affected very much by the axial

and radial position of rolled-up tip vortex. The axial induced

velocity of rolled-up tip or root vortex is computed under the

scheme that the vortex originating at the blade tip or root cutout

becomes the center of the rolled-up tip or root vortex and that

the vortices trailed from the maximum-bound-circulation point to

the tip or the rootcut are warpped around those center vortices.

Concentrated tip or root vortices are explained to be caused by a

very high slope drop toward zero of the bound circulation ( dr /dy

= 0)on those points. These concentrated vortices tend to induce

strong velocity around them and to make the neighboring vortex sheet

warp around them, Therefore, the rolled-up vortex moves with the

velocity which is the sum of the undisturbed free stream velocity

and the induced velocity at the blade tip or rootcut. The velocity

induced on the tip or root vortex is assumed toincrease linearly

antil it is doubled when it passes underneath the following blade

as discussed above.

The wake system is usually divided into three regions, near,

intermediate, and far wake. At the junction between the near and

the intermediate wakes the number of trailing vortices is cut in

half by merging two adjacent trailing vortices into one. All trai-

ling vortices are assumed to be rolled-up into the root or tip

18



vortex at the junction point between the intermediate and far

wnakes. The velocity induced by the intermediate and the far wakes

is computed at the blade tip or the rootcut point. But the velo-

city induced by the near wake is computed by averaging the velo-

cities induced at two points outside and inside the blade tip or

rootcut. In semi-rigid wake the induced velocity at the tip or the

root cut is taken as the half of the velocity induced at the

nearest control point. For a rotor of an infinite number of bla-

des the induced velocity at the tip was shown to be the half of

the velocity induced at inboard station of the tip in [12] 1

1 Q



SECTION 3

UNSTEADY AERODYNAMICS

Wind turbines always operate in the influence of their to-

wers and the ground. The unsteady airloads act on the wind turbine

blades which rotate through the non-uniform flow field caused by

these influences. The calculations of these unsteady airloads

have been performed by the vortex wake and lifting line theory,

which means the lifting blade is modeled by a bound circulation

and the chordwise circulation variation is neglected. The wake

geometry employed is the non-rigid wake which includes the eff-

ects of the retardation of trailing vortices and of the radial mov-

ement of the tip vortex. This geometry is calculated from the semi-

rigid wake geometry by suitable and systematic modifications. In

this non-rigid wake the shed vortex lines in the far wake are

placed on a plane other than the one defined by the rolled-up tip

or root vortices because the induced velocities on those vortices

are entirely different from the induced velocities inboard of then.

The influence of the tower on the vortex wake system have

been included on the rotor disk plane. These vortex wakes are

positioned by the timewise integration of the velocities which

are the sum Of the disturbed velocities on the rotor disk plane

due to the tower and the velocities induced on vortex itself.

But in the tower reflection case when vortices approach the tower

the free stream velocities are decreasing and there are interact-

ions between the vortex system, especially the tip vortex and the

tower. It may happen after Several spirals that the tip vortex will

20



touch the tower and end on the solid boundary because of the

decrease of the free stream velocity and the vortex-tower inter-

actions. The effect of this phenomena on the induced velocities

have been neglected because the contact of the tip vortex with the

tower will usually take place after several spirals. Hence its

effect will be negligible, compared to the velocities induced by

the several spirals of the tip vortex before the contact happens.

The blade are assumed to be rigid, The rigid body flapping

motion is determined for the tower shadow case and its effect on the

unsteady airloads are discussed.

The equation which gives the wind profile downwind of the

tower has been developed by using boundary layer approximations,

That equation is shown to be a good characterization of the wind

profile downwind of the tower.

3.1 Wind Turbine Blades

All blades are assumed to be identical, to rotate at a constant

angular velocity, and to have arbitrary twist distribution. The

tower and blades are assumed to be rigid, Each blade is represented

by a number of constant-strength bound virtex segments which have

the bound circulation that is determined by two-dimension .airfoil

theory at their mid-point. The same method as used in [7] is used

for the modeling of the blades.

21



3.2 Nakes

The wakes consists of trailing vortices and shed vortices

as shown in fig. 3.1 which are caused by the spanwise and azimut-

al variations of bound circulation and are divided into near,

intermediate, and far wake regions. The near wake region extends

from the blade to 15 degrees aft and has three 5 degree sections.

It has been modeled by curved trailing vortex elements having

varying strengths and varying directions within one element and

lattice vortex sheet elements each of which has constant strength

and direction. The same procedure as the one in [7] has been fol-

lowed in dividing the wake regions and determing the strengths

of vortices.

3.3 Non-rigid Wake Geometry

The semi-rigid wake usually assumes that the vortices shed

from the blade are carried away from the rotor at a rate equal to

the relative velocity of the flow passing through the rotor. These

velocities are in general different at different points of this

flow. Also, the vortex system is continuously being deformed due

to these different velocities and the mutual interactions of the

tip vortices. As a result, the velocity with which the tip or root

vortex carried away from the rotor plane is radically different

than the velocities on the inboard sheet vortices. The vertical

transport velocity of the outer portion of these sheets is much

lower than that of the tip vortices.

If we consider the vertical transport velocity of one tip

vortex element, the assumption made in the usual semi-rigid wake

22



is roughly equal to neglecting the interaction by the vortex

segments shed after the tip vortex element was shed. Let the vel-

ocity with which the element A in fig.3.2A is carried away be V,.

Nhen one tip vortex element A is trailed, the vertical transport

velocity V, becomes

- VV +
=r I XT
i an amr

where b is the number of blades, if the shed wake is neglected.

If we consider that vortex element after the time interval,At =

¢/2 , it is positioned as shown in fig. 3.2B. The vertical vel-

ocity of the element A at position Q becomes

V2 + W 2 + iy +

d3 x7 anof dra es
&gt; =¢, J, hg .

| . a 4Tr?

Vi 3 6 fix?
 bp a

Ny is the velocity induced at point Q by the vortex system trailed

from the blade before the vortex element A was trailed. It can be

reasonably assumed that ig' is equal to Wy. If one considers the

wind turbine to have more than one blade, average Ww, is almost

273



cancelled. But actually the instantenous velocity induced at point

4d by the bound circulation 1s not cancelled.

The most important factor which invalidates the assumption

made in usual semi-rigid wake is Wp. At ¢, = 15° , wp is of the

order of 40 4 of the velocity induced at point P by Ne After one

spiral Wp is almost equal to 70 4 of W!. Therefore the usual semi-

rigid wake assumption causes us to underestimate the induced velo-

city at the blade, especially near the blade tip. As a result, the

performance of the wind turbine is overestimated for a given pitch

angle. In helicopter hovering case, the situation is reversed.

The velocity induced at Q by the vortex segment B in fig. 3.

2B causes the retardation of vortex element A,The tip vortex trailed

by the preceding blade therefore passes near the following blade,

but not as in helicopter forward flight rotor case because this

tip vortex goes a little outside of the following blade tip. This

tip vortex increases the induced veloeity near the blade tip, com-

ared to the usual assumption.

In the calculation of velocities induced at the blade by its

wake system, the usual semi-rigid wake assumption is used in the

near wake region. In intermediate and far wake regions, the velocity

Va of the vortex element A which was trailed when the blade was at I

is modified by the velocity induced by vortex elements trailed by

the blade since its orgin. The contributions of these regions are

similarily divided into near, intermediate, and far wake regions for

the point A. The near wake contribution is obtained from the near

wake contribution when the blade was at point P and is thus not

2A



recomputed. Similarly the intermediate and far wake contributions

are obtained from the corresponding regions for the point P'. After

the first spiral of the wake, Vj, is assumed to keep the velocity

obtained according to the above procedure since the contributions

of the remaining spirals will have a negligible effect on this

geometry. The axial distance of element A in fig. 3.2B from the

rotor disk plane is calculated by integrating the changing Va W.r.to

the time interval corresponding to the various induced velocities

on element A. The radial location of the tip vortex is established by

satisfying the equation of continuity for the flow inside the vortex

spiral.

This scheme does not need any more difficult steps to calcul.

ate the wake geometry than for the usual assumption made in semi-rigid

wake. To reduce execution time and avoid some useless calculations,

the calculation of the velocity induced by the shed or trailing

wake element was not performed, if the strength, [Jhador [hen] was

less than the corresponding rcference*values. In far wake after

6 spirals, the velocities induced by the half vortex system nearest

the blade are calculated and those induced by the other half are

neglected.

3.4 Calculation of Non-linear ulovement of the Vortex

The tip vortex decelerates and expands quickly in the first

spiral after it was trailed. After the first spiral it maintains

almost constant pitch and radial distance from the rotor axis. when

the blade passes above the rolled-up tip vortex trailed from the

preceding blade, that vortex plays a determinate role on the vel-

ocity at the blade tip, and consequently on the performance of the

 ow of mean value of [|
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wind turbine. Thus, the correct position of that vortex with resp-

ect to the blade is required. All these considerations necessit-

ate the introduction of the calculation of the non-linear movem-

ent of the tip vortex in the first spiral. This calculation is

done in a relatively simple way.

The non-linear movement of the near wake is neglected, since

the age of the near wake after it was trailed is negligible so

that any departure from a linear movement is insignificant. In

fig. 3.3 the axial velocity Vy, of tip vortex element L is

L-1

i, = Vor ¥ 2_ 4p, (3.1)

where Wp is the velocity induced at the element L by the element

K and Vgr, is the starting velocity of element L at that instant

when the blade is located at the azimuthal angle v.. The axial

distance Hi, of element L is

L-1 i.
Hy, wu Vor, P71, Jo 2g, Ag « DB (3.2)

y where $1is the azimuthal angle between element A and the cu-

rrent blade position and A¢ is the angular interval between the

vortex elements. The calculation of Wi, x for each vortex element

L 1s very time consuming. Without actually computing Ny, x it is

obtained from th velocity which is induced by each vortex element

L at the blade tip.

for 1 = K = L-8 (3.3)

Here, [+ (K) is the strength of the vortex element XK and iN 1-K
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is the velocity induced at the blade tip ( 7) by the vortex

element L-XK. dp, 1-79 cin a Wy 1-2 are again obtained from the

velocity induced at the blade tip by the intermediate wake and

Ty, 1-1 from the velocity induced by the near wake.

The position of the shed line vortex in the far wake is

defined by the line connecting two positions which are determined

by the sum of the free stream velocity and the velocities indu-

ced at Ts and TN-1 in fig. 3.3. Using the same method which

was used to position the tip and root vortices, the relations

(3.1) to (3.2) are employed while dy, 1-x is replaced by Wo Lok

in order to locate the inboard end of the shed line vortex and

by TN-1, 1K in order to locate the outboard end of that line

vortex. The radial position of the tip vortex is computed from

the condition of constant mass flow inside the vortex cylinder.

The axial velocity at the rolled-up tip or root vortex is

computed according to the scheme that the vortex originating at

the blade tip or rootcut becomes the center of the rolled-up tip

or root vortex and the vortices trailed from the maximum-bound-

circulation point to the tip or the rootcut are wrapped around

that center vortex. Therefore, the rolled-up vortex moves with

velocity which is the sum of the undisturbed free stream velocity

and the induced velocity at the blade tip or rootcut and its axial

velocity changes are computed in the manner explained above. The

velocity induced at the tip or rootcut by the near wake is compu-

ted in the same manner as discussed in section 2.2 . The velocity

induced by the intermediate and far wakes is computed at the blade
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tip or the rootcut point itself,

3.5 Fffect of the Up-wind Tower Presence on the Wind Approaching

the Rotor Disk Plane

The dirrect effect of the presence of the tower is the con-

tinual spreading of the wake, The velocity distribution in the

wake is likely to be complicated in the neighborhood of the tower,

even when the flow is steady. Farther downstream in a steady wake

the vorticity shed from the tower is convected in the stream dire=~

ction and diffused by viscosity. In this region the boundary layer

approximations are applicable asymptotically. Thus, assuming that

the flow downstream of the tower is a steady two dimensional wake,

+he governing equation of motion is

J,
i
at

hy De
»

Ye

(3.4)

and the boundary condition at the edge of the wake is u—» U_ as

y—=00 , Ref, [15] gives the asymptotic solution for equation (3.4).

0 Un y™
© YZ

Jom UW =&gt; Q fgets -

 &amp;
4

3

hb] pL * bab

Here, x is the downstream distance from the tower center to the

rotor disk plane and y is the lateral distance from the tcwer

center to the position of interest in the rotor disk plane. O is
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a constant determined by Q = D,/pU where Dy is the drag of the

tower.

[et the veloc: “vv reduct. on In 4on. vv, be defined as follows.

3

LV4

0
5

D

Go=- u _ 1

—S ©
4 MY %xUco

“PQ = &gt; C. Pua

i. —-

7 Cqe Ue? Ye = Cy, Go ¥+

~

3.3)

(+4 - 3)

, "here ry is the radius of the tower. The introduction of ecuation

(3.6) into (3.5) yields

V4

&gt;

 oN

1 2

} ! “Ioz WY

Sor SE ———————— J Uy, €
dt AT0=TU=t co

Je 2 Se
)

odo

£
(Caer x) , K, =f (J, x)

(2,7)

Ky and K, can be considered as chacteristic constants for a given

tower which depends on the tower and the downstream distance from

tower to the rotor disk plane. In the present analysis Ky and K, are

obtained by comparing the tipical experimental wind profile with

eguation (3.7).
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SECTION 4

SIMPLE BLADE DYNAMICS

The harmonic analysis of the blade flapping motion was done

in order to get an idea of the effect of the blade motion on the

airloads. This flapping motion is caused by a change in the

circulation of the lifting blade due to disturbance of the flow

field by the tower. Cylic changes in the aerodynamic flapping

moment of the blade and in the force acting on the tower are

caused by the changes in the blade lift. These cylic changes are

undesirable in view of the fact that the flapping motion can give

rise to severe vibrational problems, vibrations coupled with the

other motions of the blade and with the tower vibrations. The

periodically varying blade thrust acts on the tower as a cyclic

external force and a varying torque.

The equation for moment equilibrium about an offset flapping

hinge is derived to determine the coefficients of the flapping

motion series, given the known disturbed flow field due to the

presence of the tower and the induced flow field. Based on the

series representation of the inflow field(V) on the rotor disk

plane, equations are derived to determine the pitch angle control

which can minimize the flapping moment variation or the thrust

variation over a rotation. The minimization of the rigid body

flapping motion is equivalent to minimizing the flapping moment

variations over a rotation because k,f is equal to the flapping

moment acting on the offset hinge.
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4.1 Harmonic Analysis of Blade Flapping Motion

Considering the rigid flapping motion about an offset hinge

» the blade flapping moment equilibrium gives the flapping equati-

onn of motion.

where

lp + lg = Kpp

Mp= flapping moment due to aerodynamic force

My= flapping moment due to inertia force

Me= flapping moment due to gravity

Kg= root constraint

(4 , LL)

My ,Mp ,and MM, are derived as follows. ( See fig. 4.1 for details)

d ily
= -rpgm T RJ dr - 0°R7 (r +e ) rR

*
-

I dr

ir

 Vi (8sly - I:of + ( Int Ios2 2 ) Q
ht

2 A]
1.

aif, = L (r, ¥) RZ r ar

(4.2)

~ith L (pr, v) = 1 ac uc(r, v) d(r, ¢)

where a (r, ¢y) = a, (ry, ¢v) + tan™1 (u,/Up)

Up JOR = (r + e )

Up /9R = wir,vy)-rf+u(r,¢)

2 ~~ :

U* = UR (1 + U5 SUR) T Uf

-1 8 .

These approximations are valid for the usual operating conditions

of high tip speed ratio.
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I oF LN l ”
Then, I, = pr ( r [op (rr, ¥) (r + e)* + V(r, ¥) (r +e) ] dr

0

1 iy z

LN 1 ag* (1 +35 )6

iL, = R2. 1M g cosy -r-B-dr

2S TO 1 (4.4)

[n these expressions,

ye

5 mn (LR)
&gt;

ho
LN = acreR /I

(4.5)

Vig
LN pk be
5¢ (1 +3

= La (gR)?

/

~

~

Substitution of the equations (4.2), (4.3) and (4.4) into equat-

ion (4.1) yields the flapping equation of motion.

I. is + I, Q ig § + Is (1 + 22 Jo + K,8 - 8 5 coswv-p

Ip FI | r [o, (x, ) (r + e)2 + V(r. } : 2) | dr (4.6)

Switching the independent variable from time to azimuthal angle

( ¥) renders the final flapping equation.

8  ~+ i

+ Al &gt;
: LL i.

LC tg - G-cosyg = &amp; [Be v )-r-(r + e)
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+ V(r) r (r+e)] dr { 4 7)

where ( ) denotes differentiation w.r.to ¥

2 i” =

Here, L;=1L + W/o

r

4]

oy

J

- 1 4

Z

2 e
0

J

“

J &amp;

J ( r,y

3/ Ina”

)
—

[u(rp) + w(r,y)]

In order to get the steady state solutions for the blade flapping

motion one employs harmonic series representations for the dist-

urbed inflow field and the blade pitch angle

[nt

 RQ

Ve, ¥) =v, (r) + &gt; Vv, (r) cos ny
n=

BY) = Es +2 B, cos n (yg +p,)

Op( r,y) = Oo(r) + &gt; Bn COS n (P+ ¢;)

( I
oo 3)

One introduces equation (4.8) into equation (4.7) and takes the

harmonic balance, while neglecting the coupling between the first

harmonic excitation due to gravity and the higher harmonics of

the flapping motion because this gravity effect is not appreci-

able for the model used in the experiment.Theexperimentalwind
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turbine model whose radius is relatively small rotates fast to

keep the same tip speed ratio as the real wind turbine.Hence,the

centrifugal force is so large that the gravity force is negligi-

ble, compared to this force. For real wind turbines,however, this

does not generally hold true,

30

9. (YF

Lf foe) = (r+ 2° Si

(vo (r) r (r + e) ar | (4.9)

- 1) cos¢d, - fy — Wg By sind

Lo [ (a +e)? Bicosd; + (r +e) V, (r) | dr (4.10)

 2 ;

8, (15-1) sindrig feosd= 5 [T(r +e) sind, ar

{ (44-n%) cos nd, - mip sin np} Bn
Z

rR , ~

[r(x + e)? dr §,, cos nd) + [v (x) (r +e) rdr)

0
LNS(of V2 3mB . ai '

{wy - n°) sin ng, + niig cos nd} Ba= Li fr (re) dro, -sin ny, |
BR (4.11)

Nhen the blade pitch angle is kept constant, the coefficients of

the flapping motion are obtained as follows.

g p———J (p-1)"+ —{¢fo "2 (x !: or Vy (r) (r + e) dr]
} r (4.12)

2

LN (V(r) r (r + e) dr

‘nT 2] ( J=n2y+ncuy
 Nn 2, 3,000 (4.13)
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=n big

fan n¢,. = pe
n *_

(4 n&lt;)
n=1, 2, 3, +eesse (4.14)

Once the computed wake geometry is determined, the induced

flow field in the rotor disk plane is computed. Then the coeffic-

ients of the inflow field series (. V,) are obtained by Fourier

decomposition. From equations (4.9), (4.12) and (4.13) the coeff-

icients of the rigid body flapping angle are calculated for the

blade of constant chord and constant mass along the span. The

flapping velocity is obtained from the time differentiation of

the flapping angle (8). The effects of the blade flapping motion

on the airloads are determined by simple superposition of the

velocities due to the flapping motion and the inflow field. The

equations for the blade flapping coefficients determines each

harmonic of the flapping motion from the corresponding harmonic

of the inflow field.

bh. 2 Pitch Angle Control to iinimize Flapping Moment Variations

over a Rotation

The flow field on the wind turbine rotor disk plane is

affected by the tower whether it is operating upwind or downwind

of its tower. Thus the tower causes variations in the blade circu-

lation and its flapping motion. However, the tower interference

effects and hence the blade flapping motion, or the flapping

moment variation can be reduced by controlling the blade pitch

angle, enhancing the performance of the wind turbine at the same

time. The coefficients ofthe pitch angle control ( @y) are deter-

mined from equations (4.10) and (4.11) by setting Bn equal zero.
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cp Freer 0
ST + ser ]

— fr (r +e) vu(r) dr Gb! = 0 for n £2
27, 2 Jord 2.2) - Pn

(Te Zedih)
Ip =

(4.15)

(L.16)

Also, from equation (4.11), the amount of the flapping motion

control, or the control of the flapping moment variation by the

unit pitch control is determined.

2 3 , 1 2:2]dB, in [Bet +5 p% +L o%

de, 5 [(12- 2)2 PY:
Tl 1, Za

cee es (8.17)

Since the coefficients of the inflow field (v) as well as the

induced velocities are dependent on the pitch control, equations

(4.15) and (4.16) should be solved iteratively untill converged

values of ¥, and pare reached. For different©,,the strength

of the bound circulation varies and, also, the induced veloci-

ties on the rotor disk plane changes. These new induced veloci-

ties give the newen , according to equations (4.15) and (4.16).

These equations show that the pitching variations should follow

the inflow field variations, that is, there is no phase shift

between the two.

4.3 Pitch Angle Control to Minimize Thrust Variations over a

Rotation.

I'he unsteady blade lift acts on the tower as an unsteady

exciting force while the wind turbine rotor is rotationg.
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Obviously this kind of exciting force can cause some serious

vibrational problems for the tower which undergoes strong

side vibration. By controlling the blade pitch angle the varia-

tion of thrust generated by a blade can be minimized for a rot-

ation of the blade. It would be better to minimize the thrust

variation while keeping the blade flapping motion to a minimum than

to accomplish only one of these two purposes. Referring to fig.

4.2, the elemental blade thrust is

dT = dL cos) + dD sin

11,
——

10 =

Lo .2
5 PU adc dr

Lond a

59U v.37 L3 dr

Hence, the thrust acting on one blade is

Here

n Loc [2u(x +6) arnan + Gq [U RV an |

ASE sin. U
—

ort Or Me

=u = Lo = [aftr +6, 1° ) an + Gq VM an] (4.18)

The coefficients of the required pitch angle control are obtained

by employing series representations for the thrust and for the

inflow field and by taking the harmonic balance of the resulting

equation.
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Lp = Logg + &gt; Log cos n (P+ ¢,)

vn.) = vo) +2 0 ) cos ny

o (p) = 6M) +2 Bcosn (P+ ob)

hen, equation (4.18) is decomposed as follows.

ort :
Lpo = 35a) {Vo MM + 6m) Mm 2tan + ca {vo MM an] (4.19)

Tec 5 rt Tre
Lp, cos nd,=25a + Cq ) | Vn (Md

re

ta §,C0s n b. [0 GY ]
vc i :

-Lin, sin n ¢. = =| a 6, sin nd, [ 12a | )
M

~C

Again, the coefficients of the pitch angle control (0) are

obtained by setting Lp, to be zero.

-

a

1
1 Cq/a)

LsAEE(ew
TM.

OM O (4.21)

Furtheremore, the sensivity of the blade thrust to pitch change,

or the amount of the thrust control by the unit pitch control is

obtained from equation (4.20).

L ga no

abn = oa ( vZan = 6b (1 Nee
dg, 2b Nee

(4.22)

As mentioned in setion 4.2, the coefficients ( Vn) are dependent

on the blade pitch angle 0. Therefore, the required pitch control
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angle should be determined iteratively from equation (4.21) in

the same manner which was used to determine theoqwhichminimize

the blade flapping motion. The equation (4.21) shows that there

is no phase shift between the pitching variations required to

minimize the thrust variations and the inflow field variations.
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SECTION 5

RESULTS AND COMPARISON WITH EXPERIMENT

5.1 Steady Results

The calculated power coefficients in a uniform flow for

pitch angles of 0° and 4° are presented in fio. 5.2 with measured

results from [13]. The thrust coefficients are shown in fig, 5.3.

The drag representation, Ca = 0,Nn1 + 1.522, is used, The results

shown are in good agreement with experiement for tip speed ratios

where stall effects are not important. The same stall model as

used in [7] is employed with stall angle, 0.2 radians. Fig. 5.2

suggests that this stall model does not describe the stall history

adequately,

In fig.5.4 to fig.5.7 the calculated power and thrust coeffic-

ients are compared with experiments and some results from [7].The

same semi-rigid wake model as the one used in [7] is employed in

these calculations. Here the induced velocity on the rootcut or the

blade tip is taken to be half of the induced velocity at the inbo-

ard control point of the blade, For an 8° pitch anole the three res-

ults give almost identical values of thrust and power coefficients.

The departure of the theoretical predictions from the experimental

results seems to show that for an 8° pitch angle the wake behaves

like the new wake model used in calculating the results in fia,5.2

and fig.5.3 which includes the retardation and radial movement of

the vortices in the first spiral. It is obvious from fiqg,5.4 to

fig.5.7 that the present analysis aive better results than those
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obtained in [7].

In the present analysis 15 control points are chosen, which

means that 15 coefficients of the bound circulation series are

computed. As the number of harmonics is increased, the magnitude

of the corresponding harmonic coefficient decreases rapidly as

shown in fig. 5.8, For every calculation the coefficients for the

7 th and higher harmonics are negligible, The first and second coe-

fficients are especially dominant. Men control points and harmonics

are thought to be adequate to obtain pratical results. All the cal-

culations in the present analysis converge within three iterations,

The bound circulation distributions along the blade are shown

for two pitch angles in fig. 5.9. It shows that the bound circulat-

ion increases near the root and decreases near the tip as the blade

pitch angle increases. At the tip dr/dan is infinite in both cases.

It is because dl/d6 is finite at the tip and hence dr /an =29C 1

dd sino

=00 for B=0 or TT . Induced velocities along the span are presented

in fig, 5.10 with the induced velocities on the root cut or the

blade tip. It is interesting to notice in the case of 4° pitch that

the induced velocities are almost constant and about 1/3 of the

free stream velocity which the momentum theory predicts to be the

ideal condition for maximum power. The induced velocity on the blade

tip is shown to be less than half of the velocities induced inside

of that point.
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The dependence of the induced velocity at the blade tip on

the radial distance, d, is presented in fig, 5,11. As 4d approaches

zero, the induced velocity approaches infinity. The converced

value occurring for d&gt; 0.03 was used in calculations.

5.2 Shear Flow

Calculated disturbance pressure ratios are presented in fig.

5.12 with experimental results from [13] and the calculated results

with the semi-rigid wake from [7], They are in excellent agreement

with experiment, and the effect of the shed wake has increased when

wake was allowed to become non-rigid. This is due to the fact that

the seperation of the shed vortex lines from the rolled-up vortices

position them nearer the rotor disk plane than in the previous semi-

rigid wake model. Fig. 5.12 shows this phenomena clearly. For powered

rotors the shed vortex lines will be located below the rolled-up

vortices and hence their effects on unsteady airloads will be decr-

~ased, Tt is demonstrated from fig, 5.12 that the seperation of the

shed wake surface from the plane determined by the rolled-up vortices

are desirable, especially for the prediction of unsteady airloads

and the approach used in the present calculations works,

Tower reflection effect is inherently included in the exper-

imental results of fig, 5.12, The calculated disturbance pressure

ratios are obtained by using the equivalent shear flow without the

tower reflection effect, In fig. 5.13 the result for shear flow with

tower reflection is compared with the one for the equivalent shear

flow without the tower reflection. As far as the disturbance press-

nre ratio is concerned, the two results give the same value.
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But shear flow with equivalent slope as tower reflection is a

little optimistic in the prediction of the performance coefficients

as indicated by the respective values of C, in fig, 5.13,

5.3 Tower Effects

The calculated airloads at the 75% spanwise position of

the blade are presented in fig. 5.14 for the rotor model operating

upwind of the tower in steady,uniform flow. For the free stream

velocity reduction (VR), 0,1165 is used and the value 0,375 non-

dimensioned by the rotor radius is used for the width (%) of

the flow field interfered by the tower in the calculations. These

two values were obtained from the experimental wind profile as

shown in fig. 5.15. The computed unsteady airloads, which are noma-

lized by the average, are shown in fig, 5.16 with experimental values

for the tower reflection case with Xmas tree shown in fig. 5.1. From

the free stream velocities measured at 75 % spanwise position of the

blade, the equation to give the wind profile on the rotor disk plane

is derived. The velocities computed from this equation are shown in

fig. 5.15 with the measured velocities, The instaneous thrust and

performance coefficients are presented in fig, 5.17 for the tower

reflection with Xmas tree. They are periodic by 180° because the

rotor has two blades. °o varies more than 50 % of its maximum along

the azimuthal angle. This means that the torque acting on the wind

turbine shaft varies periodically by that much, Cr variations are

within 30 % of its maximum, and hence a vibratory force of

this order acts on the tower . The predicted unsteady
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disturbance airload ratios are in close agreement with experimental

values for the tower reflection, even for the flow disturbed due to

Xmas tree. The variations in airloads on the blade show the same form

variations as the free stream velocities on the rotor disk plane,

Wind profile equation (3.7) gives results in good agreement with

experimental values behind the tower as shown in fig 5,18, That equ-

ation is, thus, believed to be the proper characterization of the

wind profile behind the tower. The calculated peak disturbance pres-

sure ratio is shown to be slightly larger than the measured value in

fig, 5.19. Also, fig. 5.19 shows that it reduces the peak airload

deficit drastically.

Tt is shown in fig. 5.20 that the use of the non-rigid wake

model has increased the induced velocities on the blade and hence

has reduced the airloads on the blade, compared to the semi-rigid

wake model, Reductions are 10 % in airloads, 13 % in Co and 7 % in Cope

The seperation of the shed vortex sheet from the plane defined by the

rolled-up tip or root vortices has increased the effect of the shed

wake, that is, has reduced the peak airload variation by 4

5.4 Effect of Blade Motion on Airloads

The rigid body flapping velocity shown in fig. 5.21 is less

than 2 % of the free stream velocity. The blade angle of attack or

the airloads will be changed by this percentage. Therefore the

o

effect of the flapping velocity on airloads are negligible for this

model wind turbine rotor used in the experiments. This conclusion
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does not imply that it is true for any wind turbine rotor because

the structural design of the blade can be varied pretty much from

this experimental model. Generally, it is believed that the one per

revolution excitation due to the tower is not enough to cause fast

blade flapping motion, rxcept the resonance case. It is shown in

fig. 5.21 that the maximum flapping angle is about 0.4° for this

model, The deflection of the blade tip due to this flapping angle

is 4 % of the blade chord. The nearest distance between the follo-

wing blade and the tip vortex from the preceding blade is farther

than one chord length at least. Also, the tip vortex is located

outside the blade tip because the tip vortex expands fast in the

first spiral. Therefore, this flapping anale will not have apprec-

able effect on airloads., “hen the deflection of the tip exceeds

half chord length, it is believed that the deflection of the blade

due to flapping motion should be included in determining the rela-

tive distance between the blade and the tip vortex.

The computed inflow velocity is compared with the one calc-

nlated from the 10 harmonics of the corresponding Fourier series

in fig. 5.22, That figure shows that the 10 terms of the Fourier

series still do not describe the peak velocity variation. It seems

that some caution should be paid for using the Fourier series for

the representation of the inflow field.
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SECTION 6

DISCUSSION AND CONCLUSIONS

6.1 Discussion
 EEE a a =

For the transport velocity of the tip vortex, instead of

using one constant velocity for the tip vortex in the first blade

spacing and a different constant velocity outside the first blade

spacing as in [4] and [5], varying velocities are used for the

first spiral of tip vortex. This was done because the velocities

induced by the first spiral tip vortex are of almost the same order

as those induced by the near wake. The assumption that the induced

velocity on the tip or root vortex varies linearly until it is

doubled at the first blade encounter is open to question, But it is

not likely that the induced velocity on the tip vortex is suddenly

doubled. Experimental investigation on the wake geometry or the free

wake analysis can give information about how the induced velocity

on the tip vortex varies, The non-rigid wake model used for the non-

uniform flow shows that the induced velocity varies continuously

rather than is doubled suddenly. The accurate calculation of the

induced velocity on the tip vortex in the first spiral is required

in view the fact that the correct axial and radial positioning of

that vortex is important for the good prediction of airloads and

performance. All these facts necessitate the theory which can handle

the transient rolling process of trailing vortices and the effect

of the tip shape or its modification on the rolling. Obviously the

flow field near the blade tip is very complex and three dimensional.

That theory can aive the way to attenuate the concentrated vortex,
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hence to increase the performance, The circulation distribution

of the rolled-up vortex only rather than the transient one can be

related to the load distribution of the wing for the non-rotating

wing.

The rate of convergence becomes much slower with the non-

rigid wake model than with the usual semi-rigid wake model

because the wake undergoes considerable deformation and the

geometry varies considerably per iteration in the former than

in the latter case. The induced velocities by the far wake are

approximately doubled near the blade tip when the non-rigid

wake model is used, compared to the results obtained when the

usual semi-rigid wake model is used in [7].

The retardation of the tip vortex places the tip vortex so

close to the rotor blade that it causes a significant increase

in the induced velocities near the blade tip, which results in

a reduction of the wind turbine performance. This retardation

has the effect on the wind turbine performance which has the

reverse tendency as that of the rapid contraction of the rotor

slip stream in the hovering flight of a helicopter noticed in

ref, [4]. This contraction makes the tip vortex pass inside the

blade tip and this vortex passage increases the angle of attack

near the tip for the powered rotor.

It is interesting to note that ag _/d4e does not depend on

the flow condition on the rotor disk plane and is determined by

the initial blade design, For the wind turbine of fig.

48,/d8, = 0.3 and dL,./d6, = 0.1.
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6.2 Conclusions
I aa A soeAt:

Lifting line theory using a sine series representation of

bound circulation with new wake geometry gives pratical results

and is very cost effective. With a more realistic wake geometry

lifting line theory will acurately predict the experimental values,

A further conclusion is that the discrepancy between experiment

and theory in [7] is due to use of the approximate wake geometry,

especially due to the neglect of the retardation and radial movement

of the tip vortex, It is believed that the scheme developed to

compute the initial induced velocity on the tip or the root vortex

is useful and reliable, and that the vortices trailed from the tip

or root become the center of the rolled-up vortices as long as ar/av

has its largest value at that point .

It is recommended that the research to find the theory to

handle the transient rolling process be done with the experimental

survey of that phenomena. This suggestion implies that such a kind

of research can reward its cost by opening the way to solve many

problems related to strong tip vortex.

It is recommended that the shed line vortices in the far wake

be located on a plane other than the one defined by the rolled-np

tip and root line vortices.

The main effect of the tower has been found to be a reduction

in airloads on the blades with almost the same form as that of the

tower effect on velocity. It is concluded that the vertical transp-

nxt velocities of the tip vortices change rapidly in the first
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spiral in the wake, which invalidates the assumption that vor-

tices retain the relative velocities of the flow passing through

the rotor.

It is concluded that the disturbance pressure ratio can be

accurately calculated by using the equivalent shear flow for

the case ©f shear flow which includes tower reflection effect

and that the shed wake can not be neglected in calculating the

disturbance airload for the tower shadow case. Further conclusion

is that the non-rigid wake model, which is developed by systematic

modifications of semi-rigid wake, is accurate and fairly simple,

~ompared to free wake model,
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I'ABLE I

ROTOR MODEL USED IN THE ANALYSIS

0.1061

.g 0?

T

Cq = 0.01 + 1

2 Blades

No Twist

No Taper

1 = 0.2

re

TABLE II

JODELING OF THE PROBL

Steady Program Unsteady Program

No. of Wake Spirals
Used in Calculations LO.5 9

No. of Control Points

Near Wake Region

Intermediate Wake Region

A

10° Vv =0 — 153

10° — 90° 15° — 90°

10.5 90° —

spirals

0

J

Far Wake Region 10

spirals

vake Azimuthal Increment 5

Pip or Root Vortex Elements constant strength varying strengths
varying directions " directions

Azimuthal Integration
Interval of Line Vortex

(1) Element in Near Wake 10° 3
0

(2) in Intermediate wake 10° Xa

(3) in Far Jake 5030
_n

J

no



ABLE III

PROFILE DRAG REPRESENTATION EFFECT

Advance ratio w» = 0.1197, Pitch angle oo.

Profile Drag Representation Shed Wake Neglected

“5 Cn Co Crm

0.123 0.333 0.121 0.331

0.109 0.3373 0.107 0.331

Shed Wake Included

Lr Rotor 1s operating upwind of the tower in uniform flow.

TABLE IV

J. a

1
)

0.1197

D.0 172

0.1087

SHED WAKE EFFECTS

Shed Wake Cp

IN(included) 0.178

NE(neglected) 0.178

Lil 0.136

0.136NE

~-

0.055

¥

ut = 0.055

IM 0.107

op

0.363

o/s
0 . 169

0.362 0.201

0.368

0.367

0.207

0.314

0.331 0.318

0.330 0.462

0.359 0.230
C

* Rotor 1s operating in shear flow with pitch angle 6, = 4
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Aprendix A

CALCULATION Or INFLUENCE COEFFICIENTS Ci;

A influence coefficient Cij gives the velocity induced

at i-th control point by the wake which is generated from j-th

component of bound circulation series, and of unit amplitude.

The induced velocity (W.) at i-th control point is 2 Aj.Cy5e
J

From the application of the Bict-3avart Law to the wake whose

ceometry is determined from the previous induced velocity dist-

ribution on blade, one can compute influence coefficients OF

ae follows.
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This equation gives the induced velocity due to a line vortex

of strength dl’ and of n spirals.

dS _ dl 2 de dh =
re 34 er gg Tt 4p ©

¥ ; a position vector from a point on the vortex line to the

position of the blade at which the induced velocity is comp-

ated

TZ =&gt; ip
ds = ( Wr Er + Mt €4 + Vv € ) dd

J; outward radial induced velocity on a vortex line

; axial velocity of a trailing vortex

2; ~&gt;Pv df = {Mf —M (Wes +7, cosd)F K
BY

§ (MV —hwye)cosdtinesimp=v2

4 ~ (Me V=hwy) sim ¢ + hMy cos 17 (A.2)

IF = MM,th=a cos d (A. 3)

From equations(A.l),(A.2) ,and(A. 3),three components of the induced

velocity are derived.

dr 2™ M1 (wWesind +1 cos b) "i ¥
= 4 [ CP+Ne+W—27¢cos¢7°

dr (TCV—hwp) sind MehcosyJAC ( (eV —h wy) sin eM cosy gq$7 or (pt Mn + R27 cos PIF

(Ar.4)

(A.5)

A Uy=

R2



Here, V = Uy, + d where Ugmn is the free stream velocity and « is

the induced velocity on the tip vortex itself. Assuming that

N is linearly varying up to kq spiral of vortex line and after

&lt;q spiral is constant as discussed in section 2.2, 4 is obtained

1s follows.

_P Wo RD =whe +
w= WwW, *t 2H,

WoKD y= a +71We RD 4 WeRD = A
0 2MR

2s (A.6)

, where Ty is the induced velocity of a trailing vortex when it is

trailed, RD is a parameter of the change of W after ky spiral.

Then, when ¢ 2 2741

Pb
V = (UxT+ we) Toh, We RD

$b”
= (Ua + Wo ———— WsRDh = (Ue + Wo) $ + 27%,

By permitting small variations in $ around ¢, h is given by

ho= (Uat wo)(h, +50) + ERD (4 45m)
. a 47 R4

Wo fF 2%g T (8 + 200%) x
dr

(nr,7)

(An _.8) ©

(A.9)

then &amp; »274,+» w= (I+ RD)IW,

h= No+(Uut w)d , ¢ = ¢ -214,

“hohe —{U + Wotl+RDIF2TR, + {U + We (I+RD)}

From equation (7) ho =Tky {24 + we (2+RpJ¢}

h= —RDW. TR: + { U+ Woe (+RDIF(D,+2%)

= oda +8, X*

= ads + 2 «28, X74. ‘WN a®&gt;

(A.10)

(A.71)
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Likewise i is assumed to vary linearly.

 LP
Jv = Wro ITB. ro

| ort

9 4 r 18

72€170a

uf. = Wyo -

—

——— A,“+

Wyo Po _ Wro

PT ka. RTT ka

L.

~N,
i

(A.12)

'he radial position of the tip vortex is defined by v]..

Ny = Nto — Wyo P - 4.174%, Wro

where Neo ls the radial position when the tip vortex is trailed.

Substitution of ¢ with ( b, + X*) into the above equation gives

Wro A&gt; Wye PB, &gt; Wro &gt;&gt;

Te=Moot WroQo= 220 &amp; + (Wro™ 05) rh

(A.13)= A3 +Bs x” + ry x2

NE= ols + 208, X + (8, + 2st) ¥*™

cos p= Cos (PtxX)=cos$,—indyXx—LocosdX

=D —% X= Lp.

(A.14)

(A.15)

sim=sim (Pp, +x
rere

ma % + px"—~dq.v2 Jy
(A,16)
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From equations (A.13),(2A.14)andg (A.15), (N™ + No — eN Me cos ¢ )

term is obtained to the second order of x

M*+ Me—2gcos¢
He

= poi —2n sp RT Af + (KF —B, pO} X

v2 { osTs + Be tN (Lespomp ag) XT

=a +abx* +co**

(1). &amp; £ 277k,

From equations (A.9) and (2.17),

(r.17)

«M4 NE +h—2McosP

Ca ta) +R Coif) +b)x+(B+2017+C)X*™

=A+ 2BX*4+¢c¥v*¥™ (A.18)

(ii). ¢ Y 2TR,

From equations (A.1l1l) and (A.17)

(M+NE+h-2Mgcos

Shia ft (ep FhIXT 4 (BF COXTT

= A + 2B XxX" +c x7" (n.19)

In the equation(a.4), 7M ("4 cos § + usin ¢) —

term is computed from equations (a,12), (A.13),(A.14).(A.15) and(A.16)

3%

to the second order of x .

Wg, MT Mt cos ¢ T Wr sim 3) —

= MN Col3p +43) — THN(mF+PHapthE)

23 f, Fx* = pD+E—-

(r.20)

a8



In the equation (A.5) x MeV = hur) sSin d —Ne¢h cos @

term is obtained as follows.

(1). &amp; = 2amR,

From the equations (A.6),(A.8),(A.12),(A.13),(A.15),and(A,16),

(MN V-—hWr)sing ~My h cos ®

= 2 fo (Uta)—aA}—odzeyP

»

 fy Cpdos (UTR) —dj 2) =a]

+ ¢ddsta TB; (UF 0a) —it) — BA}

3ByP—BasciPTose)§J
= Hf + x~*

(11). od &gt; 277 Ry

02 =Ww,(|+RD),t=0 &amp; h=oda +p.
&gt;

(2 ~1)

Equations (A.18),(A.19),(A.20) ,and(A.21) give the final form of

equation to compute induced velocities,

ad° D + EX* dl”
dw, =40 &gt; | Par #2 Va AN =&gt; L

47 ¢ Zo LA +RBXH Cx] 47 ¢

ad, = dr

dr | FF + GX dy*=—2_1.
AWy= 4 ¥, CA+2BY HC X17 4m

—

n Nye + &gt; (I — cosB)

rm) = 2 An sin MO

Arm)=3 (-nAn) cosne dé
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Appendix B

ALL COEFFICIENTS USED IN CALCULATING Ci;

[f AC # vy

1 [ (DB - EA) + (DC - EB)AG, (DB - EA) - (DC - 2200)
1 = ac-B2 A + 2Ba¢, + CaP; vA - 23a¢,+ C a; |

[f AC =

. _ EB - CD 1 4 + 2Ea00MC

Lo =o|(B¥cCcad)e~~ (B-Ca B2 - C2a¢?

In I, , D 1s replaced with F and

(1) dS 2Tky

A = of +a, B= oy 8,

(11)¢ &gt; 2Tkq

H wil tn
3

 sr

). + 20, f;+¢€

A =d, +a, B=0dyB,+ b. Og = Oa + C

D =" (gp +91 a) - ol

E=7m(-d3a +8;p +p + t,a) - 238;

F= gif Ug +a) = iq} dsp

Pp jf Uw +R2) - cha}+a fdatatf(Up+2) —a,1-Bra}

-osBP  - BsP tag

Here ,when ¢ &gt;27k, ,» then of =d,

Nj = (Un t Wo) 4-

R, = 3,

Woe RD ¢’
41 4,

d= —RDWolki +1 Ue + We(j +RD) F¢

3 = hoe T Wra® — __Wre 4

 4.7 Ro,

Q8





Appendix C

VELOCITY INDUCED BY A TRAILING OR SHED VORTEX ELEMENT

C.1 Trailing Vortex Hlement

The velocity W at position on the blade by a trailing

vortex element A of strength M'(¢) is obtained by applying the

Biot-3Savart formula. In vectorial form, the formula can be

written as

— 1 OF ? xds
WwW = —— A dodo47 J (@) r?

9sIr

blade |

I

hn VWV\
T

A\ortex
element
A

2

—

»

N
 yr

1 Y

X
In

\ To J

\

Projection to X-y Plane

Fig. A.2&gt; Geometry for the Calculation of the Velocity Induced

by a Trailing Vortex
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Sr, gy = unit vectors fixed at the midpoint of the vortex element.

A. = angle of inclination of the vortex element w.r. to X-Y

plane.

Bl
——

—

b=

axial distance from the £-Y plane to

vortex element.

che midpoint of

azimuthal angle between the blade axis (Jj-axis) and the

axis formed by the line from the orgin of x-y plane To

midpoint.

Vortex element A in fig.A.2 is assumbed

CA by angle ‘A

to be inclined w.r.to

3 &gt; =&gt; K
rr &amp; Nn ws C7, €r t+ "Me d € ~N $ fan OOK —hK

12 = 7M; db Es — V4 do tan OOK — 1M hdd
rr

€,

tan (A)= dh
Ny dd

Px df =[=(M=cosbg)NetanA+hfesind, TdT

4 (ME =" cos dg ddd K +L OMe sinds +7¢FR

FN (ht od tan A) €41 dd

Linear variation of the strength of element A 1s assumed as follows.

A A

mor 2 (+R)=wrap
Neg

$= =» =&gt; 7

w=zz | (+8){(DY+EF(qTtHK)dp}d
“ AES (ax*+ abx +c&gt;

adh

01



Jthile neglecting the terms of order ($2) in the numerator, this

equation becomes

(1). ‘when 2 # ac

” , of ax tb |
- = x EX (aC—b)JaxitabxtcWw pe { (Dr + (ac —b") ax t2bxtc ly

&gt; LL bx tc IfenRy [bre

bd,

1

(ii). When b° = om

N =—
oL &gt; —&gt; -Ja $.

ATT { (0% TES cax +b) Jo

( GT+HX)
-y b b.

ot me

ja (ax +b) 2fa (ax +b)* Uy

In these expressions,

D= —(M~"¢cosP Ie tan At Mtr sin ds

Eo Me cos bs
G = Meh esd + EP

H = MMe SIN bg + LE

a = Ne Cl + tan")

b =" SIN bg ‘a Ne Tan Al

C= My +N +h —2 Np cos by
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C.2 Shed Vortex Sheet and Element

The same equation as in [7] was used to calculate the

velocity induced by a shed line vortex. For the shed vortex

sheet, a slightly modified form of the equation for the shed

line vortex element was used.

of

£0 /

225 vortex sheet inclined

an angle 'd' w.r.to

X-Y plane(rotor disk

plane)

15%

\) 4

~—

~~

(Fig. A.3&gt; Near Wake Vortex Sheet

B= (sindT + cosdT + tand¥)dNTwdé

$, n 3

W a Jy, (DF + EX)RF db=- 185 (D7 + En Fs
Here,

R= Bw tC

L(B —AC) (Aa +2BYy + Cy,
w=,

” Mw =Y,

A= + tanwd , B= he tan d —Ycosd , C=1" 4 hy »

D=MNfand + ho cos, E=-7sin , r= CWebN-T (LN)LN
 Nl

0



(LLND)—T(L,N)
The strength of the sheet vortex is Is z= —

na¢
where [~ (L,N) is bound circulation at the azimuthal position, L

and the radial position, N. In this calculation there are no si-

ngularities because the integrand is calculated at the midpoint

of each section.
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Appendix D

NIND PROFILE UP-WIND OF THE TOWNER

It is assumed that the free stream undergoes a velocity

reduction of the form of a right circular cone on the rotor disk

plane due to the up-wind propagation of the tower disturbances.

fhe profile of the disturbed free stream velocity 1s shown in

fig. A.4.

Nerotor disk plane
1

|
|

R

fpoomdary of flow region
interfered by the tower

WR

NZ
’ey 3TIITIITITIINTTT - velocity reduction

' ground | —

\ on
“7

| u_ (z=0)

Uu_(z[we
-

7—

max imum velocity
reduction

U_ ( z=-hR)

CFig. A.4&gt; Geometry for the Representation of Tower Reflection

Wind Profile
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Let v(z) be the maximum velocity reduction function along

the height of the tower, and assume v(z) be linear. Then v(z) =

VR. { 1- Ste} where St = tands, R = rotor radius, and VR =

maximum velocity reduction rate at z = 0. The velocity reduction

function v(x,z) at an arbitrary point of the flow region up-wind

of the tower becomes

(Y=S"MCos)

Therefore, the wind profile behind the

a(x,z) as follows.

i)

Jt)

CO P 7) i W(x,Z) = Uw CZ)A0

COS J:  © and
|'s — 84 M cosy] —

1 sme] 17 U x, 2) = Ue (2)0R

, Is =8:m cos pl = ULB={1—TOE) UeE{0 and Mm sm Wl &gt; 1 {i YRnadAad J

Here, Upo(z) can be a shear flow or a uniform steady flow. In

the shear flow case, the velocity reduction function v(x,z)

can be assumed to be proportional to the magnitude of free stream.

’'hen, u(x,z) in above last equation is simply modified as follows.

} XK, ZZ) = { | —_ (X,Z) —————= Uw (Z=2)/0vv (X ) J. (2-0) ¥ Q YA R

Of



For the tower with Xmas tree, v(x,z)is determined from the

experimental results.

-Kix
YU (X,Z2) =UX € |

Here, vj is the velocity reduction rate at 2z = -0.75 and x = 0

and K is the characteristic constant for the given tower. Then

the wind profile is

A (x,Z)= {|— T(%,2) | Ue/nR
I

LX, Z)= §1= vo 2) StF Ueo (z=2)/aR

for shear flow.

v(x,z) is defined as follows.

(1). 2 &gt;» ©
 KK] Xx+ZI

uw (X,Z) =VUe F.C

(ii).  2,42Z&lt;0

 vw LZ)= Uo Ex
—K 1%}
e

(iii). 2 ¢ 2.

~K
Us (X,Z) = Yo Z € *

4. ig the z-coordinate of the top end of Xmas tree.
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