AERODYNAMICS OF WIND TURBINE WITH TOWER
DISTURBANCES

by
SONG Y. ;:HUNG
/
B.S., Seoul National University
(1975)

SUBMITTED IN PARTIAL FULFILLMENT
OF THZ REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1978

(E) Massachusetts Instjtute of Technology 1978
Signature redacted

Departme&t of ZAerorAutics and (Astronautics
January 32,1978

~ Signature redacted

Thesis Supervisor

‘Signature redacted

'. 6hair@?h. Departmental Grgggate Committee

Signature of Author

Certified by

Accepted by

Archives
MASSACHUSE
OF TECHNOL oGy TUTE

JUL 6 1978
LIBRARIES



AERODYNAMICS OF WIND TUPBINE WITH

TOWER DISTUPBANCES

by
SONG YQUNG CHUNG

Submitted to the Department of Aeronautics and Astronautics
on May 30, 1978, in partial fulfillment of the requirements for

the degree of Master of Science
ABSTRACT

Lifting line theory which is the counterpart of Prandtl's
lifting line theory for rotatina wing is employed for the overall
performance analysis of a horizontal axis wind turbine rotor oper-
ating in a uniform flow, The wake system is modeled by non-ricid
wake which includes the radial expansion and the axial retardation
of trailina vortices,

For the non-uniform flow which are caused by the around, the
tower reflection, or the tower shadow, +he unsteady airloads
acting on the turbine blade are computed, wsinag liftina line theory
and a non-rigid wake model., An eguation which gives the wind profile
in the tower shadow region is developed. Also, the equations to
determine pitch angle control are derived to minimize the flapping
moment variations or the thrust variations due to the non-uniform
flow over a rotation

It is concluded that the models developed can predict the
overall performance coefficients for uniform flow and the unsteady
airloads for non-vniform flow which are in good agreement with
experimental data. The unsteady airloads are found to have the
same form variations as the wind profile on the rétor disk plane,
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NOMENCLATURE

1ift curve slope

coefficients of bound circulation series
(r =2Aj sin*je )

number of blades

blade chord

drag coefficient of blade

drag coefficient of the tower

power coefficient, Cp = P/ew R2UJ
thrust coefficient, Cj = T/p = R2 tE
1ift per unit length of blade.
flapping hinge offset

2
(ufpend/g )= where Whend
frequency of blade

= /3g/2PR is pendulum

index to denote control point

blade moment of inertia

characteristic constants of wind profile equation
for a given tower

root constraint
distance from hinge offset to blade tip nondimensioned by R

lock number, LN = ach%/Ib

thrust coefficient, Lp = 17?792R4

coefficients of thrust coefficient series

mass per unit length of blade
aerodynamic moment about an offset flapping hinge
moment due to gravity about an flapping hinge

inertia moment about an flapping hinge

= Lo+ %—)



rotor radius

position vector from vortex element to point where induced
velocity is going to be computed

radius of the tower

static unbalance of blade

position vector from center of coordinate to vortex element
free stream velocity on rotor disk plane disturbed by tower
total velocity on blade

velocity perpendicular to rotor disk plane

in-plane velocity perpendicular to blade

undisturbed free stream belocity

total velocity at i-th control point

velocity reduction function

inflow velocity, V = UP/IIR

induced velocity perpendicular to rotor disk plane

in-plane induced velocity

radial induced velocity

radial induced velocity on rotor disk plane

angle of attack

rigid body flapping angle

coefficients of rigid body flapping angle series

average bound circulation over a rotation

bound circulation at i-th control point

half of maximum bound circulation variation over a rotation
spanwise coordinate (non-dimensioned by R)

non-dimensional distance from center of rotation to blade
root cut

non-dimensioned by NR



angular coordinate to denote spanwise position
coefficlents of blade pitch angle series

blade pitch angle

inflow angle

induced inflow angle (=XwW/ n )

absolute inflow angle (¥ U,/ "7 )

density of air

advence ratio

kinematic viscosity of air

solidity.o= = R/Dbc

azimuthal angular coordinate of vortex element from blade

phase angle between flapping angle series and inflow angle
series

phase angle between pitch angle series and inflow field series
azimuthal angular coordinate

rotational speed of wind turbine rotor
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SECTION 1
INTRODUCTION

For uniform steady flow about a wind turbine, lifting line
theory which is the counterpart of the Prandtl's lifting line the-
ory for rotating wing is employed in the analysis for a rotor blade
in an effort to improve the theoretical prediction of power and
thrust. The wake region is divided into three regions, namely, the
near, intermediate , and far wakes. At the junction between the
near and intermediate wakes, the neighboring two vortices are merged
together. Again, at the junction between the intermediate and the
far wakes, all trailing vortices are assumed to be rolled-up into
the root and tip vortices. The wake geometry is prescribed at equal
angle spacings and the blade is divided into a number of segments
according to cosine law. Each segment is represented by a constant
strength bound vortex whose strength is determined at a control
point which is located at equal angle center of that segment. The
wake geometry used in the analysis includes the linearly varying
velocities induced on the tip or root vortex in the first spiral
and the radial movement of them. The results obtained with this wake
geometry are compared with those obtained with the semi-rigid wake
assumption. The computer program for the steady flow analysis perm-
its the evaluation of several wake geometries ranging from the cla-
ssical helicoids, the semi-rigid wake to the radially expanded,
variable-axial-velocity geometry. The inboard trailing vortices
may be unrolled or fully rolled in the last two wake geometries.

The importance of the correct axial and radial positioning



of the tip vortex was noticed in ref.[4). The disagreement of the
theoretical predictions using the classical wake geometry with
experimental results is mainly due to the neglect of the rapid
contraction of the slipstream under a hovering rotor which places
the vortex system close to the rotor bladesu- The free wake analysis
was introduced in [14] to account for the significance of blade
wake interference and the influence of blade number. The cross
section view of the calculated wake geometry (ref.l@) shows that
the outer end of the vortex system, that is, the vortex emanated
at blade tip becomes the center of the rolled-up concentrated tip
vortex.

For the unsteady nonuniform flow which is inevitable due to
wind shear, and tower reflection or tower shadow, the non-linear
variable-axial-velocity induced on the tip or root vortices are
computed for each azimuthal increment within the first spiral.

The calculations show that the velocity induced on the tip vortex
increases sharply and is almost doubled within the first spiral.
After that induced velocity remains relatively unchanged. This
means that the retardation of the tip vortex occurs and momentarily
it expands behind the rotor. This radial expansion is computed from
the condition of constant mass flow inside the cylinder bounded Dby
the tip vortex. Tower effect is included in the analysis through
the nonuniform flow field on the rotor disk plane caused by the
tower reflection or its shadow. The distortions of the trailing
vortex system due to this nonuniform flow is, also, included. But

in the tower reflection case, the vortex-tower interaction is
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neglected because it occurs after several spirals of the tip
vortex, The shed vortex lines in the far wake are positioned by
the connecting lines of the points determined by the velocities
induced on the two control points near the tip or the root. In
the rigid or semi-rigid wake the shed vortex was located by the
tip and root vortices. The trailing vortices are permitted to have
varying directions and strengths,

The equations are derived to determine the blade pitch angle

required to minimize the flapping moment variations, or the thrust
variations over a rotation, All blade are assumed to be rigid,

For the tower shadow case the rigid body flapping anagle is calcul-
ated and its effects are evaluated.

Miller, R.H. in [2] has pioneered the unsteady harmonic air-
load computation for the forward flight of the helicopter with
rigid wake geometry. Unsteady airloads acting on rotor blades were
predicted satisfactory and their orgins were discussed in[l]and[3] .
The concept of the semi-rigid wake geometry was introduced in those

reports. Scully, M.P, in [6] has done the free wake analysis for

the helicopter forward flight, where the induced velocities on the

first two spirals of the tip vortex were computed in order to loc-

ate the tip vortex and the inboard shed wakes were positioned by

the rigid wake geometry,
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SECTION 2
STEADY AZRODYNAMICS

The bound circulation which describes the blade as a 1lift-
ing line is represented by a Fourier sine series. The velocities
induced by the prescribed wake are computed at control points on
the blade as a function of the coefficients of the bound circu-
lation series. These coefficients are calculated from the matrix
equation which are formed according to the Kutta-Joukowsky theo-
rem. The multiplication of these coefficients with the influence
coefficients yields the induced velocities on the blade. From
these non-uniform induced velocities and the free stream velocity
the wake is generated within the framework of the assumed geometry.
New influence coefficients, induced velocities and bound circula-
tion are obtained from this new geometry. This procedure is usua-
1lly iterated three times to get the converged bound circulation
and induced velocities. The usual strip analysis gives the perf-
ormance coefficients of the wind turbine.

2l Lifting Line Theory

Bound circulation along the blade is represented as a sine
series. The velocity induced at each control point on the blade
by the wake system is computed as a function of the coefficients
of the bound circulation harmonic series.Then, the induced angle
of attack is obtained at each control point as a function of
those coefficients. The angle of attack calculation also includes

contributions from the pitch angle, the rotational velocity
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of blade and the free stream velocity.

All of the above contributions are included in 1lifting
line equation at each control point, which generates a system
of linear algebraic equations for the coefficients of bound
circulation series as follows. The sectional 1ift at a control

point on the blade is given by Kutta-Joukowsky theorem.

dL = pUT = —5-pU%-2-a:C (2.1)
Here, « = o, + A5 * Ai as shown in fig.2.1 .
= A, c (2.2)
w.l — j=1'j uij — 0
P _% Uadc( O+ Ag + oAy ) (2.3)

The influence coefficients ( j are computed from the equ-
ation derived in the appendix. Aj is the coefficients of bound

circulation series, that is,

'y = '_%LAJ' sin (§j " &) (2.4)
N is the numbe; of control points on the blade

The spanwise coordinate on the blade, Mj, is transformed
into a polar coordinate,t& , which varies from 0 +to J] according

to the following transformation equation

73 = Tpet 0.5 (1- cos 93)

(See fig. 2.2 for details.)
During the intermediate calculations every value was non-dimens-

ioned by the distance from the rootcut to the blade tip. In the

13



final output the non-dimensional parameter was switched to the
blade radius. Introduction of equations (2.2) and (2.4) into (2.1)
gives the desired linear algebraic equation for the coefficients

of circulation.

. S, L N
j—ZiAj sin (,]'(")i) = zUi-ai . Ci {(-)pi+ Aggt ( ZiAJ Cij )/ ’71}
= j=

N
% b 1 AL . 1
: +9.) - =U..a; .C504 . | ==U,-a.+C: (0. s
iiAJ [sin (j ;) > VU5 ¥ Clbl}/ﬂl] 5U;r a3 “1((bl+ Agy )

This equation is valid at each control point (i). Therefore, it

gives the following matrix equation.
Log 1Has} ={o, |
-1
{Aj } N [aij]{Di} (2.5)

Here, in-plane induced velocities were neglected because the
effect of these velocities on the results was shown to be negli-
gible in[ 7].

In generating equation (2.5), Ui ig a function of induced
velocity and cij is a function of wake geometry which is determ-
ined from induced velocity distribution within the assumption
for geometry. That means an iterative procedure, as described
below, must be employed to compute the actual Aj.

Iteration Procedure

1. Estimate induced velocities

2. Calculate Uj

14



. Generate wake geometry

Calculate influence coefficients Cij

3

L

5. Solve equation (2.5)

6. Calculate induced velocities from equation (2.2)
7. Repeat step 2-6 untill the solution converges

Knowing the proper induced velocities a strip analysis is
used in calculating the thrust and power distribution. Experimen-
tal data for section 1ift slope and drag can be used. wWind turbine
rotor in this analysis can have any number of blades which can
have an arbitrary distribution of taper and twist.

Ref.[9] applied the vortex lattice method to propeller
blades with a single bound vortex located at the quarter-chord
point and the control point at the three-gquarter chord point of
each blade section. For non-rotating rectangular wing [8] shows
that 1lifting line theory with trailing vortices arranged by equal
angle distence and control point at the equal center between them
converges faster and is more accurate than other vortex lattice
methods.

242 Wake Geometry

The prescribed wake geometry resulting from a series of
investigations of model rotor wakes was successfully applied to
the calculation of helicopter rotor hover performance with 1lift-
ing line theory in [4] and 1lifting surface theory in [5]. At the
present time, there is no wake geometry available for the wind

rotor which has been developed from such experimental studies.



Hence,two major features from the prescribed wake ceometries
for helicopter rotor hover performance analysis are incoperated
in the calculation of wake geometries,

First, the tip vortex axial settling rate (or velocity)
was doubled when the tip vortexz passes beneath the followinag blade.
This doubling is predicted by momentum theory and in vortex theory
can be exzplained by the effect from the trailing and bound vortex
system of that blade generated during that portion of the cycle
preceeding the following blade passage. For wind turbine rotor the-
re is the same effect on the tip vortexz from the following blade's
trailing and bound vortex system. Also, the equation derived in [12]
show that the thrust predicted by simple vortex theory for the rotor
with an infinite number of blades will be equal to that estimated
by momentum theory when the axial induced velocity on the tip vortexz

is taken gyer the rotor disk,

The second feature is that the point of mazximum wake contrac-
+ion is reached at the end of four times the azimuthal angle between
adjacent bladesl?'l1 In the analysis the maximum wake expansion
point for the wind turbine rotor is taken to be the maximum wake
contraction point for the helicopter rotor.

The radial induced velocity (Wro) at the blade tip on rotor
disk plane is computed as follows. The tip vortex begins to move
radially with that velocity when it is trailed from the blade., It
is assumed that the tip vortex radial velocity decreases linearly

to zero when it reaches the assumed maximum expansion point. There=-

fore, the radial velocity of tip vortex is

16



W, = Wy, - ¢ Wreo (2.6)
(81/p)

where Wf,is the radial induced velocity at the blade tip in the
rotor disk plane, b is the number of blade and gb is the azimuthal

position of vorteX. The maximum expansion distance is given as

follows for b = 2.

— uh _ ¢
d(p) ro¢ o7 Wro

Amax (P =4T) = 277 whio : (2.7)

The radial movement of tip vortex is due to the radial velocity
induced by the spiral tip vortex below the rotor disk plane as
shown in fig. 2.3 . In fig. 2.3 the radial velocity of tip vortex,
C is decreased due to the radial velocity induced by the vortices
trailed since tip vortex C had been trailed, that is, vortices A
and B. The tip vortex moves radially until the radial velocity
induced by the almost helical vortex below that vortex is balanced
by the radial velocity induced by the spiral vortex above it. After
the tip vortex reaches its maximum expansion point, it begins to
contract much more slowly than when it expands Jjust below the rotor
disk plane. This is due to the fact that the radial velocity induced
by the lower helical vortex ceases to dominate over the velocity
induced by the upper sprial vortex because of wake diffusion due

to the viscous effects. Since this tip vortex begins to contract
relatively far below the rotor disk plane and very slowly, its ef-
fect on performance and thrust can be neglected. Experimental inv-

estigafion in [11] shows for helicopter hovering rotor that the

17



wake system contracts first and then expands very slowly.

This radial movement of rolled-up tip vortex has a fairly
large effect on power results because the axial velocity of tip
vortex is influenced by the radial position of tip vortex and the
induceq velocity near blade tip is affected very much by the axial
and radial position of rolled-up tip vortex. The axial induced
velocity of rolled-up tip or root vortex is computed under the
scheme that the vortex originating at the blade tip or root cutout
becomes the center of the rolled-up tip or root vortex and that
the vortices trailed from the maximum-bound-circulation point to
the tip or the rootcut are warpped around those center vortices.
Concentrated tip or root vortices are explained to be caused by a
very high slope drop toward zero of the bound circulation ( dr /dy
= ® ) on those points. These concentrated vortices tend to induce
strong velocity around them and to make the neighboring vortex sheet
warp around them, Therefore, the rolled-up vortex moves with the
velocity which is the sum of the undisturbed free stream velocity
and the induced velocity at the blade tip or rootcut. The velocity
induced on the tip or root vortex is assumed toincrease linearly
until it is doubled when it passes underneath the following blade
as discussed above.

The wake system is usually divided into three regions, near,
intermediate, and far wake. At the Jjunction between the near and
the intermediate wakes the number of trailing vortices is cut in
half by merging two adjacent trailing vortices into one. All trai-

ling vortices are assumed to be rolled-up into the root or tip

18



vortex at the junction point between the intermediate and far
wakes. The velocity induced by the intermediate and the far wakes
is computed at the blade tip or the rootcut point. But the velo-
city induced by the near wake is computed by averaging the velo-
cities induced at two points outside and inside the blade tip or
rootcut. In semi-rigid wake the induced velocity at the tip or the
root cut is taken as the half of the velocity induced at the
nearest control point. For a rotor of an infinite number of bla-
des the induced velocity at the tip was shown to be the half of

the velocity induced at inboard station of the tip in [12] .
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SECTION 3
UNSTEADY AERODYNAMICS

Wind turbines always operate in the influence of their to-
wers and the ground. The unsteady airloads act on the wind turbine
blades which rotate through the non-uniform flow field caused by
these influences. The calculations of these unsteady airloads
have been performed by the vortex wake and lifting line theory,
which means the lifting blade is modeled by a bound circulation
and the chordwise circulation variation is neglected. The wake
geometry employed is the non-rigid wake which includes the eff-
ects of the retardation of trailing vortices and of the radial mov-
ement of the tip vortex. This geometry is calculated from the semi-
rigid wake geometry by suitable and systematic modifications. In
this non-rigid wake the shed vortex lines in the far wake are
placed on a plane other than the one defined by the rolled-up tip
or root vortices because the induced velocities on those vortices
are entirely different from the induced velocities inboard of them.

The influence of the tower on the vortex wake system have

been included on the rotor disk plane. These vortex wakes are
positioned by the timewise integration of the velocities which
are the sum 0f the disturbed velocities on the rotor disk plane
due to the tower and the velocities induced on vortex itself.
But in the tower reflection case when vortices approach the tower
the free stream velocities are decreasing and there are interact-
ions between the vortex system, especially the tip vortex and the

tower. It may happen after several spirals that the tip vortex will

20



touch the tower and end on the solid boundary because of the
decrease of the free stream velocity and the vortex-tower inter-
actions. The effect of this phenomena ., the induced velocities
‘have been neglected because the contact of the tip vortex with the
tower will usually take place after several spirals, Hence its
effect will be negligible, compared to the velocities induced by
the several spirals of the tip vortex before the contact happens.

The blade are assumed to be rigid, The rigid body flapping
motion is determined for the tower shadow case and its effect on the
unsteady airloads are discussed.

The equation which gives the wind profile downwind of the

tower has been developed by using boundary layer approxzimations.

That equation is shown to be a good characterization of the wind

profile downwind of the tower.

3.1 Wind Turbine Blades

All blades are assumed to be identical, to rotate at a constant
angular velocity, and to have arbitrary twist distribution. The

tower and blades are assumed to be rigid. Each blade is represented
by a number of constant-strength bound virtex segments which have
the bound circulation that is determined by two-dimension .airfoil
theory at their mid-point. ™he same method as used in [7] is used

for the modeling of the blades.
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F.2 Nakes

The wakes consists of trailing vortices and shed vortices
as shown in fig. 3.1 which are caused by the spanwise and azimut-
al variations of bound circulation and are divided into near,
intermediate, and far wake regions. The near wake region extends
from the blade to 15 degrees aft and has three 5 degree sections.
It has been modeled by curved trailing vortex elements having
varying strengths and varying directions within one element and
lattice vortex sheet elements each of which has constant strength
and direction. The same procedure as the one in [7] has been fol-
lowed in dividing the wake regions and determing the strengths
of vortices.

3.3 Non-rigid Wake Geometry

The semi-rigid wake usually assumes that the vortices shed
from the blade are carried away from the rotor at a rate equal to
the relative velocity of the flow passing through the rotor. These
velocities are in general different at different points of this
flow. Also, the vortex system is continuously being deformed due
to these different velocities and the mutual interactions of the
tip vortices. As a result,the velocity with which the tip or root
vortex carried away from the rotor plane is radically different
than the velocities on the inboard sheet vortices. The vertical
transport velocity of the outer portion of these sheets is much
lower than that of the tip vortices.

If we consider the vertical transport velocity of one tip

vortex element, the assumption made in the usual semi-rigid wake

22



is roughly equal to neglecting the interaction by the vortex

segments shed after the tip vortex element was shed. Let the vel-
ocity with which the element A in fig.3.2A is carried away be V,.
When one tip vortex element A is trailed, the vertical transport

velocity V, becomes

$=4r B xXT¥
v =V A, = V + .
4 e %Lo N amrs O

where b is the number of blades, if the shed wake is neglected.
If we consider that vortex element after the time interval,at =
/2 , it is positioned as shown in fig. 3.2B. The vertical vel-

ocity of the element A at position Q becomes

Vo = Vo ay + dp + i

o Ldrow d3 x

'a Z¢ =$, dan  4mur? -
- $=¢s 1 drcng ) & xF

; - d
o = f_ J 4T3 1
i %L r n"#)—l‘_—“rﬂr-*

Wy' is the velocity induced at point Q by the vortex system trailed
from the blade before the vortex element A was trailed. It can be
reasonably assumed that #5' is equal to w#y. If one considers the

wind turbine to have more than one blade, average W is almost
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cancelled. But actually the instantenous velocity induced at point
Q by the bound circulation is not cancelled.

The most important factor which invalidates the assumption
made in usual semi-rigid wake is Wp. At ¢, = 15° , Wy is of the
order of 40 % of the velocity induced at point P by «). After one
spiral Wy is almost equal to 70 4% of Wé- Therefore the usual semi-
rigid wake assumption causes us to underestimate the induced velo-
city at the blade, especially near the blade tip. As a result, the
performance of the wind turbine is overestimated for a given pitch
angle. In helicopter hovering case, the situation is reversed.

The velocity induced at Q by the vortex segment B in fig. 3.
2B causes the retardation of vortex element A,The tip vortex trailed
by the preceding blade therefore passes near the following blade,
but not as in helicopter forward flight rotor case because this
tip vortex goes a little outside of the following blade tip. This
tip Vortexrincreases the induced velééity near the blade tip, com-
ared to the usual assumption.

In the caléulation of velocities induced at the blade by its
wake system, the usual semi-rigid wake assumption is used in the
near wake region. In intermediate and far wake regions, the velocity
Vy of the vortex element A which was trailed when the blade was at FP
is modified by the velocity induced by vortex elements trailed by
the blade since its orgin. The contributions of these regions are
similarily divided into near, intermediate, and far wake regions for
the point A. The near wake contribution is obtained from the near
wake contribution when the blade was at point P and is thus not

24



recomputed. Similarly the intermediate and far wake contributions
are obtained from the corresponding regions for the point P'. After
the first spiral of the wake, V, is assumed to keep the velocity
obtained according to the above procedure since the contributions

of the remaining spirals will have a negligible effect on this
geometry. The axial distance of element A in fig. 3.2B from the
rotor disk plane is calculated by inte€rating the changing V, w.r.to
the time interval corresponding to the various induced velocities

on element A. The radial location of the tip vortex is established by
satisfying the equation of continuity for the flow inside the vortex
spiral.

This scheme does not need any more difficult steps to calcul.-
ate the wake geometry than for the usual assumption made in semi-rigid
wake. To reduce execution time and avoid some useless calculations,
the calculation of the velocity induced by the shed or trailing
wake element was not performed, if the strength,\%§A¢or|%%éyl was
less than the corresponding rcference*values. In far wake after
6 spirals, the velocities induced by the half vortex system nearest
the blade are calculated and those induced by the other half are
neglected.

3.4 Calculation of Non-linear slovement of the Vortex

The tip vortex decelerates and expands quickly in the first
spiral after it was trailed. After the first spiral it maintains
almost constant pitch and radial distance from the rotor axis. when
the blade passes above the rolled-up tip vortex trailed from the
preceding blade, that vortex plays a determinate role on the vel-

ocity at the blade tip, and consequently on the performance of the
1
1000

of mean value of [~ 25
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wind turbine. Thus, the correct position of that vortex with resp-
ect to the blade is required. All these considerations necessit-
ate the introduction of the calculation of the non-linear movem-
ent of the tip vortex in the first spiral. This calculation is
done in a relatively simple way.

The non-linear movement of the near wake is neglected, since
the age of the near wake after it was trailed is negligible so
that any departure from a linear movement is insignificant. In

fig. 3.3 the axial velocity vy of tip vortex element L is
L~1

v = Vor * 2 YL,k (9.1
where WL,K is the velocity induced at the element L by the element
K and Vg, 1s the starting velocity of element L at that instant
when the blade is located at the azimuthal angle ¥ . The axial
distance Hj, of element L is

L-1

i) . « K .
2L,k o9 (3-2)

H, = Vor* 91+
y where ‘Pl.is the azimuthal angle between element A and the cu-
rrent blade position and Aa¢ 1is the angular interval between the
vortex elements. The calculation of WL,K for each vortex element
L is very time consuming. Without actually computing NL,K it is

obtained from th velocity which is induced by each vortex element

L at the blade tip.
Jl) for 1= K =1-8 (3.3)

Here, [+ (K) is the strength of the vortex element X and iy, LK
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1s the velocity induced at the blade tip ( "y4) by the vortex
element L-K. NL,L—?’ swi 3 WL,L~2 are again obtalned from the
velocity induced at the blade tip by the intermediate wake and

)

EL I-1 from the velocity induced by the near wake.
E

The position of the shed line vortex in the far wake is
defined by the line connecting two positions which are determined
by the sum of the free stream velocity and the velocities indu-
ced at ”2 and "N-l in fig. 3.3. Using the same method which
was used to position the tip and root vortices, the relations
(3.1) to (3.2) are employed while AN, 1-x 1s replaced by WZ,L—K
in order to locate the inboard end of the shed line vortex and
by WN-i,L—K in order to locate the outboard end of that line
vortex. The radial position of the tip vortex is computed from
the condition of constant mass flow inside the vortex cylinder.

The axial velocity at the rolled-up tip or root vortex is
computed according to the scheme that the vortex originating at
the blade tip or rootcut becomes the center of the rolled-up tip
or root vortex and the vortices trailed from the maximum-bound-
circulation point to the tip or the rootcut are wrapped around
that center vortex. Therefore, the rolled-up vortex moves with
velocity which is the sum of the undisturbed free stream velocity
and the induced velocity at the blade tip or rootcut and its axial
velocity changes are computed in the manner explained above. The
velocity induced at the tip or rootcut by the near wake is compu-

ted in the same manner as discussed in section 2.2 . The velocity

induced by the intermediate and far wakes is computed at the blade
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tip or the rootcut point itself,

3.5 Fffect of the Up-wind Tower Presence on the Wind Approaching

the Rotor Disk Plane

The dirrect effect of the presence of the tower is the con-
tinual spreading of the wake, The velocity distribution in the
wake is likely to be complicated in the neighborhood of the tower,
even when the flow is steady, Farther downstream in a steady wake
the vorticity shed from the tower is convected in the stream dire=-
ction and diffused by viscosity. In this region the boundary layer
approximations are applicable asymptotically. Thus, assuming that
the flow downstream of the tower is a steady two dimensional wake,

t+he governing equation of motion is

au, _ D u
Ual(a—_;:') = J)(-a—i;; (3.4)

and the boundary condition at the edge of the wake is u— U, as

y-—>00 . Ref, [15] gives the asymptotic solution for equation (3.4),

u Py
u _Wy
Vo= 0 —=>Qf7ppz e X as x —» o0

Here, x is the downstream distance from the tower center to the
rotor disk plane and y is the lateral distance from the tcwer

center to the position of interest in the rotor disk plane, 0O is
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a constant determined by Q = Dt4>U where D_ is the drag of the

t
tower.

Let the velocity reduction function, v, be defined as follows.

Ueo y2

_ U= u _ 1 V75

Ll 0 e € (3.5)
o v 4 MY ZUsg

_ 1 2
Pr =P &0 = 7 Cq¢f A

= X =
0 = 7:Cap-Us2 Ty = Cgy Ygr, (3.6)

,here .28 is the radius of the tower, The introduction of eaquation

(3.6) into (3.5) yields

L el
“Iox =Y
v Gy el o s
JATT v = =
2
= Kl_rt U, e .

Kl = f (Cdt,L), x) , K, = f (Y, =)

Kl and K, can be considered as chacteristic constants for a aiven
tower which depends on the tower and the downstream distance from

tower to the rotor disk plane., In the present analysis K, and K., are

1 2
obtained by comparing the tipical experimental wind profile with

equation (3.7). 29



SECTION 4
SIMPLE BLADE DYNAMICS

The harmonic analysis of the blade flapping motion was done
in order to get an idea of the effect of the blade motion on the
airloads. This flapping motion is caused by a change in the
circulation of the lifting blade due to disturbance of the flow
field by the tower. Cylic changes in the aerodynamic flapping
moment of the blade and in the force acting on the tower are
caused by the changes in the blade 1lift. These cylic changes are
undesirable in view of the fact that the flapping motion can give
rise to severe vibrational problems, vibrations coupled with the
other motions of the blade and with the tower vibrations. The
periodically varying blade thrust acts on the tower as a cyclic
external force and a varying torque.

The equation for moment equilibrium about an offset flapping
hinge is derived to determine the coefficients of the flapping
motion series, given the known disturbed flow field due to the
presence of the tower and the induced flow field. Based on the
series representation of the inflow field(V) on the rotor disk
plane, equations are derived to determine the pitch angle control
which can minimize the flapping moment variation or the thrust
variation over a rotation. The minimization of the rigid body
flapping motion is equivalent to minimizing the flapping moment
variations over a rotation because kﬂﬁ is equal to the flapping

moment acting on the offset hinge.
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Li'.l

Harmonic Analysis of Blade Flapping lotion

Considering the rigid flapping motion about an offset hinge

» the blade flapping moment equilibrium gives the flapping equati-

on of motion.

where

Mp o Mg

with

where

My + W + z-.‘lg = i{ﬁ-g (4.1)
Mp= flapping moment due to aerodynamic force

M= flapping moment due to inertia force

Mg= flapping moment due to gravity

Kﬁ= root constraint

»and Mg are derived as follows. ( See fig. 4.1 for details)

difp = -rpa~ &3 dr - 0°R7(r + e ) rp i dr

MI =
dify = L (r, ¥ ) R r dr

L(r,v) =L pac v3(r, v ) a(r, ¥)

1
2

Alr, v) =0 (r, v) + tan‘l(Up/UT)
Up /QR = (r + e )

Up /2R = wi(r, y) - rg + u(r, ¢)

n

2
U° = UF (1 +US Uk ) T U

tan'l(Up/UT) = Up /U

These approximations are valid for the usual operating conditions

of high tip speed ratio.
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Py (L .
Then, My = b2 5 i [@p (r, %) (r + e)* + V(r, ¥ ) (r +e)] g
A CI Bl (4.3)

dil. = RS M g cosy -r-g-dr

gpgcosv 'S (4.4)

i

il

In these expressions,

Iy, = % m (EEUB ~
IN = acrR' /Iy
> (4.5)
LN p4 Le
li‘JB = -'g'-e ( 1 + 32 )
s = 4 (eRr)? -

Substitution of the equations (4.2), (4.3) and (4.4) into equat-

ion (4.1) yields the flapping equation of motion.

Ibig' + I-bQia'Iﬂ'ﬁ + Ib (1 + ‘g-'ee' )923 + Kﬁﬁ - g 5 cosvp

. :
Ib;?Lﬁ L r [ﬂp(r.?') (r +e)? + V(r,¢ ) (r + e)] dr (4.6)

Switching the independent variable from time to azimuthal angle

( ¥ ) renders the final flapping equation.

.5 . Ly (% 2
B+ gh g - G-cosyp = =3 LE?P(r, ¢ )-r-(r + e)
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+ V() r (r+e)] ar (4.7)

where ( ) denotes differentiation w.r.to ¥ .
2

Here, Uﬁ= L + u{”‘?/_az

e
L=1+ ‘3-:2—

2 =
u{?a - *ﬁ/ Ib

V{r,y) = [u(r.Ip)+'w’( r, g )]

In order to get the steady state solutions for the blade flapping
motion one employs harmonic series representations for the dist-
urbed inflow field and the blade pitch angle.

Let
o0
V (e, ¥) =V, (r) + 2 Vv, (r)cosny
mn=j

B ) = B, +2 B cos n (g +b,) (4.8)
&( © ¥) = Go(r) * 56, cos n (w+0¢))

One introduces equation (4.8) into equation (4.7) and takes the
harmonic balance, while neglecting the coupling between the first
harmonic excitation due to gravity and the higher harmonics of
the flapping motion because this gravity effect is not appreci-

able for the model used in the experiment.The experimental wind
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turbine model whose radius is relatively small rotates fast to
keep the same tip speed ratio as the real wind turbine.Hence, the

centrifugal force is so large that the gravity force is negligi-

ble, compared to this force. For real wind turbines,however, this

does not generally hold true,

ﬁO s 2))2{ Jeo(r) r (r + e)“ dr
f"o (r) r (c+e)arf (4.9)

b, (%2 - 1) cos ¢y - 6o — i fysing
_&gﬁr[_(r + e)? Orcosd] + (r +e) V, (r):l dr (4.10)
2 LN £ J'e . !
B (p-1) sind+ig Qicosq)f _Z'Lr(r +e) 151n¢)1 dr

.{( -n) cos n(}) - nulg sin ntpn} ﬁn

= L%{fr(r + )% dr B, cos n +_{V (z) (r + e) rdr}
{(%f - n® ) sin ngy, + nilg cos ndp} B LN{If(r+e)?dr?4 fi? n@n}

#hen the blade pitch angle is kept constant, the coefficients of

the flapping motion are obtained as follows.

LN fr V. (2) (e + &) dr] (4.12)
—_————Zm?_ 1-
PL /Uf@ e [P’o

LK jgv (r) r (r + e) dr
Fu= 2f( ﬂ_ nZ )+ n< ilg
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L'an n¢n = —%E?%ﬁ;?) n=1, 2, 3, ssoess (H.14)

Once the computed wake geometry is determined, the induced
flow field in the rotor disk plane is computed. Then the coeffic-
ients of the inflow field series ( V, ) are obtained by Fourier
decomposition. From equations (4.9), (4.12) and (4.13) the coeff-
icients of the rigid body flapping angle are calculated for the
blade of constant chord and constant mass along the span. The
flapping velocity is obtained from the time differentiation of
the flapping angle (B ). The effects of the blade flapping motion
on the airloads are determined by simple superposition of the
velocities due to the flapping motion and the inflow field. The
equations for the blade flapping coefficients determines each
harmonic of the flapping motion from the corresponding harmonic

of the inflow field.

4,2 Pitch Angle Control to sinimize Flapping Moment Variations

over a Rotation

The flow field on the wind turbine rotor disk plane is
affected by the tower whether it is operating upwind or downwind
of its tower. Thus the tower causes variations in the blade circu-
lation and its flapping motion. However, the tower interference
effects and hence the blade flapping motion, or the flapping
moment variation can be reduced by controlling the blade pitch
angle, enhancing the performance of the wind turbine at the same

time. The coefficients ofthe pitch angle control ( @) are deter-

mined from equations (4.10) and (4.11) by setting pBn equal zero.



2
.ﬂ;ﬁ I& r (r +e) vy (r) dr ‘
0, = y = 0 4.15
: LN [£4+ ﬂje_l_ %,» 7 é] , 1 (4.15)

— lr{r +8) ¥y (r) dr

Op = ;
( ¢ -%-93e+ 1 2)

(PA =0 forn 2 2 (4.16)

Also, from equation (4.11), the amount of the flapping motion
control, or the control of the flapping moment variation by the

unit pitch control is determined.

+ 2,3 4+ 1
B _ [E t32°° k' ] w4, B, s#seabiaIP)
d eﬂ 2 \/_ U - 1"12 ) + 1’1 M‘e

Since the coefficients of the inflow field (V) as well as the
induced velocities are dependent on the pitch control, equations
(4.15) and (4.16) should be solved iteratively untill converged
values of W, and ®pare reached. For different o, , the strength
of the bound circulation varies and, also, the induced veloci-
ties on the rotor disk plane changes. These new induced veloci-
ties give the newen , according to equations (4.15) and (4.16).
These equations show that the pitching variations should follow
the inflow field variations, that is, there is no phase shift
between the two.

4.3 Pitch Angle Control to Minimize Thrust Variations over a

Rotation.

The unsteady blade 1lift acts on the tower as an unsteady

exciting force while the wind turbine rotor is rotationg.
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Obviously this kind of exciting force can cause some serious
Vibrational problems for the tower which undergoes strong

side vibration. By controlling the blade pitch angle the varia-
tion of thrust generated by a blade can be minimized for a rot-
ation of the blade. It would be better to minimize the thrust
variation while keeping the blade flapping motion to a minimum than
to accomplish only one of these two purposes. Referring to fig.

4.2, the elemental blade thrust is

dI' = dL cosX + dD sinA

- 1 2
dL = 5 PU adc dr
1
ap = 39U° ¢4 ¢ dr
Hence, the thrust acting on one blade is

T = -]Z;J?c [an(;ue)nRquq + cde Rov dq]

Here A E sinX_, U';ilRﬂ

?%EEM = Lip = EO_S [aJ(VYz +epf12 ) dq + Cdfvfl dn] (4.18)

The coefficients of the required pitch angle control are obtained
by employing series representations for the thrust and for the

inflow field and by taking the harmonic balance of the resulting

equation.
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Let
Ly = Lpg + ZLTn cos n (\]_)‘+¢n)

v ("'[ ) = VO(YI) +;Vn("]) cos n\Y
6,(¥) = 6,M) +> B cosn (P+ ¢

Then, equation (4.18) is decomposed as follows.

Lpg = 2b[ I{vfo M7 +9(rt)112},dv’ + \,dj Vo (1M dq] (4.19)

Ly, €OS ncpn Z—Ea + Cq ) L(Vn M)Man e
+a g cos n(bn L]VI d’?] L0
Ly, sin n(Pn = Zb[ a 6, sin r14) f qu]

rc
Again, the coefficients of the pitch angle control (e,) are

obtained by setting Lp, to be zero.

(1+

6, = (1 -*P) (YlV[Vn M) an Py =0 (4.21)
rc

Furtheremore, the sensivity of the blade thrust to pitch change,

or the amount of the thrust control by the unit pitch control is

obtained from equation (4.20).

dLTl’l _ o 2 O'a 1 - 3 I,
de, 25 gﬂl an =g (L -7 Lis B2}
rc

As mentioned in setion 4.2, the coefficients ( Vn) are dependent

on the blade pitch angle 6y. Therefore, the required pitch control
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angle should be determined iteratively from equation (4.21) in
the same manner which was used to determine the ép which minimize
the blade flapping motion. The equation (4.21) shows that there
is no phase shift between the pitching variations required to

minimize the thrust variations and the inflow field variations.
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SECTION 5

PESULTS AND COMPARISON WITH EXPERIMENT

5.1 Steadx_Results

The calculated power coefficients in a uniform flow for
pitch angles of 0° and 4° are presented in fia, 5.2 with measured
results from [13]. The thrust coefficients are shown in fig. 5.3.

The drag representation, Cq = 0.n1 + 1.5-&2, is used, The results

shown are in good agreement with experiement for tip speed ratios
where stall effects are not important. The same stall model as
used in [7] is employed with stall angle, 0,2 radians. Fig. 5.2
suggests that this stall model does not describe the stall history
adequately.

In fig.5.4 to fig.5.7 the calculated power and thrust coeffic-
jents are compared with experiments and some results from [7].The
same semi-rigid wake model as the one used in [7] is employed in
these calculations, Here the induced velocity on the rootcut or the
blade tin is taken to be half of the induced velocity at the inbo-
ard control point of the blade. 'or an 8° pitch ancle the three res-
ults give almost identical values of thrust and power coefficients,
The departure of the theoretical predictions from the experimental
results seems to show that for an 8° pitch angle the wake behaves
like the new wake model used in calculating the results in fig.5.2
and fig.5.3 which includes the retardation and radial movement of
the vortices in the first spiral. It is obvious from fig,5.4 to

fig.5.7 that the present analysis give better results than those
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obtained in [7].

In the present analysis 15 control points are chosen, which
means that 15 coefficients of the bound circulation series are
computed. As the number of harmonics is increased, the magnitude
of the corresponding harmonic coefficient decreases rapidly as
shown in fig. 5.8, For every calculation the coefficients for the
7 th and higher harmonics are negligible, The first and second coe-
fficients are especially dominant. Ten control points and harmonics
are thought to be adequate to obtain pratical results, All the cal-
culations in the present analysis converge within three iterations,

The bound circulation distributions along the blade are shown
for two pitch angles in fig. 5.9. It shows that the bound circulat-
ion increases near the root and decreases near the tip as the blade

pitch angle increases. At the tip dr/dn is infinite in both cases,

It is because d[/de is finite at the tip and hence dI /47 =225. 1
dé sine

=00 for B=0 or T . Induced velocities along the span are presented
in fig. 5.10 with the induced velocities on the root cut or the
blade tip. It is interesting to notice in the case of 4° pitch that
the induced velocities are almost constant and about 1/3 of the
free stream velocity which the momentum theory predicts to be the
ideal condition for mazimum power. The induced velocity on the blade
tip is shown to be less than half of the velocities induced inside

of that point,
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The dependence of the induced velocity at the blade tip on
the radial distance, d, is presented in fig, 5,11, As d approaches
zero, the induced velocity approaches infinity. The converged
value occurring for 4> 0,n3 was used in calculations.

=T Shear Flow

Calculated disturbance pressure ratios are presented in figqg,
5.12 with experimental results from [13] and the calculated results
with the semi-rigid wake from [7]. They are in exzcellent agreement
with exzperiment, and the effect of the shed wake has increased when
wake was allowed to become non-rigid, This is due to the fact that
the seperation of the shed vortex lines from the rolled-up vortices
position them nearer the rotor disk plane than in the previous semi-
rigid wake model, Fig, 5.12 shows this phenomena clearly. For powered
rotors the shed vortex lines will be located below the rolled-up
vortices and hence their effects on unsteady airloads will be decr-
~ased. Tt is demonstrated from fig, 5,12 that the seperation of the
shed wake surface from the plane determined by the rolled-up vortices
are desirable, especially for the prediction of unsteady airloads
and the approach used in the present calculations works.

Tower reflection effect is inherently included in the exper-
imental results of fig. 5.12, The calculated disturbance pressure
ratios are obtained by using the equivalent shear flow without the
tower reflection effect., In fig., 5.13 the result for shear flow with
tower reflection is compared with the one for the equivalent shear
flow without the tower reflection, As far as the disturbance press-

wre ratio is concerned, the two results give the same value.
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But shear flow with equivalent slope as tower reflection is a
little optimistic in the prediction of the performance coefficients
as indicated by the respective values of Cp in fig, 5,13,

5.3 Tower Effects

The calculated airloads at the 75% spanwise position of
the blade are presented in fig. 5.14 for the rotor model operating
upwind of the tower in steady,uniform flow. For the free stream
velocity reduction (VR), 0,1165 is used and the value 0,375 non-
dimensioned by the rotor radius is used for the width (%) of
the flow field interfered by the tower in the calculations. These
two values were obtained from the experimental wind profile as
shown in fig., 5.15., The computed unsteady airloads, which are noma-
lized by the average, are shown in fig, 5.16 with experimental values
for the tower reflection case with Xmas tree shown in fig, 5,1, From
the free stream velocities measured at 75 % spanwise position of the

blade, the equation to give the wind profile on the rotor disk plane

is derived. The velocities computed from this equation are shown in
fig, 5.15 with the measured velocities, The instaneous thrust and
performance coefficients are presented in fig. 5.17 for the tower
reflection with Xmas tree, They are periodic by 180° because the
rotor has two blades,. cp varies more than 50 % of its maximum along
the azimuthal angle., This means that the torque acting on the wind
turbihe shaft varies periodically by that much. Cop variations are
within 30 % of its maximum, and hence a vibratory force of

this order acts on the tower . The predicted unsteady
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disturbance airload ratios are in close agreement with experimental
values for the tower reflection, even for the flow disturbed due to
Xmas tree, The variations in airloads on the blade show the same form
variations as the free stream velocities on the rotor disk plane,

Wind profile equation (3.7) gives results in good agreement with
experimental valu®s behind the tower as shown in fig 5,18, That equ-
ation is, thus, believed to be the proper characterization of the
wind profile behind the tower. The calculated peak disturbance pres-
sure ratio is shown to be slightly larger than the measured value in
fig., 5.19. Also, fig. 5.19 shows that it reduces the peak airload
deficit drastically.

Tt is shown in fig. 5.20 that the use of the non-rigid wake -
model has increased the induced velocities on the blade and hence
has reduced the airlocads on the blade, compared to the semi-rigid
wake model, Reductions are 10 % in airloads, 13 % in Cp and 7 % in CT'
The seperation of the shed vortex sheet from the plane defined by the
rolled-up tip or root vortices has increased the effect of the shed
wake, that is, has reduced the peak airload variation by 4 %,

5.4 Effect of Blade Motion on Airloads

The rigid body flapping velocity shown in fig, 5.21 is less

than 2 % of the free stream velocity. The blade angle of attack or

the airloads will be changed by this percentage. Therefore the
effect of the flapping velocity on airloads are negligible for this

model wind turbine rotor used in the experiments. This conclusion
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does not imply that it is true for any wind turbine rotor because
the structural design of the blade can be varied pretty much from
this experimental model, Generally, it is believed that the one per
revolution excitation due to the tower is not enough to cause fast
blade flapping motion, rxcept the resonance case. It is shown in
fig. 5.21 that the mazimum flapping angle is about 0.,4° for this
model. The deflection of the blade tip due to this flapping angle
is 4 % of the blade chord. The nearest distance between the follo-
wing blade and the tip vor;ex from the preceding blade is farther
than one chord length at least. Also, the tip vortexz is located
outside the blade tip because the tip vortex expands fast in the
first spiral. Therefore, this flapping angle will not have apprec-
able effect on airloads. "hen the deflection of the tip exceeds
half chord length, it is believed that the deflection of the blade
due to flapping motion should be included in determining the rela-
tive distance between the blade and the tip vortex.

The computed inflow velocity is compared with the one calc-
vlated from the 10 harmonics of the corresponding Fourier series
in fig. 5.22, That figure shows that the 10 terms of the Fourier
series still do not describe the peak velocity variation. It seems
that some caution should be paid for using the Fourier series for

the representation of the inflow field,
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SECTION 6

DISCUSSION AND CONCLUSIONS

6.1 Discussion

For the transport velocity of the tip vortex, instead of
using one constant velocity for the tip vortex in the first blade
spacing and a different constant velocity outside the first blade
spacing as in [4] and [5], varying velocities are used for the
first spiral of tip vortex. This was done because the velocities
induced by the first spiral tip vortex are of almost the same order
-as those induced by the near wake. The assumption that the induced
velocity on the tip or root vortexz varies linearly until it is
doubled at the first blade encounter is open to question. But it is
not likely that the induced velocity on the tip vortex is suddenly
doubled, Experimental investigation on the wake geometry or the free
wake analysis can give information about how the induced velocity
on the tip vortex varies, The non-rigid wake model used for the non-
uniform flow shows that the induced velocity varies continuously
rather than is doubled suddenly. The accurate calculation of the
induced velocity on the tip vortex in the first spiral is required
in view the fact that the correct azial and radial positioning of
that vortex is important for the good prediction of airloads and
performance, All these facts necessitate the theory which can handle
the transient rolling process of trailing vortices and the effect
of the tip shape or its modification on the rolling. Obviously the
flow field near the blade tip is very complex and three dimensional.

That theory can give the way to attenuate the concentrated vortex,
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hence to increase the performance, The circulation distribution
of the rolled-up vortex only rather than the transient one can be
related to the load distribution of tre wing for the non-rotating

Wingo
The rate of convergence becomes much slower with the non-

rigid wake model than with the usual semi-rigid wake model
because the wake undergoes considerable deformation and the
geometry varies considerably per iteration in the former than
in the latter case, The induced velocities by the far wake are
approximately doubled near the blade tip when the non-rigid
wake model is used, compared to the results obtained when the
usual semi-rigid wake model is used in [7].

The retardation of the tip vortex places the tip vortex so
close to the rotor blade that it causes a significant increase
in the induced velocities near the blade tip, which results in
a reduction of the wind turbine performance. This retardation
has the effect on the wind turbine performance which has the
reverse tendency as that of the rapid contraction of the rotor
slip stream in the hovering flight of a helicopter noticed in
ref, [4]. This contraction makes the tip vortex pass inside the
blade tip and this vortex passage increases the angle of attack
near the tip for the powered rotor.

It is interesting to note that dﬁn/den does not depend on
the flow condition on the rotor disk plane and is determined by
the initial blade design, For the wind turbine of fig. 5.7,

dﬁl/del = 0.3 and dLTl/del = 0.1.
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6,2 Conclusions

Lifting line theory using a sine series representation of
bound circulation with new wake geometry gives pratical results
and is very cost effective, with a more realistic wake geometry
lifting line theory will acurately predict the experimental values.,
A further conclusion is that the discrepancy between experiment
and theory in [7] is due to use of the approxzimate wake geometry,
especially due to the neglect of the retardation and radial movement
of the tip vortex, It is believed that the scheme developed to
compute the initial induced velocity on the tip or the root vortex
is useful and reliable, and that the vortices trailed from the tip
or root become the center of the rolled-up vortices as long as dr/dq
has its largest value at that point ,

It is recommended that the research to find the theory to
handle the transient rolling process be done with the experimental
survey of that phenomena, This suggestion implies that such a kind
of research can reward its cost by openina the way to solve many
problems related to strong tip vortex.

It is recommended that the shed line vortices in the far wake
be located on a plane other than the one defined by the rolled-up
tip and root line vortices.

The main effect of the tower has been found to be a reduction
in airloads on the blades with almost the same form as that of the
tower effect on velocity. It is concluded that the vertical transp-

ort velocities of the tip vortices change rapidly in the first
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spiral in the wake, which invalidates the assumption that vor-
tices retain the relative velocities of the flow passing through
the rotor,

It is concluded that the disturbance pressure ratio can be
accurately calculated by using the equivalent shear flow for
the case ©f shear flow which includes tower reflection effect
and that the shed wake can not be neglected in calculating the
disturbance airload for the tower shadow case, Further conclusion
is that the non-rigid wake model, which is developed by systematic
modifications of semi-rigid wake, is accurate and fairly simple,

compared to free wake model,
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TABLE I

ROTOR WODEL USED IN THE ANALYSIS3

o = 0,1061

Cq = 0.01 + 1.5-a2
2 Blades

No Twist

No Taper

Wrc = 0.2

TABLE II

Steady Program

No. of Wake Spirals
Used in Calculations

No. of Control Points
Near wWake Region
Intermediate iwake Region

Far Wake Region

wake Azimuthal Increment

Tip or Root Vortex Elements

Azimuthal Integration
Interval of Line Vortex
(1) Element in Near Wake

(=) "
(3) "

in Intermediate

in Far Jdake

10.5
15
¥v= 0 — 10° v
19" — 90"
90° — 10.5
spirals
X

constant strength
varying directlons

10°

10°

o

WNake
20

10
6
:O —
15 s
90" —
15

Unsteady Frogram

15°
90°

10
spirals

varying strengths

directions



TABLE III

PROFILE DRAG REPRESENTATION EFFECT

Advance ratio » = 0.1197, Pitch angle @p = 4°

Profile Drag Representation 3Shed Wake Neglected Shed Wake Included

Cy 0, Cy c, Cq
0.01 + 0.5.a% 0.123 0.333 0.121 0.331
0.01 + 1.5.a% 0.109 0.333 0.107  0.331

* Rotor is operating upwind of the tower in uniform flow.

TABLE IV

SHED WAKE EFFECTS

p Shed Wake Cp Cop ‘Hwﬁkv
. IN(included) 0.178 0.363 0.169
' NE(neglected) 0.178 0.362 0.201
IN 0.136 0.368 0.207

0.1197
NE 0.136 0.367 0.314
IN 0.055 0.331 0.318

0.0972
NE 0.055 0.330 0.462
0.1087 IN 0.107 0.359 0. 230

o
¥ Rotor 1is operating in shear flow with pitch angle Gp = L
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{Fig. 4.1D> Forces Acting on the Blade Including Inertia Forces
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Appendix A

CALCULATION Of INFLUENCE COEFFICIENRTS Cij

A influence coefficient C: . gives the velocity induced

1]
at i-th control point by the wake which is generated from j-th
component of bound circulation series, and of unit amplitude.
The induced velocity (Ni) at i-th control point is %:Aj.cij.
From the application of the Bict-3Savart Law to the wake whose
geometry 1s determined from the previous induced velocity dist-

ribution on blade, one can compute influence coefficients bij

as follows.

wind velocity

rotor disk plane

vortex 1ine

<Fig. A.1> Geometry for the Calculation of Cij

h ; axial distance from the rotor disk plane to a vortex line.
P=17-5 , §=M& +hé (&=-K)

>

s —>
e T

— dr
dwm) = - —— (A.1)
VA, 7)°
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This equation gives the induced velocity due to a line vortex

of strength dI” and of n spirals.

dS _ dmy d&; 4 dh 3
d¢)"d_¢.a‘+ﬁ'td¢—l‘¢'

T a position vector from a point on the vortex line to the

position of the blade at which the induced velocity is comp-

uted
d8 = (Wr & T Mt é} + v E;:)‘i¢
Nr ; outward radial induced velocity on a vortex line
V 3 axial velocity of a trailing vortex

Pxdd = {M —M(Wrsind +7, cos )} K
+4 L‘(lt\/—hwr.)cosq)-l-lﬂ’[t SM’I‘P -——"Q\/}?

T{ - V-hwi)smé+hM CDSM'? (A.2)
IF1" = T+ th —2M cos ¢ (a.3)

From equations(A.1),(A.2),and(A,3),three components of the induced

velocity are derived.

dwz_dl’ le M(Wrsin ¢ +"t cos )~ d (A.4)

T 4Tl (P MR- cos )

LW zgl_l_’_ rﬁn(ﬂtv—‘hwr)jlﬂ‘f"“’lthﬁ"s;% dé (A.5)
3T (T A W -2 cosp)

d W=
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Here, V = Uyx + 4 where Ugm is the free stream velocity and 4 is
the induced velocity on the tip vortex itself. Assuming that
N is linearly varying up to i£q spiral of vortex line and after

kl spiral is constant as discussed in section 2.2, W is obtained

as follows. _

.. WL RD *
Gy RD =+ 2RR ¢, TRk L, X

wo= We 2M%, 201k ° 2M Ry
(n.6)
,Where ';\IO is the induced velocity of a trailing vortex when it is

trailed, RD is a parameter of the change of W after .kl spiral.
Then, when ¢ 2 274y

V= (U + We) 2 . kD

2Ry
&
h = (Ue+ W) + Zﬂ:-wo-ab .7
By permitting small variations 1in 43 around ¢°, h is given by
h = (Uet wWo)(® +X7) 4 il (b, + X )"
Soh= oy F gt 4T " o (A.8)e
R A R E L L P S L e F

,

dhen & >2mdy » w= (it RD )W,
h=ho + (Untw)d , ¢ = ¢-214R,

Soho=he —{U + Well FRDIYAT R, + { U+ We(1+RD)}
From equation (7?) h, =TR,{2U + we (-l"f‘RD)J'
h= —RDW.T®Rs + { U+ Wo(Q+RDIF(b + x*)
= da "]’ﬁlx* ta, 109
K= o t 2o ¥ 4 gl X (A.11)
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Likewise w is assumed to vary linearly.

¢

27 Ra

Wro

Wy = Wro —

,where i, is the radial induced velocity of the tip vortex on

the rotor disk plane. After k, spirals of the tip vortex, W, is

Zero.
w',-,,q)o Wre el
W = Wye — —Xele _ Wre
" O e 4. 2T %ka
= A, +II 9(" (A.12)

The radial position of the tip vortex is defined by 7|4

'rL_t :'ﬂ_.to— '\Jroqﬁ === i—‘w-ro

where ntois the radial position when the tip vortex is trailed.

Substitution of!p with ( ¢b+ X*) into the above eguation gives

_— Wro - w}b¢b 7 Wy w2
= Neo+ Wro G = 2 ¢ + (Wio— 2222 ) ¥~ Wre
‘Q“t 'yl't‘o ro ¢o 4__",__& 4) ro 2m "PQ.,_') 4_.‘.{_%.‘-0(
= A3 t+Bax” + 1y x*? (A.13)
q_t"':: Ag + 2%, X' + (B, + 2xsrs )X (A.14)

cos f:]): CDS((P(:‘!‘ X*J: cos ?o""““ (‘PO.X*— -!.1_.:605 +u ’ Yﬁ

=¥ “%"X*“J—i?'ﬁf"; (A.15)

sim e = sim (f, +¥°)
= $+PpxT - X (A.76)
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From equations(A.13),(A.14)ang(A.15), Qvll+-ﬂt*_.aﬂlqt,cos<# )
term is obtained to the second order of x".
N+ Mg — 217y cos P
=M ol -2 asp 21 fs 7 (tsG —p, po} X7
+e { ol3¥3 + ﬁ;bp_ +7 (-I_;;°33P —Tp +P33‘)}3{*
=a +abx* +¢cx** (A.17)
(1). CP 2“‘9‘21

From equations (A.9) and (R.17),

e 9

* MY+ My +h— 2N cos B
= (e fa) +2 Cfy +h)x™ 4 (B + 2041y +C) X"

= A + 2BX* +c xX** (B..18)

(i1). ¢ » 2R,

From equations (A,l11l) ard (A.17) ,

M+ M +h ~2Mg cos P
=" +a +2 (eafe +bIXT 4 (BE4C)XTT
= A + 2B X +¢C xX**" (A.19)

In the equation(n.4), 7 ("4 cos b + Usin 4>) “‘YH—L

term is computed from equations (a,12),(A.13),(A.14).(A,15) and(A,16)

¥#*
to the second order of x .

% M (Mg cosP + wyr sim ¢ ) —Vhf
=M Clap T4 %) ——o<3"“+{q(-—°(a%+[35]>+mf> +hH§)
—2dsf; fx¥ = p+E X (A.20)
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In the equation (A.5) % (Tl_tv_ hw‘r.)5|1q_4) —7: h cos C]S
term is obtained as follows.

(1). & = amR,
From the equations (a,6),(A.8),(a,12),(A.13),(A.15),and(A.16),
(LV-—hWr)simd -7 h cos P
=3 { % (Utas) -} ~odseup
+ Cpdds (UtRa) —dj &)~ 4}
fgddsta tH Ut ) —it —fa}

— 3B P— PPt sy T X
=f + G x* (n.21)
(i1). ¢ > 2m Ry

da=wW, (|+RD), ta=0 & h=oda +p X"

Equations (A.18),(A.19),(2.20),and(A.21) give the final form of

equation to compute induced velocities,

dr At p + EX*
AWy 41 ¢ —fmh. LA +eBX4cyl”

ad, > dr
_dr f F + X dy*=—2_Ia
d.UUH——4_ﬁ %-—-A¢ [A+2BY+C X“J%' 4m

qu — qrc + -IE:U— cos®)

)= 2 Aa sin 8
dro) =3 (-nAn) cosne de
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1 _
Weg="—=23" (-MAn) > > cosmpPI,-246,=> A C.,= W (r.22)
4'[]‘ n j i "

wa:j;z(."“ A'ﬂ) % ‘é_ cCOS ﬂ@Il-lABQZ % AYI Dn:wr'o(A.23)

b= (21 -1)ad,, 6= (3)-1) 26

_ % o rEx) A
: Zad, £A+.2,BX*+CX*“I%‘ ,
(n.24)
s%, »*
”S (b +E X)) *;%_dw
I;,_' x I

LA +2BY+C

il
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Appendix B
ALL COEFFICIENTS USED IN CALCULATING C.

ij
If AC # B°
1 [ (DB - EA) + (DC - EB)A®, _ (DB - EA) - (DC - EB!A%J
11 = 5c-82l 7 + 2Ba¢, + Cadl /A - 2Bad+ C 2
If AC = B?
_ EB - CD 1 . 1 + 2E-a0C
L =72 ¢ (3 + C a¢)” (B - C-a9)q g2 - c2a92
In I, . D is replaced with f and E with G.
(i) ¢ps2tky
a=of +a, B=oif +Db, C=f +25+c
(1i)¢ >2mkq
A=dy +a B=dafs+ D, C=p +c
D =7 (a3p +41q) - o3
E=Q&dﬁ+ﬁﬂ>hmp+tﬂ)—2dﬁ3
F= ¢ {if Uy +A2) - oiq,} ~%aP

I

P Sﬂa( U +AQ2) - o) 2} + q {aatat gyl U +22) _"tli_l_ﬁl"dl}

- %Blp = B,; ol P +°<3°ﬁ|q

G2

Here,when ¢ >21k,,» then =0 Pi = Bz

o) = (Um‘l'UJo)q) '}'Mqﬁ

47 &,
2= —“RDWoTiKks *{ Ue T Wa(1+RD)}$
g = Mo T Wred — __Wro g+
° (P 47 R, qj

88



™
1

o T Woe + WeRD. qﬁ
2T,

-uI‘
- Wy, - —_—ro
83 r iﬂ‘ﬁa_q)
~ = _WeRD
! 4‘“’"’1;
s =  Wre
4 T Ra
p= cos ¢
_ _ Wro Wy
1= Wro Iirw%j) o hi= - ﬁ
woRD N
Qi = WQ+m:¢ st ¢ ZomA 4= Clrrp) g

ta = WeRP 3 2 2
'17]_—%' 7 j: 43—- |

tT.=0

?

a =7t —2nap
b = NBPa -’rVI (0(5'3 —ﬁsfP

C = -2-‘{0{33"3 -+ psa'/L ‘|‘VZ (3’:033}7 ""TSP 'i"[gsg—)f

89



Appendix C
VELOCITY INDUCED BY A TRAILING OR SHED VORTEX ELEHENT

C.1 Trailing Vortex Rlement

The velocity W at position on the blade by a trailing
vortex element A of strength MN($) is obtained by applying the

Biot-3avart formula. In vectorial form, the formula can be

written as

$a bw-d
wesy T xd§
W—-—“J () —=
4T ) r y
|
Ay
Loos
- gr
A
” P
£
11700
—~ > X

Projection to x-y Plane

<Fig. A.2> Geometry for the Calculation of the Velocity Induced
by a Trailing Vortex
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€r, €p = unit vectors fixed at the midpoint of the vortex element.

A = angle of inclination of the vortex element w.r. to X-Y
plane.
h = axial distance from the X-Y plane to the midpoint of

vortex element.

#g = azimuthal angle between the blade axis (Jj-axis) and the
axis formed by the line from the orgin of x-y plane to
midpoint.

Vortex element A in fig.A.2 is assumbed to be inclined w.r.to

é’q, by angle "X'.
P =7 - (& +%d € ¢ tan WK —h¥)
d3 = Med$ & — 1y ddp tan 0O F - NP de &

tawm ()= dh
Ny do

Px ds ==(N=Yecos b )NetanA +h e sind, Jdd ¥

+ Ok ="M cos ¢ ddd K +LP (M sinds + ¢ )F
+ 8% Cht"ho tan A) €43 do

Linear variation of the strength of element A is assumed as follows.

F s T+ o ( +%L'E)=ot+
t+7[ACP ¢ (P@
¢1=29

___;__J * (B { (DY FERDF(gvtHR) ¢} do
T A (ax*+ 2abx +c¢ )~
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Ahile neglecting the terms of order ((Pz) in the numerator, this

equation becomes

(1). when b2 # ac,

=—{ < *+E?)[ i it L]%
W=—-— D1 _h* x
4 (ac —b*)v ax*+2bx+cC b
> — bx +¢C *
+ (G4 +HK) [ ]
7 (b*—ac)/ ax*+2bx+Cld }

(ii). When b2 = ac,

o P2

= EK
W AT (07 % .2(qx-|-b) ]
= L $.
+ (g7 + HY [ : - ]
T b i Ja (ax +b) 2Ja (ax +b)* 3, J-

In these expressions,

D= —(N-Mtcosd )Mt fan A+ WMt sin Qs
E= "t — MMk cos Ps

G =Meh cosd, + £

H="Mesnds + L p

a= "M Cl + tan* )

b =" sim ¢ +Meh tan A

C= "M +N+h™ —2 My cos by
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C.2 Shed Vortex Sheet and Element

The same equation as in [7] was used to calculate the
velocity induced by a shed line vortex., For the shed vortex

sheet, a slightly modified form of the equation for the shed

line vortex element was used.,

vortex sheet inclined
an angle 'd' w.r.to
X-Y plane(rotor disk
plane)

<Fig. A.3> Near Wake Vortex Sheet

BS= (sindT + cos¢T + tand ¥)dNwlw db

4’2 n
s [s a i f - _ Is 3 b >t
w %fl(DtaLEK)ﬁ dp=-Is5 (0,7 + En TR
Here, _
F': \’ BMw +C Y]lu'—vlz
(B —AC) (AN +2B%y, +C )%

Vlw:‘q;
A= + tan*d , B= ho tan d —7cos¢ , C—_-Ql + ho >

D=Ntand +he cosd, E=-Nsm¢ , 5= "U-‘*;EN)- [ (L.N)
N

93



, . Lt ND) =T (L,N)
The strength of the sheet vortex is [ =

na¢
where [ (L,N) is bound circulation at the azimuthal position, L
and the radial position, N. In this calculation there are no si-
ngularities because the integrand is calculated at the midpoint

of each section.
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Appendix D

AIND PROFILE UP-WIND OF THE TOWNER

It is assumed that the free stream undergoes a velocity
reduction of the form of a right circular cone on the rotor disk
plane due to the up-wind propagation of the tower disturbances.
The profile of the disturbed free stream velocity 1s shown in

fig. A.4.

boundary of flow region
interfered by the tower

hR

velocity‘reduction
\Tf}l 1\
| U, (z=0)
u_ (zj/
(nmximum velocity U, ( z=-hR)

reduction

<Fig. A.4> Geometry for the Representation of Tower Reflection
Wind Profile
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Let v(z) be the maximum velocity reduction function along
the height of the tower, and assume v(z) be linear. Then v(z) =
VR { 1_‘%£.Gé;9}, where 3¢ = tands, R = rotor radius, and VR =
maximum velocity reduction rate at z = 0. The velocity reduction
function v(x,z) at an arbitrary point of the flow region up-wind

of the tower becomes

S5 =S cosEITTUME o) - Sty cogp )
(5—S¢ M cosP) 3

Therefore, the wind profile behind the tower can be defined by

VIX,Z )=

u(x,z) as follows.

O cosT Z0 > UCX,E) = Us (Z)OR

. | — §¢ M cosy| _
a < U (x,Z) =V (Z)n
i) Cos ¥ <o an T s ¥ < = w (Z)hR

IS ~8+M cos ol ;u‘(x,Z):‘.{l—U(X:Z)}Uw(Z QR
cosSYT <o and m Si“ﬂ‘}’l >1

Here, Ug(z) can be a shear flow or a uniform steady flow. In
the shear flow case, the velocity reduction function v(x,z)
can be assumed to be proportional to the magnitude of free stream.

Then, u(x,2z) in above last equation is simply modified as follows.

uoo [Z=Z)
WX, 2Z2)= oy (X,Z) ———— U (Z=Z2)n
Yo § 1 ) . (zeo) }" o / R
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For the tower with Xmas tree, v(x,z)is determined from the
experimental results.

~-K|x]
VX, Z) =Ue & €

Here, vy is the velocity reduction rate at z = -0.75 and x = 0
and K is the characteristic constant for the given tower. Then

the wind profile is

wex,z)= 41— ’U(x,z)}uoo/gp

or

Ueo (Z=2) —
L(xX, Z) = | — ar (Y, 2)—222% L s (E=2)/0R
) '{ Uoo (2—"-0) ‘}. >

for shear flow.
v(x,z) is defined as follows.
i). 2 0]
(1) % K| x+Z]
wX,Z) =VeZEy ©

3. 0
(ii) 2,L2< P
v LZ)= Ve Zx €

($41). Z € %y
~klx]
vLZ)= Vo Z €

Zy is the z-coordinate of the top end of Xmas tree.
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