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ABSTRACT

Existing robust model predictive control (MPC) and vision-based state estimation algorithms
for agile flight, while achieving impressive performance, still demand significant onboard
computation, preventing deployment on robots with tight Cost, Size, Weight, and Power
(CSWaP) constraints. The existing imitation learning strategies that can train computationally
efficient deep neural network policies from those algorithms have limited robustness and/or
are impractical (large number of demonstrations, training time), limiting rapid policy learning
once new mission specifications or flight data become available. This thesis details efficient
imitation learning strategies that make policy learning from MPC more practical while
preserving robustness to uncertainties. First, this thesis contributes a method for efficiently
learning trajectory tracking policies from robust MPC, enabling learning of a policy that
achieves real-world robustness from a single real-world or simulated mission. Second, it
presents a strategy for learning from MPCs with time-varying operating points, exploiting
nonlinear models, and enabling acrobatic flights. The obtained policy has an onboard inference
time of only 15 𝜇s and can perform a flip on a UAV subject to uncertainties. Third, it extends
the previous approaches to vision-based policies, enabling onboard sensing-to-action with
milliseconds-level latency, reducing the computational cost of vision-based state estimation,
while using data from a single real-world mission. Fourth, it presents a method to reduce
control errors under uncertainties, demonstrating rapid adaptation to unexpected failures and
uncertainties while avoiding the challenging reward tuning/design of existing methods. Finally,
this thesis evaluates the proposed contributions in simulation and hardware, including flights
on an insect-scale (sub-gram), soft-actuated, flapping-wing UAV. The methods developed in
this thesis achieve the world’s first deployment of policies learned from MPC on sub-gram
soft-actuated aerial robots.
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Chapter 1

Introduction

1.1 Overview

Existing control and state estimation algorithms, such as robust/adaptive Model Predictive

Control (MPC) and visual odometry, have enabled impressive performance under uncertainties

on complex, agile robots. However, their computational cost often limits opportunities for

real-time, onboard deployment on platforms with limited cost, size, weight and power

(CSWaP), such as UAVs at insect scale. To address the computational challenges for onboard

deployment of those algorithms, Imitation Learning (IL) is increasingly employed to generate

computationally-efficient deep neural network policies that are trained to imitate task-relevant

demonstrations collected from the computationally-expensive algorithms. However, existing IL

methods suffer from sample-inefficiency, requiring to collect a large number of demonstrations.

Critically, this sample-inefficiency introduces significant challenges: (i) it necessitates a

substantial number of queries to the resource-intensive MPC expert, requiring expensive

training equipment; (ii) it hinders learning from very high-dimensional MPC experts, where

each MPC query is computationally expensive; (iii) it results in a considerable volume of

queries to the training environment, limiting data collection in computationally intensive

simulations or demanding numerous hours of real-time demonstrations on a physical robot,
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which is impractical. Moreover, this approach complicates updating the policy when the MPC

expert undergoes changes due to (iv) tuning, (v) model updates, or when (vi) performing new

tasks is required, such as tracking different sets of trajectories. Additionally, obtaining robust

policies remains challenging, as uncertainties at deployment not accounted during training may

induce deviations of the policy’s input distribution from its training distribution—an issue

known as covariate shift. Further, when learning policies that produce actions from images,

existing works improve robustness and generalization by relying on visual abstractions as input

to the policy. However, those abstractions need to be hand-crafted, and may discard critical

information that can instead enhance performance. Lastly, existing adaptive strategies that

enable rapid performance recovery under uncertainty often rely on model-free Reinforcement

Learning (RL). This results in computationally expensive training procedures that do not

exploit prior knowledge of the robot/environment available, and demand careful design of

reward functions.

This thesis aims to address the aforementioned limitations, which is critical to enable rapid

deployments of robust, adaptive, vision-based flight controllers on computationally constrained

platforms in uncertain environments. In addition, solutions developed in this thesis contribute

to the first MPC-based agile flight demonstrations on a sub-gram, soft-actuated, insect-scale

Unmanned Aerial Vehicle (UAV).

1.2 Problem Statement

This thesis studies the challenging problem of efficient imitation learning from model-based

algorithms for onboard sensing and robust, adaptive control for agile flight under uncertainties

on CSWaP-constrained robots. This problem is divided into the following subproblems:

1. Efficient Imitation Learning of Robust Trajectory Tracking MPC.

MPC [1]–[4] enables impressive performance on complex, agile robots [5]–[9]. However,

its computational cost often limits the opportunities for onboard, real-time deploy-
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ment [10], or takes away critical computational resources. Recent works have mitigated

MPC’s computational requirements by relying on computationally efficient deep neural

networks (DNNs) that are trained to imitate task-relevant demonstrations generated by

MPC. Such demonstrations are generally collected via Guided Policy Search (GPS) [11]–

[14] and IL [15]–[17]. However, a common issue in existing IL methods (e.g., Behavior

Cloning (BC) [18]–[20], Dataset-Aggregation (DAgger) [21]) is that they require col-

lecting a relatively large number of MPC demonstrations, preventing demonstration

collection with a real robot, and requiring a simulation environment that accurately

represents the deployment domain. One of the causes for such demonstration ineffi-

ciency is the need to take into account and correct for the compounding of errors in

the learned policy [21], which may otherwise create shifts (covariate shifts) from the

training distribution, with catastrophic consequences [18]. Approaches to robustify the

learning procedure, such as Domain Randomization (DR) [22], [23] and DART [24],

introduce further challenges, for example requiring to apply disturbances/model changes

during training. Data and computational-efficiency challenges in IL can be mitigated

by data augmentation (DA) strategies, based on augmenting the training data with

extra input-output samples efficiently-generated from the collected demonstrations [11],

[18], [20], [25], [26]. However, existing methods for MPC [11], [25], [26] do not explicitly

account for uncertainties, not only in the way the demonstration are generated, but

more importantly in the way the samples are generated, resulting in policies with lim-

ited robustness to uncertainties. An efficient (data, training-time) IL procedure

that can generate robust trajectory tracking policies from MPC relying on few

demonstrations, potentially collected from a real robot, remains therefore an open

challenge.

2. Efficient Imitation Learning of Acrobatic Policies from Nonlinear MPC. Agile

and acrobatic flight demands the ability to learn policies from MPCs that leverage

significantly different operating points, therefore requiring nonlinear models. An
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MPC strategy that accounts for uncertainties and nonlinear models is nonlinear robust

tube MPC (RTMPC) [27]. This strategy requires solving two optimization problems,

an MPC-based trajectory planning step, and an additional MPC-based tracking step.

While nonlinear RTMPC [27] achieves robustness and agile control, the computational

requirements in solving the large optimization problems in [27] further complicate the

inefficiencies highlighted in Problem Statement 1. A computationally and data-efficient

IL procedure that can generate robust policies from MPC using nonlinear models for

acrobatic flights continues to be an open question.

3. Efficient Imitation Learning of a Robust Visuomotor Policy. IL [18], [21],

[28] has been extensively employed to generate computationally-efficient sensorimotor

policies for mobile robots [12], [13], [15], [16], [23], [29]. These policies produce control

commands from raw sensory data, bypassing the computational cost of control

and state estimation, with benefits in terms of latency and robustness. However,

the same inefficiencies of existing IL methods highlighted in Problem Statement 1

remain. These inefficiencies are made worse by the effects of sensing uncertainties and

sim2real gaps in the sensorial (e.g., visual) inputs. Leveraging high-fidelity simulators

on powerful computers in combination with DR avoids demanding data-collection on

the real robot, but it introduces sim-to-real gaps that are especially challenging when

learning visuomotor policies, i.e., that directly use raw pixels as input. For this reason,

sensorimotor policies trained in simulation often leverage as input easy-to-transfer

visual abstractions, such as feature tracks [15], depth maps [12], [30], intermediate

layers of a convolutional NN (CNN) [31], or a learned latent space [32]. However, all

these abstractions discard information that may instead benefit task performance. DA

approaches that augment demonstrations with extra images and stabilizing actions

improve robustness and sample efficiency of IL [20], [33]–[36]. However, they (i) rely

on handcrafted heuristics for the selection of extra images and the generation of

corresponding actions, (ii) do not explicitly account for the effects of uncertainties
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when generating the extra data [20], [33]–[36], and (iii) often leverage ad-hoc image

acquisition setups for DA [33], [34]. As a consequence, their real-world deployment has

been mainly focused on tasks in 2D (steering a Dubins car [20], [34]). A DA strategy

for efficient, robust sensorimotor learning that does not rely on heuristics and that does

not rely on visual abstractions remains therefore an open challenge.

4. Efficient Imitation Learning of a Robust and Adaptive Policy from MPC.

The deployment of agile robots in uncertain environments requires not only robustness

but also rapid onboard adaptation to mitigate performance degradation due to

uncertainties. Although approaches that combine robust and adaptive variants of MPC,

as detailed in [2], [37]–[40], achieve impressive levels of robustness and adaptability in

real-world conditions, they still suffer from high computational costs, and inefficiencies

in policy learning, as outlined in Problem Statement 1, remain.

Recent model-free RL approaches, such as Rapid Motor Adaptation (RMA), have

demonstrated impressive adaptation and generalization performance on a variety of

robots/conditions [41]–[43], including in the context of adaptive attitude control on

UAVs [44]. However, obtaining RMA policies requires reward selection and tuning,

which may be challenging for the combined position and attitude control on UAVs. A

procedure that enables efficient policy learning from MPC and rapid onboard adaptation

thus continues to be an unresolved issue.

5. Efficient, Robust and Agile Flight on a Sub-Gram Aerial Robot. Flying

insects exhibit incredibly agile flight abilities, being capable of performing a flip in

only 0.4 ms [45], flying under large wind disturbances [46]–[48], and withstanding

collisions [49], [50]. Insect-scale flapping-wing Micro Aerial Vehicles (MAVs) [51]–[54]

have the potential to replicate these robustness and agile flight properties, extending

their applications to tight and narrow spaces that become difficult for larger scale

MAVs [55]–[59]. A key capability needed for the deployment of sub-gram MAVs in
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real-world missions is the ability to accurately track desired agile trajectories while

being robust to real-world uncertainties, such as collisions and wind disturbances.

However, achieving robust, accurate, and agile trajectory tracking in sub-gram MAVs

has significant challenges. First, their exceptionally fast dynamics [60] demand high-

rate feedback control loops to ensure stability and rapid disturbance rejection, while

the small payload limits onboard computation capabilities. Additionally, in order to

maximize the lifespan of the robot components, control actions need to be planned in

a way that is aware of actuation constraints. For instance, soft dielectric elastomer

actuators (DEAs) suffer dielectric breakdown under a high electric field, posing a

hard restraint on the maximum operating voltage [61]. Furthermore, the lifetime of

passively-rotating wing hinges can be substantially extended under moderate control

inputs. Lastly, manufacturing imperfection due to the small scale, and hard-to-model

unsteady flapping-wing aerodynamics make it difficult to identify accurate models for

simulation and control. A strategy for compute efficient onboard agile flight control for

sub-gram, soft-actuated UAVs that account for uncertainties remains therefore an open

challenge.
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Figure 1.1: Graphic representation of the contributions of this thesis.

1.3 Thesis Contributions and Structure

This thesis aims to address the aforementioned gaps by presenting efficient imitation learning

strategies for learning policies robust in the real-world. The contributions are shown in

Fig. 1.1 and Table 1.1.

Table 1.1: Contributions of this thesis.

Contributions: Efficient, Robust Imitation Learn-
ing for...

Chapter Ref. Media

1 Trajectory Tracking 3 [62], [63] video
2 Acrobatic Flights 4 [63] video
3 Vision-Based Flight Control 5 [64], [65] video, code
4 Rapid Adaptation 6 [66] video
5 Control of Sub-Gram, Soft-Actuated UAVs 7 [67] 1 video

1awarded finalist for the best paper in Dynamics and Control at the 2023 International Conference in
Robotics and Automation.
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1.3.1 Efficient, Robust Imitation Learning from MPC for Trajectory

Tracking

The first contribution of this thesis is summarized as follows:

• A procedure to efficiently learn robust trajectory tracking policies from MPC. The

procedure is: 1. demonstration-efficient, as it requires a small number of queries to

the training environment, resulting in a method that enables learning from a single

MPC demonstration collected in simulation or on the real robot; 2. training-efficient,

as it reduces the number of computationally expensive queries to the computationally

expensive MPC expert using a computationally efficient DA strategy; 3. generalizable,

as it produces policies robust to disturbances not experienced during training.

• Extensive simulations and comparisons with state-of-the-art IL methods and robustifi-

cation strategies.

• We validate the proposed approach by providing the first experimental (hardware)

demonstration of zero-shot transfer of a DNN-based trajectory tracking controller for

an aerial robot, learned from a single demonstration, in an environment (low-fidelity

simulation or controlled lab environment) without disturbances, and transferred to an

environment with wind-like disturbances.

1.3.2 Generalization to Agile Flights using Nonlinear Models

The second contribution of this thesis is summarized as follows:

• Generalize the demonstration-efficient policy learning strategy proposed in Contribution

1 with the ability to efficiently learn robust and generalizable policies from variants of

MPC that use nonlinear models. This is challenging, as the framework leveraged to

perform DA in the linear case, the ancillary controller in RTMPC, requires expensive

computations to generate extra actions for DA in the nonlinear case. This results
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in long training times and computational inefficiencies when performing DA. This

contribution overcomes the computational-efficiency issues in the ancillary controller of

nonlinear RTMPC by generating an approximation of the ancillary controller that is

used to more efficiently compute the actions corresponding to extra state samples for

DA. Additionally, this contribution presents a policy fine-tuning procedure to minimize

the impact on performance introduced by our approximation.

• A formulation of nonlinear RTMPC for acrobatic flights on multirotors.

• Extensive simulations and comparisons with state-of-the-art IL methods and robustifi-

cation strategies.

• Experimental evaluation on the challenging task of acrobatic maneuvers on a multirotor

under uncertainties.

1.3.3 Generalization to Vision-based Flight Control

The third contribution of this thesis is summarized as follows:

• A DA strategy enabling efficient (demonstrations, training time) learning of a senso-

rimotor policy from MPC. The policy generates actions using raw images and other

measurements, instead of the full-state estimate in our Contribution 1, and is robust

in the real world to a variety of uncertainties. Our approach is grounded in the out-

put feedback RTMPC framework theory, unlike previous DA methods that rely on

handcrafted heuristics, and uses a Neural Radiance Field (NeRF) to generate images.

• A procedure to apply our methodology for tracking and localization on a multirotor

using images, altitude, attitude and velocity data.

• Real-time deployments, demonstrating (in more than 30 flights) successful agile trajec-

tory tracking with policies learned from a single demonstration that use onboard

fisheye images to infer the horizontal position of a multirotor despite aggressive 3D
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motion, and subject to a variety of sensing and dynamics disturbances. Our policy has

an average inference time of only 1.5 ms onboard a small GPU (Nvidia Jetson TX2)

and is deployed at 200 Hz.

1.3.4 Generalization to Rapid Adaptation

The fourth contribution of this thesis is summarized as follows:

• Extension of efficient and robust IL strategy from MPC for trajectory tracking [62]

with the ability to learn robust and adaptive policies, therefore reducing tracking errors

under uncertainties while maintaining high learning efficiency. Key to our work is to

leverage the performance of an RMA-like [41] adaptation scheme, but without relying

on RL, therefore avoiding reward selection and tuning.

• Procedure to apply the methodology to the task of adaptive position and attitude

control for a multirotor, demonstrating for the first time RMA-like adaptation to

uncertainties that cause position and orientation errors, unlike previous work [44] that

only focuses on adaptive attitude control.

• Real-time deployment onboard a UAV, demonstrating position and attitude control

adaptation to large disturbances not experienced during training (e.g., sudden propeller

failure) during trajectory tracking, and robustness and adaptation to the simultaneous

presence of multiple disturbances.

1.3.5 Hardware Demonstrations on a Sub-gram, Flapping-wing

Aerial Robot

The fifth contribution of this thesis is summarized as follows:

• The first computationally-efficient strategy for robust, MPC-like control of sub-gram

MAVs. Our approach employs a deep-learned neural network (NN) policy that is
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trained to reproduce a trajectory tracking RTMPC, leveraging the strategy developed

in Contribution 1 (our previous IL work [62]).

• A cascaded control strategy for Sub-gram, Soft-Actuated, Flapping-wind aerial robots,

where the attitude controller in [68] is modified with a model adaptation method to

compensate for the effects of uncertainties.

• Experimental evaluation on the MIT SoftFly [60], an agile sub-gram MAV (0.7 g),

showing a 60% reduction in maximum trajectory tracking errors over [60], while being

real-time implementable (2 kHz) on a small computational platform.

• The first strategy to achieve aggressive and fast flights on a new variant of a sub-gram

MAV [69] (0.76 g), leveraging the methodology developed in Contribution 2. The

presented approach repeatably achieved in experiments an horizontal velocity above

120 cm/s, being four-times faster than existing work [69], using a policy learned from 4

demonstrations and that runs at 1 kHz on a small computer.
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Chapter 2

Related Work

2.1 Efficient and Robust Motor Policies

Explicit MPC. A well-established method to generate a fast approximation of linear MPC

is explict MPC [1], where a policy is pre-computed offline by partitioning the feasible state

space and by solving an optimal control problem for each region; the online optimization

problem is reduced to finding the region corresponding to the current state via a look-up

table or DNNs [70], [71]. However, the memory requirement and computational complexity

of explicit MPC grow exponentially in the number of constraints [1], [70], and these methods

have been mainly studied for linear systems, and do not leverage task-specific demonstrations

to identify the more relevant parts of the feasible state space, therefore missing opportunities

to optimize their performance or training efforts for those more relevant regions. Our work

is motivated by the computational reduction opportunities obtained by DNN [72], but we

leverage task-relevant demonstrations and IL to focus the learning efforts on the most relevant

parts of the policy input space, while learning from MPC that use nonlinear models.

IL from MPC. Imitation-learning policies from MPC is a strategy widely employed in the

robotics literature to reduce the onboard computational cost of this type of controller. Close

to our work, [15] learns to perform acrobatic maneuvers with a quadrotor from MPC using
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Table 2.1: Strategies for policy learning from model-based planners/controllers. We highlight
that most of the approaches that have been successfully deployed in the real world required
expensive offline training/data collection procedures, while approaches that are efficient at
training time did not explicitly account for uncertainties. Our work unifies these aspects,
enabling efficient learning of fast policies that account for uncertainties.

Method
Explicitly

Accounts for
uncertainties

Data-
efficient
training

Compute-
efficient
training

Allows both
off/on-policy

data collection

Demonstrations
from both sim.
and real robot

State ≥ 10
and under-
actuated

Real-world
and agile

deployment

BC [18] No No No n.a. Yes Yes No

DAgger [16], [29] No No No n.a. Yes Yes Yes

DR [22], [23] Yes No No Yes Yes Yes Yes

GPS [11], [12] No Yes Yes n.a. No Yes No

MPC-Net [14] No Yes Yes No Yes Yes No

LAG-ROS [74] Yes n.a. No No No No No

[25] (DA) No No Yes No No No No

[26] (DA) No Yes Yes No No No No

SA (proposed) Yes Yes Yes Yes Yes Yes Yes

DAgger combined with DR, by collecting 150 demonstrations in simulation. Ref. [29] uses

DAgger combined with an MPC based on differential dynamic programming (DDP) [73] for

agile off-road autonomous driving using about 24 laps1 around their racetrack for the first

DAgger iteration. All these examples demonstrate the performance that can be achieved

when imitation-learning policies from MPC, but they also highlight that current methods

require a large number of interactions with the MPC expert and the training environment,

resulting in longer training times or complex data collection procedures, as summarized in

Table 2.1

Robustness in IL. Robustness in IL is needed to compensate for the distribution shifts

caused by the sim2real or lab2real (i.e., when collecting demonstrations on the real robot

in a controlled environment and then deploying in the real world) transfers. Robustness to

these types of shifts is achieved by modifying the training domain so that its dynamics match

the ones encountered in the deployment domain [22], [75]. An extremely effective method

is DR [22], which applies random model errors/disturbances, sampled from a predefined
1Obtained using Table 2 in [29], considering 6000 observation/action pairs sampled at 50 Hz while racing

on a 30 m long racetrack with an average speed of 6 m/s.
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set of possible perturbations, during data collection in simulation. An alternative avenue

relies on modifying the actions of the expert to ensure that the state distribution visited at

training time matches the one encountered at deployment time, such as in DART [24] and

Ref. [76]. Although effective, these approaches require many demonstrations/interactions

with the environment in order to take into account all the possible instantiations of model

errors/disturbances that might be encountered in the target domain, limiting the opportunities

for lab2real transfers, or increasing the data collection effort when training in simulation.

Our work will exploit extra information available to the MPC to reduce the number of

MPC/environment interactions.

Data Augmentation for Efficient/Robust IL. GPS [11]–[14], [17], introduced first the

idea to use trajectories from model-based planners, including MPC, to generate state-action

samples (guiding samples) for improved sample efficiency in policy learning. Specifically,

Ref. [11] leveraged an iterative linear quadratic regulator (iLQR) [6] expert to generate

guiding samples around the optimal trajectory found by the controller. Similarly, the authors

in [14] observe that adding extra states and actions sampled from the neighborhood of

the optimal solution found by the iLQR expert can reduce the number of demonstrations

required to learn a policy when using DAgger. However, while GPS methods are in general

more sample-efficient than IL, the nominal plans and the distribution of guiding-samples

they generate do not explicitly account for model and environment uncertainties, resulting

in policies with limited robustness. Ref. [13] for example, demonstrates in simulation

robustness to up to 3.3% in weight perturbations of a multirotor, while our approach

demonstrates robustness to perturbations up to 30%. Our work leverages a robust variant

of MPC called RTMPC [3], [27], to provide robust demonstrations and a DA strategy

that accounts for the effects of uncertainties. Specifically, the DA strategy is obtained by

using an outer-approximation of the robust control invariant set (tube) as a support of the

sampling distribution, ensuring that the guiding samples produce robust policies. This idea

is related to the recent LAG-ROS framework [74], which provides a learning-based method
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to compress a global planner in a DNN by extracting relevant information from the robust

tube. LAG-ROS emphasizes the importance of nonlinear contraction-based controllers (e.g.,

CV-STEM [77]) to obtain robustness and stability guarantees. Our contribution emphasizes

instead minimal requirements - namely a tube and an efficient DA strategy - to achieve

demonstration-efficiency and robustness to real-world conditions. By decoupling these aspects

from the need for complex control strategies, our work greatly simplifies the controller design.

Additionally, different from LAG-ROS, the DA procedures presented in our work do not

require solving a large optimization problem for every extra state-action sample generated

(achieving computational efficiency during training) and can additionally leverage interactive

experts (e.g., DAgger) to trade off the number of interactions with the environment with the

number of extra samples from DA (further improving training efficiency).

Recent work [25], [26] exploited local approximations of the solutions found when solving

the nonlinear program (NLP) associated with MPC to efficiently generate extra state-actions

samples for DA in policy learning. Similar to our work, [25] uses a parametric sensitivity-

based approximation of the solution to efficiently generate extra states and actions. Different

from our work, however, their method proposes sampling of the entire feasible state space

to learn a policy, while our work focuses instead on task-relevant demonstrations, a more

computationally and data-efficient solution. The recently presented extension [26] solves

this issue by leveraging interactive experts (e.g., DAgger). However, both [25], [26] do not

explicitly account for the effects of uncertainties, neither in the design of the expert, nor in

the way that extra states are generated, resulting in policies with limited robustness. Thanks

to our robust expert, our approach not only accounts for uncertainties during demonstration

collection and in the distribution of samples for DA, but it can additionally account for the

errors introduced in the DA procedure by further constraint tightening and updating the

tube size. Additionally, thanks to the strong prior on the state distribution under uncertainty

produced by the tube in RTMPC, our DA strategy can quickly cover the task-relevant parts of

the state space, obtaining demonstration-efficiency. Last, unlike prior work, we experimentally
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validate our approach, demonstrating it on a system whose models have a large state size

(state size 8 and 10), whereas previous work focuses on lower-dimensional systems (state size

2) and only in simulation.

Robustness and Computational Challenges in MPC for Agile Flight. MPC has

been widely employed in the aerial robotics community [78], enabling impressive performance

in trajectory tracking and minimum-time planning for agile flights, and particularly in drone

racing [79]–[81]. However, the authors of [79] highlight that one of the biggest drawbacks of

MPC is in its required computational resources, limiting its deployment on platforms with a

small computational budget. In addition, they highlight that their MPC tends to fail when

subject to a large external force disturbance or model errors. Our work is motivated by these

findings and employs robust variants of MPC that explicitly account for uncertainties, such

as disturbances and model errors, while reducing the computational complexity of MPC.

Impressive agile flight has also been achieved by MPC with models learned offline [82], [83]

or online [84], [85], or with MPC combined with non-parametric adaptation laws [86]. Our

approach can benefit these fields, as RTMPC can explicitly account for uncertainties in

learned models and can account for the dynamics introduced by adaptation laws [2], reducing

the constraint violations observed in [86].

2.2 Visuomotor Imitation Learning

Robust/efficient IL of sensorimotor policies. Table 2.2 presents state-of-the-art ap-

proaches for sensorimotor policy learning from demonstrations (from MPC or humans),

focusing on mobile robots.

The approach presented in our Contribution 2 (Chapter 5), named Tube-NeRF, is the only

method that (i) explicitly accounts for uncertainties, (ii) is efficient to train, and (iii) does

not require visual abstractions (iv) nor specialized data collection setups. Related to our

research, [36] employs a NeRF for DA from human demonstrations for manipulation, but uses
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Table 2.2: Approaches that learn visuomotor policies from demonstrations. Highlights: (i) real-
world deployments of policies trained entirely in simulation often require visual-abstractions
(e.g., [15]), losing information about the environment. Instead, approaches that directly
use images (ii) benefit from data collection in the real-world, but require a large number of
demonstrations (e.g., [29]), or (iii) leverage DA strategies that however use specialized data
collection equipment and their deployment has been focused on 2D domains ([20], [34]) or to
generate low-dimensional, discrete actions for aerial tasks (e.g., move left-right [33]). Last,
all the considered DA approaches use ad-hoc heuristics to select extra sensorial data and/or
to compute the corresponding actions.

Method

Domain
of

training
data

Policy
directly

uses
images

No special
data

collection
equipment

Demo.-
efficient

Explicitly
accounts
for uncer-
tainties

Avoids
Hand-Crafted
Heuristics for
Data Augm.

Real-world
deployment

(2D/3D,
Domain)

[13] (MPC-GPS) Sim. Yes Yes No No N.A. No (3D, Aerial)

[12] (PLATO) Sim. No Yes Yes No N.A. No (3D, Aerial)

[35] (BC+DA) Sim. Yes Yes Yes No No No (3D, Aerial)

[15] (DAgger+DR) Sim No Yes No Yes N.A. Yes (3D, Aerial)

[29] (DAgger) Real Yes Yes No No N.A. Yes (2D, Ground)

[34] (DAgger+DA) Real Yes No Yes No No Yes (2D, Ground)

[20] (BC+DA) Real Yes No Yes No No Yes (2D, Ground)

[33] (BC+DA) Real Yes No Yes No No Yes (3D, Aerial)

[36] (SPARTAN) Real Yes Yes Yes No No Yes (3D, Arm)

Tube-NeRF
(proposed) Real Yes Yes Yes Yes Yes Yes (3D, Aerial)

heuristics to select relevant views, without explicitly accounting for uncertainties. Tube-NeRF

uses properties of robust MPC to select relevant views and actions for DA, accounting for

uncertainties. In addition, we incorporate available real-world images for DA, further reducing

the sim-to-real gap.

Novel View Synthesis with Meshes. Triangle meshes are a widespread scene repre-

sentation and can be used to efficiently generate photorealistic novel views from sparse

images. While meshes can be obtained from readily available open-source 3D photogramme-

try pipelines [87], they are often generated from data collected via specialized 3D scanning

equipment, and novel view generations using meshes depend on the ability to correctly

reconstruct the underlying 3D geometry of the environment, a task that may be challenging

in texture-poor scenes, causing "gaps" and artifacts in the reconstruction.
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Novel View Synthesis with NeRFs. NeRFs [88] enable efficient and photorealistic novel

view synthesis by directly optimizing the photometric accuracy of the reconstructed images,

in contrast to traditional 3D photogrammetry methods (e.g., for 3D meshes). This provides

accurate handling of transparency, reflective materials, and lighting conditions, and therefore

they constitute the method of choice for novel view synthesis employed in this Thesis. Recent

work [88] has mitigated NeRFs’ large computational requirements, making them an appealing

approach for low sim2real gap image generation in visuomotor policy learning. Close to our

work, [89] uses a NeRF to build a simulator that enables learning policies for robot control

from RGB images, but their focus is on legged robots control trained via RL. In addition,

they use a specialized camera for data collection, while our work employs images collected

by the low-cost fisheye camera onboard the UAV. Ref. [90] uses a NeRF for estimation,

planning, and control on a drone by querying the NeRF online, but this results in 1000×

higher computation time2 than our policy.

Output Feedback RTMPC. MPC [1] solves a constrained optimization problem that

uses a model of the system dynamics to plan for actions that satisfy state and actuation

constraints. RTMPC assumes that the system is subject to additive, bounded process

uncertainty (disturbances, model errors) and employs an auxiliary (ancillary) controller

that maintains the system within some known distance (cross-section of a tube) of the

plan [4]. Output feedback RTMPC [4], [91] in addition accounts for the effects of sensing

uncertainty (noise, estimation errors) by increasing the cross-section of the tube. Our method

uses an output feedback RTMPC for data collection but bypasses its computational cost at

deployment by learning a NN policy.
2Control and estimation in [90] require 6.0s on a NVIDIA RTX3090 GPU (10, 496 CUDA cores, 24 GB

VRAM), while ours requires 1.5ms on a much smaller Jetson TX2 GPU (256 CUDA cores, 8 GB shared
RAM).
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2.3 Rapid Adaptation

Adaptive Control. Adaptation strategies can be classified into two categories, direct and

indirect methods. Indirect methods aim at explicitly estimating models or parameters, and

these estimates are leveraged in model-based controllers, such as MPC [1]. Model/parameter

identification include filtering techniques [92], [93], disturbance observers [94]–[96], set-

membership identification methods [2], [37] or active, learning-based methods [40]. While

these approaches achieve impressive performance, they often suffer from high computational

cost due to the need of identifying model parameters online and, when MPC-based strategies

are considered, solving large optimization problems online. Direct methods, instead, develop

policy updates that improve a certain performance metric. This metric is often based on

a reference model, while the updates involve the shallow layers of the DNN policy [97]–

[99]. Additionally, policy update strategies can be learned offline using meta-learning [100],

[101]. While these methods employ computationally-efficient DNN policies, they require

extra onboard computation to update the policy, require costly offline training procedures,

and/or do not account for actuation constraints. Parametric adaptation laws, such as ℒ1

adaptive control [102], have been applied to the control inputs generated by MPC [103] [39],

significantly improving MPC performance; however, these approaches still require solving

onboard the large optimization problem associated with MPC, and [103] does not account for

control limits. Our work leverages the inference speed of a DNN for computationally-efficient

onboard deployment, training the policy using an efficient IL procedure (our previous work

[62]) that uses a robust MPC capable of accounting for state and actuation constraints.

Rapid Motor Adaptation (RMA). RMA [41] has recently emerged as a high-performance,

hybrid adaptive strategy. Its key idea is to learn a DNN policy conditioned on a low-

dimensional (encoded) model/environment representation that can be efficiently inferred

online using another DNN. The policy is trained using RL, in a simulation where it experiences

different instances of the model uncertainties/disturbances. RMA policies have controlled a
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wide range of robots, including quadruped [41], biped [42], hand-like manipulators [43] and

multirotors [44], demonstrating rapid adaptation and generalization to previously unseen

disturbances. Our work takes inspiration from the adaptation strategy introduced by RMA,

as we learn policies conditioned on a low-dimensional environment representation that is

estimated online. However, unlike RMA, our learning procedure does not require the reward

selection and tuning typically encountered in RL, as it leverages an efficient IL strategy from

robust MPC. An additional difference to [44], where RMA is used to generate a policy for

attitude control of multirotors of different sizes, is that our work focuses on the challenging

task of learning an adaptive trajectory tracking controller, which compensates for the effects

of uncertainties on its attitude and position.

2.4 Agile Flight at Insect and Larger Scales

Existing sub-gram MAVs have demonstrated promising agile flight capabilities [60], [104],

[105], but none of the existing controllers deployed on sub-gram MAVs explicitly account

for environment and model uncertainties, and for actuation constraints and usage. An agile

trajectory tracking strategy that has found success on larger-scale MAVs (e.g., palm-sized

quadrotors) consists of decoupling position and attitude control via a cascaded scheme, where

a fast feedback loop (inner) controls the attitude of the MAV, while a potentially slower

loop (outer) tracks the desired trajectory by generating commands for the attitude controller.

An outer loop controller that enables agile, robust, actuation-aware trajectory tracking is

MPC [1], [2], [5]–[9]. This strategy generates actions by minimizing an objective function

that explicitly trades tracking accuracy for actuation usage, taking into account the state

and actuation constraints. This is achieved by solving a constrained optimization problem

online, where a model of the robot is employed to plan along a predefined temporal horizon

by taking into account the effects of future actions. Robust variants of MPC, such as robust

tube MPC (RTMPC) [2], [3], can additionally take into account uncertainties (disturbances,
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model errors) when generating their plans and control actions. This is done by employing

an auxiliary (ancillary) controller capable of maintaining the system within some distance

(“cross-section” of a tube) from the nominal plan regardless of the realization of uncertainty.
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Chapter 3

Trajectory Tracking

3.1 Overview

In this chapter, we address the problem of generating a robust DNN policy from MPC in a

demonstration and computationally efficient manner by designing a computationally-efficient

DA strategy that systematically compensates for the effects of covariate shifts that might be

encountered during real-world deployment. Our approach, named Sampling Augmentation

(SA) and depicted in Fig. 3.1, relies on a prior model of the perturbations/uncertainties

encountered in a deployment domain, which is used to generate a robust version of the given

MPC, called RTMPC, to collect demonstrations and to guide the DA strategy. The key

idea behind this DA strategy consists in observing that the RTMPC framework provides:

(a) information on the states that the robot may visit when subject to uncertainty. This is

represented by a tube that contains the collected demonstration; the tube can be used to

identify/generate extra relevant states for DA; and (b) an ancillary controller that maintains

the robot inside the tube regardless of the realization of uncertainties; this controller can be

used to generate extra actions. To numerically and experimentally validate our approach,

we tailor SA to the task of efficiently learning robust policies for agile flight on a multirotor.

Specifically, we demonstrate in experiments trajectory tracking capabilities with a policy
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Figure 3.1: Overview of the proposed approach to generate a deep neural network-based
policy 𝜋𝜃 from a computationally expensive Model Predictive Control in a demonstration
and training-efficient way. We do so by generating a robust tube MPC using bounds of the
disturbances encountered in the deployment domain. We use properties of the tube to derive
a computationally efficient data augmentation strategy that generates extra state-action
pairs (𝑥+, 𝑢+), obtaining 𝜋𝜃 via IL. Our approach enables zero-shot transfer from a single
demonstration collected in simulation (sim2real) or a controlled environment (lab, factory,
lab2real).
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learned from a linear trajectory tracking RTMPC. The policy is learned from a single

demonstration collected in simulation or directly on the real robot, and it is robust to

previously-unseen wind disturbances.

3.2 Problem Formulation

This part describes the problem of learning a robust policy in a demonstration and computa-

tionally efficient way by imitating an MPC expert demonstrator. Robustness and efficiency

are determined by the ability to design an IL procedure that can compensate for the covariate

shifts induced by uncertainties encountered during real-world deployment while collecting

demonstrations in an environment (the training environment) that presents only a subset

of those uncertainty realizations. Our problem statement follows the one of robust IL (e.g.,

DART [24]), modified to use deterministic policies/experts and to account for the differences in

uncertainties encountered in deployment and training environments. Additionally, we present

a common approach employed to address the covariate shift issues caused by uncertainties,

DR, highlighting its limitations.

3.2.1 Assumptions and Notation

System Dynamics. We assume the dynamics of the real system are Markovian and

stochastic [106], and can be described by a twice continuously differentiable function 𝑓(·):

x𝑡+1 = 𝑓(x𝑡,u𝑡) +w𝑡, (3.1)

where x𝑡 ∈ X ⊆ R𝑛𝑥 represents the state, u𝑡 ∈ U ⊆ R𝑛𝑢 the control input in the compact

subsets X, U. w𝑡 ∈ Wℰ ⊂ R𝑛𝑥 is an unknown state perturbation, belonging to a compact

convex set Wℰ containing the origin. Stochasticity in Eq. (3.1) is introduced by w𝑡, sampled

from a probability distribution having support Wℰ , under a (possibly unknown) probability
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density function, capturing the effects of noise, approximation errors in the learned policy,

model changes, and other disturbances acting on the system during training or under real-

world conditions at deployment.

Sim2Real and Lab2Real Transfer Setup. Three different environments/domains1 ℰ are

considered: a training environment based on a simulation 𝒮sim (where 𝒮 denotes source), a

training environment based on the real robot in a controlled lab environment 𝒮lab, and a

deployment environment 𝒯 (target). Mathematically, the three environments differ in their

transition probabilities induced by different uncertainty realizations/distributions. In all the

environments, we do not assume knowledge on density function from which w𝑡 is sampled, but

we assume available prior knowledge of W𝒯 , the support of the distribution (e.g, worst-case

uncertainty realization, also assumed finite) at deployment. This is a common assumption

in robust control [3], [27], where such knowledge can come from historical data, regulatory

requirements, or can be assumed to match the physical limits of the robot. Additionally,

we assume W𝒮lab ⊂ W𝒯 and W𝒮sim ⊂ W𝒯 , representing the fact that training is usually

performed in simulation or in a controlled/lab environment under some nominal model

errors/disturbances, while at deployment a larger set of perturbations can be encountered.

Note that for convenience we use 𝒮 to denote both 𝒮sim and 𝒮lab.

MPC Expert. We consider a tracking MPC expert demonstrator that plans along an

𝑁 + 1-steps horizon. The expert is given the current state x𝑡 ∈ X, and a sequence of 𝑁des + 1

desired states Xdes
𝑡 := {xdes

0|𝑡 , . . . ,x𝑁des|𝑡}2 representing a desired trajectory to be followed.

Note that Xdes
𝑡 ∈ Xdes × · · · × Xdes⏟  ⏞  

𝑁des+1 times

:= (Xdes)𝑁des+1 and Xdes ⊆ R𝑛𝑥 (the desired trajectory

can violate state constraints). Then, the MPC expert generates control actions by solving an
1Note that the term domain is borrowed from the domain adaptation and transfer learning literature

[107], where it denotes different probability distributions 𝑝(𝑥, 𝑦) over the same feature-label space pair. In our
context, a domain corresponds to a training or deployment environment characterized by distinct uncertainty
distributions. These uncertainties in turn induce different state (feature) distributions. Throughout this work,
we use domain interchangeably with environment (training, deployment) to highlight these similarities.

2An alternative and commonly employed notation used to represent a trajectory is xdes
𝑡:𝑡+𝑁des

.
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Optimal Control (OC) problem of the form:

X̄*
𝑡 , Ū

*
𝑡 ∈ argmin

X̄𝑡,Ū𝑡

𝐽𝑁(X̄𝑡, Ū𝑡,X
des
𝑡 )

subject to x̄0|𝑡 = x𝑡,

x̄𝑖+1|𝑡 = 𝑓(x̄𝑖|𝑡, ū𝑖|𝑡),

x̄𝑖|𝑡 ∈ X, ū𝑖|𝑡 ∈ U,

∀𝑖 = 0, ..., 𝑁 − 1.

(3.2)

where 𝐽𝑁 represents the cost to be minimized (where 𝑁 denotes the dependency on the

planning horizon), and X̄𝑡 = {x̄0|𝑡, . . . , x̄𝑁 |𝑡} and Ū𝑡 = {ū0|𝑡, . . . , ū𝑁−1|𝑡} are sequences of

states and actions along the planning horizon, where the notation x̄𝑖|𝑡 indicates the planned

state at the future time 𝑡+ 𝑖, as planned at the current time 𝑡. At every timestep 𝑡, given x𝑡,

the control input applied to the real system is the first element of Ū*
𝑡 , resulting in an implicit

deterministic control law (policy) that we denote as 𝜋𝜃* : X× (Xdes)𝑁+1 → U.

DNN Student Policy. As for the MPC expert, we model the DNN student policy as a

deterministic policy 𝜋𝜃, with parameters 𝜃, that does not necessarily belong to the same policy

class as the expert. Indeed, while the policy class of the student is a neural network, the expert

utilizes an MPC framework. When considering trajectory tracking tasks, the policy takes as

input the current state and the desired reference trajectory segment, 𝜋𝜃 : X× (Xdes)𝑁+1 → U,

matching the input/outputs of the MPC expert. We note that the initial state may be far

from the desired trajectory, and the MPC expert can plan the maneuver to approach the

desired trajectory from such initial state.

Transition Probabilities. We denote the state transition probability under 𝜋𝜃 in an

environment ℰ for a given task as 𝑝𝜋𝜃 ,ℰ(x𝑡+1|x𝑡). The probability of collecting a 𝑇 -(state,

action) pairs trajectory 𝜉 = {(x𝑡,u𝑡)𝑇−1
𝑡=0 }, given a policy 𝜋𝜃, depends on the deployment

environment ℰ :

𝑝(𝜉|𝜋𝜃, ℰ) = 𝑝(x0)
𝑇−1∏︁
𝑡=0

𝑝𝜋𝜃 ,ℰ(x𝑡+1|x𝑡), (3.3)
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where 𝑝(x0) represents the initial state distribution.

3.2.2 Robust Imitation Learning Objective

The objective of robust IL, following [24], is to find parameters 𝜃 of 𝜋𝜃 that minimize a

distance metric ℒ(𝜃,𝜃*|𝜉) from the MPC expert 𝜋𝜃* :

𝜃 = argmin
𝜃

E𝑝(𝜉|𝜋𝜃 ,𝒯 )ℒ(𝜃,𝜃*|𝜉). (3.4)

This metric captures the differences between the actions generated by the expert 𝜋𝜃* and

the action produced by the student 𝜋𝜃 across the distribution of trajectories induced by the

student policy 𝜋𝜃 in the perturbed environment 𝒯 , as denoted by 𝑝(𝜉|𝜋𝜃, 𝒯 ). The distance

metric considered in this work is the Mean Squared Error (MSE) loss:

ℒ(𝜃,𝜃*|𝜉) = 1

𝑇

𝑇−1∑︁
𝑡=0

‖𝜋𝜃 − 𝜋𝜃*‖22. (3.5)

Covariate Shift due to Sim2real and Lab2real Transfer. Because in practice we do

not have access to the target environment, the goal of Robust IL is to try to solve Eq. (3.4)

by finding an approximation 𝜃 of the expert policy using data from the source environment:

𝜃 = argmin
𝜃

E𝑝(𝜉|𝜋𝜃 ,𝒮)ℒ(𝜃,𝜃*|𝜉). (3.6)

The way this minimization is solved depends on the chosen IL algorithm. The performance

of the learned policy in the target and source environments can be related via:

E𝑝(𝜉|𝜋𝜃 ,𝒯 )ℒ(𝜃,𝜃*|𝜉) =

E𝑝(𝜉|𝜋𝜃 ,𝒯 )ℒ(𝜃,𝜃*|𝜉)− E𝑝(𝜉|𝜋𝜃 ,𝒮)ℒ(𝜃,𝜃*|𝜉)⏟  ⏞  
covariate shift due to transfer

+ E𝑝(𝜉|𝜋𝜃 ,𝒮)ℒ(𝜃,𝜃*|𝜉)⏟  ⏞  
IL objective

,

(3.7)
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which clearly shows the presence of a covariate shift3 induced by the transfer. The last term

corresponds to the objective minimized by performing IL in 𝒮. Attempting to solve Eq. (3.4)

by directly optimizing Eq. (3.6) (e.g., via BC [18]) offers no assurances of finding a policy

with good performance in 𝒯 .

3.2.3 Shift Compensation via Domain Randomization.

A well-known strategy to compensate for the effects of covariate shifts between source and

target environment is DR [22], which modifies the transition probabilities of the source 𝒮 by

trying to ensure that the trajectory distribution in the modified training environment 𝒮DR

matches the one encountered in the target environment: 𝑝(𝜉|𝜋𝜃,𝒮DR) ≈ 𝑝(𝜉|𝜋𝜃, 𝒯 ). This

is done by applying perturbations to the robot during demonstration collection, sampling

perturbations w ∈WDR according to some knowledge/hypotheses on their distribution 𝑝𝒯 (w)

in the target environment [22], obtaining the perturbed trajectory distribution 𝑝(𝜉|𝜋𝜃,𝒮,w).

The minimization of Eq. (3.4) can then be approximately performed by minimizing instead:

E𝑝𝒯 (w)[E𝑝(𝜉|𝜋𝜃 ,𝒮,w)ℒ(𝜃,𝜃*|𝜉)]. (3.8)

This approach, however, requires the ability to apply disturbances/model changes to the

system, which may be unpractical e.g., in the lab2real setting, and may require a large number

of demonstrations due to the need to sample enough state perturbations w.

3.3 Efficient Learning from Linear RTMPC

In this Section, we present the strategy to efficiently learn robust policies from MPC when

the system dynamics in Eq. (3.1) can be well approximated by a linear model of the form:

x𝑡+1 = Ax𝑡 +Bu𝑡 +w𝑡. (3.9)
3This definition of covariate shift is adapted from [24]
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First, we present the Robust Tube variant of linear MPC, RTMPC, that we employ to collect

demonstrations (Section 3.3.1). Then, we present a strategy that leverages information avail-

able from the RTMPC expert to compensate for the covariate shifts caused by uncertainties

and mismatches between the training and deployment domains (Section 3.3.2). Our strategy

is based on a DA procedure that can be combined with different IL methods (on-policy, such

as DAgger [21], and off-policy, such as BC, [18]) for improved efficiency/robustness in the

policy learning procedure. The RTMPC expert is based on [3] but with the objective function

modified to track desired trajectories, as trajectory-tracking tasks will be the focus of the

experimental evaluation of policies learned from this controller (Section 3.5).

3.3.1 Trajectory Tracking Robust Tube MPC Expert Formulation

RTMPC is a type of robust MPC that regulates the system in Eq. (3.9) while ensuring

satisfaction of the state and actuation constraints X,U regardless of the disturbances w ∈W𝒯 .

Mathematical Preliminaries. Let A ⊂ R𝑛 and B ⊂ R𝑛 be convex polytopes, and let

C ∈ R𝑚×𝑛 be a linear mapping. In this context, we establish the following definition:

a) Linear mapping: CA := {Ca ∈ R𝑚 | a ∈ A}

b) Minkowski sum: A⊕ B := {a+ b ∈ R𝑛 | a ∈ A, b ∈ B}

c) Pontryagin difference: A⊖ B := {c ∈ R𝑛 | c+ b ∈ A, ∀b ∈ B}.

Optimization Problem. At each time step 𝑡, trajectory tracking RTMPC receives the

current robot state x𝑡 and a desired trajectory Xdes
𝑡 = {xdes

0|𝑡 , . . . ,x
des
𝑁 |𝑡} spanning 𝑁 + 1 steps

as input. It then computes a sequence of reference (“safe”) states X̄𝑡 = {x̄0|𝑡, . . . , x̄𝑁 |𝑡} and

actions Ū𝑡 = {ū0|𝑡, . . . , ū𝑁−1|𝑡} that ensure constraint compliance regardless of the realization

of w𝑡 ∈W𝒯 . This is achieved by solving the following quadratic program (QP) (e.g., via the
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solver [108]):

Ū*
𝑡 , X̄

*
𝑡 = argmin

Ū𝑡,X̄𝑡

‖e𝑁 |𝑡‖2P𝑥
+

𝑁−1∑︁
𝑖=0

‖e𝑖|𝑡‖2Q𝑥
+ ‖u𝑖|𝑡‖2R𝑢

subject to x̄𝑖+1|𝑡 = Ax̄𝑖|𝑡 +Bū𝑖|𝑡, (3.10)

x̄𝑖|𝑡 ∈ X⊖ Z, ū𝑖|𝑡 ∈ U⊖KZ,

x𝑡 ∈ Z⊕ x̄0|𝑡, ∀𝑖 = 0, . . . , 𝑁 − 1

where e𝑖|𝑡 = x̄𝑖|𝑡 − xdes
𝑖|𝑡 is the tracking error. The matrix R𝑢 (positive definite) and Q𝑥

(positive definite) define the trade-off between deviations from the desired trajectory and

actuation usage, while ‖e𝑁 |𝑡‖2P𝑥
is the terminal cost. P𝑥 and K are obtained by formulating

an infinite horizon optimal control LQR problem using A, B, Q𝑥 and R𝑢 and by solving

the associated algebraic Riccati equation [109]. To achieve recursive feasibility, we ensure a

sufficiently long prediction horizon is selected, as commonly practiced [110], while omitting

the inclusion of terminal set constraints.

Tube and Ancillary Controller. A control input for the real system is generated by

RTMPC via an ancillary controller :

u𝑡 = ū*
𝑡 +K(x𝑡 − x̄*

𝑡 ), (3.11)

where ū*
𝑡 = ū*

0|𝑡 and x̄*
𝑡 = x̄*

0|𝑡. As shown in Fig. 3.2, this controller ensures that the

system remains inside a tube (with “cross-section” Z) centered around x̄*
𝑡 regardless of the

realization of the disturbances in W𝒯 , provided that the tube contains the initial state of

the system (constraint x𝑡 ∈ Z⊕ x̄0|𝑡). The set Z is a disturbance invariant set for the closed-

loop system A𝐾 := A+BK, satisfying the property that ∀x𝑗 ∈ Z, ∀w𝑗 ∈ W𝒯 , ∀𝑗 ∈ N+,

x𝑗+1 = A𝐾x𝑗 + w𝑗 ∈ Z [3]. Z can be computed offline using A𝐾 and the model of the

disturbance W via ad-hoc analytic algorithms [1], [3], or can be learned from data [111]. Note

that tracking aggressive trajectories may introduce large deviations from the operating points,
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Figure 3.2: Illustration of the robust control invariant tube Z centered around the optimal
reference x̄*

0(x𝑡) computed by RTMPC at every state x, for a system with state dimension
𝑛𝑥 = 2.

resulting in linearization errors; these errors are treated as an additional source of process

uncertainty when computing the tube. In addition, aggressive changes of the reference may

result in infeasibility (e.g., when the terminal region is unreachable within the horizon, see

[112]), which can be addressed, as typical in MPC, via an adequate choice of the planning

horizon (𝑁 = 20 or 𝑁 = 30 in our work).

3.3.2 Shift Compensation via Sampling Augmentation

Training a policy by collecting demonstrations in a controlled source domain 𝒮, with the

objective of deploying it in a perturbed target domain 𝒯 introduces a sample selection bias

[113], i.e., data is not collected around the distribution encountered in 𝒯 . Such bias is a known

cause of distribution shifts [113], and can be mitigated by re-weighting collected samples

based on their likelihood of appearing in the target domain 𝒯 via importance-sampling [11].

Importance-sampling, however, does not apply in our case, since we do not have access to

samples/demonstrations collected in 𝒯 .

In this work, distribution shifts are addressed by additionally utilizing the tube in

RTMPC to obtain knowledge of the states that the system may visit when subjected to

perturbations in 𝒯 . Given this information, we propose a tube-guided DA strategy, called

Sampling Augmentation (SA), that samples states from the tube and efficiently computes
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corresponding actions via the ancillary controller in RTMPC.

Tube as a Model of State Distribution Under Uncertainties. The key intuition of

the proposed approach is the following. We observe that, although the density function of

𝑝(𝜉|𝜋𝜃, 𝒯 ) is unknown, an approximation of its support R, given a demonstration 𝜉 collected

in the source domain 𝒮, is known and corresponds to the tube in RTMPC when collecting 𝜉:

R𝜉+|𝜋𝜃* ,𝜉 = {x̄*
𝑡 ⊕ Z}𝑇−1

𝑡=0 . (3.12)

where 𝜉+ is a trajectory in the tube of 𝜉. This is true thanks to the ancillary controller in Eq.

(3.11), which ensures that the system remains inside Eq. (3.12) for every possible realization

of w ∈W𝒯 . The ancillary controller additionally provides a computationally efficient way

to obtain the actions to apply for every state inside the tube. Let x+
𝑡,𝑗 ∈ x̄*

𝑡 ⊕ Z, i.e., x+
𝑡,𝑗 is

a state inside the tube computed when the system is at x𝑡, then the corresponding robust

control action u+
𝑡,𝑗 is:

u+
𝑡,𝑗 = ū*

𝑡 +K(x+
𝑡,𝑗 − x̄*

𝑡 ). (3.13)

For every timestep 𝑡 in 𝜉, extra state-action samples (x+
𝑡,𝑗,u

+
𝑡,𝑗), with 𝑗 = 1, . . . , 𝑁𝑠 collected

from within the tube can be used to augment the dataset employed to train the policy,

obtaining a way to approximate the expected risk in the domain 𝒯 by only having access to

demonstrations collected in 𝒮:

E𝑝(𝜉|𝜋𝜃 ,𝒯 )ℒ(𝜃,𝜃*|𝜉) ≈

E𝑝(𝜉|𝜋𝜃 ,𝒮)[ℒ(𝜃,𝜃*|𝜉) + E𝑝(𝜉+|𝜋𝜃* ,𝜉)ℒ(𝜃,𝜃*|𝜉+)].
(3.14)

Tube Approximation and Sampling Strategies. In practice, the density 𝑝(𝜉+|𝜋𝜃* , 𝜉)

may not be available, making it difficult to establish which states to sample for DA. We

consider an adversarial approach to the problem by sampling states that may be visited under

worst-case perturbations. To efficiently compute those samples, we (outer) approximate the

tube Z with an axis-aligned bounding box Ẑ. Note that this approximation is also used in the
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Input: A,B,X,U,Q𝑥,R𝑢,W𝒯 , 𝛽,𝒮,Xdes

Output: Trained policy 𝜋𝜃𝑀
1: 𝜋𝜃* ,K, Ẑ← DesignRtmpc(A,B,X,U,Q𝑥,R𝑢,W𝒯 )
2: 𝒟, 𝜋𝜃0 ← ∅, InitializePolicy()
3: for 𝑖 = 1 to 𝑀 do
4: 𝒟 ← ∅ // optional
5: for 𝑡 = 0 to 𝑇 − 1 do
6: uRTMPC

𝑡 , x̄*
𝑡 , ū

*
𝑡 ← 𝜋𝜃*(x𝑡,X

des
𝑡 ) // Eq. (3.10) and Eq. (3.11)

7: 𝒟 ← 𝒟 ∪ {(x𝑡,Xdes
𝑡 ,uRTMPC

𝑡 )}
8: for 𝑗 = 1 to 𝑁s do
9: u+

𝑡,𝑗 = ū*
𝑡 +K(x+

𝑡,𝑗 − x̄*
𝑡 ), x

+
𝑡,𝑗 ∈ x̄*

𝑡 ⊕ Ẑ
10: 𝒟 ← 𝒟 ∪ {(x+

𝑡,𝑗 ,X
des
𝑡 ,u+

𝑡,𝑗)}
11: u𝑡← 𝛽𝑖u

RTMPC
𝑡 + (1− 𝛽𝑖) 𝜋𝜃𝑖−1

(x𝑡,X
des
𝑡 ) // DAgger/BC

12: x𝑡+1←StepSystem(u𝑡,x𝑡,𝒮) // Sim./Physical Robot
13: 𝜋𝜃𝑖 ← UpdatePolicy(𝒟,𝜃𝑖−1)

Algorithm 1: Sampling Augmentation (SA) for efficient learning from trajectory-tracking
linear RTMPC.

9/16/2021 sampling_extra_states.drawio

1/1

Figure 3.3: The possible strategies to sample extra state-action pairs from an axis-aligned
bounding box approximation of the tube of the RTMPC expert: dense (left) and sparse
(right). The tube is represented for a system with state dimension 𝑛𝑥 = 3.
RTMPC ( Eq. (3.10)) during demonstration collection. We investigate two strategies, shown

in Fig. 3.3, to obtain state samples x+
𝑡,𝑗 at every state x𝑡 in 𝜉: i) dense sampling: sample

extra states from the vertices of x̄*
𝑡 ⊕ Ẑ. The approach produces 𝑁𝑠 = 2𝑛𝑥 extra state-action

samples. It is more conservative, as it produces more samples, but more computationally

expensive. ii) sparse sampling: sample one extra state from the center of each facet of

x̄*
𝑡 ⊕ Ẑ, producing 𝑁𝑠 = 2𝑛𝑥 additional state-action pairs. It is less conservative and more

computationally efficient.

Algorithm Summary. The procedure is summarized in Algorithm 1. First, SA designs the

RTMPC expert according to the uncertainties in the target W𝒯 (line 1) and randomly initial-

izes the student policy (line 2). Then, SA collects in the source domain 𝒮 a demonstration,
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using DAgger or BC, where 𝛽𝑖 is an hyperparameter of DAgger controlling the probability of

using actions from the expert and 𝛽 = 1 corresponds to BC, storing state and actions in the

dataset 𝒟 (line 7). The safe plan from the expert is then used to generate extra data via Eq.

(3.13) (line 9), and the policy is updated (line 13, Eq. (3.4) and Eq. (3.5) using the data

in 𝒟 and starting from the previous policy weights 𝜃𝑖−1). The data collection and training

procedure can be repeated across 𝑀 demonstrations.

3.4 Application to Agile Flight

In this Section, we tailor the proposed efficient policy learning strategies to agile flight

tasks, as this will be the focus of our numerical and experimental evaluation. Specifically, in

Section 3.4.1, we present the nonlinear model of the multirotor used to collect demonstrations

in simulation in all our approaches, and used for control design. Then, in Section 3.4.2, we

present a RTMPC expert for trajectory tracking based on a linear multirotor model and

that will be used with the IL procedure described in Section 3.3. Because the considered

trajectories require the robot to operate around a fixed, pre-defined condition (near hover), a

hover-linearized model is suitable for the design of this controller.

3.4.1 Nonlinear Multirotor Model

We consider an inertial reference frame W attached to the ground, and a non-inertial frame B

attached to the center of mass (CoM) of the robot. The translational and rotational dynamics

of the multirotor are:

W�̇� = W𝑣 (3.15a)

W�̇� = 𝑚−1(𝑅WB B𝑡cmd + W𝑓drag + W𝑓 ext)− W𝑔 (3.15b)

�̇�WB =
1

2
Ω(B𝜔)𝑞WB (3.15c)

B�̇� = 𝐼−1
mav(− B𝜔 × 𝐼mav B𝜔 + B𝜏 cmd + B𝜏 drag) (3.15d)
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where 𝑝, 𝑣, 𝑞, 𝜔 are, respectively, position, velocity, attitude quaternion and angular velocity

of the robot, with the prescript denoting the corresponding reference frame. The attitude

quaternion 𝑞 = [𝑞𝑤, 𝑞
⊤
𝑣 ]

⊤ consists of a scalar part 𝑞𝑤 and a vector part 𝑞𝑣 = [𝑞𝑥, 𝑞𝑦, 𝑞𝑧]
⊤ and

it is unit-normalized; the associated 3× 3 rotation matrix is 𝑅 = 𝑅(𝑞), while

Ω(𝜔) =

⎡⎢⎣0 −𝜔⊤

𝜔 ⌊𝜔⌋×

⎤⎥⎦ , (3.16)

with ⌊𝜔⌋× denoting the 3× 3 skew symmetric matrix of 𝜔. 𝑚 denotes the mass, 𝐼mav the

3× 3 diagonal inertial matrix, and 𝑔 = [0, 0, 𝑔]⊤ the gravity vector. Aerodynamic effects are

taken into account via 𝑓drag = −𝑐𝐷,1𝑣 − 𝑐𝐷,2‖𝑣‖𝑣 and isotropic drag torque 𝜏 = −𝑐𝐷,3𝜔,

capturing the parasitic drag produced by the motion of the robot. The robot is additionally

subject to external force disturbances 𝑓ext, such as the one caused by wind or by an unknown

payload. Last, 𝑡cmd = [0, 0, 𝑡cmd]
⊤ is the commanded thrust force, and 𝜏cmd the commanded

torque. These commands can be mapped to the desired thrust 𝑓prop,𝑖 for the 𝑖-th propeller

(𝑖 = 1, . . . , 𝑛𝑝) via a linear mapping (allocation matrix) 𝒜:

⎡⎢⎣𝑡cmd

𝜏cmd

⎤⎥⎦ = 𝒜

⎡⎢⎢⎢⎢⎣
𝑓prop,1

...

𝑓prop,𝑛𝑝

⎤⎥⎥⎥⎥⎦ = 𝒜𝑓prop. (3.17)

The attitude of the quadrotor is controlled via the geometric attitude controller in [114]. This

controller generates desired torque commands B𝜏 cmd given a desired attitude 𝑅des
WB, angular
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velocity B𝜔
des and acceleration B�̇�

des via [114]:

B𝜏 cmd =−K𝑅e𝑅 −K𝜔e𝜔 + B𝜔 × J B𝜔

− J(B𝜔
∧𝑅⊤

WB𝑅
des
WB B𝜔

des −𝑅⊤
WB𝑅

des
WB B�̇�

des),

e𝑅 =
1

2
(𝑅des

WB
⊤
𝑅WB −𝑅⊤

WB𝑅
des
WB)

∨,

e𝜔 = B𝜔 −𝑅⊤
WB𝑅

des
WB B𝜔

des.

(3.18)

The diagonal matrices K𝑅,K𝜔 of size 3× 3 are tuning parameters of the controller, while

e𝑅 denotes the attitude error, and e𝜔 is its time derivative. The symbol (r∧)∨ = r denotes

the operation transforming a 3× 3 skew-symmetric matrix r∧ in a vector r ∈ R3.

The position controllers designed in the next sections output setpoints for the attitude

controller, and desired thrust 𝑡cmd.

3.4.2 Linear Robust Tube MPC for Trajectory Tracking

The model employed by the linear RTMPC for trajectory tracking (Eq. (3.10)) is based

on a simplified, hover-linearized model derived from Eq. (3.18), using the approach in [7],

but modified to account for uncertainties. First, similar to [7], we express the model in a

yaw-fixed, gravity-aligned frame I via the rotation matrix 𝑅BI⎡⎢⎣𝜑
𝜃

⎤⎥⎦ = 𝑅BI

⎡⎢⎣𝐼𝜑
𝐼𝜃

⎤⎥⎦ ,𝑅BI =

⎡⎢⎣ cos(𝜓) sin(𝜓)

− sin(𝜓) cos(𝜓)

⎤⎥⎦ , (3.19)

where the attitude has been represented, for interpretability, via the Euler angles yaw 𝜓,

pitch 𝜃, roll 𝜑 (intrinsic rotations around the 𝑧-𝑦-𝑥 such that 𝑅 = 𝑅𝑧(𝜓)𝑅𝑦(𝜃)𝑅𝑥(𝜑), with

𝑅𝑙(𝛼) being a rotation of 𝛼 around the 𝑙-th axis). Second, as in [7], we assume that the

closed-loop attitude dynamics can be described by a first-order dynamical system that can

be identified from experiments, replacing Eq. (3.15c), Eq. (3.15d). Last, different from [7],

we assume W𝑓 ext in Eq. (3.15b) to be an unknown disturbance/model errors that capture
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the uncertain parts of the model, such that W𝑓 ext ∈W.

The controller generates tilt (roll, pitch) and thrust commands (𝑛𝑢 = 3) given the state of

the robot (𝑛𝑥 = 8) consisting of position, velocity, and tilt, and given the reference trajectory.

The desired yaw is fixed (and it is tracked by the cascaded attitude controller); similarly,

B𝜔
des and B�̇�

des are set to zero. We employ the nonlinear attitude compensation in [7].

The controller takes into account position constraints (e.g., available 3D flight space),

actuation limits, and velocity/tilt limits via X and U. The cross-section of the tube Z is a

constant outer approximation based on an axis-aligned bounding box. It is estimated via

Monte-Carlo sampling, by measuring the state deviations of the closed loop linear system

A𝐾 under the disturbances in W.

3.5 Evaluation

We start by evaluating our policy learning approach for the task of trajectory tracking using

the linear RTMPC expert.

3.5.1 Evaluation Approach and Details

Simulation Environment. Demonstration collection and policy evaluations are performed

in a simulation environment implementing the nonlinear multirotor dynamics in Section 3.4.1,

discretized at 400Hz, while the attitude controller runs at 200 Hz. The robot follows desired

trajectories, starting from randomly generated initial states centered around the origin. Given

the specified external disturbance magnitude bound Wℰ = {𝑓ext ∈ R|𝑓
ext
≤ 𝑓ext ≤ 𝑓 ext},

disturbances are applied in the domain ℰ by sampling W𝑓 ext via the spherical coordinates:

W𝑓 ext = 𝑓ext

⎡⎢⎢⎢⎢⎣
cos(𝜑) sin(𝜃)

sin(𝜑) sin(𝜃)

cos(𝜃)

⎤⎥⎥⎥⎥⎦ ,
𝑓ext ∼ 𝒰(𝑓 ext

, 𝑓 ext),

𝜃 ∼ 𝒰(0, 𝜋),

𝜑 ∼ 𝒰(0, 2𝜋).

(3.20)
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Linear RTMPC. The linear RTMPC expert demonstrator runs in simulation at 10 Hz,

and its tube is designed assuming W = {𝑓ext ∈ R|0 ≤ 𝑓ext ≤ 0.35𝑚𝑔}, corresponding to the

safe physical limit of the actuators of the robot. The reference fed to the expert is a sequence

of desired positions and velocities for the next 3s, discretized with a sampling time of 0.1s;

the expert uses a corresponding planning horizon of 𝑁 = 30, (resulting in a reference being a

180-dim. vector).

Policy Architecture. The student policy is a 2-hidden layer, fully connected DNN, with

(32, 32) or (64, 32) neurons/layer, and ReLU activation function. The total input dimension

is 188 (matching the input of the expert, consisting of state and reference trajectory). The

output dimension is 3 (desired thrust and tilt expressed in an inertial frame). We rotate

the tilt output of the DNN in the body frame to avoid taking into account yaw, which is

not part of the optimization problem [7], not causing any relevant computational cost. We

additionally apply the nonlinear attitude compensation scheme as in [7].

Baselines and Training Details. We apply the proposed SA strategies to every demon-

stration collected via DAgger or BC, and we consider DAgger or BC without any augmenta-

tion/robustification approach (denoted n.a.), or combined with:

a) DA (linear interpolation): a DA that groups the collected demonstrations based on

the input reference trajectory (or reference position/time for the go-to-goal-position case

that will be introduced in Chapter 4), and than randomly samples pairs of input-outputs

in each cluster, linearly interpolating the state/action to obtain a new state-action pair.

b) DA (expert neighborhood): a DA strategy that uniformly samples states from a

region corresponding to 5% of the cross-section of the tube in RTMPC, centered around

the current state of the robot. The corresponding actions are obtained using the ancillary

controller. This baseline is useful at studying the importance of using the tube as a

support of the sampling distribution.

c) DR: domain randomization.
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During demonstration-collection in the source environment 𝒮, we do not apply disturbances,

setting W𝒮 = {∅}, with the exception for DR, where we sample disturbances from WDR = W𝒯 .

In all the methods that use DAgger we set the probability of using actions of the expert 𝛽

(a hyperparameter of DAgger [21]) to be 1 at the first demonstration and 0 otherwise (as

this was found to be the best-performing setup). The number of samples generated for the

baseline DA methods is 16 per timesteps, matching the number used for SA-sparse, while

SA-dense corresponds to 256 samples per timestep. Demonstrations are collected with a

sampling time of 0.1s. After every collected demonstration, the policy is trained for up to 50

epochs4 using all the data available so far with the ADAM [115] optimizer and a learning rate

of 0.001, and we use early stopping, terminating the training if the validation loss (from 30%

of the collected data) does not decreases within 7 epochs. The policy is then evaluated on

the task for 10 times (episodes), starting from slightly different initial states centered around

the origin, in both 𝒮 and 𝒯 .

Evaluation Metrics: We monitor:

i) Robustness (Success Rate), as the percentage of episodes where the robot never violates

any state constraint;

ii) Performance, via either

a) 𝐶𝜉(𝜋𝜃) :=
∑︀𝑇

𝑡=0 ‖x𝑡 − xdes
𝑡 ‖2Q𝑥

+ ‖u𝑡‖2R𝑢
tracking error along the trajectory (MPC

Stage Cost); or

b) ‖𝐶𝜉(𝜋𝜃*) − 𝐶𝜉(𝜋𝜃*)‖/‖𝐶𝜉(𝜋𝜃*)‖ relative error between expert and policy tracking

errors (Expert Gap);

iii) Efficiency

(a) number of expert demonstrations (Num. Demonstrations Used for Training), and

(b) wall-clock time to generate the policy (Training Time 5).
4One epoch is one pass through the entire dataset
5Training time is the time to collect demonstrations and the time to train the policy, as measured by a
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Figure 3.4: Robustness (Success Rate) in the task of flying along an eight-shaped, 7s long-
trajectory, subject to wind-like disturbances (right, target domain 𝒯1) and without (left,
source domain 𝒮), starting from different initial states. Evaluation is repeated across 10
random seeds, 10 times per demonstration per seed. We additionally show the 95% confidence
interval. The lines for the SA-based methods overlap.

3.5.2 Numerical Evaluation of Efficiency, Robustness, and Perfor-

mance when Learning to Track a Single Trajectory

Tasks Description. Our objective is to generate a policy from linear RTMPC capable of

tracking a 7s long (70 steps), figure eight-shaped trajectory. We evaluate the considered

IL approaches in two different target domains, with wind-like disturbances (𝒯1) or with

model errors (𝒯2). Disturbances in 𝒯1 are external force perturbations 𝑓ext sampled from

W𝒯1 ≈ {𝑓ext|0.25𝑚𝑔 ≤ 𝑓ext ≤ 0.3𝑚𝑔}. Model errors in 𝒯2 are applied via mismatches in the

drag coefficients used between training and testing, representing uncertainties not explicitly

considered during the design of the linear RTMPC.

Comparison with IL baselines. We start by evaluating the robustness in 𝒯1 as a function

of the number of demonstrations collected in the source domain. The results are shown in

Fig. 3.4, highlighting that: i) while all the approaches achieve robustness (full success rate)

wall-clock. In our evaluations, the simulated environment steps at its highest possible rate (in contrary to
running at the same rate of the simulated physical system), providing an advantage to those methods that
require a large number of environment interactions, such as the considered baselines.
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Table 3.1: Comparison of the IL methods considered to learn a policy from RTMPC, high-
light that the proposed SA-methods simultaneously achieve high robustness, demonstration
efficiency and close performance to the expert, unlike the considered baselines which lack
robustness, demonstration-efficiency or both. The task is tracking a 7s (70 steps) trajectory
in a deployment domain with wind-like disturbances (𝒯1), and one under model errors (𝒯2,
drag coefficient mismatch). At convergence (iteration 20-30 for non-SA methods, and 1-11
for our proposed SA-methods) we evaluate robustness (success rate) and performance (rela-
tive percent error between tracking error of expert and policy). Demonstration-Efficiency
represents the number of demonstrations required to achieve, for the first time, full success
rate. During data collection, an approach is considered easy if it does not require to apply
disturbances/perturbations (e.g., in lab2real transfer, and safe if it does not execute actions
that may cause state constraints violations (crashes). *Safe in our numerical evaluation, but
not guaranteed as it requires executing actions of a policy that may be partially trained.
Metrics color-coded from green/white (better) to red (worse).

Method Data Collection Robustness
succ. rate (%)

Performance
expert gap (%)

Demonstration
Efficiency

Robustification/
Augmentation Imitation Easy Safe 𝒯1 𝒯2 𝒯1 𝒯2 𝒯1 𝒯2

n.a. BC Yes Yes 0.0 100.0 22.8 37.2 - 18
DAgger Yes No 97.6 100.0 13.6 2.9 - 9

DA (linear
interpolation)

BC Yes Yes 0.0 99.9 23.3 36.7 - 16
DAgger Yes No 92.9 100.0 26.9 3.7 - 12

DA (expert
neighborhood)

BC Yes Yes 53.5 100.0 27.5 2.7 - 3
DAgger Yes No 83.3 100.0 22.3 2.7 - 2

DR BC No Yes 98.7 100.0 6.8 8.5 15 14
DAgger No No 99.1 100.0 6.7 2.8 20 9

SA-Dense BC Yes Yes 100.0 100.0 6.3 2.8 1 1
DAgger Yes Yes* 100.0 100.0 6.3 2.8 1 1

SA-Sparse BC Yes Yes 99.9 100.0 6.2 2.8 1 1
DAgger Yes Yes* 100.0 100.0 6.3 2.8 1 1

in the source domain, SA achieves full success rate after only a single demonstration, being

3 times more sample efficient than the most demonstration-efficient baseline, DA (expert

neighborhood), which however does not achieve full robustness in the target domain; ii) SA,

instead, is also able to achieve full robustness in the target domain, while baseline methods

do not fully succeed or converge at a much lower rate. These results emphasize the presence

of a distribution shift between the source and target, which is not fully compensated for by

baseline methods such as BC due to a lack of exploration and robustness.

The performance evaluation and additional results are summarized in Table 3.1. We

highlight that in the target domain 𝒯1, SA achieves the performance that is closest to the
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expert. Table 3.1 additionally presents the results for the target domain 𝒯2. Although this

task is less challenging (i.e., all the approaches achieve full robustness), the proposed method

(SA-sparse) achieves the highest demonstration-efficiency and among the lowest expert gap,

with similar trends as in 𝒯1.

Training Time. Fig. 3.4 highlights that the best-performing baseline, DAgger+DR, requires

about 10 demonstrations to learn to robustly track a 7s long trajectory, which corresponds to

a total training time of 10.8s. Among the proposed approaches, DAgger+SA-sparse instead

only requires 1 demonstration, corresponding to a training time of 3.8s, a 64.8% reduction in

wall-clock time required to learn the policy. DAgger+SA-dense, instead, while requiring a

single demonstration to achieve full robustness, necessitates 114s of training time due to the

large number of samples generated. Because of its effectiveness and greater computational

efficiency, we use SA-sparse, rather than SA-dense, for the rest of the work.

3.5.3 Hardware Evaluation for Tracking a Single Trajectory from a

Single Demonstration

Sim2Real Transfers. We validate the demonstration-efficiency, robustness, and perfor-

mance of the proposed approach by experimentally testing policies trained after a single

demonstration collected in simulation using DAgger/BC (which operate identically since

we use DAgger with 𝛽 = 1 for the first demonstration), combined with SA-sparse. We use

the MIT/ACL open-source snap-stack [116] for controlling the attitude of the MAV. The

learned policy runs at 100Hz on the onboard Nvidia Jetson TX2 (CPU), with the reference

trajectory provided at 100Hz. State estimation is from a motion capture system, while

the video listed in Table 1.1 includes additional experiments with onboard Visual-Inertial

Odometry (VIO).

The task is to track a figure eight-shaped trajectory, with velocities up to 3.4m/s. We

evaluate the robustness of the learned policy by applying a wind-like disturbance produced

by an array of 3 leaf blowers (Fig. 3.5). The given position reference and the corresponding
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(a) Time-lapse of an experiment showing the trajectory executed by the robot, and the leaf blowers used to
generate disturbances

Start/end

(b) Reference and actual trajectory

est

ref

wind

(c) Effects of wind

Figure 3.5: Experimental evaluation of a trajectory tracking policy learned from a single
linear RTMPC demonstration collected in simulation, achieving zero-shot transfer. The
multirotor is able to withstand previously unseen disturbances, such as the wind produced
by an array of leaf-blowers, and whose effects are clearly visible in the altitude errors (and
change in commanded thrust) in Fig. 3.5c. This demonstration-efficiency and robustness
is enabled by Sampling-Augmentation (SA), our proposed tube-guided data augmentation
strategy.
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trajectory are shown in Fig. 3.5b. The effects of the wind disturbances are clearly visible in

the altitude errors and changes in commanded thrust in Fig. 3.5b (at 𝑡 = 11s and 𝑡 = 23s).

These experiments show that the learned policy can robustly track the desired reference,

withstanding challenging perturbations unseen during the training phase.

Experimental Comparison. Table 3.2 reports an experimental comparison of SA (one

demonstration) with MPC, RTMPC, and DAgger+DR (10 or 20 demonstrations) on the

task of tracking different trajectories with a duration of 27 s, while the robot is subject to (1)

wind speed up to 10m/s, (2) a slung load of 250 grams, and (3) a surface attached at the

bottom of the robot that produces extra drag. The results confirm our finding in simulation,

highlighting that SA-sparse achieves better or comparable performance and robustness than

DAgger+DR, but under minimal training effort (one demonstration instead of 10-20). In

addition, the evaluation highlights that RTMPC achieves larger tracking errors when the

position constraints are tight (e.g., the reference trajectory is close to the position constraint),

due to RTMPC’s ability to maintain a safe distance from such constraints. However, this

same property allows RTMPC to be safe (no constraint violation), unlike MPC which violates

position constraints in the case of Slung Load + Wind. The learned policy runs at 500 Hz,

while the RTMPC/and MPC run at their maximum rates (100 Hz, occupying the entire

CPU).

Lab2Real Transfer. We evaluate the ability of the proposed method to learn from a single

demonstration collected on a real robot in a controlled environment (lab) and generalize to

previously unseen disturbances (real). We do so by collecting a RTMPC demonstration of a

circular trajectory (velocity up to 3.5 m/s, with tight position constraints) with the multirotor,

augmenting the collected demonstration with SA-sparse, and deploying the learned policy

while we apply previously unseen disturbances (drag board, slung load). As shown in the

sequence in Fig. 3.6, despite the large distribution shifts in velocity, the policy reproduces the

expert demonstration and it is robust to previously unseen disturbances. Our video shows an

additional example of wind disturbances.
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Figure 3.6: Example of lab2real transfer. One RTMPC demonstration (Expert Demo.)
directly collected with the actual robot in a controlled (lab) environment is sufficient to train
a policy that can reproduce the demonstration of the expert (Student, No Dist.) and that is
robust to previously unseen disturbances from a slung load (Student, Slung Load, 0.25 kg)
and a large surface producing drag (Student, Drag Board; the surface is shown in the video
submission), despite the large velocity distribution shift. Note the safety distance from state
constraints introduced by RTMPC. Policy runs onboard at 500 Hz.

Computation. Table 3.3 shows that the DNN policy is 230 times faster than the expert on

the CPU of the onboard computer, an Nvidia Jetson TX2. Note that the computational

cost of a traditional linear MPC is comparable to the one of its linear RTMPC variant [3],

further highlighting the computational benefits of our approach when compared to traditional

MPC.

3.5.4 Numerical and Hardware Evaluation for Learning and Gener-

alizing to Multiple Trajectories

We evaluate the ability of the proposed approach to track multiple trajectories while generaliz-

ing to unseen ones. To do so, we define a training distribution of reference trajectories (circle,

position step, eight-shape) and a distribution for these trajectory parameters (radius, velocity,
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Figure 3.7: Robustness (Success Rate, top row) and performance (negative MPC Stage
Cost, bottom row) of SA (with 95% confidence interval), as a function of the number of
demonstrations used for training, for the task of learning to track previously unseen circular,
eight-shaped and constant position reference trajectories with randomly sampled parameters,
in the training domain (no disturbance, left column), and in the target domain, (wind-like
disturbances, right column). The proposed RTMPC-guided SA-sparse strategy learns to track
multiple trajectories and generalize to unseen ones requiring fewer demonstrations. The lines
for SA-based methods overlap. Evaluation performed using 20 randomly sampled trajectories
per demonstration, for 6 random seeds, with prediction horizon of 𝑁 = 20.
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Table 3.3: Comparison of the computation time (ms) required to generated a new action
for the linear RTMPC (Expert (L-RTMPC)) and the DNN policy (Policy). The DNN
policy is 280 times faster than the optimization-based expert (onboard), and 25
times faster (offboard). The offboard computer for our numerical evaluation and training
is an Intel i9-10920 with two RTX 3090 GPUs. The onboard implementation (in C++,
highly optimized for speed for both the policy and the expert, planning horizon 𝑁 = 30
steps) uses an NVIDIA Jetson TX2 CPU. Note that our conference version [117] relied on
Python/Pytorch (CPU), with average computation of 1.66ms.

Time (ms)
CPU Method Setup Mean SD Min Max

Offboard Expert (L-RTMPC) CVXPY [118]/OSQP [108] 4.28 0.39 4.21 16.66
Policy PyTorch 0.17 0.00 0.17 0.22

Onboard Expert (L-RTMPC) C++/CVXGEN [119] 8.4 1.4 4.5 15.9
Policy C++/Eigen 0.03 0.01 0.02 0.24

position). During training, we sample at random a desired, 7s long (70 steps) reference

with randomly sampled parameters, collecting a demonstration and updating the proposed

policy, while testing on a set of 20, 7s long trajectories randomly sampled from the defined

distributions. We monitor the robustness and performance of the different methods, with

force disturbances (from W𝒯1) applied in the target domain. The results of the numerical

evaluation, shown in Fig. 3.7, confirm that SA-sparse i) achieves robustness and performance

comparable to the expert in a sample efficient way, requiring fewer than half the number of

demonstrations needed for the baseline approaches; ii) simultaneously learns to generalize to

multiple trajectories randomly sampled from the training distribution. Note that at conver-

gence (from demonstration 20 to 30), DAgger+SA achieves the closest performance to the

expert (2.7% expert gap), followed by BC+SA (3.0% expert gap). The hardware evaluation,

performed with DAgger augmented via SA-sparse, is shown in Fig. 3.8. It confirms that the

obtained policy is experimentally capable of tracking multiple trajectories under real-world

disturbances/model errors.
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wind wind

Figure 3.8: Examples of different, arbitrary chosen trajectories from the training distribution,
tested in hardware experiments with and without strong wind-like disturbances produced by
leaf blowers. The employed policy is trained with 10 demonstrations (when other baseline
methods have not fully converged yet, see Fig. 3.7) using DAgger+SA (sparse). This highlights
that sparse SA can learn multiple trajectories in a more sample-efficient way than other IL
methods, retaining RTMPC’s robustness and performance. The prediction horizon used is
𝑁 = 20, and the DNN input size is adjusted accordingly.
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Figure 3.9: Comparison of performance and robustness of a traditional MPC, MPC combined
with a disturbance observer (MPC+DO), robust tube MPC (RTMPC), and the policy learned
from RTMPC (SA-sparse, one demonstration). The learned policy inherits the robustness
properties of RTMPC, superior in robustness to all the other considered approaches, while
achieving comparable or better performance than MPC. We consider two scenarios, with
wind disturbances (True) or without (False).
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Figure 3.10: Computational cost of the neural network (NN) policy (two hidden layers, 32
neurons/layer, C++) and the onboard RTMPC expert (CVXGEN, C++) as a function of the
length of the planning horizon. The NN provides more than 2-orders of magnitude computa-
tional improvement, freeing-up onboard computational resources, or enabling deployment
of the controller on smaller and cheaper CPUs. Note that the computational cost of linear
MPC (e.g., [7]) is comparable to the one of the considered RTMPC [3].

3.5.5 Extra Comparisons and Hyperparameter Study

Comparison with other Optimal Control approaches. SA-sparse (single demonstration)

is compared in simulation with other optimal control approaches: 1. a linear trajectory tracking

MPC, based on the one in [7] (denoted MPC), 2. the same MPC combined with a disturbance

observer (Kalman filter) that estimates online additive force disturbances, updating the model

used by the MPC [7] (denoted MPC+DO), and 3. RTMPC (expert). The considered

trajectories include position, velocity, and actuation constraints, have velocities ranging in

2.0− 3.5m/s, and have 30s duration each. The results are presented in Fig. 3.9 and highlight

that, while the adaptive variant of MPC (MPC+DO) achieves the lowest average tracking

errors, RTMPC is superior in terms of robustness (constraint satisfaction), while the learned

policy successfully inherits the robustness properties of RTMPC, with minimal trade-offs in

terms of position errors.

Hyperparameter study. First, Fig. 3.10 studies the effects on onboard computation when

varying the planning horizon, highlighting (1) two-orders-of-magnitude improvements in the

onboard computation of the DNN policy compared to the RTMPC expert, and that (2) the

computational benefits of the policy increase as the planning horizon increases. Second,
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Table 3.4: Robustness and performance in simulation for policies learned using SA-sparse
with a single demonstration, under different network architectures. The result highlights the
low sensitivity of the approach to the choice of network architecture for the tasks considered.
The evaluation is performed across the Trefoil, Lemniscate and Circle trajectories, with and
without disturbances, using an expert with planning horizon 𝑁 = 20 steps. The results are
the average across 200 runs per trajectory (starting from 10 different initial states, repeated
for 10 random seeds, with and without disturbances).

NN
(Neurons/Layer)

Robustness
Succ. Rate (%)

Performance
Pos. Error (m)

Performance
Expert Gap (%)

Computation
(ms, TX2, CPU)

mean std mean std mean std mean std
[32, 32] 99.9 3.3 0.29 0.19 5.4 5.3 0.021 0.01
[64, 32] 100.0 0.0 0.30 0.20 4.9 4.9 0.030 0.01
[64, 64] 99.9 2.4 0.30 0.20 4.8 5.0 0.033 0.01
[64, 64, 32] 99.6 6.2 0.29 0.19 5.3 6.2 0.039 0.01
[128, 128] 99.9 3.3 0.30 0.20 4.8 5.2 0.163 0.05
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Figure 3.11: Time to generate a policy (data collection in simulation and training) compared
to the complexity (number of time-steps in the trajectory) of the mission to be learned.
The results highlight that SA-sparse enables learning of robust policies in significantly lower
time than DAgger+DR, and it scales better as the length of the task increases. Note that
one step corresponds to 0.1, therefore our method requires, i.e., less than 20s to learn to
track a trajectory longer than 20s. The considered task consists in following an eight-shaped
(Lemniscate) trajectory followed by a vertical circular trajectory, with velocities up to 3.5m/s,
and the policy is considered robust if it achieves a success rate > 95% under wind-like
disturbances (force up to 25% of the mass of the robot).
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Table 3.4 studies robustness, performance, and onboard computation of the learned policy as

a function of the size (layers, hidden neurons/layer) of DNN, highlighting that robustness

and performance are minimally affected by these parameters. While onboard computation

grows with the size of the network, it remains significantly lower than the onboard RTMPC

expert. Last, Fig. 3.11 studies the time required to train a policy that achieves a success rate

> 95% as a function of task complexity (length of the trajectory). This result highlights

significant improvements in the scalability of our method when compared to the most robust

baseline, DAgger+DR.

3.6 Summary

This Chapter has presented an IL strategy to efficiently train a robust DNN policy from MPC.

Key ideas were to (a) leverage a Robust Tube variant of MPC, called RTMPC, to collect

demonstrations using existing IL methods (DAgger, BC), and (b) augment the collected

demonstrations with efficiently-generated extra state-and-actions samples from the tube of the

controller, an approximation of the support of the state distribution that the learned policy

will encounter when subject to uncertainties. Experimental results confirmed our numerical

findings, showing trajectory tracking under wind-like disturbances on a multirotor via policy

trained from a single demonstration, collected either in the real world or in simulation.
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Chapter 4

Acrobatic Flights

4.1 Overview

In this Chapter, we design an IL and DA strategy, which is an extension of the one presented

in Chapter 3, that enables robust and efficient policy learning from an MPC that employs

nonlinear models of the form in Eq. (3.1). Different from Chapter 3, the focus here is

on obtaining policies capable of reaching a desired goal state, as this will enable acrobatic

maneuvers – the scenario considered in the evaluation of policies learned from this controller

(Section 4.5). To accomplish this, first, we use a nonlinear version of RTMPC, based on

[27], to collect demonstrations that account for the effects of uncertainties. This expert is

summarized in Section 4.3.1. Second, we develop a computationally efficient tube-guided DA

strategy leveraging the ancillary controller of the nonlinear RTMPC expert. Unfortunately,

unlike in the linear RTMPC case, nonlinear RTMPC [27] uses Nonlinear Model Predictive

Control (NMPC) as an ancillary controller. This limits the computational efficiency in DA,

as the generation of extra state-action samples requires solving a large NLP associated with

the ancillary NMPC (discussed in Section 4.3.2). We overcome this issue by presenting, in

Section 4.3.3, a time-varying linear feedback law, approximation of the ancillary NMPC, that

enables efficient generation of the extra data leveraging the sensitivity of the control input
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to perturbations in the states visited during an initial demonstration collection procedure.

Finally, in Section 4.3.4, we address the approximation errors introduced by the sensitivity-

based DA by presenting strategies to mitigate the gap, in performance and robustness, between

the learned policy and the RTMPC expert. We validate our procedures by demonstrating, in

Section 4.5, the ability of the approach to generate a policy from a go-to-goal-state nonlinear

RTMPC capable of performing acrobatic maneuvers, such as a 360 degrees flip. These

maneuvers are performed under real-world uncertainties, using a policy obtained from only

two demonstrations and in less than 100s of training time.

4.2 Problem Formulation

The problem formulation follows the one presented in Section 3.2, with the key difference

that the expert in Eq. (3.2) now takes as input the current state x𝑡 ∈ X and a desired goal

state xdes ∈ Xdes that needs to be reached. This results in an implicit deterministic control

law (policy) that we denote 𝜋𝜃* : X× Xdes → U.

The student policy takes as input the current state, the desired goal state and the current

timestep 𝑡 ∈ I≥0, 𝜋𝜃 : X×Xdes× I≥0 → U. We note that the time-dependency was introduced

to account for the fact that the solution of the ancillary NMPC used for DA depends on the

time of the maneuver.

4.3 Approach

4.3.1 Nonlinear RTMPC Expert Formulation

Nonlinear RTMPC [27] ensures state and actuation constraint satisfaction while controlling a

nonlinear, uncertain system of the form in Eq. (3.1). This controller operates by solving two

Optimal Control Problems (OCPs), one to compute a nominal safe plan, and one to track

the safe plan (ancillary NMPC).
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Nominal Safe Planner. The first OCP, given an 𝑁 + 1-steps planning horizon,

generates nominal safe state and action open-loop plans Z𝑡0 = {z0|𝑡0 , . . . , z𝑁 |𝑡0},V𝑡0 =

{v0|𝑡0 , . . . ,v𝑁−1|𝑡0}. The plans are open-loop because they are generated only at time 𝑡0 when

the desired state and action pair Xdes
𝑡0

= {x𝑒𝑡0 ,u𝑒𝑡0}, equilibrium pair for the nominal system

obtained from xdes, changes. The nominal safe plan is obtained from:

V*
𝑡0
,Z*

𝑡0
= argmin

V𝑡0 ,Z𝑡0

𝐽RTNMPC(Z𝑡0 ,V𝑡0 ,X
des
𝑡0

)

subject to z𝑖+1|𝑡0 = 𝑓(z𝑖|𝑡0 ,v𝑖|𝑡0),

z𝑖|𝑡0 ∈ Z̄, v𝑖|𝑡0 ∈ V̄,

z0|𝑡0 = x𝑡0 , z𝑁 |𝑡0 = x𝑒𝑡0 ,∀𝑖 = 0, . . . , 𝑁 − 1.

(4.1)

𝐽RTNMPC =
∑︀𝑁−1

𝑖=0 ‖z𝑖|𝑡0 − x𝑒𝑡0‖2Q𝑧
+ ‖v𝑖|𝑡0 − u𝑒𝑡0‖2R𝑣

, where Q𝑧, R𝑣 are positive definite. A

key idea in this approach involves imposing modified state and actuation constraints Z̄ ⊂ X

and V̄ ⊂ U so that the generated nominal safe plan is at a specific distance from state and

actuation constraints. To be more precise, similar to the linear RTMPC case (Eq. (3.10)), the

given state constraints X and actuation constraints U are tightened (made more conservative)

by an amount that accounts for the spread of trajectories induced by the ancillary controller

when the system is subject to uncertainties, obtaining Z̄ ⊂ X and V̄ ⊂ U. Such spread of

trajectories corresponds to state and action tubes Tstate ⊂ R𝑛𝑥 ,Taction ⊂ R𝑛𝑢 that contain

the current nominal safe state and action trajectories z*𝑡|𝑡0 , v
*
𝑡|𝑡0 . Different from the linear

case, however, analytically computing the tightened constraints and the tubes is challenging.

Fortunately, as highlighted in [27, Section 7], accurately computing these sets is not needed,

and an outer approximation is sufficient. This approximation can be obtained via Monte-Carlo

simulations [27] of the system under disturbances, or learned [111]; the procedure employed

in our work is tailored to our application domain, and is described in details in Section 4.4.1

Last we note that, as in [27], Eq. (4.1) is assumed to be feasible.

Ancillary NMPC. The second OCP corresponds to a trajectory tracking NMPC, that acts
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as an ancillary controller, to maintain the state of the uncertain system close to the reference

generated by Eq. (4.1). The OCP is:

Ū*
𝑡 , X̄

*
𝑡 = argmin

Ū𝑡,X̄𝑡

‖e𝑁 |𝑡‖2P𝑥
+
𝑁−1∑︁
𝑖=0

‖e𝑖|𝑡‖2Q𝑥
+‖ū𝑖|𝑡−v*

𝑖+𝑡|𝑡0‖2R𝑢

subject to x̄𝑖+1|𝑡 = 𝑓(x̄𝑖|𝑡, ū𝑖|𝑡) (4.2)

x̄0|𝑡 = x𝑡, ū𝑖|𝑡 ∈ U,∀𝑖 = 0, . . . , 𝑁 − 1

where e𝑖|𝑡 = x̄𝑖|𝑡 − z*𝑖+𝑡−𝑡0|𝑡0 is the state tracking error. The positive definite matrices Q𝑥

and R𝑢 are tuning parameters and can differ from the ones in Eq. (4.1), while P𝑥 defines a

terminal cost. Note that the terminal cost can be set using the method in [27], or using the

solution for the infinite horizon Riccati equation for the linearized system associated with the

state at the end of the planning horizon. However, owing to the fact that the expert can use

a sufficiently long planning horizon without affecting onboard computation of the learned

policy, in our experiments we set the terminal cost to Q𝑥, additionally demonstrating that

our approach introduces opportunities to simplify control design. Eq. (4.2) is solved at each

timestep using the current state x𝑡, while the action applied to the robot is u𝑡 = ū*
0|𝑡. We

note that the ancillary NMPC can have different tuning parameters than Eq. (4.1), including

the discretization time of the dynamics and the prediction horizon 𝑁 , providing additional

degrees of freedom to shape the response of the system under uncertainties.

A key result (presented in [27, Section 5]) of the employed nonlinear RTMPC [27] is that

the ancillary NMPC in Eq. (4.2) maintains the trajectories of the uncertain system in Eq.

(3.1) inside state and action tubes Tstate,Taction that contain the current nominal safe state

and action trajectories z*𝑡|𝑡0 , v
*
𝑡|𝑡0 from the OCP in Eq. (4.1). The state and action tubes

are used to obtain the tightened state and actuation constraints Z̄, V̄, ensuring constraint

satisfaction.
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4.3.2 Solving the Ancillary NMPC

A large portion of the computational cost of deploying or collecting demonstrations from

nonlinear RTMPC comes from the need to solve the OCP of the ancillary NMPC (Eq. (4.2))

at each timestep. In contrast, the OCP of the nominal safe plan (Eq. (4.1)) can be solved

once per task (e.g., whenever the desired goal state Xdes
𝑡0

changes).

A state-of-the-art method to solve the optimization in Eq. (4.2) is sequential quadratic

program (SQP), i.e., by repeatedly: i) linearizing the NLP around a given linearization point;

ii) generating and solving a corresponding QP, obtaining a refined linearization point for the

next SQP iteration. While capable of producing high-quality solutions, SQP methods incur

large computational requirements due to the need of performing computationally-expensive

system linearization and solving the associated QP one or more times per timestep.

4.3.3 Computationally-Efficient Data Augmentation using the Para-

metric Sensitivities

The tube Tstate induced by the ancillary controller in Eq. (4.2) identifies relevant regions

of the state space for DA, as it approximates the support of the state distribution under

uncertainties, as discussed in Section 3.3.2. However, generating the corresponding extra

action samples using Eq. (4.2) can be very computationally inefficient, as it requires solving

the associated SQP for every extra state sample, making DA computationally impractical,

and defeating our initial objective of designing computationally efficient DA strategies.

In this work, Sampling Augmentation (SA), is extended to efficiently learn policies from

nonlinear RTMPC by employing a time-varying, linear approximation of the ancillary NMPC

– enabling efficient generation of extra state-action samples. Specifically, we observe that Eq.

(4.2) solves the implicit feedback law:

u𝑡= ū*
0|𝑡(𝜒𝑡) :=𝜅(𝜒𝑡), 𝜒𝑡 :={x𝑡,𝑡;V*

𝑡0
,Z*

𝑡0
} (4.3)
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where the current inputs are denoted 𝜒𝑡. Then, for each timestep of the trajectory collected

during a demonstration in the source environment 𝒮, with current ancillary NMPC input

�̃�𝑡 = {x̃𝑡, 𝑡;V*
𝑡0
,Z*

𝑡0
}, we generate a local linear approximation of Eq. (4.3) by computing the

first-order sensitivity of u𝑡 to the initial state x𝑡:

K�̃�𝑡
:=

𝜕ū*
0|𝑡

𝜕x𝑡

⃒⃒⃒⃒
𝜒𝑡=�̃�𝑡

=

[︃
𝜕ū*

0|𝑡

𝜕[x𝑡]1

⃒⃒⃒⃒
�̃�𝑡

, . . . ,
𝜕ū*

0|𝑡

𝜕[x𝑡]𝑛𝑥

⃒⃒⃒⃒
�̃�𝑡

]︃
. (4.4)

The sensitivity matrix K�̃�𝑡 ∈ R𝑛𝑢×𝑛𝑥 , enables us to compute extra actions u+
𝑡,𝑗 from states

inside the tube x+
𝑡,𝑗 ∈ Tstate, with 𝑗 = 1, . . . , 𝑁𝑠, sampled from the tube:

u+
𝑡,𝑗 = ū*

0|𝑡 +K�̃�𝑡(x
+
𝑡,𝑗 − x̄*

0|𝑡) := �̂�(x+
𝑡,𝑗, �̃�𝑡). (4.5)

The DA procedure enabled by this approximation is computationally-efficient, as we do not

need to solve an SQP for each extra state-action sample (x+
𝑡,𝑗,u

+
𝑡,𝑗) generated for DA, and

we only need to compute, once per timestep, the sensitivity matrix K�̃�𝑡 . Note that the

linearization points of Eq. (4.4) are based on the trajectory 𝜉 executed during demonstration

collection in the source environment 𝒮. We remark, additionally, that the actions computed

when collecting demonstrations are obtained by solving the entire SQP, and the sensitivity-

based approximation is used only for DA.

Sensitivity Matrix Computation. As described in [120, §8.6], an expression to compute

the sensitivity matrix in Eq. (4.4) (also called tangential predictor) can be obtained by

re-writing the NLP in Eq. (4.2) in a parametric form p([x𝑡]𝑖), highlighting the dependency

on scalar parameter representing the 𝑖-th component of the initial state x𝑡 (part of 𝜒𝑡). The

parametric NLP p𝒳𝑡([x𝑡]𝑖) is:

min
y
𝐹𝜒𝑡(y)

subject to 𝐺𝜒𝑡([x𝑡]𝑖 ,y) = 0

𝐻(y) ≤ 0,

(4.6)
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where y ∈ R𝑛y corresponds to the optimization variables in Eq. (4.2), and 𝐹𝜒𝑡(·), 𝐺𝜒𝑡(·), 𝐻(·)

are, respectively, the objective function, equality, and inequality constraints in Eq. (4.2),

given the current state and reference trajectory in 𝜒𝑡. Additionally, we denote the solution of

Eq. (4.6) at �̃�𝑡 (computed during the collected demonstration) as (ỹ*, �̃�*, �̃�*), where �̃�*, �̃�*

are, respectively, the Lagrange multipliers for the equality and inequality constraints at the

solution found. Then, each 𝑖-th column of the sensitivity matrix (Eq. (4.4)) can be computed

by solving the following QP ( [120, Th. 8.16], and [121, Th. 3.4 and Remark 4]), denoted

p𝒳𝑡,𝐿([x𝑡]𝑖):

min
y

𝐹𝜒𝑡,𝐿(y; ỹ
*) +

1

2
(y − ỹ*)⊤∇2

yL (ỹ*, �̃�*, �̃�*)(y − ỹ*)

s.t. 𝐺𝜒𝑡,𝐿([x𝑡]𝑖,y; ỹ
*) = 0 (4.7)

𝐻𝐿(y; ỹ
*) ≤ 0

where 𝐹𝜒𝑡,𝐿(·; ỹ*), 𝐺𝜒𝑡,𝐿(·; ỹ*), 𝐻𝐿(·; ỹ*) denote the respective functions in Eq. (4.6) linearized

at the solution found. ∇2
yL denotes the Hessian of the Lagrangian associated with Eq. (4.6),

while the parameter is set to zero ([x𝑡]𝑖 = 0). The 𝑖-th column of the sensitivity matrix can be

extracted from the entries of y*, solution of Eq. (4.7), at the position corresponding to ū0|𝑡.

We highlight that Eq. (4.7) can be computed efficiently, as it leverages the latest internal

linearization of the Karush–Kuhn–Tucker (KKT) conditions performed in the SQP employed

to solve Eq. (4.2), and therefore it does not require to re-execute the computationally

expensive system linearization routines that are carried out at each SQP iteration. We note

that this local approximation exists when the assumptions in [120, Th. 8.15] are satisfied,

i.e., that the solution (ỹ*, �̃�*, �̃�*) found during demonstration collection is a strongly regular

KKT point, and satisfies strict complementary conditions. Last, extra samples are generated

using Eq. (4.5) under the assumption that the set of active inequality constraints (i.e., the

index set 𝑝 ∈ {1, . . . , 𝑛𝐻} such that [𝐻(𝑦*)]𝑝 = 0) does not change.

Generalized Tangential Predictor. A strategy that applies to the cases where strict

75



complementary conditions do not hold, or where the extra state samples cause a change in the

active set of constraints, is based on the generalized tangential predictor [120, §8.9.1]. This

predictor can be obtained by solving the QP in Eq. (4.7) with the set of equality constraints

modified to be 𝐺𝜒𝑡,𝐿(x
+
𝑡,𝑗,y; ỹ) = 0 [120, Eq. 8.60]. Although this approach requires solving a

QP to compute the action u+
𝑡,𝑗 corresponding to each state x+

𝑡,𝑗 sampled from the tube, it does

not require re-generating the computationally expensive linearization performed at each SQP

iteration (and other performance optimization routines, such as condensing [120]) nor solving

the entire SQP for multiple iterations – resulting in a much more computationally-efficient

procedure than solving the entire SQP ex-novo for every extra state-action sample. We

remark that the linearization point in Eq. (4.7) is updated at every timestep when a full

SQP is solved for demonstration-collection.

4.3.4 Robustness and Performance Under Approximate Samples

While the proposed sensitivity-based DA strategy enables the efficient generation of extra

state-action samples, it introduces approximation errors that may affect the performance

and robustness of the learned policy. Here, we discuss strategies to account for these errors,

reducing the gaps between the nonlinear RTMPC expert and the learned policy in terms of

robustness and performance.

Robustness. A key property of RTMPC is the ability to explicitly account for uncertainties,

including the ones introduced by the proposed sensitivity-based DA framework, by further

tightening state and actuation constraints for the nominal safe plan (Eq. (4.1)). The general

nonlinear formulation of the dynamics in Eq. (3.1), however, makes it challenging to compute

an exact additional tightening bound for state and actuation constraints. A possible avenue

to establish a tightening procedure for the actuation constraints is to observe that the linear

approximation of Eq. (4.3) introduces an error upper bounded by ([120, Th. 8.16]):

‖𝜅(𝜒𝑡)− �̂�(x+
𝑡,𝑗,𝜒𝑡)‖ ≤ 𝐷‖x+

𝑡,𝑗 − x𝑡‖2 (4.8)

76



where 𝐷 may be obtained by considering the Lipschitz constant of the controller (e.g. [25]).

However, estimating this constant may be difficult, or computationally expensive, for large-

dimensional systems, as is the case herein. An alternative is to update the tubes as was done in

Section 4.3.1, e.g., by employing Monte-Carlo simulations of the closed-loop system, starting

from an initial (possibly conservative) tightening guess and by iteratively adjusting the

cross-section (size) of the tube, or by directly learning the tubes from simulations or previous

(conservative) real-world deployments [111]. These procedures, when performed using the

learned policy, are particularly appealing in our context, as our efficient policy learning

methodologies enable rapid training/updates of the learned policy, and the computational

efficiency of the policy enables rapid simulations.

Performance Improvements via Fine-Tuning. In the context of learning policies from

nonlinear RTMPC, we include in SA an (optional) fine tuning-step. This fine-tuning step

consists in training the policy with additional demonstrations, without DA, therefore avoiding

introducing further approximate samples, and having discarded the extra data used to

train the policy after an initial demonstration. Therefore, tube-guided DA is treated as a

methodology to efficiently generate an initial guess of the policy parameters.

Algorithm Summary. The SA procedure for nonlinear RTMPC with the fine-tuning step

is summarized in Algorithm 2. It consists of the following:

1) Pre-compute the safe plan from the expert (line 2).

2) Collect a single (𝑀 = 1) task demonstration 𝜉 that tracks the safe plan using the ancillary

NMPC (line 6-14), while additionally storing the variables of the QP in Eq. (4.7).;

3) Perform DA using the parametric sensitivity (Section 4.3.3, line 10-12, shown for the case

where no active change of constraints occurs and strict complementary conditions hold,

else use Eq. (4.7) ) and train the policy, obtaining the parameters 𝜃1 (line 15);

4) Optional fine-tuning step (line 16):

i) Discard the collected data so far, including the data generated by the DA (line 17);
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Input: 𝑓(·),X,U,Q𝑥,R𝑢,W𝒯 , 𝛽,𝒮, Xdes
𝑡0

Output: Trained policy 𝜋𝜃𝑀+𝐿

1: 𝜋𝜃* ,Tstates ← DesingNRtmpc(𝑓(·),X,U,Q𝑥,R𝑢,W𝒯 ,X
des
𝑡0 )

2: Z*
𝑡0 ,V

*
𝑡0 ← GetNominalSafePlan(𝜋𝜃*) // Eq. (4.1)

3: 𝜅← GetAncillaryNmpc(𝜋𝜃*) // Eq. (4.2), Eq. (4.3)
4: for 𝑖 = 1 to 𝑀 do
5: for 𝑡 = 0 to 𝑇 do
6: 𝒳𝑡 ← (x𝑡,𝑡;V

*
𝑡0 ,Z

*
𝑡0) // Current operating point

7: uN-RTMPC
𝑡 , p𝒳𝑡,𝐿←𝜅(𝒳𝑡) // Eq. (4.2), save QP Eq. (4.7)

8: 𝒟 ← 𝒟 ∪ {(x𝑡,Xdes, 𝑡,uN-RTMPC
𝑡 )}

9: K𝒳𝑡 ← Sensitivity(p𝒳𝑡,𝐿) // Eq. (4.4)
10: for 𝑗 = 1 to 𝑁s do
11: u+

𝑡,𝑗 = ū*
𝑡 +K𝒳 (x

+
𝑡,𝑗 − x̄*

𝑡 ), x
+
𝑡,𝑗 ∈ x̄*

𝑡 ⊕ Tstates

12: 𝒟 ← 𝒟 ∪ {(x+
𝑡,𝑗 ,X

des
𝑡 ,u+

𝑡,𝑗)}
13: u𝑡← 𝛽𝑖u

N-RTMPC
𝑡 + (1− 𝛽𝑖) 𝜋𝜃𝑖−1

(x𝑡,X
des
𝑡 ) // DAgger/BC

14: x𝑡+1←StepSystem(u𝑡,x𝑡,𝒮)
15: 𝜋𝜃𝑖 ← UpdatePolicy(𝒟, 𝜃𝑖−1)
16: if FineTuning then
17: 𝒟 ← ∅
18: for 𝑙 = 1 to 𝐿 do
19: 𝜉 = {(x𝑡,Xdes

𝑡0 ,uN-RTMPC
𝑡 ))}𝑇−1

𝑡=0

←CollectDemo(𝜅,Z*
𝑡0 ,V

*
𝑡0 ,𝜋𝜃𝑀+𝑙−1

,𝛽𝑖,𝒮)// DAgger/BC
20: 𝒟 ← 𝒟 ∪ {𝜉}
21: 𝜋𝜃𝑀+𝑙

←UpdatePolicy(𝒟, 𝜃𝑀+𝑙−1)

Algorithm 2: Sampling Augmentation for efficient learning from Nonlinear RTMPC

ii) Collect new demonstrations using DAgger [21] and the pre-trained policy, or BC,

line 21, and re-train the pre-trained policy (with parameters 𝜃1) after every newly

collected demonstration.

4.4 Application to Agile Flight

4.4.1 Nonlinear RTMPC for Acrobatic Maneuvers

In this Section we design a nonlinear RTMPC expert capable of performing a 360∘ flip in

near-minimum time - a maneuver that demands exploitation of the full nonlinear dynamics

of the multirotor, and that requires large and careful actuation usage; we rely on the IL

procedure described in Section 4.1.
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Ancillary NMPC. We start by designing the ancillary NMPC (Eq. (4.2)). The selected

nominal model is the same used in the high-performance trajectory tracking NMPC for

multirotors [23], [122]:

W�̇� = W𝑣

W�̇� = 𝑚−1(𝑅WB B𝑡cmd + W𝑓drag)− W𝑔

�̇�WB =
1

2
Ω(B𝜔cmd)𝑞WB,

(4.9)

where the rotational dynamics (Eq. (3.15d)) have been neglected, assuming that the

cascaded attitude controller enables fast tracking of the desired angular velocity setpoint

B𝜔cmd. The controller uses the state and control input:

x̄ = [W𝑝⊤,W𝑣⊤, 𝑞⊤
WB]

⊤, ū = [𝑡cmd, B𝜔
⊤
cmd]

⊤. (4.10)

The feed-forward angular acceleration for the attitude controller B�̇�cmd is obtained via

numerical differentiation. We do not explicitly generate an attitude setpoint (we set 𝑅des
WB =

𝑅WB), so that Eq. (4.9) acts as a proportional body-rates controller with feed-forward

accelerations.

Near-Minimum Time Safe Plan Generation. To compute safe nominal plans for

acrobatic maneuvers (by solving the OCP in Eq. (4.1)), we employ an extended version of

the full nonlinear dynamic model in Section 3.4.1. More specifically, we solve the OCP in Eq.

(4.1) by using the following state z̃ ∈ ˜̄Z and control inputs ṽ ∈ ˜̄V:

z̃ = [W𝑝⊤,W𝑣⊤, 𝑞⊤
WB, B𝜔

⊤, B𝑓
⊤
prop]

⊤ ṽ = B𝑓prop, (4.11)

where the state has been extended to include the thrust produced by each propeller 𝑓prop to

ensure continuity in the reference thrust, accounting for the unmodeled actuators’ dynamics.

As for the linear case, uncertainties are modeled by W𝑓 ext ∈W. The cost function captures
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the near-minimum time objective:

𝐽RTNMPC = 𝑇𝑓 + 𝛼1𝑣
⊤𝑣 + 𝛼2𝑓prop

⊤𝑓prop + 𝛼3̃v
⊤̃v (4.12)

where 𝑇𝑓 is the total time of the maneuver, while the remaining terms act as a regularizer for

the optimizer, with 𝛼𝑖 ≪ 𝑇𝑓 (i.e., 𝛼𝑖 ≈ 10−2, ∀ 𝑖).

We note that 𝐽RTNMPC contains a non-quadratic term, therefore differing from the quadratic

cost employed in the safe nominal planner in [27] (our Eq. (4.1)); such cost function was

chosen to automate the selection of the prediction horizon 𝑁 for the safe nominal plan. Our

evaluation will demonstrate that the ancillary NMPC maintains the system within a tube

from the generated reference, further highlighting the flexibility of the framework.

Additionally, we note that state and control input (Eq. (4.11)) have been extended

compared to the ones (Eq. (4.10)) selected for the ancillary NMPC, as emphasized by our

notation ·̃. For this reason, the optimal safe nominal plan Z̃*
𝑡 , Ṽ*

𝑡 found using the extended

state needs to be mapped to the reference trajectory for the ancillary NMPC, Z*
𝑡 V

*
𝑡 . This is

done by simply selecting position, velocity and attitude from Z̃*
𝑡 to obtain Z*

𝑡 . The thrust

setpoint 𝑡cmd in V*
𝑡 is computed via 𝒜 in Eq. (3.17) from 𝑓prop in Z̃*

𝑡 , while the angular

velocity setpoint 𝜔cmd is obtained by assuming it equal to the angular velocity 𝜔 in Z̃*
𝑡 .

Constraints. The state constraint x̄𝑡 ∈ X encodes the maximum safe linear velocity 𝑣

and position boundaries 𝑝 of the environment, while actuation constraints ū𝑡 ∈ U account

for physical limits of the robot, restricting the nominal angular velocities 𝜔cmd (to prevent

saturation of the onboard gyroscope), and the maximum/minimum thrust force 𝑡cmd produced

by the propellers. We impose tightened constraints on the thrust force by constraining 𝑓prop in

z̃ ∈ ˜̄Z. These constraints are obtained via a conservative approach, i.e. we require a minimal

thrust to generate a trajectory feasible within our position and velocity constraints. Such

feasible trajectory is found via an iterative tightening procedure for the thrust constraints,

using the previously-obtained feasible trajectory as an initial guess for the subsequent
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optimization under tightened thrust constraints. This procedure ensures that sufficient

control authority is left to the ancillary NMPC to account for the presence of large unknown

aerodynamic effects and mismatches in the mapping from commanded thrust/actual thrust.

This cautious approach enabled successful real-world execution of the maneuver without

further real-world tuning. We additionally leverage the further degrees of freedom introduced

by the extended state z̃ by shaping the safe plan through upper-bounding the thrust rates

𝑓prop via ˜̄V, although this constraint will not be enforced by the ancillary NMPC. Last, using

Monte-Carlo closed-loop simulations with disturbances sampled from W, we verify that X

and U are satisfied, and we generate a constant estimate (outer approximation, axis-aligned

bounding box) of the cross-section of the tubes Tstate and Taction.

Tube and Data Augmentation with Attitude Quaternions. The normalized attitude

quaternions part of the states x̄, z̃ of nonlinear RTMPC, and part of the reference Z*
𝑡 for the

ancillary NMPC do not belong to a vector space, and therefore it is not trivial to describe

its tube nor to generate extra samples for DA. In this work, we employ an attitude error

representation 𝜖 ∈ R3 based on the Modified Rodriguez Parameters (MRP) [123] to generate

a representation that can be treated as an element of a vector space. Specifically, we use

𝜖𝑡 = MRP(𝑞𝑡 ⊙ 𝑞*
𝑡
−1), (4.13)

where 𝑞𝑡 is the current attitude, 𝑞*
𝑡 is the desired attitude (from the safe plan z*𝑡 ), MRP(·)

maps a quaternion to the corresponding three-dimensional attitude representation, while ⊙

denotes the quaternion product.

4.5 Evaluation

In this Section, we evaluate the ability of our method to efficiently learn acrobatic flight

maneuvers using demonstrations collected from nonlinear RTMPC.
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4.5.1 Evaluation Approach

Task Description. The goal is to perform a flip, i.e., a 360∘ rotation about the body-frame

𝑥-axis, in near-minimum time. This is a challenging maneuver, as it covers a large nonlinear

envelope of the dynamics of the MAV, and the near-minimum time objective function,

combined with the need to account for uncertainties, pushes the actuators close to their

physical limits.

Simulation Environment. The simulation environment for training/numerical evaluations

is the same as in Section 3.5, i.e., implements the nonlinear multirotor model in Section 3.4.1.

In the training domain (source, 𝒮), W𝒮 = {∅}, while in the deployment domain (target, 𝒯 )

W𝒯 = {𝑓ext|0.001𝑚𝑔 ≤ 𝑓ext ≤ 0.3𝑚𝑔}, sampled according to Eq. (3.20).

Nonlinear RTMPC. We generate a safe nominal flip trajectory using MECO-Rockit [124].

Because this nominal trajectory happens in the plane spanned by the orthogonal vectors

defining the 𝑦 and 𝑧 axis of the inertial reference frame W, for simplicity, we project the

dynamics onto the 𝑦 and 𝑧 axes, resulting in a two-dimensional model of the MAV used to

generate the nominal plan. The nominal flip trajectory can therefore be obtained by setting

the initial rotation around the 𝑧 to be 0, and the desired final attitude to be 2𝜋, while the

remaining initial/terminal states are all set to zero.

The ancillary NMPC is solved using the SQP solver ACADOS [125], and runs in simulation at

50Hz. Sensitivities for DA (Eq. (4.7)) are computed using the built-in sensitivity computation

in the chosen solver, HPIPM [126]. We remark that the employed ancillary NMPC uses the full

3D multirotor model in Eq. (3.18), therefore performing 3D disturbance rejection – a critical

requirement for real-world deployments. For a more challenging and interesting comparison

to the considered IL baselines, the ancillary NMPC uses the SQP_RTI setting of ACADOS. This

setting performs only a single SQP iteration per timestep, enabling significant speed-ups in

the solver, and it is often employed in real-time, embedded implementations of NMPC. This

setting creates an advantage, in terms of training time, to IL methods that require querying
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Table 4.1: Parameters employed for the solution of the ancillary NMPC using the optimization
package ACADOS [125].

Parameter(s) Value(s)
Hessian Approximation Gauss-Newton (flip), Exact (point-to-point)

QP solver Partial Condensing HPIPM [126]
NLP/QP Tolerance 10−8/10−8

Levenberg-Marquardt 10−4

Integrator Type Implicit Runge-Kutta
Max. # Iterations QP Solver 100

Horizon (𝑁 , steps)/(time, seconds) 50/1.0

the expert multiple times (the baselines of our comparison), as it speeds-up the computation

time of the expert. The other ACADOS parameters given in Table 4.1 were chosen as they

enabled higher overall performance/accuracy in the selected acrobatic maneuver. Last, we

introduce a discount factor 𝛾 = 0.95 in the stage cost of Eq. (4.2) to aid the convergence of

the solver.

Student Policy. The student is a 2-hidden layers, fully connected DNN with {64, 32}

neurons/layer, and ReLU activation functions. The input has dimension 14, as it contains

the current state (𝑛𝑥 = 10), time 𝑡, and a desired final position 𝑝des (fixed to the origin). To

simplify the learning and DA procedure, we enforce continuity to the quaternion input of the

policy via [127, Eq. 3], avoiding the need to increase the training data/demonstrations at

every timestep to account for the fact that 𝑞 and −𝑞 encode the same orientation.

Baselines and Evaluation Metrics The baselines match those in Section 3.5 (DAgger, BC

and their combination with DR, DA-𝑁𝑠 (linear interpolation) and DA-𝑁𝑠 (expert neighbor-

hood), generating 𝑁𝑠 samples per timestep. The monitored metrics (Robustness, Performance

and Training Time) match those in Section 3.5, with the difference that performance is based

on the stage cost of the ancillary NMPC Eq. (4.2).

Training Details. As in Section 3.5, training is performed by collecting demonstrations with

the multirotor starting from slightly different initial states inside the tube centered around

the origin. The nominal flip maneuver is pre-generated, as the goal state x𝑒𝑡0 (with 𝑡0 = 0)
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does not change, and only the ancillary NMPC is solved at every timestep. The resulting flip

maneuver takes about 𝑇𝑓 = 2.5s, and demonstrations are collected over an episode of length

3.0s, at 50Hz (𝑇 = 150 environment steps per demonstration).

Data collection. For SA-methods, we collect demonstrations one-by-one, and we implement

the fine-tuning procedure described in Section 4.3.4 by performing DA with the first collected

demonstration, while we do not perform DA for the following demonstrations. Because of its

computational efficiency, we always use the sensitivity-based DA (i.e., Eq. (4.5), assuming no

changes in active set of constraints). In addition, to study the effects of varying the number

of samples used for DA, we introduce SA-𝑁𝑆, a variant of SA where we sample uniformly

inside the tube 𝑁𝑆 = {25, 50, 100} samples for every timestep. For the baselines, in order to

speed-up the demonstration collection phase, and thereby avoid excessive re-training of the

policy, we collect demonstrations in batches of 10, for 20 batches. An exception is made for

DA-𝑁𝑠 (expert neighborhood) where, similar to SA, we collect demonstrations one-by-one to

better study its sample efficiency, and the corresponding actions are obtained using the same

sensitivity-based approximation of the ancillary NMPC employed by SA. Therefore, DA-𝑁𝑠

(expert neighborhood) constitutes an ablation of SA-𝑁𝑠, where sampling is restricted to a

smaller volume than the tube.

Evaluation. Each time the policy is updated, we evaluate it 20 times in source 𝒮 and target

𝒯 environments. The evaluations are averaged across 10 different random seeds. To further

speed-up training of all the methods, we update the previously trained policy using only the

newly collected batch of demonstrations (or single demonstration, for SA). All the policies

are trained using the ADAM optimizer for up to 400 epochs, but we terminate training if the

validation loss (from 30% of the data) does not decrease within 30 epochs.

4.5.2 Numerical Evaluation: Robustness, Performance, Efficiency

Comparison with Baselines. We start by evaluating the robustness and performance of

the proposed approach as a function of the number of demonstrations collected in simulation,
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Figure 4.1: Robustness as a function of the number of training demonstrations. The IL
methods that use the proposed DA strategy, Sampling-Augmentation (SA), overlap on the
top-left part of the diagram, achieving full success rate in both the source and target domain
of the training environment. Uncertainties in the target domains are applied in the form of
a constant external force acting on the center of mass of the multirotor, representing large
wind disturbances.
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Figure 4.2: Robustness as a function of the training time. The IL methods that use the
proposed DA and fine-tuning strategy, Sampling-Augmentation (SA), achieve full robustness
under uncertainties in a fraction of the training time required by the best performing robust
baseline, DAgger + DR.
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Figure 4.3: Performance as a function of the number of training demonstrations. The
IL methods that use the proposed DA and fine-tuning strategy, Sampling-Augmentation
(SA), achieve performance close to the expert in less than 10 demonstrations, while the
best-performing baseline, SA-100 (expert neighborhood), achieves comparable performance,
but is not robust in the target domain, as shown in Fig. 4.1.

and as a function of the training time.

Fig. 4.1 shows the robustness of the considered method as a function of the number of

expert demonstrations. It reveals that SA-based approaches can achieve full success rate in

the environment with disturbances (target, 𝒯 ) and without disturbances (source, 𝒮) after

a single demonstration, while the best-performing baseline, DAgger+DR, requires about

60 demonstrations to achieve full robustness in 𝒮, and more than 100 in 𝒯 . SA-based

methods, therefore, enable more than one order of magnitude reduction in the number of

demonstrations (interactions with the environment) compared to DAgger+DR. As previously

observed in Section 3.5, DAgger alone is not robust. Additionally, BC methods fail to

converge, potentially due to the lack of sufficiently meaningful exploration and the forgetting

caused by the iterative training strategy employed. In addition, DA (expert neighborhood)

confirms the importance of using the tube as a support of the sampling distribution, as the

method achieves robustness and demonstration efficiency in the source domain, but fails to

achieve robustness in the target domain, unlike SA. DA (linear interpolation) provides an

86



initial boost in demonstration efficiency, but struggles to achieve high robustness even in the

source domain, potentially due to the far-from optimal action introduced.

Fig. 4.2 additionally shows the robustness as a function of the training time (recall, this

includes demonstration collection and policy train). The results show that the demonstration-

efficiency of SA-based methods translates into significant improvements in training time,

as DAgger+DR requires more than 3 times the training time than SA-based approaches.

These improvements are larger for the variants of SA that generate fewer extra samples (e.g.,

SA-25).

Last, Fig. 4.3 reports the performance as a function of the number of demonstrations. The

results indicate that SA-based methods can achieve low tracking errors even after a single

demonstration. Furthermore, employing a fine-tuning phase (after the initial demonstration)

proves highly advantageous in further reducing this error, thereby reducing the performance

gap between policies obtained via SA and the expert.

Comparison of Sampling Strategies. Table 4.2 provides a detailed comparison of

performance, robustness, and training time of the different variants of SA methods, as

a function of the number of demonstrations (1, 2 and 10), and compares those with the

best-performing baselines, DAgger+DR, and methods based on sampling in the expert

neighborhood. As expected, SA methods that require fewer samples obtain significant

improvements in training time compared to DAgger+DR, while increasing the number of

samples is beneficial in reducing the mean and the variance of the expert gap, both with and

without disturbances, while DA (expert neighborhood) struggles to achieve high robustness

and low expert gap in the target domain, despite the large number of samples used per timestep

(100). Table 4.2 additionally highlights the benefits of fine-tuning, as even methods that use

few samples (e.g., SA-sparse, SA-25) can obtain a significant performance improvement after

a single fine-tuning demonstration (2 demonstrations in total), while there are diminishing

returns for additional fine-tuning demonstrations (e.g., 10 demonstrations). In addition, in

the data-sparse regime (e.g., SA-18), using DAgger for fine-tuning appears more beneficial
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Robustness
success rate

(%, ↑)

Performance
expert gap

(%, ↓)

Efficiency
training time

(𝑠, ↓)
Method Robustification/

Augmentation
# of

Demonstr.
𝒮 𝒯 𝒮 𝒯 −

mean std mean std mean std mean std mean std
BC DA-100 (expert

neighborhood)
1 100 0 90 30 9 6 562 1576 367 87
2 100 0 85 36 6 4 312 671 512 90
10 100 0 86 35 5 4 462 2932 1166 135
50 100 0 81 39 5 2 323 838 4629 185

DAgger DA-100 (expert
neighborhood)

1 100 0 87 34 12 8 562 2375 409 90
2 100 0 87 34 9 10 425 1478 520 97
10 100 0 89 31 4 3 187 354 1149 107
50 100 0 84 37 3 2 440 1623 4608 141

DAgger DR 50 92 27 82 39 9094 20608 3096 5497 392 34
100 100 0 97 17 634 711 1277 4947 810 104
200 100 0 99 10 91 73 274 1247 1970 154

BC SA-sparse (18) 1 100 0 100 0 553 462 211 228 84 9
2 100 0 97 17 41 39 371 1808 88 10
10 100 0 97 17 33 42 226 815 115 10

SA-25 1 100 0 100 0 956 402 270 384 87 15
2 100 0 100 0 148 140 107 150 90 14
10 100 0 100 0 107 175 90 83 117 14

SA-50 1 100 0 100 0 421 193 105 116 204 32
2 100 0 100 0 76 31 66 56 207 31
10 100 0 100 0 55 28 76 102 235 31

SA-100 1 100 0 100 0 291 154 89 105 339 72
2 100 0 100 0 57 20 76 85 342 72
10 100 0 100 0 33 21 97 118 369 72

DAgger SA-sparse (18) 1 100 0 100 0 747 705 319 879 85 6
2 100 0 100 0 222 122 142 219 89 6
10 100 0 100 0 29 24 114 150 117 6

SA-25 1 100 0 100 0 579 224 160 168 92 12
2 100 0 100 0 366 279 122 182 96 12
10 100 0 100 0 110 115 100 120 124 12

SA-50 1 100 0 100 0 361 161 78 91 206 28
2 100 0 100 0 169 117 77 80 210 28
10 100 0 100 0 56 77 82 107 237 28

SA-100 1 100 0 100 0 309 133 92 105 342 29
2 100 0 100 0 100 61 77 96 346 29
10 100 0 100 0 30 28 90 109 373 29

Table 4.2: Performance, robustness and training time for SA-based methods after 1, 2,
and 10 demonstrations, compared with the best performing baselines, DAgger+DR and
sampling in the expert neighborhood (DA-100 (expert neighborhood)), in the environment
without disturbances (𝒮, source), and with (𝒯 , target). Robustness is color-coded from white
(100%) to red (90% or below). Performance and training time are color-coded from green
(fast training time, small expert gap) to red (long training time, large expert gap). The
results highlight that SA-methods achieve high robustness and close to expert performance
compared to DAgger+DR, even after a single demonstration, and their performance can
be further improved via additional fine-tuning demonstrations. Methods based on DA-100
(expert neighborhood) are not robust and struggle to achieve high performance (low expert
gap) in the target domain. We note that DAgger and BC-based approaches differ at one
demonstration due to non-determinism in the training procedure.
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Table 4.3: Computation time to obtain a new action for the ancillary NMPC and the safe
planner of the nonlinear RTMPC expert (N-RTMPC) and the proposed DNN policy (Policy).
The policy is 180 times faster than the NMPC in [79] (on the same onboard
computer). The offboard CPU is an Intel i9-10920, onboard is an NVIDIA Jetson TX2
(CPU). Note that the faster inference time than the linear case is caused by the input
dimension being smaller (14 vs 188).

Time (ms)
CPU Method Setup Mean SD Min Max

Offboard
N-RTMPC, ancillary NMPC ACADOS [125] 7.28 0.15 7.05 8.00

N-RTMPC, safe plan IPOPT 5812 226 4828 6010
Policy PyTorch 0.11 0.01 0.11 0.27

Onboard NMPC (from [79, Fig. 17]) ACADO [128] 2.7 n.a. n.a. n.a.
Policy C++/Eigen 0.015 0.005 0.006 0.101

than BC.

Computation. The computation time is reported in Table 4.3, highlighting that the average

computation time of the policy on the onboard Nvidia Jetsion TX2 is 0.015 ms, an 180-

fold improvement compared to the value reported in [129] for a state-of-the-art NMPC

for quadrotors. In addition, Fig. 4.4 reports the time to compute the sensitivity matrix,

highlighting that it requires on average 2.28 ms, about only 32% of the time required to

solve the full optimization problem. More importantly, this matrix is computed only once

per timestep and can be used to draw many sampled at small additional cost (equivalent to

solving a vector-matrix multiplication) instead of solving the full optimization problem for

each sample. The average time to step the training environment is 2.1 ms.

4.5.3 Hardware Evaluation

We experimentally evaluate the ability of the policy to perform a flip on a real multirotor,

under real-world uncertainties such as model errors (e.g., inaccurate thrust to battery

voltage mappings, aerodynamic coefficients, moments of inertia) and external disturbances

(e.g., ground effect). The tested policy is obtained using DAgger+SA-25 trained after 2

demonstrations (the first with DA, the second for fine-tuning), as the method represents a
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Figure 4.4: Distribution of the time to solve the full optimization problem for the ancillary
NMPC (Eq. (4.2)), and the time required to additionally compute the sensitivity matrix (Eq.
(4.7)). The sensitivity matrix can be computed efficiently, requiring only 32% of the time to
solve the full optimization problem. Analysis performed on a Intel i9-10920 using ACADOS
with settings in Table 4.1. Note the log scale of the 𝑦 axis.

good trade-off between performance, robustness and training time. As in Section 3.5, we

deploy the learned policy on an onboard Nvidia Jetson TX2, where it runs at 100Hz. The

maneuver includes a take-off/landing phase consisting of a 1m ramp on 𝑥-𝑦-𝑧 in W and

overall has a total duration of 6s. The maneuver is repeated 5 times in a row, to demonstrate

repeatability, recording successful execution of the maneuver and successful landing at the

designated location in all the cases. Fig. 4.5 shows a time-lapse of the different phases of

the maneuver (excluding the ramp from and to the landing location). The 3D position of

the robot, as well as the direction of its thrust vector, are shown for two runs in Fig. 4.6,

highlighting the large distance and altitude traveled in a short time. Fig. 4.7 additionally

shows some critical parameters of the maneuvers, such as the attitude and the angular velocity,

as well as thrust and the vertical velocities. It highlights that the robot rotates at up to

11rad/s, and the overall 360∘ rotation takes about 0.5s. In addition, the maneuver is repeated

under even more challenging uncertainties, obtained by attaching either (a) a slung-load

or (b) a drag surface to the robot, as shown in Fig. 4.6, where we additionally deploy the

policy onboard at 500Hz. The experiment is repeated 3 consecutive times per disturbances,

achieving 100% success rate, and a resulting trajectory for each disturbance is shown in

Fig. 4.6 1. Overall, these results validate our numerical analysis and highlight the robustness
1Note that the gains of the cascaded attitude controller were increased compared to the scenario without

extra disturbances. This was done to account for the fact that the attitude controller is not explicitly
robust/adaptive to these new uncertainties, unlike the learned policy.
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Figure 4.5: Time-lapse figure showing an acrobatic maneuver (flip) performed by our multiro-
tor using a NN policy learned via our proposed approach. The policy is learned offboard in
a computationally and data-efficient manner (in only about 100s, requiring only two
demonstrations in sim.), and is deployed onboard (Nvidia Jetson TX2, CPU), where
was tested at up to 500Hz, with an average inference time as low as 15 𝜇s). (a)
shows the robot accelerating upwards until it reaches the optimal altitude found by MPC.
The red arrow denotes the directions of the thrust vector (aligned with the body 𝑧-axis),
while the yellow arrow denotes the approximate trajectory. (b) shows the robot performing a
360∘ rotation round its body 𝑥-axis. This phase takes only about 0.5s. (c) shows the robot
successfully decelerating until it reaches a vertical velocity < 1 m/s, followed by its landing.
This experiment demonstrates the ability of our approach to efficiently generate policies from
MPC that can withstand real-world uncertainties and disturbances, even when leveraging
models that operate in highly nonlinear regimes.
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Figure 4.6: Acrobatic flip trajectory performed in experiments using a policy learned from a
nonlinear Robust Tube MPC in about 100s. The policy runs onboard (TX2, CPU, tested
up to 500Hz, average inference time during maneuver as low as 0.015ms) with and without
disturbances (slung load of 0.18 Kg. drag surface of 0.13 kg). This highlights the real-world
robustness and performance of the approach. Red arrows denote the direction of the thrust
vector on the quadrotor, and they highlight that the flip occurs at the point of highest altitude
of the maneuver. The plot shows the additional take-off/landing phase, also performed by
the learned policy, taking the robot back and forth the origin and (𝑥, 𝑦, 𝑧) = (1, 1, 1), that is
the point where the flip starts and ends. Units in (m).
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Figure 4.7: Control inputs generated by the learned policy and relevant states during the
real–world acrobatic flip maneuver on a multirotor, where the robot is subject to large levels
of uncertainties, caused primarily by model mismatches such as thrust-to-battery voltage
mappings and hard-to-model aerodynamic effects. Despite the large level of uncertainties,
that require the usage of the maximum thrust allowed, the maneuver is completed successfully,
and the robot reaches the desired vertical velocity of −1.0m s−1 at the end of the recovery
phase (and that corresponds to the initial velocity of the landing phase). We highlight that
the flip is performed at an angular velocity of about 11.0 rad/s. The actual thrust 𝑡cmd can
be related to the normalized thrust 𝑡cmd via 𝑡cmd = 𝑚𝑔(1 + 𝑡cmd), where 𝑚𝑔 is the weight
force of the robot.
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and performance of a policy efficiently trained from 2 demonstrations and about 100s of

training time. Our video submission [130] includes an additional experiment demonstrating

near-minimum time navigation from one position to another, starting and ending with velocity

close to zero, using a policy trained with two demonstrations (DAgger+SA-25).

4.6 Summary

This Chapter has provided a strategy for efficient and robust policy learning from nonlinear

RTMPC. While the linear ancillary controller in linear RTMPC employed in Chapter 3

provided extra data in a computationally efficient way, the same efficiency was challenging

to achieve when leveraging nonlinear variants of RTMPC [27]. Therefore, this Chapter has

efficiently performed tube-guided DA by leveraging a sensitivity-based approximation of the

ancillary controller in NMPC, and introducing a fine-tuning phase to reduce the errors caused

by the extra sampled obtained via the sensitivity-based approximation of the ancillary NMPC.

Experimental evaluations on a multirotor have validated our numerical findings of efficiency

and robustness, showing that a policy with 15 us of inference time trained with only two

demonstrations (100 s of training time, 3 times more efficient than existing methods) can

perform a flip under uncertainties.
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Chapter 5

Vision-based Flight Control

5.1 Overview

This Chapter introduces Tube-Neural Radiance Field (NeRF) (Fig. 5.1), a novel DA framework

for efficient, robust visuomotor policy learning from MPC that overcomes the robustness

limitations in existing DA strategies, as presented in Problem Statement 3. Building on

our prior DA strategy [62] (Chapter 3) that uses RTMPC for efficiently and systematically

generate additional training data for motor control policies (actions from full state), Tube-

NeRF enables learning of policies that directly use vision as input, relaxing the constraining

assumption in [62] that full-state information is available at deployment.

Tube-NeRF, first, collects robust task demonstrations that account for the effects of

process and sensing uncertainties via an output-feedback variant of RTMPC [4]. Then, it

employs a photorealistic representation of the environment, based on a NeRF, to generate

synthetic novel views for DA, using the tube of the controller to guide the selection of the extra

novel views and sensorial inputs, and using the ancillary controller to efficiently compute the

corresponding actions. Additionally, the tube is employed to generate queries from a database

of real-world observations, reducing the synthetic-to-real gap when only NeRF images are

used for DA. Lastly, we adapt our approach to a multirotor, training a visuomotor policy
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Figure 5.1: Tube-NeRF collects a real-world demonstration using output-feedback tube
MPC, a robust MPC that accounts for process and sensing uncertainties through its tube
cross-section Z. Then, it generates a Neural Radiance Field (NeRF) of the environment from
the collected images ℐ𝑡, and uses the tube’s cross-section to guide the selection of synthetic
views ℐ+𝑡 from the NeRF for data augmentation, while corresponding actions are obtained
via the ancillary controller, an integral component of the tube MPC framework.

for robust trajectory tracking and localization using onboard camera images and additional

measurements of altitude, orientation, and velocity. The generated policy relies solely on

images to obtain information on the robot’s horizontal position, which is a challenging task

due to (1) its high speed (up to 3.5 m/s), (2) varying altitude, (3) aggressive roll/pitch

changes, (4) the sparsity of visual features in our flight space, and (5) the presence of a safety

net that moves due to the down-wash of the propellers and that produces semi-transparent

visual features above the ground.

5.2 Problem Formulation

The goal is to efficiently train a NN visuomotor policy 𝜋𝜃 (student), with parameters 𝜃, that

tracks a desired trajectory on a mobile robot (multirotor). 𝜋𝜃 takes as input images, which

are needed to extract partial state information (horizontal position, in our evaluation), and
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other measurements. The trained policy, denoted 𝜋𝜃, needs to be robust to uncertainties

encountered in the deployment domain 𝒯 . It is trained using demonstrations from a model-

based controller (expert) collected in a source domain 𝒮 that presents only a subset of the

uncertainties in 𝒯 .

Student Policy. The student policy has the form:

u𝑡 = 𝜋𝜃(o𝑡,X
des
𝑡 ). (5.1)

It outputs deterministic, continuous actions u𝑡 to track a desired 𝑁 + 1 steps (𝑁 > 0)

trajectory Xdes
𝑡 = {xdes

0|𝑡 , . . . ,x
des
𝑁 |𝑡}. o𝑡 = (ℐ𝑡, oother,𝑡) are noisy sensor measurements comprised

of an image ℐ𝑡 from an onboard camera, and other measurements oother,t (altitude, attitude,

velocity, in our evaluation).

Expert. Process model: The considered robot dynamics are:

x𝑡+1 = Ax𝑡 +Bu𝑡 +w𝑡 (5.2)

where x𝑡 ∈ X ⊂ R𝑛𝑥 is the state, and u𝑡 ∈ U ⊂ R𝑛𝑢 the control inputs. The robot is subject

to state and input constraints X and U, assumed convex polytopes containing the origin

[4]. w𝑡 ∈W𝒯 ⊂ R𝑛𝑥 in (5.2) captures time-varying additive process uncertainties in 𝒯 , such

as (i) disturbances (wind/payloads for a UAV) (ii) and model changes/errors (linearization

errors and poorly known parameters). w𝑡 is unknown, but the polytopic bounded set W𝒯 is

assumed known [4]. Sensing model: The expert has access to (i) the measurements oother,𝑡,

and (ii) a vision-based position estimator 𝑔cam that outputs noisy measurements opos.xy ∈ R2

of the horizontal position 𝑝𝑥𝑦,𝑡 ∈ R2 of the robot:

opos,xy,𝑡 = 𝑔cam(ℐ𝑡) = 𝑝𝑥𝑦,𝑡 + vcam,𝑡, (5.3)

where vcam,𝑡 is the associated sensing uncertainty. The measurements available to the expert
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are denoted ō𝑡 ∈ R𝑛𝑜 , and they map to the robot state via:

ō𝑡 =

[︂
o𝑇pos.xy,𝑡,o

𝑇
other,𝑡

]︂𝑇
= Cx𝑡 + v𝑡, (5.4)

where C ∈ R𝑛𝑜×𝑛𝑥 . v𝑡 = [v𝑇cam,𝑡,v
𝑇
other,𝑡]

𝑇 ∈ V𝒯 ⊂ R𝑛𝑜 is additive sensing uncertainty (e.g.,

noise, biases) in 𝒯 . V𝒯 is a known bounded set obtained via system identification, and/or

via prior knowledge on the accuracy of 𝑔cam.

State estimator. We assume the expert uses a state estimator:

x̂𝑡+1 = Ax̂𝑡 +Bu𝑡 + L(ō𝑡 − ô𝑡), ô𝑡 = Cx̂𝑡, (5.5)

where x̂𝑡 ∈ R𝑛𝑥 is the estimated state, and L ∈ R𝑛𝑥×𝑛𝑜 is the observer gain, set so that A−LC

is Schur stable. The observability index of the system (A,C) is assumed to be 1, meaning

that full state information can be retrieved from a single noisy measurement. In this case, the

observer plays the critical role of filtering out the effects of noise and sensing uncertainties.

Additionally, we assume that the state estimation dynamics and noise sensitivity of the

learned policy will approximately match the ones of the observer.

5.3 Methodology

Overview. Tube-NeRF collects trajectory tracking demonstrations in the source domain 𝒮

using an output feedback RTMPC expert combined with a state estimator Eq. (5.5), and

IL methods (DAgger or BC). The chosen output feedback RTMPC framework is based on

[4], [91], with its objective function modified to track a trajectory (Section 5.3.1), and is

designed according to the priors on process and sensing uncertainties at deployment (𝒯 ).

Then, Tube-NeRF uses properties of the expert to design an efficient DA strategy, the key to

overcoming efficiency and robustness challenges in IL (Section 5.3.2). The framework is then

tailored to a multirotor leveraging a NeRF as part of the proposed DA strategy (Section 5.4).
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5.3.1 Output Feedback RTMPC for Trajectory Tracking

Output feedback RTMPC for trajectory tracking regulates the system in Eq. (5.2) and Eq.

(5.5) along a given reference trajectory Xdes
𝑡 , while satisfying state and actuation constraints

X,U regardless of sensing uncertainties (v, Eq. (5.4)) and process noise (w, Eq. (5.2)).

Preliminary (set operations): Given the convex polytopes A ⊂ R𝑛,B ⊂ R𝑛 and M ∈

R𝑚×𝑛, we define:

• Minkowski sum: A⊕ B := {a+ b ∈ R𝑛 | a ∈ A, b ∈ B}

• Pontryagin difference: A⊖ B := {c ∈ R𝑛 | c+ b ∈ A, ∀b ∈ B}

• Linear mapping: MA := {Ma ∈ R𝑚 | a ∈ A}.

Optimization Problem. At every timestep 𝑡, the controller solves:

Ū*
𝑡 , X̄

*
𝑡 = argmin

Ū𝑡,X̄𝑡

‖e𝑁 |𝑡‖2P +
𝑁−1∑︁
𝑖=0

‖e𝑖|𝑡‖2Q + ‖u𝑖|𝑡‖2R

subject to x̄𝑖+1|𝑡 = Ax̄𝑖|𝑡 +Bū𝑖|𝑡, ∀𝑖 = 0, . . . , 𝑁 − 1

x̄𝑖|𝑡 ∈ X̄, ū𝑖|𝑡 ∈ Ū,

x̄𝑁 |𝑡 ∈ X̄𝑁 , x̂𝑡 ∈ x̄0|𝑡 ⊕
[︂
0𝑛𝑥 , 𝐼𝑛𝑥

]︂
S,

(5.6)

where e𝑖|𝑡 = x̄𝑖|𝑡 − xdes
𝑖|𝑡 represents the trajectory tracking error, X̄𝑡 = {x̄0|𝑡, . . . , x̄𝑁 |𝑡} and

Ū𝑡 = {ū0|𝑡, . . . , ū𝑁−1|𝑡} are reference state and action trajectories computed according to the

nominal systems dynamics (also often denoted as “safe state and action plans”, as they are at

a sufficient distance from state and actuation constraints), and 𝑁 + 1 is the length of the

planning horizon. The positive semi-definite matrices Q (size 𝑛𝑥 × 𝑛𝑥) and R (size 𝑛𝑢 × 𝑛𝑢)

are tuning parameters, ‖e𝑁 |𝑡‖2P is a terminal cost (obtained by solving the infinite-horizon

optimal control problem with A, B, Q, R) and x̄𝑁 |𝑡 ∈ X̄𝑁 is a terminal state constraint.
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Ancillary Controller. The control input u𝑡 is obtained via:

u𝑡 = ū*
𝑡 +K(x̂𝑡 − x̄*

𝑡 ), (5.7)

where ū*
𝑡 := ū*

0|𝑡 and x̄*
𝑡 := x̄*

0|𝑡, and K is computed by solving the LQR problem with A,

B, Q, R. This controller maintains the system inside a set Z⊕ x̄*
𝑡 (“cross-section” of a tube

centered around x̄*
𝑡 ), regardless of the uncertainties.

Tube and Robust Constraints. Process and sensing uncertainties are taken into account

by tightening the constraints X, U, obtaining X̄ and Ū in Eq. (5.6). The amount by which X,

U are tightened depends on the cross-section of the tube Z, which is computed (see [4]) by

considering the closed-loop system formed by the ancillary controller Eq. (5.7), the nominal

dynamics in Eq. (5.2) and the observer Eq. (5.5). Sensing uncertainties in V𝒯 and process

noise in W𝒯 introduce two sources of errors in such system: a) the state estimation error

𝜉est
𝑡 := x𝑡 − x̂𝑡, and b) the control error 𝜉ctrl

𝑡 := x̂𝑡 − x̄*
𝑡 . These errors can be combined in a

vector 𝜉𝑡 = [𝜉est
𝑡

𝑇
, 𝜉ctrl

𝑡
𝑇
]𝑇 whose dynamics evolve according to (see [91]):

𝜉𝑡+1 = A𝜉𝜉𝑡 + 𝛿𝑡, 𝛿𝑡 ∈ D (5.8)

A𝜉 =

⎡⎢⎣A− LC 0𝑛𝑥

LC A+BK

⎤⎥⎦ , D =

⎡⎢⎣I𝑛𝑥 −L

0𝑛𝑥 L

⎤⎥⎦
⎡⎢⎣W𝒯

V𝒯

⎤⎥⎦ .
By design, A𝜉 is a Schur-stable dynamic system, and it is subject to uncertainties from the

convex polytope D. Then, it is possible to compute the minimal Robust Positive Invariant

(RPI) set S, that is the smallest set satisfying:

𝜉0 ∈ S =⇒ 𝜉𝑡 ∈ S, ∀ 𝛿𝑡 ∈ D, 𝑡 > 0. (5.9)

S represents the possible set of state estimation and control errors caused by uncertainties

and is used to compute X̄ and Ū. Specifically, the error between the true state x𝑡 and the
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Figure 5.2: Output feedback RTMPC generates and tracks a safe reference to satisfy con-
straints.

reference state x̄*
𝑡 is: 𝜉tot := x𝑡 − x̄*

𝑡 = 𝜉ctrl + 𝜉est. As a consequence, the effects of noise and

uncertainties can be taken into account by tightening the constraints of an amount:

X̄ := X⊖ Z, Z =

[︂
𝐼𝑛𝑥 𝐼𝑛𝑥

]︂
S, Ū := U⊖

[︂
0𝑛𝑥 K

]︂
S. (5.10)

Z (cross-section of a tube) is the set of possible deviations of the true state x𝑡 from the safe

reference x̄*
𝑡 .

Computing S. While accurately computing the minimal RPI set S for high-dimensional

systems can be challenging [91], for simplicity, we efficiently obtain S from W𝒯 and V𝒯 via

Monte Carlo simulations of Eq. (5.8), uniformly sampling instances of the uncertainties,

and by computing an outer axis-aligned bounding box of the trajectories of 𝜉. In addition,

we treat linearization errors and future changes in the reference trajectory as an additional

source of uncertainty, computing the tube based on an increased process uncertainty prior

W̄𝒯 , and numerically validating that the resulting expert is robust. While this procedure is

approximate, it was found computationally tractable and useful at estimating tubes with an

adequate level of conservativeness.Fig. 5.2 shows an example of this controller for trajectory

tracking on a multirotor, highlighting changes to the reference trajectory to respect state

constraint under uncertainties.
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5.3.2 Tube-guided Data Augmentation for Visuomotor Learning

IL objective

We denote the expert output feedback RTMPC in Eq. (5.6), Eq. (5.7) and the state observer

in Eq. (5.5) as 𝜋𝜃* . The goal is to design an IL and DA strategy to efficiently learn the

parameters 𝜃 of the policy Eq. (5.1), collecting demonstrations from the expert 𝜋𝜃* . In IL,

this objective consists in minimizing the MSE loss:

𝜃 ∈ argmin
𝜃

E𝑝(𝜏 |𝜋𝜃,𝒯 )

[︃
1

𝑇

𝑇−1∑︁
𝑡=0

‖𝜋𝜃(o𝑡,Xdes
𝑡 )− 𝜋𝜃*(o𝑡,Xdes

𝑡 )‖22

]︃

where 𝜏 := {(o𝑡,u𝑡,Xdes
𝑡 ) |𝑡=0,. . . ,𝑇} is a 𝑇+1 step (observation, action, reference) trajectory

sampled from the distribution 𝑝(𝜏 |𝜋𝜃, 𝒯 ). Such a distribution represents all the possible

trajectories induced by the student policy 𝜋𝜃 in the deployment environment 𝒯 . As observed

in [24], [62], the presence of uncertainties in 𝒯 makes IL challenging, as demonstrations are

usually collected in a training domain (𝒮) under a different set of uncertainties (W𝒮 ⊆W𝒯 ,

V𝒮 ⊆ V𝒯 ) resulting in a different distribution of training data.

Tube and ancillary controller for DA

To overcome these limitations, we design a DA strategy that compensates for the effects of

process and sensing uncertainties encountered in 𝒯 .

We do so by extending our previous approach [62] (Chapter 3), named SA, which provided

a strategy to efficiently learn a control policy (i.e., 𝜋𝜃 : R𝑛𝑥 → R𝑛𝑢) robust to process

uncertainty (W𝒯 ). SA recognized that the tube in a RTMPC [3] represents a model of the

states that the system may visit when subject to process uncertainties. SA used the tube in

[3] to guide the selection of extra states for DA, while the ancillary controller in [3] provided

a computationally efficient way to compute corresponding actions, maintaining the system

inside the tube for every possible realization of the process uncertainty.
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Tube-NeRF

Our new approach, named Tube-NeRF, employs the output feedback variant of RTMPC

presented in Section 5.3.1. This has two benefits: (i) the controller appropriately introduces

extra conservativeness during demonstration collection to account for sensing uncertainties

(via tightened constraint X̄ and Ū in Eq. (5.6)); and (ii) the tube Z in Eq. (5.10) additionally

captures the effects of sensing uncertainty, guiding the generation of extra observations for

DA. The new data collection and DA procedure is as follows.

Demonstration collection

We collect demonstrations in 𝒮 using the output feedback RTMPC expert (Section 5.3.1).

Each 𝑇 + 1-step demonstration 𝜏 consists of:

𝜏 = {(o𝑡,u𝑡, ū*
𝑡 , x̄

*
𝑡 ,X

des
𝑡 , x̂𝑡) | 𝑡 = 0, . . . , 𝑇}. (5.11)

Extra States and Actions for Synthetic Data Generation

For every timestep 𝑡 in 𝜏 , we generate 𝑁synthetic,𝑡 > 0 (details on how 𝑁synthetic,𝑡 is computed

are provided in Section 5.3.2) extra (state, action) pairs (x+
𝑡,𝑗,u

+
𝑡,𝑗), with 𝑗 = 1, . . . , 𝑁synthetic,𝑡

by sampling extra states from the tube x+
𝑡,𝑗 ∈ x̄*

𝑡 ⊕ Z, and computing the corresponding

control action u+
𝑡,𝑗 using Eq. (5.7):

u+
𝑡,𝑗 = ū*

𝑡 +K(x+
𝑡,𝑗 − x̄*

𝑡 ). (5.12)

The resulting u+
𝑡,𝑗 is saturated to ensure that u+

𝑡,𝑗 ∈ U.

Synthetic Observations Generation.

To generate the necessary data o+
𝑡,𝑗 = (ℐ+𝑡,𝑗,o+

other,𝑡,𝑗) input for the sensorimotor policy Eq.

(5.1) from the selected states x+
𝑗,𝑡, we employ observation models Eq. (5.4) available for
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the expert. In the context of learning a visuomotor policy, we generate synthetic camera

images ℐ+𝑡,𝑗 using an inverse pose estimator 𝑔−1
cam, mapping camera poses T𝐼𝐶 to images ℐ

via ℐ+𝑡,𝑗 = 𝑔−1
cam(T

+
𝐼𝐶𝑡,𝑗

), where T𝐼𝐶 denotes a homogeneous transformation matrix from a

world (inertial) frame 𝐼 to a camera frame 𝐶. 𝑔−1
cam is obtained by generating a NeRF of

the environment (discussed in more details in Section 5.4) from the images ℐ0, . . . , ℐ𝑇 in the

collected demonstration 𝜏 , and by estimating the intrinsic/extrinsic of the camera onboard

the robot. The camera poses T+
𝐼𝐶𝑡,𝑗

are obtained from the sampled states x+
𝑡,𝑗 , which includes

the robot’s position and orientation. These are computed as T+
𝐼𝐶𝑡,𝑗

= T𝐼𝐵(x
+
𝑡,𝑗)T̂𝐵𝐶𝑡,𝑗

, where

T𝐼𝐵 is the transformation from the robot’s body frame 𝐵 to the reference frame 𝐼, and

T̂𝐵𝐶𝑡,𝑗
are perturbed transformation of the nominal camera extrinsic, where perturbations

are introduced to accommodate uncertainties and errors in the extrinsics. Last, the full

observations o+
𝑡,𝑗 are obtained by computing o+

other,𝑡,𝑗, using Eq. (5.4) and a selection matrix

S:

o+
𝑡,𝑗 = (ℐ+𝑡,𝑗,o+

other,𝑡,𝑗), o+
other,𝑡,𝑗 = SCx+

𝑡,𝑗. (5.13)

Tube-guided Selection of Extra Real Observations

Beyond guiding the generation of extra synthetic data, we employ the tube of the expert

to guide the selection of real-world observations from demonstrations (𝜏) for DA. This

procedure is useful at accounting for small imperfections in the NeRF and in the camera-

to-robot extrinsic/intrinsic calibrations, further reducing the sim-to-real gap, and providing

an avenue to “ground” the synthetic images with real-world data. This involves creating

a database of the observations o in 𝜏 , indexed by the robot’s estimated state x̂, and then

selecting 𝑁real,𝑡 observations at each timestep 𝑡 inside the tube (x̂ ∈ x̄*
𝑡 ⊕ Z), adhering to

the ratio 𝑁real,𝑡/𝑁samples ≤ 𝜖, where 0 < 𝜖 ≤ 1 is a user-defined parameter that balances

the maximum ratio of real images to synthetic ones, and 𝑁samples is the desired number of

samples (real and synthetic) per timestep. The corresponding action is obtained from the

state associated with the image via the ancillary controller Eq. (5.12). The required quantity
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Figure 5.3: Architecture of the employed visuomotor student policy. The policy takes as
input a raw camera image, a reference trajectory xdes

0|𝑡 , . . . ,x
des
𝑁 |𝑡 and noisy measurements

of the altitude 𝑝𝑚𝑧 , velocity 𝑣𝑡 and tilt (roll 𝜙𝑡, pitch 𝜗𝑡) of the multirotor. It outputs an
action u𝑡, representing a desired roll, pitch, and thrust set-points for the cascaded attitude
controller. The policy additionally outputs an estimate of the state x̂𝑡, which was found
useful to promote learning of features relevant to position estimation.

of synthetic samples to generate, as discussed in Section 5.3.2, is calculated using the formula

𝑁synthetic,𝑡 = 𝑁samples −𝑁real,𝑡.

Robustification to Visual Changes

To accommodate changes in brightness and environment, we apply several transformations

to both real and synthetic images. These include solarization, adjustments in sharpness,

brightness, and gamma, along with the application of Gaussian noise, Gaussian blur, and

erasing patches of pixels using a rectangular mask.

5.4 Application to Vision-based Flight

In this section, we provide details on the design of the expert, the student policy, and the

NeRF for agile flight.

105



Task.

We apply our framework to learn to track a figure-eight trajectory (lemniscate, with velocity

up to 3.15 m/s lasting 30s), denoted T1.

Robot model.

The expert uses the hover-linearized model of a multirotor [7], with state x = [𝐼𝑝
𝑇 ,𝐼 𝑣

𝑇 ,𝐼 𝜙,𝐼 𝜗]
𝑇 ,

(position 𝑝 ∈ R3, velocity 𝑣 ∈ R3, roll 𝜙 ∈ R, pitch 𝜗 ∈ R, 𝑛𝑥=8), 𝐼 is an inertial reference

frame, while 𝐼 a yaw-fixed frame [7]. The control input u𝑡 (𝑛𝑢=3) is desired roll, pitch, and

thrust, and it is executed by a cascaded attitude controller.

Measurements.

The multirotor is equipped with a fisheye monocular camera, tilted 45 deg, generating images

ℐ𝑡 (size 128× 96 pixels). In addition, we assume available onboard noisy altitude 𝐼𝑝
𝑚
𝑧 ∈ R,

velocity 𝐼𝑣
𝑚 ∈ R3 and roll 𝐼𝜙𝑚, pitch 𝐼𝜗

𝑚 and yaw measurements. This is a common setup

in aerial robotics, where noisy altitude and velocity can be obtained, for example, via optical

flow and a downward-facing lidar, while roll, pitch, and yaw can be computed from an IMU

with a magnetometer, using a complementary filter [131].

Student Policy.

The student policy Eq. (5.1), shown in Fig. 5.3, takes as input an image ℐ𝑡 from the onboard

camera, the reference trajectory Xdes
𝑡 , and oother := [𝐼𝑝

𝑚
𝑧 , 𝐼𝑣

𝑚𝑇 ,𝐼 𝜙
𝑚,𝐼 𝜗

𝑚]𝑇 , and it outputs u𝑡.

A Squeezenet [132] is used to map ℐ𝑡 into a lower-dimensional feature space; it was selected

for its performance at a low computational cost. To promote learning of internal features

relevant to estimating the robot’s state, the output of the policy is augmented to predict the

current state x̂ (or x+ for the augmented data), modifying the training loss accordingly. This

output was not used at deployment time, but it was found to improve the performance.
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Output Feedback RTMPC and Observer.

The expert uses the defined robot model for predictions, discretized with 𝑇𝑠 = 0.1 s, and

horizon 𝑁 = 30 (3.0 s). X encodes safety and position limits, while U captures the maximum

actuation capabilities. Process uncertainty in W𝒯 is assumed to be a bounded external force

disturbance with magnitude between to 10 − 19% of the weight of the robot and random

direction, close to the physical limits of the platform, and the tube of the expert is computed

assuming W̄𝒯 equal to 20% of the weight of the robot. The state estimator Eq. (5.5) is

designed by using as measurement model in Eq. (5.4): ō𝑡 = x𝑡 + v𝑡 where we assume

v𝑡 ∼𝒩 (0𝑛𝑥 , [𝜎
𝑇
cam,𝜎

𝑇
other]

𝑇 ). We therefore set V𝒯 = {v𝑡 | ‖v‖∞ ≤ 3
[︀
𝜎𝑇

cam,𝜎
𝑇
other

]︀𝑇}, with

3𝜎cam = [0.6, 0.6]𝑇 (units in 𝑚) and 3𝜎other = [0.4, 0.2, 0.2, 0.2, 0.05, 0.05]𝑇 (units in 𝑚 for

altitude, 𝑚/𝑠 for velocity, and 𝑟𝑎𝑑 for tilt). These conservative but realistic parameters are

based on prior knowledge of the worst-case performance of vision-based estimators in our

relatively feature-poor flight space. The observer gain matrix L is computed by assuming

fast state estimation dynamics, (poles of A− LC at 30.0 rad/s).

Procedure to Generate the NeRF of the Environment

(i) Dataset: A NeRF of the environment, the MIT-Highbay, is generated from about 100

images collected during a single real-world demonstration of the figure-eight trajectory

(T1) intended for learning, utilizing full-resolution images (640× 480 pixels) from the

fisheye camera onboard the Qualcomm Snapdragon Flight Pro board of our UAV.1

(ii) Extrinsic/Intrinsic: The extrinsic and intrinsic parameters of the camera are estimated

from the dataset using structure-from-motion (COLMAP [133], RADTAN camera

model).

(iii) Frame Alignment: The scale and homogeneous transformation aligning the reference

frame used by the COLMAP with the reference frame used by the robot’s state estimator
1https://developer.qualcomm.com/hardware/qualcomm-flight-pro
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are determined via the trajectory alignment tool EVO [134]. This enables the integration

of the NeRF as an image rendering tool in a simulation/DA framework.

(iv) NeRF Training: Instant-NGP [88] is utilized to train the NeRF. The scaling of the

Axis-Aligned Bounding Box used by the Instant-NGP is manually adjusted to ensure

that the reconstruction is photorealistic in the largest possible volume.

(v) Images rendering for DA: Novel images are rendered using the same camera intrinsics

identified by COLMAP. The camera extrinsics, mapping from the robot’s IMU to the

optical surface, are determined via Kalibr [135], using an ad-hoc dataset. An example

of an image from the NeRF is shown in Fig. 5.1.

5.5 Evaluation

5.5.1 Evaluation in Simulation

Here we numerically evaluate the efficiency (training time, number of demonstrations),

robustness (average episode length before violating a state constraint, success rate) and

performance (expert gap, the relative error between the stage cost
∑︀

𝑡 ‖e𝑡‖2Q + ‖u𝑡‖2R of the

expert and the one of the policy) of Tube-NeRF. Note that the number of demonstrations

provides a metric useful not only to estimate real-world data collection efforts, but also

the number of environment interactions required in simulation which, depending on the

simulation environment considered, may be computationally costly (e.g., in fluid-dynamic

simulations). We use PyBullet to simulate realistic full nonlinear multirotor dynamics [7],

rendering images using the NeRF obtained in Section 5.4 – combined with realistic dynamics,

the NeRF provides a convenient framework for training and numerical evaluations of policies.

The considered task consists of following the figure-eight trajectory T1 (lemniscate, length:

300 steps) used in Section 5.4, starting from x0∼Uniform(−0.1, 0.1) ∈ R8, without violating

state constraints. The policies are deployed in two target environments, one with sensing
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Table 5.1: Robustness, performance, and demonstration efficiency of IL methods for vi-
suomotor policy learning. An approach is easy if it does not require disturbances during
the demonstration collection, and it is safe if it does not violate state constraints (e.g.,
wall collision) during training. Success Rate is the percentage of trajectories that do no
violate state constraints. Performance is the relative error between the cost of the trajectory
generated by output feedback RTMPC (expert) and the ones from the policy. Demonstration
efficiency is the number of demonstrations required to achieve at least 70% success rate.
Performance and robustness of the baselines are evaluated after 150 demonstrations, while
Tube-NeRF methods after only 2 demonstrations.

Method Training Robustness
succ. rate (%)

Performance
expert gap (%)

Demonstration
Efficiency

Robustif. Imitation Easy Safe Noise Noise,
Wind

Noise Noise,
Wind

Noise Noise,
Wind

- BC Yes Yes 95.5 13.0 83.1 21.3 30 -
DAgger Yes No 60.5 45.5 138.6 43.0 - -

DR BC No Yes 80.0 46.5 72.5 59.2 20 90
DAgger No No 67.0 62.0 82.2 59.6 90 -

TN-100 BC Yes Yes 100.0 100.0 8.3 9.1 1 1
DAgger Yes Yes 100.0 100.0 14.4 9.7 1 1

TN-50 BC Yes Yes 100.0 100.0 18.4 11.8 1 1
DAgger Yes Yes 100.0 100.0 15.4 11.2 1 1

noise affecting the measurements oother (the noise is Gaussian distributed with parameters as

defined in Section 5.4) and one that additionally presents wind disturbances, sampled from

W𝒯 (also with bounds as defined in Section 5.4).

Method and Baselines.

We apply Tube-NeRF to BC and DAgger, comparing their performance without any DA;

Tube-NeRF−𝑁samples, with 𝑁samples = {50, 100}, denotes the number of observation-action

samples generated for every timestep by uniformly sampling states inside the tube. We

additionally combine BC and DAgger with DR by applying, during demonstration collection,

an external force disturbance sampled from W𝒯 . We set 𝛽, the hyperparameter of DAgger

controlling the probability of using actions from the expert instead of the learner policy, to

be 𝛽 = 1 for the first set of demonstrations, and 𝛽 = 0 otherwise.
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Figure 5.4: Episode length (timestep before a state constraint violation, up to 300) vs. number
of demonstrations collected from the expert, and vs the training time (the time required to
collect such demonstrations in simulation, and to train the policy). This shows that policies
trained with Tube-NeRF (TN) archive full episode length after a single demonstration,
and require less than half of the training time than the best-performing baselines (DR-
based methods). Note that the lines of Tube-NeRF-based approaches vs the number of
demonstrations overlap. Shaded areas are 95% confidence intervals. Note that to focus our
study on the effects of process uncertainties and sensing noise, we do not apply visual changes
to the environment, nor the robustification to visual changes (Section 5.3.2). Evaluations
across 10 seeds, 10 times per seed.

Evaluation Details.

For every method, we: (i) collect 𝐾 new demonstrations (𝐾 = 1 for Tube-NeRF, 𝐾 = 10

otherwise) via the output feedback RTMPC expert and the state estimator; (ii) update a

student policy using all the demonstrations collected so far. Note that policies are trained
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for 50 epochs with the ADAM optimizer, learning rate 0.001, batch size 32, and terminating

training if the loss does not decrease within 7 epochs. Tube-NeRF uses only the newly

collected demonstrations and the corresponding augmented data to update the previously

trained policy; (iii) evaluate the obtained policy in the considered target environments, for

10 times each, starting from different initial states; (iv) repeat from (i). Note that in our

comparison the environment steps at its highest possible rate (simulation time is faster than

wall-clock time), providing an advantage in terms of data collection time to those methods

that require collecting a large number of demonstrations (our baselines).

Results.

Fig. 5.4 highlights that all Tube-NeRF methods, combined with either DAgger or BC, can

achieve complete robustness (full episode length) under combined sensing and process uncer-

tainties after a single demonstration. The baseline approaches require 20-30 demonstrations

to achieve a full episode length in the environment without wind, and the best-performing

baselines (methods with DR) require about 80 demonstrations to achieve their top episode

length in the more challenging environment. Similarly, Tube-NeRF requires less than half

training time than DR-based methods to achieve higher robustness in this more challenging

environment, and reducing the number of samples (e.g, Tube-NeRF-50) can further improve

the training time. The time to generate the NeRF, not shown in Fig. 4, was approximately 5

minutes (20000 epochs on an RTX 3090 GPU). Even accounting for this time, TN is signifi-

cantly faster than collecting real-world demonstrations (the 80 demonstrations required by

DR correspond to 40 minutes of real-world data, followed by the time to train the policy). In

addition, if the NeRF is combined with a simulation of the dynamics of the robot (creating a

photo-realistic simulator), our DA strategy still provides benefits in terms of performance

and training time.. Table 5.1 additionally highlights the small gap of Tube-NeRF policies

from the expert in terms of tracking performance (expert gap), and shows that increasing the

number of samples (e.g., Tube-NeRF-100) benefits performance.
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Table 5.2: Position Root Mean Squared (RMS) Tracking Errors when following a figure-eight
(lemniscate) trajectory (T1) and a circular trajectory (T2). This highlights the low errors of
the sensorimotor policy, comparable to the ones of the expert whose position is estimated via
a motion capture system. We apply wind disturbances with a leaf blower (With wind), and
extra sensing noise in the altitude, velocity and orientation input of the policy (High noise).
Note that T2 has been obtained without collecting corresponding images from a real-world
demonstration, and heavily relies on NeRF data (see Fig. 5.7). Experiments repeated 3 times,
except T2 with wind low noise (2 times), and slung-load (once).

RMSE (m, ↓) for T1: Lemniscate (30s, real-world demo.) RMSE (m, ↓) for T2: Circle (30s, No real-world demo.)

Expert + Motion Capture Student Student

No wind With wind No wind With wind Slung
load

No wind With wind

Low noise Low noise Low noise High noise Low noise High noise Low noise High noise Low noise High noise

𝑥 0.19 ± 0.00 0.20 ± 0.01 0.30 ± 0.01 0.33 ± 0.00 0.28 ± 0.02 0.40 ± 0.01 0.21 0.33 ± 0.01 0.34 ± 0.01 0.33 ± 0.00 0.34 ± 0.04

𝑦 0.17 ± 0.01 0.21 ± 0.01 0.16 ± 0.01 0.21 ± 0.01 0.26 ± 0.01 0.22 ± 0.03 0.44 0.16 ± 0.01 0.27 ± 0.01 0.22 ± 0.03 0.28 ± 0.01

𝑧 0.12 ± 0.01 0.13 ± 0.02 0.11 ± 0.01 0.20 ± 0.02 0.17 ± 0.01 0.17 ± 0.01 0.06 0.11 ± 0.08 0.15 ± 0.06 0.07 ± 0.00 0.14 ± 0.02

5.5.2 Flight Experiments

We now validate the data efficiency of Tube-NeRF highlighted in our numerical analysis by

evaluating the obtained policies in real-world experiments. We do so by deploying them

on an NVIDIA Jetson TX2 (at up to 200 Hz, TensorRT) on the MIT-ACL multirotor.

The policies take as input the fisheye images generated at 30 or 60 Hz by the onboard

camera. The altitude, velocity and roll/pitch inputs that constitute oother,𝑡 are, for simplicity,

obtained from the onboard estimator (a filter fusing IMU with poses from a motion capture

system), corrupted with additive noise (zero-mean Gaussian, with parameters as defined in

Section 5.4) in the scenarios denoted as “high noise”. We remark that no information on the

horizontal position of the UAV is provided to the policy, and horizontal localization must be

performed from images. We consider two tasks, tracking the lemniscate trajectory (T1), and

tracking a new circular trajectory (denoted T2, velocity up to 2.0 m/s, duration of 30 s). No

real-world images have been collected for T2, therefore this task is useful to stress-test the

novel-view synthesis abilities of the approach, using the NeRF and the nonlinear simulated

robot dynamics as a simulation framework. Training. We train one policy for each task,

using a single task demonstration collected with DAgger+Tube-NeRF-100 in our NeRF-based

simulated environment. During DA, we try to achieve an equal amount between synthetic
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Figure 5.5: Qualitative evaluation in experiments, highlighting the high velocity and the
challenging 3D motion that the student policy can execute under uncertainties. The policy
runs onboard the multirotors with an average inference time of about 1.5 ms. The eight-
shaped trajectory (T1) is the same trajectory used to collect the real-world images and to
generate the NeRF employed for Data Augmentation, while the circular trajectory is entirely
trained without having collected in the real world a task demonstration. This demonstrates
that our approach can be used to train vision-based policies (T2) for which no real-world
demonstration has been collected, still achieving low tracking errors (comparable to T1).

images (from the NeRF) and real ones (from the database), setting 𝜖 = 0.5. Fig. 5.7 reports

the number of sampled real images from the database, highlighting that the tube is useful

at guiding the selection of real images, but that synthetic images are a key part of the DA

strategy, as T2 presents multiple parts without any real image available.

Performance under Uncertainties.

Fig. 5.5 and Table 5.2 show the trajectory tracking performance of the learned policy under a

variety of real-world uncertainties. Those uncertainties include (i) model errors, such as poorly
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Figure 5.6: Robustness to visual uncertainties: we show images captured by the onboard
camera while using the proposed sensorimotor policy for localization and tracking of T1, with
a slung load (tape roll, 0.2 Kg) attached to the robot. The slung load (circled) repeatedly
enters the field of view of the onboard camera, without however compromising the success of
the maneuver. We hypothesize that randomly deleting patches of pixels during training (Sec.
5.3.2) contributes to achieving robustness to this disturbance.
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Figure 5.7: Number of real images sampled from the tube to perform data augmentation
using Tube-NeRF-100, as a function of time in the considered trajectory. The considered
trajectories are a Lemniscate trajectory (T1), which is the same as the one executed for
real-world data collection, and a Circle trajectory (T2), which is different from the one
executed for data collection. The results highlight that (1) the tube can be used to guide the
selection of real-world images for data augmentation and (2) the synthetic images from the
NeRF are a key component of our data augmentation strategy, as there are multiple segments
of the circular trajectory (T2) where no real images are presents, but the sensorimotor policy
successfully controls the robot in the real-world experiments.

known drag and thrust to voltage mappings; (ii) wind disturbances, applied via a leaf-blower,

(iii) sensing uncertainties (additive Gaussian noise to the partial state measurements), and (iv)

visual uncertainties, produced by attaching a slung-load that repeatedly enters the field of view

of the camera, as shown in Fig. 5.6. The video linked in Table 1.1 shows additional experiments.

These results highlight that (a) policies trained after a single demonstration collected in
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Table 5.3: Time (ms) required to generated a new action for the output feedback
RTMPC only (Expert) and the proposed sensorimotor NN policy (Policy). Our
policy is 9.8 faster (offboard) and 5.6 times faster (onboard) than the expert. We note that
the computational cost of the expert is only based on computing actions from states, while
the policy additionally performs localization (actions from images); therefore the reported
data represents a lower bound on the cost reductions introduced by the policy. For a fair
comparison, the onboard expert uses an highly-optimized C/C++ implementation. The
offboard computer, used for our numerical evaluation and training, is an AMD Threadripper
3960X with two RTX 3090. The onboard implementation (optimized for speed for both the
policy and the expert) uses an NVIDIA Jetson TX2.

Time (ms)
Computer Method Setup Mean SD Min Max

Offboard Expert (MPC only) CVXPY[118]/OSQP 30.3 41.5 4.8 244
Policy (MPC+vision) PyTorch 3.1 0.0 0.8 1.0

Onboard Expert (MPC only) CVXGEN [119] 8.4 1.4 4.5 15.9
Policy (MPC+vision) ONNX/TensorRT 1.5 0.2 1.4 9.2

our NeRF-based simulator using Tube-NeRF are robust to a variety of uncertainties while

maintaining tracking errors comparable to the ones of the expert (Table 5.2, Fig. 5.2), while

reaching velocities up to 3.5 m/s, and even though the expert localizes using a motion capture

system, while the policy uses images from the onboard camera to obtain its horizontal position.

In addition, (b) our method enables learning of vision-based policies for which no real-world

task demonstration has been collected, effectively acting as a simulation framework, as shown

by the successful tracking of T2, which relied entirely on synthetic training data for large

portions of the trajectory (Fig. 5.7), and was obtained using a single demonstration in the

NeRF-based simulator. Due to the limited robustness achieved in simulation (Table 5.1), we

do not deploy the baselines on the real robot.

Efficiency at Deployment and Latency.

Table 5.3 shows that onboard the policy requires on average only 1.5 ms to compute a new

action from an image, being at least 5.6 faster than a highly-optimized (C/C++) expert.

Note that the reported computational cost of the expert is based on the cost of control

only (no state estimation), therefore the actual computational cost reduction provided by
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the policy is even larger. Online, image capture (independent of our method, nominal light

conditions) has a latency of about 15ms, while image pre-processing and transfer to the TX2

takes less than 2ms.

Sensitivity to Uncertainties in the Visual Input.

Figure 5.8: Position tracking error under wind disturbances for T1 in simulation as a function
of different types and magnitude of noise in the visual input. PSNR is the Peak Signal
to Noise Ratio, and lower PSNR denotes a larger amount of noise corrupting the image.
The maximum noise level shown corresponds to to 0% success rate. Contour lines in the
Comparison plot show the density of the errors.

We study the closed-loop performance of the policy under different types of uncertainties

in the visual input by monitoring the position tracking error (in simulation, tracking T1,

under wind) as a function of different types and magnitudes of noise applied to the images

rendered by the NeRF and input to the policy. We consider 1) Gaussian noise, representing

the presence of high-frequency disturbances/uncertainties such as new visual features in the

environment, and 2) Gaussian blur, capturing visual changes that reduce high-frequency

features (e.g., weather changes, and/or the effects of using a low-quality NeRF for training).

The results in Fig. 5.8 highlight that 1) the visual input plays a key role in the output of

the policy and, while our approach is not specifically designed for environments with rapidly

changing visual appearance, it also shows 2) the overall robustness of the policy to visual

uncertainties. Last, the comparison of the effects of the two types of noise highlights that 3)

the policy has lower sensitivity to the presence of new high-frequency visual uncertainties,
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as the position errors grow slower when more Gaussian noise is applied (lower PSNR) than

for Gaussian blur. Note that the y axis of all the plots corresponds to the Average Absolute

Position Error (m).

5.6 Summary

This Chapter presented Tube-NeRF, an efficient IL of robust end-to-end visuomotor policies

that achieve real-world robustness in trajectory tracking from images on a multirotor. Tube-

NeRF leveraged output feedback RTMPC to collect demonstrations that account for process

and sensing uncertainties. In addition, properties of the controller guided a DA procedure

that used a combination of a database of real-world images, a NeRF of the environment,

and randomization procedures in image space to obtain novel relevant views. For each extra

sensorial input, a corresponding action was efficiently computed using an ancillary controller,

an integral part of the control framework. Tube-NeRF was tailored to localization and

control of a multirotor, numerically outperforming IL baselines in robustness, data, and

training-time efficiency. Real-world experiments validated the numerical finding, achieving

accurate trajectory tracking with an onboard policy (1.5 ms average inference time) that

relied entirely on images to infer the horizontal position of the robot, despite challenging 3D

motion and uncertainties.
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Chapter 6

Rapid Adaptation

6.1 Overview

In this Chapter we present Sampling Augmentation for Motion Adaptation (SAMA), a

strategy to efficiently generate a robust and adaptive DNN policy using RTMPC, enabling the

policy to compensate for large uncertainties and disturbances. The key idea of our approach,

summarized in Fig. 6.1 and Fig. 6.2, is to extend the efficient IL strategy SA [62], presented

in Chapter 3, with an adaptation scheme inspired by the recently proposed adaptive policy

learning method RMA [41]. RMA uses RL to train in simulation a fast DNN policy whose

inputs include a learned low-dimensional representation of the model/environment parameters

experienced during training. At deployment, this low-dimensional representation is estimated

online, triggering adaptation. RMA policies have demonstrated impressive adaptation and

generalization performance on a variety of robots/conditions [41]–[44]. Similar to RMA, in

our work we include to the inputs of the learned policy a low-dimensional representation of

model/environment parameters that could be encountered at deployment. These parameters

are experienced during demonstration collection from MPC and can be efficiently estimated

online, enabling adaptation. Unlike RMA, however, we bypass the challenges associated with

RL, such as reward selection and tuning, via an efficient IL procedure using our MPC-guided
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Figure 6.1: Diagram of our combined position and attitude controller, efficiently learned
from Robust Tube MPC using Imitation Learning. The adaptation module 𝜑 uses a history
of 𝑘 states 𝑥𝑡−𝑘:𝑡−1 and actions 𝑎𝑡−𝑘:𝑡−1 to estimate the extrinsics 𝑧𝑡, a low dimensional
representation of the environment parameters. This estimate allows the base policy (controller)
𝜋 to adapt to various changes in the system, reducing error in the face of model/environment
uncertainties. Selection matrix 𝑆 selects the position axis along the direction of the wind.

data augmentation strategy [62], presented in Chapter 3. We tailor the approach to the

challenging task of trajectory tracking for a multirotor, designing a policy that controls both

position and attitude of the robot and that is capable of adapting to uncertainties in the

translational and rotational dynamics. Our evaluation, performed under challenging model

errors and disturbances in a simulation environment, demonstrates rapid adaptation to in-

and out-of-distribution uncertainties while tracking agile trajectories with top speeds of 3.2

m/s, using an adaptive policy that is learned in 1.3 hours. This differs from prior RMA

work for quadrotors [44], where the focus of adaptation is only on attitude control during

quasi-static trajectories. Additionally, SAMA shows comparable performance to RTMPC

combined with a high-performance, state-of-the-art but significantly more computationally
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expensive disturbance observer (DO).

6.2 Preliminaries

Our approach leverages and modifies two key algorithms, RTMPC [136] and RMA [41].

RTMPC has been introduced in Chapter 3, while RMA is summarized in the following parts

for completeness.

6.2.1 Rapid Motor Adaptation (RMA)

RMA [41] enables learning of adaptive control policies in simulation using model-free RL.

The key idea of RMA is to learn a policy composed of a base policy 𝜋 and an adaptation

module 𝜑. The base policy is denoted as:

𝑎𝑡 = 𝜋(x𝑡, 𝑧𝑡), (6.1)

and takes as input the current state x𝑡 ∈ R𝑛𝑥 and an extrinsics vector 𝑧𝑡 ∈ R𝑛𝑧 , outputting

commanded actions 𝑎𝑡 ∈ R𝑛𝑎 . Key to this method is the extrinsics vector 𝑧𝑡, a low-

dimensional representation of an environment vector 𝑒𝑡 ∈ R𝑛𝑒 , which captures all the possible

parameters/disturbances that may vary at deployment time (i.e., mass, drag, external

disturbances, . . . ), and towards which the policy should be able to adapt. However, because

𝑒𝑡 is not directly accessible in the real world, it is not possible to directly compute 𝑧𝑡 at

deployment time. Instead, RMA produces an estimate 𝑧𝑡 of 𝑧𝑡 via an adaptation module 𝜑:

𝑧𝑡 = 𝜑(x𝑡−𝑘:𝑡−1,𝑎𝑡−𝑘;𝑡−1), (6.2)

whose input is a history of the 𝑘 past states x𝑡−𝑘:𝑡−1 and actions 𝑎𝑡−𝑘:𝑡−1 at deployment,

enabling rapid adaptation.

Learning 𝜑 and 𝜋 is divided in two phases.
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Phase 1: Base Policy and Environment Factor Encoder

In Phase 1, RMA trains the base policy 𝜋 and an intermediate policy, the environment factor

encoder 𝜇:

𝑧𝑡 = 𝜇(𝑒𝑡) (6.3)

which takes as input the vector 𝑒𝑡 and produces the extrinsics vector 𝑧𝑡. The two modules are

trained using model-free RL (e.g., PPO [137]) in a simulation environment subject to instances

𝑒𝑡 of the possible model/environment uncertainties, and leveraging a reward function that

captures the desired control objective. Using this procedure, RL discovers policies that can

perform well under disturbances/uncertainties.

Phase 2: Adaptation Module

The adaptation module 𝜑 is obtained by generating a dataset of state-action histories in

simulation via

𝑧𝑡 = 𝜑(x𝑡−𝑘:𝑡−1,𝑎𝑡−𝑘;𝑡−1), (6.4)

𝑎𝑡 = 𝜋(x𝑡, 𝑧𝑡). (6.5)

Because we have access to the ground truth environment parameters 𝑒𝑡 in simulation, RMA

can compute 𝑧𝑡 at every timestep using Eq. (6.3), allowing us to train 𝜑 via supervised

regression, minimizing the MSE loss ‖𝑧𝑡 − 𝑧𝑡‖2. This is done iteratively, by alternating the

collection of on-policy rollouts with updates of 𝜑.

6.3 Approach

The proposed approach, summarized in Fig. 6.2, consists in a three phase policy learning

procedure:
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Figure 6.2: Schematic representation of Sampling Augmentation for Motion Adaptation
(SAMA), our proposed approach for efficient learning of adaptive polices from MPC. The
key idea of SAMA consists in leveraging an efficient Imitation Learning strategy, Sampling
Augmentation (SA) [62], to collect demonstrations and perform data augmentation using
a Robust Tube MPC. This efficiently generated data is used to train a student policy
conditioned on a latent representation 𝑧𝑡 of environment and robot parameters 𝑒𝑡. Following
the Rapid Motor Adaptation (RMA) [41] procedure, we then train an adaptation module
that can produce an estimate 𝑧𝑡 of these environment parameters from a sequence of past
states and actions. This approach enables efficient learning of a robust, adaptive policy from
MPC without leveraging RL, avoiding any reward tuning and making use of available priors
on the model of the robot.
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6.3.1 Phase 0: Robust Tube MPC Design

As in RMA, we train our policies in a simulation environment implementing the full nonlinear

dynamic model of the robot/environment, with parameters (model/environment uncertainties,

disturbances...) captured by the environment parameter vector 𝑒. At each timestep 𝑡, each

entry in 𝑒 may change with some probability 𝑝, with entries changing independently of

each other (see Table 6.1 for more details on the distributions of 𝑒 in the train and test

environments). Whenever 𝑒 changes, we update the RTMPC as follows. First, since the

controller uses linear system dynamics, for a given environment parameter vector 𝑒𝑡 at time 𝑡

we compute a discrete-time linear system by discretizing and linearizing the full nonlinear

system dynamics, obtaining:

x𝑡+1 = A(𝑒𝑡)x𝑡 +B(𝑒𝑡)u𝑡. (6.6)

The linearization is performed by assuming a given desired operating point; for our multirotor-

based evaluation, this point corresponds to the hover condition.

Second, the feedback gain K𝑡 for the ancillary controller is updated by solving the infinite

horizon, discrete-time LQR problem using (A(𝑒𝑡),B(𝑒𝑡),Q𝑥,R𝑢), leaving the tuning weights

Q𝑥, R𝑢 fixed. Last, we compute the robust control invariant set Z𝑡 employed by RTMPC

from the resulting K𝑡, A(𝑒𝑡), B(𝑒𝑡), and a given W. Due to the computational cost of

precisely computing Z𝑡 (from K𝑡, A(𝑒𝑡), B(𝑒𝑡), and W), we generate an outer-approximation

of Z𝑡 via Monte Carlo simulation. This is done by computing the axis-aligned bounding box

of the state deviations obtained by perturbing the closed loop system AK𝑡 with randomly

sampled instances of w ∈W. The set W is designed to capture the effects of linearization

and discretization errors, as well as errors that are introduced by the learning/parameter

estimation procedure.
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6.3.2 Phase 1: Base Policy and Environment Factor Encoder Learn-

ing via Efficient Imitation

We now describe the procedure to efficiently learn a base policy 𝜋 and an environment factor

encoder 𝜇 in simulation. Similar to RMA, our base policy takes as input the current state

x𝑡, an extrinsics vector 𝑧𝑡 and, different from RMA, a reference trajectory Xdes
𝑡 (as defined

in Chapter 3). It outputs a vector of actuator commands 𝑎𝑡. As in RMA, the extrinsics

vector 𝑧𝑡 represents a low dimensional encoding of the environment parameters 𝑒𝑡, and it is

generated in this phase by the environment factor encoder 𝜇:

𝑧𝑡 = 𝜇(𝑒𝑡)

𝑎𝑡 = 𝜋(x𝑡, 𝑧𝑡,X
des
𝑡 ).

(6.7)

We jointly train the base policy 𝜋 and environment encoder 𝜇 end-to-end. However, unlike

RMA, we do not use RL, but demonstrations collected from RTMPC in combination with

DAgger [21], treating the RTMPC as an expert, and the policy in Eq. (6.7) as a student.

More specifically, at every timestep, given the environment parameters vector 𝑒𝑡, the current

state of the robot x𝑡, and the reference trajectory Xdes
𝑡 , the expert generates a control action

u𝑡 by first computing a safe reference plan X̄*
𝑡 , Ū

*
𝑡 , and then by using the ancillary controller,

as described in Chapter 3. The obtained control action is applied to the simulation with a

probability 𝛽, otherwise the applied control action is queried from the student (Eq. (6.7)).

At every timestep, we store in a dataset 𝒟 the (input, output) pairs ({Xdes
𝑡 ,x𝑡, 𝑒𝑡},u𝑡).

Tube-guided Data Augmentation. We extend the data augmentation strategy presented

in Chapter 3 to augment the collected demonstrations with extra data that accounts for the

effects of the uncertainties in W. This procedure leverages the idea that the tube Z𝑡 centered

around x̄*
0|𝑡, as computed by RTMPC, represents a model of the states that the system may

visit when subject to the uncertainties captured by the additive disturbances w ∈W, while

the ancillary controller represents an efficient way to compute control actions that ensure the
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system remains inside the tube. Therefore, at each timestep 𝑡, given the “safe” plan computed

by the expert X̄*
𝑡 , Ū

*
𝑡 , we compute extra state-action pairs (x+

𝑡 ,u
+
𝑡 ) by sampling states from

inside the tube x+
𝑡 ∈ x̄*

0|𝑡 ⊕ Z𝑡, and computing the corresponding robust control action u+
𝑡

using the ancillary controller:

u+
𝑡 = ū*

0|𝑡 +K(x+
𝑡 − x̄*

0|𝑡). (6.8)

In this way, we obtain extra (input, output) samples ({Xdes
𝑡 ,x+

𝑡 , 𝑒𝑡},u+
𝑡 ) that are added

to the training dataset 𝒟. Last, the policy in Eq. (6.7) is trained end-to-end using the

dataset 𝒟, by finding the parameters of 𝜋 and 𝜇 that minimize the following MSE loss:

‖u𝑖 − 𝜋(x𝑖, 𝜇(𝑒𝑖),Xdes
𝑖 )‖22, where 𝑖 denotes the 𝑖-th datapoint in 𝒟.

6.3.3 Phase 2: Learning the Adaptation Module

This step is performed as in RMA [41], and is described in Section 6.2.1 of this thesis.

6.4 Evaluation

6.4.1 Evaluation Approach

We evaluate the proposed approach in the context of trajectory tracking for a multirotor,

by learning to track an 8 s long, heart-shaped trajectory (♡) and an 8 s long, eight-shaped

trajectory (∞) with a maximum velocity of 3.2 m/s. All evaluation is performed on a desktop

machine with Intel i9-10920X CPUs and Nvidia RTX 3090 GPUs.

Simulation Details. Learning and evaluation are performed in simulation, implemented

by integrating a realistic nonlinear model of the dynamics of a multirotor (with 6 motors):

�̇� = 𝑣, 𝑚�̇�=𝑓cmd𝑅𝐵(𝑞)𝑧−𝑚𝑔𝑊 𝑧+𝑓drag+𝑓ext,

𝑞 =
1

2
Ω(𝜔)𝑞, 𝐽�̇�=−𝜔 × 𝐽𝜔+𝜏cmd+𝜏drag+𝜏ext. (6.9)
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Table 6.1: Robot/environment parameter ranges during training and testing. For most
parameters, the testing range is twice as wide as the training range, allowing us to evaluate
our methods under large out-of-distribution model errors and disturbances. The nominal
values are the average of the training ranges. At each timestep, each entry in 𝑒𝑡 changes with
𝑝 = 0.001 in the training environment, and 𝑝 = 0.002 in the test environment.

Parameters Units Train Range Test Range
Mass kg [1.0, 1.6] [0.8, 1.8]
Inertia (𝑥𝐵, 𝑦𝐵) kg m2 [6.6, 9.8] e-3 [4.9, 12.0] e-3
Inertia (𝑧𝐵) kg m2 [1.0, 1.5] e-2 [0.8, 1.8] e-2
Drag (translational) Ns/m [0.08, 0.12] [0.06, 0.14]
Drag (rotational) Nms/rad [8.0, 12.0] e-5 [6.0, 14.0] e-5
Arm length m [0.13, 0.20] [0.10, 0.23]
Ext. force (𝑥𝑊 , 𝑦𝑊 , 𝑧𝑊 ) N [-2.6, 2.6] [-3.2, 3.2]
Ext. torque (𝑥𝐵, 𝑦𝐵) Nm [-0.42, 0.42] [-0.53, 0.53]
Ext. torque (𝑧𝐵) Nm [-4.2, 4.2] e-2 [-4.2, 4.2] e-2

Position and velocity 𝑝, 𝑣 ∈ R3 are expressed in the world frame 𝑊 , 𝑞 ∈ SO(3) is the attitude

quaternion, 𝜔 is the angular velocity, 𝑚 is the mass and 𝐽 is the inertia matrix assumed

diagonal. The total torques 𝜏cmd and forces 𝑓cmd produced by the propellers, as expressed in

body frame 𝐵, are linearly mapped to the propellers’ thrust via a mixer/allocation matrix

(e.g., [94]). We assume the presence of isotropic drag forces and torques 𝑓drag = −𝑐𝑑𝑣𝑣 and

𝜏drag = −𝑐𝑑𝜔𝜔, with 𝑐𝑑𝑣 > 0, 𝑐𝑑𝜔 > 0, and the presence of external forces 𝑓ext and torques

𝜏ext. The environment parameter vector 𝑒𝑡 has size 13, and contains the robot/environment

parameters in Table 6.1. We use the acados integrator [125] to simulate these dynamics

with a discretization interval of 0.002 s. Note that during integration of the dynamics we

normalize the attitude quaternion to make sure it remains with unit norm.

RTMPC for Trajectory Tracking on a Multirotor. The controller has state of size

𝑛𝑥 = 12, consisting of position, velocity, Euler angles, and angular velocity. It generates

thrust/torque commands (𝑛𝑢 = 4) mapped to the 6 motor forces via allocation/mixer matrix

(𝑛𝑎 = 6). We use an adversarial heuristic to find a value for W, and specifically we assume

that it matches the external forces and torques used in training distribution (Table 6.1), as

they are close to the physical actuation limits of the platform. The reference trajectory is

a sequence of desired positions and velocities for the next 1 s, discretized with a sampling
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time of 0.04 s (corresponding to a planning horizon of 𝑁 = 25, and 300-dim vector). The

controller takes into account state constraints (i.e., available 3D flight space, velocity limits,

etc) and actuation limits, and is simulated to run at 500 Hz.

Student Policy Architecture. The base policy 𝜋 is a 3-layer Multi-Layer Perceptron (MLP)

with 256-dim hidden layers, which takes as input the current state x𝑡 ∈ R12 and extrinsics

vector 𝑧𝑡 ∈ R8 and outputs motor forces 𝑎𝑡 ∈ R6. The environment encoder 𝜇 is a 2-layer

MLP with 128-dim hidden layers, taking as input environment parameters 𝑒𝑡 ∈ R13. The

adaptation module 𝜑 projects the latest 400 state-action pairs into 32-dim representations

using a 2-layer MLP. Then, a 3-layer 1-D CNN convolves the representation across time

to capture temporal correlations in the input. The input channel number, output channel

number, kernel size, and stride for each layer is [32, 32, 8, 4]. The flattened CNN output is

linearly projected to obtain 𝑧𝑡. Like the RTMPC expert, the student policy is simulated to

run at 500 Hz.

6.4.2 Training Details and Hyperparameters

All policies are implemented in PyTorch and trained with the Adam optimizer, with learning

rate 0.001 and default parameters.

Phase 1. We train 𝜇 and 𝜋 by collecting 8 s long trajectories, with 1 s of hovering before

and after the trajectories. The expert actions are sampled at 20 Hz, resulting in 200 expert

actions per demonstration (when no additional samples are drawn from the tube). When

drawing additional samples from the tube, we do so in two different ways. The first is to

uniformly sample the tube for every demonstration we collect from the expert, extracting

𝑁samples = {25, 50, 100} samples per timestep; these methods are denoted as SAMA-𝑁samples.

In the second way, we apply data augmentation (using 𝑁samples = 100 samples per timestep)

only to the first collected demonstration, while we use DAgger only (no data augmentation)

for the subsequent demonstrations. This method is denoted as SAMA-100-FT (Fine-Tuning,

as DAgger is used to fine-tune a good initial guess generated via data augmentation). These
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different procedures enable us to study trade-offs between improving robustness/performance

(more samples) or the training time (fewer samples). Across our evaluations, we always set

the DAgger hyperparameter 𝛽 to 1 for the first demonstration and 0 otherwise.

Phase 2. Similar to previous RMA-like approaches [41]–[44], we train 𝜑 via supervised

regression.
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Figure 6.3: Performance and robustness in the training environment after Phase 1, as a
function of number of demonstrations and training time. IL allows for the learning of effective
Phase 1 policies in one hour on a single core, as opposed to RL which has been reported to
take two hours on an entire desktop machine [44]. This training time can be significantly
shortened by using tube-guided data augmentation during training.
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6.4.3 Efficiency, Robustness, and Performance

In this part, we analyze our approach on the task of performing Phase 0 and 1, as these are

the parts where our method introduces key changes compared to prior RMA work, on the

task of learning the heart-shaped trajectory (Fig. 6.6). We study the performance (average

position error from the reference trajectory) and robustness (avoiding violation of state

and actuation constraints) of our policy as a function of the total training time and the

number of demonstrations used for training. Our comparison includes the RTMPC expert

that our policy tries to imitate, as well as a policy trained only with DAgger, without any

data augmentation. Each policy is evaluated on 10 separate realizations of the training/test

environment. We repeat the procedure over 6 random seeds. All training in this part is done

on a single CPU and GPU.

Figure 6.3 shows the evaluation of the policy under a new set of disturbances sampled

from the same training distribution, defined in Table 6.1, highlighting that our tube-guided

data augmentation strategy efficiently learns robust Phase 1 policies. Compared to DAgger-

only, our methods achieve full robustness in less than half the time, and using only 20%

of the required expert demonstrations. Additionally, tube-guided methods achieve about

half the position error of DAgger for the same training time, reaching an average of 5 cm

in less than 10 minutes. Among tube-guided data augmentation methods, we observe that

fine-tuning (SAMA-100-FT) achieves the lowest tracking error in the shortest time. Figure

6.4 repeats the evaluation under a challenging set of disturbances that are outside the training

distribution (see Table 6.1). The analysis, as before, highlights the benefits of the data

augmentation strategy, as SAMA methods achieve higher robustness and performance. The

performance in this test environment confirms the trend that fine-tuning (SAMA-100-FT)

achieves good trade-offs in terms of training time and robustness. Overall, these results

highlight that our method can successfully and efficiently learn Phase 1 policies capable of

handling out-of-distribution disturbances.
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Figure 6.4: Performance and robustness in the testing environment after Phase 1, as a
function of number of demonstrations and training time. The test environment presents a set
of disturbances that the robot has never seen during training, as highlighted in Table 6.1.
Methods that rely on our tube-guided data augmentation strategy (SAMA) generalize better
than DAgger, achieving higher robustness and performance in lower time.

6.4.4 Adaptation Performance Evaluation

In this part, we analyze the adaptation performance of our approach after Phase 2. We

consider the heart-shaped and the eight-shaped trajectory. For each trajectory, we train a

𝜇 and 𝜋 in Phase 1 using SAMA-100-FT, fine-tuning for 5 DAgger iterations, collecting 10
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Figure 6.5: Performance while tracking the heart-shaped trajectory in Fig. 6.6. The robot
is subject to an out-of-training-distribution wind-like force of 6 N (along positive 𝑦-axis,
shown in shaded grey area) that is 36% larger than any external forces seen during training.
Our method (SAMA-100-FT) is computationally efficient, robust, and adaptive, as shown
by the changes in extrinsics (𝑧2) when the robot is subject to wind. Our method achieves
10% lower tracking error than RTMPC+DO, a model-based controller which is both robust
and adaptive at the cost of being computationally expensive to run online (see Table 6.3),
and which has been designed using a nominal model. We additionally maintain similar
performance to the Expert, an RTMPC that has access to the ground truth model and
disturbances and represents the best case performance of a model-based controller. This
highlights improvements over our previous work SA [62], a learning-based controller which is
robust and computationally efficient, but non-adaptive.

demonstrations per iteration during fine-tuning. Given a trained 𝜇 and 𝜋, we train 𝜑 via

supervised regression in Phase 2 (Section 6.4.2), conducting 20 iterations with 10 policy

rollouts collected in parallel per iteration. On 10 CPUs and 1 GPU, Phase 1 takes about

20 minutes and Phase 2 takes about an hour. We note that the training efficiency of our

proposed Phase 1 compares favorably to the RL-based results in [44], where the authors

report 2 hours of training time for Phase 1.

First, we evaluate the tracking performance of our adaptive controller in an environment

subject to position-dependent winds, as shown in Fig. 6.6. The wind applies 6 N of force,

a force 36% larger than any external force encountered during training. We compare our

approach with SA, our previous non-adaptive robust policy learning method [62], and with
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Figure 6.6: Tracking of a heart-shaped trajectory under strong, out-of-distribution wind-like
external force disturbances. The blue plane 𝑝𝑥=0 divides the environment into a part with
wind (𝑝𝑥≤0) and one without (𝑝𝑥>0). Our adaptive approach (SAMA-100-FT) demonstrates
an improvement on our previous work (SA), which is robust but not adaptive, and it is able to
match the performance of robust MPC combined with a disturbance observer (RTMPC+DO),
but at a fraction of its computational cost.
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Table 6.2: Average Position Error (APE) while tracking 8 s-long trajectories ♡ and ∞ in the
test environment. Each policy was evaluated over 30 realizations of the test environment.
Our approach (SAMA-100-FT) achieves successful adaptation, obtaining lower error than
our previous, non-adaptive strategy (SA), and lower or comparable errors to RTMPC+DO.

Method APE ♡ [m] APE ∞ [m]
Expert 0.058 0.104

RTMPC+DO 0.125 0.163
SA (not adaptive) [62] 0.278 0.322
SAMA-100-FT (Ours) 0.110 0.175

the RTMPC expert that has access to 𝑒𝑡 (the true value of the wind). We also consider

an RTMPC whose state has been augmented with external force/torques estimated via

a state-of-the-art nonlinear disturbance observer (RTMPC+DO) based on an Unscented

Kalman filter (UKF) [95], a method that has access to the nominal model of the robot

(matching the one used in this experiment) and ad-hoc external force/torque disturbance

estimation. The results are presented in Fig. 6.5 and Fig. 6.6. The shaded section of Fig. 6.5,

corresponding to the windy regions, highlights that SAMA-100-FT is able to adapt to a large,

previously unseen force-like disturbance, obtaining a tracking error of less than 10 cm at

convergence, unlike the corresponding non-adaptive variant (SA), which instead suffers from

a 50 cm tracking error. Fig. 6.5 additionally highlights changes in the extrinsics, which do not

depend on changes in reference trajectory but rather on the presence of the wind, confirming

the successful adaptation of the policy. Table 6.2 reports a 10% reduction in tracking error

compared to RTMPC+DO. Second, we repeat the evaluation on the challenging eight-shaped

trajectory, with the robot achieving speeds of up to 3.2 m/s, where the robot is subject to a

large set of out-of-distribution model errors: twice the nominal mass and arm length, ten

times the nominal drag coefficients, and an external torque of 2.0Nm. Table 6.2 and Fig. 6.7

highlight the adaptation capabilities of our approach, which performs comparably to the

more computationally expensive (Table 6.3) RTMPC+DO.

Efficiency at Deployment. Table 6.3 reports the time to compute a new action for each

method. On average, our method (SAMA-100-FT) is 12 times faster than the expert, and 24
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Figure 6.7: Tracking of an eight-shaped trajectory under out-of-distribution disturbances and
model errors, where mass and arm length are twice the nominal values, the drag is 10 times
the nominal, and there is a 2Nm external torque disturbance. The blue plane 𝑝𝑥=0 divides
the environment into a part with model errors (𝑝𝑥≤0) and without (𝑝𝑥>0). Our adaptive
approach (SAMA-100-FT) can adapt during agile flight, reaching top speeds of 3.2m/s, while
maintaining performance comparable to RTMPC+DO.
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Table 6.3: Time required to generate a new action; all times reported in milliseconds (ms). Our
approach (SAMA-100-FT) is on average 12× faster than the optimization-based Expert, and
24× faster than an optimization-based approach with disturbance observer (RTMPC+DO).
While our previous work (SA) [62] achieves a faster inference time than our method, it lacks
adaptation, which our method adds with minimal computational cost.

Method Setup Mean SD Min Max
Expert CVXPY 9.51 6.16 5.04 62.2

RTMPC+DO CVXPY 19.0 14.0 13.5 937
SA [62] PyTorch 0.491 7.55e-2 0.458 1.54

SAMA-100-FT (Ours) PyTorch 0.772 3.68e-2 0.669 1.58

times faster than RTMPC+DO.

6.5 Hardware Evaluation

In this section, we experimentally evaluate SAMA by deploying the obtained policies onboard

a multirotors subject to challenging disturbances. The base policy and environment encoder

are implemented in C++, and were run at 200Hz on the GPU of the onboard Nvidia Jetson

TX2. Each module required less than 0.4 ms of inference time.

6.5.1 Performance at Hover under Multiple Simultaneous Distur-

bances

In this part, we demonstrate the real-world robustness and performance of the proposed

approach when subject to simultaneous disturbances and failures. We do so by (i) attaching

a slung load (tape roll, mass approximately 0.2 kg) to the hexarotor, while (ii) turning

off one of the propellers, while (iii) applying wind disturbances with a leaf blower (wind

approximately 4.0 m/s). Such disturbances/failures are applied while the robot hovers at the

origin. The results of the experiment are reported in Fig. 6.8, demonstrating that SAMA

can successfully withstand all the disturbances applied simultaneously, achieving tracking

errors below 1 meter. We note that during training we did not explicitly simulate/collect
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Figure 6.8: Real-world robustness and performance of SAMA under the simultaneous presence
of different disturbances: (1) a slung load, (2) turning off one propeller, (3) a wind gust. The
result highlights the robustness of SAMA to multiple disturbances which have not explicitly
applied during the training phase, showcasing low tracking errors.

data under propeller failures, neither we simulated a slung-load. This result, therefore,

additionally demonstrates the generalization of the approach to scenarios not experienced

during demonstration collection and training.

6.5.2 Propeller Failure During Trajectory Tracking

In this part, we demonstrate the trajectory tracking capabilities of SAMA under a sudden

propeller failure. The results are shown in Fig. 6.9, where the UAV tracks a Lemniscate

(eight-shaped) trajectory (velocity up to 3.0m/s), when one propeller is suddenly turned off

(top). SAMA rapidly adapts to the new flight conditions, avoiding a failure (middle). Last,

the robot continues tracking the trajectory despite the failed propeller (bottom). We note

that no propeller failures were simulated/applied during data collection, therefore this result

demonstrates robustness to out of distribution scenarios even during trajectory tracking.
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Figure 6.9: Composited image demonstrating trajectory tracking capabilities of SAMA under
a sudden propeller failure. The UAV tracks a Lemniscate trajectory (velocity up to 3.0m/s),
when one propeller is suddenly turned off (top). SAMA rapidly adapts to the new flight
conditions, avoiding a failure (middle). Last, the robot continues tracking the trajectory
despite the failed propeller (bottom).
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6.6 Summary

This Chapter presented SAMA, a strategy to enable adaptation in policies efficiently learned

from a Robust Tube MPC expert using Imitation Learning and SA, the data augmentation

strategy presented in Chapter 3. We did so by leveraging an adaptation scheme inspired

by the recent RMA work [41]. Different from [41], the resulting procedure (1) avoids the

challenges of reward design and tuning in RL, leveraging imitation combined with data

augmentation, and (2) enables adaptation on both the translational and rotational dynamics

of a UAV, unlike existing work that only focuses on adaptive attitude control [44]. Our

evaluation in simulation and in real-world experiments has demonstrated successful learning

of an adaptive, robust policy that can handle strong out-of-training distribution disturbances

while controlling the position and attitude of a multirotor.
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Chapter 7

Deployments on a Sub-Gram,

Flapping-Wing Aerial Robot

7.1 Overview

In this Chapter, we present and experimentally demonstrate a computationally efficient

method for accurate, robust, MPC-based flight control on sub-gram-MAVs.

First, we present a strategy for trajectory tracking leveraging the results presented in

Chapter 3. The method uses a cascaded control scheme, where the attitude is controlled via

the geometric attitude controller in [68], which presents a large region of attraction (initial

attitude error should be <180 deg). This controller is additionally modified with a parametric

adaptation scheme, where a torque observer estimates and compensates for the effects of

slowly varying torque disturbances. Agile, robust, and real-time implementable trajectory

tracking is achieved by employing a computationally efficient deep-NN policy, trained to

imitate the response of a RTMPC, given a desired trajectory and the current state of the

robot. The NN policy is obtained using our recent IL method [62], presented in Chapter 3,

which uses a high-fidelity simulator and properties of the controller to generate training data.

A key benefit of our method [62] is the ability to train a computationally efficient policy in a

141



1 cm
0 s

1.5 s

2.4 s

3.1 s

3.5. s

4.2 s

5.4 s

6.2 s

6.8 s

Figure 7.1: Composite image showing a 7.5-second flight where the MIT SoftFly [52], a
soft-actuated, insect-scale MAV, follows a vertical circle with 5 cm radius. The robot is
controlled by a neural network (NN) policy, trained to reproduce the response of a robust
model predictive controller. Thanks to its computational efficiency, the NN controls the robot
at 2 kHz while running on a small offboard computer.

computationally efficient way (e.g., a new policy can be obtained in a few minutes), greatly

accelerating the tuning phase of the NN controller.

Second, we present a strategy for aggressive flight control, leveraging the results presented

in Chapter 4.

The proposed robust, agile approaches are experimentally evaluated on the MIT sub-

gram-MAV SoftFly [60], [69]. First, we show that our method can consistently achieve

low position tracking error on a variety of trajectories, which include a circular trajectory

(Fig. 7.1) and a ramp, while running at 2 kHz on a Baseline Target Machine, SpeedGoat
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Figure 7.2: CAD model of sub-gram MAV SoftFly that consists of four soft artificial muscles
(DEAs). We additionally show the following reference frames: inertial 𝑊 (grey), body-fixed
𝐵 (red), yaw-fixed frame 𝐼 (orange) used for control.

offboard computer. Second, we demonstrate that our strategy is robust to large external

disturbances, intentionally applied while the robot tracks a given trajectory. Last, we report

high-speed flights, achieving velocities four times higher than existing work [69].

7.2 Robot Design and Model

Reference frames. We consider an inertial reference frame 𝑊 = {𝑊x,𝑊y,𝑊z} and a

body-fixed frame 𝐵 = {𝐵x, 𝐵y, 𝐵z} attached to the CoM of the robot, as shown in Fig. 7.2.

Mechanical design. The sub-gram flapping-wing robot (Figure 7.2) consists of four

individually-controlled DEAs [52], [61] with newly-designed enhanced-endurance wing hinges

[138]. Unlike natural flying insects that actively control wing stroke and pitch motions [139],

our robot leverages system resonance (400 Hz) and passive fluid-wing interaction to generate

lift forces and support flight. [52], [61]. This design allows each of the four robot modules to

generate lift forces without producing significant torques.

Actuation model. The voltage inputs to the actuator are controlled to produce desired time-

averaged lift forces, and a linear voltage-to-lift-force mapping, 𝑓𝑖 = 𝛼𝑖𝑣𝑖 + 𝛽𝑖, is implemented

as previously shown in [52], [61]. The time-averaged lift force 𝑓𝑖 produce by each actuator 𝑖,

with 𝑖 = 1, . . . , 4, is utilized in the model for control purpose since the wing inertia is orders

of magnitude smaller than that of the robot thorax. These forces can be mapped to the total
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torque produced by the actuators 𝜏cmd,𝑥 and 𝜏cmd,𝑦 (around 𝐵x and 𝐵y, respectively) and

𝑓cmd as the total thrust force on 𝐵z via a linear mapping (mixer or allocation matrix) 𝒜:

⎡⎢⎢⎢⎢⎣
𝑓cmd

𝜏cmd,𝑥

𝜏cmd,𝑦

⎤⎥⎥⎥⎥⎦ = 𝒜

⎡⎢⎢⎢⎢⎣
𝑓1
...

𝑓4

⎤⎥⎥⎥⎥⎦ , 𝒜 =

⎡⎢⎢⎢⎢⎣
1 1 1 1

−𝑙𝑦 𝑙𝑦 𝑙𝑦 −𝑙𝑦
−𝑙𝑥 −𝑙𝑥 𝑙𝑥 𝑙𝑥

⎤⎥⎥⎥⎥⎦ , (7.1)

where 𝑙𝑥, 𝑙𝑦 represent the distance of the actuators from the CoM of the robot, as shown in

Fig. 7.2. This configuration (actuators’ placement and near-resonant-frequency operating

condition) does not generate controlled torques with respect to the body 𝑧-axis.

Translational and rotational dynamics. The MAV is modeled as a rigid body with

six degrees of freedom, with mass 𝑚 and diagonal inertia tensor J, subject to gravitational

acceleration 𝑔. The following set of Newton-Euler equations describes the robot’s dynamics:

𝑚Wv̇ =𝑓cmdR 𝐵z−𝑚𝑔 𝑊z+ 𝑊 fdrag + 𝑊 f ext,

J B�̇� =− B𝜔 × J B𝜔 + B𝜏 cmd + B𝜏 drag + B𝜏 ext,

Wṗ =𝑊v,

Ṙ =R B𝜔
∧.

(7.2)

Position p ∈ R3 and velocity v ∈ R3 are expressed in 𝑊 ; a rotation matrix R ∈ 𝑆𝑂(3)

defines the attitude, and the angular velocity B𝜔 is expressed in 𝐵; 𝜔∧ denotes the skew-

symmetric matrix of 𝜔. We assume that the dynamics are affected by external force and

torque 𝑊 f ext ∈ R3 and B𝜏 ext ∈ R3, capturing the effects of unknown disturbances, such as the

forces/torques applied by the power tethers, imperfections in the assembly and mismatches

of model parameters (e.g, mass). Assuming no wind in the environment, we also include an

isotropic drag force 𝑊 fdrag = −𝑐𝐷𝑣 𝑊v and torque B𝜏 drag = −𝑐𝐷𝜔 B𝜔, with 𝑐𝐷𝑣 > 0, 𝑐𝐷𝜔 > 0.
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Figure 7.3: Cascaded architecture for the proposed robust trajectory tracking control strategy.
The robust trajectory tracking NN controller constitutes the outer loop, and its task is
to track a desired trajectory xdes

0 , . . . ,xdes
𝑁 by generating setpoints R𝑑, 𝜔𝑑 for the cascaded

attitude controller. The attitude controller and the torque observer constitute the inner loop.
Thanks to the robustness and adaptive properties of the outer and inner loops, our approach
can withstand the external force/torque disturbances fext, 𝜏ext.

7.3 Flight Control Strategy for Trajectory Tracking

We decouple trajectory tracking and attitude control via a cascaded scheme, as shown in

Fig. 7.3. Given an 𝑁 + 1-step reference trajectory Xdes, a trajectory tracking controller

generates desired thrust 𝑓cmd, attitude R𝑑 and angular velocity 𝜔𝑑 setpoints. A nested

attitude controller then tracks the attitude commands by generating a desired torque 𝜏cmd

and by leveraging the estimated torque disturbance 𝜏ext provided by a torque observer. The

commands 𝜏cmd, 𝑓cmd are converted (in the Mixer Matrix) to desired mean lift forces 𝑓1, . . . , 𝑓4

using the Moore-Penrose inverse 𝒜† of Eq. (7.1).

In the following paragraphs, we describe, first, the adaptive attitude controller (Sec-

tion 7.3.1). Then, we present the computationally expensive trajectory-tracking RTMPC

(Section 7.3.2) and, last, the computationally efficient procedure to generate the computa-

tionally efficient, robust NN tracking policy (Section 7.3.3) used to control the real robot.
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7.3.1 Attitude Control and Adaptation Strategy

Attitude control law. The control law employed to regulate the attitude of the robot is

based on the Geometric attitude controller in [68]:

B𝜏 cmd =−K𝑅e𝑅 −K𝜔e𝜔 + B𝜔 × J B𝜔

− J(𝜔∧R⊤R𝑑𝜔𝑑 −R⊤R𝑑 B�̇�𝑑)− 𝜏ext,

(7.3)

where K𝑅,K𝜔 of size 3× 3 are diagonal matrices, tuning parameters of the controller, and

the attitude error e𝑅 and its time derivative e𝜔 are defined as in [68]:

e𝑅 =
1

2
(R⊤

𝑑R−R⊤R𝑑)
∨, e𝜔 = B𝜔 −R⊤R𝑑 B𝜔𝑑. (7.4)

The symbol (r∧)∨ = r denotes the operation transforming a 3× 3 skew-symmetric matrix

r∧ in a vector r ∈ R3. Different from [68], we assume B�̇�𝑑 = 03. While this could result in

larger tracking errors under very aggressive attitude changes, it avoids taking derivatives

of potentially discontinuous angular velocity commands, reducing actuation noise. We

additionally augment Eq. (7.3) with the adaptive term 𝜏ext, which is computed via a torque

observer. We note that only the first two components of B𝜏 cmd are used for control, as the

actuators cannot produce torque 𝜏cmd,𝑧.

Torque observer. We compensate for the effects of uncertainties in the rotational dynamics

by estimating torque disturbances B𝜏 ext via a steady state (linear) Kalman filter. These

disturbances are assumed to be slowly varying when expressed in the body frame 𝐵. The

state of the filter is x𝑜 = [B𝜔
⊤, B𝜏

⊤
ext]

⊤. We assume that the rotational dynamics, employed

to compute the prediction (a priori) step, evolve according to:

B�̇� = J−1(u𝑜 + B𝜏 ext) + 𝜂𝜔, �̇� ext = 𝜂𝜏 , (7.5)

where 𝜂𝜔, 𝜂𝜏 are assumed to be zero-mean Gaussian noise, whose covariance is a tuning
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parameter of the filter. Additionally, the prediction step is performed assuming the control

input u𝑜 = B𝜏 cmd−B𝜔×J B𝜔, which enables us to take into account the nonlinear gyroscopic

effects B𝜔 × J B𝜔 while using a computationally efficient linear observer. The measurement

update (a posteriori) uses angular velocity measurements z𝑜 = B𝜔𝑚+𝜂𝑚, assumed corrupted

by an additive zero mean Gaussian noise 𝜂𝑚, whose covariance can be identified from data or

adjusted as a tuning parameter.

7.3.2 Robust Tube MPC for Trajectory Tracking

In this part, first we present the hover-linearized vehicle model employed for control design

(Section 7.3.2) and the compensation schemes to account for the effects of linearization

(Section 7.3.2). The optimization problem solved by a linear RTMPC is the same as the one

described in Chapter 3.

Linearized Model

We linearize the dynamics Eq. (7.2) around hover using a procedure that largely follows [7],

[110]. The key differences are highlighted in the following.

First, for interpretability, we represent the attitude of the MAV via the Euler angles yaw

𝜓, pitch 𝜃, roll 𝜑 (intrinsic rotations around the 𝑧-𝑦-𝑥). The corresponding rotation matrix

can be obtained as R = R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜑), where R𝑗(𝛼) denotes a rotation of 𝛼 around the

𝑗-th axis. Additionally, we express the dynamics Eq. (7.2) in a yaw-fixed frame 𝐼, so that

𝐼x is aligned with 𝑊x. The roll 𝐼𝜑 and pitch 𝐼𝜃 angles (and their first derivative 𝐼𝜙, 𝐼𝜗)

expressed in 𝐼 can be expressed in 𝐵 via the rotation matrix R𝐵𝐼 :⎡⎢⎣𝜑
𝜃

⎤⎥⎦ = R𝐵𝐼

⎡⎢⎣𝐼𝜑
𝐼𝜃

⎤⎥⎦ ,R𝐵𝐼 =

⎡⎢⎣ cos(𝜓) sin(𝜓)

− sin(𝜓) cos(𝜓)

⎤⎥⎦ . (7.6)
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The state x of the linearized model is chosen to be:

x = [𝑊p⊤,𝑊v⊤, 𝐼𝜑, 𝐼𝜃, 𝐼𝛿𝜑cmd, 𝐼𝛿𝜃cmd]
⊤, (7.7)

where 𝐼𝛿𝜑cmd, 𝐼𝛿𝜃cmd denote the linearized commanded attitude. We chose the control input

u to be:

u = [𝐼𝜙cmd, 𝐼𝜗cmd, 𝛿𝑓cmd]
⊤, (7.8)

where 𝛿𝑓cmd denotes the linearized commanded thrust, and 𝐼𝜙cmd and 𝐼𝜗cmd are the com-

manded roll and pitch rates. The choice of x and u differs from [7], [62] as the control input

consist in the roll, pitch rates rather than 𝜃cmd, 𝜑cmd; this is done to avoid discontinuities in

𝜃cmd, 𝜑cmd, and to feed-forward angular velocity commands to the attitude controller.

The linear translational dynamics are obtained by linearization of the translational

dynamics in Eq. (7.2) around hover. Linearizing the closed-loop rotational dynamics is more

challenging, as they should include the linearization of the attitude controller. Following

[110], we model the closed-loop attitude dynamics around hover expressed in 𝐼 as:

𝐼𝜃 =
1

𝜏𝜃
(𝑘𝜃 𝐼𝜃cmd − 𝐼𝜃), 𝐼𝜃cmd = 𝐼𝜗cmd,

𝐼 �̇� =
1

𝜏𝜑
(𝑘𝜑 𝐼𝜑cmd − 𝐼𝜑), 𝐼 �̇�cmd = 𝐼𝜙cmd,

(7.9)

where 𝑘𝜑, 𝑘𝜃 are gains of the commanded roll and pitch angles, while 𝜏𝜑, 𝜏𝜃 are the respective

time constants. These parameters can be obtained via system identification.

Last, we model the unknown external force disturbance 𝑊 f ext in Eq. (7.2) as a source of

bounded uncertainty, assumed to be ‖fext‖∞ < 𝑓ext. This introduces an additive bounded

uncertainty w ∈W, with:

W := {w = [0⊤
3 ,𝑊 f⊤ext,0

⊤
4 ]

⊤ | ‖fext‖∞ < 𝑓ext}. (7.10)

Via discretization with sampling period 𝑇𝑐, we obtain the following linear, uncertain state
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space model:

x𝑡+1 = Ax𝑡 +Bu𝑡 +w𝑘, (7.11)

subject to actuation and state constrains U = {u ∈ R3|umin ≤ u ≤ umax}, and X = {x ∈

R10|xmin ≤ x ≤ xmax}.

Compensation schemes and attitude setpoints

Following [110], we apply a compensation scheme to the commands:

𝑓cmd =
𝛿𝑓cmd + 𝑔

cos(𝜑) cos(𝜃)
,

⎡⎢⎣𝜑cmd

𝜃cmd

⎤⎥⎦ =
𝑔

𝑓cmd

⎡⎢⎣𝛿𝜑cmd

𝛿𝜃cmd

⎤⎥⎦ . (7.12)

This desired orientation 𝜃cmd, 𝜑cmd is converted to a desired rotation matrix R𝑑, setpoint

for the attitude controller, setting the desired yaw angle to the current yaw angle 𝜓cmd = 𝜓.

Last, the desired angular velocity 𝜔𝑑 is computed from the desired yaw, pitch, roll rates

q̇ = [�̇�cmd, 𝜗cmd, 𝜙cmd]
⊤ via [140] 𝜔𝑑 = E𝜓,𝜃,𝜑q̇, with

E𝜓,𝜃,𝜑 =

⎡⎢⎢⎢⎢⎣
0 − sin(𝜓) cos(𝜓) sin(𝜃)

0 cos(𝜓) sin(𝜓) cos(𝜃)

1 0 − sin(𝜃)

⎤⎥⎥⎥⎥⎦ , (7.13)

and assuming the desired yaw rate �̇�cmd = 0.

7.3.3 Robust Tracking Neural Network Policy

The procedure to generate a computationally efficient NN policy capable of reproducing the

response of the trajectory tracking RTMPC in Section 7.3.2 is the one presented in Chapter 3,

and it is summarized in Fig. 7.4.

Policy input-output. The deep NN policy that we intend to train is denoted as 𝜋𝜃, with
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Figure 7.4: Imitation learning strategy employed to learn a robust NN from RTMPC. Key
idea is to collect RTMPC demonstrations in simulation and to leverage properties of RTMPC
to augment the collected demonstrations with data that improve the robustness of the trained
policy.

parameters 𝜃. Its input-outputs are the same as the ones of RTMPC in Section 7.3.2:

u𝑡 = 𝜋𝜃(x𝑡,X
des
𝑡 ). (7.14)

Policy training. Our approach, based on our previous work [62] presented in Chapter 3,

consists in the following steps:

1) We design a high-fidelity simulator implementing a discretized model (discretization

period 𝑇𝑠) of the nonlinear dynamics Eq. (7.2) and the control architecture consisting of the

attitude controller (Section 7.3.1) and RTMPC (Section 7.3.2). In the simulator, we assume

that the MAV is not subject to disturbances, setting fext = 03 and 𝜏ext = 03, and therefore

we do not simulate the torque observer.

2) Given a desired trajectory, we collect a 𝑇 + 1-step demonstration 𝒯 by simulating

the entire system controlled by RTMPC. At every timestep 𝑡 of the demonstration, we

store the inputs, output of RTMPC, with the addition of the safe plans ū*
𝑡 , x̄

*
𝑡 , obtaining

𝒯 = {(x0,u0, ū
*
0, x̄

*
0,X

des
0 ), . . . , (x𝑇 ,u𝑇 , ū

*
𝑇 , x̄

*
𝑇 ,X

des
𝑇 )}.

3) We generate a dataset of (inputs, output) of the controller, using the data ob-
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tained from the collected demonstration 𝒯 . The obtained dataset 𝒟 has the form 𝒟 =

{({x0,X
des
0 },u0), . . . , ({x𝑇 ,Xdes

𝑇 },u𝑇 )}.

4) For every timestep 𝑡 in 𝒯 , we augment the dataset 𝒟 by generating 𝑁augm extra (state,

action) pairs (x+
𝑖,𝑡,u

+
𝑖,𝑡) by uniformly sampling extra states from the tube (x+

𝑖,𝑡 ∈ x̄*
𝑡 ⊕ Z), and

by computing the corresponding actions u+
𝑖,𝑡 with the ancillary controller:

u+
𝑖,𝑡 = ū*

𝑡 +K(x+
𝑖,𝑡 − x̄*

𝑡 ). (7.15)

The extra datasets 𝒟+
𝑡 = {({x+

𝑖,𝑡,X
des
𝑡 },u+

𝑖,𝑡)
𝑁augm
𝑖=1 }, 𝑡 = 0, . . . , 𝑇 are then combined with 𝒟,

obtaining the training dataset. This data augmentation procedure [62] generates data that

can compensate for the effects of uncertainties in W. This procedure has also the potential

to reduce the time needed for the data collection phase over other existing IL methods, as

Eq. (7.15) can be computed efficiently. We note that step 2 − 4 should be repeated for

every possible trajectory the policy needs to learn to follow, using IL methods such as BC

or DAgger [21], [62]. However, as shown in Chapter 3 (our previous work [62]), if a set of

sufficiently representative trajectories is collected during training, then the policy is capable

to execute new slightly different trajectories, achieving generalization capabilities.

5) The optimal parameters 𝜃* for the policy Eq. (7.14) are then found by training the

policy on the collected and augmented dataset, minimizing the MSE loss.

7.4 Flight Control Strategy for Aggressive, Near-Minimum

Time Flight

The control approach and policy learning procedure for aggressive, near-minimum time flight

follows the one detailed in Chapter 4, with the difference that we do not employ any cascaded

attitude controller. We employ instead an ancillary NMPC that directly commands body

torques and thrust (𝑛𝑢 = 3) that are directly mapped into voltage signals for the actuators
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via Eq. (7.1); the ancillary NMPC uses the model of the robot presented in Section 7.2, with

its state consisting of position, velocity, attitude and angular velocity (𝑛𝑥 = 13). The choice

of not using an attitude controller was made to further simplify control design, avoiding

the need to tune the attitude controller separately and avoiding the need to account for its

dynamics.

7.5 Experimental Evaluation

The robustness and performance of the described flight controllers are experimentally evaluated

on the soft-actuated MIT SoftFly [60]. Note that for the near-minimum time flights in

Section 7.5.2 we employ the hardware variant described in [69]. Key differences between the

two versions include inertia coefficients and arm lenghts (𝑙𝑥 = 𝑙𝑦 in hardware version [69]).

Experimental setup.

The flight experiments are performed in an environment equipped with 6 motion-capturing

cameras (Vantage V5, Vicon). This system provides positions and orientations of the robot,

and velocities are obtained via numerical differentiation. The controller runs on the Baseline

Target Machine (Speedgoat) using the Simulink Real-Time operating system; its commands

are converted to sinusoidal signals for flapping motion at 10 kHz. Voltage amplifiers (677𝐵,

Trek) are connected to the controller and produce amplified control voltages to the robot.

7.5.1 Trajectory Tracking

We consider two trajectories of increasing difficulty, a position ramp, where we additionally

perturb the MAV with external disturbances, and a circular trajectory. The controller run at

2 kHz.

152



Table 7.1: Position Root Mean Squared Errors (RMSE) and Maximum Absolute Errors
(MAE) when tracking a ramp (T1), a ramp with disturbances (T2) and a circle (T3). All the
values are computed after takeoff (𝑡 > 0.5 s).

T1: Ramp (3 runs, 2.5 s) T2 (1 run, 7.0 s) T3: Circle (3 runs, 7.5 s)
RMSE (cm, ↓) MAE (cm, ↓) RMSE MAE RMSE (cm, ↓) MAE (cm, ↓)

Axis AVG MIN MAX AVG MIN MAX (cm, ↓) (cm, ↓) AVG MIN MAX AVG MIN MAX

𝑥 0.6 0.4 0.9 1.1 0.7 1.5 0.7 2.5 1.0 0.8 1.4 2.0 1.7 2.6
𝑦 0.8 0.7 0.9 1.5 1.3 1.6 1.0 2.1 1.5 1.3 1.8 2.8 2.5 3.1
𝑧 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.6 0.5 0.8

Controller and training parameters.

The parameters for the controllers are obtained via system identification, also leveraging

[141], [142]. The RTMPC has a 1-second long prediction horizon, with 𝑁 = 50 and 𝑇𝑐 = 0.02;

we set 𝑓ext to correspond to 15% of the weight force acting on the robot. State and actuation

constraints capture safety and actuation limits of the robot (e.g., max actual/commanded

roll/pitch < 25 deg, ‖𝛿𝑓cmd‖ < 80%𝑚𝑔). The employed policy is a feed-forward, fully

connected NN with 2-hidden layers, 32 neurons per layer (as in our previous work [62],

where this size has been shown to be capable to learn multiple trajectories). Its input size is

310 (current state, and reference trajectory containing desired position, velocity across the

prediction horizon 𝑁), and its output size is 3. During the experiments, we slightly tune

the parameters Q𝑥,R𝑢,K𝑅,K𝜔 to study how sensitive is our approach to tuning changes,

without observing large performance variations. We train a policy for each type of trajectory

(ramp, circle), using the ADAM optimizer, with a learning rate 𝜂 = 0.001, for 15 epochs.

Data augmentation is performed by using 𝑁augm = 200. Training each policy takes about 1

minute (for 𝑇 = 350 steps) on a Intel i9-10920 (12 cores) with two Nvidia RTX 3090 GPUs.

Task 1: Position Ramps

First, we consider a position ramp of 3 cm along the three axes of the 𝑊 , with a duration of

1 s. The total flight time in the experiment is of 3 s, and we repeat the experiment three

times. This is a task of medium difficulty, as the robot needs to simultaneously roll, pitch
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Figure 7.5: Performance of the proposed flight control strategy in Task 1 (T1), where the
robot follows a 3.5 s ramp trajectory on 𝑥-𝑦-𝑧. The experiment is repeated three times, and
the results are included in the shaded lines, with the exception of the roll and pitch angles,
for clarity. These results highlight the accuracy of the proposed trajectory tracking error,
which achieves a 0.6 cm position tracking RMSE on 𝑥-𝑦, and 0.2 cm on 𝑧.

and accelerate along 𝑧, but the maneuver covers a small distance (5.2 cm). Fig. 7.5 (a)

shows a time-lapse of the maneuver. Table 7.1 reports the position tracking Root Mean

Squared Error (RMSE) (computed after take-off, starting at 𝑡0 = 0.5), and shows that we

can consistently achieve sub-centimeter RMSE on all the axes, with a maximum absolute

error (MAE) smaller than 1.6 cm. This is a 60% reduction over the 4.0 cm MAE on 𝑥-𝑦

reported in [60] for a hover task. Remarkably, the altitude MAE is only 0.2 cm, with a similar

reduction (60%) over [60] (0.5 cm). Fig. 7.5 shows the robot’s desired and actual position and

attitude across multiple runs (shaded lines), demonstrating repeatability. Fig. 7.5 additionally

highlights the role of the torque observer, which estimates a position-dependent disturbance,

possibly caused by the forces applied by the power cables, or by the safety tether.

Task 2: Rejection of Large External Disturbances

Next, we increase the complexity of the task by intentionally applying strong disturbances

with a stick to the safety tether (Fig. 7.6 (a)), while tracking the same ramp trajectory in

Task 1. This causes accelerations > 0.25 g. Fig. 7.6 reports position, attitude, and estimated

disturbances, where the contact periods have been highlighted in orange. Table 7.1 reports

RMSE and MAE. From Fig. 7.6 (b) we highlight that a) the position of the robot remains

close to the reference (< 2.5 cm MAE on 𝑥-𝑦) and, surprisingly, the altitude is almost
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Figure 7.6: Robustness of the proposed flight control strategy when applying large force/torque
disturbances to the MAV while tracking a 6.0 s ramp trajectory on 𝑥-𝑦-𝑧, our Task 2 (T2).
These results highlight that the robot is not destabilized by the large disturbances, achieving
an impressive 0.3 cm MAE on the 𝑧 axis. The fast attitude dynamics additionally enable the
robot to recover in only 200 ms.

unperturbed (0.3 cm MAE). b) the robot, thanks to its small inertia, recovers quickly from

the large disturbances, being capable to permanently reduce (after impact, until the next

impact) its acceleration by 50% in less than 200 ms; c) despite the impulse-like nature of the

applied disturbance, the torque observer detects some of its effects.

Task 3: Circular Trajectory

Last, we track a circular trajectory along the 𝑥-𝑧 axis of 𝑊 for three times. The trajectory

has a duration of 7.5 s (including takeoff), with a desired velocity of 5.2 cm/s, and the circle

has a radius of 5.0 cm. A composite image of the experiment is shown in Fig. 7.1. Fig. 7.7

provides a qualitative evaluation of the performance of our approach, while Table 7.1 reports

the RMSE of position tracking across the three runs. These results highlight that: a) in line

with Task 1, our approach consistently achieves mm-level accuracy in altitude tracking (3

mm average RMSE on 𝑧), and cm-level accuracy in 𝑥-𝑦 position tracking (RMSE < 1.8 cm,

MAE < 3.1 cm); b) the external torque observer plays an important role in detecting and

compensating external torque disturbances, which corresponds to approximately 30% of the

maximum torque control authority around 𝐵𝑥.

155



time (s)

10-5
-7

0

7
cm

0 42 6 8

0

7

14

cm

-7

0

7

2 60 4 8
time (s)

-2

0

2

cm
N

m

ext,x ext,ypz reference

py referencepx reference

Figure 7.7: Performance in Task 3 (T3), where the robot tracks a long (7.5 s) circular
trajectory, with a wide (5.0 cm) radius. The experiment has been repeated three times, and
the results are included in the shaded lines. These results highlight the high and repeatable
accuracy during agile flight of the RTMPC-like NN policy controlling the robot, as well as
the role of the torque observer, which is capable to estimate and compensate for the effects
of large rotational uncertainties. A composite image of the trajectory is shown in Fig. 7.1.

7.5.2 Aggressive, Near-Minimum Time Flight

In this part, we demonstrate the capabilities of the controller designed for acrobatic flights

and discussed in Section 7.4. The controller runs at 1 kHz.

Controller Design

The Ancillary NMPC has a 0.5-second long prediction horizon, with 𝑁 = 100 and 𝑇𝑐 = 0.005;

we set 𝑓ext to correspond to 30% of the weight force acting on the robot.

Task: Near-Minimum Time Point-To-Point

The task consists of reaching a desired position (horizontal movement of 30 cm) in near-

minimum time, while starting and terminating at hover (close-to-zero initial and final velocities

and accelerations). This task is challenging because it requires rapid exploitation of the
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coupling between translational dynamics (as the goal of the task consists in a translation)

and rotational dynamics (as accelerating and breaking requires large and fast rotations of

the thrust vector). The maneuver is repeated five times to demonstrate repeatability. The

learned policy (two hidden layers, 128 neurons/layer, input size 17 consisting of position,

velocity, attitude quaternion, angular velocity, desired end-position and time; output of size

3 consisting of thrust along 𝐵𝑧 and torque around 𝐵𝑥, 𝐵𝑦) ran offboard at 1 kHz, and was

trained from 4 demonstrations collected in simulation (one with data augmentation, 100

samples per timestep, and the remaining three demonstrations for fine-tuning). Take-off and

landing are also performed via the learned policy.

Figure 7.8: Composite image of the point-to-point (30 cm) maneuver performed in near-
minimum time by the MIT SoftFly. The robot moves from the right to the left of the
image (−𝑥), reaching a velocity above 1.2 m/s and a pitch angle of 50 deg. This velocity is
four times the maximum value reported in the literature of soft-actuated, insect-scale aerial
robots. The policy runs at 1 kHz on a small offboard computer. This demonstrates the
computational efficiency, performance, and robustness of the approach, which can effectively
control a sub-gram, insect-scale, soft-actuated aerial robot. The safety tether and power
cables were removed in post-processing, except for the first frame (far right).

The results are shown in Fig. 7.8 and Fig. 7.9. We highlight that:
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Figure 7.9: Velocity and attitude during the near-minimum time point-to-point maneuver.
The robot reaches a velocity of about 1.2 m/s and a pitch angle of 50 deg. The maneuver is
repeated 5 times (fastest run in solid color, other runs are in the shaded lines), demonstrating
repeatability. The part of the maneuver shown in Fig. 7.8 corresponds to the gray-shaded
area.
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• The robot moves of 30 cm horizontally in about 0.5 s, reaching a peak velocity above

120 cm/s. This velocity is four times larger than the maximum horizontal velocity ever

reported in the literature of soft-actuated, insect-scale aerial robots (30 cm/s [69]).

• During the maneuver, the robot reaches a pitch angle of about 50 deg, demonstrating

the controller’s aggressiveness and the platform’s agility. We remark that achieving such

aggressive flight was possible thanks to the approach presented in Chapter 4, which

leverages nonlinear models at time-varying operating points.

• The maximum horizontal acceleration is above 1.2 g.

These results demonstrate that the proposed approach generalizes to an insect-scale aerial

robot, achieving repeatable, low-computation, high-performance, and robust, agile flights

with an efficiently trained policy.

7.6 Summary

This Chapter has presented the first robust MPC-like neural network policy capable of

experimentally controlling a sub-gram MAV [60]. In our experimental evaluations, the

proposed policy achieved high control rates (up to 2 kHz) on a small offboard computer,

while demonstrating small (< 1.8 cm) RMS tracking errors, and the ability to withstand

large external disturbances.

In addition, we presented the first strategy to achieve aggressive and fast flights on a new

variant of a sub-gram MAV [69]. The presented control approach repeatably achieved an

horizontal velocity above 120 cm/s, being four-times faster than existing work [69], using a

policy learned from 4 demonstrations and that run at 1 kHz.
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Chapter 8

Conclusions

8.1 Summary of Contributions

This thesis has presented strategies for efficient imitation learning of computationally efficient

robust vision-based, adaptive policies from robust MPC, demonstrating their deployment

onboard UAVs of different scales.

Chapter 3 and Chapter 4 have demonstrated that it is possible to generate motor

policies from MPC that are fast and robust in the real-world, while requiring (a) few queries

to expensive controller, (b) few environment interactions, and (c) short training times.

Evaluations have validated the performance and data/computation efficiency, additionally

showing that increasing the number of samples in DA or introducing a fine-tuning procedure

can further improve performance. These findings have broad applicability beyond the MPC

and IL communities. For example, our method can serve as an efficient policy pre-training

procedure, using model and uncertainty priors, for subsequent fine-tuning via model-free RL,

reducing inefficient random exploration in RL or simplifying reward design.

Chapter 5 has relaxed the constraining assumption in Chapter 3 and Chapter 4 that full

state information is always available onboard, introducing a strategy for efficient vision-based

policy learning. Key to this achievement was the design of a DA strategy enabling efficient
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(demonstrations, training time) learning of a sensorimotor policy from MPC grounded in

the output feedback RTMPC framework theory, unlike previous DA methods that rely on

handcrafted heuristics, and used a NeRF to generate synthetic images. This approach was

deployed in real-time (on the onboard Nvidia Jetson TX2, achieving average inference time of

only 1.5 ms), demonstrating successful agile trajectory tracking with policies learned from a

single demonstration. The policy used onboard fisheye images to infer the horizontal position

of a multirotor despite aggressive 3D motion, and subject to a variety of sensing and dynamics

disturbances.

Chapter 6 has provided SAMA, an adaptation strategy for the approach in Chapter 3,

mitigating the performance degradation experienced due to uncertainties. Key to the approach

was to leverage the performance of an RMA-like [41] adaptation scheme, but without relying

on RL, therefore avoiding reward selection and tuning. The developed methodology was

applied to the task of adaptive position and attitude control for a multirotor, demonstrating

for the first time RMA-like adaptation to uncertainties that cause position and orientation

errors, unlike previous work [44] that only focuses on adaptive attitude control. Hardware

demonstrations have validated SAMA’s robustness and performance, showcasing the ability

of the approach to withstand a propeller failure even during trajectory tracking, a failure not

explicitly considered during training.

Last, Chapter 7 has presented the first computationally-efficient strategy for robust,

MPC-like control of sub-gram MAVs. First, we have presented an approach that employs a

deep-learned NN policy that is trained to reproduce a trajectory tracking RTMPC, leveraging

the methodology in Chapter 3. Second, we have presented aggressive flights (with velocities

4 times higher than previously reported in the literature), leveraging the methodology in

Chapter 4. Our evaluations were performed with two different sub-gram MAVs, therefore

additionally demonstrating generalization of our methodologies to multiple types of sub-gram

aerial robots.
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8.2 Future Work

We acknowledge many exciting opportunities for future work.

In Chapter 3 and Chapter 4, while our methodology has demonstrated real-world robust-

ness, in the future we would like to leverage DNN reachability tools [143]–[145] to provide

robustness certificates, enabling the deployment on safety-critical systems. In addition, while

easy-to-compute fixed-size approximations of the tube have been sufficient to guide our DA

strategy, future work will focus on leveraging tubes with varying cross-sections, enabling even

more aggressive expert demonstrations.

In Chapter 5, the observer employed by the expert is a dynamical system whose dynamics,

when performing DA, are approximated with a non-dynamical system; this approximation is

valid if the observer is tuned to have sufficiently fast dynamics without significant overshooting,

as done in our work. In the future, this approximation could be further improved by back-

feeding into the policy the state estimate generated by the policy, part of our multi-task

learning setup. Alternatively, an interesting extension could consists in designing a data

augmentation strategy for recurrent neural networks, for example leveraging forward/backward

reachability of the closed loop uncertain system to obtain sequences of measurements to

be used for data augmentation. Future work will additionally generalize the approach to

large visual changes in the environments by further randomization in image/NeRF space (for

example, using [146] for weather conditions), and use event-cameras to ensure performance in

poorly-lit environments. Last, it will also be interesting to leverage experts that use nonlinear

models, using the techniques developed in Chapter 4.

In Chapter 6, future work will perform a more direct comparison with RMA for quadrotors

[44], once code becomes available, and will deploy the approach to control the the MIT Softfly

[60]. Another interesting extension consists in modifying Phase 0 by leveraging the expert

and the data augmentation strategies for agile control presented in Chapter 4, enabling rapid

adaptation while performing acrobatic maneuvers.
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In Chapter 7, the presented results enable novel and exciting opportunities for agile control

of sub-gram MAVs. First, the demonstrated robustness and computational efficiency paves

the way for onboard deployment under real-world uncertainties. Second, the newly-developed

agile flight capabilities enable data collection at different flight regimes, for model discovery

and identification [141], [142]. Last, as the computational cost of a learned NN policy grows

favorably with respect to state size, we can use larger, more sophisticated models (e.g.,

based on NN trained from real-world data) for control design, further exploiting the nimble

characteristics of sub-gram MAVs.
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