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ABSTRACT

Manipulating rigid body objects in crowded environments poses significant challenges

due to the need for rapid, real-time planning and the assurance of safe operational paths.

The challenges come from varying shapes of the manipulated objects and high-dimensional

nature of manipulators.

This thesis addresses these issues by developing (1) a mixed-integer linear programming

(MILP)-based approach to plan safe paths for rigid-body objects; and (2) a learned control

barrier function (CBF) tailored for manipulators with multiple degrees of freedom (DoF)

and an associated framework CBF-RRT to enable efficient planning for robotic manipula-

tors. Comprehensive experimental results have shown that the proposed methods outperform

baseline methods, providing tools for improving the safety and efficiency of robotic manip-

ulators in complex environments.
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Chapter 1

Introduction

Robotic manipulators are becoming increasingly prevalent in our lives, ranging from stacking

packages in the warehouse, assembling products on manufacturing lines to performing every-

day tasks in household environments. Despite the increasing popularity of robotic manipu-

lators in these real-world scenarios, the need for rapid, real-time planning and guaranteeing

safe execution of the operational paths still presents significant challenges, particularly in

densely crowded environments. The challenges come from varying shapes of the manipu-

lated objects and high-dimensional nature of manipulators. In this chapter, we will discuss

the specific problems and challenges this thesis addresses, highlight our contributions, and

provide an outline of the thesis.

1.1 Planning Safe Paths in Robotic Manipulation

Safe path planning in robotic manipulation must consider both the paths of the manipulated

objects and the manipulator. However, the challenges associated with these two components

are distinct, and this thesis addresses them separately.
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1.1.1 Rigid-body Objects

The first challenge addressed in this thesis is planning a path for manipulated objects of

various shapes, which is tightly related to Piano Mover’s Problem. The Piano Mover’s

Problem [1] asks whether one can find a sequence of rigid body motions from a given ini-

tial position to a desired final position, subject to certain geometric constraints during the

motion. The difficulty over planning for point objects comes from the dimension of the

objects, which prevents the feasibility of naively tracking the motion of a points, especially

when narrow corridors are presented in the environment and a followed higher-dimension

configuration space of SE(2) or SE(3) rather than R2 or R3. This problem has inspired

many motion planning works, mainly streamed as sampling-based and optimization-based

methods.

Sampling-based methods like probabilistic roadmap (PRM) [2] are widely adopted be-

cause of their simplicity. The approaches employ discrete collision detection, which is

straightforward and efficient but highly dependent on the chosen resolution. Setting im-

proper parameters can lead to missed obstacles, resulting in invalid paths. In contrast,

optimization-based methods, such as Mixed-Integer Linear Programming (MILP) [3], [4] or

Graphs of Convex Sets (GCS) [5] offer a more robust solution by directly incorporating

collision avoidance into the formulations. These methods, unlike sampling-based methods,

ensure paths being collision-free by design, thus bypassing the dependency of resolution in

collision detection.

Despite their advantages, current optimization formulations come with their own set of

challenges. Solving MILPs, for example, is an NP-hard problem and can be computationally

intensive as the environment complexity increases. The time to directly solve a MILP for

a feasible path grows exponentially with the number of waypoints, which is proportional to

the required maneuvers in an environment. This scalability issue makes brute-force MILP-

based methods difficult to apply. On the other hand, the effectiveness of GCS depends

18



on precise initial seeding to capture narrow passages within the configuration space, which

brings feasibility challenges to GCS methods.

To address these inefficiencies, our approach simplifies the problem by decomposing a

single large MILP into manageable, fixed-size smaller MILPs. Additionally, by focusing

directly on the workspace rather than the configuration space, our method mitigates the

challenges associated with identifying critical narrow passages, thereby enhancing efficiency

and scalability in path planning.

1.1.2 Multi-DoF Manipulators

The second challenge discussed in this thesis is safe control of manipulators with multiple

degress of freedom (DoFs) and efficient planning in the corresponding configuration space.

Despite the wide adoption of robotic manipulators in many real-world applications, real-

time planning of safe execution paths for manipulators in crowded environments can still be

challenging due to high-dimensional complex dynamics.

Sampling-based motion planning methods, such as Rapidly Exploring Random Trees

(RRT) [6], Probabilistic Roadmaps (PRM) [2], and their extensions [7]–[11] have demon-

strated their efficacy in generating collision-free paths in complex environments. However,

the high sampling complexity of those methods is prominent for manipulators. Moreover,

those methods require accurate state estimation before planning, which often assumes static

environments and precise knowledge of the shapes and positions of obstacles. The number of

samples used in RRT can be reduced if expanding a node has a higher likelihood of success,

which helps to reduce the node number for finding a solution. The expansion of a node will

terminate when a collision is detected. On the contrary to recklessly heading towards the

sampled state, using a safe steering function will substantially reduce the early termination

of expansion.

In the context of safe control, CBF has demonstrated success in rather complex robotic

systems [12], [13], including manipulators [14], [15]. However, the CBFs used in the above
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works are typically manually designed as functions over the state of the environment, requir-

ing both extensive experts’ experience and accurate estimation from sensory data. When

applying to robotic manipulator systems, the articulated nature of robots also poses an exten-

sive computation burden for state estimation to handle the varying geometry of robots [14],

[16]. For the simplicity of construction, geometric shapes of a robot are often over-approximated [16]–

[19] and CBFs are often selected in simple forms like signed distance or [14], [16] or in

quadratic form [20], [21]. The cost for simplicity is that the CBFs may be over-conservative

and a feasible control signal is not guaranteed to be found.

To address these challenges, we are inspired by the recent advances in learning CBFs for

the efficient synthesis of safe controllers, which has shown success in walking [22], flight [23]

and multi-agent setting [24], with some other attempts to extend these neural CBFs to

observation-feedback systems [25], [26]. We also combine the use of control barrier functions

(CBF) [27], [28] in multiple robotics applications for safe control to design a steering function

for sampling-based methods. Prior works [29]–[32] have shown significant advancements in

combining the safe CBF controller with sampling-based motion planning algorithms for low-

dimensional systems.

1.2 Contributions

To address the challenges associated with rigid body objects and manipulators, we present

two frameworks, respectively.

For rigid polytope objects, we propose a hybrid approach that utilizes information from

both workspace and configuration space. Our method consists of three primary stages: i)

constructing a coarse graph of convex sets in the workspace to efficiently cover obstacle-free

areas and simplify the complexity typically associated with higher-dimensional configuration

spaces; ii) building a pre-computed graph in the configuration space where nodes represent

bottleneck configurations and edges are feasible paths validated through Mixed Integer Lin-

20



ear Programming (MILPs); and iii) an online query phase that connects start and goal

configurations with the precomputed graph in the second stage and retrieves the solution

path.

The contributions can be summarized as:

1. By operating directly within the workspace, our method effectively mitigates the chal-

lenges associated with covering narrow tunnels in the free space, compared to config-

uration space-based approaches.

2. We simplify the path planning process by breaking down a large, complex optimization

problem into a series of smaller MILP problems. Each smaller problem is focused on

finding a valid path segment within a region, significantly enhancing the scalability of

our approach.

3. We conduct comprehensive experiments in both 2D and 3D environments, comparing

against baseline methods PRM and GCS. Our results demonstrate scalability with the

environment, higher feasibility, and shorter computation time.

With manipulators, we build upon the motion planning framework RRT [6] and learn

a CBF-INC to steer the system towards newly sampled configuration. CBF-INC has two

variants handling different inputs: state (signed distance) and point cloud input from Li-

DAR. Given state input, our framework CBF-INC-RRT increases the success rate by 14%

and reduces the number of explored nodes by 30% on the most challenging test cases, com-

pared with vanilla RRT and other neural-controller-enhanced RRT. CBF-INC-RRT also

doubles the success rate and halves the explored nodes, compared with the hand-crafted

CBF-enhanced RRT method by avoiding over-conservativeness. With point cloud input

setting, where many methods (like vanilla RRT and hand-crafted CBF) are not directly ap-

plicable, CBF-INC-RRT still improve the success rate by 10% on challenging cases, compared

with planning with other steering controllers.

The contributions can be summarized as:
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1. We present a CBF-INC specialized for robotic manipulators. Our neural networks

tackle high-dimensional observations and complex geometric link shapes. To the best

of our knowledge, this is the first CBF-style controller taking raw sensor input in

high-dimensional manipulators.

2. We present a framework - CBF-INC-RRT that incorporates the learned neural CBF

into the motion planning algorithm. Such a framework preserves the completeness

of traditional motion planning methods while benefiting from the safe exploration of

CBF-INC.

3. Through extensive experiments on 4D and 7D manipulators, we demonstrate that

planning algorithms using CBF-INC significantly outperform baselines, in terms of

success rate and exploration efficiency. We also show CBF-INC generalizes to dynamic

environments and evaluate CBF-INC-RRT on hardware.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 provides an overview of related works in motion planning and .

• Chapters 3 and 4 introduces our MILP-based method and CBF-INC-RRT, to tackle

the challenges for manipulated objects and manipulators, respectively. The chapters

include the problem statements, the general algorithm structure and experimental

results.

• Chapter 5 concludes by summarizing the main points of this thesis and discusses

several possible directions for future works.
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Chapter 2

Related Work

Graph-based methods. Graph-based methods are particularly suitable for scenarios re-

quiring multiple queries withn the same environment, once the graph is constructed, it can

be reused to find multiple paths. One category builds the graph of discrete configurations,

like sampling-based methods PRM [2] and lattice planners [33]. PRM randomly samples

states in C-space as nodes in the graph. Nodes in the graph are connected based on the fea-

sibility of direct paths. Lattice planners are commonly used in nonholonomic vehicle parking

scenarios and leverage high levels of parralelization [33], [34]. They use a regular grid in the

configuration space to define graph nodes [35]. And the edges are computed offline [36],

representing motions that adhere to specific constraints. However, one inherent limitation

of lattice planners is their scaling with grid resolution. Employing regular lattices across the

entire configuration space can be computationally expensive and inefficient. In contrast, our

method reduces the size of the graph by only utilizing a regular grid on a set of manifolds

within the configuration space, where the metric is strictly zero.

Another category of graph-based planners relies on space decomposition, where the graph

explicitly represent the free space. Based on constrained Delaunay triangulation [37], [38],

a complete yet non-overlapping decomposition method, previous works perform well in 2D
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environments for point objects [3], [39], either through search or by solving MILPs. However,

applying constrained Delaunay triangulation to 3D environments or MILP to non-circular

objects presents significant challenges, limiting its utility in more complex scenarios. GCS

line of works [5], [40], [41] adopts a different approach by attempting to cover the free space

with a set of convex polytopes, thereby retrieving paths through optimization. This method

is capable to work in both workspace and configuration space, thus accommodating any

shape and scaling to more than 10 dimensions.

Exact collision detection Most path-planning algorithms work with discrete collision

detection, due to their easy implementation, broad applicability, and fast execution [2], [42].

This method checks a path in C-Space by creating samples along the path and when all these

samples are checked to be collision-free, the entire path is assumed to be collision-free. While

efficient, its accuracy depends on the sampling resolution, risking missed collisions with coarse

samples or delays with overly fine-grained samples. To enhance reliability, one method is

free bubble [43], recursively bisecting the samples on the path to guarantee collision-free [44]

by calculating the maximum allowable movement without collision. Another method is

continuous collision checking [45], [46], which performs well for rigid body motions by directly

checking the collisions of the reachable set with the obstacles. But they suffer from the speed.

We integrate both methods in different modules of the algorithm, aiming for accuracy and

efficiency.

Local Safety for robotic arms. Safe deployment in the real world is crucial for general-

purpose robotic arms. Various non-learning techniques have been proposed to tackle the

collision avoidance problems on manipulators, ranging from potential field methods [47]–

[49], reachability analysis [50], to CBF [15], [16], a trusted tool for ensuring safety in con-

trol systems [27], [51]. These methods, including CBF are usually hand-crafted via signed

distance [14], [16], [52], quadratic form [20], [21] or minimum uniform scaling factor [15].

While effective for certain environments, they require substantial design efforts and perfect

knowledge of the environment. For simplicity, CBFs designed for robotic arms with multiple
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degrees of freedom (DoF) often use a set of simple convex shapes to over-approximate the

rigid body links [16]–[19], leading to over-conservative policies. Extending these approxima-

tions from one shape to another is also not straightforward.

In contrast, data-driven methods, exploiting the power of neural networks, have shown

promise in addressing complex geometric shapes of manipulators [53], [54], even when only

high-dimensional observations are available [55]. Recently, learning-based CBFs have demon-

strated potential in resolving these challenges on drones in multi-agent setting [24] and visual

navigation systems [25]. However, in robotic manipulator systems, the adoption of neural

networks in CBFs is restricted to parameter search guidance [56] due to the convoluted

collision-free configuration space.

Inductive bias in sampling-based motion planning. One stream of methods [57]–[60]

has been proposed to improve sampling-based planning methods by incorporating inductive

bias. The methods fall into two categories. One set of methods seeks to find heuristic

functions to prioritize the samples to explore, including Fast Marching Trees [61], sampling-

based A* [62], and recent GNN-related works [60], [63]. Some works also consider improving

the sampling strategy [57], [64]. However, these methods still suffer from finding a control

policy for the planned reference trajectory, especially for complex dynamics. The other

class of methods conceives motion planning problems as sequential decision-making problems

and relies on neural policies [59], [60], [65] such as imitation learning [66] or reinforcement

learning [58] in an end-to-end manner, aiming to find a collision-free trajectory directly with

a neural network. Some further consider adding explicit safety constraints during training

to accelerate [53], [67]. Though these methods have shown impressive results, they sacrifice

the completeness guarantee of many motion planning algorithms.

Some related works to the second part of this thesis are [29]–[32], which explore incor-

porating CBF into sampling-based motion planning. [30]–[32] proposed improvements on

sampling methods and [31], [32] focused on optimal planning.
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Chapter 3

Planning Paths for Rigid Objects

In this chapter, we propose a path planning algorithm for rigid body using mixed-integer

linear programming (MILP).

3.1 Planning Pipeline for Point Objects

In this paper, we consider the path planning problem of a rigid body object O. The workspace

W , the physical space where the object lies, can be R2 or R3 depending on the particular

application at hand. And the configuration space for O is SE(2) and SE(3), respectively.

A configuration is represented as q = (p,R) with a position vector p ∈ R2 or R3 and a

rotation matrix R ∈ SO(2) or SO(3). The pipeline of our method is structured into three

key stages, as shown in Fig. 3.1. We first construct a graph of convex set Gc covering the

free workspace. This stage is performed offline and the graph is reusable for multiple queries

across different objects. We exploit the lower dimensionality of the workspace compared to

the configuration space to obtain a higher coverage ratio and fewer narrow tunnels, which are

typically challenging to identify and cover. Then we construct a graph Gd in configuration

space, which is also offline. Here, the nodes represent bottleneck configurations identified

by Gc and the edges are viable paths validated through MILPs. This graph allows multiple

queries for different start and goal configurations. At the online stage, we connect the start
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and goal configuration into Gd and retrieve the solution path. Our experiment results show

that this method significantly reduces online time consumption across various objects and

environments, in both 2D and 3D settings.
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Figure 3.1: An overview of our pipeline. (a) Decomposition of the free workspace into a set
of convex polytopes. The polytopes serve as graph vertices and are interconnected if they
overlap Gc (Section 3.1.1). (b) Construction of Gd(Section 3.1.2), where each vertex is a
set of free configurations - illustrated as the set of green points enclosed by the green ring
- positioned on the boundary (blue ring) of intersections of polytopes(Section 3.1.2). We
verify all the candidate edges (gray) via MILPs, and the valid edges (blue) demonstrate the
existence of path segments between vertices (??). (c) Online query stage: the start and end
configurations are connected to graph Gd and the planned path is retrieved(Section 3.1.3).

3.1.1 Construct Coarse Graph Gc

At this stage, we aim to approximately decompose the free workspace Wfree into a set of

convex polytopes P and build a graph Gc on P as summarized in Algorithm 1. The graph

Gc is designed to be reused across various objects within the same environment.

Following [68], we first construct a visibility graph Gv := (Vv, Ev) where Vv is uniformly

sampled from W with points inside obstacles excluded, and Ev is added by checking for

collisions along the line segments connecting each pair of points within some distance us-

ing Proposition 1. During each iteration, the subroutine SampleVisibilityEdge samples

ns points on Ev that are not yet covered by the polytopes in P . The ns points are then used

as initial points for IRIS algorithm [40], after which the newly computed polytopes are added

into P . The iteration terminates when the coverage ratio of P over Ev exceeds threshold

α > 0. Subsequently, an undirected graph Gc := (Vc, Ec) is constructed with vertices Vc = P ,
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and with an edge (Pi1 , Pi2) ∈ Ec for every pair of intersected polytopes Pi1 and Pi2 .

Algorithm 1 Construct a graph of convex polytopes Gc

Require: list of obstacles Oobs, number of samples for visibility graph nv, number of samples
per iteration ns, coverage threshold α.

1: P ← ∅
2: Gv ← SampleVisibilityGraph(Oobs, nv)
3: while CheckCoverage(Ev,P) < α do
4: S ← SampleVisibilityEdge(Ev,P , ns)
5: P ← P ∪ Iris(S)
6: end while
7: Gc ← ConstructGraph(P)
8: return Gc

3.1.2 Construct Dense Graph Gd

Graph Gc is a GCS, and an optimal solution of the path planning problem for a point

object can be found via [41]. However, its direct applicability is limited when considering

non-point objects. The limitation arises because an intersection between polytopes - a valid

pathway for point objects - does not inherently guarantee feasible traversal for objects with

non-negligible dimensions and orientations.

To address this challenge, we introduce another undirected graph Gd := (Vd, Ed) that

describes the connectivity between adjacent polytopes for a specific object O, detailed in Al-

gorithm 2. Our key insight is that, for an object O to move from Pi to Pj, its center c must

traverse the boundary ∂Pij of the intersection Pij := Pi ∩ Pj.

Vertices Vd. The vertices Vd in Gd are generated through subroutine Sample&Group.

The process begins with discretizing ∂Pij into regular grids.

a) Discretization in 2D environments. For 2D, the boundary ∂Pij is a closed ring, which

can be parameterized linearly from λ = 0 to λ = 1, with the points for λ = 0 and λ = 1

being identical. Translations along this boundary are selected with a fixed interval δλ >

0. Rotations are discretized into nR > 0 possible values, with angles (θ1, · · · , θnR
) being

(1 · 2π/nR, 2 · 2π/nR, · · · , nR · 2π/nR). These correspond to rotation matrices (R1, · · · , RnR
).
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Together, the translation parameter λ and the set of rotations θ create a 2D grid of possible

configurations, as shown in Fig. 3.1.

b) Discretization in 3D environments. In 3D scenarios, the boundary ∂Pij consists of

several facets, each treated as an independent boundary without considering the connections

between them as patches. On each facet, the translations are constructed using a regu-

lar rectangle grid, and the rotations are a selected set of rotation matrices (R1, · · · , RnR
).

Together, the translations and rotations create a 3D grid on a facet.

After discretization, we collect the set of free configurations Cij on all grids, where a

free configuration refers to the object being completely contained inside Pi ∪ Pj. We then

try to connect adjacent free configurations on the same grid, which isn’t needed for point

objects as the configurations belong to the same convex polytope. This process results in

the formation of several disjoint subgraphs {Gp,ij,n}
nij

n=1, as shown in Fig. 3.1. Within each

subgraph, any two configurations can be interconnected via a path. Subsequently, the set of

vertices Vp,ij,n ⊂ Cij of n-th subgraph Gp,ij,n on ∂Pij becomes a node vij,n = Vp,ij,n ∈ Vd to

serve as potential waypoints in detailed path planning.

Edges Ed. We assess all possible connections among Vd to establish Ed. For any two vertices

vij,n1 and vik,n2 , an edge is considered if the proposed traversal between vertices is verified as

feasible by VerifyTraversal. The edge (vij,n1 , vik,n2) represents the feasibility of moving

from polytope Pj to Pk via Pi. Specifically, for a point object, as all the points in vij,n1∪vik,n2

are inside a same convex polytope, any points from vij,n1 can be connected with any points

in vik,n2 . So an edge can be added to Ed as long as they share the same polytope for a point

object.

3.1.3 Online Query

Graph Gd serves as an offline pre-computed roadmap, enabling rapid online path planning

from a start configuration qstart to an end configuration qend. By introducing new vertices

vstart = {qstart} and vend = {qend} into Gd, we can follow the same VerifyTraversal
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Algorithm 2 Construct a graph of convex polytopes Gd

Require: list of obstacles Oobs, graph Gc, number of intermediate waypoints N .
1: Vd ← ∅, Ed ← ∅
2: for (Pi, Pj) ∈ Ec do
3: vij,1, · · · , vij,nij

← Sample&Group(∂Pij,Oobs)
4: Vd ← Vd ∪ {vij,1, · · · , vij,nij

}
5: end for
6: CandidateEdgeSet = {(vij,n1 , vik,n2)|vij,n1 , vik,n2 ∈ Vd, vij,n1 ̸= vik,n2}
7: for (vij,n1 , vik,n2) ∈ CandidateEdgeSet do
8: if VerifyTraversal(vij,n1 , vik,n2 , Gc, N) then
9: Ed ← Ed ∪ {(vij,n1 , vik,n2)}

10: end if
11: end for
12: return Vd, Ed

subroutine to connect the vertices with Gd and retrieve the planned path online. The path is

composed of two parts: motion between vertices and motion inside the configuration inside

a vertex.

3.1.4 Discussion

As the problem is decomposed and solved optimally for each subproblem, the approach

does not guarantee global optimal for the entire path. However, the algorithm is capable of

finding multiple solutions or modalities, which can then serve as initial solutions for further

refinements.

3.2 From Point Objects to Polytope Objects

Moving from points to non-point objects, a significant challenge arises in verifying the motion

between waypoints due to the complex geometry of the objects. In the literature, this issue

is commonly addressed by bloating the obstacles to account for the size of objects, thereby

transforming the problem into path-planning within this bloated environment as with a

point object [39]. However, this method can be overly restrictive, especially for objects

whose shapes deviate significantly from circular or spherical forms.
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In this section, we will tackle the challenge using MILP to handle polytope objects. We

assume the rigid-body object O to be simply connected (no holes) and the line segments ex-

tending from its geometric center to each vertex are entirely contained within the boundaries

of the object. We denote the vertices of O are {vO,i}.

3.2.1 MILP Formulation

As discussed in Section 3.1.2, the traversal between vertices (vij,n1 , vik,n2) in Gd is not straight-

forward for non-point objects. Therefore, we formulate the subroutine VerifyTraversal

as an MILP, which is to verify whether there exists a piece-wise linear path from a configu-

ration in vij,n1 to another one in vik,n2 with N intermediate waypoints.

For the sake of simplicity, we’ll denote vij,n1 as u and vik,n2 as w in the discussion of MILP,

while denoting the set of polytopes {Pi, Pj, Pk} ⊂ Ec as Pc. The list of free configurations in

u or w are denoted as (qu,1, · · · , qu,nu) and (qw,1, · · · , qw,nw).

Let qt be the waypoints in the path, including the start and end configurations, indexed

by t ∈ {0, · · · , N + 1}. Each waypoint qt consists of a translational part pt and a rotational

part Rt. The translational part in a 2D scenario is given by pt = (xt, yt), and in 3D, it

extends to pt = (xt, yt, zt).

Model. The objective is to minimize the total 1-norm of the translational displacement

along the path. The entire MILP model is formulated in Eq. (3.1):

min
{pt}t,{Rt}t,B

N∑
t=0

∥pt+1 − pt∥1, (3.1a)

s.t. Eqs. (3.2), (3.3), (3.4)and (3.5). (3.1b)

Here B is the set of all binary variables we’ll introduce. The objective in Eq. (3.1a) can be

easily transformed to standard linear expressions with additional variables, which we will

not detail here.

Basic constraints. The rotational part Rt is encoded as a one-hot vector βR,t using binary
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variables. This is achieved through the constraints

Rt =

nR∑
i=1

βR,t,iRi, ∀t = 0, · · · , N + 1 (3.2a)

1 = βT
R,t1, ∀t = 0, · · · , N + 1 (3.2b)

Each element in R is a possible rotation matrix, as specified in Section 3.1.2. The index

where bR,t = 1 indicates the selection of the corresponding rotation at waypoint t.

Between two consecutive waypoints, we enforce the object to either translate or rotate, a

decision encoded by binary variable βor,t in Eq. (3.3). This constraint addresses the challenges

associated with encoding collision-free conditions in MILPs. By restricting the motion to

either translation or rotation at each step, this simplified model becomes computationally

tractable. Specifically, in 3D scenarios, we further limit the object to translational motion

only, equivalent to setting βor,t = 1.

∥pt+1 − pt∥1 ≤M · βor,t, ∀t = 0, · · · , N (3.3a)

∥βR,t+1 − βR,t∥1 ≤M(1− βor,t), ∀t = 0, · · · , N (3.3b)

βor,t = 1, (only present in 3D) ∀t = 0, · · · , N (3.3c)

The constraints for stand and end configuration are that first and last waypoints are in

u and w correspondingly. We introduce two additional one-hot vectors βstart and βend, which

are used to select specific configurations from the sets u and w, shown in Eq. (3.4).

p0 =
nu∑
i=1

βstart,ipu,i, pN+1 =
nw∑
i=1

βend,ipw,i, (3.4a)

R0 =
nu∑
i=1

βstart,iRu,i, RN+1 =
nw∑
i=1

βend,iRw,i, (3.4b)

nu∑
i=1

βstart,i = 1,
nw∑
i=1

βend,i = 1 (3.4c)
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3.2.2 Collision-Avoidance Constraint

The remaining constraint in the MILP is encoding collision avoidance for non-point objects.

While the start (q0) and end (qN+1) configurations are already ensured to be collision-free,

ensuring continuous collision avoidance throughout the motion path is critical. Here, the

collision avoidance constraint is encoded by enforcing that the each reachable set between

two consecutive waypoints (qt, qt+1) (t = 0, · · · , N) does not intersect with the boundary of

the union of related polytopes. Specifically, this is achieved by requiring that the surface of

reachable set be completely contained within the union of all relevant collision-free polytopes,

denoted as
⋃
Pc.

Compute surface of reachable set

Translation Rotation

𝐴

𝐵

𝐴′

𝐵′

𝐶

𝐶′
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Figure 3.2: Reachable set (yellow region) of 2D object.

In 2D, the reachable set is approximated as Fig. 3.2. For translation, the boundary

contains the blue edges of O at qt and qt+1 and orange lines connecting a same vertex

at two waypoints. For rotation, the difference is that the lines connecting a same vertex

at two waypoints are arcs. While the arcs can not be expressed in linear expression, we

overapproximate the arc with two line segments, with ∥MA∗∥ cos(∆θmax/2) = ∥MA∥. ∆θmax

is the maximum rotation angle allowed in one step, selected as π/3.

In 3D, only translation is allowed. The reachable set is the union of the polytopes swept

by each face of O, which is also a polytope. So the faces of the reachable set must be a subset
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of the union of the faces of O at qt and qt+1 and the parallelogram swept by each edge of O.

Collision detection between surface and polytope

We observed the following, so we just need to check each line segments (no matter 2D or

3D) to satisfy Proposition 1.

More Strict Less Strict 

Figure 3.3: Models of collision avoidance in environments with convex polytopes (blue and
yellow) and obstacles (gray). Green lines indicate collision-free paths, and red lines indicate
detected collisions. Left: This model only checks endpoints of each line segment. The
dashed red line demonstrates that endpoint-only checking is insufficient as it cuts through
an obstacle. Right [4]: This overly restrictive model allows only paths like the dotted line
where both endpoints lie within the same free region, rejecting the simpler, viable solid line.
Middle (ours): modeled by Proposition 1. This approach prevents the dashed line from
cutting through obstacles while including more direct paths between regions, like the solid
line.

Proposition 1 (Line segment inside two convex polytopes). Given two convex polytopes

Pi = {x|Aix ≤ bi}, i = 1, 2, and a line segment l with two endpoints (xa, xb), l is contained

inside the union of P1 and P2 if one of following conditions holds:

1. xa and xb are within a same polytope Pi,

2. xa and xb are within different polytopes, but there exists a point x satisfying x ∈

(P1 ∩ P2).

Proof. For condition (1), the convexity of Pi ensures that all points on l, being a line segment

between xa and xb, are also contained within Pi. If condition (2) holds, line segments (xa, x)
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and (x, xb) both satisfy condition (1). Thus, the entire line segment l remains within the

union of P1 and P2.

Corollary 1.1 (Triangle). Given two convex polytopes Pi = {x|Aix ≤ bi}, i = 1, 2, and a

triangle T , T is contained inside the union of P1 and P2 if all edges of T satisfy at least one

of the conditions in Proposition 1.

Proof. We first consider the case when all the vertices of triangle T are contained in exactly

one of Pi, there are two possible cases as demonstrated in Fig. 3.4:

𝐴

𝐵 𝐶

𝐴

𝐵 𝐶𝑀

𝑁

Figure 3.4: Left: all the vertices are contained in the same green polytope. Right: one vertex
(C) is not contained in the same polytope as vertices A,B.

1. All vertices of triangle T are contained within the same convex polytope, here referred

to as the green polytope. Since convex polytopes maintain the property that any point

on the line segment between any two points within the polytope also lies within the

polytope, it follows that the entire area of triangle T is contained within the green

polytope.

2. One vertex C is located in a different polytope from vertices A,B (right). Given

that the edge BC satisfies Proposition 1, there exists a point M on BC such that

M ∈ P1 ∩ P2. Similarly, for edge AC, there exists a point N on AC that also be-

longs to P1 ∩ P2. The triangle T , i.e. △ABC can be divided into three triangles:

△ABM,△AMN,△MNC. Since each triangle’s vertices are entirely contained within

at least one polytope and each polytope is convex, each of these smaller triangles is
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contained within a polytope. Hence, the entire triangle T is contained within the union

of P1 and P2.

When extending the conditions to allow vertices of triangle T to be contained in more

than one of Pi, it is equivalent to considering an enlargement of the polytopes P1 and P2.

Therefore, the proposition that triangle T is contained within the union of the polytopes

still holds.

Corollary 1.2 (Convex quadrilateral). Given two convex polytopes Pi = {x|Aix ≤ bi},

i = 1, 2, and a convex quadrilateral P0, P0 is contained inside the union of P1 and P2 if all

edges of P0 satisfy at least one of the conditions in Proposition 1.

Proof. Similar to the proof of triangles, we first consider the case when all the vertices of

convex quadrilateral P0 are contained in exactly one of Pi, there are four possible cases as

demonstrated in Fig. 3.5:

𝐴

𝐵 𝐶

𝐴

𝐵 𝐶
𝑀 𝑁

𝐷 𝐷

𝐴

𝐵 𝐶𝑀

𝑁
𝐷

𝐴

𝐵 𝐶

𝐷

Figure 3.5: Upper left: all the vertices are contained in the same green polytope. Upper
right: vertex C is not contained in the same polytope as the other vertices (A,B,D) Lower
left: two adjacent vertices (C,D) are contained in a different polytope as A,B. Lower right:
vertices along the same diagonal (AC and BD) are contained in a same polytope.
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1. All vertices of convex quadrilateral P0 are contained within the same convex polytope,

here referred to as the green polytope. Since convex polytopes maintain the property

that any point on the line segment between any two points within the polytope also

lies within the polytope, it follows that the entire area of convex quadrilateral P0is

contained within the green polytope.

2. One vertex C is located in a different polytope from vertices A,B,D. Given that the

edge BC satisfies Proposition 1, there exists a point M on BC such that M ∈ P1∩P2.

Similarly, for edge CD, there exists a point N on CD that also belongs to P1 ∩ P2.

The convex quadrilateral P0, i.e. △ABC can be divided into two polytopes: polytope

ABMND and △MNC. Since each small polytope’s vertices are entirely contained

within at least one Pi and each Pi is convex, each of these smaller polytopes is contained

within a polytope. Hence, the entire convex quadrilateral P0 is contained within the

union of P1 and P2.

3. Two adjacent vertices C,D are contained in a different polytope as A,B. Similarly,

there exists a point M on BC and a point N on AD such that M,N ∈ P1 ∩ P2. The

convex quadrilateral P0, i.e. △ABC can be divided into two polytopes: quadrilateral

ABMN and quadrilateral MNDC. Since each small polytope’s vertices are entirely

contained within at least one Pi and each Pi is convex, each of these smaller polytopes

is contained within a polytope. Hence, the entire convex quadrilateral P0 is contained

within the union of P1 and P2.

4. Vertices along the same diagonal (AC and BD) are contained in a same polytope.

We divide the quadrilateral ABCD into two triangles △ABD and △BCD. The two

vertices of edge BD are contained in the same convex polytope, so both two small

triangles satisfy Corollary 1.1. Hence, the entire convex quadrilateral P0 is contained

within the union of P1 and P2.

When extending the conditions to allow vertices of convex quadrilateral P0 to be contained
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in more than one of Pi, it is equivalent to considering an enlargement of the polytopes P1 and

P2. Therefore, the proposition that convex quadrilateral P0 is contained within the union of

the polytopes still holds.

So we just need to check the line segments within the sets S based on Proposition 1:

1. the edges of O at waypoints qt and qt+1

2. the line segments connecting a same vertex of O between waypoints qt and qt+1.

Accurately verifying condition 2) of Proposition 1 involves a product of two sets of variables

- the positions of xa, xb and the proportion (x, xa) occupies. This product cannot be encoded

into a mixed integer linear programming. Instead, we divide the line segments into 10 equal

parts and only check the 11 endpoints in practice. So the MILP constraints can be written

as, ∀es = (ps,start, ps,end) ∈ S:

Ai(ηps,start + (1− η)ps,end) ≤ bi +M(1− βs,i,η),

∀Pi ∈ Pc,∀η ∈ {0, 0.1, · · · , 1}
(3.5a)

∑
i

βs,i,η ≥ 1, ∀η ∈ {0, 0.1, · · · , 1} (3.5b)

βs,cond1,i ≤ βs,i,0, βs,cond1,i ≤ βs,i,1 (3.5c)∑
η

(βs,i,η + βs,j,η − 1) ≥ 1−M(1− βs,cond2,ij),

∀Pi, Pj ∈ Pc, Pi ̸= Pj

(3.5d)

∑
i

βs,cond1,i +
∑
(i,j)

βs,cond2,ij ≥ 1 (3.5e)

where βs,i,η, βs,cond1,i, βs,cond2,ij are binary variables for line segment es. βs,i,η = 1 indicates

that interpolated points are inside polytope Pi. Similarly, βs,cond1,i or βs,cond2,ij being 1 means

the corresponding condition is satisfied. Eqs. (3.5a) and (3.5b) encodes the preconditions,

while Eqs. (3.5c) and (3.5d) encodes the two conditions in Proposition 1, respectively.
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3.2.3 Revisit Vertices Vd

In constructing the vertices Vd, we connect adjacent free configurations on the grid to form

disjoint subgraphs {Gp,ij,n}nij
n=1. However, simply connecting adjacent free configurations

may lead to collisions for non-point objects. To address this, we enlarge the polytope object

O during collision checking. This ensures that movements between adjacent configurations

remain collision-free.

2D Scenario. For each discrete configuration on this grid, we conduct collision checks for

a bloated object O′. Each edge on object is O bloated by distance max(lλ, lθ) where lλ is

the maximum distance between two consecutive translation points and lθ is the maximum

distance a point on O could possibly travel between consecutive rotations, calculated by

maxi 2∥vO,i∥2 sin(π/nR).

3D Scenario. We check collisions within a ball of radius maxi |vO,i|2, which accommodates

arbitrary rotations for configurations that share the same translation. For configurations on

a same facet that share the same rotation, connectivity does not require verification due to

the convexity of Pi and Pj. This is justified as follows: Object O is divided into two parts by

the facet, one part resides entirely within Pi and the other inside Pj. This division remains

constant for configurations on the same facet under the same rotation. Given that both Pi

and Pj are convex, any swept region of each part of O remains confined within its respective

convex polytope.

3.3 Experiments

We empirically validate our method in this section. We initially set the number of inter-

mediate waypoints, N , to 0. If a solution is infeasible with N = 0, we increase N to 1.

Additionally, rotations are discretized into 12 distinct rotations for 2D environments and 24

for 3D environments, respectively. All experiments were launched on a server with 1 AMD

Ryzen Threadripper 3990X 64-Core Processor. We adopt Gurobi 10.0.0 [69] as the MILP
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solver and handle the graphs Gc, Gd with NetworkX [70].

Benchmarks. We collect 8 benchmark environments, visualized in Fig. 3.6. We consider

two type of objects: convex and non-convex. In 2D environments, the convex object is

selected as a stick of length 1.2 and width 0.1, while the non-convex object is an L-shape

with longer side 1.2, shorter side 0.8 and width 0.1. In 3D environments, the convex object

is a pad of size 1.0×0.8×0.1, and the non-convex object is L-shaped, composed of two pads

of size 1.0× 0.8× 0.1 and 1.0× 0.1× 0.4.

Baselines. We compare our method with following multi-query motion planning algorithms,

PRM [2] and GCS [71]. PRM, a sampling-based method, is evaluated across 5 trials for each

problem set with an offline phase of 15 seconds allocated to develop a roadmap before each

trial, implemented with OMPL [72]. GCS constructs a graph of convex set in configuration

space [68], followed by optimizing for an optimal path with piece-wise linear curves [71].

To ensure a fair comparison in generating an IRIS cover for both GCS and our MILP-based

method , though their application in different space, we select a same set of hyperparameters.

Specifically, we set nv = 512, α = 0.95 and select ns = 5 for our MILP-based method .

3.3.1 Planning Results

Metrics. In evaluating the performance among three methods, we assess two key metrics.

First, we measure the online time required to compute a path when a new start and goal

configuration pair is specified. Secondly, we evaluate the number of waypoints in the

solution path. This metric serves as an indicator of the path’s complexity and efficiency in

navigating from start to goal. A lower number of waypoints generally suggests a smoother

execution in practice.

Result We compare with baselines and show the numerical results in Table 3.1. We also

visualized the solution paths in Fig. 3.6.
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Online Time. Our method consistently achieved the shortest online computation times,

typically under 100 ms across most test scenarios. This efficiency contrasts with the GCS,

which struggles to find feasible solutions in several environments. This is particularly evident

in configurations involving narrow tunnels not covered by the C-IRIS strategy, which is

explored further in Section 3.3.3.

The online time for our method involves retrieving the path from Gd and connecting the

start and end configurations to the graph. In practice, we set the number of intermediate

waypoints N = 0, allowing us to leverage matrix operations for quick verification instead of

solving MILPs for faster online computation. In contrast, the online stage for GCS involves

solving an optimization problem. And for PRM, it includes discrete collision checking to

connect start and end configurations to a densely populated graph, much larger than ours.

Waypoint Comparison. GCS, which optimizes for path optimality, generally produces

smoother paths when it can find a solution, leading to fewer waypoints. In 2D environments,

our method typically finds paths with fewer waypoints compared to PRM, indicating a more

efficient pathfinding strategy. But the situation differs in 3D. This is because we over-

restrict the free configurations on the boundaries in 3D scenarios, so the solution space is

much smaller for our method and our method tends to generate more complex and twisted

paths.

Impact of Object Shapes. Our method allows the Gc to be reused for different object

shapes. With the dimensions of the object being similar, both our method and PRM are

able to maintain a consistent online time for different objects. Conversely, GCS performance

is significantly impacted by changes in object shape, altering the geometry of the free config-

uration space and affecting feasibility and computation times across various environments.
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(a) 2d-Corner. (b) 2d-bugtrap. (c) 2d-maze. (d) SCOTS. [73]

(e) 2d-peg in hole. (f) 3d piano w. (g) 3d-narrow. (h) 3d-peg-in-hole.

Figure 3.6: Visualization of planning results in 2D (obstacles: pink) and 3D scenarios with
convex objects. The start and end configurations are ploted with red, while waypoints and
their corresponding reachable sets are shown in green. In 2D scenarios, we also illustrate the
graph Gc with vertices (Vc) as blue polytopes and edges (Ec) as blue lines connecting red
dots, which represent the centers of vertex polytopes.

3.3.2 Comparison with Sampling-based Algorithms

We further compare our method with PRM as detailed in Table 3.2 for scaling. The offline

computation time for our method consistently remains around 15 seconds across all test

cases, attributable to the minimal changes in the structure of Gc and Gd besides scaling.

Similarly, the online execution time remains relatively consistent across scenarios. However,

PRM struggles with environment scaling. One critical hyperparameter affecting PRM is

the resolution of collision checking. We tested PRM’s efficiency with varying distances

between checked states—specifically at 0.25x, 0.1x, and 0.05x of the object’s length—to

assess its adaptability. PRM struggles to maintain the performance, unlike our method’s

MILP solving, which performs exact continous collision checking with infinite resolution.

3.3.3 Comparison with GCS
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(a) 2d-Corner. (b) 2d-bugtrap. (c) 2d-maze. (d) SCOTS. [73]

(e) 2d-peg in hole. (f) 3d piano w. (g) 3d-narrow. (h) 3d-peg-in-hole.

Figure 3.7: Visualization of planning results in 2D (obstacles: pink) and 3D scenarios with
L-shaped non-convex objects. The start and end configurations are ploted with red, while
waypoints and their corresponding reachable sets are shown in green. In 2D scenarios, we
also illustrate the graph Gc with vertices (Vc) as blue polytopes and edges (Ec) as blue lines
connecting red dots, which represent the centers of vertex polytopes.
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Figure 3.8: A 2D motion planning problem consists of a stick getting out of a trap and
passing through a narrow gap, where our MILP-based method is able to achieve almost 100%
coverage in workspace Fig. 3.6b. The C-space is a subset of SE(2), with two translation axes
and a periodic axis corresponding to the rotation. We visualize the collision-free C-space by
sampling (left) and the C-IRIS cover acquired from GCS (right).

The major difference between our method and GCS lies in space decomposition: our

method is workspace-based while GCS works in C-space. The dimensionality of C-space

is usually higher than that of the workspace, accompanied by an inherent geometrical and

topological differences between these two spaces. In the demonstrated scenario Fig. 3.8,
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where the objective is for a stick to navigate out of a trap through a narrow gap. The

collision-free C-space consists of two large regions, connected by a thin tunnel. Despite

Table 3.1: Comparison of our MILP-based method to baselines in all benchmark scenarios.

(a) Results for convex objects (A stick in 2D scenarios and a box for 3D).

Online Time ↓ (ms) Waypoint Number ↓
scenario ours GCS PRM ours GCS PRM

corner 2.8 607.8 105.3 8 6 20
bugtrap 15.1 INF 116.4 21 INF 40
maze 57.1 7.2e5 111.9 29 21 42

SCOTS 55.0 INF 508.3 85 INF 97
2d-peg 22.1 INF 122.6 13 INF 31

3d-easy 63.8 1.2e5 129.3 10 9 10
3d-narrow 212.4 2.0e5 1045.0 14 32 12

3d-peg 48.1 INF 287.1 20 INF 6

(b) Results for non-convex objects (L-shape for all scenarios).

Online Time ↓ (ms) Waypoint Number ↓
scenario ours GCS PRM ours GCS PRM

corner 2.8 4.1e4 105.9 9 11 19
bugtrap 11.5 INF 113.8 18 INF 40
maze 54.8 2.6e4 110.4 29 25 43

SCOTS 47.8 INF 3822.2 97 INF 98
2d-peg 12.8 INF 115.8 13 INF 28

3d-easy 66.7 2.1e5 269.3 10 5 7
3d-narrow 257.5 INF 593.7 16 INF 11

3d-peg 52.1 INF 824.7 16 INF 11

Table 3.2: Comparison of our method with PRM and RRT for an L-shaped object navi-
gating a bugtrap environment Fig. 3.6b. Online time is evaluated in both large and narrow
environments. In large settings, the mid-right corridor remains constant while dimensions
are doubled. In narrow settings, the corridor width is reduced to 60% of its original size.
The online time limit for PRM is 40s.

Time (ms) ours PRM-0.25x PRM-0.1x PRM-0.05x

original 11.6 113±0.5 109±1.4 127±22.5

large 13.4 521±823 4.2e3±2.2e3 1.5e4±1.2e4

narrow 13.0 1.4e3±2.5e3 5.8e3±4.1e3 1.2e4±1.0e4

L & N 17.4 2.2e4±1.5e4 3.7e4±5.6e3 3.9e4±4.2e2
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dense sampling reveals the tunnel, GCS, with 42 polytopes, failed to detect the narrow

passage, thus incapable of finding a feasible solution for the problem. On the contrary,

our method identifies the critical pathways and achieves a near-complete coverage in the

workspace. This distinction indicates a challenge in C-space representation, pathways that

occupy a small volume in the workspace can correspond to an even smaller fraction of the

free space in C-space, considering the increased dimensionality. This observation underscores

the necessity of carefully designing sampling strategy to ensure the reliability.

We also conduct a comprehensive comparison on time consumption and problem size for

offline stage. The offline stage for our MILP-based method can be roughly divided into two:

the construction of Gc (Section 3.1.1) and Gd (Section 3.1.2). The problem size for Gc is the

number of IRIS regions (|Vc|) and its computation only needs to be conducted once across

different objects in the same environment. But the graph in GCS needs to be recomputed

when either the environment or the object changes. It can be observed that the number of

IRIS regions we need to grow is significantly lower than GCS, while remaining high feasibility.

Moving to Gd, the problem size is determined by the number of MILP required. Despite our

MILP-based method necessitates a substantial number of MILPs, the MILPs are designed to

be of small sizes, batch processing is highly prefered. In the experiment, we assign 2 threads

for each MILP. The offline computation time for Gd scales linearly to the number of MILP.

Conversely for GCS, the number of variable is proportional to the number of IRIS region,

which makes the online time extremely long for GCS when the number of IRIS region is

large.

Across the majority of test cases, our MILP-based method demonstrated reduced offline

computation times while maintaining feasibility. However, it’s important to note the inherent

advantage of GCS in its design for globally optimal solutions. While our MILP-based method

focuses on achieving faster computation and higher feasibility, this comes at the sacrifice of

optimality.
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Table 3.3: Metrics of offline stages for our MILP-based method and GCS.

Offline Time ↓ (s) # IRIS regions ↓ # MILP ↓
scenario Gc Gd GCS ours GCS ours

corner 1.1 0.5 23.7 2 24 6
bugtrap 4.1 10.7 21.6 7 42 79
maze 6.1 130.3 251.4 19 131 1624

SCOTS 4.0 45.7 79.3 27 78 355
2d-peg 5.2 18.8 26.5 8 59 170

3d-easy 5.3 15.8 27.8 4 55 42
3d-narrow 7.7 115.5 96.9 8 95 471

3d-peg 16.4 10.1 166.9 4 164 15

3.4 Conclusion

In this study, we introduced a novel hybrid path planning approach that integrates informa-

tion from both workspace and configuration space. By structuring our method into three

distinct stages—constructing a coarse graph of convex sets in the workspace, building a dense

graph in the configuration space, and executing an online phase for rapid path retrieval—we

have demonstrated improved planning efficiency in multi-query scenarios.
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Chapter 4

Planning for Multi-DoF Manipulators

In the realm of robotic manipulation, an object cannot move by itself, but has to be held

by a manipulator. In this chapter, we will present a safe controller CBF-induced neural

controllerand an associated motion planning framework CBF-INC-RRT.

4.1 Problem Statement and Preliminaries

We consider a robot with control-affine dynamics q̇ = f(q) + g(q)u, where q ∈ C ⊆ Rn is

the robot configuration and u ∈ U ⊂ Rm is the control input, in a cluttered environment

E . We assume both configuration space C and action space U to be bounded. The robot

perceives the environment E through an observation model o = o(q, E) ∈ O ⊂ Rk. In this

work, we consider two different observation models, namely, a signed-distance observation

model and a LiDAR-based observation model, whose details are elaborated in 4.2.2. The

state-observation space X := C × O can be partitioned into three subspaces: an unsafe set

Xu where the robot collides with or penetrates itself or environmental obstacles, a safe set

Xs = {x|∥x− xu∥ ≥ rthres,∀xu ∈ Xu} where the robot is at least rthres away from the unsafe

set, and a boundary set Xb = X \ (Xu

⋃
Xs).

Given a start configuration q0 and goal configuration qg, satisfying (q0, o(q0, E)), (qg, o(qg, E)) /∈

Xu, we seek to find a feasible control sequence u : [0, T ] → U that steers the system from
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q0 to q(T ) ∈ Xgoal, while ensuring (q(t), o(q(t), E)) /∈ Xu, ∀t ∈ [0, T ]. The goal region Cgoal is

defined as {(q, o(q, E))|∥q − qg∥ ≤ rgoal} for some pre-defined radius rgoal ≥ 0. In this work,

we build upon motion planning algorithm RRT [6] and substitute the steer function with a

neural-network-based controller for control input.

Rapid-exploring random trees (RRT). RRT [6] tackles the motion planning problem by

starting with sampling a set of configurations in the free space Xf = Xs

⋃
Xb. The algorithm

then attempts to build or expand a tree to connect these nodes with the start configuration

q0 and the goal configuration qg. This two-step process is repeated until a collision-free path

connecting the two configurations is found or until termination. Each edge on the tree has

to be collision-free, thus requiring collision checking at the edge construction stage.

Control barrier function. CBF ensures safety in control systems by enforcing the states

of the systems to stay in the safe set. Extended CBFs in state-observation space X are scalar

functions h : Rn 7→ R such that for some αh > 0:

∀(q, o) ∈ Xs, h(q, o) ≤ −γ

∀(q, o) ∈ Xu, h(q, o) > γ

∀(q, o) ∈ X , inf
u∈U

(Lfh(q, o) + Lgh(q, o)u) + αhh(q, o) ≤ −ϵ

(4.1)

where Lfh and Lgh denote the Lie derivatives, which capture the rate of change of h along

the system trajectories induced by f and g, respectively. Since o is also a function of q,

the calculation of Lie derivatives requires the calculation of ∂h
∂q
q̇ and ∂h

∂o
ȯ. And ϵ, γ > 0 are

small margins to encourage the strict inequality satisfaction of CBF conditions. It is proved

in [27] that if the initial state (q(0), o(0)) ∈ Xs, h(q, o) ≤ 0 and a Lipschitz continuous policy

π : X 7→ U selects actions from the set KCBF = {u | Lfh(q, o) + Lgh(q, o)u+ αhh(q, o) ≤ 0},

then the trajectory q(·) does not leave the safe set Xs.

Here we can see a connection between motion planning and control barrier function. As

long as the controller ensures the forward-invariant of the safety set, then the agent never

encounters collisions. Using such a CBF controller ensures the collision-free constraint for
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motion planning.

4.2 Learning Control Barrier Function for Manipulators

Motivated by the connection between the motion planner’s collision-free constraint and

CBF’s safety guarantees, we present a two-stage approach using a CBF-induced neural con-

troller that allows a robot to avoid obstacles and a motion planner that guides the robot

to jump out of stuck regions and toward its goal. We first train a neural network CBF-

induced neural function (CBF-INF) for the robot. CBF-INF is trained to satisfy all the

constraints in (4.1). Next, we synthesize a controller CBF-INC using the trained CBF-INF

and incorporate it into the motion planning framework.

4.2.1 Learning Framework for CBF-INF

Training procedures. We utilize an offline strategy to train CBF-INF hθ(q, o), where the

training data is pre-collected. Our training dataset is a combination of two different parts,

both are collected in various training environments : (i) We gather rollout trajectories using

classical controllers (e.g. LQR controller). These trajectories are generated with random

initial and goal states. (ii) To ensure coverage of less-explored spaces within the rollout, we

uniformly sample the robot’s pose in the configuration space. The presence of observation

allows that the training environments not necessarily be the same as test ones and that

CBF-INF can easily generalize to new environments. CBF-INF is trained to minimize an

empirical loss function L like [25]:

L =
α1

Nsafe

∑
(q,o)∈Xs

[γ + h (q, o)]+

+
α2

Nunsafe

∑
(q,o)∈Xu

[γ − h (q, o)]+ +
α3

N
·

∑
(q,o)∈X

[ϵ+ Lfh(q, o) + inf
u∈U

(Lgh(q, o) · u) + αhh]+

(4.2)
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where α1, α2, α3 are positive tuning parameters, [·]+ is max(0, ·), Nsafe, Nunsafe and N are

the number of points in the training samples in Xs, Xu and X , respectively. As the term

infu∈U(Lgh(q, o)·u) is linearly dependent on u, the minimum value can be easily found within

a bounded action space U via linear programming (LP). The existence of a feasible control

signal in the last condition in (4.1) can be demonstrated when the third loss term comes to

0. Note that CBF-INF is trained as a Neural Network from finite samples and therefore not

a valid CBF before being verified to satisfy the CBF constraints over the entire space. The

latter is a theoretically hard problem [74]. However, the learned CBF-INF can be used as a

steering function and provides significant empirical improvements over vanilla RRT (shown

in Sec. ??). We will also show in Fig 4.4 that the empirical satisfaction rates of the CBF

constraints over finite samples are close to 100%.

Computing Lie-derivatives. Directly computing the third condition in Eq. (4.1) requires

the calculation of ∂h
∂q
q̇ and ∂h

∂o
ȯ. We first assume the obstacle velocities are much smaller

than the links of manipulators in the dynamic scenarios, so we can disregard the change of

o in between two computational steps induced by the change of environment E when com-

puting Lie-derivatives. Furthermore, we replace the exact calculation of ∂h
∂q

with numerical

differentiation, i.e., [∂h
∂q
]i =

h(q+ei·ϵ,o)−h(q,o)
ϵ

, where ei is a one-hot vector with ei[i] = 1. This

approach bypasses the explicit expression of forward kinematics of manipulators with many

degrees of freedom and only demands a "black-box" access to the numerical values of the

kinematics and the Jacobian [20].

4.2.2 Specializing Functions for Manipulators: State-based and LiDAR-

based CBF-INF

In contrast to hand-crafted CBFs utilized on multi-DoF robotic manipulators in [14], [16],

[30], we aim to learn a neural function that encodes the safety constraint of avoiding both

self-collision and collision with the exterior environment. Based on different observation

models, we propose two types of CBF-INF, both sharing the same training procedure.
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Figure 4.1: Illustration of observations. Left: sCBF-INF takes the signed distance to the
nearest obstacle as observation. Middle: For fully-observable environments, oCBF-INF uses
a point cloud sampled uniformly on the obstacles as observation. Right: For partially-
observable environments, oCBF-INF observes the point cloud from a mounted LiDAR sensor.

State-based CBF-INF (sCBF-INF). The observation o in sCBF-INF is the minimum

signed distance, d, between the obstacles and any robot links. In this setting, it is easy for

the CBF-INF to determine, from the sign of d, whether the robot is in a collision-free state

with respect to the environment. The only remaining challenge is to learn the self-collision

pattern, which solely depends on the configuration q. To address this, we design the neural

network to take the concatenated vector q and d as input, and generate a scalar as output,

as in Fig. 4.2.

LiDAR-based CBF-INF (oCBF-INF). sCBF-INF relies heavily on accurate distance

information from the environment, which is not available or costly to acquire in a dynamic

or partially observable environment. A more flexible implementation is to define CBF-

INF as functions of partial observations, e.g., LiDAR. In the LiDAR-based setting, the

observation o is composed of N raw points sampled on the surface of obstacles paired with

their respective normal vectors, similar to [59]. This observation is represented by a finite

set o = {(pi, ni)}i∈[1,··· ,N ] ∈ RN×6, with the 3 dimensional points pi and 3 dimensional normal

vector ni in the world frame. The point cloud can be retrieved using the LiDAR sensor or a

depth camera mounted on the robot.

For each link of the manipulator, we transform the point cloud into its local frame, con-

catenate each point with a one-hot vector of the link index, and then feed all the transformed

point clouds into a PointNet [75], which encodes the point clouds while ensuring permutation
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Figure 4.2: The overall neural network architecture. Left: The architecture of the sCBF-
INF. Right: The architecture of the oCBF-INF.

invariance on the order of points. The feature vectors from the PointNet are further fed into

an MLP, concatenated with the configuration q. The whole network architecture is shown

in Fig. 4.2.

4.3 Planning with Learned CBF

Sampling-based motion planning algorithms are widely adopted to efficiently search high-

dimensional spaces via building a space-filling tree. Despite their guaranteed complete-

ness, these algorithms explore the configuration space via random shooting, and fine-grained

collision-checking is required for each edge. The edge will be discarded if any part of the

checking fails, even though a slight detour may save the edge, which wastes the computation

in such a failed exploration. Our framework, however, encourages the planner to explore the

configuration space more wisely by using safe controllers, i.e., CBF-INC. By incorporating

the controller into the motion planning algorithm, the likelihood of successfully expanding

a node is increased, which reduces the exploration cost given the controller’s reactivity to

obstacles.
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4.3.1 Synthesize controller.

We construct our controller CBF-INC from CBF theory [27] that modifies any given reference

controller unominal by solving the quadratic programming (QP) problem:

u(q, o, qg) = argmin
u∈U
∥u− unominal(q, o, qg)∥2,

s.t. Lfh(q, o) + Lgh(q, o) · u+ αh ≤ 0.

(4.3)

Here, the controller seeks to minimize the squared difference with the nominal control input

within the action space U , while satisfying the safety constraint.

4.3.2 Safe-steering RRT.

In this study, we focus on Rapidly-exploring Random Trees (RRT) [6] as a representative

sampling-based motion planner. In RRT, the steer function generates a prospective edge,

which extends the current search tree toward the direction of a randomly selected point. The

steer function needs to conduct collision checking in the process. Different from [30], which

substitutes explicit checking for the nearest neighbor and changes the original framework, we

propose CBF-INC-RRT, to use CBF-INC as the steer function. This is a general approach

that can be applied to any sampling-based motion planners using a steer function. Within

our steer function, the robot rolls out a trajectory using CBF-INC. The qg in (4.3) is set to

be the newly sampled point. The generated trajectory and control sequence then serve as

the edge added to the search tree. Details of the complete algorithm are provided in the

Appendix.

There may be concerns about the completeness of this modified planning paradigm.

However, we can still ensure completeness by opting to use CBF-INF to discard unsafe LQR

actions instead of modifying them after a certain number of exploration steps, as suggested

in [32]. This optional variation allows us to maintain the crucial aspect of completeness while

improving safety and efficiency.
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4.4 Experiments

Experiment setup. We evaluate our methods on a 4-DoF Dobot Magician in simulation

and a 7-DoF Franka Panda both in simulation and the real world. Similar to [14], we

consider direct control over the joint velocities, i.e., q̇ = u. In experiments, obstacles within

the environment are depicted as cuboids. CBF-INF is trained in environments with 4 fixed-

size obstacles with random poses. We test the method on more challenging environments

with 8 obstacles of random sizes and poses unless specified otherwise. The nominal policy

unominal for the QP controller is selected as LQR. The simulations of continuous-time robot

dynamics and control frequency occur at 120Hz and 30Hz, respectively.

Baselines. Apart from vanilla RRT (RRT) [6], we also compare against RRT variants with

the following steer controllers in both state-based and LiDAR-based settings:

• Reinforcement Learning (sRL&oRL)[76]: We design the reward function to en-

courage goal-reaching and penalize collision, then train the controller with DDPG.

• Imitation Learning (sIL&oIL)[77]: Use behavior cloning to mimic the planned

trajectories generated from an expert motion planner BIT* [78].

Some baseline methods require complete information of the environment, thus only available

in the state-based setting:

• Hand-crafted CBF (hCBF) [15]: The construction of this CBF adopts the mini-

mum uniform scaling factor. Only available for 7-DoF Panda robot.

• Safe RL method OptLayer (sOpt) [53]: Add additional optimization layer to force

the controller satisfy 4.1, where h is a signed distance function instead of CBF.

The baseline methods with steer controllers are abbreviated with a suffix ’-steer’. We also

conduct ablation studies evaluating the controllers only. All neural controllers are designed

and trained using the same environment observations and neural network architectures. The
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methods are evaluated on randomly generated 1000 easy and 1000 hard testing cases, based

on the time required for BIT* [78] to find a solution. All the experiments are conducted

with a predefined node limit: for the 4-DoF robot, exploration is restricted to a maximum

of 200 nodes, while the limit for the 7-DoF robot is 500 nodes.

4.4.1 Motion Planning in Simulation

Evaluation metrics. For motion planning problems in the section, we consider the following

metrics: (1) Success rate (SR): A problem is successfully solved only if a collision-free path

is found within the node limit. (2) Explored nodes: the attempts of adding a node to the

search tree, regardless of success or not. (3) Total time consumption: One common concern

about learning-based methods is their running speed due to the frequent calling of a large

neural network model at inference time. We separate this metric into two categories: (3.1)

online time, which is directly related to control frequency and observation update frequency

and must be performed online during execution. This includes neural network inference

time, QP solving, and perceiving observations; and (3.2) planning time, proportional to

the total timesteps when expanding the search tree, is the remaining time consumption

other than online time. This includes planning, running the simulations, and performing

collision checking. Because online time highly depends on selected parameters, we only report

planning time in the main text. Results for online time can be found in the supplementary.

Performance of state-based methods. Shown in Table 4.1, we see significant improve-

ment in success rate and exploration efficiency (explored nodes) using sCBF-INC-RRT in

the state-based setting. Remarkably, performance improvement is much more pronounced

on challenging hard testing problems. Regarding planning time, sCBF-INC-RRT performs

comparably with vanilla RRT and takes considerably less time compared to sRL-steer, sIL-

steer methods, and even safe method sOptLayer-steer. It’s worth discussing why hCBF-steer

performs much worse than CBF-INC-RRT and even RRT. First, hCBF is more conservative

because it over-approximates the geometry shapes of the robot. This limits its performance,
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Table 4.1: Experiments under state-based setting. Performance on average success rate (SR),
number of explored nodes on 1000 test cases, and summed planning time on 100 testing cases,
averaged over 3 random seeds.

(a) Results on 4-DoF Magician robot.

Easy Hard

method SR↑ (%) nodes↓ time(s) SR↑ (%) nodes↓ time(s)

RRT 91.2 37.4 42.3 68.1 81.2 43.3
sCBF-INC-RRT 97.7 24.1 45.8 84.6 54.6 45.3

sIL-steer 89.4 43.0 55.2 58.2 99.6 80.1
sRL-steer 90.3 40.4 51.5 60.8 94.0 73.4
sOpt-steer 84.6 51.2 65.7 64.5 93.2 70.6

(b) Results on 7-DoF Franka Panda robot.

Easy Hard

method SR↑ (%) nodes↓ time(s) SR↑ (%) nodes↓ time(s)

RRT 85.7 112.3 166.0 62.8 252.5 278.6
sCBF-INC-RRT 92.0 67.5 160.5 76.1 162.5 345.8

hCBF-steer 39.2 134.1 472.6 26.3 160.5 525.3
sIL-steer 39.1 324.9 459.0 25.3 400.5 547.2
sRL-steer 83.9 124.9 235.9 60.1 266.7 395.3
sOpt-steer 26.5 155.3 902.8 16.4 174.9 942.3

especially in cluttered environments. Second, the QP controller in hCBF-steer sometimes

cannot find a feasible solution. Although we’ve attempted to relax the optimization problem

with a constraint violation penalty term, this compromises the safety guarantee of hCBF-

steer.

Performance of LiDAR-based methods. We evaluate algorithms that integrate various

controllers into steer functions (e.g., oCBF-INC-RRT) and those that solely leverage con-

trollers to address the planning problems (e.g., oCBF-INC). The experiments are conducted

in fully-observable environments. In Fig. 4.3, we show that motion planning methods signif-

icantly outperform end-to-end controllers regarding success rate, demonstrating that motion

planning can help improve the feasibility of finding a solution under QP formulations. Among

all the motion planning methods, oCBF-INC-RRT outperforms oRL-steer and oIL-steer on
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Figure 4.3: Motion planning experiments under LiDAR-based setting.
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Figure 4.4: Left: Slices of oCBF-INF value for Panda, obtained by sweeping across two
joints, with all other joint states and obstacle positions held constant. Right: Learning
curves of constraint satisfaction rate on Panda.

success rate and number of explored nodes, especially in hard tests. Regarding the total time

consumption, our method does take a slightly longer time than vanilla RRT due to frequent

inference calls of neural network. However, our method takes about 0.15 s and 0.32 s on av-

erage to compute the control signals and step the simulation for a 1-second period on Dobot

Magician and Franka Panda, respectively. This indicates our planning can be performed

faster than real-time, further establishing applicability to the real world.

4.4.2 Ablation Study in Simulation

We first visualize CBF contour in configuration space in Fig 4.4. We also plot the learn-

ing curves of satisfaction rates of each CBF constraint on our neural CBF-induced neural
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controller-enhanced RRT. All the constraints are satisfied over 99% and 97% on the valida-

tion sets for state-based and LiDAR-based settings after training, respectively.

We then evaluate our controller oCBF-INC, by unrolling its control output without inte-

grating it into the motion planning framework, over 1000 planning problems with 6 obstacles.

This experiment showcases how different neural controllers balance goal-reaching and safety.

We conduct experiments in two distinct environments: (i) the environment is static and fully

observable, where the observation contains 1024 points uniformly sampled on the surfaces of

obstacles; (ii) obstacles are dynamic and move at a constant speed and the environment is

only partially observable, where the observation is acquired by two 3D LiDARs mounted on

the manipulators.

Evaluation metrics. We evaluate the end-to-end controllers based on three measures av-

eraged over the testing problems: (1) goal-reaching rate: A goal configuration is identified as

reached, only if the agent does not encounter any collision during the rollout, and eventually

reaches the goal within a limited time horizon. (2) safety rate: the ratio of collision-free

states along the entire trajectory. (3) makespan: rollout steps for succeeded cases.

Performance. Fig 4.5 shows the performance of both Dobot Magician and Franka Panda

robots in the considered environments. In the static and fully observable environment, oCBF-

INC outperforms baselines by approximately 2% on the goal-reaching rate and safety rate

for the Magician robot and by more than 15% for Franka Panda. Although all algorithms

face a substantial performance drop in the dynamic and partial-observable environment, our

controller still notably exceeds oRL and oIL baselines. The makespan performances are gen-

erally comparable across algorithms, while oCBF-INC is slightly better. This demonstrates

the method achieves a great balance between efficiency and safety.

4.4.3 Hardware Demonstration

Finally, we validate our proposed method on a real Franka Emika Panda controlled at 30Hz,

the same as in the simulation. We randomly select several planning problems in 4.4.1. In
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Figure 4.5: Safety and goal-reaching performance of LiDAR-based controllers in an end-to-
end manner (without motion planning module).

order to avoid the floating blocks, we construct the obstacles and vision modules in the

simulation, then synthesize real-world video with simulated obstacles, similar to [15]. The

components are communicated via ROS.

As shown in Fig 4.6 and supplementary video, our method solves the planning problems

successfully. On the right of Fig 4.6, we also show the signed distance of the robot to the

environment. The experiments confirm that the planned trajectory is safe and robust to the

noise in execution.
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Figure 4.6: Left & middle: snapshots of solving a motion planning problem with our method.
Right: the curve of minimum signed distance to all obstacles along a trajectory. Videos are
included in the supplementary.
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4.5 Conclusion

This paper explores a direction for robotic safety control by integrating CBF-induced neural

controller - CBF-INC into motion planning. Instead of looking for a certified CBF, we train

CBF-INF for robotic manipulators under different observation settings and incorporate the

synthesized controller into sampling-based motion planning algorithms. We evaluate the

proposed methods in various environments, including 4-DoF and 7-DoF arms, and in the

real world. We demonstrate that CBF-INC generalizes well to unseen scenarios and the

overall framework outperforms other methods in terms of goal-reaching rate and exploration

efficiency.

However, there are several limitations of our paper: (1) Since oCBF-INF takes the raw

sensor data as input, the performance is directly dependent on the sensor data quality.

Quantifying the input cloud’s uncertainty precisely remains an open-ended problem. (2)

oCBF-INF requires transforming the input point cloud into each link frame, which poses

potential scalability issues for robots with higher DoF. (3) Our computation of the Lie

derivative assumes the moving speeds of obstacles are small in dynamic scenarios. We hope

to relax this assumption in future work.
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Chapter 5

Conclusion and Future Work

In this thesis, we study path planning problems in manipulation, focusing on rigid-body

objects and manipulators, separately. For rigid-body objects, we present a MILP-based

approach in Chapter 3, which decomposes the free workspace into a graph of convex polytopes

and generates viable path segments between polytopes via MILP. The path segments form

a graph and the graph can serve as an offline roadmap, thus allowing fast online query. For

multi-dof manipulators, we propose CBF-INC-RRT in Chapter 4, which first train a neural

CBF for the manipulator, which can take raw observation like point cloud as input. We

then synthesize a safe controller with QP, which serve as a steering function in sampling-

based motion planning algorithm, RRT, to allow for more effecient exploration in safe space.

We provide extensive experimental results to demonstrate the effectiveness of the proposed

algorithms over baseline methods on the path planning problems on two types of systems.

After addressing the challenges for rigid-body objects and manipulators separately, being

able to efficiently planning and controlling objects with manipulators is crucial to real-world

applications. In future works, we would like to explore the planning process of robotic ma-

nipulation in crowded environments especially in assembly process when the object is held

by the manipulator. The configuration space is of higher dimension, and is a product of
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Rn and SE(3). We would also like to leverage the planning outcome to detect infeasibility

in motion planning. Upon detection, we would like to explore the direction of incorporat-

ing high-level task planning to interact with obstacles or multi-arm collaboration, thereby

resolving scenarios that are initially infeasible.
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