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Abstract

The dynamical problems of shock formation and star formation in
a normal spiral galaxy are investigated, The motion considered 1S
that of the continuum of turbulent gas composing the gaseous disk
moving in a gravitational field consisting of a two-armed spiral field
superposed on the Schmidt model for the Milky Way System. The purpose
is to simulate the dynamics of the galactic gaseous disk and to gain
further understanding of the problems: (1) why young stars and H II
regions 1ie only along a grand design of spiral structure, (2) why
the young stars are always found in associations along the spirals, and
(3) what physical mechanism could trigger star formation in such an
orderly fashion.

This investigation provides an extension to the linear density
wave theory in the form of a nonlinear analysis of the dynamics of the
gaseous disk, An asymptotic theory is developed in order to facili-
tate the description of the nonlinear gas flow along narrow nearly
concentric streamtube bands about the galactic center.

The first part of the investigation concerns the possible exist-
ence and persistence of a stationary two-armed spiral shock pattern.
Mumerical calculations for sireamtube bands lying at typical radii in
the range between 3-4 kpc and 12 kpc confirm the compatibility of two
periodically-Tocated shock waves lying along and within the imposed
two-armed spiral pattern. The extent of the shock pattern over the
galactic disk is confined to the region interior to the circular band
near 12 kpc. Inside the inner bound of the shock pattern at inner
Lindblad resonance, an exciting theoretical feature of the galactic
shock picture is evidenced by the existence of a stationary twice-
periodic free mode discovered in the 3 kpc neighborhood of the Galaxy.
ATthough resonance may contribute to the maintainence of the overall
two-armed shock pattern over the galactic disk between the radii of




3-4 kpc and 12 kpc, it is only in the 3 kpc neighborhood that a free
mode consisting of exactly two shock waves may be maintained entirely
Dy resonance without the contributing influence of the imposed spiral
field. Some features of the "3 kpc arm" of observational studies are
apparent in this "resonant" free mode,

Once the compatibility of the stationary two-armed spiral shock
pattern is confirmed, the problem associated with the possible evolu-
tion and development of galactic shock waves is next investigated. An
initial value problem in which a given sinusoidal spiral gravitational
field is superposed on the gaseous disk is considered in order to deter-
mine the possible growth of shocks in the Galaxy. It is found that
shocks, both corotating and non-corotating with respect to the imposed
spiral field, may develop. Of all the possible developing shocks,
there is one mode that evolves into a corotating shock. This mode
evolves at a faster rate than any of the others. It is shown that this
corotating shock is an outgrowth of the neutral density wave mode which
accounts for the grand design of spiral structure in the Lin-Shu den-
sity wave theory.

It is suggested that galactic shock waves may very well form the
triggering mechanism for the gravitational collapse of gas clouds,
leading to star formation. The implication of shock formation on star
formation is then investigated. A possible gas cloud model for the
turbulent gaseous disk is considered. It is shown that the shock wave
may trigger the gravitational collapse of a large cloud which in turn
is capable of triggering the subseauent compression and collapse of
the individual internal subclouds which are the candidates for proto-
stars. In the framework of this gas cloud picture, it is therefore
possible for the shock to trigger star formation only in associations.
If an upper bound of 30 million years is assumed for the process of
formation and evolution of relatively massive stars initiated at the
shock, it is shown that the regions of luminous newly-born stars and
H II regions lie on the inner sides of the observed gaseous spiral arms,
extending from the inner edges to approximately the middle of the arms,
in general agreement with observations.
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1. Introduction

Grand Design of Spiral Structure

Ever since man first began viewing the universe beyond his
own Milky Way System, a classic problem in galactic structure has

existed: namely, why most galaxies have a fairly reqular grand

design of spiral structure over their disks. Oort (1962) viewed

this classic problem in terms of the more basic problems of the

origin and the persistence of the regular grand design:

"In systems with strong differential rotation, such
as is found in all nonbarred spirals, spiral features
are quite natural. Every structural irregularity is
likely to be drawn out into a part of a spiral. But
this is not the phenomenon we must consider. We must
consider a spiral structure extending over the whole
galaxy, from the nucleus to its outermost part, and
consisting of two arms starting from diametrically op-
posite points. Although this structure is often hope-
lessly irregular and broken up, the general form of the
large-scale phenomenon can be recognized in many nebulae."

Two different spiral theories have been suggested to account
for this grand design feature. The first associates each spiral arm
with a specified body of matter throughout the course of the arm's
evolution. The winding dilemma associated with the disrupting influ-
ence of differential rotation is an uncomfortable difficulty arising

out of this theory. The second theory regards the spiral structure as




a wave pattern, which remains quasi-stationary in a frame of refer-

ence rotating around the center of the galaxy at a given angular
speed, This quasi-stationary wave pattern is composed of self-sus-
tained density waves of gas and stars. This theory, as worked out

by Lin and Shu (1964, 1966), accounts for the persistence of a regular

grand design of spiral structure even in the presence of differential

rotation and stellar and gaseous velocity dispersion.] in this theory,
only a two-armed spiral pattern is possible when the basic rotation

curve is similar to that of the Milky Way System,

Large-Scale Galactic Shocks

Once a self-sustained field of density waves develops in the
galactic disk, certain related phenomena of fundamental importance
may also arise. Of especial interest is the possible formation of

large-scale galactic shocks from the self-sustained field of density

waves making up the gaseous disk.
The presence of a marked grand design of spiral structure in many
disk-shaped galaxies signifies an even more marked and narrow region

for the initiation of star formation within the gaseous spiral arms of

]The density wave theory of spiral structure was proposed by the late

B. Lindblad. His work on the subject may be traced through his last
paper in the Stockholm Observatory Annalen (Lindblad, 1963). He placed
emphasis on the properties of individual stellar orbits rather than on
the behavior of stellar collective modes. On the other hand, P. O.
Lindblad (1960, 1962) attempted to study the collective modes by exten-
sive numerical calculation of the orbits of a number of stars. Although
density waves of a spiral form were found, they were rather transient
and not quasi-stationary.
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the grand design. Indeed, G. Westerhout (personal communication with
C.C. Lin and coworkers) has recently reported that the most luminous
newly-born stars and H II concentrations appear on the inside of the
observed gaseous spiral arms of our Galaxy. Since the peak of gas
concentration in a density wave extends over a broad region, it is
evident that the field of density waves alone as a triggering mechanism
for star formation could not provide for narrow spiral strips of newly-
born luminous stars. In this situation, we are led to infer the pres-
ence of large-scale galactic shocks which would be capable of trigger-
ing star formation in narrow spiral regions over the disk.

We might expect self-sustained density waves in the galactic
disk to grow and develop in the course of time into disturbances with
shock-1ike nature. If all the self-sustained density waves, which
evolve into shocks, together characterize the regular grand design
of spiral structure over the galactic disk, then the developing shocks
likewise must exhibit a similar grand design. Although plausible, it
is by no means certain a priori that two periodically-located spiral
shock waves present throughout the galactic disk would be compatible
with the general nature of the gas flow about the disk. The compati-
bility for the existence of two periodically-located shock waves in the
galactic disk is just what must be confirmed.

We should distinquish the large-scale galactic shocks from the
various types of small-scale shock waves previously considered for the
interstellar medium, Wentzel (1966) has studied shock waves in H I
regions. Shock waves generated in H I regions by expanding H II regions

have been considered by Mathews (1965) and by Lasker (1966a,b). Field,

1



Rather, Aannestad, and Orszag (1967) have considered shock waves in
H I regions further by taking both magnetic fields and radiative
losses into account. Axford (1961) has studied shock waves (ioni-
zation fronts) in the expansion of a spherically symmetric H II
region around a star, and Kahn (1968) has considered shock waves
(ionization fronts) in the flow of an ionized gas from a globule in
interstellar space. A1l these investigations actually consider small-
scale galactic shocks (or ionization fronts) in that they consider a
physical picture which encompasses a relatively small region of the
interstellar medium (with a typical scale of 10-100 pc and containing
at most a few stars and a few large gas clouds),

On the other hand, large-scale shock waves (with a typical scale
of a few kpc) have been considered by Fujimoto (1966) in the flow of
gas through a model spiral arm. Fujimoto's calculations represent
an important first step in the determination of the nonlinear dynamics
of the gaseous component of the galactic disk. Although the gas flow
picture considered by Fujimoto contains large-scale shocks, it can-
not account for a Eﬂg;ggmgg.galactic shock pattern.] Of especial inter=-
est in the present investigation is the physical picture of a two-armed
grand design of spiral structure which is characteristic of the majority

of normal spiral disk-shaped ga]axies.2

]Fujimoto's'calculations exhibit a multiarmed spiral potential that
possesses more than two spiral arms (no fewer than four, and in some
cases on the order of ten or twenty).

2Uner Fujimoto's work, this investigation imposes a two-armed spiral
gravitational field., In such a picture, if large-scale galactic shocks
develop, they must necessarily grow into a two-armed galactic shock
wave pattern. Further discussion of Fujimoto's calculations is in-
cluded in Appendix I. Appendix I also provides a comparison of the
basic differences between Fujimoto's work and the present investigation.

12



Star Formation in the Galaxy

The implications of the theory of shock formation in galactic
spirals bear directly on a fundamental present day problem associated
with star formation. The process of star formation undoubtedly has
been intriquing to man ever since he first recognized that celestial
bodies such as stars existed. 1In particu]ar; understanding why star
formation is occurring for the most part only in regions comprising
the spiral arms of a galaxy is being given a great deal of attention
by both observationalists and theoreticians alike in this day and age.
An understanding of this problem of star formation along spirals may
be possible directly from the theory of shock formation.

As pointed out by Kahn (1960), attempts to explain the formation
of stellar associations have been faced with two major difficulties:

(1) only vague data are known about the physical state and properties
of the interstellar medium, and (2) the dynamics of all the processes
invoived is highly complex. Although present theories make many appeals
to physical intuition, none can give very exact answers. Kahn (1960)
suggests that neither accretion theory] nor any present theory involving

a supernova explosion2 can adequately explain the existence of stellar

]Accretion, however, may aid in the formation of stellar associations.
Section 26 of Part IV - Star Formation contains a discussion of the
accretion process.

2Supernovae may provide for a secondary regeneration of star formation.
This is discussed in Section 31 of Part IV - Star Formation.

13



associations. In addition, hydromagnetic forces] seem to have
little to do with the formation of stars in chains and along spirals.
In our nonquiescent picture of the interstellar medium, large
gas clouds exist under the influence of their cohesive gravitational
forces and their dispersive turbulent pressures, Without the galactic
shock wave-triggering mechanism, star formation in stellar associa-
tions may occur only when cloud complexes have grown large enough
through accretion processes to reach their verges of gravitational
collapse. This situation is rather tenuous since the time of evolu-
tion of a cloud complex which in general undergoes accretion as well
as fragmentation, is rather uncertain. It is reassuring, therefore,
when a triggering mechanism such as a large-scale galactic shock wave
is present to account for star formation occurring only in stellar

associations which lie in chains and along spirals.

]The author has considered the problem of magnetic fields along spiral
arms, but he is convinced that the magnetic field in the Galaxy is an
unsatisfactory triggering mechanism for star formation along chains
and spirals. Further discussion on the large-scale effects of a mag-
netic field is included in Section 3., Discussion of the small-scale
effects of a magnetic field on star formation is included in Section 29
of Part IV - Star Formation.

14




2. Statement of problem

Observational Features of Spiral Galaxies

"Normal" spiral galaxies comprise the majority of all the
brighter galaxies. A normal spiral consists of two major portions:
(1) a very flat disk whose mean thickness is generally only about
1/50 to 1/100 of its diameter and (2) a spheroidal nucleus at its
center, Spiral galaxies appear in a wide variety of forms. The
openness of spiral arms, the degree of resolution of the arms into
stars, and the relative size of the unresolved nuclear region are
certain diverse features of spiral galaxies which provide a means
for their classification (see Sandage, 1961). Many spiral galaxies
have multiple spiral arms; however, Iwo principal arms can generally
be traced to the central region and sometimes to the very center of
the system, Often they dominate the structural form of the system.
While the nucleus of a disk-shaped galaxy may rotate with nearly uni-
form angular velocity, the disk generally undergoes a differential
rotation with the inner parts possessing a higher angu]ar velocity than
the outer parts. With these general features in mind, we shall con-
sider some of the striking physical features characteristic of the
spiral structure,

Often spiral arms show a very high resolution into "knots" which
are generally interpreted as H II regions and associations of stars.

The young stars practically always appear in stellar associations.

15



These young stellar associations with their corresponding H II regions

often occur in chains and spiral arcs within the larger grand design

»of spiral structure. The contiguity of H II regions and spiral arms
of a galaxy was first recognized by Béade and Mayall (1951) in their
study of the H II regions of M 31. It was Morgan, Sharpless, and
Osterbrock (1952) who first detected spiral structure in our Galaxy
- and who showed that the young stars and H II regions appear like
strings of beads. Recently the young stellar associations and brilli-
ant H II regions in our Galaxy were found to lie along the inner side
of the observed gaseous spiral arms (personal communication of Wester-
hout to Lin and coworkers). There is much dust in the spiral arms and
usually it lies on the inside of these luminous arcs of spfra] structure.
The occurrence of brilliant young stellar associations and brilli-
ant”H IT regions along spiral chains inside the larger spiral arms of
a galaxy causes a striking luminosity contrast between the spiral arms
and the interarm regions where no young stars are present. Even though
this striking Tuminosity contrast does exist, the contrast in total
mass concentration inside and outside the spiral arms may be only a few
- percent. The mass in the spiral arms therefore contributes only a small
perturbation field to the total gravitational field, which is nearly
axisymmetric,
Our Milky Way System contains yet another striking feature. In
the region between 3 and 4 kpc from the galactic center, there exist
two arc segments of spiral arms that are apparently moving radially
outwards at very high speeds on the order of 50 km/s. The closest of
these arm segments to the solar vicinity is generally referred to as

the "3 kpc arm," This intriguing "3 kpc arm" feature is generally con-

16



sidered to be associated either with some type of an explosion which
originated in the central region or with the inner Lindblad resonance

which manifests itself in this region of the galactic disk.

Development of a Nonlinear Theory

We now reiterate how the Tinear density wave theory of Lin and
Shu sets the stage for a theoretical view of spiral structure, and we
indicate the nonlinear theory that is considered in this investigation,
In the next subsection we set forth the perplexing problems of spiral
structure that may be accounted for in the nonlinear theory.

The Tinear density wave theory demonstrates how it is possible
to have a regular grand design of spiral structure despite the presence
of differential rotation and stellar and gaseous velocity dispersion,
This spiral structure accounted for by the linear theory persists in
both the stellar component and the gaseous component of the disk.

These spiral distributions of density give rise to an induced gravita-
tional field. In order that a quasi-stationary spiral structure of
density waves may be self-sustained, this induced field is required to
equal the original, imposed gravitational field.

In this investigation, we are interested in augmenting this
Tinear density wave picture. One notable improvement to be accomplished
would be the formulation of nonlinear theories for the gaseous and
stellar components of the galactic disk. The first step toward this
goal is the development of a partially nonlinear theory composed of
the linear theory for the stellar component together with a nonlinear

theory for the gaseous component, In this situation, the total response

17



which is linear in the stellar component and nonlinear in the gaseous
component gives rise to an induced gravitational field which is re-
quired to be similar to the original, imposed gravitational field.
This is the condition which guarantees that the quasi-stationary
spiral pattern composed of the linear density waves in the stellar
component together with the nonlinear counterpart of the density waves
in the gaseous component be self-sustained. The imposed and induced
fields may be regarded as nearly one and the same resultant field of

gas, young stars, and moderately-old stars.]

Scope of the Nonlinear Theory

With such a gaseous nonlinear theory we ask whether we will be
able to better understand some of the aforementioned features associa-
ted with spiral structure and star formation. We have already seen
how the linear density wave theory can account for the persistence of
a regular grand design of spiral structure. We now ask if the non-
linear counterpart of the linear theory can account for some further
remarkable features.

A most striking phenomenon in our Galaxy is the location of the
young stars and associated H II regions, which evidently lie for the

most part only along spirals. In addition to this spiral feature of

]The calculations proceed in two steps. First, the nonlinear response

of gas (without self gravitation) to an imposed field is determined.
Second, the fundamental component of the gas-induced gravitational
field is determined and is shown to 1ie almost exactly in phase with
the imposed field. Therefore, the total Tnduced Tiel% due to the
(nonlinear) gaseous and the (linear] stellar responses lies almost
exactly in phase with the imposed field. The imposed field Ts there-

fore almost equivalent to the resultant field of gas, young stars,
and moderately-old stars (see Section 9).

18



star formation, practically all newly-born stars lie in associa-
tions with other newly-born stars. We therefore pose a fundamental
question to be considered in this investigation: why do the young
stellar associations and the corresponding brilliant H II regions
occur in chains and knots along spiral arms in our Galaxy?

In some Sc-type galaxies these spirals, where young stellar
associations and H II regions 1ie, are often limited in their radial
extent over the galactic disk. Sometimes these spirals do not even
extend out to the bands about the galactic center where the maximum
H I distribution occurs.] It would seem obvious a priori that star
formation would most probably take place in those regions where the
mass of neutral hydrogen is the largest. To have little or no star
formation in the regions of highest H I distribution is indeed per-
plexing, This is just one further feature of the overall problem of
spiral structure and star formation that must be considered.

For an understanding of all these features it is essential to
first determine the possible physical mechanism that can trigger star
formation with all these aforementioned properties, Once we have
determined the physical mechanism that triggers star formation only in
a grand design of spiral structure as outlined by the newly-born lumin-
ous stars), perhaps we shall be able to show how all these physical

features of star formation are related (see Sections 30,31,32, and 33).

]M.S. Roberts (1967) has shown for Sc-type galaxies that the regions

of highest H I distribution do not coincide with and, in fact, lie
well outside of the regions of the newly-born stars and the H II
regions., Further discussion of this feature is included in Section 33.

19



3. Plan of investigation

The task before us is an investigation of the problem of
shock formation in a disk-shaped galaxy and its possible implication

on star formation.

Dynamics of a Disk-Shaped Galaxy

A disk-shaped galaxy such as our own Milky Yay System consists
of two basic portions: a very flat disk which contains all the features
of spiral structure on which is superposed a spheroidal nuclear region
at the center of the disk. The physical features associated with the
galactic disk characterize it as a spiral or non-spiral galaxy. Since
the major proportion of gas and stars are evidently located in a layer
whose thickness is about 1/50 to 1/100 of the diameter of the disk, the
galactic disk may be imagined as a very thin sheet. In order to elimin-
ate effects due to the variation of the galactic variables with height
above or below the median plane of the disk we consider mean values of
the physical variables integrated over the sheet thickness. In terms
of these mean variables, the dynamics of the disk may be regarded as
two-dimensional in nature with the forcing mechanisms and the responses
confined entirely within the sheet. Although there are really two
separate components of the disk, gaseous and stellar, we shall be pri-
marily concerned with the determination of the response of the gaseous

component to an imposed spiral gravitational field which may be attri-
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buted to the organization of the more massive stellar component
into a spiral pattern.] The first goal of this investigation will
be a determination of the dynamics of the gaseous disk in the frame-
work of a nonlinear theory.

A variety of forces present in the galactic disk influences
the dynamics of the gas and the stars that make up the disk. The
predominant forces acting in the differentially rotating galactic
disk are the inertial forces associated with the rotation of the disk
and the smoothed gravitational force of the system as a whole. The
dynamics of the stellar component is primarily governed by these in-
ertial and gravitational forces. When we consider the dynamics of the
gaseous component of the galactic disk, other forces should be taken
into account. These include the gaseous "pressure" associated with
turbulence in the interstellar medium2 and the hydromagnetic forces
due to magnetic fields embedded in the gas. In the gas dynamical
picture one should also include the effects due to cosmic rays, super-
novae explosions, and stellar radiation, which are the primary sources
of turbulent energy for the gas, and the effect of dissipation of turbu-
lTence by collisions of gas clouds, which is the primary sink of turbu-
lent energy for the gas. In our picture, which provides a first approxi-

mation to the total nonlinear galactic picture, turbulence together with

]It is shown in Section 9 that the imposed field may actually be regarded

as the resultant field of gas, young stars, and moderately-old stars.
21f the fnterste]]ar medium is indeed a nonquiescent one, the pressures
due to turbulence may be much larger than the kinetic pressures,

21



the inertial and gravitational effects is included in the determina-
tion of the dynamics of the gaseous disk.

We envisage the effects of the galactic magnetic field to be
of only secondary importance. If the magnetic field energy density
is high enough and if the degree of ionization in the interstellar
medium jis high enough to strongly couple the neutral gas to the
magnetic lines of force, the presence of magnetic fields may hinder
and distort the gravitational collapse of gas clouds and cloud com-
p]exes.] However, Yuan (1968) has carried out calculations for the
imposition of a magnetic field on the large-scale galactic gas flow
in the framework of the linear theory and has shown that for a magnetic

field of the order of 5 x 10°°

gauss, the streamlines do not deviate
greatly from the streamlines of the gas flow without the presence of
a magnetic field. A magnetic field no larger than 5 x ]0_6 gauss may
be considered to influence only secondary effects in the dynamics of
the gas in the nonlinear theory as well as in the linear theory, and
therefore such a magnetic field will not be considered further in the
large-scale shock investigations.

In the interstellar medium, H I clouds dissipate energy during
their inelastic collisions with each other; and unless energy is avail-

able from other sources, the turbulence of the cloud medium cannot be

maintained, The primary sources of energy for the cloud medium are

]Further discussion of the small-scale effects of a magnetic field on

star formation is included in Section 29 of Part IV - Star Formation.
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cosmic rays, supernovae explosions, and stellar radiation., As
estimated by Spitzer (1968), the energy dissipation rates of H I
clouds may be about 3.7 x 10-27 ergs/cc-s, whereas the three energy
sources make energy available at the rates of about 1.3 x 10-27,

14 x 10-27, and 57 x 10-27 ergs/cc-s respectively. A certain fraction
(perhaps 1/100) of the energy provided by these three sources may be
transferred into the turbulent energy of H I clouds for the overall
maintainence of the turbulence of the gaseous disk.] Therefore, the
maintainence of turbulence does not appear as a serious difficulty;

and in a first approximation, the gaseous disk might be visualized to
possess a uniform mean turbulent dispersion speed.2 With this implicit

energy balance, the disk is characterized by a uniform mean equivalent

temperature. In such a situation, the gas flow is isothermél.3

]Kahn estimates that roughly 1% of the energy available from stellar
radiation may be converted into gaseous turbulent energy. This
amount of energy in itself would be almost sufficient to maintain
the gaseous turbulence against its dissipation. (Personal communi-
cation, 1968)

2In this investigation a uniform mean turbulent dispersion speed is
assumed along each gas streamtube band about the galactic center;
and therefore, the mean turbulent dispersion speed is taken as a
function of radius from the galactic center.

3“Isotherma]“ refers to the uniformity of the mean equivalent temp-
erature (primarily due to turbulence) over the large-scale gaseous
disk. This approximation of a fairly uniform mean turbulent disper-
sion speed along individual streamtube bands about the disk may not
be too bad an approximation since observational studies do not indi-
cate too large deviations from a possibly uniform mean turbulent
dispersion speed. In Part IV - Star Formation, we discuss the small-

scale picture of a gas cloud at an equivalent temperature (partly
kinetic and partly due to turbu]ence;.
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Stationary Galactic Shock Pattern

First, the problem of the existence and persistence of a
stationary two-armed spiral shock pattern over the galactic disk
is investigated. We consider the steady motion of a turbulent
gas with an approximately uniform mean dispersion speed moving
in a gravitational field consisting of a two-armed spiral field
superposed on the Schmidt Model for the Milky Way System. A
pattern speed of 12.5 km/s/kpc determined from other studies of

1

spiral structure is adopted.

We are interested in a particular type of solution of the

nonlinear gas flow equations that satisfies several imposed require-
ments. It shall be: first, a solution that permits the gas to pass
through two periodically-located shock waves which lie along gravi-
tational equipotential curves of the imposed two-armed spiral field;
second, a solution that describes the gas flow along narrow, nearly
concentric streamtube bands that extend circumferentially about the
entire galactic disk; and third, a solution that repeats itself through
every half revolution of the gas flow about the disk so that exactly
two jdentical shocks and a twice-periodic streamtube are present at
each radius.

An asymptotic theory is developed in order to facilitate the
solution of the gas flow equations. In this asymptotic approximation

the perturbation quantities of velocity, density, and pressure are

]This pattern speed is obtained from two studies: (1) the distribution
of neutral hydrogen and (2) the migration of moderately-young stars
(see Lin, Yuan, and Shu, 1968). The value used here is actually a
compromise value between 11,5 and 13.5.
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taken to be slowly varying in the direction a]ong_the contours of
constant phase of the spiral field. To the first order in the
asymptotic approximation, the only variation in the perturbation
quantities is therefore along the coordinate perpendicular to the
equipotential contours. In the linear theory this asymptotic
approximation makes it possible for an analytical solution in terms

of density waves. Since the nonlinear theory is expected to yield
streamtubes that are not far different from those of the linear theory,
such an asymptotic approximation is expected to be valid for the non-
Tinear theory as well., This is in fact confirmed by our numerical

calculations for the determination of the stationary shock wave pattern.

Growth and Development of Galactic Shocks

Having considered the problem associated with the existence
and persistence of a stationary two-armed spiral shock pattern, we
next investigate the problem associated with the possible evolution
and development of the two-armed shock pattern. We consider an
initial value problem in which a given two-armed spiral perturbation
gravitational field is imposed on the galactic disk from some time
onwards, and we determine its influence on the initial purely circular
gas flow of the disk. Actually two types of initial value problems
are considered: (1) a one dimensional ordinary gas flow problem,
and (2) the galactic gas flow problem. The first provides insight
for the solution of the second. With such an initial value problem
for the galaxy we are able to see the growth of density waves into

Targe amplitude disturbances and eventual shock development from these
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disturbances. Within the scope of this analysis, we shall determine
the crucial physical parameters which govern such shock development,
A determination of the time scale for the evolution of a disturbance
in the galactic disk into an evolved shock wave is of considerable

interest.

- Implications on Star Formation

Third and finally, we consider the implications of the theory
of»shock formation on star formation in the galactic disk. We visual-
ize the galactic interstellar medium as very irregular with non-
quiescent turbulent gas eddies and fragments evidently present on all
discernible scales. With such a physical picture in mind, a feasible
gas cloud model of the turbulent medium is developed.

In particular, we are primarily interested in an explanation
why the young stars and H II regions occur for the most part only in
the regions of the spiral arms. This problem is an urgent one in the
density wave picture, since a given body of gas remains in the spiral
arm only for a short period of time (on the order of perhaps 3 x 107 -
5 x 107 years). An understanding of the process of star formation
therefore may aid in understanding the reason why young stars and H II
regions occur in cooperation to form a regular grand design of spiral
structure over the galactic disk. The problem why young stars form
only in associations is also pursued, Our model for the structure
of gaseous clouds in the interstellar medium is compatible with the
physical phenomena characteristic of star formation in stellar associa-

tions and along spiral arms and with the dynamical features associated
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with the collapse of gas cloud complexes,

A galactic shock wave may be visualized as the fundamental
triggering mechanism for the gravitational collapse of cloud
complexes in the following manner. Before reaching the shock some
of the cloud complexes may be on the verge of gravitational collapse.
A sudden compression of the clouds in the shock to perhaps ten times
their original density could conceivably trigger the gravitational
collapse of some of the larger gas cloud complexes, leading to star
formation. As the gas leaves the shock region, it is (rather quickly)
decompressed, and star formation ceases.

It is shown that star formation is possible only in the regioﬁs
where the highest concentrations of gas clouds (subclouds) exist in
the form of large clouds or large cloud complexes. The shock is
capable of triggering the gravitational collapse of only the largest
clouds and cloud complexes and cannot trigger directly the candidates
for protostars. It is only through the collapse of the large cloud
complexes that the constituent subclouds are eventually compressed
and collapsed into protostars, The influence of turbulence in the
galactic interstellar medium is demonstrated. General agreement exists
between observational studies of spiral galaxies and this model of
shock wave-triggered star formation along a luminous grand design of

spiral structure.
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Part II.

Shock Formation
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Part II A. Gas Flow about a Spiral Galaxy of Trailing Type

The problem of the existence and persistence of a stationary
two-armed spiral shock pattern of trailing type over the disk of
the Galaxy is to be considered in Part II A. We consider the
steady motion of an "isothermal" gas (at a mean equivalent tempera-
ture, primarily due to turbulence) moving in a gravitational field
consisting of a two-armed spiral fie]d_(possib]y attributed to a
two-armed pattern of spiral structure composed of density waves of
moderately-old stars)] superposed on the Schmidt model of the Milky
Way System. Our goal is to determine if such a stationary two-armed
spiral shock pattern is compatible with the general nature of the gas
flow about the galactic disk.

In Section 4, we consider the equations of motion for the gas-
eous component of the galactic disk, and in Section 5, an asymptotic
theory is developed for the gas flow. A large-scale galactic shock
wave is considered in Section 6. The two aspects: (1) gas flow over
the disk apart from shock regions(considered in Sections 4 and 5) and
(2) the flow of gas across a shock(considered in Section 6) are com-
bined in Section 7 to form a composite solution for gas flow along a

closed, nearly concentric, and twice-periodic streamtube band through

]In Section 9, we demonstrate that the imposed spiral gravitational field
is almost equivalent to the resultant Tield of gas, young stars, and
moderately-old stars.
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two periodically-located shock waves. Sections 8 and 9 determine
some important physical features of this composite solution, In
Section 10, it is shown that the Jaseous disk may consist of a
family of these nearly concentric gas streamtube bands which pass

through and in fact make up the overall two-armed spiral shock

pattern in the Galaxy.
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4. Dynamical equations governing the gaseous disk

The fundamental equations of motion for Ug
gas flow about a circular disk, where u- and
Ug represent the velocity components in the ‘
o
@ and 6 directions respectively, may be
written by an observer in an inertial frame

of reference as:

6, 1 a(cumm) L1 a(oue) C (4.1)
ot o Rl ™ 236

2
.?im+ u .a_u.m+ u_SEE - ui. = _iza_c -& (4 2)
ot W 3 w36 o g 9 In) *
2 u Mo, o Mg s mo . _ali 1 (4.3)
ot oW IREL o o 36 ™ 96 *

where
t denotes the time
o(w,8,t) is the gas density of the galactic disk
a is the mean turbﬁ]ent dispersion speed of the gas

U(w,0,t) is the total gravitational potential
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Base State of Motion

We take for the base state of motion an equilibrium state of
purely circular gas flow where the total smoothed central gravita-
tional force field is exactly balanced by the inertial force asso-
ciated with the rotation of the disk as a whole. The gas density
of the base state will be taken as oo(w) and the smoothed gravi-
tational potential field will be denoted by Uo(w). For purely
circular flow, we have ug = 0 and ug = o(w)w 3 and there-

fore Uo(w) and q(w) satisfy a relation which balances radial

forces:

dU, (w

Q?(wlw = =

For our own Milky lay System the base state of motion which satis-
fies the above radial force balance is described by the Schmidt

model (see Schmidt, 1965).

Perturbed State

Since we are dealing with a galactic system where the gravi-
tational field consists of a two-armed spiral field superposed on
the Schmidt model, we may divide the total gqravitational potential

into two portions:

'U(m.e,t) = 1Jo('m) + -Ul(msest)
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where

Uo(w) 1is the smoothed gravitational potential corresponding to
the Schmidt model for the Milky Way System, and

V,(w,8,t) is the spiral gravitational potential corresponding
to the two-armed spiral pattern.

We take 'Ul(m,e,t) of the form:

Uy{w,8,t) = Alw,6) cos {Zth - Z(E:\_T]n(%) +e) - ¢} + U,

where

Alw,e) is a slowly varying function of @ and o,
¢ is a constant phase angle,

U, 1is a small correction to the spiral potential which will be
specified later.

In a similar manner, each physical variable may be divided into a por-
tion corresponding to the axisymmetric equilibrium state of the Schmidt
model plus a portion corresponding to the perturbation due to the spiral

gravitational field:

U(Wbest) = oo(®w) + ol(moest)
um(m,e,t) = 0 + qml(m,e,t)
ue(m.e,t) = ole)w + uel(m,e,t)
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Since the spiral pattern rotates as a rigid structure, it would
be convenient to describe the gas flow from a vantage point on a ro-
tating coordinate system fixed with respect to the spiral pattern
which rotates with angular ve]ocfty np, In addition, the form of
the spiral potential, U,(w,6,t), indicates that a convenient set of
coordinates with which to describe the gas

p n
flow may be the coordinates fixed in the ‘{////

Qp-rotating system that are parailel and
perpendicular to the spiral equipotential
curves. These coordinates may be written

as follows:

3
1

In(g:) cos i + (8 - th) sin i

Y
{]

-ln(g:) sini + (o - th) cos i

The velocity components along these coordinates may be written as:

u. cos i + {(Q - )w + u } sin i
p 01

Wio + Wi o

Wio + Wy = 'Uml sin i + {(Q - Qp)‘u') + Uel} cos 1

In terms of these n and ¢ coordinates, the gas flow equations,

(4.1), (4.2), and (4.3), may be rewritten as:
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30'1 + 3So]w,_) + 3‘0]\"’"! + Oo(gvr\]b. + aWn)

ot on 13 13

. . 90 . 90
+ - SEL 4+ 21
(n Qp)m(sm 5 cos i 5 )

do . L. _
+ (0o + 0 + ma-al)(\u cos i - w, sin i) = 0 (4.4)
WL OWL WL . . oWy . WL
+ ShL 4 oL 4 - ol T i &&=
T g e (o Qp)m(sm i cos 1
2omw, + w92 sin i (wicos i - wysin i)
= 1] am L Il
.. . _ a%w cos i do, a2 303
- wilwsin g+ wcos ) "o *or d@ 5o *opoam
_au
—J-an (4.5)
oWn oW Wy .. Wy . oW
+ —— — - —— ] —
T W LT (2 Qp)m(sm s cos 1 7% )

d . . R
+ 20mw + mza% cos i (w,cos i - w,sin i)

2 <in i 2

L. . a‘g sin i do a 3o

+ w (wsin i + wcos i) = s = - — = a_g'l
1Y

5 (4.6)
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where

Ul(n.E)

and where A{n,£)

= Aln,£) cos {-g%l,-

is a slowly varying function of

36
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5. Asymptotic Theory

Since the imposed spiral potential is oscillatory as cosine in
n and only slowly varying in g, we expect the physical perturbation
solution of interest to be likewise oscillatory in n and only slowly
varying in ¢. Indeed this is precisely the case in the linear density

wave theory where all perturbation quantities are of the general form:

P(nee) expio(n)}

where P(n,£) is slowly varving in n and g, and

Guided by the Tinear theory we expect the asymptotics of the nonlinear
theory not to differ radically from that of the Tinear theorv. 1In
addition, we are interested in stationary, or at least quasi-station-
ary, gas flow. Therefore, we look for solutions for which the induced
perturbation quantities are weakly dependent on ¢ and t in compari-
son to their dependence on n. We exhibit this behavior by introducing
the small parameters ¢&; and &, and by regarding the physical vari-

ablies as:

o1(ns 818, &3t) w (ny 616, 62t) wy(ns 816, 8,t) (5.1)
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We therefore make the asymptotic approximation in which the perturba-
tion quantities to first order vary only along the direction normal
to the contours of constant phase. Its validity is not a priori cer-
tain; and, we therefore demonstrate its validity a posteriori (the
validity of this asymptotic approximation is demonstrated in Appen-
dix II).

To first order in the asymptotic scheme, the asymptotic equations

of gas flow may be written as:

3 oW d
(Wio + wi) Eﬁ%L + (oo + ay) EﬂfL + (0ot o)+ d;°) X1

+ (s, 8,) = 0 (5.2)
(w +W)3wi-2$’zmw +——-‘La_°].+&l+
Lo 1) 3 1 Go * 0] 3N an X2
+ B8, 8) = 0 (5.3)
2
(WJ_O + W,L) ‘g% + (-Kﬁz')‘m Wy, + X3 + 6(61’ 52) = 0 (5.4)
where
2 (] %&
(5) 20 (1 + =% cos?i) (5.5)
and
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x1 = (wecos i - wysin i) (5.6)
X2 = ng% sin i (wecos i - wysin i) = wy(wgsin i + wycos i)
a2y cos i do
- de . s s . .
x3 = wigocos i (-wsin i) + w(wsini + wcos i)
_ 2% sin i doo
_ 2
Ui = Acos(- g - ¢) + Up(n) (5.9)

Although the terms containing xi, X2, and x3 in the equations, (5.2),
(5.3), and (5.4), are all of secondary importance, they will be re-
tained in the numerical calculations,

Eliminating o, between equations (5.2) and (5.3), we can re-

write equations (5.3) and (5.4) in the following form:

2 kg doo
L S C(wao +wy) (0mwy + f - x) + @ (1+ 3:—:—33'35')X1
| CENE (.w.Lo + WJ_)Z
(5.10)
KZ
. (wew o (5.11)
on Wio ¥ Wi
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where

f = A Sin(ET%-T'n + 9, A= 51§ 7 A

- These are two asymptotic equations to be solved for the two dependent

variables, wy, w;. Once we have w;(n) and wy(n), we can deter-

mine o;(n) by solving the equation:

(Wio + W) %%l + (oo * 07) %%ﬁ- + (0ot oy + mggi)xl = 0
(5.12)

and we can determine our position about the disk (specified by g) by

solving the equation:

Wio + Wi

&
an Wio ¥ W1 (5.13)

Solution of this system of four equations will determine a gas stream-
tube as well as the gas flow at every point along the streamtube, As
in the linear theory, the streamtubes are not expected to deviate
greatly from purely circular orbits about the galactic center. In the
first approximation, wie(®@), wjo(m), and oo(®w) therefore may be
taken as constants along each particular streamtube lying at an aver-
age radius = from the galactic center. Consequently, Wios, Wio»
and o, may be considered as parameters which are related according

to their proper values in the Schmidt model and which specify the radius
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of the particular gas streamtube under investigation. We have in mind
therefore the solution of the above set of four equations, (5.10-(5.13),
with these parameters specified at a particular radius according to the
Schmidt model. This type of solution characterizes gas flow along
closed narrow nearly concentric streamtube bands which extend circum-

ferentially about the entire disk.
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6. Galactic shock waves

In the galactic disk where the velocity of the gas relative to
the pattern much exceeds the mean turbulent dispersion speed associ-
ated with the cloud constituents of the interstellar medium, effects
of compressibility of the gas are expected to be of prime importance.
Indeed, one of the most important distinctive features of supersonic
flow (as opposed to subsonic flow) is that shock waves, in which
processes of irreversible nature may take place, can occur in the
flow. Galactic shocks may thereby appear in the supersonic flow of
gas about the Galaxy.

The fundamental laws which govern the flow of gas about the
(entire) galactic disk are the conservation laws of mass, momentum,
and energy, and the conservation or increase of entropv. In the
absence of net creation of mass, momentum, or energy by extraneous
mechanisms, these conservation laws directly apply to the gas in the
shock regions as well as to the remainder of the gaseous disk (apart
from the shock regions). Whereas these laws take the form of dif-
ferential equations in describing gas flow over the disk apart from
shock regions, they become "shock jump" conditions in describing the
flow of gas across a shock. The differential equations together with
the shock jump conditions therefore suffice to determine a composite
gas flow about the galactic disk without describing in detail the

irreversible processes across the shocks.
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Suppose we consider a composite picture of gas flow in which two
large-scale periodically-located shock waves exist over the galactic
disk. In addition, suppose we require each shock to lie along a spiral
gravitatational equipotential curve of the imposed pattern of background
matter (primarily the moderately-old stars). Each of these galactic
shock waves may have a thickness of only about 50 pc;] and such a
shock represents a fairly sharp discontinuity since the shock width is
practically infinitesimal with respect to the length scale of 4 kpc,
which represents a characteristic scale for the interarm spacing of
the system,

Since we already have the equations of motion that describe the
gas flow over the galactic disk apart from shock regions (the equations
of Section 5), we can easily complete the picture by deriving from
these equations the form of the conservation laws which describes the
flow of gas across the shock regions. Suppose we consider a column
of gas which extends across a shock region and whose ends lié outside
the shock neighborhood on either side. If we multiply equations (5.10),
(5.11), and (5.12) by appropriate quantities, integrate them along n
across the shock, and then take the 1imit as the length of the column
shrinks toward zero, we can determine the shock jump conditions. With
the additional requirements of no net creation of mass, momentum, and
energy inside the shock region, the conservation laws across the shock

take the form:

]In Section 28, a model for the gas clouds of the interstellar medium

and an internal picture of a large-scale galactic shock (which may
contain several gas clouds across it along a line of sight) are
considered, From these investigations, a typical length scale for
a shock width appears to be about 50 pc.
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(oo + 01("\2)) (Weo + WJ-(“Z)) (Uo + o'l(nl)) (Wlo + WL("\I)) (6-])

wii(nz) wy(ny) (6.2)

(0o + 01(n2)) (Wio + wilnz))2 + (po + pi(ny))

= (oo * 01(n1)) (Weo + wi(n1))2 + (po +p (n1)) (6.3)

(Wio : wy(n )2(Y_]) + aZ(ny)

= (Wi ; Wé(nl))z(Y_]) + a2(n,) (6.4)

Although these shock jump conditions applv to a spiral shock wave
extending about the galactic disk, they are of the same form as the

usual shock jump conditions for ordinary one dimensional gas flow.

Isothermal Shock

We are primarily interested in an "isothermal" shock (see

Section 3). For an isothermal shock, we have:
a(n,) = a(ny) = a = constant

Therefore, we assume that the isothermal gas satisfies the equation
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of state:

(po + p1(n)) = a2 (o, + 01(n)) (6.5)

With equations (6.1), (6.3), (6.4), and (6.5), we may take the limit

as y - 1 and obtain the isothermal shock jump conditions:

2
(W.Lo + W.L("]Z)) = (WJ.o i WJ.(“])) (6.6)

(Po + prlny)) = (etalm)Z o o p (o)) (6.7)
m.2
f

(0o + arln2)) = 5 a1(ny)) (6.8)

where e is the constant mass flux across the shock.
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7. Gas flow along narrow streamtubes through
~ two periodically-located shocks

In Sections 4 and 5, we determined the equations of motion
which describe gas flow along narrow nearly concentric streamtube
bands about the galactic center. In Section 6, we determined the |
shock conditions which describe the flow of gas across an isothermal
galactic shock. We now consider a composite picture which combines
these two aspects of the flow. This composite picture must satisfy
certain requirements:
(1) It must permit the gas to pass through two periodically-located
shock waves which 1ie coincident with spiral equipotential curves in
the galactic disk.
(2) It should describe the gas flow along narrow nearly concentric
streamtube bands about the galactic center,
(3) It must insure closure of the gas streamtubes so that no net
radial transfer or mass, momentum, or energy takes place over the disk.
(4) The streamtubes must repeat themselves through every half revolu-
tion of the gas flow about the disk.

Requirements (1) and (2) specify the general type of gas stream-
tube solution; requirements (3) and (4) provide periodic boundary

conditions on this solution. These boundary conditions specify the
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distances between successive shocks in terms of n and £ coordi-

nates as:

m sin i

An

AE ™ coS i

This particular type of solution, which is determined by re-

quirements (1), (2), (3), and (4) is a solution for the gas flow in
a (closed, nearly concentric, and twice-periodic) streamtube band
through two periodically-located shock waves (this solution is here-

after referred to as an STS solution). The composite picture over

the whole galactic disk, which is made up of a family of STS solutions
(see Section 10), describes gas flow in (closed, nearly concentric, and
twice-periodic) streamtube bands which pass through a two-armed spiral

shock pattern (this composite picture of gas flow is hereafter referred

to as the TASS picture).]

To determine whether the STS solution as outlined by these four
requirements is actually attainable, an investigation of the possible
degrees of freedom in the choice of the parameters versus the number

of prescribed conditions is in order. Suppose we consider the various

]"TASS“ refers to gas flow in (closed, nearly concentric, and twice-

periodic) streamtube bands through a two-armed spiral shock pattern
over the galactic disk between the radii of 3-4 kpc and 12 kpc. In
Section 10, it is shown that the inner and outer bounds on the TASS
pattern are the radii of 3-4 kpc and 12 kpc respectively.
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parameters associated with the gas flow about the galactic disk. We

consider first the various parameters associated with the properties

of the spiral pattern and second the various galactic parameters

associated with the disk as a whole:

(1)

(2)

Parameters associated with the spiral pattern:

inclination angle of the spiral pattern to the circumferential
direction.

angular speed of the spiral pattern.

amplitude of the spiral gravitational field taken to be a
fixed fraction of the smoothed axisymmetric field in the
Schmidt model.

Galactic parameters associated with the disk as a whole:

w

average radius of a particular streamtube under considera-
tion. If a gas streamtube does not deviate greatly from

a purely circular orbit about the galactic center, the
average radius for the streamtube will provide a good esti-
mate of the actual distance of any point along the stream-
tube from the galactic center.

the basic equilibrium anqular velocity at a radius = in

the Schmidt model. This together with @, @, and i deter-
mines the velocity components for the gaspflow in the direc-

tions normal and parallel to the spiral equipotential curves:

W, o (2(p) - Qp)m sin i

3
o
]

(o(w) - Qp)m cos i
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If the streamtubes do not deviate greatly from exactly cir-
cular orbits, these velocity components may be taken as con-
stants for each particular radius under consideration.

K(w) epicyclic frequency at a radius =« in the Schmidt model.

a(w) mean turbulent dispersion speed of the gas along a streamtube
at a radius w from the galactic center,

These above-mentioned parameters associated with the spiral
pattern and with the disk as a whole govern a general gas flow solu-
tion which satisfies recuirements (1) and (2). With a consideration
of two remaining parameters at our disposal, requirements (3) and (4)
may be satisfied. These remaining parameters associated with the gas

flow about the galactic disk are:
L the phase of the shock with respect to the spiral field.

U, a small potential field correction to the spiral potential
field. '

There are exactly two such parameters, ¢S and U,; and,
there are exactly two boundary conditions (i.e., requirements (3) and
(4) ) to be satisfied with the proper choice of ¢  and U, for each
streamtube. In general, these boundary conditions will be satisfied
for one value of o and one value of U, only. Therefore, the

location of the two shocks of an STS solution is predetermined.
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8. Analysis of singular points

To gain insight into a possible numerical solution of the gas
flow about the galactic disk, we now investigate the small amplitude
behavior of the velocity components of the gas flow about possible
equilibrium states. In such an analysis we neglect all higher order
terms of secondary importance in the equations of motion. In addition,
we are concerned with possible smai] amplitude behavior without any
influence of forcing; and therefore, the imposed forcing due to a

spiral field is neglected.

Singular Points

The "equilibrium" positions of the system of equations, (5.10)
and (5.11), correspond to the singular points of the following differ-

ential equation:

G Dt + w' - allad + ow' + ']

(8.1)

where each "primed" quantity represents a velocity in nondimensional

form:

(wi'y vao's wy'y a') = 7195 (Wes Vios Wity @)
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We therefore investigate the character of the integral curves in
the neighborhood of each of the various isolated singular points
of the differential equation (8.1). The singular points may be

found by inspection:

The integral curves about the singular point, (w.' = 0,
wy' o= 0), are given by:
wp'2 + w2 w,'? = constant (8.1a)
where
w? = B0 - 00
If woe' - a' > 0, which is the situation we are concerned with

in the Galaxy, the intecral curves (8.1a) are ellipses with the ori-

gin, (wp' = 0, wy' = 0), as the center.
The integral curves about the singular point, (w,'- = a' - w.',
wy,' = 0), are given by:
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W't o+ up? (et - at o+ wi')2 = constant  (8.1b)
where
2 gy
w? = 2 ()0 - B
In the situation where wi,' - a' > 0, the singular point,
(wy' = a' - wo'y wy' = 0), is a saddle point,
The integral curves about the singular point, (w' = =-a' -
w,' = 0), are given by:
wy'? o+ u32 (we' + a' + w.')2 = constant (8.1c)
where
K {2 Wi
w2 = 2(3=) (0 + =%)
Since w32 > 0, the singular point, (va' = =-a' = wo', W'

is a center.
Integrating the numerator of equation (8.1), we can determine

a "potential function:"

Flwe') = wy'™ 4 §‘u°'wg3 + 2 (Mpo'?2 - a'?) wi'?
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Suppose we consider a plot of F(w,') versus wi' in order to

gain more information about the integral curves. The valleys of

F(w.") correspond to situations where the kinetic energy associated
with wy' s at a Tocal maximum. Therefore in the valleys of
Flw,") the magnitude of wy' takes on local maximum values. This

relation between Flw,") and w, is analogous to the usual
type of potential energy plot for an oscillatory system with the maxi-
mum values of velocity being realized in the "potential" valleys.

In Figure (8.1), we have plotted F(w,'/w,o") for various
values of a'/w,o'. The base state gas flow in the Galaxy is super-
sonic so that we are primarily interested in cases for which a'/wio'

satisfies the condition:

Wio!

We can see that the valleys of F(w,'/vwio') correspond to centers,
and the peak of F(w,'/wyo') corresponds to a saddle point. The
unique saddle point associated with each F(w,'/wio') curve may be
called the "sonic point". Whereas the velocity component, Wi, is
supersonic if it lies to the right of the sonic point, it is subsonic
if it lies to the left. Furthermore, there is a lower bound on w.',

i.e., Wo'/Wio' = =1, beyond which physical gas flow is not possible.
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At this limit, the gas flow must completely reverse direction.
Figure (8.2) illustrates several integral curves of equation

(8.1) for the set of parameters:
K 2 ] ]
(=) = .4, Wio' = .049, a' = ,034

The circumferential streamtube lengths about the galactic disk for
these several integral curves are indicated beside each curve. Where-
as a value of = radians is a necessary angular length for a stream-
tube which is exactly twice-periodic about the disk, these integral
curves represent streamtubes of angular lengths of about .8n radians,
which require a multiple periodicity greater than two.

Passage across the "sonic plane" is possible only at the sonic
point and only if a particular state of the gas flow is realized at
this point. Otherwise, any solution blows up upon reaching the sonic
plane; and therefore, an arbitrary integral curve which does not pass
through this point or which passes through this point without the
proper slope cannot represent physical gas flow. The quantities,

w2ty ow,' o, aw."/on , and  owy,'/en are completely specified

at the sonic point by the set of parameters.]

]The complete specification of the quantities, w,' , w,', aw,'/sn,
and  3w,'/on , at the sonic point for the full nonlinear prob-

lem is demonstrated in Appendix III.
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Nonlinear Equations

When higher order nonlinear terms and forcing due to a spiral
field are included, new features enter the problem, However, the
general nature of the above results remains essentially unchanged
even with the addition of these nonlinear effects and forcing.

Suppose we examine the full nonlinear equations (5.10) and
5.11) (in nondimensional form) for singular points. In a similar
fashion to the linear singular point analysis, a singular point exists
along the nonlinear solution curve where wio' + w,' = a'. This
is the "sonic point" where the gas flow exhibits a change from sub-
sonic to supersonic flow. Since our picture of the Galaxy contains
shocks, the gas flow must indeed pass from subsonic to supersonic
somewhere. The denominator of equation (5.10) is zero at this sonic
point. Physically, no discontinuities occur in flow passing from sub-
sonic to supersonic, so we require the numerator of equation (5,10)
likewise to equal zero at the sonic point. With this restriction on
the numerator, the quantities, w,' , w,' , 3w,'/3n , and
ow,'/3n , are all uniquely specified at the sonic point. (c.f. Appen-
dix III), If the sonic point were therefore chosen as a possible
point where the integration of the equations of motion may begin,
there would be no arbitrariness in the choice of values for the various
flow variables (at the initial step of numerical integration). The
sonic point is therefore the only convenient point at which the numeri-

cal integration of the equations of motion may be initiated.]

]Fujimoto (1966) also arrived at the same conclusion.
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With the specification of all the parameters, the sonic point
conditions are determined, and numerical integration of the gas flow
equatiqns may begin from the sonic point. The basic integration pro-
Cedurelfollowed fs the Runge-Kutta-Gill method contained in the
System/360 Scientific Subroutine Package (p. 118-). At each step

of the integration process, an automatic error analysis scheme for

. satisfactory integration within specified error limits is carried out

before passage to the next step. If the error limits are exceeded
in any one step, the grid size is reduced appropriately before passage
to the next step. A detailed treatment of the integration process is
given in Appendix IV.

Along the solution curve in the positive n direction, the
flow 1is supersonic, whereas the flow is subsonic along the solution
curve in the negative n direction. Because of the nature of the
integral curve on the supersonic side of the sonic plane in Figure (8.2),
the supersonic branch of the solution curve circles about its center
point and finally reaches the sonic plane once again at a point other
than the sonic point. In such a situation, ow,'/3n must be
infinite. To avoid this unphysical consequence, a shock is imposed be-
tween the supersonic and subsonic branches of the solution curve at
some point before the supersonic branch again touches the sonic plane,
There is in general only one point along the supersonic branch where a
shock will be compatible with the gas flow. The composite solution
curve thereby represents periodic gas flow which (1) begins from a
shock and passes along the subsonic branch toward the sonic point,
(2) becomes supersonic at the sonic point, and (3) after remaining

supersonic for some time reaches the next successive shock along its




pem.

path. At the next shock, the cycle begins once again.
By proper specification of the parameters, an STS solution
may be determined at a given radius (the effects of variation of
the parameters will be discussed in Section 9). A typical STS solu-
tion is sketched in Figure (8.3); and the projection of this solution
in wy'-w,' space is sketched in Figure (8.4).] For given radius
in the Schmidt model, and for given dispersion speed, field strength,
pattern speed, and inclination angle, only a particular value for the
shock phase, o will insure an exactly twice-periodic shock solution,
Closure of gas streamtubes is insured by a second order correc-
tion to the spiral field.2 Although it is shown in Appendix V that a
small second order correction, U, , to the spiral potential is
necessary to insure streamtube closure, it is also shown that this
small correction causes only a slight shifting of the streamtube. In
addition, it is shown that the second order correction is of a smaller
percentage correction to the basic field than is the percentage error

involved in the neglect of stellar dispersion in the determination of

the purely circular base state gas flow.

]Figure (8.4) also sketches a "shock jump curve". At every point along
the supersonic branch, subsonic values of the physical variables are
calculated by the shock jump conditions (as if a shock were possible
at every point along the supersonic branch). The resulting curve,
which indicates the possible shock jumps from every point of the
supersonic branch, may be denoted the "shock jump curve." The point
where the shock jump curve intersects the subsonic branch of the solu-
tion curve is the only point on the subsonic branch where a physical
shock may actually exist.

21n Appendix V, the condition for closure of gas streamtubes about the

galactic disk is investigated in detail.
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The effect of the higher order nonlinear terms (i.e., X1, X2,
and x3 in equations (5.10) and (5.11) ) is yet another important
aspect of the STS solution. Figure (8.5) provides a sketch of an

STS solution that corresponds to the set of parameters:]
. K 2 )
tan i = 1/7 (?5) = 4 Wio' = .049

5%

<Y
1]
O
@
g
™
u

The nonlinear STS solution and the linear STS solution (i.e., x; =
X2 = x3 = 0) both for 5% perturbation field, and the linear, zero-
field integral curve that passes through the sonic plane (see Figure
(8.2) ) are all sketched in Figure (8.5). Whereas each 5%-field
curve represents an exactly twice-periodic streamtube whose Tength
is m radians between successive shocks, a typical zero-field inte-
gral curve may extend only about .8m radians about the disk. It
is quite apparent that the spiral field plays a significant role in
governing the gas flow. On the cther hand, the contiguity of the
linear and nonlinear 5%-field curves indicates how small is the

influence of the higher order terms, x;, x2, and xs.

IA set of five independent parameters that completely specifies an

STS solution is: i, (K/22) , wio', @', and A. Another set of
five independent parameters that completely specifies the STS solu-

tion is: i, Qp , @, a,and A (see Section 9).
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9, Effects of variation of the galactic parameters

We now direct our attention to the features of an STS solution
which are governed by the various parameters of the system.1 The

various galactic parameters include:

i Q o olw) K(w)

wo = (o(w) - Qp)m sin i w,o = (a(m) - Qp)m'cos i

The parameter, U, , must be chosen in such a manner to insure stream-

tube closure.2 0f all these parameters, the Schmidt model specifies
() and K(w) for a particular w3 and once an inclination
angle, 1, and a pattern speed, Qp, are chosen, W,o and W,

can be determined as well. Therefore, the parameters, i , Qp, s

a , and A , may be considered as the important independent parameters

of the system. An inclination angle, i , such that tan i =1/7 and

a pattern speed, Qp , of 12.5 km/s/kpc determined from other observa-

]"STS" refers to the particular type of solution determined by require-
ments (1), (2), (3), and (4) of Section 7 that describes gas flow in
a (closed, nearly concentric, and twice-periodic) streamtube band
through two-periodically-located shock waves.

2see Appendix V.
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tional studies (see Lin, Yuan, and Shu, 1968) are adopted. There-

fore ,we are primarily interested in the effects on an STS solution
of variation of the remaining independent parameters, =, a,

and A,

Parameter Space

Suppose we now consider the influence of these galactic para-

i meters on an STS‘solution. Each one of the parameters, =, a , and

A , may be allowed to vary separately (with corresponding variation

of the shock phase ¢, in order to retain a twice-periodic solution);
and the effect of such variation of each parameter on an STS solution

" may be determined.

For fixed values of % and A , there exists a family of
STS solutions which describe a curve in a-¢ .  space, each such
solution being associated with a point of the curve. Two such curves

of STS solutions for fields of 5% and 7.5% of the symmetrical field

PR ey A et

are sketched in Figure (9.1).] The shock of an STS solution for ¢¢ =
radians coincides with the potential minimum of the imposed field (i.e.,
the density maximum of the imposed spiral pattern.)

An increase in perturbation field influences a corresponding in-

crease in o, if a s held constant and a corresponding increase

?
|
g
3
_5
!

in a if ¢ is held constant. A larger perturbation field is

necessary to maintain an STS solution when dispersion effects are

stronger corresponding to a more enhanced state of turbulence in the

]The values of the fixed galactic parameters for these two families of
STS solutions are: tan i =1/7, q_ = 12,5 km/s/kpc, = = 10 kpc,
and A= 5%, 7.5% respectively. P
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Two Families of STS Solutions
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interstellar medium,

Suppose we consider the STS solution at each one of several
points, A, B, C, D, along these curves in Figure (9.1). For an
isothermal shock,] the pressure jump and density jump are equivalent;
and therefore, the shock strength is a measure of both density and
pressure jumps. The supersonic and subsonic Mach numbers associated
with the gas flow before and after passage through the isothermal
shock are directly and inversely proportional respectively to the

square root of the shock strength:2

SR A

The Mach numbers (supersonic) and shock strengths are indicated

beside the various points, A, B, C, D, in Figure (9.1)., The behavior
of the density distribution of an STS solution which is associated with
each of these points, is sketched in Figure (9.2). Al1 the shocks lie

close together within a spacing of less than .05x radians on the

front side of the potential minimum. The larger the gaseous turbulent
dispersion in the interstellar medium, the smaller the shock strength
that can be maintained. On the other hand, with larger field strength,

a shock of greater strength can be supported.

]The galactic shock in these calculations is taken as isothermal (see

Section 3).

2see Section 6.
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Fundamental Component of the Density Distribution

Suppose we ask how the (nonlinear) density distribution of an
STS solution compares with the density distribution in the linear
theory. We are interested in possible features of similarity and
difference between the linear and nonlinear theories. \The amount of
phase shift between the fundamental component of the density distribu-
tion of an STS solution and the linear density harmonic would be one
such important feature., Figure (9.3) sketches this fundamental com-
ponent for each of the points, A, B, C, D. In the linear theory, the
peak of gaseous density distribution lies exactly at the potential
minimum of the 1mﬁosed field. On the other hand, for each of the points,
A, B, C, D, the peak of the fundamental component lies slightly on the
back side of the potential minimum, whereas the shock itself lies
slightly on the front side. This is, in general, the situation for
all STS solutions. An STS solution therefore gives rise to an induced
self gravitational field which lies nearly in phase with the imposed
field.

The peak of the fundamental component for a smaller perturba-
tion field lies even closer to the potential minimum. This feature
might lead us to expect that as the imposed field is reduced, the
phase of the peak may approach the potential minimum, Such a tendency
would indicate that the nonlinear theory may approach the linear

theory in the 1imit of smaller and smaller fie]d.]

]A similar 1imit for an STS solution is considered in the following
subsection,
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According to Poisson's equation, the total stellar and gaseous
mass participation in the solar neighborhood necessary to support a
spiral field of 5% of the symmetrical field is about 9.8 Me /pc or
about .096 of the total material density of 94 My /pc in the solar
vicinity, If the relative amounts of gas and stellar mass in the
solar neighborhood is given as: o./0, = 1/9, and if the stellar
reduction factor is about .07, the gaseous reduction factor then is
about .40, Therefore, the gaseous mass to stellar mass participation
in the support of the perturbation field may be a little greater than
1:2 (i.e. .65), This is a typical value of the relative gaseous to

stellar mass participation in the nonlinear galactic shock picture,

The Limit of Weak Shock Strength and of
Weak Spiral Perturbation Gravitational Field

In the preceding subsection, it is shown that the phase of the
fundamental component of density distribution in an STS solution
approaches the phase of the linear density solution as the field de-
creases. In this subsection, another important limiting process is
considered: namely, whether an STS solution (and a two-shock pattern
composed of STS solutions) can persist in the limit of zero field,

It would be very interesting to determine if a limit for decreasing
field (at constant dispersion speed) does exist below which no two-
shock gas streamtube solution is possible. Indeed, we shall find this
to be the case.

It is clear from the preceding work that in order to retain the

STS solution as the field decreases, the shock phase o, must

also decrease. Projections of an STS solution in wy'-wy! space -
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for the set of parameters: tan i = 1/7, (K/20)2 = .4,
W' = .049,and a' = 034 , and for several values of the
field strength, A = 7,5%, 5%, 2%, 1.28%, 1.16%, 1.04%, and .8%, are
sketched in Figure (9.4). The shock strength and the Mach number
(supersonic) decrease as the strength of the field decreases.
Table (9.1) provides the various shock strengths and Mach numbers
(supersonic) under these respective field strengths.

For the above set of values of the parameters, a limit is found

for the field below which no STS solution is possible. This 1limit of

finite shock strength is

and occurs for a field of about 1.04% of the symmetrical field. If
the perturbation field strength decreases below this limiting value,
the STS solution can no Tonger be sustained. For example, in the case
of the curve which corresponds to A = .8% (sketched in Figure (9.4) ),
no shock can be constructed between the supersonic and subsonic branches
of the curve,

In general, for every other set of values of the parameters,
similar Tower bounds exist on the field and the shock strength of the

associated STS so]ution.] For every radius between 3-4 kpc and 12 kpc

]Something exceptional occurs in the 3 kpc region of the galactic disk.

We shall see later (Section 14) that for an STS solution at a radius

of 3 kpc the Tower bound for the field is zero while the corresponding
Tower bound for the shock strength is still finite. The bound on per-
turbation field strength reaches zero before the bound on shock strength,
Therefore, it is possible for an STS free mode to exist in the 3 kpc
region of the galactic disk.
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Table (9.1)

|
The Limit of Decreasing Field and
Shock Strength of an STS Solution
|
A a(2)/a(1)
7.5% 9.2
5.0% 6.2
2.0% 2.4
1.26% 1.9
1.16% 1.5
1.04% 1.45
E
|
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Lower Bound on Shock Strength and Perturbation Field
for a Typical STS Solution ,
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in the galactic disk, there is a positive Tower bound on shock
strength for every STS solution and a positive Tower bound for the

spiral perturbation field which is necessary to support the STS

solution,
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10. Gaseous disk: a family of nearly concentric] streamtubes

In order to simulate the gas flow picture over the whole galac-
tic disk a family of STS solutions that covers all radii of the disk
and that is compatible with the galactic parameters over the disk must

be constructed.

STS Solutions at Various Radii

Numerical calcu]ations2 for the determination of such a family
Qf STS solutions that describes the gas flow about the Galaxy have
been carried out for streamtube bands lying at typical radii stretch-

ing from 3-4 kpc to 12 kpc in the Schmidt model of the Milky Way System.3

]Nearly concentric refers to streamlines (and streamtubes) about the
galactic center, which are not exact circles but rather are pointed
ovals (e.g., see Figures (10.2) and (10.3) ).

ZValues of the fixed parameters that have been adopted for these numer-
ical calculations (of Section 10) are: tani = 1/7, Q. =
12.5 km/s/kpc, and A = 5%. @ varies over the disk, aRd a varies
with .

3These calculations where a spiral field is imposed in the 3 kpc neigh-
borhood of the Schmidt model are of general exploratory character since
the density wave pattern, which gives rise to such a spiral field does
not extend further inwards than inner Lindblad resonance at about

3.5 kpc according to the linear density wave theory. We shall later
see however in the nonlinear theorv (Section 14) that the gaseous com-
ponent organizes itself into a free mode and maintains a shock pattern
in the 3 kpc region without a supporting perturbation field. This
nonlinear organization of a gaseous free mode signifies as well the
organization of an induced gravitational Tield due to the gas alone
(which is not included in the calculations), although this induced
field can be at most of the order of only a few percent of the sym-
metrical field.
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Values of various parameters at typical radii in the Schmidt model are
listed in Table (10.1). Curves representing families of STS solutions
at these typical radii in the galactic disk are sketched in a-¢. space
in Figure (10.1). As STS solution corresponds to each point of every
curve.

A most interesting feature is evident in Figure (10.1); namely,
the lack of variation of the shock phase, b s along the curves of
STS solutions for all radii between 3-4 kpc and 10 kpc. If the dis-
persion speed of gas in the Galaxy were to vary over a typical range of,

perhaps, 7 km/s to 11 km/s, then the range of shock phase for the entire

family of possible STS solutions between the radii of 3-4 kpc and 10 kpc

would cover only the narrow range between o, = .867 radians and
o = 1.01w radians. Ue note that the potential minimum of the imposed
spiral field is at o, = m radians.,

We will refer to a shock of the STS solution in two different

ways. While it is sometimes convenient to consider the shock strength

which is the ratio of gas density on the back side of the shock, o(2),
to that on the front side, o(1) (i.e., o(2)/0(1) ); at other times,

it is convenient to consider the effective overall gas compression along

a streamtube which may be taken as the ratio of the maximum gas density,
o(2), to the average gas density, oo (i.e., o{(2)/oo ). Values of the

shock strength and the effective gas compression along a gas streamtube
are indicated at various points along each of the curves of Figure (10.1).
Both of these quantities decrease with increasing gaseous turbulent dis-
persion speed. In other words, the greater the mean gaseous turbulent

dispersion speed in the interstellar medium, the weaker the shocks that

can be maintained.
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Families of STS Solutions at Various Radii in the Galactic Disk
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A family of STS solutions, which are compatible with the para-
meters of the galactic disk at their respective radii, will now be
chosen, Suppose we assume that a mean turbulent dispersion speed of
about 10 km/s may be adopted for our solar neighborhood. In this case,
the STS solution that is characteristic of our solar vicinity (at a

radius of 10 kpc) is the ohe éssdciated with the point of the 10 kpc

curve where a = 10 km/s. This particular STS solution possesses
two shocks, each of which lies slightly in front of a potential mini-
mum of the imposed field (i.e., one of these shocks lies at about
¢g = .89n radians in Figure (10.1) ).

There are several possible ways to proceed with the selection
of the STS solutions for all other radii in our Galaxy. First, it
would be possible to select only those STS solutions which have a

fixed shock phase, ¢ with respect to the imposed spiral field.

g*
In this case, the two-armed spiral shock pattern (which is hereafter
referred to as the/TASS pattern or the TASS picture)] exactly coin-
cides with the equipotential curves of the imposed spiral pattern
over the whole disk. This selected family of STS solutions forms a
TASS pattern whose shock strength and effective compression decrease
slightly from the 10 kpc region toward the 3-4 kpc region.
Alternatively, we might select a family of STS solutions which

possess uniform turbulent dispersion speed over the galactic disk

(instead of constancy of shock phase over the disk). In this case,

]The family of streamtube solutions which make up the TASS pattern
(and picture) is a subset of the much larger family of STS solutions.
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on]y/those STS solutions, which correspond to points (of the

various curves of Figure (10.1) ) that 1ie near a mean turbulent
dispersion speed of 10 km/s,] are chosen. This alternative picture
for the Galaxy possesses a TASS pattern that deviates somewhat from
equipotential curves of the imposed spiral pattern. However, because
of the narrowness of the range of shock phase variation (as indicated
in Figure (10.1) ), the deviation between the TASS pattern and the
imposed spiral pattern is very small. This possible TASS picture
(with uniform turbulent dispersion speed) of the Galaxy therefore
appears to be quite satisfactory also.

This alternative TASS picture for the Galaxy of nearly uniform
turbulent dispersion speed except perhaps in the inner region of the
disk exhibits some curious features., If the spiral shock pattern is
followed inwards from 10 kpc, the shock strength decreases slightly
until it reaches a minimum value somewhere in the vicinity of 6-7 kpc.
As a spiral shock is followed further inwards from 6-7 kpc, the
shock strength rises. Towards the 3-4 kpc region, the shock strength
becomes large again.

Although the shock strength shows a slight dip in the 6-7 kpc
region, the effective gaseous compression ( o(2)/0e ) rises mono-
tonically with decreasing radius from 10 kpc to 3-4 kpc, It is likely
that the effective gaseous compression rather than the shock strength

has the more direct influence on possible star formation, since the

]Since a mean turbulent dispersion speed of 10 km/s is adopted for the
solar neighborhood, such a uniform turbulent dispersion speed over
the whole disk would also be 10 km/s.
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effective gaseous compression is a measure of the actual maximum
gaseous compression along a streamtube. It is the maximum value
of gas density ,0(2), that suggests the actual degree of gas cloud
compression and possibly the relative amounts of star formation
and H II concentrations at various radii. It is interesting in

this respect that the effective gaseous compression at 3-4 kpc

~ appears to be nearly twice its value at 10 kpc. Comparison of this

theoretical behavior of the effective gaseous compression versus
radius shows general agreement with observational evidence of the
mean H II distribution plotted with respect to radius over the galac-

tic disk between 3-4 kpc and 10 kpc.]

Quter Bound Cutoff gﬁ the TASS Pattern in the Galaxy

Calculations have been carried out over the galactic disk out
to the outer bound of 12 kpc where the TASS pattern terminates.
Evidence of this outer bound cutoff of the TASS pattern near 12 kpc
may be seen in Figure (10.1). First of all, no 12 kpc curve in

a - o, space exists. In addition, the 10 kpc curve terminates
at an upper bound for dispersion speed of about 12 km/s. Even the
curves for streamtubes at 8 kpc and 6 kpc have upper bounds for dis-

persion speed of 15 km/s and 17 km/s respectively. Termination of

these curves signifies a termination of the TASS pattern at these

]Agreement with observational evidence is further enhanced when the
possible increase in turbulent dispersion speed toward the galactic
center is taken into consideration (see Section 33 - Comparisons with
observations).
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values of the parameters and a lack of the TASS pattern for all

values beyond. Since we are primarily interested in mean turbulent
dispersion speeds in the range from about 7 km/s to 11 km/s, the
cutoff in a - ¢, space is not reached until gas streamtubes at
larger radii than 10 kpc are considered. For a larger spiral field,
the outer bound cutoff of the TASS pattern would lie at an even larger
radius in the disk. Forvexample, the outer bound cutoff of the TASS

pattern for a 7.5% field lies at approximately 14 kpc.]

TASS Pattern in our Galaxy

The overall TASS pattern superposed on the imposed spiral
perturbation pattern of background matter is indicated in Figure (10.2).
Streamlines which turn sharply at each shock are drawn for several
typical radii. The total radial excursion of a given streamtube at a
radius between 3-4 kpc and 10 kpc is generally less than 1/10 of the
average streamtube radius from the galactic center. Each shock lies
along and well within each imposed background spiral arm which gives
rise to the imposed spiral field. The shock waves are actually located
slightly inwards from the center axes of the imposed spiral arms of

trailing type.2 By the nature of these shocks, the highest gas

]Observational studies by M.S.Roberts (indicated in Section 2)

provide observational evidence for an outer bound cutoff of the
TASS pattern in many Sc-type galaxies. It is shown in Section 33
that the theoretical TASS picture with its outer bound cutoff is
in good agreement with the observational studies of M.S.Roberts.

2A (1eading) TASS picture in a spiral galaxy of leading type is
considered in Sections 11 and 12.
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concentration in the disk occurs just directly outside the shock
where the flow is subsonic. Consequently, the fundamental component
of the induced potential field due to the gaseous arm is almost
exactly in phase with the imposed background stellar arm, and the
two fields enhance each other for the maintainence of the overall
TASS pattern,

Figure (10.3) sketches the observable picture of the galactic
disk as seen in observational studies. In this picture the imposed
background stellar spiral arms are not sketched since they actually
exhibit very 1little luminosity and are not seen in observational
studies, What is seen in observational studies is the observable
gaseous spiral arms that contain the newly-born stars and most
Tuminous H II regions. The shocks 1ie on the inner edges of the
observed gaseous spiral arms. Regions of most prominent star forma-
tion and most brilliant H II concentration occur in the observable
gaseous spiral arms, extending from the shocks on the inner edges

to approximately the centers of the gaseous arms.
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Part II B. Gas Flow about a Spiral Galaxy of Leading Type

The problem of the existence and persistence of a TASS pattern
over a spiral galaxy of trailing type is considered in Part II A.
In fact, it is demonstrated that a TASS pattern of trailing type is
compatible with the general nature of gas flow about a galactic disk
made up of a two-armed spiral density wave pattern of background matter
of trailing type superposed on the Schmidt model of the Milky Way
System.

In Part II B, the problem of the existence and persistence of

a TASS pattern over a spiral galaxy of leading type is investigated.

We ask how greatly different is the picture of a spiral galaxy of
leading type from the picture of a spiral galaxy of trailing type

(in Part II A). Although the physics of the two situations is the
same, we shall soon discover that the TASS pictures of leading and
trailing type are quite different. For example, it is shown that the

relative Tocation of a shock, a gaseous spiral arm, and the regions of

prominent star formation (and H II regions) inside the gaseous spiral

arm of leading type in the TASS picture of Part II B is strikingly
different from the relative location of these features in the TASS

picture of a spiral galaxy of trailing type (in Part II A). An impor-

- tant implication of these results of the theoretical TASS picture for

spiral galaxies of leading and trailing type is therefore suggested;

namely, by observational studies of spiral galaxies and in particular

-~
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of their luminous regions of prominent star formation (and HIT

regions), it may be possible to distinguish spiral galaxies as lead-

ing or trailing type systems and to determine their sense of rota-

tion as well,
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11. Similarity of the gas dynamical equations for spiral galaxies
of leading and trailing type

In this investigation of a spiral galaxy of leading type we
make the same asymptotic apprbximation that is made in the investi-
gation of a spiral galaxy of trailing type (in Part II A). In this
asymptotic approximation the perturbation quantities are assumed to
vary more rapidly in the direction normal to the equipotential curves
than in the direction parallel to the Q?//////Z’
equipotential curves of the spiral pat-
tern. Verification of this asymptotic
approximation is given in Appendix II.

The final form of the asymptotic gas

dynamical equations for a spiral galaxy £ Wy

of leading type may be written as:

a2(1 4 —2

o g (et ) (eowy #[-JF - xp) ¢
an a2 - (wo + WL)2
(11.1)
K2
(=& w; + ¥
oW _ 70 4 3
P - [4] s (11.2)
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where the various symbols denote the same physical quantities as for
the spiral galaxy of trailing type, but with the velocity directions
indicated in the diagram on the preceding page for the spiral galaxy

of leading type. The quantities, x;, xp, and X3, are given by equa-

vy EATA R v

tions (5.6), (5.7), and (5.8); and

f = A sin(gT%—T-n + 4)

Once the above two equations, (11.1) and (11.2), are solved for W,
and w,, the following equation may be solved for the perturbation

gas density, o;:

90 oW do
(Weo + wWy) EFL + (0o + 01) 3;*' + [-1(oo + 0 +‘WHEQJX1 = 0

(11.3)

The following equation may be solved to yield the position, ¢, along

the gas streamtube about the disk:

88 _  Wno * W
an Wio + W, (11.4)

The only differences between this above set of equations, (11.1),
(11.2), (11.3), and (11.4), for a spiral galaxy of leading type and
the set of equations, (5.10), (5.11), (5.12), and (5.13), for a spiral
galaxy of trailing type are simply a few sign changes indicated in the

brackets, [ ], above.
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These gas flow equations for a spiral galaxy of leading type
have been derived from the basic set of equations, (4.1), (4.2), and
(4.3). However it is a relatively simple matter to derive the equa-
tions for a spiral galaxy of leading type, (11.1) - (11.4), from the
equations for a spiral galaxy of trailing type, (5.10) - (5.13), by
a transformation between the trailing and leading type pictures that
involves no more than sign changes of the variables. We now consider
a transformation between the trailing (tr) and leading (1d) pictures
that involves a sign reversal of all velocity components and all

spatial coordinates:

Wite T T Mg Yiige > T Ming Ar T T 4
S tr > T %59 Up > - g Ker > = Kig
"tr T T Md 2 S ¥ “tr T 914
Xlge 7 7 Xlyg4 X2gp 7 X214 X3gp 7 X314
fre > 7 F1d R

This transformation may be represented in diagrametrical form

as:
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Therefore, the above variable transformation takes us from the gas flow
picture of a spiral galaxy of trailing type to the gas flow picture of

a spiral galaxy of leading type.
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12. Physical picture for the gaseous disk gf_g_spira] galaxy
of leading type

Suppose we adopt the Schmidt model of the Milky Way System
as the basic equilibrium state in our theoretical picture. In
addition, suppose we adopt values of the basic independent para-
meters, 1 , Qp , w , a,and A, that are adopted for the
typical STS solution considered in Part II A (i.e., tani = 1/7,
Qp = 12.5 km/s/kpc, w = 10 kpc, a = 10 km/s, A = 5% ).
Under these circumstances, we may determine an STS solution at a
typical radius in the gaseous disk of a spiral galaxy of leading

type and compare it with the corresponding STS solution in the

gaseous disk of a spiral nalaxy of trailing type.

A Typical STS Solution

The STS solution for the spiral galaxy of leading type which
corresponds to this abcve set of values for the parameters is sketched
in w,'-w,' space in Figure (12.1). The corresponding STS solution
for a spiral galaxy of trailing type is also sketched. The symmetry
of the two curves of leading and trailing type is apparent as expected.
One is nearly the exact mirror image of the other reflected through the
w,' axis. This symmetry between STS solution curves of leading and
trailing type is a feature which is in general present for any set of

values of the basic independent parameters. Figure (12.2) illustrates
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the nature of the gas density, o' , and the velocity components
perpendicular and parallel to the spiral equipotential curves of
the imposed spiral pattern for this STS solution in spiral galaxies

of leading and trailing type. The symmetry of the two cases is again

very striking.]

TASS Pattern of Leading Type

Numerical calculations between the radii of 3-4 kpc and 12 kpc
in the Schmidt model have confirmed that a TASS pattern of leading
type is indeed compatible with the general nature of gas flow about
the galactic disk of leading type. In this TASS picture of leading

type, a shock occurs near the density maximum of an imposed spiral

arm of background matter (of moderately-old stars) but is shifted
slightly on the outer side of the imposed spiral arm. The reverse
is true for a spiral galaxy of trailing type in which a shock occurs

near the density maximum of the imposed spiral arm of background matter

but is shifted slightly on the inner side of the imposed spiral arm.
Figure (12.3) (to be compared with Figure (10.2) for a spiral galaxy
of trailing type) illustrates the TASS pattern in a spiral galaxy of
leading type and demonstrates that the shock occurs well within and

actually on the outer side of the imposed background spiral arm.

]Because of this symmetry (which is characteristic of an STS solution
for any set of parametric values), the numerical calculations for the
picture of a spiral galaxy of trailing type in Part II A can be applied
to the spiral galactic model of leading type as well.
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Since the gas flow across a shock of leading type has an
inwards radial motion, the regions of largest gaseous concentration
occur inside the shock. Therefore, the shocks of a spiral galaxy of
Teading type lie on the outer edge of the observed gaseous spiral
arms, whereas the shocks of a spiral galaxy of trailing type lie on
the inner edge of the observed gaseous spiral arms, Figure (12.4)
(to be compared with Figure (10.3) for a spiral galaxy of trailing
type) provides an observable physical picture of a spiral galaxy of

leading type. In this picture, the regions of prominent star forma-

tion and the brilliant H II regions lie on the outer side of an ob-

served gaseous (H I) spiral arm of leading type, and each shock lies
at the common outer edge of all these spirals of H I, H IT, and most
prominent star formation.

A shift in the position of shocks, of regions of most prominent
star formation, and of most Tuminous H II regions therefore exists
between the outer and inner edges of the observed gaseous spiral arms
in spiral galaxies of leading and trailing type respectively, By
observational studies of spiral galaxies (and in particular of the
locations of the most luminous regions with respect to the observed
spiral arms of the galaxies), it may be possible to distinguish spiral

galaxies as leading or trailing type systems and to determine their

sense of rotation as well, according to the locations of the regions

of most prominent star formation and most luminous and brilliant H II

regions on the outer or inner edges of the observed gaseous spiral arms,
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Part II C. Resonance and the "Three Kpc Arm"

The motion and distribution of interstellar gas near the
central region of our Galaxy is as intriguing to the theoretician
as to the observationalist. It is known that a continuous gaseous
arm is present in the velocity profile of the 3 kpc neighborhood of
our Galaxy. J.H. Oort (1965) points out that for a spiral arm it is
exceptionally homogeneous over its whole arc length of some 23° in
longitude and that the variation of its mean velocity with longitude
js remarkably smooth. A most curious feature is the arm's apparent
high radial velocity of about 53 km/s/kpc away from the galactic center,
In addition to this "3 kpc arm" which lies between the galactic center
and the solar neighborhood, another spiral arm of similar arc length
lies at roughly the same radius on the opposite side of the galactic
center.

In Part II C, it is shown that shock formation together with
resonance in the 3 kpc neighborhood of the galactic disk may play an'
important role in this "3 kpc arm" phenomenon. In Section 13, resonance
in the inner portion of the Galaxy is investigated. An exciting feature
is found in the theoretical shock picture in Section 14; namely, it is

shown that a gaseous free mode is possible in the 3 kpc region even

without the presence of a sustaining spiral pattern of background matter.
Some features of the "3 kpc arm" are apparent in this free mode. In

Section 15, the effects of forcing on the free mode are considered.
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13. Nature of linear and nonlinear resonance

We now direct our attention to resonance, a phenomenon
which is present in the 3-4 kpc region of the disk of our Galaxy.
Resonance in the nonlinear TASS picture has the same basic character-
istics as resonance in the linear density wave theory. However, un-
Tike linear resonance, nonlinear resonance manifests itself in the

gaseous component as well as the stellar component of the galactic disk.

Resonance in the Linear Density Wave Theory

In the linear density wave theory, resonance is sustained by
the stellar component alone. When a star rotates about a disk-shaped
galaxy at an angular speed, a( @) , such that the difference between
the angular speed and the wave pattern speed, Qp , is equal to some
submultiple of the epicyclic frequency of the star, K( @) , then
the star may be said to be in resonance with the wave pattern. This
type of resonance has come to be known as Lindblad resonance. Any
given equipotential curve of the wave pattern repeatedly meets such a
"resonant” star at the same phase of its epicyclic oscillation.

The gravitational fields of the wave pattern and a star consti-
tute the mechanism for transfering energy between the wave pattern and
the star. When a star moves against the direction of attraction of
the pattern's gravitational field, the star loses energy to the wave

pattern. Energy is gained by the star from the wave pattern when the
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star moves in the direction of attraction of the pattern's gravita-
tional field.

Nearly exact Lindblad resonance is realized over a circular
band in the 3-4 kpc neighborhood of the galactic disk. The tendency
toward resonance in the presence of both the gaseous and the stellar
components in the linear density wave picture is discernible from the

Lin-Shu dispersion relationship:

K2 (1 - v?)
S T e ToF )+ o F (0]
m ° v"a *
where
m (o -q)
v o= P , mis an integer
K
Fv(xg) is the gaseous reduction factor
F (x) is the stellar reduction factor

v

In the limit as |v| > 1, the various functions of Vv appearing in the
dispersion relationship exhibit the following behavior close to reson-

ance:




If Lindblad resonance occurs in the presence of both gaseous and
stellar components, a limit of the spiral density wave pattern toward
shorter and shorter wavelength exists:

W2

Mo 7 (1 - v2)

It is indeed the stellar component in the linear theory that sustains
resonance in the 3-4 kpc neighborhood (where |v]= 1) and provides for
the short wavelength limit in this neighborhood.

A galaxy of stars alone without any gaseous component would
exhibit resonance in the same manner as the galaxy which contains both
gas and stars since the 1imit toward shorter and shorter wavelength
is provided with or without gas (in the Tlinear theory). Whereas density
perturbations increase in magnitude in the 1imit toward resonance
(i.e., |v| = 1), the radial and circumferential perturbation velocity
components remain small and exhibit no tendency toward larger amplitudes
in the resonance limit. Therefore, linear resonance is characterized
not by large amplitudes of the perturbation velocities but rather by
a shift toward shorter and shorter wavelength of the spiral density
wave pattern in the 3-4 kpc neighborhood.

Lin and Shu (1966) have shown that the linear theory for a galaxy
of gas alone and for a galaxy of stars alone yield quite similar results
except in the vicinity of |v| = 1. For a gaseous galactic model with-
out any stellar component, the Lin-Shu dispersion relationship may be

solved for \ ¢ explicitly:
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0f the two branches of the solution for ALos? the shorter wavelength
branch corresponds more closely than the longer wavelength branch

to the corresponding A _s solution for a galaxy which contains stars
and no gas. In the limit as |v| - 1, the shorter wavelength branch

approaches the finite limit:

Therefore, unlike the linear stellar theory where A_g * 0 in the
linear gaseous theory, M-S remains finite. The gaseous density and
the radial and circumferential perturbation velocity components all
remain of small magnitudes in this limit as |v| > 1. Hence, in the
linear theory, no resonance appears for a galaxy which contains only

a gaseous component. It is indeed the pressure due to gaseous turbu-
lence that tends to disperse all organized gaseous motion and tends to

suppress resonance.
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Resonance in the Nonlinear TASS Picture

The above linear density wave picture portrays the nature of
Tinear resonance in disk-shaped galaxies containing gas alone, stars
alone, and gas and stars together. In similarity to linear resonance
which cannot be exact, exact nonlinear resonance cannot be realized
because of the effect of the radial excursion of the material particles
(gas and stars) in their oval (noncircular) streamtubes about the disk.

The nonlinear TASS picture provides for resonance in a little
different fashion from the linear theory. In contrast to the linear
theory of a gaseous galactic disk in which no resonance is possible,
gaseous resonance in the nonlinear TASS picture manifests itself in

the form of a free spiral mode which is sustained without the influ-

ence of a stellar component and without any imposed spiral field due

to the stellar component. In further contrast to the linear theory
where the 1imit to shorter and shorter wavelength of the spiral density
wave pattern is necessary for the realization of Lindblad resonance,

in the nonlinear TASS picture the gaseous free mode requires no such
1imit of wavelength., We now direct our attention toward the 3 kpc
region of the TASS picture of the Galaxy in an effort to view this

"resonant" gaseous free mode.
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14, Free spiral mode

We now consider the possibility of an STS free mode at various
radii in the Schmidt model of the Galaxy. In Section 9, we investi-
gated the limits of decreasing shock strength and decreasing field for
an STS forced mode solution and demonstrated that below a given Tower
bound of spiral field (which is a function of radius) no STS solution
is in general possib]e.] For zero field, a free mode may exist; but
its periodicity may be necessarily greater than two (i.e., 48 < n ).

Figure (14.1) illustrates some curves in "a-a6 parameter" space
for the family of possible free modes (of arbitrary periodicity) at
various radii, @ , in the Schmidt model. A free mode is associated
with each point of every curve; however, an STS free mode is possible
only when the periodicity is two ( i.e., at 46 = = radians). For reason-
able values of the gaseous turbulent dispersion speed in the galactic
disk (i.e., a = 4-5 km/s), it is apparent that only in the 3 kpc neigh-
borhood and interior to the 3 kpc neighborhood of the disk is an STS
free mode possible (see Figure (14.1) ). In the 3-4 kpc neighborhood,
if tan i is decreased to 1/14 (corresponding to more tightly wound

spirals), an STS free mode may exist in the presence of as large a

]In Section 14, we demonstrate what is indicated in Section 9; namely,

an STS free mode is not possible in the Schmidt model between the
radii of 3-4 kpc and 12 kpc for typical values of the dispersion speed
(as a function of the radius).
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Families of Possible Free Modes over the Galactic Disk
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gaseous turbulent dispersion speed as 5-10 km/s.

It is exciting that the STS free mode, which is apparently
sustained entirely by resonance, can in fact exist, Such a self-
sustained gaseous STS free mode provides a direct indication of non-

linear resonance in the 3 kpc neighborhood of the galactic disk., Since

no background spiral pattern of leading or trailing type is necessary
for the support of the gaseous STS free mode, the leading or trailing
nature of the STS free mode is not necessarily predetermined by any

imposed background spiral pattern. Therefore, an STS free mode of both

leading type and trailing type is possible.

STS Free Mode of Trailing and Leading Type

Figure (14.2) provides a picture of the "resonant" STS free
mode of trailing type in the 3 kpc neighborhood of the galactic disk.
The radial velocity along the streamtube is large and positive over
two short arcs lying directly across the galactic center from one
another. These regions of large positive radial velocity (of about
16-20 km/s) coincide with the least dense regions along the streamtube
of this STS free mode of trailing type. Just before the gas reaches
a shock of trailing type, the gas density is low and the radial velocity
is outwards; whereas just after passage through the shock, the gas
density is high and the radial velocity is inwards.

A "resonant" free mode of leading type is illustrated in the
3 kpc neighborhood of the galactic disk in Figure (14.3). The stream-
tube radial velocity is large and positive over two short streamtube

arcs lying directly across the galactic center from one another. These
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regions of large positive radial velocity (of about 16 to 20 km/s)
coincide with the most dense regions along the streamtube of this

STS free mode of leading type. Just before the gas reaches a shock

of leading type, the gas density is low and the radial velocity is
inwards, whereas just after passage through the shock, the gas density
is high and the radial velocity is outwards.

It is a very curious coincidence that in both theoretical STS
free mode pictures regions of large positive radial velocity occur
only in two relatively short arcs which have lengths similar to the
length of the "3 kpc arm" of observational studies and which are located
at the same radius on opposite sides of the galactic center from one
another. In fact, the regions of positive radial velocity occur only
over short arc segments which lie directly in front of and directly
behind the shock.

In the STS free mode picture of trailing type the least dense
regions move radially outwards, while the most dense regions move
radially inwards. On the other hand, in the STS free mode picture of
leading type, the most dense regions move radially outwards, while the
least dense regions move radially inwards. This latter picture for
an STS free mode of leading type better accounts for the "3 kpc arm"
in the Galaxy which is apparently undergoing rapid radial expansion away
from the galactic center toward the solar neighborhood. On the other
hand, if the "3 kpc arm" of observational studies were actually located
on the far side of the galactic center from the solar neighborhood, the
STS free mode of trailing type would better account for its rapid in-
wards expansion toward the galactic center (and toward the solar neigh-

borhood).
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15. Forced spiral mode

Having investigated the STS free mode phenomenon which is
apparently sustained by resonance alone, we now direct our attention
to a situation in which a perturbation gravitational field is super-
posed on the STS free mode in the 3 kpc region of the galactic disk.]

We ask if the response to this combined effort of resonance and the

perturbation field may well simulate the "3 kpc arm" phenomenon of

observational studies.

The excitation of an STS free mode under a perturbation gravi-
tational field cannot result in an infinite response primarily be-
cause of the effects of large nonlinear velocity variation and of
the radial excursion of the streamtubes away from exact resonance.
However, such excitation may be large, and the question is how large
might it be when both resonance and the perturbation field complement
the efforts of one another. Section 10 demonstrates that a spiral field

with a magnitude of 5% of the symmetrical field can give rise to STS

]These calculations in which a spiral field is superposed in the 3 kpc

neighborhood of the Schmidt model are of general exploratory character
since no such spiral background pattern and therefore no imposed spiral
field is possible in this region of the galactic disk according to the
lTinear density wave theory. However, in the nonlinear theory, the
gaseous component organizes itself into a free mode and maintains galac-
tic shocks in the 3 kpc region of the TASS picture without the presence
of a sustaining field. This nonlinear organization of the gaseous free
mode signifies as well the organization of an induced gravitational
field due to the gas alone, however this induced field due to the gas
can be at most of the order of only a few percent of the symmetrical
field.

112




S

g, e

solutions in the 3 kpc region with shock strengths as large as 50

and with radial velocities as large as 20 km/s over two short arc
lengths of the streamtubes. These quantities are considerably larger
than the corresponding quantities in the solar neighborhood.

Even larger excitation and response may be possible in the presence
of a greater field. Therefore, in addition to the calculations for
zero and 5% field, numerical calculations have been carried out for
STS solutions in the 3 kpc neighborhood under fields with magnitudes
of 10% and 15% of the symmetrical field. Figure (15.1) provides a
sketch of the three parametric curves (in a - o space)lof the families
of STS solutions in the 3 kpc neighborhood which correspond to the
three imposed fields of 5%, 10%, and 15% of the symmetrical field. An
STS solution is associated with each point of every parametric curve,
The degree of excitation and response in the presence of these fields
is suggested by the effective gaseous compression, the maximum radial
velocity along a streamtube, and the shock strength, all of'which are
indicated at various points along the curves.

For a given field, the effective gaseous compression, the maximum
radial velocity, and the shock strength all decrease with increasing
turbulent dispersion speed. This behavior indicates that the pressure
due to gaseous turbulence tends to disperse all organized gaseous
motion as well as weaken the galactic shocks. On the other hand, as
the field increases, the effective gaseous compression, the maximum
radial velocity, and the shock strength all increase as well, This be-
havior, therefore, indicates that the shock pattern is strengthened by

the imposed spiral field. An effective gaseous compression of about 65,
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a maximum radial velocity of about 40 km/s, and a shock strength of
about 180 are all typical estimates for an STS solution under a 15%
field and for a turbulent dispersion speed of about 4 km/s., If the
turbulent dispersion speed is taken a little smaller, radial velocities

as large as 50 km/s are possible,
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Part III. Mathematical Theory of the Development of Galactic Shocks

In part Il we investigated the nonlinear dynamics of the gaseous
component of the galactic disk and confirmed the compatibility of two
periodically-located shock waves over the disk, In fact, it was demon-
strated that a stationary galactic shock pattern may be maintained
between the radii of 3-4 and 12 kpc over the disk.

In view of the significance of the results of Part II, we
pose the following question: How may such large-scale galactic shock
waves form in the first place? HWe therefore direct our attention from
the problem of the existence and persistence of a two-armed spiral

galactic shock pattern to the problem of the evolution and development

of density waves into galactic shocks in the course of time. Of
considerable interest is the evolutionary process of how a coherent
gaseous density wave pattern may evolve into a coherent galactic shock
pattern,

To gain insight into possible galactic shock formation the follow-
ing initial value problem is considered: a grand pattern of spiral
structure which rotates at a given pattern speed and which embodies a
sinusoidal spiral perturbation gravitational field is superposed from
some time onwards on the gaseous compohent of the Schmidt model of our
Galaxy. Our goal is to determine the resultant nonlinear response of
the gaseous disk to the imposed spiral perturbation field. By the method

of characteristics we can view the formation of galactic shocks. Of
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especial interest is the evolution and development of those galactic
shocks which corotate with the imposed spiral pattern (i.e., those
considered in Part II).

The linear density wave theory of Lin and Shu provides a theoreti-
cal picture of a spiral disk-shaped galaxy by the construction of a
quasi-stationary grand design of spiral structure composed of self-
sustained density waves. In this theoretical picture the nature of
the grand pattern of spiral structure is precisely defined by the Lin-

Shu dispersion relationship (which at any radius of the disk determines

the wave number associated with the grand pattern at that radius in

terms of the pattern speed and the galactic parameters of angular veloc-

ity, epicyclic frequency, and the base state density (which is reduced

by the proper reduction factor), all defined at that radius). In this
investigation, an exciting phenomenon is discovered: namely, only
large-scale galactic shocks, which corotate with the pattern, may

develop in the theoretical Lin-Shu picture of spiral disk-shaped galaxies.

It is demonstrated that corotating galactic shocks (and no others) may
develop when the galactic parameters of the grand design and the smoothed
disk satisfy the Lin-Shu dispersion relationship (of the Tinear density
wave theory).

In Part III A, we consider the initial value problem for unsteady

one dimensional gas flow through a sinusoidal perturbation gravitational

field which is superposed on the gas flow from some time onwards. The
solution of the one dimensional initial value problem provides insight
for the solution of the initial value problem for a model spiral galaxy

which is considered in Part III B.
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In both Part III A and Part III B, we consider gas flow at

an arbitrary base state velocity and determine the types of shocks

that develop for various ranges of base state velocity. In Part III B,
it is shown that a particular critical speed (as a function of radius)
is in fact selected for the base state gas flow about the galactic
disk by the theoretical Lin-Shu picture of a spiral galaxy; and it is
demonstrated that corotating galactic shocks are possible only at

this particular critical speed of the base state gas flow through the

spiral pattern,
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Part III A. Unsteady One Dimensional Gas Flow through a
51nusoi§aT'Pérturbation Gravitational Field

In one dimensional acoustics, disturbances propagate forwards
and backwards at the local acoustic speed throughout the gaseous
medium. It is therefore natural to expect a small gravitational
field, which is initially superposed on the gas flow, to excite at
least two small disturbances of different propagation speeds. The
crucial question may be stated as follows: Over a sufficiently Tong
time, can these small disturbances grow into shocks? Our first goal
is to find the answer to this question and to determine how the forma-

tion of one dimensional shocks is possible.

If the base state flow is less than the dispersion speed of the
gas, both disturbances propagate through the perturbation field; one

LY

propagates backwards and the other forwards through the field.
the base state flow is equal to the dispersion speed of the gas, one
disturbance remains fixed and comoves with the field, while the other
propagates forwards through the field at twice the dispersion speed
(and twice the base state velocity). If the base state flow is greater

than the dispersion speed, both disturbances propagate forwards through

]One disturbance travels backwards through the field at a speed equal

to the difference of the base state velocity and the dispersion speed,
whereas the other disturbance travels forwards through the field at

a speed equal to the sum of the base state velocity and the dispersion
speed.
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the field. If a shock grows from a disturbance, the shock may be
expected to propagate at the same speed as the disturbance. All
three cases of subsonic, sonic,] and supersonic base state gas flow
are considered, and the nature of shock formation in each case is
detenmined.2

In Part IIT A, our attention is then directed toward the ini-
tial value problem in which a fixed sinusoidal perturbation gravita-
tional field is superposed from some time onwards on a homogeneous
stream of (turbulent) gas moving at a uniform velocity with respect
to the field. There is no loss in generality for the one dimensional

initial value problem if the contours of constant phase of the field

lie perpendicular to the direction of the base state flow.

]It will be shown that a shock grows much faster from a comoving density

wave than from a density wave that propagates through the field.

21n Part III B, we shall see that a particular critical base state
velocity is preferred for the gas flow by the theoretical Lin-Shu
picture of a spiral disk-shaped galaxy; and therefore, those shocks
that are associated with this particular critical base state velocity
(which is determined in Part III B) are the shocks that may be ex-
pected to be characteristic of a spiral disk-shaped galaxy. Curiously
enough as we shall see, the corotating galactic shock, which grows
fastest and which travels with the pattern, is the one selected by

the theoretical Lin-Shu picture of a spiral galaxy.
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16, Initial value problem for one dimensional gas flow

We consider the initial value problem in which a sinusoidal

perturbation gravitational field is superposed from a time, t = O,

onwards on a homogeneous sheet of turbulent gas moving at a uniform

e S R AT R e ARGy S G L e o S S R s b

velocity in the plane of the sheet. The basic equations of motion

R

for the gas may be written as:

90 90 ou

= Al = =

st - Y T 7% 0
3 3u 2
u u a< 3o :
—_— 4 — ot ——— = 1
ot u X o 09X f

az = gy cY-l, y # 1

where
t denotes time
X deﬁotés the spatial direction along which the gas flows
u = u(x,t) denotes the gas velocity in the x direction
a = a(x,t) denotes the mean gaseous turbulent dispersion speed ’é
o = o(x,t) denotes the density of the gas sheet i
f = f(x,t) denotes the imposed perturbation gravitational field i
Ky = constants; y # 1.] 5%
]The limit of y = 1 may be taken for consideration of the situation !

of isothermal gas flow at an equivalent turbulent temperature. We
later consider isothermal gas flow as a special case.
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The initial gas flow at time, t = 0, is given by:

u(x,0) = uo a(x,0) = ao a(x,0) = ao

Eliminating ¢ , we may write the basic equations in the following

form:

(3 + w+ra)dp) (u + 25 = ¢ (16.1)
(% + w-a%)(u - 43) = ¢ (16.2)

These two nonlinear partial differential equations, (16.1) and (16.2), for
the two unknowns, u(x,t) and a(x,t), together with the initial conditions

at t = 0:

u(x,0) = u, a(x,0) = a.

and the condition for the imposition of the perturbation force field:

0 t < 0
fx,t) =
ekV sin kx t > 0

where €, k, V = constants; e << 1

constitute the initial value problem under consideration. Later we shall
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add the effect of self gravitation of the gas. Let us now proceed
to solve the above initial value problem in the framework of a

perturbation theory in characteristic coordinates.

123




v

17. Perturbation theory in characteristic coordinates for one
dimensional gas flow

Initial Value Problem in Characteristic Coordinates!

Choosing o« and B as characteristic coordinates and setting:

P ] ]
—_— = —_— —
a a ot (u + a) X
9 9 9
- — = — - —
4 38 3t (u-a) 5

we may write equations (16,1) and (16.2) as:

9X

) 2 a _ _ ot
a 3;'( u + T ) = f(a,8) T (u+a) v
3 2 a _ X _ ot
-a SE'( u- = ) = f(a,B) 38 (u-a) I8
The initial conditions become:
t = 0 X = 20 = 28 a = Qo U = U

1

value problem of ordinary one dimensional gas flow subject to initial
conditions on the perturbation quantities rather than subject to an
imposed perturbation force field.
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Fox (1955) considers by the method of characteristics a similar initial
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and f becomes:

t(a,8) < 0

f( X(G,B). t(a’B) ) ={
ekV sin kx(a,g) t(a,B) > 0

Solution by Perturbation Series

A solution to equations (17.1) and (17.2) together with the initial
conditions will be attempted in the form of a perturbation series in

which each of the quantities, u, a, o, t, x, is expressed as:
q(a,8) = q(O)(a.B) + € q(l)(a,e) + g2 q(2)(a,e) + ... (17.3)

At this point we assume an approximate perturbation gravitational field
that will be adequate for an indication of possible shock development
and will facilitate the solution of the initial value problem. We adopt

an approximate perturbation force field of the form:

(0.5) { 0 t(o)(a,B) < 0 (17.4)
fla, = 7.4
: ekV sin[k x(o)(a,B)] t(o)(a,B) > 0

If equations (17.1) and (17.2) are rewritten in the form of the
perturbation series (17.3), and if terms of like powers of ¢ are
equated, the nonlinear equations (17.1) and (17.2) reduce to a series
of systems of four linear equations each., The solution of this series
of systems of linear equations to &(e2) for the physical quantities may

be written in the form of the perturbation series (17.3):
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u(a,B)

a(a,B)

0(0.6)

b

b
¢
H

{
i
%

= Uo # e%o{k—l-l—cos 2kg + A—‘I—TCOS 2ka
- cos k( (1 + 1a - (- 1)8)}

+ O(e?) (17.5)

o * ¢ (1—}—]) TXO{ T]TT cos 2kg - )\—_I_-T cos Zka
2
+ 2T cos k( (A + 1)& - (x=-1)8 )}

+ O(e?) (17.6)

+ B (e2) (17.7)
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t(a,8) = %;(a -8) + ¢ 2%:2 { (Cy4 cos 2ka = By, cos 2kg) (a - B)

+ o (By_ - ) (sin 2ka - sin 2ke)

1 A]+ . A]- .
+ T (TT' sin 2ka - TFT sin 2kg)

1 Al- A]+

tr T sink( (A +1)a - (A - 1)8 )}

+ cj (e2(a - 8) ) (17.8)

x(a,8) = (A + 1) - (x-1)8

toe 7%; { ( (x+1) €y, cos 2ke - (x - 1) By, cos 2kg ) (a - 8)
+ 7% ( (A1) B = (x=1)C_ ) (sin 2ka - sin 2kg)

1, 2 +1 ., A =1 :
+-E(A—-TA]+ sin Zka - A—T'TA]- sin ZkS)

+ %-( %—%—} AL - %—;—} Ay ) sink( (A #1)a = (A -1)8 )}

+ @ (c2(a - 8) ) (17.9)
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where

y=1

-1 -1
P e = S Al S S ST
1+ do © AZ - 1+ Zao * A+ 1+ 28, * X -

We could continue with the calculation of the solutions of the (J(&2)
system of equations in order to make the perturbation series complete
up to (J(e3), and so on, However, for our purposes of indicating the
possible formation of shocks, this continuation to higher orders is not
necessary. The reason for this is that only the first power of (a - B8)
appears in the terms, t(z) and x(z) , and in fact only the first
power of (a - 8) appears in all the higher order terms also. This is
important because as (a - ) becomes of (e !), which is the case
when shock development sets in, the second terms, t(l) and x(lz still
remain of larger order than all the remaining higher order terms, and
the perturbation series remains valid. As (a - g8) becomes of (e 1),
the second terms, t(I) and x(l), become large enough that the char-
acteristics cross and a shock region appears, but the convergence of
the perturbation series is not destroyed and the flow is described up

to the shock and a little beyond. Fox (1955) demonstrates this impor-
tant result in a similar type of initial value problem of ordinary one
dimensional gas flow subject to initial conditiocns on the perturbation

quantities rather than subject to an imposed perturbation force field.
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18. Ordinary one dimensional shock deve]opmént

The perturbation series solution for the physical variables in
the case, A # 1, contains both a comoving wave (i.e., a wave which
travels with the field) and two waves which propagate through the
field. Although the comoving density wave cannot provide for the
development of shocks, the other two waves can. Portions of each of
these waves where the local Mach number is greater than A will tend
to catch up with portions where the local ifach number is less than 2.
Consequently, the "non-comoving" density waves over a long enough time
become distributed along the x direction in the form of compression
and rarefaction regions. As a plane wave propagates, the compression
portions tend to steepen and develop into shock fronts, whereas the
rarefaction portions tend to smooth out more continuously. Therefore,
after sufficient time has elapsed, shocks may be expected to develop
at periodic locations along the x direction.

The development of a shock in the gas flow is characterized by
the fact that the mapping from the characteristic plane to the physical
plane ceases to be single-valued. The image of the characteristic
plane folds over to form a three-sheeted surface in the (x,t) plane.

Along the edges of this fold the Jacobian:

ax ot X

J = = —= .

B_t_
da 9B 3B da
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is equal to zero. Within the region of the fold the velocity and
density at any point (x,t) are triple-valued. This paradox is
resolved by the introduction of a shock at the point where the
characteristics cross and the fold begins; for, the velocity and
density jumps befween the outermost sheets are reconciled if a
shock intervenes, (For a detailed description, see Fox (1955) ).
To determine approxfmate]y'where the shoﬁks develop, we must
find the values of o and g for which the Jacobian, J; equals
zero. First, it is possible to make J = 0 at some point by
taking t_ = 0] at that point; for, if t = 0 at some point,

B B

then also Xg = 0, and J = 0 at that point. In order to have

tB = 0, the first term of the perturbation expansion for tB must
be cancelled by one or more higher order terms of the expansion., If
this cancellation is possible, then shock development may be realized;
if not, shocks will not form. Suppose we now consider the expansion

for t_ to determine whether shocks may be possible:

8
t (a,8) = -1 el {2k 8, sin2ke (a - 8) + By, cos 2kg
g ? do EW 1+ 1+
C,, cos 2ka + (C; =By ) cos 2k 2 - o
= Y1+ (o0 1) o -l_- 1- COoS B - m‘ COoS B
t (A, -2=Ta Ycosk( (A +Na - (A-1)8)}
1+ T AT T A

+

O (e2(a - 8) )

ot
t_ refers to 3
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For e << 1, only the first two terms are significant for large time.

Hence, if these two terms cancel one another, the condition:

t = 0 + Of(e)

will be insured, and this condition in turn insures the existence of

a shock. Balancing these two terms, we find:

1
sin 2kg

(a-8) = =
ekB-H_
If ta # 0 at the point of shock formation, then it may be shown

that the condition:

tBB = 0 + O(e)
is satisfied there. Making use of this latter condition, we then may

determine the locations of the shocks as:

2kg = %- + nn n =0, +1, *2, ...

(0- - B) = E‘E‘%:'(']:T)n

Since time is an increasing quantity, only the positive values of
(o = B) correspond to physical shocks. (a - 8) positive implies

n = 0, :2, 4, .., if B > 0. Shock development of this type

1+

(i.e., tB = 0) for both subsonic and supersonic base state flow

(i.e., A # 1) is indicated in Fiqure (18.1).
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Figure (18.1)

The Development of Shocks Propagating at a Speed
(u, +a,) Through the Field
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There is another possible way to make the Jacobian, J, equal to

zero. The Jacobian can be set equal to zero at some point by taking

ot
1]

0 at that point. If ta = 0 at some point, then also

x
I

O, and J = 0 at that point. In order to have ta = 0,
we require cancellation of the largest terms in the perturbation

series of ta. Following an analysis similar to the preceding one

(i.e., for tB = 0), we determine the locations of the shocks as:
2ka = -;- + nr n = 0, +1, #2, ...
- = do !
-8 = FE T

Again, since time is an increasing quantity, only positive values of
(a = 8) correspond to physical shocks. (a - g) positive implies

n = 0, £2, 4, ,,, if C

1+ 0, and n 1, +3, ... if C]+ < 0.

Shock development of this type (i.e., ta 0) for both subsonic and
supersonic base state flow (i.e., » # 1) is indicated in Figure (18.2).
Therefore, the two non-comoving density waves give rise to two

types of shocks. After a sufficiently long time given by:

t = Zacl A']l (]8,])

S ekV (-|+17"17

the density wave propagating at a speed (u, - a,) gives rise to

shocks propagating at the same speed. After a somewhat longer time
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The Development of Shocks Propagating at a Speed
(u,-a,) Through the Field
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given by:

t = 23 (M) (18.2)

s ekv (1 +¥7'l)

the density wave propagating at a speed (u, + a,) gives rise to
shocks propagating at the same speed. The time it takes for the
formation of shocks becomes longer; the smaller the amplitude of the
sinusoidal gravitational field, or the larger the wavelength of the
sinusoidal field, or the larger the base state dispersion speed. For
example, a large amplitude and short wavelength of the sinusoidal

field may induce relatively rapid formation of shocks.
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19. Shock of most rapid development

So far we have not examined the possibility of the formation
of comoving shocks.1 For both base state subsonic flow and base
state supersonic flow, we have only shown that non-comoving shocks,
which propagate through the field, may develop. Suppose we now
consider the case in which the base state flow is equal to the
acoustic speed of the gas (i.e.,» = 1). For this case, either
we may take the limit of the preceding solutionas A - 1 or
we may begin again from the basic set of equations (17.1) and (17.2)
with ) set equal to um'ty.2

The solution of the physical quantities for the case, » = 1,

to ¢J (e2) may be written in the form of the perturbation series

(17.3) as:

u(a,B) = us + ¢ %o {Zk sin 2ka (a - B) - cos 2ka

+ COS ZkB} + ... + O(gn(a-ﬁ)n) + e n = 2, 3,.:.
(19.1)

lIn Part II1I B, we shall see how a spiral galaxy selects the magnitude

of its base state flow and thereby selects the type of shocks that it may
possess (which correspond to that base state flow). It is demonstrated
that only corotating galactic shocks are selected in the theoretical
Lin-Shu picture of spiral galaxies.

2The author has considered both methods of procedure and has shown that
they yield the same results.
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a(a,8) = ao + ¢ 1—%—1%0 {-Zk sin 2ka (a - B) = cos 2ka

+cos 2ke] 4 et T(Ma-p)) + ... (19.2)

Uov

o(a,B) = 0o + emz-[ -2k sin 2ka (a - 8) - cos 2ka

4 cos 2Kef + et O(Ma-8)") + ... (19.3)

tle,8) = 1 (a-8) + ¢ ;TOZ { kB,, sin 2ka (a - )2

o

B
- By, cos 2kg (a = B) + -—Z-I];(sin 2ka - sin 2ke)}

+ ...t a(En(a - 6)1+n) + ... (]9.4)
| 1 2
X(a,8) = 20 + ¢ I -[ kB-|+ sin 2ka (a - B)
B

- By cos 2ka (a - B) + o= (sin 2a - sin 2ke) |

T 0 [ CH O L B (19.5)
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This perturbation series solution for the case, A = 1, breaks down
as (a - 8) increases to & (e7!). However, we shall see that shock
formation occurs before this condition is reached, and that the pertur-
bation series, (19.1) - (19.5), remains valid up to the shock region
and a little beyond. Indeed, it will be shown that the time period
for shock development is C?(e'u).

Suppose we now search for possible locations where shocks may
develop in this "sonic" case where the base state flow through the
field is equal to the mean dispersion speed. There are two possible
cases for which J = 0., First, the case in which xa = ta = 0,
and second, the case in which x_, = t_ = 0. In the first case,

B g
we examine the explicit form of ta:

ta(a,e) = %; + ¢ ?%:7 { ZkZB.|+ cos 2ka (a - B)?

+ 2k B]+ sin 2ka (a - 8) + B1+(cos 2ka = coOS 2ka)}

+  (e2(a - 8)3)

For ¢ << 1 and (o - 8) »> 1, the terms of largest magnitude

are the first two terms. In order to have ta = 0, these two terms
must cancel. In addition, if tB # 0 at the point of shock forma-
tion, then it may be shown that taa = 0 there. This latter condi-

tion yields the relation:
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and with these values for o the condition, ta 0, that deter-

mines the locations of shock formation becomes:

(- 02 = —Ro 1
ek28-|+ (-1)

Figure (16.1) indicates the nature and the locations of shocks of
this type (i.e., t, = 0) with respect to the potential field.
Since time is an increasing quantity, we must take n = 1, 3, ...
for the realization of physical shocks. These are the comoving
shocks that we have been searching for. Only when the base state
flow is sonic does it appear that comoving shocks develop. Their

development takes only a time:

1 2

s (V)™ k(1 + 5H"™ 96

whereas all the other shocks evolve only after a longer time of

& (e71). It is easily seen that in this time period for the
formation of comoving shocks the perturbation series, (19.1)-(19.5),
remains valid up to the shock regions and a little beyond (i.e., the

perturbation series remains valid a little beyond the time when

(-8 = & ).
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The Development of Comoving Shocks
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The second possibility for which the Jacobian, J , equals zero

is the case in which xB = t8 = 0. In this case, we examine the
explicit form of tB:
kB
tB(a,B) = -%- + e—;-i {(Sin 2kg - sin 2ka) (o - B)} + ..
° do

+ B("a-8" + ...

It is apparent that tB cannot be made equal to zero until (o - g)
increases to (J (¢7!). It is when (o - 8) approaches Gel)

that all terms of the perturbation series approach unity. Therefore,
the perturbation series breaks down before the formation of shocks

of this type (i.e., tB = 0) sets in.

Development of Isothermal Shocks

So far we have considered the flow of gas with an arbitrary
adiabatic constant, y. Suppose we now consider the situation for

the flow of gas with a uniform mean turbulent dispersion speed
1

(i.e.,y = 1).° In the limit as y - 1, the factor, (y-1)/2 >0
and
2 : -
da \ do do
Me > 7 Bi. » 1% Ge > T
1

In Part 1I, we adopted a uniform mean turbulent dispersion speed.
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Shock formation for the isothermal case, y = 1, is therefore
different from the more general case, y # 1, only by the slight

change in magnitude of these above constant factors.
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20. Self gravitation of the gas

In reality the gas exerts a force on itself due to its own
self gravitation. Suppose we include the effect of self gravitation
and see how it influences the dynamics of the gas and the formation
of shocks. It is to be expected that there is no major change in
the general behavior of the gas, although quantitative modifications
will appear.

The gas density is composed of a base state density, oo,
together with a perturbation density, o;. Suppose we assume the
perturbation density exhibits a simple sinusoidal variation (that
is compatible with the perturbation solution in the case without
self gravitational effects in the preceding secticns). In this
case, we follow an asymptotic analysis similar to the asymptotic
scheme of Lin and Shu (1964) for a thin disk of gas and obtain a
relation describing the force field of the gas in terms of its
(simple sinusoidal) density variation:

301

la

£ - 2nG
g TkT

Qo

X

Incorporating this additional force into the equations of motion,

(16.1) and (16.2), we proceed with an analysis similar to the
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analysis in the preceding sections, and we derive a perturbation series
solution and determine the consequences of self gravitation of the gas
on shock formation,

We find that the new effective base state dispersion speed is

given by:

/2
S(o) = 5, = (aoz 2nGGo)
and we define:
= Uo
A = So

When self gravitation of the gas is included in the case,

X # 1, there are two types of shocks possible just as when self

gravitation is absent., The density wave propagating at a speed,
P (uo - so), gives rise to shocks propagating at the same speed
in a time period for shock formation on the order:

t = 250 [A - 1] (20.1)

ekV -1 a,? 76o,o
(1 + So2 - TFTEZZ)

The density wave propagating at a speed (u, + s,) gives rise to
shocks propagating at the same speed in a time period for shock

; formation on the order:
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2so (A + 1)
t = (20.2)

'] aoz TTGOo
ekv (1 + 2T 'l'k—r—zso )

These two types of shocks are of the same nature as those two types
of shocks that develop in the case when self gravitation is not
included,

When self gravitation of the gas is included in the case,
» = 1, only comoving shocks (similar to the ones possible in the
case, A = 1, without self gravitation) are possible. Indeed, when
self gravitation of the gas is included, the comoving density wave
gives rise to comoving shocks in a time period for shock formation

on the order:

tg = 1'/z ]a - - (20.3)
Y-l o) | _TMalo
(eV) k (1 + B Tk_l?o_z)
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Part III B. Unsteady Gas Flow about a Spiral Galaxy

Now that we have seen the behavior of unsteady one dimen-

sional gas flow and shock formation in the presence of a sinusoidal

perturbation gravitational field, we would like to consider the more

complicated problem of unsteady gas flow about a model spiral galaxy.

Wwhen we refer to a spiral galaxy, we are speaking primarily of the
grand design of spiral structure that extends over the galactic disk.
Since most spiral galaxies exhibit a two-armed grand design, we
consider a galactic model in which a small two-armed spiral gravi-
tational field associated with the two spiral arms is superposed on
the Schmidt model of the Milky Way System.

The asymptotic theory developed in Part II for the facilitation
of numerical solution of the problem of steady gas flow and steady
shock formation will also be applied in this analytical investigation
of unsteady gas flow about a model spiral galaxy. The asymptotic
gas dynamical equations (5.2), (5.3), and (5.4) therefore constitute
the equations from which we begin this analysis. The time dependence
however is retained in the following treatment.

In the asymptotic picture, the coordinate normal to the contours
of constant phase of the spiral pattern is the most important spatial
coordinate. Just as in the steady gas flow of Part II, it is to be
expected in the present case that the direction of maximum variation
of the perturbation quantities of density and velocity induced by the

perturbation field is perpendicular to the contours of constant phase.
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Differential rotation of the galactic disk and self gravita-
tion of the gas are effects that are included at the outset, and we
shall be concerned throughout with their influence on the time evolu-
tion of the nonlinear dynamics of the gas and on the possible forma-
tion of shocks in the spiral-armed disk.

It is natural to expect (in accordance with the results of
Part IIT A) that the sinusoidal spiral field, which is initially
superposed on the gaseous disk, gives rise to (at least) two density
waves. The crucial question concerns the formation of galactic shocks:
After a sufficiently long time is it possible for the spiral density
waves to grow into shocks?] Our first goal in Part III B therefore
is to determine how the formation of galactic shocks is possible and
to determine the influence of the galactic parameters on the evolution
and development of galactic shocks. One further goal is to determine
what type of galactic shock is preferred by a spiral disk-shaped
galaxy.

We consider three ranges of the base state flow: subcritical,

critical, and supercritical (all of which will be properly defined),

‘and we determine the nature of the formation of shocks in each of these

cases.2 In the critical speed case, a corotating galactic shock

]The time for the formation of a shock (in accordance with the results

of Part III A) may be expected to depend on certain physical parameters
such as the amplitude of the spiral field, the magnitude of the base
state density of gas, and the differential rotation of the disk.

2These considerations in Part III B parallel the considerations of
subsonic, sonic, and supersonic base state flow in Part III A,
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(i.e., one that travels with the spiral pattern) is the only
shock possible. It is shown that the theoretical Lin-Shu picture of
spiral disk-shaped galaxies dictates that the base state flow be the
critical speed and thereby selects the corotating galactic shock as
the type of shock that eventually develops.

Our attention is then directed toward the initial value prob-
lem in which a sinusoidal spiral perturbation gravitational field is
superposed from some time onwards on the gaseous component of the

Vs o(w) is the angular velocity of the

Schmidt model of our Galaxy.
gas at radius = about the disk, and if Qp js the pattern speed,
then (2(w) - Qp) is the basic circular velocity of the gas rela-
tive to the spiral pattern. Since the spiral contours of constant
phase are everywhere inclined at an angle i to the circumferential
direction, the base state gas velocity normal to the contours of
constant phase is  (2(a) - Qp) W sin i, whereas the base state
velocity parallel to the contours of constant phase is (a(@) - Qp)-
w cos i. Since in the first order of the asymptotic approximation
there is no variation of the perturbation field along constant phase
contours, it is natural to expect the density waves and the developing
shocks which are induced by the spiral field likewise to exhibit con-

tours of constant phase which parallel those of the spiral field.

]In the Schmidt model, the basic equilibrium state of gas moves in

purely circular streamtubes about the galactic center at given
angular velocities dependent on the distances of the given stream-
tubes from the galactic center.
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21. Initial value problem for galactic gas flow through
a sinusoidal spiral perturbation gravitational field

We consider the initial value problem in which a sinusoidal
spiral perturbation gravitational field is superposed from a time,
t = 0, onwards on the gaseous component of the Schmidt model of
the Galaxy. The asymptotic equations developed in Part II (with
time dependence retained) serve as the equations governing the
dynamics of the gas. These asymptotic equations (where n repre-
sents the coordinate normal to the spiral equipotential curves and
where w, and w; are the perturbation velocity components per-
pendicular and parallel to this coordinate, n , and where all the

other variables are the same as those in Part II) may be written as:

90 oWy do
W ot (Weo + W) 3;1 + (0o + 07) o t (6o + 07 +® HEP) X1

= 0 (21.1)

: U 3U
vy My 32 391, ‘4 b
°T +  (Wio + wi) an 29‘3“’" + goto] 9n * on ¥ an
+ X = 0 (2].2)
3 b (e twa) 2 (K, 4 = 0 (21.3)
T Lo 30 70 L X3 ¢
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‘where

W = (2- Qp)'w sin i W = (2- Qp) ® cos i

X1s X2» and x3 are defined by equations (5.6), (5.7), and (5.8); and
U, 1is the imposed sinusoidal potential, As in Section 20, we describe

the self-induced force field of the gas in terms of its (assumed, simple

sinusoidal) density variation:

3

|3

1

- a3 - 216w
an |E|

[+

n

The initial value problem to be investigated consists of these
three nonlinear equations, (21.1) - (21.3), for the unknown quantities

Wy, W, , and o, together with the equation:

o':l2 = KYOY-I
and the initial conditions at t = O:
w,(n,0) = 0 w”(n,O) = 0 o1(n,0) = 0

and the condition for the imposition of the sinusoidal potential. With
the assumption that the gas streamtubes under the influence of a spiral
field do not deviate significantly in the course of time from pufely
circular streamtubes of the base state, the equilibrium quantities,

Wios Wyo, and oo, which are dependent only on the radius = , may be

150




e |

taken as constant quantities throughout the motion of the gas along
each particular streamtube, This approximation is also made for the
numerical calculations of Part II. Both the approximations of the
small deviation of the gas streamtube from a circular orbit and of
the small variation of the perturbation quantities along the contours
of constant phase with respect to the variation of the same quantities
across the contours of constant phase have been verified by the numer-
ical calculations for the problem of steady gas flow in Part II.
These approximations may be expected to hold equally well for the
problem of unsteady gas flow considered here in Part III B.

If higher order terms are neglected, the equations (21.1),

(21.2), and (21.3) may be rewritten in characteristic form as:

3 3 3
{m 5T F (Wio + Wy +5) 3;} {w =Tt (W +wy-s) 5;} Wy

_ ) 3 2nGow 9 3
= {ﬁ!sf*' (WJ.o*'W.L)m}f - -T-]-k 5;(%"'01)3—”“‘,,,

(21.4)

3 3 2a
{m 5Tt (o + v +a) ﬁ} vy + 7—T)

= {m %T + (W + wy - a) %ﬁ} (wy - 7%%) (21.5)
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_} o1 + (o‘o + 01)
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22, Perturbation theory in characteristic coordinates for galactic
gas flow

Initial Value Problem in Characteristic Coordinates

By introducing the characteristic coordinates, o« and 3 ,

defined by:

) ) )
— = — 4 + + —
> % © 3t (Wpo + v +s) an
3 3 )
- =— = g — + . 4+ v -
S 3B ot (vio + vy - s) an
where w = constant,

we may write the initial value problem considered in the preceding

section as:

2
c2 05 = S (8__3_
S° Toa8 75 T

SR ERISPN) (RS R RN}

S22y o+ oxl, (+2)w, = o0 (22.2)
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? ('3-&' - 3_6) Wy + (ﬁ')‘m W_L = 0
d 3 9 3y .

S(ﬁ'ﬁ) op + (0o + o) (EJ'ﬁ) W,
and

on  _ 1 st

YR (W"'°+W"'+S)EE

on 1at

3 (Woo + Wy = 5) .y
with initial conditions:

t = 0 n = 2a = 2R
a = a 6 = oo W, = 0

Solution Ex Perturbation Series

(22.3)

(22.4)

(22.5)

(22.6)

A solution to this initial value problem will be attempted in

the form of a perturbation series in which each of the quantities,

W), o W, ,a,5S,0,,t,and n, is expressed in the form:

qla,8) = q/9a,8) + € qlt)(a,8) + 2 ql2)(a,8) + ...
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At this point we adopt an approximate form of the imposed spiral
perturbation force field which will be adequate for our purposes of
determining possible shock formation about the spiral galactic model.

e take f of the form:

0 t(a,g) < O
fla,8) = () (22.8)
ekV sin k n'0/(q,8) t(e,8) > O
where ¢, k, V = constants; e << 1,

Expansion of s yields:

(o) _ _ » K2w? 2mGwooy'/*
S = Soe = (ao "'j(z - lkl)

If equations (22.1) - (22.6) are written in the form of the perturba-
tion series (22.7), and if terms of like powers of ¢ are equated,
these nonlinear equations (22.1) - (22.6) reduce to a series of systems
of six linear equations each. The solution of this series of systems
of linear equations to {J (e2) for the physical quantities may be

written in the form of the perturbation series (22.7):

Wio + Wila,B) = W + € 7%; { X—%_T cos 2kp + 7_%'T cos 2ka
2x }
- Tz—-_TCOS k( (A + 1)a - (x - 1)6 )

+ & (e2) (22.9)
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Wio +

a(a,B)

o(a,B)

wy (a,8)

+

wV

K2 1 .
Wio + € (?50 Tkeo2 { T Sin 2ks

-T}Tsin 2ka + Pf_.l.s,in K+ Do - (- De) |

+ 8 (e2)

€ (Iil)

aoV

+ 7‘-2—'2_—-1-COS k(()\+])a - ()\-])B)}

+ 5 (e?)

1

EOOV{
250%

T+ T CoS 2kp -

A+|— cos 2ka

+ 37—%—T-cos k((x + 1)a = (x - 1)3)}

+ O (e2)
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75,2 { x 141—cos 2kg - X_%—T cos Zka

(22.1)
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+ t(a,8)

n(a,8)

+

+

+

1 1
E;(a -B8) + ¢ 752 { (c]+ cos 2ka = B,, cos 2kg)(a - B)

7 By - 6

A

in 2ka - sin 2ks)

1

1y
K'2x+1 - X

.+ O(ez(a -

(A + T)a - (i -

+T—) sin k((x + T)a = (x - 1)B) }

B)) + ... (22.13)

1)8

1
+ ez { (0 +1)C), cos 2ka - (x - 1)B;, cos 2ks)(a - &)

+

+

+

-+

25 ((+ 108,

1 A+ ] .
E'( T A]+ si

1 A =1
I3 ( N A P

O (e2(a - 8)) +

- (x - 1)C]_)(sin 2ka - sin 2kg)
N 2ka - AT A sin 2k )
-%—;—% A]+ ) sin k((x + 1)a - (x - 1)8) }

ces (22.14)
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where

A = ! ()\ .":A) B = v (]iA) C = _! (]iA)
1+ So ‘AZ < 1 1+ 250 ‘X + 1 1+ 250 ‘A = 1
and
A = '] ao TTG‘m'Uo
SO So

This solution for the problem of unsteady gas flow about a
spiral galaxy is similar to the solution for the problem of unsteady
one dimensional gas flow with self cravitation considered in Part
IIT A, We could go ahead and calculate the (J(c2) terms and
higher order terms of the perturbation series solution; however,
the (J(e) terms will be sufficient for indicating the formation
of shocks, In general, the higher order terms of t(a,8) and n(a,8)
depend on (o - 8) only to the first power. Therefore, the pertur-
bation series remains valid up to the shock region and a little

beyond just as in the case of one dimensional gas flow.
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23. Shock development in a spiral galaxy

In the preceding section we have determined a perturbation
series solution for an initial value problem of gas flow about a
spiral galaxy. Now we wish to look for possible shock development
in the galaxy as the outgrowth of such gas flow.

The perturbation series solution for the case, A # 1, may
be described by three density waves: one corotating density wave
and two density waves which propagate through the pattern. It is
evident that shocks cannot develop from the corotating density wave.
As in the one dimensiona] gas flow problem, we are then left with
the alternative of considering the two other portions of the solution
and of determining what influence they may have on shock development,
Both of these density waves contain compression and rarefaction
regions. As each plane wave propagates, the compression portions
tend to steepen and develop into shock fronts, whereas the rare-
faction portions tend to smooth out more continuously. Therefore,
after a long enough time has elapsed, we might expect shock fronts
to develop periodically along the n direction.

Two types of shocks therefore develop in the initial value
problem in which the base state flow is not egual to the dispersion
speed., Figures (23.1) and (23.2) illustrate the nature of these

two types of shocks for both subcritica]l and supercritical base

Lucritical® refers to base state flow in which A( = w o/se) = 1.
Critical base state flow is actually supersonic in the Ga]axy.‘
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state gas flow. After a sufficiently Tong time on the order:

t = ZSoml)\ - ]l (23.])
ng (] + I_-r] ao - Teroo)

the density wave propagating at a speed (w o - So) gives rise to
shocks propagating at the same speed. After a somewhat longer time

on the order:

¢ - 2sow() + 1) (23.2)
ekV 'I + -] ao Tmeco

the density wave propagating at a speed (w o + so) gives rise to
shocks propagating at the same speed. The time it takes for the
formation of shocks becomes longer; the smaller the amplitude of
the spiral field, or the larger the base state turbulent dispersion

speed.
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Figure (23.1)

The Development of Galactic Shocks Propagating at a
Speed (W,.S.) Through the Field
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The Development of Galactic Shocks Propagating at a
Speed (W,.+S.) Through the Field

162




24, Spiral shock of most rapid development; the Lin-Shu neutral
density wave mode

So far we have not examined the possibility for the formation
of corotating shocks in the Galaxy. In the initial value problem
for the cases of subcritical and supercritical base state flow, we
have only shown that the development of non-corotating shocks is
possible. Suppose we now consider the case in which the base state
flow is equal to the dispersion speed (i.e., » = 1). The pertur-

bation series solution for this case is:

Woo + wWi(a,B) = W * e I%; { 2k sin 2ka (o - B) - cos 2ka

tcos ke |+t O(Ma- 0™ + ...

n = 2, 3, ... (24.1)

2
Wyo + Wyla,B) = Wi + € (%) Zl%voz{ -2k cos 2ka (a - B8)

;
+ sin2ka - sin2kp | + .+ F("a-8)") + ...

(24.2)

a(a,R) do * € 151-%235 { -2k sin 2ka (o = B) = cos 2ka
+ocos 2k b o+t O("a - )" + ... (26.3)
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o(a,8) = 0o + € %%XQ { -2k sin 2ka (a - B) - cos 2ka
+ cos ZkB] + ... t O(en(u - B)n) + .. (24.4)
Liae) = L (a-8) + epmma] KBy, sin 2ka (a - 8)2
- By, cos 2kg (0 - B) + zi— (sin 2ka - sin ZkB)}
bt O @-8"" 4. (24.5)
. 1 [, : ) .
n(a,8) = 2a + e { kBy, sin 2ka (a - 8)2 - By_ cos 2ke (a - 8)
B]- n T+n
+t oo (sin 2ka - sin ZkB)} + o0t O(e (0 = 8) ) +...

(24.6)

Upon examination of this perturbation series solution we find
that corotating shocks may develop. Figure (24.1) illustrates the
nature and the location of these shocks. Such corotating shocks

develop in a time of the order:

1 ang

. t = ™ : " . " (24.7)
U+ 33t 2 - i)
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The Development of Corotating Shocks in the Galaxy
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If one encounters just two peaks of the spiral perturbation field as
one moves in a complete cycle circumferentially about the galactic disk,

then the number of corotating shocks to be expected would be two.

Development of Isothermal Galactic Shocks

In the isothermal 1imit of vy = 1, those terms of the pertur-
bation series solutions for both cases, » # 1 and » = 1, which
contain the factor, (y-1)/2 , approach zero. These isothermal solu-
tions may well complement the numerical calculations of Part II. We
shall see just how well they complement the TASS picture of the Galaxy
in the following consideration of the type of shock preferred by a

spiral disk-shaped galaxy.

Theoretical Lin-Shu Picture of a Disk-Shaped Galaxy

We have seen the possibility for the formation of galactic
shocks of various types: two types of non-corotating shocks (for
subcritical and supercritical base state flow) and one corotating
shock (for critical base state flow). In general, the base state
gas flow predetermines what types of shocks may form.

Now that we have seen the various types of shocks possible under
the various circumstances involved, we ask what type of initial value
problem (subcritical, critical, or supercritical) is actually the one
that may best characterize a spiral galaxy and what type of shock
thereby may be preferred by the spiral galaxy. To determine such a

preference for one or another of the types of shock waves, the base



state flow characteristic of a spiral galaxy must be determined.

Suppose we consider the theoretical Lin-Shu picture of spiral

disk-shaped galaxies in which the spiral grand design is composed of
density waves of gas and stars obeying the Lin-Shu dispersion relation-

ship:

2 . _ 0)2
K 4(Qp Q)

(24.8)
276G [oo Fv(xg) + c*%(x)]

where

kL-S is the dimensional wave number of the spiral pattern; i.e., kL-S?E’

Fv(xg) and E&(x) are gaseous and stellar reduction factors, and

o, 1s the stellar base state density.

Suppose a spiral galaxy contains a density wave of small ampli-
tude that satisfies this dispersion relationship. We may ask what
type of shock formation, if any, is preferred. If we retain for the
moment only the gaseous component, and if we rewrite the dispersion

relationship in terms of k and w,,, we have:

(242
we - (8 o+ a2 - %‘%‘E&) = 0 (24.9)
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Since the terms making up the large bracket have been defined earlier

as  So2, this relation is precisely the relation:
Wol2 = 5,2
or

A= ] (24.10)

The initial value problem, in which the base state flow is
%riticalt is in fact the initial value problem most characteristic
of and preferred by the theoretical Lin-Shu picture of spiral disk-
shaped galaxies. This leads us to the important conclusion that a
spiral galaxy may actually prefer the formation of corotating shocks
rather than any other type of shocks (i.e., non-corotating shocks).
The neutral density wave mode making up the grand design of spiral
structure in the linear density waQe theory is therefore a special
mode; for, it is precisely this density wave mode and no other
that can insure the case, X = 1, and can provide for the forma-
tion of the corotating shock wave.

In addition, since the corotating shock is the most rapidly
developing shock, it may be expected to dominate over any non-co-
rotating shocks which might arise extraneously. For a small field

of 1% of the axisymmetric field and a spiral pattern spacing between
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arms that is consistent with tan i = 1/7, the time scale for
the formation of the corotating shock is equivalent to the time

period of a few rotations of the grand design about the disk.
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Part IV - Star Formation

In Part II, we have seen that a stationary TASS pattern is
compatible with the general nature of gas flow about the galactic
disk. On the other hand, in Part III, we have seen how spiral
galactic shock waves may evolve from density waves during a few
rotations of the disk. MNow we direct our attention toward the
physical phenomena which the TASS pattern might trigger. We ask if
the luminous spiral pattern outlined by the newly-born luminous stars
and brilliant H II regions in our Galaxy might be a direct consequence
of the galactic shock pattern.

In Part IV, we explore this auestion. First, a picture of fhe
gaseous mass distribution in the interstellar medium is envisaged.
Next we investigate two mechanisms which may very likely contribute
toward star formation in our Galaxy: accretion and the galactic shock
wave. Once we see how these mechanisms may provide for star formation,
we construct a cloud-subcloud model of the interstellar medium on which
these two mechanisms may act to form stars. Some classic problems associ-
ated with star formation are next investigated. In the final two sec-
tions, the essence of star formation appears: the candidates for proto-
stars are envisaged; newly-born stars are found to be present only in
stellar associations in general agreement with observations; and the

brilliant grand design of spiral structure in the Galaxy comes to light.
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25. Gas clouds: the constituents of the interstellar medium

From observational studies of our Milky Way System (for example,
the photographs of Morgan, Stromgren, and Johnson (1955), it is apparent
that the actual space distribution of interstellar matter is extremely
irregular. In reference to these particular photographs, Spitzer (1968)
points out that irregularities of all discernible scales are evidently
present, ranging from giobules a few thousand astronomical units across
to complexes of clouds extending over several hundred parsecs. Possess-
ing such an irregular structure, the gaseous disk exhibits the character-
istics of a nonquiescent gaseous continuum] in a state of turbulent
motion; and the individual gaseous mass elements comprising this continu-
um exhibit the character of turbulent eddies and fragments.2 Therefore,
the processes of fragmentation and disintearation of the turbulent frag-
ments as well as the reverse process of reassociation may be well at
work throughout thie Galaxy as in any gaseous medium in turbulent motion
at velocities exceeding that of sound.

e envisage gas concentrations of dimensions covering the entire
spectrum of scales that may be maintained throughout the interstellar

medium, Such a situation may be realized if an approximate statistical

1The mean-free-path of the atomic particle is still small compared with
1 pc. even when the gaseous density is as low as 1 MH/cc.

o]
“The scale of an eddy or fragment may be taken as the distance over which
the velocity or density varies appreciably.
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equilibrium exists among the turbulent fragments of all scales. In
reality, the spectrum of turbulence however may be such that we may
distinguish two ranges of scale, one much larger than the other. In
this picture, we visualize the existence of large clouds and large cloud
complexes, both covering the range of larger scale, and also smaller
clouds and subclouds, each on the much smaller scale in the interstellar
medium,

A number of models have been proposed to account for this picture
of the turbulent galactic interstellar medium. Of these, the discrete-
cloud model is perhaps the simplest and most widely used. In this model,
spherical clouds on the galactic scale serve the same function as mole-
cules in an ordinary laboratory gas. Just as the molecular mean-free-
path is an important length-scale in an ordinary laboratory gas, the
mean-free-path of a cloud is the important characteristic length-scale
in the interstellar medium. First, when compared to the length-scale
of the whole svstem, it provides a measure of the degree of rarefaction
of the medium; and secondly, if a shock wave is present on a galactic
scale, it provides a characteristic scale for the shock width.]

The model we shall consider is a modified version of the dis-
crete-cloud model and consists of two basic portions: first, the dis-
crete nonquiescent large c]ouds,2 all of the same radius disnersed through-

out space; and second, the nonquiescent intercloud medium filling the

]Later we shall see that a large-scale galactic shock wave may serve
as an essential triggering mechanism for the collapse of gas clouds
and the formation of stars along a grand design of sniral structure,

”
“These large clouds may be referred to as cloud complexes according to
one's preference,
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total volume of space apart from that of the large c1ouds.] If the

total volume of large clouds is small comnared with the intercloud
volume, the Tocal galactic picture is one of an isolated gas cloud of
relatively high density embedded in a rarefied medium of gas, all in
turbulent motion. In this nonquiescent picture, spatial inhomogenities
of density in the interstellar medium (e.g. clouds versus intercloud
space) are accounted for by turbulence rather than by thermal instabili-
ties. In order for the maintainence of pressure equilibrium on the

cloud envelope between interior and exterior portions, the density
contrast between cloud and intercloud space must be proportional to

the square of the Mach number corresponding to the mean supersonic motion
of the clouds throughout the interstellar medium.2 Due to the relatively
rapid radiation of thermal energy by the gas inside a cloud, a whole
Tocal neighborhood containing a cloud and its surrounding intercloud
medium may be kept at a fairly uniform kinetic temperature. If the

state of turbulence in the local neighborhood does not change appreciably,
and the effective turbulent temperature remains uniform and unchanged,

the local picture may be taken to consist of an isothermal sphere of gas

]In later investigation of protostar formation, we shall envisage these
two portions, the Tlarge clouds and the intercloud volume, to consist
of dense and rarefied concentrations of small clouds (subclouds).

2

“A crude approximation to the pressure inside a cloud is given by the
product of the mean density of the cloud and the sauare of the mean
acoustic speed inside the cloud. A crude approximation to the pressure
outside a cloud is given by the product of the mean density of inter-
cloud space and the square of the mean turbulent dispersion speed of
the clouds themselves. The density contrast between cloud and inter-
cloud space is therefore (in this crude sense) proportional to the
square of (mean turbulent dispersion speed of clouds/mean acoustic
speed inside the clouds.)
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(at an equivalent temperature, partly kinetic and partly due to
turbulence) in thermal equilibrium with the surrounding rarefied
gaseous medium. Before specifying values for the dimensions,
densities, temperatures, etc. of the components of our gas cloud
model, we shall first discuss various processes contributing to
gas cloud collapse and possibly to star formation in order to

determine what values are most likely,
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26. Accretion

A process that may enhance the prospects for the collapse
of a large gas cloud over a relatively long time period] is the
well known process of accretion. All massive clouds and cloud
complexes, which are large enough, tend to accrete more mass by
inelastic collisions with smaller clouds and subclouds of smaller
masses. In this picture all clouds above a certain (vaquely defined)
mass tend to become more massive., If indeed the snectrum of turbu-
lence in the interstellar medium is such that we may distinguish two
ranges of scale, one much larger than the other, then the process of
accretion may provide the answer to the problem of how two diverse
ranges of scale may have evolved in the first place. In any case,
we have in mind a picture in which the large gas clouds during their
motions in the interstellar medium tend to accrete the immediately
surrounding smaller scale masses and grow in mass themselves until
they eventually reach their verges of gravitational collapse.

While these accretion and condensation processes of the large
clouds may play their roles in star formation, so also will the processes
of fragmentation and disintegration play their roles. The feature of

dissociation and fragmentation on the large scale as well as on all the

]Kahn (personal communication) estimates that 50 million years may
be a typical time scale for the evolution of gas clouds to their
verges of gravitational collapse by accretion only (in a gaseous
medium with mean density of about 1 H/cc).
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other scales possibly causes all gas concentrations and rarefactions
to exhibit a rather temporary and nonpermanent character. Although
scme of the largest clouds may undergo app?eciab]e mass accretion
despite their tendencies toward fragmentation, only a few (some small
fraction of the total number of clouds) would be able to grow in size
and concentration and reach their verges of gravitational collapse
under accretion before dissociation nrocesses dispersed the concentra-
tions. More definitely, even fewer turbulent subclouds would be able
to reach.their verges of gravitational collapse in this picture since
gravitational collapse is even less easily accessible for smaller
masses.

On the other hand, if a large cloud were to pass through a large-
scale galactic shock wave which could help triager the gravitational
collapse of the massive cloud, then perhaps the processes of fragmenta-
tion and disintegration, which counterbalance the process of accretion
throughout the journey of the cloud, could be swiftly cvercome inside
the shock region. In fhis situation, the process of accretion], which
acts to increase the mass of a large cloud throughout its prior journey
before reaching the shock, and the galactic shock wave combine toward
bringing about the gravitational collapse of the large cloud. Either
mechanism may be sufficient by itself in achieving gas cloud collapse
under particular circumstances. Uhereas accretion may occur continuous-

ly over the entire disk providing for a homogeneous distribution of

]Accretion by large clouds most certainly speeds up inside the shock
region and in the subsonic region behind the shock.
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collapsing gas clouds, the galactic shock] provides for a narrow
spiral band of collapsing gas clouds only in the spiral pattern
along which it Ties. The process of accretion and the galactic
shock, acting together, may well enhance star formation in an out-

standing grand design of spiral structure in the Ga]axy.2

]This is the large-scale shock comprising the two-armed spiral galactic

shock pattern of Part II,

2The grand design of spiral shock structure as well as the interior region
of the sheck will be investigated in later sections (see Sections 28 and
31).
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27, Shock wave-triggered gravitational collapse of a large gas cloud

The process of gravitational collapse of an isolated system
similar to a cloud of our model but containing no turbulence is well
known (see Chandrasekhar, 1942; Ebert, 1955; and Spitzer, 1968). The
system generally considered and outlined in these references contains
a quiescent isothermal sphere of gas, embedded in a rarefied gaseous
medium maintained at constant pressure. Qualitative results for the

gravitational instability of a nonquiescent cloud in our model (analo-

gous to the well known results for a quiescent cloud model whose total
temperature is the kinetic temperature) may be stated in summarized

form in the following way. For a given cloud (in our nonquiescent model)
of mass M , at a kinetic temperature T, and with an internal root mean
square turbulent dispersion speed, (V’)”L, corresponding to an effective
turbulent temperature, there is a maximum surface pressure, Prax®
dependent on the total equivalent temperature (partly kinetic and partly
due to turbulence) which the isothermal cloud can withstand. For a
surface pressure somewhat less than Pnax two equilibrium confiqurations
are possible: first, an extended configuration, with relatively uniform
density, which is stable; and second, a compact configuration, much more
centrally condensed, which is unstable, If the surface pressure were
increased to a value exceeding Pmax® O equilibrium configuration would
be possible, and the cloud would be forced into rapid gravitational col-

lapse. It is this latter situation of no equilibrium configuration into
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wirich the large clouds may be forced by a galactic shock wave.

In this picture, turbulence endows the gas cloud with an effective
turbulent temperature and pressure in addition to the quiescent kinetic
temperature and pressure, which together provide the cloud with an
equivalent temperature and pressure. Whereas the kinetic temperature
and pressure are the significant varjables for a quiescent gas cloud,
it is the equivalent temperature and pressure that are the Significant
variables for the nonquiescent system. A few essentials of the non-
quiescent cloud picture will be given in order (1) to demonstrate the
importance and necessity of a triggering mechanism for gas cloud
collapse such as a shock wave and (2) to illustrate an important
difference between the quiescent and nonauiescent nictures that
bears directly on the continual formation of young stellar associa-
tions in the present day as well as throughout the history of the
Galaxy.

The maximum pressure and minimum radius of all equiTibrium
configurations which the cloud with mass M and equivalent temperature
Tequiv can endure are given by the re]ations:]

L
(kTeauiv)
m

max - 14 _—Eggf___

o]
|

GM
( eguiv)

g

0.41

Rmin

]These results are ana]ogous to the well known results of a auiescent
cloud model where T auiv is replaced by T, the kinetic temperature,
c.f. Spitzer (1968)%¢
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where k is the Boltzmann constant and mp denotes the mean particle

mass. T may be taken of the form:

equiv

= 2 s
Tequiv (a2 + ky v7)

where a is the ordinary acoustic speed, and k; is a constant of order
unity. The equivalent temperature is taken constant during the col-
lapse process. This may be a valid anproximation if two requirements
are satisfied: first, if turbulent dissipation is sufficiently rapid
to maintain a uniform and unchanged state of turbulence; and second,

if the cloud medium is transparent to the internally-generated radia-
tion, thereby insuring no apprecjable internal heating due to absorp-

tion of radiation by interior portions of the cloud.

Typical large galactic gas clouds

Spitzer (1963) discusses some tynita] large galactic gas clouds
taken from observational studies. Table (27.1) lists some of these
typical large clouds. The kinetic temperatures of clouds of these
types have been generally determined to lie within the range of 60°K
to 120°K. A value of 100°K might be a reasonable estimate for the mean
kinetic temperature characteristic of this group of clouds as a whole.

Clark, Radhakrishnan, and Wilson (1962) in their observations of
the Orion ilebula and the Omega Nebula among other regions of the sky

discovered absorption profiles for the clouds that seem to indicate the
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Table (27.1)

Typical Large Galactic Gas Clouds

Cloud Type M/M, R(pc)
"large" cloud 1.8x10" 20
large cloud 104 17

"typical large"
cloud 7x103 15
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20
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existence of internal turbulent fragments, a few parsecs in size

and having dispersion velocities of a few kilometers per second.

Of the Orion Nebula, they suggest: "the clouds consist of small
wisps of the order of size of a few minutes of arc, moving with a
velocity of a few kilometers per second with respect to each other."
Of the Omega Nebula, they state: "there are large scale motions in
the cloud with a typical length of at least 5' (or 3 parsecs)."
Other observers have also made estimates of the state of turbulence
in galactic gas clouds, and it appears a root mean square turbulent
dispersion speed between .5 and 2 km/s would signify a typical estimate

of the state of turbulence.

Mumerical results

A criterion for determining those clouds which are beyond
their verges of gravitational collapse may be written in terms of

n, M, and Tequiv as follows:

Those clouds with mean density n > n are in the collapsing

crit

stage, whereas those with mean density n < n are not so compact

crit
as to lie beyond their verges of gravitational collapse. For example,
clouds of mass M = 10% Mowith equivalent temperature = 300°K require

a critical density of about 270 H/cc for collanse under the influence
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of their self gravitation without the influence of external compressive
effects. Only those clouds of this type with a higher density than
270 H/cc are capable of collapsing themselves. This critical density
represents a fairly nigh density; for, large clouds observed in the
interstellar medium generally have densities nowhere near this large a
value. It is, therefore, rather difficult to explain star formation
and the present day formation of voung stellar associations on the basis
of the self gravitation of gas clouds alone without some other trigger-
ing mechanism,

On the other hand, suppose a galactic shock wave exists in the
galactic disk, A criterion for determining those clouds which may reach
their verges of gravitational collapse under the influence of a shock

with a compression ratio of A2 may be written:

- 103 (T i )3
Nerit = a A‘) ;QU;V
(%)

Clearly, the stronger the shockrstrength, then the smaller the criti-
cal density and the greater the spectrum of large clouds which may be
compressed beyond their verges of gravitational collapse in passage

through the shock., For example, clouds of mass = 104 Mewith an equiv-

alent temperature of 300°K require a critical density of only about
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19 H/cc for gravitational collapse under an 8:1 shock comoression.]
In their passage through the shock, all large clouds with a mean

density n < will adjust into a new equilibrium state before

Nerit
reaching their verges of gravitational collapse and will not be candi-
dates for young stellar associations. On the other hand, those large

clouds with a mean density n > are likely candidates for young

Flcrit
stellar associations. Therefore, unlike the nonshock picture, a
definite spectrum of gas clouds, which can reach their verges of gravi-
tational collapse, is present in this galactic shock picture,

Figures (27.1), (27.2), and (27.3) illustrate the criteria for
gas cloud collapse under various shock compressions for each of the
typical'clouds listed in Table (27.1). Each figure considers clouds
of a given mass and covers the spectrum of density and equivalent
temperature, Several critical curves indicating the critical density
for compressions of 1:1, 8:1, and 100:1 are sketched in each figure.

In addition, several curves for different constant surface pressures
on the clouds are sketched. A1l clouds that lie to the left of the
1:1 critical curve are already in a state of collapsing. In passage
through a shock wave of 8:1 compression, all clouds that lie between
the 1:1 and 8:1 critical curves are likely to reach their verges of
gravitational collapse, whereas those that lie to the right of the

8:1 critical curve will not. We see that the large clouds listed in
Table (27.1) may possess equivalent temperatures as high as 250°K,

307°K, and 460°K corresponding their respective masses of 7x103, 10%

and 1.8x10% M0 and still be capable of reaching their verges of gravi-

1An 8:1 compression is a typical shock strength for the large-scale

galactic shock waves that may participate in the TASS pattern of our
Galaxy (see Part II).
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tational collapse under an 8:1 shock compression, The mean turbulent

dispersion speeds that correspond to these respective equivalent temp-

eratures are 1.1, 1.3 and 1.7 km/s; and the corresponding equivalent
surface pressures before and after compression for each of the respective
clouds are 6x10-13 to 48x10-13, 7x10-!3 to 56x10-13 and 8x10-13 to
64x10-13 dynes/cm2,

Figure (27.4) illustrates in a slightly different manner the
criterion for determining what clouds may be placed on their verges of
gravitational collapse by a fixed 8:1 shock compression. A cloud of a
giVen mass that lies to the left of its critical curve will collapse
under an 8:1 shock compression. On the other hand, if it exhibits too
much internal turbulence or is not of sufficient density, an 8:1
shock compression is not sufficient to place it on its verge of gravi-
tational collapse. The "outlined box" in the figure indicates the
region of density and equivalent temperature space where most galactic
gas clouds probably lie.

When 1ittle or no turbulence is present, the collapse of a large

cloud may easily be triggered by a galactic shock wave of 8:1 strength.

With too great a degree of turbulent dispersion, even the collanse of

the largest galactic gas clouds may be prohibited. Yet turbulence has

é further significance in our Galaxy; for, without a nonquiescent inter-
stellar medium all large clouds in the presence of a shock wave would
have collapsed into stellar associations lTong ago. In such a situation
neither the observed large clouds nor the young stellar associations

would be in existence today.
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28, Gas cloud model; internal region of a galactic shock

Suppose we adopt a cloud with a mass of 10,000 r%, a mean
density, ﬁc , of 20 H/cc, and a radius, R. s of 17 pc as the con-
stituent cloud of our mode].] For the intercloud medium a typical
estimate of the mean density, ﬁic’ might be .5 H/cc. The mean
turbulent dispersion speeds in the cloud and intercloud medium to
account for this density contrast lie in the ranges of 1-2 km/s and
7-14 km/s respectively. If the overall mean density of the inter-
stellar medium, n , is about 1 H/cc, the fractions of the total volume

occupied by c]ouds,Vc‘ , and intercloud space,vic| , in our model are

about 1/39 and 38/39 respectively:

v o= ic - 1
¢ -, 39
C 1C
ot = e . 38
1C n - 39

C 1C

1The shape of the constituents of the interstellar medium is uncertain.
Quasi-spherical and spherical shapes are a rather natural choice for
our model, These may be contrasted with planar gas sheets or other
shapes of the gaseous masses.
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mean-free-path of a large gas cloud:

An important characteristic scale for the cloud model is the

Before compression, a value of 240 pc is a tynical estimate for the

mean-free-path of a large cloud. After an 8:1 compression] of a given

volume of interstellar space the new mean-free-path of a large cloud

may range between 30 pc and 120 pc: the Tower limit corresponding to

a contraction of intercloud volume only, with clouds remaining about

the same size; the upper 1imit corresponding to a homologous contraction

of cloud and intercloud volume together.2 The actual shock compression

will evidently take the form of a contraction lying somewhere in the

range between these two 1imiting contractions. A mean-free-path of 100 nc

of the Targe cloud after compression would not be an unreasonable estimate.

The mean-free-path between clouds also gives a characteristic scale for

the shock width; and therefore, a scale of 100 pc, which is the estimate

of mean-free-path after compression, might be a typical "shock thickness."
Gas enters and leaves the shock region at mean velocities perpen-

dicular to the shock of about 28 km/s and 3.5 km/s respectively when the

TAn 8:1 compression may be a typical shock strength (see the calculations
of Part II).

21f clouds could be regarded as "billiard balls," a contraction of a vol-
ume of space would constitute a contraction of intercloud space only.

On the other hand, since clouds in the interstellar medium probably have
no sharply defined boundaries, a contraction of a volume of space may
actually involve a more or less homologous contraction of the whole volume.
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mean turbulent dispersion speed is about 10 km/s. The passage across

the 100 pc shock thickness might take about 10 million years if a mean
gas velocity of 10 km/s across the shock is assumed. The collision times
in the regions in front of and behind the shock are on the order of 24
million years and 10 million years respectively. Hence, the times of
adjustment of large gas clouds in passage across and behind the shock

are comparable time scales, both on the order of 10 million years,

As we indicated in Sectionv25, the large cloud-intercloud model
may be decomposed into further more basic components: the small clouds
or subclouds and the intersubcloud medium.] These smaller gas masses
lying in the range of smaller scale in the spectrum of turbulence (which
may or may not be discernible) will serve as the candidates for proto-
stars. Small clouds (subclouds) with masses of 50 Me, densities of
40 H/cc, and radii of 2.3 pc are reasonable candidates for proto-
stars. In this subcloud picture, we allow for the formation and
existence of large clouds and large cloud complexes of the sizes of
104 M, Dy distributing the 50 My clouds in clumps of sufficient
concentration. The fractions of the total volume occupied by sub-
clouds, Vscl and intersubclohd space, Visc' in this nicture are
about 1/79 and 78/79 respectively. Therefore, the mean-free-path of
a subcloud before and after compression varies from 60 pc before to
the range of 8-30 pc after; again the mean-free-path after compression
depends on the type of contraction. A value of 20 pc may be a reason-

able estimate for the mean-free-path of subclouds after compression as

]It will be convenient to consider the subcloud picture in an investi-
gation of the internal region of a shock.
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well as the distance over which subclouds may travel between c0111§ions
in the shock region. In this picture, the turbulent adjustment time

for subclouds in the shock region is on the order of a few million years.
Although the actual interstellar medium would be best described by a
model containing clouds of all scales, the realistic picture may be
roughly approximated by this model of clouds and subc]ouds.]

Hith this cloud-subcloud model in mind, we now turn our attention
to the picture of the interior region of a galactic shock wave. Where-
as on the large scale of the TASS pattern, the shock resembles a dis-
continuity in mean density, velocity, and nressure; on the smaller scale
characteristic of the size of gas clouds, the shock encompasses a broad
region, six times the radius of a large cloud and almost fifty times
the radius of a subcloud.

In the shock region there are possibly two tvpes of compressive
mechanisms that act on any given large gas cloud during its passage
through the shock. The first is the collision of a large cloud with
other large clouds. In the passage of a given Targe cloud through
a shock thickness of 100 pc, an average of one such collision is likely.
Such a collision of Targe clouds tends to flatten both participants
although the process of "rebound" (personal communication with Kahn,
1968) may help clouds, which Have been flattened, to become more spheri-
cal once again.

The second mechanism involves the composite effect of collisions

of several subclouds with a large cloud. In the time period between

]In a later section we return to a discussion of subclouds as the
possible candidates for protostars.
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collisions of a given large cloud with other large clouds, five

collisions of subclouds with the large cloud occur‘on the average
in our model. In general, when a subcloud collides with a large
cloud, the Targe cloud tends to absorb the smaller clouds and to
become more massive.] Indeed, the process of accretion by the more
massive large clouds may be enhanced considerably inside the shock

region and in the subsonic region behind the shock. The extensive-

ness of the bombardment of a given large cloud by smaller subclouds
may determine in part how isotropic is the compression felt by the
large c]oud.2

Undergoing these two types of collisions, large clouds may be
compressed to varying degrees. Of especial interest are those clouds
which may have reached their verges of gravitational collapse through
the processes of pancake-like flattening and "rebound" (personal com-
munication with Kahn, 1968). Also, of especial interest are those
Targe clouds that undergo no collisions with other large clouds over a
time period which is sufficient for subcloud bombardment to compress
them (with Tittle pancake-like flattening) beyond their verges of grav-

itational collapse. Statistically, a small fraction of all large clouds

]Accretion is discussed in Section 26.

2Another‘ factor may play a role in determining how isotropic is the
compression. A massive large cloud may be less easily decelerated

in the shock region than a small cloud due to the contrast in momenta
between the two. The less isotropic will be the compression of a
large cloud due to subcloud bombardment, the larger is the difference
between the mean velocities of the large and small clouds in the
shock region,
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may be triggered into gravitational collapse in these ways. It is
this fraction that may account in large measure for the newly-born

stellar associations] lying within the grand design of sniral structure

in our Galaxy and in other spiral galaxies.

b g

]Section 30 considers the formation cf protostars from subclouds and

the formation of stellar associations from large clouds and cloud
complexes.
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29. Classic problems associated with star formation

Fragmentation

On the one hand, it appears from observational studies that
no stars of mass greater than 70 M_ are in existence; on the other
hand, it is evident that in order to initiate the collapse of a
gaseous mass its mass must be on the order of 104 M, . Therefore,
the formation of stars1 must be accounted for by some process of
fragmentation of the large clouds before or during their collapse
into smaller collapsing submasses that may serve as the candidates
for protostars. iy a large massive cloud should dissociate before
or during its collapse so as to give rise to an association of
smaller collapsing subclouds rather than just one large collapsing
mass constitutes the classic problem of fragmentation.

Hunter (1964) has treated this problem of fragmentation in
the collapse of a quiescent gas sphere and has shown that during
the spherically symmetric collapse of the gas cloud the cloud shows
a preference not toward condensation as a single entity but rather
toward fragmentation into a number of subcondensations. In fact,

lunter demonstrates that density perturbations grow faster than the

& R e

]A mass loss > 99% of the mass of a large cloud for the formation
of a protostar of mass < 70 M, is not easily accounted for. In
Section 30, we discuss this pussibility and find it an unlikely one.
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uniformly contracting background of density, and that the relatively
rapid growth of density perturbations perpetrates the fragmentation
of the large gas cloud during collapse.

In the nonquiescent picture of the interstellar medium that we
envisage, the process of fragmentation is evident throughout. Indeed,
the processes of fragmentation and disintegration play their con-
tinual roles not only on the large scale that encompasses turbulent
motions of large clouds and cloud complexes over the interstellar medium
but also on the small scale that encompasses turbulent motions of sub-
clouds in the interiors of Targe clouds themselves. Therefore, the
usual problem of how fragmentation may arise is not a real one in this
nonquiescent picture (since fragmentation is present even before the
collapse of clouds). Turbulence provides for internal fragmentation
of a large cloud but at the same time hinders the overall compression
toward its verge of gravitational collapse. In this nicture the forma-
tion of many protostars which lie in association1 rather than the forma-

tion of one overly-massive supergiant protostar can be realized.

Turbulence

teretofore, we have made the assumption that a gas cloud during
compression may be characterized as isothermal at an equivalent tempera-
ture (partly kinetic and partly due to turbulence). Indeed, the kinetic
temperature may remain virtually unchanged if the cloud is optically

thin and heat energy can be radiated away in a time period much shorter

]The internal subcloud picture will be discussed in more detail in a
later section,
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than the dynamical time scale of a few million years. On the other
hand, it is possible that turbulent dissipation may not be sufficient
to restrain the effective temperature due to turbulence from appreciably
rising during compression. If this be the case, the gas may not be
characterized as an isothermal gas at an unchanging equivalent tempera-
ture during compression. (

By the law of conservation of circulation during cloud con-

traction:

I « § (Vz)ql ds

the mean turbulent dispersion speed (if the turbulent velocities are
primarily rotational) may be expected to rise with decreasing cloud

radius as:

In the nonquiescent state, the equivalent temperature varies roughly
as the square of the mean turbulent dispersion speed and therefore, the

ratio of the rapidly increasing internal turbulent energy (when no
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turbulent dissipation is present) and the gravitational energy is:

With no other important effects present (such as turbulent dissipation)
it therefore appears that a time will be reached during the collapse
process when the pressure forces resisting compression will overcome
the gravitational forces influencing collapse, and at this time further
collapse wi]]kbe hindered.

On the other hand, the process of turbulent dissipation must also
be taken into account. To be sure, as the mean densityv increases during
contraction, the collision rate of subclouds inside the large cloud also
rises. Dissipation of turbulent energy by collisions therefore must in-
crease, and this rate of increase of turbulent energy dissipation may be

roughly approximated by:

l/;_
1 d(v?) (vZ) « R°2
— dt % R

Therefore, the dissipation of turbulent energy into heat enerqgy which

ray then be radiated away, may be rapid enough to restrain the effective
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temperature due to turbulence from rising anpreciably, and, in
particular, to restrain it from rising as fast as R-2,

For example, if T rises only as fast as R=! the ratio

equiv
of turbulent pressure forces and gravitational forces remains unchanged
during compression, In this situation, if the gravitational forces ex-
ceed the turbulent pressure forces initially, they will remain dominant;
and gas cloud collapse will continue, 1If a simple polytropic law may

be used to describe the gas cloud:

then the ratio of turbulent pressure forces to qravitational forces

will increase or decrease as Y is greater than or less than 4/3, i.e.,
p = g -1

when Y 4/3, Tequiv « R=1 ,

A typical estimate of the time scale for the dissipation of
— |/"
turbulent energy may be obtained from the dissination rate of (v2) /R.

—
If (v2) = Tkm/s and R = 20 pc, then = 20 million years.

dissipation
Initially, a large cloud will tend toward collapse under a sufficient
shock compression but will be hindered from complete collapse for a

period of perhaps 20 million years or so during which enough dissipa-
tion of turbulent cnergy will have taken place and enough heat energy

will have been radiated away so that collapse will no longer be dis-

couraged. This time scale for the dissipation of turbulent energy may
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be one of the longest time scales over which the cloud collapse process

must be delayed before protostar formation may be realized. If a time

period of 20 million years is allotted for the time scale of dissipation

of turbulent energy, and if time periods of 10 million years are allotted

for the time scales of passage through the shock and of adjustment of

clouds (by turbulence) to the compressed medium behind the shock (all of

which overlap somewhat since all three processes proceed simultaneously),

then the process of protostar formation may evolve over a time period of

30 million years from the initial shock-triggering stage.

Rotation and Angular Momentum

Suppose we consider a gas cloud which rotates with a uniform
angular velocity w about an axis through its center, If the cloud
collapses isotropically, the Taw of conservation of angular momen-

tum:

Ang., Mom, « w RZ = constant

requires the centrifugal force, which is proportional to w?R, to
increase as R-3 ., Indeed, this represents a faster rate than the
growth rate of R=2 for the gravitational force. Hence centrifugal
effects though initially small will inevitably swamp gravitational

effects. Since the rotation will halt the collapse perpendicular
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to the axis of rotation but will not influence the collapse parallel

to that axis, the cloud collapse will tend from one of a spherically

symmetric nature to one of a pancake-like nature,

Once the collapse to a disk-]ike‘configuration has evolved,
further collapse may be hindered in another way: the pressure force,
Vp/p , which tends to prevent further collapse perpendicular to the
plane of the disk, grows at the same rate as the gravitational force,
which tends to influence further “pancaking" of the disk. In this
situation, no strict verge of gravitational collapse may be realized.
However, Hunter (1967) and Spitzer (1968) both have pointed out that
the processes of fragmentation will not be significantly interfered
with and that a hierarchy of fragmentating and contracting subdisks
may evolve over the larger disk (if fragmentation is not already present).

llhereas those large clouds which are undergoing large rotations
cannot be collapsed by the shock, those Targe clouds which possess little
angular momentum may be. Statistically, there exists a small fraction
of all clouds which possess no apnreciable angular momentum, and these
clouds are the ones that can be triggered into gravitational collapse
by the shock. Since turbulence provides a transfer mechanism for angular
momentum between internal subclouds and the intersubcloud medium inside
the large cloud, no serious difficulty associated with internal rotational

notions is visualized in the collapse picture of internal subclouds.

Magnetic Field

Suppose we consider a uniform sphere of radius R which contains

. a uniform magnetic field H. 1In a situation of equilibrium, the virial
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theorem states:

42 2R3
3GM . HR

G = - 7

Suppose we consider the isotropic contraction of the sphere. If the
conductivity of the interstellar medium is high enough, magnetic Tines
of force remain frozen in the gas; and in this situation, the magnetic
field intensity varies as R-2, and the gravitational energy as well as
the magnetic field energy varies as R-! during the contraction. This
picture of the collapse of a gas cloud in the presence of a magnetic
field differs from the picture of collapse of a gas cloud under no

magnetic field: when a magnetic field is present, the critical mass

signifying the verge of gravitational collapse is unaltered by contrac-
tion; when no magnetic field is present, the critical mass steadily
decreases during collapse. In the presence of a magnetic field, if the
§ - gas cloud is initially beyond its verge of gravitational collapse (i.e.,
| it has a mass > the critical mass), it will remain there; and collapse
will continue.

On the other hand, if the conductivity of the interstellar medium
is Tow, then magnetic field lines cannot be frozen in the gas. For
this reason alone, the influence of the magnetfc field on gas cloud
collapse may be of only secondary importance. To be sure, if the magnetic
field strength is only of the order of a few microgauss, the magnetic

field can play only a secondary role in gas cloud collapse. In addition,
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in our nonquiescent picture of the interstellar medium, turbulence

jtself may be strong enough to appreciably diffuse magnetic field
lines out of gas clouds; and in this situation, the influence of the

magnetic field on gas cloud collapse may be even less., We have in

mind a picture of this type where the magnetic field plays only a
secondary role in the collapse of gas clouds and in the formation of

stars.
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30. Subclouds: the candidates for protostars

The dynamical picture for the spatial distribution of the
interior portions of a large gas cloud may be much like the larger
scale picture for the irregular spatial distribution of gaseous
masses (large clouds and cloud compiexes) over the interstellar medium.
Wnile the interstellar medium may be comprised of gaseous masses (large
clouds and cloud complexes) in a state of turbulent motion, each of
the gaseous masses may in turn be comprised of gaseous submasses (small
clouds and subclouds) which experience their own state of turbulence.
This picture of the interior regions of a Targe cloud may be particular-
ly evident if the state of turbulence in the interstellar medium is
such that we may indeed distinguish gaseous masses into two ranges of
scale: the scale of the large cloud and cloud complex being much larger
than the scale of the subcloud. In this picture, the process of gravi-
tational collapse may be viewed.

his a large cloud contracts, the radiation originating from with-
in the cloud tends to keep it in thermal equilibrium with its Surround-
ing medium. If no appreciable absorption of the radiation by the inter-
ior takes place, and if turbulent dissipation is sufficiently rapid,
the primary distortion to the internal turbulent fragments is their
nomologous contraction at a rate similar to the contraction of the cloud
as a whole, As the volume shrinks, clumps of increasingly denser gas

concentrations stand out and their self gravitation rises in increasing
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proportions.] After sufficient contraction has taken place, the self
gravitation of the most massive clumps of gas concentration becomes
dominant over their internal turbulent pressure of dissociation. At
this stage the most massive clumps are on the verge of gravitational
collapse. As shrinkage progresses further, fragments of smaller and
smaller scales succumb to their self gravitation and follow the Targest
fragments in a sequence along the path of collapse. As the gravitation-
ally collapsing regions separate out from the remainder of the turbulent
medium, the state of internal fragmentation assumes a more pronounced
form. In this state of separation, the individual collapsing gas con-
centrations may be envisaged even niore positively as nonquiescent sub-
clouds.

This cloud-subcloud picture finds additional support in the fact
that stars of mass greater than about 7C M, have not been found to
exist in observational studies. Mith such an observational result in
-mind, we infcr that either a large cloud during its collapse toward a
protostar must lose over 997 of ils mass or a star must be formed from
a subcloud rather than directly from a large cloud whose mass must
necessarily be of the order of 10% I{ in order to be capakle of collaps
ing in the first place. The first alternative which recuires 29% mass

loss is regarded as unfavorable since the mechanism for producing such

]In our nonquiescent picturc of the interstellar medium, the process

of fragmentation is evident throughout (sce Section 29). Indeed, it
is present even before any nrocess of gas cloud collarse takes place.
Therefore, during the process of gas cloud collapse (discussed herein,
Section 30) fragmentation, which is already present, assumes a more
pronounced form,
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a mass loss appears to be lacking. The second alternative seems much

more favorable, and we infer that subclouds as the constituents of

large clouds may be the likely candidates for protostars.

Stellar Associations

Before collapse, a large cloud (of our model) with a mass of
10t My » @ mean density of 20 H/cc, a radius of 17 pc, a kinetic temp-
erature of 100°K, and an equivalent temperature of 300°K may contain,
for example, 100 randomly dispersed subclouds with masses of 50 MQ ,
mean densities of 40 H/cc, and radii of 2.3 nc. This is the cloud-sub-
cloud model that is envisaged earlier in Section 28. If the balance of
equivalent pressure between subcloud and intersubcloud medium is to be
maintained in this picture, the intersubcloud medium hust have a mean
density of roughly 13 H/cc.1 In such a model, the fraction of subcloud
volume to intersubcloud volume is 1:3, whereas the total mass of the
large cloud is distributed equally betueen subclouds and intefsubcloud
space.

Although the subcloud radius before compression is about 2.3 pc;
when the subcloud is just at its verge of gravitational collapse, its

radius is only .036 pc, and the mean intersubcloud distance between

]In order to have a mean intersubcloud density of 13 H/cc inside the
large cloud, the basic intersubcloud density of .5 H/cc, which is
adopted in Section 28 to represent the portions of the model of the
interstellar medium apart from clouds, must be complemented with the
gaseous mass, for example, of some 96 subclouds diffused throughout
the intersubcloud volume. In this way, the large cloud may be formed
from subclouds.

207




subclouds is about .1 pc. A compression of the subcloud on the order

of 100,000: 1 is therefore necessary before an individual subcloud

will reach its verge of gravitational collapse. The mean intersubcloud
distance of .1 pc might be taken as a tynical upper bound estimate] of
the distances between newly-born stars in a stellar association at its
birth. When the subclouds do reach their verges of gravitational
collapse, the large cloud radius is about .27 pc. This large cloud
distance of ,27 pc may provide a typical upper bound scale for the size
of a stellar association at birth. Although the large cloud already
reaches its verge of gravitational collapse when its radius is as 1arge
as 7 pc, it is not until the large cloud collapses through an additional
10,000:71 contraction that subclouds reach their verges of gravitational
collapse and a stellar association btegins forming. The stellar dispersion
inside a newly-born stellar association may be estimated by the mean
subcloud dispersion speced inside a large cloud before contraction takes
place. Since the mean dispersion speed before collapse has an upper
bound of about 2 km/s, a typical estimate for the mean stellar dispersion
speed in a newly-born stellar association might be a few kilometers per
second. A1l these estinates are in general agreement with observations.
An important physical consequence of the cloud-subcloud picture
in further agreement with olservations reguires that newly-born stars

ve found only in associations with other newly-corn stars. Indeed,

]This is an upper bound estimatc since more than 100 newly-born stars
gerierally appear in a stellar association. As many as 1,000 to 10,000
stars migiit characterize a typical stellar association.
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M. S. Roberts (1957) has confirmed through observational studies of
many U stars in the solar neighborhood that they all appear to lie in
stellar associations,

The necessity for stellar associations in the cloud-subcloud

picture is apparent. Since the amount of compression necessary for

triggering the gravitational collapse of a gas concentration varies

PN SR

inversely with the square of its mass, it is much easier to trigger

IR

the gravitational collapse of a large cloud rather than a subcloud.
Indeed, a shock wave of 8:1 compression may be capable of triggering
the gravitational collapse of a large gas cloud, whereas the triggering
of the gravitational collapsc of a gas sukcloud requires a comnression
several orders of magnitude greater (102,700:1). The indivicdual sub-
clouds, that compose a large cloud, mutually attract one another by
their gravitational forces, and this attraction is the factor that en-

ables a large cloud to reach its verge of gravitational collanse under

an 8:1 shock compression. It is only the rising pressure resulting |

from the contraction of the large cloud that eventually provides enough

compression to place the subclouds on their verges of gravitational
collapse. This compression and collapse of an individual subcloud forms
a star, and this newly-born star lies in association with the stars

formed from all the other subclouds inside the large cloud,
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31. Galactic star formation in a grand design of spiral structure

After perhaps 30 million years from the shock triggering stage

when an individual subcloud has become sufficiently compact, nuclear

B T
oz

reactions inside the collapsing submass begin to take place, and the
newly-born star begins to radiate. At this stage, the processes with-
in each star become quite complicated. The radiation generated within

each star is felt in the form of radiation pressure by all the other

s P e T s

stars and masses in the association. In the early life of a young

i
et

stellar association containing O and B stars, which were formed
from the largest internal subeddies of the (ancestral) large cloud,
the radiation pressure inside the association may be great enough to
force some of the smaller gaseous masses (small subclouds) over their
verges of gravitational collapse. In this situation, a secondary re-
generation of star formation may take place.

At the same time that this secondary regeneration of star forma-
tion is occurring, the stellar association as a whole tends toward a
state of expansion driven by the internal radiation pressure. Once a
state of sufficient expansion is reached, the remaining gas masses of
small scale (small subclouds) begin to decompress once again, and the
possibility for further star formation ccases. Today, observational
studies of stellar associations of newly-born stars indicate that the
average distance between the stars is generally larger than the mean

iﬁtersubcloud distance characteristic of the final stages of collapse
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“the stellar association. It is concejvable that these small-scale

of the ancestral cloud prior to the formation of stars1; and the
explanation for this is readily found in the expansion of young
stellar associations driven by the excessive amounts of radiation
pressure felt throughout.

A further stage of the stellar evolution process evidently
follows., After a few more million years have passed, the relatively
massive newly-born stars presumably explode in the form of super-

novae. In addition to providing appreciable amounts of energy for

the interstellar medium and brilliantly lighting up their environments,
these explosions may also give rise to local small-scale shock waves of

large shock strengths which propagate threough the caseous environment of

shocks could in turn coilapse still more small-scale gaseous masses
(small subclouds) which never before quite reached their verges of
gravitational collapse. In a situation where many supernovae evolve
simultaneously in the association, further secondary star formation
effects migint therefore be pnresent.

During these supernovae explosions most of the mass of the ex-
ploding stars returns to the interstellar medium once again and provides
more gas clouds, togethcr with all those that never reached their verges
of gravitational collapse, and in this way enhances the gaseous medium
for a repetition of the star formation process during the passage of

the next large-scale galactic shock. Even when sunernovae are evolving

]An upper bound estimate of the mean intersubcloud distance when a sub-

cloud in our model is at its verge of gravitational collapse is about
.1 pc (sece Section 30).
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over a region of the galactic disk, the next large-scale galactic

shock still Ties only a little less than half a revolution about

the disk. Only a small fraction of the stellar mass is not exnloded

out from supernovae, and what remains assumes the form of a white i

dwarf.

The overall energy balance may be envisaged as a combination
of all these processes which provide energy, together with the process
of dissipation of turbulent energy by collisions. Cver the 30 million
years of travel from the shock, large amounts of energy are evidently
made available to the interstellar gas by the radiation of the young
stars and the supernovae explosions. Of this energv, perhaps 1% is
converted into kinetic energy of the gas itself.] The region lying
adjacent to a shock and extending approximately a distance of about
1/6 of the wavelength between successive sniral arms is the area where
most of this energy is available to the gas and where the turbulence
of the gas is Tikely to increcase somewhat. Indeed, it is this portion
of the galactic disk where the grand cesign of spiral structure stands
out with such great brilliance and striking luminosity. In a disk-
shaped galaxy, a luminosity contrast of many orders of magnitude may
be maintained between these brilliantly Tuminous spiral arms and the
interarm regions, which together compose the grand design of spiral

structure. With the lack of sufficient radiation from young stars2 (a

]Personal communication with Kahn, 1968

2Indeed, by the time the young stars which are formed in the shock region,
have passed outside the spiral arms, they are no lTonger young.

S N e L ROARE
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scarcity compared to the exorbitant amounts of stellar radiation

observed in the spiral arms) and the Tack of supernovae explosions

~over the remaining 7/8 of the travel distance toward the next

successive ga]actié Shock, dissipation of turbulent energy is likely

to predominate outside the spiral arms. At the next shock the re-

generation and dissipation cycle for gaseous turbulent energy starts

anew,
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Part V.

Conclusions and Implications
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32, Summary of results

In this thesis, three basic problems have been investigated:
(1) the gaseous response of the galactic disk to a spiral gravita-
tional field and the compatibility for the existence and persistence
of a two-armed spiral shock wave pattern, (2) the possible evolution
and development of galactic shock waves over the disk, and (3) the
possible implications of shock formation on star formation along the

spiral arms.

Stationary Two-Armed Spiral Shock Pattern

The compatibility of two periodically-located shock waves lying
along and within the imposed two-armed spiral pattern has been con-
firmed for the Schmidt model of the Milky Way System., Figure (32.1)
illustrates the position of the shock inside the imposed two-armed
spiral pattern of trailing type. Arrowed streamlines which turn
sharply at each shock are drawn for several typical radii. The imposed
pattern is the composite pattern of all the moderately-old stars, of
ages greater than perhaps 30 million years, and therefore does not stand
out in observational studies. One basic feature of the shock pattern
is the predetermined location of the shock which approximately coincides
with the center axis of the imposed spiral arm and actually is shifted
slightly to the inner side in the case of the trailing spiral arm.

This coincidence of the spiral shock, as well as the large induced
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Shock and Background Spiral Pattern in the Galaxy
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gaseous concentration just behind the shock, with the imposed (gravi-‘

tational) spiral arm is favorable for the self consistency of the

overall spiral field and the maintainence of the stationary shock
pattern. Self consistency requires that the induced field due to the
response in the gaseous and stellar components of the ga]éctic disk
be similar to the original imposed field which gives rise to the response.
In fact, it has been shown that the fundamental component of the (non-
linear) gas-induced field lies approximately in phase with the imposed
field. Therefore, the imposed field may be regarded as the resultant
spiral gravitational field of gas, young stars, and moderately-old stars.
This compatible and self consistent coexistence of the (nonlinear)
gaseous TASS pattern and the (linear) stellar density wave pattern has
been confirmed between the radii of 3-4 kpc and 12 kpc over the galac-
tic disk.

The shock determined by numerical calculations for a spiral
galaxy of leading type again coincides approximately with the center
axis of the imposed spiral arm but is shifted slightly to the outer
side in the case of the leading arm. In general, for both leading
and trailing spiral galaxies the shock wave occurs just before the gas
flow reaches the minimum of the imposed spiral potential field.

Investigation of some typical gas clouds has shown that large
clouds may not be far from the critical condition where gravitational
collapse becomes possible., Indeed, it is suggested that galactic shock
waves may very well form the triggering mechanism for the gravitational
collapse of gas clouds, leading to star formation. Since newly-born
luminous stars give rise to H II regions, galactic shocks may be visual-

jzed as the necessary forerunners of the large H II regions as well as
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the newly-born stars. Figure (32.2) illustrates the behavior of
the gas density along a typical streamtube of the TASS pattern. The
imposed potential field due to the moderately-old stars is sketched
at the bottom. The potential minimum corresponds to the density
maximum and the center of the imposed spir§1 arm. A shock occurs
slightly in front of the imposed arm's center axis. The region ex-
tending from the'shock to the point where the gas density drops below
its average value of unity corresponds to the observed gaseous spiral
arm. If an upper bound of 30 million years is assumed for the process
of formation and evolution of relatively massive stars initiated at
the shock, the regions of newly-born luminous stars and H II regions
1ie on the inner side of the observed gaseous spiral arm, extending
from the inner edge to approximately the middle of the arm.

We now visualize how the Galaxy may appear with shocks present.
When observations of the galactic disk are made, the moderately-old
star background distribution making up the imposed two-armed spiral
pattern is not seen. Basically, what we do see are: (1) the ob-
served gaseous spiral arms of H I, and (2) the newly-born Tuminous
stars and H II fegions. Figure (32.3) illustrates this observable
physical picture according to the shock predictions. A shock occurs
on the inner edge of the observed gaseous spiral pattern (the light-
toned region). On the inside of this observable trailing spiral
pattern lie regions of newly-born luminous stars and H II regions (the
darkened area) extending from the shock on the inner edge to approximately
the center of the arm.

Some quantitative features of this theoretical TASS picture are
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of especial interest. An imposed spiral gravitational field with

a magnitude of about 5% of the symmetrical field is adopted.] al-

though calculations for other spiral field strengths have been

carried out also. In this picture, the effective shock compression

along the shock wave pattern varies from about 5 in the 10 kpc region
to approximately 8-10 in the 3-4 kpc neighborhood. Gas Streamtubes
themselves appear as sharp-pointed ovals with their two sharp turning
points lying coincident with the shocks. Along each streamtube the
radial velocity varies considerably; the maximum and minimum radial
velocities which are attainable along the 10 kpc streamtube are about
+ 13 km/s, whereas the maximum and minimum radial velocities which are
attainable along a streamtube in the 3-4 kpc neighborhood are about

+ 20 km/s.

In the linear density wave theory, the density wave pattern of
spiral structure, which is composed of both gas and stars, terminates
in inner Lindblad resonance at a distance of about 3.5 kpc from the
galactic center. Such a lack of overall spiral structure within the
radius of about 3.5 kpc signifies the absence of an overall spiral
gravitational field in this region of the galactic disk.

An exciting theoretical feature of the galactic shock picture
is therefore evidenced by the twice-periodic gas streamtube free mode
discovered near the 3 kpc region of the Schmidt model. This free mode

exhibits an effective compression over the streamtube of about 10, and

]In studies of the migration of moderately-young stars in our Galaxy,
the spiral field is estimated at about 5% of the symmetrical field.
(see Lin, Yuan, and Shu, 1968)
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the maximum and minimum radial velocities along the free mode
streamtube are about + 16-20 km/s. Since the free mode is main-
tained with\a zero imposed spiral perturbation field, such a free
mode is evidently sustained entirely by resonance. The existence
of this free mode therefore indicates in a positive manner the
presence of resonance in the dynamics of the gaseous disk.

Some features of the "3 kpc arm" of observational studies
are apparent in this "resonant" free mode. Large positive radial
velocities (on the order of 16-20 km/s) occur over two short arcs1
of length similar to the length of the u3 kpc arm." Large negative
velocities of similar order of magnitude occur over two other short
arcs of similar length, Since no imposed spiral field of leading
or trailing type is present to influence the leading or trailing
nature of the free mode, both a leading and a trailing free mode are
possib]e.2 Since the "3 kpc arm" of observational studies exhibits
large positive radial velocities (of the order of 50 km/s), the free
mode of leading type rather than the free mode of trailing type better
characterizes high density arcs which undergo rapid outwards motion

toward the solar neighborhood.3 If the free mode were oriented in such

1These arcs of high radial velocity lie exactly T radians apart along

the streamtube.

2Section 12 shows that the maximum positive radial velocity coincides
with the maximum density along a streamtube in the shock pattern of
leading type, whereas the maximum negative radial velocity coincides
with the maximum density along a streamtube in the shock pattern of
trailing type.
3If the "3 kpc arm" of observational studies were actually located on
the far side of the galactic disk from the solar neighborhood, the
free mode of trailing type would better characterize the high density
region of rapid inwards motion towards the solar neighborhood.

222




a way that one of those high velocity arcs lies between the galactic

center and the solar neighborhood, then in observational studies made
from the solar vicinity, these large positive velocity arcs may well
appear as material arms in rapid radial expansion with features strik-
ingly similar to the "3 kpc arm" (although the theoretical free mode
expansion is still only about 1/3 of the observed outwards expansion
of the “3 kpc arm.")

Just as over other portions of the galactic disk, a spiral field
enhances the shock pattern and increases the maximum radial velocity
possible along a streamtube. Therefore, the effects of an imposed
spiral gravitational field on the free mode are of interest a]so..l
When spiral fields with strengths of 5%, 10%, and 15% of the symmetrical
field are imposed, the maximum radial velocities induced along the
3 kpc streamtube are about 20 km/s, 30 km/s, and 40 km/s respectively.
The high density regions coincide with the regions of large positive
or negative radial velocity according as the shock pattern is of lead-
ing or trailing type. With a 15% field the value of 50 km/s for radial
velocity in observational studies is almost attained, although there
is lack of sufficient reason how a spiral field of such a great strength

can exist in the 3 kpc region in the first place. On the other hand, if

]These calculations where a spiral field is imposed in the 3 kpc neigh-

borhood of the Schmidt model are of general exploratory character
since no such spiral field is possible in this region according to
the linear theory. However, in the nonlinear theory, the gaseous
component organizes itself into a free mode and maintains a shock
pattern in the 3 kpc region without a supporting field. This non=-
linear organization of a gaseous free mode signifies as well the
organization of an induced gravitational field due to the gas alone,
although this induced field due to the gas can be at most of the
order of only a few percent of the symmetrical field.
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the rotation curve of the Galaxy were actually shifted from its

present shape in the 3 kpc neighborhood (and in the central regions)
of the Schmidt model, then the possibility for continuation of the
grand design into the 3 kpc region and for a spiral field and a
forced mode, which might exhibit radial velocities of the order of

50 km/s, may be present.
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Evolution and Development of Galactic Shock Waves

The growth of galactic shock waves within a spiral galaxy
has been investigated in Part III. It has been shown that the
superposition of a spiral gravitational field on a disk-shaped
galaxy is sufficient to induce the formation of large-scale galac-
tic shocks within a few rotations of the disk, The greater the
strength of the spiral field, the more rapidly are shocks induced.

0f the various shocks possible there exists one mode that
evolves into a corotating shock. This mode grows at a more rapid
rate than any of the others. With ¢ as a measure of the perturba-
tion field strength, the time for the formation of the corotating
shock is of the order of e'yﬁ whereas the time for the development
of all the other non-corotating shocks is of the order of ¢"!. The
most exciting feature of Part III is this most rapidly growing, coro-
tating shock; for, it is shown that this shock is precisely the time-
evolved, self-sustained density wave which comprises the quasi-station-
ary grand design of spiral structure in the Lin-Shu Tinear density
wave theory,

Whereas the investigation of Part Il provides for the existence
and persistence of a stationary two-armed spiral shock wave pattern,
the investigation of Part III indicates the possible evolutionary
process of the development of a galactic shock pattern as an out-
growth of the grand design of spiral structure according to the Tinear

density wave theory.
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Star Formation along Spiral Arms

The final area of investigation in this thesis has been
the implication of the spiral galactic shock pattern on star forma-
tion along spiral arms. Encouragement for star formation along
spiral arms in our theoretical picture has been provided by trial
calculations for a simple gas cloud model consisting of an isothermal
sphere of gas in thermal equilibrium with a surrounding medium of
rarefied gas, all in turbulent motion. Although internal turbulence
enhances the cloud with an equivalent temperature and pressure that
tend to prevent self gravitational collapse, it also provides the
cloud with internal fragmentation which influences the formation of
many protostars inside the cloud once the collapse process has been
triggered. A typical large gas cloud has a mass of 10,000 to
25,000 M, » a mean density of 20 H/cc, a radius of 17 to 25 pc,
a kinetic temperature of 100°K, and an internal root mean square
turbulent velocity between .5 km/s and 2 km/s, which is a typical
estimate of internal turbulence according to observational studies.
An 8:1 shock compression is just sufficient to trigger the gravitation-
al collapse of a cloud of this size.

Due to internal turbulent eddies and fragments, the interior of
the cloud may be visualized to consist of two distinct portions: (1)
those regions consisting of clumps of gas concentration called sub-
clouds which are the candidates for protostars; and (2) the inter-
subcloud medium, Even though this model is somewhat of an idealiza-
tion of the real physical picture, some basic features of star forma-

tion are apparent from such a cloud-subcloud model. With a subcloud
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of an average mass of 50 Mo and a mean density of 40 H/cc, a
compression on the order of 100,000:1 is necessary to place the
individual subcloud on its verge of gravitational collapse. There-
fore, an 8:1 shock wave compression can trigger only the collapse
of the large cloud, which in turn is capable of triggering the
subsequent compression and collapse of the individual subclouds.
Each subcloud may form a star, and this newly-born star Ties in
association with the stars formed from all the other subclouds
inside the large cloud. The overall time of collapse of a typical
larce cloud from the shock-triggering stage to the formation of an
association of newly-born stars is about 30 million years. It may
be inferred that subclouds can form stars only if they are con-
tained in large clouds or in large cloud complexes. In addition,
newly-born stars must practically always be found in associations
with other newly-born stars, and these newly-born stellar associa-
tions for the most part must lie along spiral arms. These implica-
tions from the shock theory and the cloud model are already generally

well established by observational studies.
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33. Comparison with observations

A comparison will now be made between the theoretical results
of this thesis and observational studies of our own Milky Way System

as well as other spiral galaxies.

Narrow Star Formation Regions

Observational studies of our Milky Way System have provided
evidence that newly-born stars and luminous H II regions lie for
the most part along narrow spira]s] on the inside of the spiral arms
making up the grand design of our Galaxy (personal communication of
Westerhout to Lin and coworkers). In general agreement with these
observational studies, the theoretical investigations of this thesis
have confirmed that galactic shock waves may provide for the formation
of stellar associations along narrow ﬁpirals simi]&r to those of
observational studies. This theoretical picture contains galactic

shocks lying nearly along the center axes of the nonobservable back-

ground spiral arms and along the inner edges of the observable trail-
ing gaseous spiral arms of the two-armed luminous grand design of our
Galaxy.

Attention may be focused on the narrowness of the gas density

peak located just behind the shock in Figures (32.2) and(32.3). Such

]see Morgan et al. (1952); and Sharpless (1965).
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a narrow peak in pressure and density indicates appreciable star
formation may take place only over the narrow spiral region lying
just behind the large scale galactic shock. Over a time period

for the formation and evolution of the relatively massive stars
initiated at the shock, (on the order of 30 million years), matter
traverses a distance normal to the spiral arm of only about 1/8

of the total wavelength separating successive arms. Therefore, the
relatively massive and luminous newly-born stars are confined to the
inner sides of the observed gaseous spiral arms; for, when they pass
outside this region, they are no longer newly-born or luminous. The
most luminous region of the disk is therefore the narrow spiral
sector directly outside each galactic shock which itself lies on

the inner edge of an observable gaseous spiral arm of trailing typé.
By the time the newly-born stars have travelled to the center of an
observable gaseous spiral arm, their luminosity will have decayed

appreciably because of their relatively rapid evolution.

H I versus H II Distributions

M. S. Roberts (1967) has shown for Sc-type galaxies that the
regions of highest H I distribution do not coincide with and, in fact,
lie significantly outside of the regions of the newly-born stars and
the H II regions. For the several investigated Sc-type galaxies,
the optical arms 1ie significantly interior to the H I peak. In close
similarity to the distributions of H I and H II for Sc-type galaxies
investigated by M, S, Roberts, this same feature is present for our

own Milky Way System, as the Westerhout results (1958) for the distribu-
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tions of H Il and neutral hydrogen have confirmed.]

Since it would seem a priori that the distributions of H I
and H II with respect to radius should have the same general character,
with the peak of one coinciding with the peak of the other; the work
of M. S. Roberts sheds a new light on the spiral galaxy picture:
namely, a large shift in the peak of H II from the peak of H I seems
to indicate a strong triggering mechanism which is capable of affect-
ing the production of H Il according to the mechanism's own pattern,
considerably indépendent of the distribution of H I. 1In our own
galaxy as well as the various Sc-type galaxies investigated by
M. S. Roberts, not only is the mechanism apparently present, but also
its strength must be considerable in order to produce such radial
shifts of the H II distribution away from the basic sustaining H I
distribution. The large supersoﬁic Mach numbers and large compressions
characteristic of the theoretical TASS picture demonstrate how power-
ful a mechanism the galactic shock pattern may be in governing the
H II distribution at will. All this evidence then adds further support
to a large-scale TASS pattern that can control to a large extent the
star formation process as well as the radial distribution of H Il over
the galactic disk.

In the Schmidt model of our own Milky Way System the theoretical
TASS pattern extends outwards to about a rad{us of 12 kpc. The extent
of the shock pattern which is limited to within the 12 kpc region

of the Schmidt model may therefore provide this 1imit on the radial

]Also, see Oort (1965).
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extent of H II concentrations in our Milky Way System. Indeed,
the reason why there are no newly-born stars and no H II regions
coinciding with the regions of highest H I distribution in our
own galaxy and in Sc-type galaxies may be that there are no shocks

present at such large radii where the H I distribution is maximal.

Recent H II Investigations

Further comparisons may be made between the theoretical shock
picture and the recent observational studies of Burke, Mezger, Reifen-
stein, and Wilson (1968), who have searched for H II regions in the
galaxy. They have drawn the following picture of the distribution
of H II: Within the nuclear region some H II regions exist, however
outside the nucleus and out to about 4 kpc distance from the gélactic
center, few H II regions can be found. At about 4 kpc many giant
H Il regions begin to appear, and from 4 kpc to 6 kpc such H II regions
are plentiful. They have found some H II in the 8 kpc region and
smaller concentrations of H II in the solar neighborhood; however the
highest density of H II regions appears to be concentrated from 4 kgc
to 6 kpc in the galactic disk. The neutral hydrogen is more widely
extended, and therefore the H II appears mainly in the inner parts of
the H I disk. These more recently observed features even further
demonstrate the general agreement between the theoretical TASS picture
and observational studies of the Milky Way System,

There may be at least two basic effects in the theoretical TASS
picture that help contribute to the rise in H II density inwards from

10 kpc toward the 4 kpc neighborhood. The first effect is the rise in
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shock compression toward the galactic center; the second effect is

the possible increase in turbulent dispersion toward the center;

A typical galactic shock pattern has an effective compression of 5

in the 10 kpc radial region and 8-10 near the 4 kpc radial neighbor-
hood. A shock pattern of such an inwards-increasing strength may

well account for a rise in H II concentration by a factor of almost
two between the 10 kpc and 4 kpc regions. The second effect of in-
creasing gaseous turbulent dispersion (with the accompanying effect

of increasing density variation in the gaseous clouds) toward the
inner regions may contribute to a further relative rise in star forma-
tion and H II concentration in the 4 kpc neighborhood. From observa-
tional studies it appears the disk may retain a fairly constant thick-
ness between 4 kpc and 10 kpc, whereas the gaseous density may rise
somewhat toward the center. Since the gaseous turbulent dispersion
gives rise to a pressure which helps support the gaseous disk against
further self gravitational flattening, a rise in density encourages

a corresponding rise in the turbulent dispersion in order to maintain
the disk at fairly constant thickness. In this situation, larger
amounts of turbulent pressure act on the cloud envelopes in the inner
galactic regions; and less massive clouds which are not capable of
reaching their verges of gravitational collapse in the solar neighbor-
hood, for instance, may indeed surpass their verges of gravitational
collapse in the 4 kpc neighborhood. A variation in turbulent disper-
sion speed of a few km/s from 10 kpc to 4 kpc may well enhance the
relative ébundance of star formation and H II concentration in the 4 kpc

neighborhood in relation to that in the solar neighborhood.
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Free Mode and "3 Kpc Arm"

There is one further exciting feature of the theoretical shock
pattern that helps to account for the remarkable "3 kpc arm" phenomenon
of our own Milky Way System. This feature is the free mode discovered
in the 3 kpc neighborhood of the Schmidt model of our Galaxy. The
free mode itself contains large amplitude effects and high radial
velocity expansion regions even in the presence of a zero spiral
field. Such a free mode with positive radial velocities as high as
16-20 km/s provides a definite indication for the existence of non-
linear gaseous resonance in the 3 to 4 kpc neighborhood of our Galaxy.
Resonance alone without the influence of any spiral field is appar-
ently capable of sustaining this free mode in the 3 kpc neighborhood
of the Schmidt model.

Some curious features of the theoretical free mode in the 3 kpc
region are also characteristic of the "3 kpc arm" of observational
studies. The free mode contains streamtube arcs of high positive
radial velocity (of about 16-20 km/s) located exactly T radians apart
along the gas streamtube. If our solar neighborhood happened to lie
along a radius vector which passes through one of these arcs in the
3 to 4 kpc neighborhood, then an arc of gaseous matter with high radial

expansion would be a quite apparent feature in observational studies
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from the solar neighborhood.] The observationally described
"3 kpc arm" of expansion may well be in reality such an expansion

arc of gas.

]The free mode itself can account for a radial expansion of about
16-20 km/s, whereas the "3 kpc arm" of observational studies in fact
exhibits an expansion of about 53 km/s. If indeed the observational
picture is correctly interpreted, some further aspect of the theoreti-
cal picture is needed to supply the extra outwards radial velocity
of some 30 km/s. Sections 15 and 32 have discussed the possibility
of an imposed spiral perturbation field in the 3 kpc region. Such
an imposed field of 15% of the symmetrical field is shown in fact to
give rise to a material arm of short arc length with almost 50 km/s
radial expansion, However, a field of such great strength and in
fact any field at all in the 3 kpc region above a few percent of the
symmetrical field is difficult to account for in the linear density
wave theory and in the nonlinear theory as well.
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Appendix I. Comparison with earlier work

Although Fujimoto's calculations on gas flow through a
model spiral arm (1966) may be regarded of general exploratory
character, they nevertheless represent an important first step
in the determination of the nonlinear dynamics of the gaseous
disk. Fujimoto considers the motion of gas across a "gravitational
washboard" (i.e., a gravitational potential of a sinusoidal form)]

and demonstrates that a periodic shock solution is possible over

the "washboard". One of the most important features of his shock

solution is the strikingly-large density contrast of §.or'm0re2

which the imposed perturbation field of moderate strength (7.5% of
the symmetrical field) induces. Another important feature is evidenced
by the fact that a shock generally occurs within the potential well
of the imposed potential.

Understanding the importance of these results, we should dis-
cuss why Fujimoto's calculations must be regarded of general explora-

tory character and why further nonlinear investigation has been necessary.

]Fujimoto's multiarmed potential is similar to the two-armed potential

adopted in this investigation; although it possesses no fewer than
four, and in some of his calculations as many as ten or twenty arms,

2A density contrast of 5 to 10 is characteristic of the shock solutions
of this investigation also.
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At the time Fujimoto performed his calculations, it was
evidently not clear what a typical estimate of the pattern speed
for our Milky Way System should be. In the absence of any a priori
determination of the pattern speed, Fujimoto adopted a value of
about 45 km/s/kpc. This value presumably represents some kind of mean

angular velocity of the matter in the galactic disk. Since the pattern

speed determined from more recent observational studies is estimated

at about 12.5 km/s/kpc,] the value for the pattern speed adopted by
Fujimoto appears too large by a factor of almost 4. As a consequence
of such a high pattern speed as 45 km/s/kpc, corotation in the Schmidt
model occurs at about 5 kpc; and therefore, Fujimoto's calculations,
which cover the range of radii between 6 and 11 kpc in the galactic
disk, actually represent points lying outside corotation. In the
present work, the more recent estimate of 12.5 km/s/kpc for the pattern
speed is adopted, and thereby corotation lies at about 17 kpc from the
galactic center. Therefore, all calculations in the present investiga-
tion which involve streamtubes lying within 12 kpc from the galactic
center, represent gas flow lying within the corotation circle.

One further major difference stands out between Fujimoto's calcula-
tions and the present investigation. This difference is readily seen if
we write the basic set of equations (4.4), (4.5), and (4.6) and compare

them with Fujimoto's equations. If we write:

]This pattern speed is obtained from two studies - (1) the distribution

of neutral hydrogen and (2) the migration of moderately-young stars
(see Lin, Yuan, and Shu, 1968). The value used here is actually a
compromise between 11,5 and 13.5.
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0o + 0 = 0

(Q-Qp)msini + Wy, o= Wy

(Q - Qp)ﬂf cos i + Wy Wy

then the set of equations, (4.4), (4.5), and (4.6), may be rewritten

in the form:

L. l-(ééﬁﬂil- + ﬁégﬂll) + %‘(chos i - Wysini) = 0 (I.1)

ot =

LY 1y ML ML 1 a%0 , Ay
3t T m'(WLan * ”ﬂag ) - 2pr" * E’(E' e T )
= gl (W,cos i + MW,sin i) - (p2 - sz)m cos i (1.2)
M, 1y M TR Y 1 2% 30 EIUR
5t tog (g Wi )+ 200+ 3 (3 3 T3t )
= oM eos i+ wsind) ¢ (92 - aPwsini (13)

Fujimoto's equations may be written in the form:
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= - 2 . Q 2 o - 2 i

[ b (e np) Jo cos
Lo, oy 3t 12230 , Uy
w (w*an w"ag )+ 29pwl t T (E— AT )

= [o2 - sz - (o - np)z]m sin i

Comparing Fujimoto's equations with the set of equations, (1.1),
(1.2), and (I.3), term by term, we find that a significant term of
first order is lacking in each of Fujimoto's velocity component equa-

tions. These missing terms are respectively:

2 (-0 2
( p) Wy

- (a - Qp) N

The absence of these terms is readily seen if the right hand sides of
equations (I.2) and (1.3) are expanded. For example, the right hand

side of equation (I.2) becomes:
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gﬁ-(w"cos i + Wysin i) - (92 - sz)m cos i

= - 2 - 2 - - 2 1 -
[ 2, (o Qp) Jw cos i + 2(a Qp)wu

(o - Qp)wn sin2i + (q - Qp)wlsin i cos i

-+

Wi . . .
= (wcos i + wsin i)

The second term in particular is non-negligible compared to Zpr“

when the flow region does not encompass the corotation neighborhood.
In summary, the basic physical differences between the two

analyses are:

(1) Because of the high pattern speed of about 45 km/s/kpc adopted

in Fujimoto's analysis, his calculations (which cover radii between

6 and 11 kpc) correspond to points in the disk lying outside corota-

tion. In this work, the calculations (for portions of the galactic

disk between 3-4 kpc and 12 kpc) for a pattern speed of 12.5 km/s/kpc

correspond to points interior to corotation.

(2) With the neglect of terms of J(a - Qp), Fujimoto's analysis

is valid only near corotation in his model. The calculations of the

present investigation, which are valid to first order in the asymptotic

approximation, determine gas flow along streamtube bands which cover

the entire disk between the radii of 3-4 kpc and 12 kpc.

(3) A two-armed spiral shock pattern covering a large portion of the

galactic disk is determined in this work. No two-armed shock pattern
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is possible in Fujimoto's calculations (this is a consequence of

differences (1) and (2) above).
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Appendix II. Validity of the asymptotic approximation

In Section 5, we made an asymptotic approximation. We now
demonstrate its validity. If we introduce the new independent

variables:

T = 62t

the nonlinear equations, (4.4), (4.5), and (4.6), may be written

in the following form:

olo1Wy oWy s . d0
+ + -
—(—1—)—an oo (2 Qp)m sin i —Lan

+ (0ot o) +®@ %%2) (w,cos i = w,sin i)
90 8(0 w.) OWn . 90
+ 1+ R — + - =l
[¢,w P 811 3% Oo 57 (@ Qp)m cos i T H

= 0 (IL.1)
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WL . . oW1 z‘d_Q . . | . . R
R el (2 Qp)w sin i == - 20aw, + wigs sin i (w,cos i w,sin i)
o . a%w cos i doo az__ 30y . Ay
- w(w,sin i + wycos i) + os Fo; dw | Go *o; an Y
W W . AW
+ [om 3+ gy w,.-——zc* + (2 - 2))u cos i —*—gC 1] = 0 (IL.2)

Wy

L do . . . s
ALl Y - ALY NS + 2 -
Wi (2 Qp)m sin i < 2Qawm, ¢ go €0S 1 (w, cos i w,sin i)

a?g sin i doo

+ wy(w,sin i + wycos i) - o T o, do
+ [6 oWy + 8 AWy + a2 30] + BU]
2W 37 1t Wt Co + 0] oL YA

+ (2 - 2))w cos i Mu }7 0 (11.3)

3L

The bracket, [ ], in each of the equations is regarded as influencing
the gas flow to a secondary order in relation to the other terms in
each equation although some small terms are also retained outside the
bracket.

First, &, 1is taken small enough for all time dependence to

disappear to first order. Second, we take:
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In this case, the gradients, %—- and %z » of the quantities, g,' ,
n

wy' , and w,' (the nondimensional form of the physical quantities),

may be directly compared for a determination of the importance of

each term appearing in equations (II.1), (II.2), and (II.3). For
example, the numerical calculations (of Part II) for the region of

the galactic disk between the radii of 6 kpc and 10 kpc (excluding

AR R WD ST

the shock neighborhood) yield:

g_gln _ 1 .g%* ln_ 1 %ﬂﬂl'n_ (])
] = 0@ 2w - 06 J_FLM.I = Ol
on Iz on g an g

If we now write the largest term in the bracket, [ ], and the corres-
ponding term outside the bracket of each of the equations, (II.1),

(11.2), and (II.3) in nondimensional form, we have:

' 1)
_ A a0 S o0
(@ -a)osini L5 + mriy et )

[ _awi' + __.L,. ovly ' ]

(2 - Qp)w sin i T T o
..o owy' awy '
(o Qp)w sin i [ T tan T ]

Since 6, and tan i are of the same order, the second term in each

: bracket above is no larger than Cj (1/5) of the corresponding first
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term. In addition, all the other terms in the bracket, [ ], of each
of the equations, (II.1), (II.2), and (II.3), are &( (1/5) &1 ) of

their counterparts outside the bracket. Therefore, the asymptotic

approximation for the region between the radii of 6 kpc and 10 kpc

. (and in general between the radii of 3-4 kpc and 10 kpc) is valid

to & (1/5).

TS T
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Appendix III. Sonic point conditions

A particularly convenient place to begin the numerical inte-
gration of equations (5.10) and (5.11) is the point in velocity
space where Wi, + wy. = a. This point is referred to as the
sonic point because the velocity component, w; , changes from sub-
sonic to supersonic at this point.

The first sonic point condition may be written in nondimen-
sional form as:

w¢'|n=6 a' - wio! (I11.1)

Examination of equation (5.10) Tleads us to the conclusion that

unless the numerator of the right hand side is zero at the sonic

oWy
an

fore consider alternatives to the possibility of an infinite deri-

point, the derivative, , Wwill be infinite there. We there-

OWL
an
unphysical situation is to set the numerator of the right hand side

vative, , at the sonic point. One possible way to avoid this
of equation (5.10) equal to zero at the sonic point. In this case,

we have the condition (in nondimensional form):

T doo } a'?

— Yoo 0
oo + 03 X1

(Wio' +wi') (wy' + f' = xp') + (14

From this relation we may determine w,' at the sonic point. Since

the gradient of base state density with respect to radial distance,
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w , has been assumed of secondary importance in the numerical calcula-
tions, we disregard the term containing g%& as well here. If x;

and x, are expanded, this relation yields:

Yy
-b, + {(b,2 =4 cos i by)}

wy'(n=0) = Z cos 1 (.2)
where
& s
by = [0 + ( fgm T T2a %) sini]
do
) , , T . . : '
b, = [f' + (a' - m=sini)cos iw']|

Relation (II11.2) comprises the second sonic point condition., The
positive [+] square root in equation (III.2) provides the only physi-
cal result.

The third sonic point condition is easily obtained from equa-

tion (5.11):

K
' (=) wo' +
vy 2 X3 (I111.3)

]
The fourth sonic point condition for %%L will now be deter-
mined. Since both the numerator and the denominator of equation (5.10)
are equal to zero at the sonic point, a Taylor series expansion of both

numerator and denominator about the sonic point is necessary. Expanding
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all terms about the sonic point, we arrive at the following expression

in the 1imit as 4An > O

owy ' awy ' af ! ax, " owy ' 3xy "
L L L - U | I
=0 an an an an an  “[n=0

Upon substitution of the expressions for x;' and x,' we obtain a
awa '

relation for — :
an
V2
.i%.. = 'b3 + (b32 + 8bh) (111‘4)
an n=0 4
where
%
b = [wy ' cos i - 2w'sini + (?ﬁ-sin i - a') cos i]ln=0
dn
of ! ' . mag & - Qp s o0 oW !
by =[5 + (0 + 2w'cosi + (= - =5 ) sin 1)3;L ] =0

Relation (III.4) then is the fourth sonic point condition. The positive
square root provides the only physical result since the negative [-]
square root would provide for a change from supersonic flow to subsonic
flow at the sonic point which is physically impossible except by means

of a shock.
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Appendix IV, Procedure of numerical integration

With the specification of all the parameters, the sonic point
conditions are determined, and the numerical integration of the
equations of motion may begin. We will concentrate here on the numeri-
cal integration of equations (5.10) and (5.11). These two equations
contain the two dependent variables w, and w, and the one independent
variable n . With the sonic point as the starting point for the integra-
tion forwards and backwards in n , we have a problem similar in form
to an initial value problem. We now describe the subroutine used for
the integration.

We have used subroutine RKGS (see pp. 118-121 of System/360
Scientific Subroutine Package) which incorporates the Runge-Kutta
method for the solution of initial value problems. The purpose of
the Runge-Kutta method is to obtain an approximate solution of a system
of first-order ordinary differential equations with given initial values.
It is a fourth-order integration procedure which is stable and self-
starting; that is, only the functional values at a single previous point
are required to obtain the functional values ahead. For this reason it
is easy to change the step size at any step in the calculations. On
the other hand, each Runge-Kutta step requires the evaluation of the
right-hand side of the system four times, which is a great disadvantage.
Another disadvantage of the method is that neither the truncation errors
nor estimates of them are obtained in the calculation procedure. There-

fore control of accuracy and adjustment of the step size is done by
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comparison of the results due to double and single step size.
Actually, this RKGS subroutine contains Gill's modification of

the classical Runge-Kutta formulas for the compensation of accumu-
lated roundoff errors,

With these essentials of the RKGS scheme in mind we now describe
how we have applied it to our problem., We numerically integrate the
equations of motion both forwards and backwards in n from the sonic
point. Both a supersonic branch and a subsonic branch of the solution
are determined. Since we are interested in incorporating a shock
which jumps appropriately between the two branches, we calculate as
well a "shock jump curve", (see Figure (8.4) ). The point where the
shock jump curve and the subsonic branch intersect is the point along
the subsonic branch where a shock will be compatible. Therefore, the
numerical integration is carried out until this intersection of the
subsonic branch and the shock jump curve takes place. The resulting
total solution curve represents periodic gas flow which may begin from
a shock and pass along the subsonic branch toward the sonic point, be-
come supersonic at the sonic point, and finally after remaining super-
sonic for a time reach the next successive shock along its path. Once
it reaches the next shock, the cycle begins again. The cycle may be
repeated as many times as is necessary in order to circle the galactic
disk. Proper choice of the physical parameters will guarantee exactly

twice-periodic streamtube flow through two periodically-located shocks.
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Appendix V. Closure of gas streamtubes‘about'the‘ga1actiC'disk

We will now examine the STS solution more closely. We see

from Figure (8.3) that the shock occurs in the imposed spiral potential
well, This feature is characteristic of all STS solutions we have
found. The gas on the supersonic side of the shock feels the pull of
the spiral field forwards toward the shock, whereas the gas on the
subsonic side of the shock feels the pull of the spiral field back-
wards toward the shock., Closure of the streamtube is insured only if
the integrated effect of the forcing on a given fluid element over one
cycle of the streamtube averages to zero.

Suppose we first deduce the sense of nonclosure due to a sinusoidal
spiral field of trailing type. A gas element spends more time under an
acceleration backwards along n than forwards along n , so that the net
coriolis effect will provide for a net positive component of velocity w,
along & . When the streamtube finally reaches the same radius from
which it began, its variation in £ will therefore be greater than

m coS i and its circumferential variation, 26 , will be greater than .

According to the numerical calculations, Ae varies from 7 by about 2%
for a 5% field, and by about 3% for a 7.5% field. We therefore are
interested in adding just a small positive correction force directed

along n to the spiral perturbation field. A typical correction might
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be:

constant

1
[
p =4
N
n

Figure (V.1) sketches two STS solutions in w,'-w,' space,
one not closed for zero correction force, and the other closed with a
correction force of a magnitude about 1/6 of the magnitude of the spiral
field, i.e., A, = 1/6A. In general, a correction of just 1/6 of the
magnitude of the spiral field is enough to insure closure for the gas
streamtube. It is important to note how similar are the two curves in
Figure (V.1); the only difference being a slight shift of one with
respect to the other along the w,'axis.

With Az = 1/6A, the correction force involves a percentage correc-
tion to the basic axisymmetric gravitational field of less than 1%.
Suppose we ask what percentage error can be expected in the neglect of
stellar dispersion, for instance, in the basic circular motion of the

Schmidt model:

c 2
SR v w2 O = o
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Figure (V.I)
Closure of a Gas Streamtube
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Assumingcm=35 km/s in the solar neighborhood, we have:

fo 2
(£') = .02

Therefore, a 2% error is already present in the base state motion

in the Galaxy through the neglect of stellar dispersion; whereas only

“a 1% correction is involved in the problem of closure. Since the

correction force is directed along n, it is practically equivalent
to a small 1% correction to the basic centrifugal force in the galaxy.
For a spiral galaxy of leading type we may deduce much the same
phenomenon, Similar to the trailing situation, the shock occurs in
the potentiél well, With the shock in the potentfa] well, the subsonic
fiow feels an acceleration backwards along n , and the supersonic flow
feels an acceleration forwards along n . The times spent under each
acceleration are unequal: the subsonic flow spending Tonger, The
coriolis effect involves a net negative component of vé]ocity w, along
£, Hence, when a streamtube returns to the same radius at which it be-
gan, it will have travelled through a distance, A¢,< 7 cos i and an
angular variation, 46 , less than =, A small correction force directed
along the n direction and with a magnitude about 1/6 of the magnitude
of the spiral field will insure closure of the gas streamtube. Whereas
the compensation involves a small subtraction from the basic gravita-
tional field in the spiral galaxy of trailing type, the compensation
involves a small addition to the basic gravitational field in the spiral

galaxy of leading type.
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