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ABSTRACT

The objective of this research is to develop an
accurate, systematic, inexpensive and reliable procedure
for resolving the control rod cusping problem for nodal
methods in light water reactor calculations. This cusping
problem arises if the presence of a control rod partially
inserted in a large spatial mesh node is represented
by homogeneous cross sections of magnitudes proportional
to the volume of control rod material present. A plot
of reactivity vs. control rod position then exhibits
unphysical cusps as the rod is withdrawn from node to node.

It is first shown that the presence of control rods
partially inserted in a node accounted for by homogenized
cross sections found by conventional procedures leads
to incorrect nodal power distribution and reactor eigenvalue.
Several new solution methods are then developed for deter-
mining accurate homogenization parameters for a partially
rodded node: a tabulation-interpolation scheme, a volume-
weighted cross section method, and an axial flux recon-
struction scheme (called the Collector-Predictor method).
The Collector-Predictor method can collect nodal solution
information to predict the axial flux shape within a
partially rodded node, and thereby determine flux-weighted
cross sections and flux discontinuity factors.

The Collector-Predictor method is shown to be more
accurate and systematic than the other schemes. It is
incorporated into the QUANDRY nodal code, and tested
for several benchmark problems. Results obtained are
compared with those of conventional solution methods:
for static problems, errors in eigenvalue and nodal power
are reduced by a factor of 5 to 10, and for transient
problems, they are reduced by a factor of ~10, the maximum
error in power density being less than 2% in most cases.
This method is found to be systematic, problem-independent,
consistent and inexpensive for providing a satisfactory
resolution of the control rod cusping problem.

Thesis Supervisor: Allan F. Henry
Title: Professor of Nuclea; Engineering
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Chapter 1
INTRODUCTION

1.1 Motivation and Overview

Accurate information about the behavior and distribution
in space, energy and time of the neutron population in
a nuclear reactor is essential for design and operation.
Such knowledge is required for reactor safety studies,
fuel management strategies and reactor thermal hydraulics
analyses. Consequently, there continues to be a strong
economic and safety incentive to develop efficient computa-
tional methods for accurate prediction of neutron behavior
for a variety of situations throughout reactor lifetime.
Accordingly, various kinds of computational methods have
been developed to predict multi-dimensional, time-dependent
neutron behavior in reactors. The accurate predictions
of reactor behavior by rigorous, exact computational
methods are costly (and thus impractical) because they
involve the determination of three-dimensional power
distributions throughout a large and often geometrically
complicated reactor core. Thus, more efficient methods
are desirable [L-1].

Unfortunately, many of the more efficient methods
being used rely on empirical adjustments to improve accuracy.
As a result they may fail to predict accurate solutions
if they are applied tc three-dimensional, kinetic problems

15



involving control rod motion. The purpose of the present
study is to investigate the dependence of homogenization
parameters on control rod motion, and then to develop
systematic and reliable procedures for accurate prediction
of transient reactor power level and control rod reactivity
worths in light water reactors. The detailed problem
will be explained later in this chapter after a review

of computational solution methods is given,

1.2 Reactor Physics Solution Methods

Extremely accurate neutron behavior in a reactor
is described by the Boltzmann transport equation. The
solution o this equation gives the directional flux
density. However, finding numerical values of the direc-
tional flux density as a function of energy, position
and time is a practical impossibility except for a few
simplified special cases. Hence, the variables have
to be discretized to solve the transport equation numeri-
cally. The energy range and time variable can be discretized
in a straightforward manner. On the other hand, the
spatial variables (angle and space) can be treated by
several methods. The different ways of dealing with
the spatial variables have given rise to well-known methods
such as the discrete-ordinates (Sy) method, the Monte

Carlo method, a Fourier-transform approach and the spherical-

16



harmonics (Py) method [H-1].

If one is interested in relatively strong local
flux variations within small systems, the size of a pin-cell,
the method df collision probabilities can be applied.
For intermediate-sized systems, such as a fuel assembly,
it is advantageous to use a low-order Sy method or a
Monte Carlo method. For reactcr design the Py method
for N greater than 1 is of little value as it involves
numerically complicated equations for geometries of practical
importance.

Fortunately, the P; approximation is adequate for
many purposes, and introduction of transport-corrected
isotropic scattering into the P; approximation yields
the diffusion equation. This is the most widely-used
approximation to the transport equation, and is routinely
solved by finite-difference approximations [C-1, F-1].
Its validity breaks down for strong flux gradients, but
it is well suited for large systems., It can predict
quite accurately group fluxes and interaction rates when
averaged over artificially homogenized pin~cells, provided
that cell homogenization methods are available and that
the diffusion theory cross sections are known for every
type of pin-cell.

For realistic reactor geometries, the large number

of spatial meshes required for accuracy makes the finite-

17



difference method for solving the neutron diffusion equations
quite inefficient and costly. As a result, a number
of more efficient alternative methods have been developed.
These include finite-element methods [S-1], spatial flux
synthesis methods [S-2], response matrix methods [W-1],
and nodal methods [D-1]. Except for the nodal methods,
these schemes are not widely used for realistic, multi-
dimensional reactor problems. There are a variety of
reasons for this fact [H-1]. The overriding one is that
the nodal methods appear to provide the best combination

of economy and reliable accuracy.

1.3 Nodal Methods

For light water reactors (LWR's), for reasons of
computational efficiency, reactor physics calculations
start at the multi-group library group level with pin
cells, then proceed in stages to larger areas with less
spatial detail but higher dimensionality. 1In the final
stage the number of neutron energy groups is reduced
normally to one or two while spatially the core is divided
into large homogenized ncdes. A node is usually a vertical
section of a fuel assembly or a quarter of this and its
height is often chosen such that its shape is close to
a cube. The essential idea of nodal methods is to relate

neutron currents across an interface between two nodes

18



to the average flux levels in thcse two nodes [A-1l].
The manner in which this relationship is derived distinguishes
different nodal methods, and can fall into two classes:
the first one is primarily heuristic, and the second
is more systematic.
1.3.1 Heuristic Nodal Methods

In most of the simple and earlier nodal methods
applied to LWR's, the inter-nodal coupling relationships
are specified in the fast group only because of the important
role of fast neutrons for inter-nodal coupling. The
thermal group is (at best) appended as a correction,
which leads to one-and-a-half (1 1/2) group equations
for each node. Nodal neutron populations are customarily
coupled only to nearest neighbors. Thus, the inter-nodal
currents are related to the nodal fluxes using escape
kernels or fitting parameters. These kernels or parameters
almost always need adjustment (tuning) so that their
nodal solution matches a higher order reference solution.
Among the tunable nodal programs are FLARE [D-2], TRILUX
[G-1] and PRESTO [B-1l]. The first two are based on the
response matrix method and the last one involves a coarse-mesh
model of the diffusion equation.

The advantages of the heuristic nodal methods include
the small number of unknowns, low computer storage require-

ments, fast running time and accurate prediction of nodal
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power distribution. Despite these advantages, their
attractiveness is limited by the need for adjustment
of the fitting parameters to improve accuracy. Adjusting
the parameters requires experience and is costly, and
some adjustments are strongly problem-dependent. Also
errors in power prediction for some of the nodes (generally
low power ones) can bg in the range of 10-~15%.
1.3.2 Systematic Nodal Methods

A straightforward mathematical manipulation of the
conventional group diffusion equation can derive more
systematic nodal diffusion theory schemes. These advanced
methods depend on systematic procedures for determination
cf the nodal coupling relations. The first step in deriving
most of the systematic nodal schemes is the same, and
consists of reducing the three-dimensional neutron balance
equation in each node to three auxiliary, one-dimensional,
ordinary, differential equations which are needed to
relate the nodal surface currents and nodal volume fluxes.
One-dimensional equations are obtained for each direction
by integrating over the two other transverse directions
of the node, and as a consequence spatially dependent
transverse leakage terms appear. The transverse leakage
shapes in the modern systematic nodal methods are generally
approximated by quadratic expansion across each node.

Several variants of the systematic nodal methods can
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be distinguished by different approximations for the
transverse leakages and different methods used for solving
the one-dimensional diffusion equations.

Several systematic nodal methods have been devised
for light water reactors, and they include the QUABOX-CUBBOX
model [L-2], the nodal expansion method [F-2], the nodal
Green's function method [L-3] and the analytic nodal
method [S-3, G-2, F-3].

The QUABOX-CUBBOX and nodal expansion methods expand
the one-dimensional flux or interface current shapes
as polynomials in the directional variable of interest,
and the coefficients of the polynomials are determined
by a weighted-residual procedure. The nodal Green's
function and analytic nodal methods in effect solve analy-
tically the one-dimensional diffusion equations with
the transverse leakage approximated by quadratic polynomials.
The analytic nodal method developed at M.I.T. and implemented
in the QUANDRY code makes fewer approximations but accommo-
dates only two energy groups, whereas the other methods
are readily extendable. 1In this thesis the analytic
nodal method will be used.

Smith [S-4, S-5] has shown that the QUANDRY model
is capable of predicting accurate values of nodal fluxes
.in multi-dimensional problems with homogeneous nodes.

Moreover, running time can be two or three orders of
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magnitude shorter than that required for a finite-difference
solution of the same accuracy. With two groups represented
explicitly, problem running time should be about twice
that of the conventional nodal codes. The QUANDRY model
also has been applied with impressive accuracy both to
heterogeneous two-dimensional problems and to homogeneous
three-dimensional problems [C-2, F-4].

Another advantage of the QUANDRY model is that it
can be extended directly to the analysis of transient
problems [S-6], and it has been successfully tested against
several homogeneous problems [S-4]. However, its accuracy
for three-dimensional transient problems with both radial
and axial heterogeneities has not been extensively studied.
Smith encountered some difficulty with transient problems
involving control rod motions, and has suggested further

investigation.

1.4 The Control Rod Cusping Problea

When a reactor is represented by a nodal model,
it is customary to homogenize the cross sections over
a whole node. The presence of control rods partially
inserted in a node causes an axial heterogeneity, and
creates a homogenization problem. If the homogenized
cross sections for the node are found by a simple volume-

averaging procedure, the resultant nodal power distribution
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and reactor multiplication factor are incorrect. The
difficulty is particularly serious for transient problems
during which a control rod is being withdrawn. This
way of representing a partially rodded node leads to
a phenomenon known as "the control rod cusping problem,”
so called because the curve of the change in reactivity
or in power level versus control rod position exhibits
unphysical cusps.

It is of course possible to circumbent this difficulty
by requiring that there be horizontal nodal interface
planes positioned at every control rod tip position.
However, if one is dealing with part-length or stuck
rods or is performing a search for the control rod.bank
position corresponding to the critical condition, this
node size subdivision procedure can become complicated.
For reactor transients during which control rods are
moving, and particularly power-dependent feedback effects
{due to Xe, Sm, thermal-hydraulics, etc.) are being accounted
for, complications become even more severe. Thus, there
is considerable motivation for locating axial nodal
interfaces at fixed horizontal planes and dealing with
the partially rodded node as a single homogenized rode.

Because the modeling of the volume-weighted cross
sections causes the control rod cusping problem, alternate

models such as flux-weighted cross sections can be used
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for nodes with partially inserted control rods. Smith
[S-4] has examined an axial flux expansion method to
determine the flux-weighted homogenized cross sections,
and has found that flux expansion in quadratic polynomials
reduces the control rod cusping error by -~50% in many
cases. However, for some situations that amount of error

is still uncomfortably large.

1.5 Objective and Summary

This chapter has considered the reactor physics
calculations associated with the determination of the
global distribution of neutrons in a reactor core. The
solution of the neutron diffusion equations by the finite-
difference method is standard. However, obtaining the
full-core solution by this method is expensive and compu-
tationally inefficient, especially for transient situations.
An excellent alternative is the analytic nodal method
developed at M.I.T. and embodied in the QUANDRY code.
Finally, the need was described for accurate methods
of resolving the control rod cusping problem in QUANDRY
transient calculaticn.

The objective of this thesis is to develop and examine
accurate, reliable and systematic procedures for resolution
of the control rod cusping problem. Solution methods

are to be based on the analytic nodal method, and will
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be incorporated into the QUANDRY code.

Chapter 2 reviews nodal equivalence theory and the
analytic nodal method. Also the homogenization parameters
based on eqﬁivalence theory and the QUANDRY nodal model
are reviewed because of their importance to resolution
of the control rod cusping problem. Extensive discussion
of the control rod cusping problem is presented in Chapter
3. The causes of the cusping problem are analyzed, and
several new solution methods based on eguivalence theory
are introduced. Chapter 4 describes a new solution scheme,
called the Collector-Predictor method, developed for
systematic determination of homogenization parameters
of a partially rodded node. An overall procedure for
incorporation of the Collector-Predictor method into
QUANDRY model is explained there. 1In Chapter 5, the
Collector-Predictor methods are employed to solve the
control rod cusping problems in steady-state and transient
calculations, and results are presented for several light
water reactor benchmark problems. Finally, Chapter 6
gives a summary of the investigation and provides recommen-

dations for future research.
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Chapter 2
NODAL EQUIVALENCE THEORY AND THE ANALYTIC NODAL METHOD

2.1 Introduction

Analytic nodal method, nodal equivalence theory
and node homogenization methods are discussed in this
chapter. Equivalence theory and the node homogenization
methods yield the equivalent homogenized parameters needed
for nodal diffusion theory model. The nodal model is
then used to predict criticality and nodal power distribution
for light water reactors (LWR's).

First, nodal equivalence theory for both static
and time-dependent cases is presented (Section 2). Then
several homogenization methods based on nodal equivalence
theory are discussed in Section 3., Finally, equations
and approximations leading to the QUANDRY model will
be reviewed along with various test results (Section
4) . Although a more complete description of the analytic
nodal method and the QUANDRY nodal balance equations
was presented by Smith [S-4], the theory and the methods
will be reviewed here because they are essential to an
understanding of the control rod cusping problem and

to the development of new solution methods.
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2.2 Rodal Equivalence Theory
2.2.1 Notation

All the problems are treated in three-dimensional
Cartesian geometry. The general notation x, y and z
represents coordinate directions, while notation u, v
and w is used to represent generalized coordinate subscripts
of the coordinates x, y and z. The spatial domain of
all problems is divided into a set of nodes. The node

(i,j,k) is defined by

X e [x5, x5.4]
Y e [le Yj+1]
Z € [zk, zk+1].

The nodal mesh intervals are

i_

hy = %347 - %5

hd = y. . -y,
y - Y1 T ¥y
k _

hz = Zpe1 T %

and the nodal volume is

_ Wl 13 .k
Virjrk - hx hy hz‘

The control rod cusping problem is known to be signi-
ficant even in the case of steady-state calculations

of a reactor with partially rodded nodes. Hence, the
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steady-state neutron balance equations are discussed
in the next section, followed by a discussion of the

time-dependent equations.

2.2.2 Static Nodal Balance Equation

The steady-state Boltzmann transport equation [H-1]
states an exact neutron balance in the phase volume dE4Q

dv around the point (E,&,r) of phase space written as

Q-vy(r, £, E) + Zt(x.i E) v(r, £, E)

= 5: dE! Sd.sz'[-l-—- z Xj(E)\)j Z:fi(n, E') +

Keff 3

rg(L, 2'-2,E*>E) ¥(z, 0's E') 2.1)
where

¥(r, £, E) = directional flux density at point r, direction

@ and enery E,
xj(E) = fission spectrum for isotope j at energy

E'
kegg = reactor eigenvalue,

and the cross section notation is standard.

If we assume that the differential scattering term
is a function only of the relative angle between the
in-coming and out-going directions of neutron travel
(uo=0"2) and neglect the isotope j for sake of notational
simplicity, then one may integrate Eq. 2.1 over all directions

of neutron travel and over an energy range AEg E-Eg—l —vgg
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(g = 1,2, eeceeee s G) to obtain a set of formally exact
G equations

Valg(2) + 2, (R)vg(x)

9

G

I S '
g'§ [ Kers Xg\’zfg'(:.) * Igg (L)J Vg (£)
(2.2)

where

.Ig (z)

wg (r)

faef,s & ¥(xr , 2 E)dE
g

faef,p ¥(z, 2, E)AE
g

Zyg(E)Vg(x) = SdszSAEg r, (ks E) ¥(£, 2, E)AE (o= t,f)

Xg = SAEgX(E)dE

- 1 dio . ;
Egqr (E)¥ g, (£) =fAsngfAzg.[5—1 22 g (s E'-E, up)fad

¥Y(c, £, E')J de'’

The problem of finding the integrated cross-sections
is not trivial. However, this problem will not be discussed
here and it is assumed that these cross sections are
known.

Integration of Eq. 2.2 over a nodal volume Vi,j,k'
and application of the divergence theorem yield the exact

nodal balance equation
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k X Sx
nd nk [ - +
Y z [ 9 i 1,5,k g i,k J
i ok [y ty )
hy h J -J P
xz[gij-l-lk 91,3,k J
hi nJ { - j% ] +
Yy (9 1 i, k+1 94,5,k

9

L “1,5,k . 24,3 i3,k
z rJr z (4
[ £f 9 £gr gg' J i

where the node-averaged quantities are represented by

G
“Vigk T
(2.3)

a circumflex ( ~aor 2), and are formally defined by

R, .

vgrdrk = gA— v (D)av (2.4)
lljlk Vi’j'k g

~i,3.k = av o=t,f

Zad e ,ji,j,k SV T g (E) Vg (£) (a=t, £)
3% i3k

irdek o ——f Zgqt
- & i,jk

4 Ys z

i __J_l_k_ i+l S k+lg, ; o (%40¥02)

lyj'k hy h yj zk
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~ X z .
Y 5 —d S i+1dx k+1dz Jg

(Xonrz) r(2.5)
z X Zx

3z = —1 S"i+1 Y41
J = : dx S M ay J_(x z J
93,5,k hi hg Xy v Y Jg(xry,2z))

In a nodal approximation, because the variables
of interest are the node-averaged quantities, the information
content of the space dependent variables, Jg(z), Vglz)
and Zag(xj, is reduced even further by integrating over
large nodes within which the heterogeneous properties
are characterized by uniform "homogenized" cross sections
in each node.

Let us consider a mathematical problem which is
defined in the same domain as the real problem represented
by Eq. 2.2 and has spatially uniform nodal cross sections.

The governing balance equations for this problem are
V'QJL) + Ztg¢g(n)

G
= -—L 3 5
g;=1[keff xgvig , * Zgqt) ¢ge(E) e

where the homogenized cross sections and the effective

multiplication constant that results from their use are
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labeled with a bar. Integrating over the nodal volume

Vi,j,k 9ives

j Lk r-x _ =X
hy hz Jg Jg ) +
. “i+l,j,k i,j.k
ni nk [3¥ -3 +
¥ Z | 9,541,k 9,3,k
r
i.j =2 =2 J
h. h J -Jd +
* ¥ . givjrk"'l gipj,k
"iljck =i,j,k
i3k Tt 2
g =i,3,k . =i,3,k]| =i,3,k
=V, . Z[-]—x vEgrdrE e Tt Bgsd
ir]rkgogl keff g9 g’ gg’ g'

(2.7)
where the node-averaged flux and current are defined
in analogy with Egs. 2.4 and 2.5, respectively. Comparison
of Egqs. 2.3 and 2.7 shows that if one wishes there to
be a nodal equivalence condition such that the homogenized
solution of Eq. 2.7 simultaneously reproduces the reactor
eigenvalue, surface-averagedgroup currents and node-averaged
group reaction rates provided by the exact nodal solution
of Eq. 2.3, then it is sufficient to require the homogenized

cross sections obey

zérJ'k = gi'J'k (o= all reactions) (2.8a)

g %g
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and that the node-averaged group fluxes obey

pirdek _ o= 1,3,k
J g (2.8b)

wWhen the homogenized cross sections and the homogenized
nodal fluxes are restrained as in Eq. 2.8, adjacent nodes
can be coupled to obtain the global nodal solution of
the homogenized nodal problem by imposing continuity
of the node-surface-averaged quantities. The continuity
condition for the surface currents at the nodal interface
is a physical requirement. However, because the problem
under consideration is an artificially homogenized one,
there is no reason that the homogenized node-surface-averaged
fluxes should be continuous across the nodal interfaces.
Nevertheless, some relationship between the face-averaged
fluxes on the interface is still necessary for solving
a global nodal problem.

One method which leads to an auxiliary equation
from which the spatial coupling of Egq. 2.7 can be determined
is to treat the directions one at a time. Since only
the surface-averaged currents are to be preserved, Eq. 2.6
is first averaged over the two nodal dimensions transverse
to each coordinate direction. If Fick's law is assumed
to be true, then integration of Eq. 2.6 over the two

directions transverse to the direction u of interest

yields a one-dimensional second-order differential equation
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for the homogenized flux shape in node (%,m,n):

2
_Bl'm’n —d-i $u (u) + Eé'm,n Eu (u)
g du 9¢,m,n g 99,m,n
G
-5 [ Xq VEg'™ M 4 F 2'“"“) Fas(u) = -7 (u)
g'=10"eff 9 fg' 99’ ) gk,m,n g%,m,n
(2.9)
where v v
bg W = Tm n ), avgw ¢g (z)aw
L,m,N v ow m n
v w
- 1 m+l n+lf 3 -
Lg (w) = n S dv S [—a—v J;’(L)] dw
2,mpn hw vm wn
_ ]
sg’¥ w = Ly o+ == n¥ y(2.10)
L,m;n hv L,m,n hw gz,m,n

and the bars are used to represent homogenized quantities,
VW

g
Le,m,;n
rate in the directions transverse to direction u, and

In the equation, S (u) represents the net leakage

the nodal cross sections Eaé,m,n are equal to their

reference counterparts. This nonhomogeneous differential

equation could be easily solved for 592 (u) subject
/M, N

to proper boundary condition, if the right-hand side term
SZ'W (u) were known.
£,m,n
If, according to the equivalence condition, one

of the boundary conditions is chosen to be J%

5u 9%,m,n

g on the u-directed faces of each node, then
R,m,n
-u
¢92 m.n (u) preserves the continuity of the surface-averaged
rity
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currents. When integrated over h&,ghe solution $gz (u)
is required to reproduce the exact node-average:im'fnlux
ﬁgl,m,n and eigenvalue Eeff. However, there is no reason,
in general, to expect the homogenized surface fluxes
obtained by solving Eq. 2.9 for two adjacent nodes to
be continuous at the nodal interface separating these
two nodes. In fact, only by permitting this surface-averaged
flux to be discontinuous can the results of the heterogeneous
reference problem be reproduced.

One simple approach to specify this required discontin-
uity is to introduce two additional homogenization parameters
in each node per direction per group. Based on the concept
of the "heterogeneity factors® of Koebke [K-1], Smith
[S-5] suggested the discontinuity of the homogenized
surface-averaged fluxes be expressed in terms of discontinuity

factors which are defined for node (2,m,n) in each direction

u as

g 2 ’m'n -u

¢ (ug4q)
99 ,mn ¥

(2.11a)

and

fu— = g Q'ngn
g Leym,n =u

%g
% emen (2.11b)

where V- (uy) is the heterogeneous surface flux at uy.

,Qnm.n
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These discontinuity factors are regarded as parameters
needed to satisfy the equivalence condition described
earlier. By virtue of the continuity of the heterogeneous
surface-averaged fluxes at nodal interfaces, the relationship
between homogenized surface-averaged fluxes across the
interface at u=u, (separating nodes (2-1,m,n) and (%,m,n))
is required to satisfy

gut i (u) = £9° -u (u )

)
gl'lrmrn g 2=1,m,n % 9 L2 .M,N 9 L,m,n .
(2.12)

Thus, a complete set of homogenization parametere
consists of flux-weighted cross sections and flux discon-
tinuity factors. Once these parameters are determined
for each node, the global homogenized problem (Eg. 2.9)
can be solved for homogenized nodal solution which will
preserve the following: reactor eigenvalue, group node-
surface-averaged currents and group nodal reaction rates.
A detailed discussion cf the homogenization parameters
will be presented after reviewing the time-dependent
nodal equations in the next section.

2.2.3 Time-Dependent Nodal Equation

A set of space-and time-dependent neutron balance

equations can be derived from the Boltzmann equation.

These equations include delayed neutron and precursor
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terms as follows:

V"J.g(l'.g t) + Zt (z, t)q}g(l.r t)

g
§ P
-92'281[(1-3)_ Xg VIg ,(Er &) +Igqi (K t)] vgilr, t)
3 d ¢ S R
b Ag Xg Cqlre ®) = =37 55 Volr.t) (2.13a)
d=1 g
G 3
B4 Zlvzf (L, t)ng(r.. t) - )\dcd(ll t) = ﬁ'cd(x.: t)
g= g
(2.13b)
g = llzl LI G
d = 112' L ) N
where
Cq = density of delayed neutron precursor family d
xg = prompt fission neutron spectrum for group g
xg = delayed neutron spectrum for family d in group g
v = mean number of neutrons emitted per fission

A\ = decay constant for delayed neutron precursor
family d
B4 = fractional yield of delayed neutron precursor
family 4 per fission
B = g Bq (N = number of delayed neutron precursor
o= family)

vg = neutron speed for group g
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Other terms included in the equations are standard in
reactor physics. The time-dependent nodal balance equations
are found by integrating Egqg. 2.13 over the volume of
a node (i,j;k). Integrating over (i,j,k) and imposing
the equivalence conditions given in Eq. 2.8 yield

k =X
h3n [ (t) -3 (t)} +
Yz, g i+l,3,k g i, .k

i k[<y -y
hyhg|J (t) -3 (t) | +
X Z[ g -'j+1'k g i'j'k
hind|3 (t) - 33 (&) + v, .  FirdeRigysiodek
Y[ ) i, jok+l g i'j,k lp],k tg ¢ t)
G
- - P cJ k =i,j,k
virjpk 92—161 2 Xg f (t) + Zgg (t)} ¢g' (%)
- 1:]! - o 4 2 d irj.k
(2.14a)
and
B g J-IJ k(t) 1']' (t) - )\ Ei’j'k(t)= —a Ei'j'k(t)
a & ¢g a“d st “d
g=1 9
(2.14b)
where g Zg
{3 X j+1 k+
ghedrky m gt § e I J, g miyizitras
Vi, ik “%i Y3 K

and other terms are defined in complete analogy with

their steady-state counterparts.

38



A time-dependent, one-dimensional diffusion equation
from which the spatial coupling of Eq. 2.14 can be determined
can be derived in the same way as in the steady-state

case with the time derivatives for each node replaced

by
- by (wk) =W, (£) go  (ut)
£,m,n Lem,n L m,n {2.15a)
9 =u d =u
- C {(u,t) =W (t) C (u,t) :
9t "d) m,n %,m/n dg/mn (2.15b)
where
v w
;u (u,t) = 1 - S m+l de n+l (£, t)dw
9¢,m,n h$ h, Vo v ¢gz,m,n ’
v Vn4l
gu (u,t) = —L— S‘ m+l n+
d ’ m.n dv Ca (, t)dw
2,m,n hv hw Vo W, 2,m,n
Terms Wg (t) and wd (t) represent the prompt flux
L,m,n

LesMyn
and leakage extrapolation frequency magnitude and the

delayed neutron precursor frequency magnitude for a node
(2,m,n) at time t. One of the practical methods for
estimating frequencies will be presented in Section 2.4.

Assuming Fick's law and integrating a homogeneous
counterpart of Eq. 2.13 over the two directions transverse

to the direction u, one can obtain an equation for one-
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dimensional flux 5“ (u,t) within a node (2,m,n):

2,m,n
_5;:m,n(t) i2 5“ (u,t) + E&,m,n(t) +
du 99,m,n g
N d
- A3 B X
1 w;g (t{}¢u(u,t) -[ X 3 d d-g +
vg m,n gl,m,n d=1 W 2,m,n(t) + xd
G
P m,n -u
(1-8) xB | I 32™P(e) (u,t)
g]<J'=1 £gr cpg?l.m,n ’
-z gé’f‘ "(t)zpg (u,8) = -8V  (u,t)
g ""1 'Q‘lmln l'm'n (2.16a)
where sg.w- fust) is the same as Eq. 2.10 except for

its time dependence. Rewriting in two-group form for

a homogenized node, we obtain (with Xlai,o and xzso,o)
WP

2 - - I -

du

J

8 B 2 . - v
—[(1—3) + L 2% Y vEg (£) §qulu,t) = -57"%u,t)
+Ag J9'=1 “g'

d=1 d
W () (2.16b)
_ 2 _ _ wh ) _ o
-Dz(t)g—z bp(ust) + [):t (t) + ;2-J¢2(u.t) - T,1 (£)%; (u,st)
u 2 2
= "'S (u’t)
(2.16¢c)

The ordinary differential equation, Eq. 2.16, is

the transient counterpart to the steady-state coupling

equation,(2.9). For a fixed time t, Eq. 2.16 can be solved

in the same manner as for the steady-state case, provided
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that the prompt and delayed neutron frequencies Wg and

d are known for each node. Discontinuity factors can

W
again be introduced to couple neighboring nodes in an
exact manner.

Thus, for either static or transient cases, the
use of equivalence theory homogenization parameters can
reproduce an exact reference solution, provided that
an exact reference solution is used to determine the
homogenized nodal cross sections and corresponding discon-
tinuity factors (and also provided that time-dependent
discontinuity factors are employed).

The next section deals with the methods for estimating

these homogenization parameters without making use of

an exact reference solution.

2.3 Nodal Homogenization Parameters
2.3.1 DRetermination of the Parameters

Equivalent nodal homogenization theory requires
that the group parameters be spatially homogenized in
such a way as to insure the preservation of reactor eigen-
value, nodal reaction rates and nodai surface currents.

In order to preserve the reaction rates while at
the same time preserving volume-averaged fluxes, the

exact homogenized cross sections must be defined as
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f v, o lag(E) Vg (x)av

-l ?

S Vg(r)av
L,m,n
To evaluate integrations, the shape of the reference

(2.17)

flux, represented by wg(;), must be known beforehand.

The homogenized diffusion coefficient can be estimated

by
r S S |
' 1
d
Vz.m;n Dg(‘) wg(n) v
Bﬁ,m,n =
S Vg (x)av
2sm,n

‘ / (2.18)
where Dg(;) is heterogeneous diffusion coefficient,
This approximation is based on the fact that the inverse
of Dg(;) is proportional to the group transport cross
section., The expression cannot be justified theoretically.
However, any errors introduced by its use can be accounted
for by the use of the discontinuity factors [S-7].

If the exact reference flux, wg(z), is known, then
one can use this flux to determine all homogenized nodal
cross sections and diffusion coefficients in accordance
with Egs. 2.17 and 2.18, respectively. When the reference
currents on the nodal surfaces are known in addition

to the reference flux shapes, one can also find exact
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values of the discontinuity factors. However, it is
not practical to determine the exact reference solution
for the full core geometry. Thus, for practical applications,
approximatiohs for determination of homogeneous cross
sections and diffusion coefficients and surface flux
discontinuity factors are necessary.

2.3.2 Approximate Methods

The determination of homogenized parameters is seen
from Egs. 2.17 and 2.18 to require knowledge of the exact
reference reaction rates and information about heterogeneous
fluxes. The most common approach to approximating reference
flux shapes is to solve the diffusion equation within
each local node with approximate boundary conditions.
Two methods, the second more accurate but more expensive
than the first, are currently in use.

The first method is simple and non~iterative. Typically
wg(n) is found from two~dimensional, fine-mesh assembly
calculation with zero net-current boundary conditions
(provided that the nuclear compositions and physical
dimensions are uniform in axial direction within a node).
This is based upon the fact that the homogenized parameters
are much more dependent on the compositions and dimensions
of the particular heterogeneous node rather than the
location of that node in the reactor. Thus, for each

different kind of assembly, two-dimensional critical
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flux shapes throughout that assembly are determined,
and the resultant fluxes are integratedwith the heterogeneous
cross sections to find approximate homogenized cross
sections. This type of homogenized croses section is
called “assembly homogenized cross section (AXS)."™ The
AXS can be used to solve the homogenized nodal equation,
Eq. 2.9, for the homogenized flux shape in the interior
of that node with the same zero net-current boundary
conditions on all surfaces. The homogenized fluxes on
the surfaces and the corresponding heterogeneous surface
fluxes will determine the discontinuity factors of that
node according to Eq. 2.11. The discontinuity factors
determined in this manner are called “"assembly discontinuity
factors® (ADF). Even though these approximate parameters
differ little from those found using the exact reference
flux shapes, the precision obtained using them is for
some situations only marginally acceptable [S-5]. The
inaccuracies of AXS and ADF arise from the zero net-current
boundary conditions imposed on the assembly interfaces.
Because of this approximation, many of the inter-assembly
effects are not taken into account,

To improve the accuracy of the homogenized parameters
by taking inter-assembly effects into account, Hoxie
[H-2] tested the use of extended assembly computations.

He imposed the zero net-current boundary condition not
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on the boundary of a single isolated assembly but on
a cluster of assembly-sized regions consisting of the
assembly in question and its nearest neighbors. He obtained
greatly improved accuracy. This method can be applied
to situations involving significant heterogeneities such
as PWR (pressurized water reactor) core-baffle-reflector
interfaces or BWR (boiling water reactor) fuel assemblies
disturbed by control blades. However, the number and
size of the auxiliary calculations required make this
method unattractive.

Another alternative method for evaluation of the
nodal homogenization parameters is to perform calculations
with zero net-current boundary conditions imposed at
color set boundaries. Color sets are assembly-sized
regions composed of four quadrants of four adjacent assem-
blies. This approach is particularly useful for calculation
of homogenization parameters for baffle-reflector nodes
because the assembly calculation method cannot be applied
to non-multiplying nodes such as baffle-reflector region.
The imposition of zero net-current conditions across
interior assembly planes is generally a better approximation
than their imposition at assembly boundaries., Each color
set computation can be used to obtain homogenization
parameters for four guarter-assemblies. Khalil [K-2]

applied the color set scheme to fuel depletion and detailed
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flux reconstruction problems, and showed that color set
calculation for homogenized baffle constants is a practical
and accurate procedure. The main drawback of this method
is the large.numbe: of color set calculations that must
be run, However, its accuracy and usefulness for
detailed flux reconstruction problems are major advantages.

The second method which has been developed for estimating
homogenized equivalence parameters is an iterative scheme
based on iterations between the global calculations and
local fixed-source calculations. The basic idea is that
if exact boundary conditions for an assembly were known,
then a fixed-source local calculation could be performed
to estimate exact homogenized parameters. To do this,
‘we may devise an iterative scheme in which the boundary
conditions needed for local calculation at each iteration
are obtained from the global solution of the previous
iteration.

Cheng [C-3] and Finck [F-5] in their iterative procedures
made use of pre-~tabulated response matrices in order
to reduce the number of auxiliary fixed-source 1local
calculations. They examined the use of surface-current
response matrices (both partial and net currents) and
surface-flux response matrices, and found that the results
were often very good but do not appear to be totally

consistent. Furthermore, Cheng found that the local-global
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iteration process often failed to converge. The other
drawback to the iterative scheme is the cost of determining
the response matrices and storage problem if flux reconstruc-
tion is desired (However, once the response matrices
are determined, a detailed heterogeneous flux shape can
be found at a cost much less than that required for a
full core finite-difference computations.).

Although these methods, either non-iterative or
iterative method, have been applied efficiently with
impressive accuracy to two- or three-dimensional problems
with homogeneous nodes, their accuracy for three-dimensional
problem with both radial and axial heterogeneities depends
strongly on the axial homogenization parameters and axial
node layout.

The simplest method for solving problems with axial
heterogeneities is to choose the z-direction node boundaries
to coincide with material discontinuities. In this manner,
eack node is relatively homogeneous in the axial direction
and, consequently, homogenization procedures need only
be applied in two dimensions. However, two-dimensional
assembly shapes provide no systematic way of estimating
surface flux discontinuity factors at node boundaries
in z-direction. Fortunately, the choice of axial mesh
boundaries at axial material discontinuities makes the

assumption of homogenized axial flux continuity (i.e.,
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unity discontinuity factor) at these boundaries a good
approximation. [Khalil [K-2] and Finck [F-5] tested PWR
and BWR problems with unity discontinuity factors at
axial node boundaries. In both tests, it was found that
the use of unity discontinuity factors at an axial nodal
interface where there is a significant change in assembly
characteristics such as the tip of a control rod, seems
satisfactory. Thus, in the course of the investigation
of the control rod cusping problem, unity discontinuity
factors will be considered at the axial faces of a node
if the nodal interface coincides the material discontinui-
ties. And either two-dimensional assembly calculations
or a full plane fine-mesh calculation will be performed

to determine node-wise homogenization parameters.

2.4 The QUANDRY Nodal Model

The nodal computer code QUANDRY, was developed to
£..7e analytically the nodal equations correspcnding
to equivalence theory which was described in the previous
section. QUANDRY determines the nodal solution using
analytic methods for a two-energy-group model, with the
group constants assumed to be spatially constant in each
node. In this section it is assumed that these constants
are known. The fundamental equations for the time-~independent

problem will first be presented. Then, for the time-dependent
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solution, an explanation of a time integration scheme,
the theta method, will follow. Previous test results
for QUANDRY applied to LWR analyses also will be presented.
2.4.1 EFundamental QUANDRY Eguations

There are two equations that are fundamental to
equivalence theory upon which QUANDRY is based. These
are:

1. The nodal neutron balance equation

2, The fiux-current spatial coupling equations
The balance condition is stated by Eq. 2.7; it is an
exact neutron balance relationship within each node and
each energy group g (g = 1,2, eeo0eee » G), and can be

rewritten in a matrix form for all nodes as

hohy ([31+1 5ok 1 =05, 5,k) + phy (1Y 500 ) - 15%,5,1))

z = =
(09500 1 = BT, 50 * V50,0 BB ]

T .=
= V. (X1 [vZ 17 065 2 4]
Kegg 1e3rk £i,5,k ¢i,5,k
(2.19)
where
[32 m, nl is a column vector of length G containing
14

surface-averaged current across the surface

at u = ug,
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[zi,j,k] is a column vector of length G containing
the average group flux for node (i,j.,k),
| Sgiidik,
[Z;,5,k] 18 G X G matrix containing the total-minus-
scattering cross section of a homogenized
Eiljlk - 'iljrk

node (i,j.,k), t z [ »
g g9
[vzf ] 1is a column vector of length G containing
i,j.k -1
the vZ%éJ;kfor node (i,j,k), and
[X] is a column vector of length G containing

the neutron fission spect rum.

Solution of this neutron balance equation requires
an additional relationship which can be derived from
the second-order differential equations, Eq. 2.9. These
egquations are one-dimensional, and can be put into a

matrix form as

l,m,n
- = TY (3
([Z ;'Lrﬂhnl keféxl [\)Zf SL,m,n] / [¢9u,m,n(u)]
- V,wW
- [ngm'n(u)] u=x,ys2

(2.20)
where the matrices are defined with elements given in

Eg. 2.10 as
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[?5‘; n n(u)] is a column vector of length G containing
ety -
¢; (u) ,
2,Mm,N
1 is a diagonal G X G matrix containing

ﬁé’m’n and

[SX:;'n(u)] is a column vector of length G containing
sg" (),

L,m,n

Unfortunately, the shape of the net transverse leakage

Dy, m,n

term, [SviYm'n(u)] » is not known; only its average over
u, [§X&Yn] , is known. Thus the spatial shape of the
transverse leakage term must be approximated so that
the spatial coupling equation can be solved for léz'm’n(u)].
This approximation is the only approximation inherent
in the analytic nodal method embedded in the QUANDRY.
Two approximations have been examined: flat and quadratic.
The flat transverse leakage is equal to its average value,
and the quadratic shape is determined so that the integrals
of the approximated shapes over a node of interest and
its two adjacent nodes preserve the average transverse
leakages of these three nodes. Thus, [Sg:;'n(u)] is

approximated as

VW ' - [aVW
[Sgim,n (W] = [5/27 o pl Pp_q (@) + [BY/R 1 P (u)

§V'w

+ 1 g+1,m,nl O (@ U =X,¥r2

(2.21)

where the expansion functions P(u) are quadratic polynomials
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in u, and are uniquely determined by mesh- spacings in
direction u.

Once the quadratic functions P (u) are determined,
solution of Eg. 2.20 is. straightforward. Thus, one can'

obtain (u)] for any u in the interval u, to

-u
[¢5,m,n
Ug4y in terms of [El;mn(uzﬂ)] ’ [jg,m,n (ug41)1s

-V,W .
(s ﬁ—l,m,n] ’ [S,“m n] » and lsl+l,m, ] Integration of
[tbg'm'n(u)] over u from u, to ug4; to obtain [, . ]

results in a linear relationship between the surface-averaged
fluxes [5% m,n{Ug4y)] and the other terms, 138 m,n (ug41)1
[q',) % m, n]' [32_1 m, n] ’ [SZ': n] and [SQI+1 m, n] SimilarIYI

one can obtain in terms of

lo 2+1,m,n(u2+1)]

=u = =V.W
(3041 ,mnfes1)] 7 (8gar,men! + Byin,nl ¢ (895 ,m,nl v
and [SZ.':; m,n] by integrating from ugy,; to Upso. In

equivalence theory, the flux discontinuity factors defined
by Eg. 2.11 must be imposed at u = u .y to eliminate
the surface-averaged fluzes at u = u,,;. On physical

grounds, one may require surface current continuity,
g+1)l = [J2+1 m,n(Yg4+1)]

to obtain nodal coupling equations relating the surface-
averaged currents, ['jg,m,n (ug43)1», to the two volume-

- averaged fluxes, [;2 m, nl and [$5L+1 m,n]' four transverse
(5Y sV/W

=V, W
% 1 m,nle 2,m, n] [Sg41,m,n] and [Sg4p ,m,nls

and the discontinuity factors at u = u,.y,.

leakages, [s
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By an analogous procedure one can find [jg,m,n (ug)l.
Thus we can express the net leakage rate, ([J7,) p,nl
- [Fu

[J»Qrmrn
fluxes, transverse leakages and discontinuity factors.

1), as a linear function of the volume-averaged

Substituting this net leakage term into the nodal balance
eqguation, Eq. 2.19, we can finally solve for volume-averaged
fluxes lxi,j,kl for all nodes of the time-independent
nodal problem.

In the time-dependent nodal equations presented
in the previous section, we found that the time-dependent
volume-averaged fluxes [ii,j,k (t)] can be determined
through the same procedure as for the time-independent
case if the solutions are desired only at discrete time
steps. However, the temporal derivatives of Eq. 2.14
need to be approximated by a time integration scheme.
Here a finite-difference approximation to the temporal

derivatives can be used. Also it is necessary to estimate

the fregquencies, WP (t) and wg m n(t) ¢, to determine
(AL 4

2eMm,N X
a complete time-dependent solution.

2.4.2

In order to obtain the time-difference form of Eq. 2.14,
one may consider a sequence of times t, , t1r tar eee o
ths <.« , where ty, is the initial time, and define the

time intervals as
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Atp = tn4y - tpe
Then, one may approximate the time derivativesl for

the1 < £ < t, as

9 = ’ ’
7 g3 e = g (B g - 7 )
(2.22a)
3
-ﬁ ll]l (t) : _L(Cé'J’ (tn.l.l) - 1'] k(t ))
n
(2.22b)

The time-dependent reaction rates can be approximated
by the ¢ - difference formulation [V-1] as the following

=u =u

3 (t) =g, 3 (tnep) + (1 -8,) Tg (t )

Ie,m,n P 9y,mn "t Ig,mn M

=i,j,k =i,j - =i,j.k =i,j

Lo "' (E) ¢4’ Keey = %% za; "Tltny) eg” rk (theq) *
(1 -6 Tagdeey Tar3key, (o= ai

and

=i,3.,k ~ =i,3.,k _ =i,3,k

Cd' 2 () = ed Cd' ' (tn+l) + (1 Gd) Cd ' (tn)
where the thetas, 6, for the prompt source terms and
8q for the delayed source terms, are introduced to increase

the stability and accuracy of the numerical method.

lthig approximation is not implanted in the QUANDRY code.
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In general, these constants can differ at every node
for each term in Eq. 2.14, and can change for each time
step. QUANDRY does not make use of this complete generality,
and instead it takes arbitrary constants between 0.0
and 1.0 for both Bp and 03. For most calculations the
value 1.0 is recommended, and 1.0 will be used through
the control rod cusping problem calculations to avoid
potential oscillations in extrapolation procedure [S-4].
In transient calculations, to advance the solution
from one time step to the next requires that éll the
time-dependent constants (cross-sections, discontinuity
factors, etc.) be updated at each time step. 1In fact,
for problems of control rod motions without feedback
effect, only the homogenization parameters for a node
of interest and the local ng,m,n(t“) and Wi,m,n(tn)
of Eq. 2.15 are required to be updated. The frequencies
Wg and W9 are identical with those required in the Frequency

Transformation Methods [F-6], and can be estimated by

the equations

| Faritk e
Wy (ty) = 3% e
gi'j'k- n-1 n 51'31 (t

n—l)
(2.23a)

and
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Eérjrk (tn)
LAY

Wg,j,k (ty) = KEi:I Ih
(2.23b)

Since the frequencies change quite slowly except
for rapidly changing transient, the frequency updating
is usually performed every 3 to 10 time steps in QUANDRY.

2.4.3

The basic unknown in QUANDRY is the volume-averaged
nodal flux. For ideal models of light water reactors
composed of large nuclearly homogeneous nodes of about
20 cm on a side, QUANDRY predicts the values of the nodal
volume fluxes that are usually within 2% of those found
from very fine mesh finite-difference solutions even
if the discontinuity factors are taken to be unity [S-4].
For real power reactors composed of heterogeneous nodes,
making use of AXS and ADF's has yielded maximum errors
in nodal or assembly power densities of less than 2-3%,
and reactor eigenvalue accurate to within about 0.05%
{g-2, K-2, F-5]. HMoreover, running time has been shown
to be at least two orders of magnitude shorter than that
required for a finite-difference solution of the same
accuracy.

QUANDRY may be used to analyze three-dimensional

problems in which the control rods play an important
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role. Previous investigations [K-2] show that when the
tip of a control rod resides exactly'at the axial nodal
interfaces the accuracy of nocdal power distributions
is comparable to that of a problem without a control
rod. However, analyzing a transient problem in which
the control rods are moving and thus partially inserted
into some nodes has led to serious errors in nodal power
distribution. This problem has been more pronounced
when feedback is present.

Most methods for reducing the errors caused by mcving
control rods in QUANDRY rely on generating better homogeni-
zation parameters for the partially rodded nodes. Some
of them are crude fix-ups while others are somewhat imprac-
tical. It is therefore desirable to make an attempt
to provide accurate homogenization parameters for partially
rodded nodes using methods that are systematic and practical.
2.5 Summary

In this chapter the nodal equivalence theory was
first described in both steady-state and time-dependent
cases, Approximate methods for estimating the homogenized
cross sections and discontinuity factors were then presented.
Finally, the nodal code QUANDRY was described with its
fundamental equations and approximations for static and
transient analyses of light water reactors. Also some

QUANDRY test results and the problem associated with
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the control rod were mentioned. 1In the next chapter,
the causes, characteristics and solution methods of the
problem in QUANDRY associated with control rod operation

during reactor transients will be explored.
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Chapter 3
THE CONTROL ROD CUSPINRG PROBLEM

3.1 Introduction

Because the spatial heterogeneity of LWR's in the
radial planes is usually more severe than the axial hetero-
geneity, most homogenization procedures for nodal applications
are restricted to radiﬁl planes. However, there exists
an exception, the axial heterogeneity caused by the presence
of control rods. This raises the control rod cusping
problem. Several methods have been used in QUANDRY to
circumvent the problem, but they have not resulted in
satisfactory solutions for a partially rodded node.

In this chapter, the nature and the causes of the
control rod cusping problem will be investigated, and
several new techniques based on equivalence theory by
which the cusping difficulty can be reduced will be suggested

and examined.

3.2 Causes of the Cusping Problem
3.2.1 Rartially Rodded Node

The axial heterogeneities caused by the presence
of control rods create a problem for nodal methods when

a rod is partially inserted in a node. A partially rodded
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node (PRN) is present whenever the control rod tip locations
do not match exactly the axial nodal interfaces. Control
rod positions are varied to compensate for fuel depletion
and temperature effects as well as to execute changes
in the power level and to shut down the reactor. Control
rods may be classified as subgroups of regulating, shim,
or safety rods, depending on their functions. Regulating
rods are used to maintain fine control on reactor power
levels and compensate for the effects of changes in tempera-
ture and fuel depletion. Shim rods are used to bring
the reactor critical and for coarse power level control;
they are normally completely out of the core when the
reactor is at full power. Also separate safety rods
are provided to shut the reactor down. These rods are
kept in a cocked position outside the fueled-core while
it is critical. Among these rods, only the regulating
or shim rods give fise to the control rod cusping problem.

In a typical IWR, regulating or shim rods move notch
by notch, the size of the notch being about 1 cm., Hence,
with axial node size of 15~30 cm, most three-dimensional
nodal configurations will include several partially rodded
nodes in either steady-state or transient situations.
Thus the partially-rodded, twc-zone node shown in Fig. 3.1

is formed when the tip of the control rod fails to reside
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at an axial nodal interface and is inserted to h,. Homo-
genized group cross sections (including the discontinuity
factors if equivalence theory is applied) are given for
the rodded zone (zgé in zone-r) and for the unrodded
zone (Zgg in zone-u). However; nodal methods need a
single set of homogenized cross sections for the entire
partially — rodded, two-zone node (iﬁfN). The only direct
way of avoiding the homogenization of the PRN is to separate
the PRN into two smaller nodes, one fully rodded and
the other unrodded, and then solve a new nodal problem
which has a larger number of axial nodes. This approach
raises a problem if, as is often the case, a nodal method
requires uniform axial node sizes. If variable axial
mesh spacings are allowed but if control rod tips are
not aligned, the total number of nodes in a three-dimensional
system will increase. And this increase can be substantial
for transient cases where a large number of additional,
axial nodes of the size of control rod displacement per
time step or smaller are needed.

Because of the extra calculational cost of dealing
with many axial mesh intervals, the axial homogenization
of a partially rodded node provides a highly desirable

solution to the control rod cusping problem.
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3.2.2

The causes of the control rod cusp are explored
in Fig. 3.2. This figure shows a PRN with neighboring
fully roéded node (FRN) and an unrodded node (URN); axial
group flux shapes within the PRN are shown qualitatively.
When the control rods are inserted to Z=Z, through the
axial nodal interface Z=Z;, then the node extended from
Zg to Zp forms a PRN composed of the rodded zone (Z,-~Zq)
and the unrodded zone (Zg~2,) . The flux 59(2) represents
a one-dimensional flux shape integrated over radial direc-

5get(z) represents the true axial flux

tions, x and y.
shape obtained by solving the problem in which both the

rodded zone and unrodded zone of the PRN are treated

as two separate nodes, and $g°m(2) is its counterpart
obtained by treating the PRN as a homogenized node.
= =ho

¢gom is the volume-averaged flux of ¢ M(z) over

g
the PRN, and $;,het and $g,het are the volume-averaged

group fluxes of Sget(z) over the rodded and unrodded
zones within the PRN, respectively.

If we are given the exact heterogeneous quantities
in both zone-r and zone-u, then the homogenized cross~-sections

can be determined by preserving the reaction rates -as
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heterogeneous flux
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(k=axial node index) axial flux, 5g(z)
(a) axial nodes of a (b) qualitative axial group
rodded assembly flux shapes within a

PRN extended from z=z
to z=zZp. Control ro
tip at z=z,.

Figure 3.2 The cause of the control rod cusping (PWR).
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h gL =r, het

u =u,het
=PRN _ Zagbg'— *+(hy = ho) Zog g
o = =r ,het =u,het
g he o5’ * (b, - h.)og’ (3.1a)
,het = -1
RN _ h, ¢; e//D + (hy = h_) P het / . ]
g =r, het (h -U‘gét J
c¢g z
(3.1b)

With both homogenized cross sections determined exactly
and leakage rates across all the six faces of the PRN
known from the exact heterogeneous solution, one may

solve the homogenized neutron balance equation for the

hom(
g

the discontinuity factors on the z-directed faces can

homogenized group flux ¢ z) within the PRN. Then

be found from

RN(Z

het

g, (ZT)

=hom

¢g (Zep) (3.2)

PRN
£g (Zp)

When the discontinuity factor on the x- or y- directed
face of either zone-r or zone-u is not unity, the same
procedure can be used to find fSRN on the x- and y- directed
nodal faces. If there is a way to predict the exact

=r,het =u, het

values of ¢ and ¢ along with the leakage rates

out of the PRN, then the exact equivalence theory parameters
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shown in Egs. 3.1 and 3.2 can be determined. Using these
parameters will eliminate the control rod cusping problem.
However, the exact solution is generally not available,
so that solving the control rod cusping problem requires
approximations,
The simplest approximation is to assume that

;;,het =$g,het and ngN = 1, This is simply the volume-
weighted cross section case. Because, in general,
ﬁ'het is smaller than @'het, the volume-weighted absorption
cross sections are overestimated and result in underesti-
mation of the flux level in the PRN, and consequently
in the power level. Also using the unity discontinuity
factors will cause errors in the reaction rates, not
only in the PRN, but also in the neighboring nodes.
In fact it is this approximation that has been found
to cause the control rod cusping problem. Several alterna-
tives have accordingly been introduced and examined.

The next section will describe conventional methods which

do not make use of the discontinuity factors.

3.3 Conventional Solution Methods

3.3.1 Iabulation of the Cross Sectiong of the Partailly
Rodded Node

Many nodal methods are created with either cross

section data files or separate computer codes for determining
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homogenized macroscopic cross sections from microscopic
cross sections and nuclide densities, For two-dimensional
problems, the homogenized nodal cross sections are usually
determined from two-dimensional assembly calculations
based on a zero net-current boundary condition. When
there exists no severe axial heterogeneity, it is standard
to use the homogenized cross sections from the two-dimensional
assembly calculations for the three-dimensional global
nodal calculation. However, when axial heterogeneities
caused by partially inserted control rods or axially
varying void fractions are present, one need to find
and store the homogenized cross sections for the axially
altered node by solving the three-dimensional assembly
problem. This approach is, however, impractical especially
during a transient when a large number of control rod
tip positions must be considered.
3.3.2 Elux Expansions in Polynomials

In order to correct systematically the control rod
cusping problem, an alternate model can be used for the
PRN. To do so, the axial shapes of the fluxes in the
node k (PRN) shown in the Fig. 3.2 are expanded in polynomial
functions,., This flux expansion method is used in many
nodal methods to treat axial or radial heterogeneities.
The nodal expansion method (NEM) treats the control rod

cusping problem in this manner. In the space-~time kinetics
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code IQSBOX [B-2, F-7], axial heterogeneity caused by
control rods partially inserted into nodes is resolved
by fourth-order polynomial expansions where the higher
order coefficients are obtained by the weighted-residual
scheme. The gain in accuracy is substantial, especially
in difficult problems like the LRA-BWR benchmark [W-2].
Smith approximated the shape by the following quadratic

polynomials,

=k -1

-k ~ = = -
6g(2) T 857 Py p(2) + G5 o (2) + EH

0g  Pk+1 (2)

(3.3)
where the expansion functions p(z) are identical with
those utilized in the quadratic transverse leakage approxi-
mation of Eq. 2.21. This expansion possesses the property
that the one~dimensional fluxes preserve the average
fluxes in each of the three adjacent nodes k-1, k and
k+l. Also, it must be noticed that 55(2) is valid only
in the node k extended from zy to zgp. The homogenized
cross sections of the PRN are then determined from Eg. 3.1

by requiring that

=r,het . _1 ___ (°T <k

g ¢ (g - zo)SZo bg(2)dz
Z

=u,het . _ L ____ ("0 <=k

g - (3 - zB)SzB bg(z)dz
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The homogenized cross sections are then used as
the spatially uniform cross sections in the next time
step for the transient calculation. Smith's results
[S-4] indicate that this approximation reduces the cusping
error by approximately 50% for various sizes of the transient
time steps. This marginal error reduction shows that
even the quadratic expansion of the axial flux shape
is not adequate when a node contains partially inserted
control rods. To reflect this control rod tip effect
in approximating axial flux shape, one can employ higher
order approximations such as cubic polynomials, cubic
spline interpolations or much higher polynomials [L-2].
Those approximations, however, require additional conditions
to determine the expansion functions, do not represent
accurate axial flux shapes, and occasionally cause an
oscillation problem. The gquadratic polynomial expansion
method will be examined in Chapter 5 for transient problems.

Since the basic cause of the cusp is considered
to be an inaccurate homogenization procedure for a partially
rodded node, the cusping problem can be cured if both
flux-weighted cross sections and the discontinuity factors
are determined accurately for a partially rodded‘node.
The next section will introduce several ideas for predicting
equivalence theory parameters for a partially rodded

node.
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3.4 Equivalence Theory Approaches

The use of discontinuity factors to get rid of the
control rod cusping problem is examined in this section.
Static problems without any thermal hydraulic feedback
effect are explored for the simple three-dimensional
system shown in Fig. 3.3. The symmetric system is charac-
terized by a simple rodded assembly surrounded by eight
homogeneous unrodded assemblies. Zero net-current boundary
conditions are imposed on all the external nodal faces.
The homogenized cross sections for all nodes except the
partially rodded node are assumed to be known, and given
in Table 3.1 for compositions of two fuel types and two
control rod types. A 3 X 3 X 4 system is created by
slicing the partially rodded node in two at z = Z5 in
Fig. 3.3b; the resultant system thus consists of all
homogeneous nodes. The QUANDRY solution for the
3 X 3 X 4 system is then used as a reference. Table
3.2 gives numerical errors in Ko¢ge's and the power densities
for the partially rodded node for three different ways
of homogenizing the PRN., The tip of the control rod
is inserted to the halfway point of the PRN. Taking
the volume-weighted constants (VWC) and the unity disconti-
nuity factors (UDF) as the homogenized parameters of
the PRN yields the largest error. Using flux-weighted

constants (FWC) and unity discontinuity factors (UDF)
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also results in significant errors in kegg and the nodal
power levels, especially in the neighboring top and bottom
nodes.

When the discontinuity factors for the rodded node
(i.e. the reference discontinuity factors, RDF) generated
from the standard 3 X 3 X 4 QUANDRY calculation are used
along with the FWC, QUANDRY, as expected, reproduces
the 3 X 3 X 4 result. This test result shows that if
the exact equivalence theory parameters, FWC and RDF,
could be found for PRN, the control rod cusping problem
could be eliminated. 1In the following sections, several
approaches are attempted to determine these equivalence
theory parameters.

3.4.1

The same approach explained in Section 3.3.1 can
be applied for estimation of the RDF and FWC for the
PRN. Many test problems show that these equivalence
theory parameters do not change uniformly as the position
of the control rod tip, h,, varies in the PRN. Hence,
it is useful to compare the FWC and the VWC, because
the VWC change uniformly and match the FWC exactly at
the end points, zz and zq in Fig. 3.3b. The relative
differences, &§(I), of various types of cross sections

for several values of h, are displayed in Fig. 3.4.
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The result suggests the possibility that &6(f) can be
approximated by quadratic polynomials (shown in dotted
curves in Fig. 3.4) determined by computing one set of
FWC's at hc.= 1/2 h,. The figure shows that, except
for ftz, the errors in the two group parameters as found
by the quadratic fit are negligible.

Restarting QUANDRY with data from 3 X 3 X 4 solutions
of the system in Fig, 3.3a produces the exact axial discon-
tinuity factors for the PRN of the 3 X 3 X 3 system.
These exact group discontinuity factors (radial and axial)
of the PRN as a function of h, are given in Table 3.3
and Fig. 3.5. The reason for the slight variations of
f;g from unity is that the equivalence equations are
solved using the QUANDRY nodal approximation (i.e., quadratic
transverse leakage). If the equivalence equations were
solved in an exact manner, the values of the radial discon-
tinuity factors would be unity for this problem. The
curves of the thermal group discontinuity factors are
skewed more than the fast group ones, and the fast group
discontinuity factors show less variation than do the
thermal group discontinuity factors. It has also been
found that the general "shapes® of the fé ~ curves are
not altered much when the axial node size or cross sections

are changed.
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Figure 3.5 Interpolations of axial discontinuity

factors at ho, = 7.5 and 15 cm for the
PRN of a 3 X 3 X 3 node system. Numerical
values are tabulated in Appendix 1.2.
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The axial node size dependence of the axial discontinuity
factors is illustrated in Fig. 3.6. As the axial node
size increases, the discontinuity factors of both groups
become more significant, and it is noticeable that also
the fast group discontinuity factors turn out to be as
significant as the thermal group discontinuity factors
when the axial node size is 40 cm as shown in Fig. 3.6c.
In Fig. 3.6b, one sees that the fast group discontinuity
factors are very close to unity with relatively small
thN.These facts suggest that the axial discontinuity
factors play a very important role in the control rod
cusping problem for both thermal and fast group nodal
calculations when the axial nodal size is comparable
to the distance between the grid spacers of an LWR assembly
(20 ~ 40 cm in usual cases). Even though the general
shapes of the fg—curvea are not very sensitive to the
axial nodal size, the skewed fg-curves are not amenable
to quadratic polynomial interpolation. 1Instead, cubic
polynomials and the region-wise cubic spline interpolations
with two intermediate sets of data points (at he = 7.5 cm
and 15 cm) have been used to fit them. The equations
for interpolations are derived in Appendix 1.2, and the
comparison is made in Fig. 3.5. Both approximations
are relatively poor, especially in the thermal group,
when the control rods are close to either nodal boundary.

Also, greater errors can result if intervals between
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data points are not properly chosen [J-1].

In order to examine whether axial discontinuity
factors for a PRN for one condition can be used for a
different condition, the exact fé: values for the PRN
in the symmetric system (Fig. 3.3a), along with their
FWC's, were used for the asymmetric system shown in Fig. 3.7.
Results are given in Table 3.4 for three different control
rod axial positions., They show that the equivalence
theory parameters for the symmetric system are moderately
accurate when used for an asymmetric system. The Kkg¢f
and nodal power density are calculated to within 0.03%
and 0.8%, respectively. The largest error is found for
the control rod tip position, h,, near to the node midpoint.
The adequacy of transferring FWC's and discontinuity
factors for a specific PRN found under one set of conditions
to that same PRN under another set of conditions is an
important consideratiox{, and will be recalled in the

next chapter when a new method is introduced.

3.4.2

The -volume-weighted cross sections (VWC's) provide
the simplest choice for the homogenized cross sections
of a PRN, since computing them does not require knowing
the detailed flux shape within the PRN. When the VWC's

are used, and if discontinuity factors (DF) which preserve
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Table 3.4 Results of 3 X 3 X 3 Asymmetric Calculations
with FWC's and Discontinuity Factors of
the Symmetric System. Reference is a
3 X 3 X 4 Asymmetric Calculation.
error in hc=3¢m hc=10cm hc=140m
Kerr -0.028% [ -0.031% | -0.027%
front PRN -0.41% -0.74% -0.61%
power
density { right PRN -0.23% -0.44% -0.33%
of PRN
left PRN -0.25% -0.53% -0.42%
max. nodal power 1.6% 2.2% 2.1%
/ 2/2 / 1
5 /1 /3 1
hZ 2 3 1 3/
1
2 3 1 1111
h R _—{PRN
PRN Z .l right
left 1| Y)rie
> PRN 1 // 1
h front 2
Z
1 1|V
2| 2| 1|V
hx

hx = hy = h, = 20 cm D Jg = 0 on all the surfaces

An asymmetric 3 X 3 X 3 system with three
rodded assemblies. The numbers represent
node composition types given in Table 3.1.

Pigure 3.7
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the reactor eigenvalue, reactions rates and leakage rate
of a PRN are available, one may eliminate the control
rod cusping problem. A methodology of making use of
VWC and DF is explained in Appendix 1.3.

It has been found that while VWC's and their corres-
ponding exact discontinuity factors reproduce the correct
nodal leakages and the exact kefes the "individual® reaction
rates (and hence, power level) in the PRN are not preserved.
Along with this drawback, the wide spread in the discontinuity
factors (which have a value ~5.0 in the test problem
in Appendix 1.3) provide a potential source of error
when they must be computed approximately. Consequently,
used in conjunction with the discontinuity factors, flux-
weighted cross sections are expected to be more reliable
than volume-weighted cross sections.

3.4.3 An_Asymptotic Method

Since the tabulation and interpolation schemes that
require a few additional reference solutions to provide
the equivalence theory parameters c¢cf a PRN have been
found to be impractical, it is desirable to consider
analytic and system-independent methods which can provide
the parameters from information about the material composition
and dimensions of the regions around the tip of the control
rods. The simplest approach is to consider an infinite

system composed of two semi-infinite slabs of different
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neutronic composition, one-half is the rodded regicn
and the other half unrodded as shown in the diagram below.
The length h, is the axial node size of a PRN,

The basic idea is to solve a one-dimensional, two-group,
two-region diffusion equation for group flux shapes around
the interface of the two-region system by applying the
asymptotic group flux ratios and by introducing some
conditions available from the actual three-dimensional
PRN of interest. To obtain two-group fluxes over the
two regions, one may start with the two-group, two-region

flux solutions given in the following form [H-1]:

sin Kkzn
Ei(z) f C; Cg C§ CE cos Kyz,
=K k~k k k k~k k.k .
¢, (2) r'C;y rC, s Cy s°C, sinh U z
cosh Uksz
i (3.4)
where
rodded zone (r) unrodded zone (u)
! ]
|
[ hz —-——v-i'
{ i
Zo-3h, Zg Zy+dh,
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k = region r or u

Zn =25 -2 for k =1
=2 - 25 for k = u
3 Vig T
1 2 L “2 1 eff 172 |
- \’z Z -
2 _ a1l 4 Iy zz _z 2 £,%21 1/2
=Yoo *o. |t |-, Yt kDD
1 2 L “P2 1 eff 172 |
S
. =2, - VI
177 kegg £y
Ly = ¢
2 t2
R Iy
L= 2 s = 2
DK™ + I, -D,U° + I,

for region r or u,

. To solve for the eight unknown coefficients C§ in
Eq. 3.4, one needs eight conditions. When the flux and
current continuity conditions are applied for each energy
group, one still needs four additional conditions. To

obtain additional ~quations, we consider a small region

h h
between z = z, - -51 and z = z_ + —31 . If the size of

h, is longer than the usual neutron migration length
(=./ D17 Zti) of the homogenized nodes in typical LWR's,

then the thermal-to-fast group flux ratios at z = z,

h
i"iz can be approximated by their asymptotic group

flux ratios. The typical migration length with the homo-
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genized nodes is in most cases not longer than about

10 cm, and if h, is taken to be 20 cm, then one may approxi-

mate
55 (zo - ;Z) il
3 (zp - M)
2
(3.5a)
and
¢g (z, + gz) —
3 (zy + Dy
2
(3.5b)

Substituting these asymptotic relationships at z =

zot%hz to Eq. 3.4 yields

C; - -Cg tanh [Ur -;z]
cy = -cj tanh [U, —;‘] .

In many LWR's, the typical magnitudes of U, and
Uy lie in the range 0.4 ~ 0.7 [H-1]. Hence, from the

fact that tanh 4 = 0.99933.... , one can get a relationship

kK ~ k
Cs = €3
for both k = r and k = u. Consequently, the number of
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unknown coefficients is reduced to six. Applying the
interface continuity conditions results in four nonhomogeneous
equations for five unknowns, C§, in terms of one remaining

c§ as follows.

“ rKrCE-

Dy 0 D} 0 D} U, cy -D] Urcgﬂ
0 1 0 -1 1 K,C} i c3
D;rr 0 Dgru 0 Dgquu Cg -D;srUrcg
f et 0 - sY J Cg - srC§J

(3.6)
The coefficients C} and C} are written with K, and
K,r respectively, to avoid imaginary variables in the
elements of the matrix or column vectors.

We still need one more equation to solve for the
two-group flux shape in terms of C§. After several possible
properties of a PRN were explored by solving the 3 X
3 X 3 symmetric system ( Fig. 3.3a) for various sizes
of h,, four conditions were found, which depend only
weakly on the control rod tip position. Those are
Eg(zo)/’ﬁg(zo)and 3;//33 within the PRN (for g = 1,2) and
their numerical values are shown in Fig. 3.8, It can
be seen that these variables are very uniform for all
h, values. And this suggests that if one of them is
known for a particular value of h,, then it can provide

the fifth condition determining the ck. Solving Egqg. 3.6
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Figure 3.8 Nodal variables of the PRN in a 3 X 3 X 3

symmetric system as a function of control
rod tip position, h,,
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and this fifth equation for the C§ determines the hetero-
geneous group flux shapes ir thg regions r and u near
the interface. 1In carrying out this procedure, Keffr
is assumed to be unity.

The flux shape is then editéd out for a new PRN
of interest, and the corresponding flux-weighted cross
sections are found. Using these flux-weighted cross
sections and the boundary surface currents of the PRN
determines the homogenized surface fluxes of the PRN,
which ultimately yield the axial discontinuity factors.
For testing this asymptotic method, thegg/Eg value at
he = 10 cm was chosen from the 3 X 3 X 3 symmetric model
(Fig. 3.3a) calculation, and examined for two h, values,
10 cm and 17.5 cm. Table 3.5 shows the result. The
kegg and nodal power densities for hg = 10 cm have been
predicted with negligible errors. However, for the case
of h, = 17.5 cm, the errors increase significantly.
This fact reflects the fact that for h, = 17.5 cm the
width of the unrodded region is only 2.5 cm which is
far less than the neutron migration length in the region,
and the asymptotic flux shapes near the interface of
the two different materials do not represent well the
exact flux shapes. Use of the three other quantities

shown on Fig. 3.8 to provide the fifth equation has shown

similar results, with Eg(zoy/ig(zo) yielding the worst
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Table 3.5 Asymptotic Method Results of 3 X 3 X 3
Symmetric System Calculations.

« exact ;g / 5; 0.682 for h, =10 cm

1]

0.686 for hc=17.5 cm

* trial ¢ / ¢, =0.682 for both h =10 cm
and hc=17.5 cm.

comparison hc=10 cm hc=17.5 cm

exact 0.969535 0.966035
asymptotic

Kerf |methoa 0.969522 0.965893
error -0.0012% -0.015%

nodal|exact 0.56384 0.56884

bower asymptotic

nodal|exact 0.77246 0.67215

power asymptotic

P§§ method 0.76904 0.66453
error -0.44% -1.1%

nodal|exact 1.0162 0.99619

power asymptotic

Ugﬁ** method 1.0190 0.99918
error 0.28% 0.30%

* FRN = fully rodded node on the top of the PRN.
*% URN = fully unrodded node below the PRN.
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result.

Also the 3 X 3 X 3 asymmetric problem (Fig. 3.7)
tested with this method showed that it is inadequate
for real reactor analysis even if it has shown moderate
errors for the very simple 3 X 3 X 3 symmetric system.
The main flaw of the one-dimensional asymptotic method
is that the transverse leakages between radially adjacent
nodes and the partially rodded node have not been considered.

The rodded fuel assemblies in a core are usually
surrounded by unrodded fuel assemblies, and there exists
strong neutron currents across the interfaces between
the rodded subnode within a PRN and radially adjacent
unrodded nodes or an axially adjacent unrodded subnode.
Thus, the transverse leakages (in radial directions)
must be taken into consideration in the course of predicting
the axial group flux shapes within a PRN which is usually
surrounded by five unrodded nodes. This idea will be
systematically explained and examined in the following

chapters.

3.5 Summary

There is considerable motivation for locating axial
nodal interfaces at fixed planes and dealing with the
intra-node axial discontinuities associated with partially

inserted control rods by using some combination of non-unity
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axial discontinuity factors and axially flux-weighted
homogenized cross sections. In this chapter, the possibility
of making use of tabulation-interpolation methods was
examined, ané the volume-weighted cross section approach
with corresponding discontinuity factors was investigated.
However, the results of the investigations showed that
these methods are problem-dependent, requiring complete
global calculation, and demand considerable machine memory
space -- all unattractive features.

For estimation of approximate homogenized cross
sections and axial discontinuity factors for a partially
rodded nnde, an asymptotic axial flux construction method
was introduced. This method was also found to be problem-
dependent and inconsistent with actual core configurations.
The axial flux construction method, however, does lead
to an idea for the reconstruction of axial group flux
shapes by taking the transverse leakage into account.

The next chapter will explain this idea.
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Chapter 4
THE COLLECTOR-PREDICTOR METHOD

4.1 Introduction

It has been demonstrated that use of exact homogenized
flux-weighted cross sections (FWC) and corresponding
discontinuity factors (DF) eliminates the control rod
cusping problem, However, these equivalence theory
parameters can be determined exactly only if an exact
global solution is known, Because such an exact solution
is not known, several approximate approaches were introduced
and examined in the previous chapter. None of them were
entirely satisfactory, and a simple systematic, problem-
independent way to solve the cusping problem using data
internal to a nodal method computer program is still
desired.

Another scheme based on the asymptotic flux construction
method will be explained in this chapter. The basic
idea is to estimate (in a step called "Predictor") the
axial flux shape within a partially rodded node (PRN)
using information already available from the same system
and collected in another step called "Collector®". If
the collecting and predicting is done correctly, the
FWC and DF of the PRN will yield the exact reactor solution
for both static and transient situations.
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4.2 Description of Two Methods

Based on the asymptotic flux construction method,
two axial flux reconstruction methods have been investigated
even though the basic concepts are very similar. The
first one is relatively simple but, for some situations,
somewhat inaccurate. It may be useful in a steady-state
case., The second one is more complicated, but is capable
of performing more accurate predictions, and is adequate
for transient calculations. For brevity the first is
called "Method 1", and the second "Method 2". Radially
homogenized cross sections and radial discontinuity factors
for both the fully rodded node (FRN} and the completely
unrodded node (URN) are assumed to have been found already,
and will be considered as available for axial flux reconstruc-
tion purposes.
4.2.1 Method 1

This method is an extension of the asymptotic flux
construction method described in the previous chapter,
and makes use of the nodal flux shape information implicit
in the QUANDRY solution for the case of the control rod
tip posiFioned exactly at an axial nodal interface.

The one-dimensional axial flux shapes within two
axially-adjacent nodes, one fully rodded (region-r) and
the other completely unrodded (region-u) (see Fig. 4.l),

are found using boundary currents on the axial faces
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and transverse leakages known from the global QUANDRY
solution. Transverse leakage terms can be approximated
as quadratic in shape for QUANDRY application. Then
the axial flux shapes for the two nodes are displaced
(Fig. 4.1b) to predict an approximate flux shape within
the partially rodded node. With this edited flux shape
within the PRN, one can calculate the FWC of the PRN
from the known homogeneous cross sections in r and u.
This FWC and the surface currents at the axial faces
at zp and zp of the edited PRN can be used to calculate
the homogenized surface group fluxes at z§ and z&. Thus
the discontinuity factors for the PRN of interest can
be found.

The extent of the control rod insertion is specified
by h,, and the appropriate flux shapes for various values
of h, in Fig. 4.1b can be approximated by editing the
axial flux shapes reconstructed over the two nodes of
Fig. 4.l1a. The basic assumption of this method is that
the axial flux shapes around the control rod tip do not
vary significantly when the control rod travels the distance
of one axial node.

4.2.2 Method 2

To improve Method 1, we can make use of the flux

shapes reconstructed for a previously, partially rodded

condition to predict the flux shapes within a PRN where
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now the position of the control rod tip is changed slightly
from the previous position. Thus we solve analytically
a one-dimensional, three-region problem for axial flux
shapes throughout the regions u, w and r of Fig. 4.2a.
Then we edit out the axial flux shapes appropriate to
the altered control rod tip position (hg in Fig. 4.2b)
between zp and zq in Fig. 4.2a, and assume these flux
shapes are valid in the new PRN composed of two regions
r' and w'., For a displacement, h, - h{, shorter than
the axial node size, h,, this second method will predict
more accurate homogenization parameters than Method 1,
and will be particularly useful for transient rod withdrawal
problems. Another advantage of Method 2 over Method
1 is that it can be used in transient problems initiated
with partially rodded nodes (provided the homogenization
parameters at the starting point are given). Method
1 on the other hand, always requires that the starting
problem have no partially rodded nodes anywhere. For
a rod insertion problem, the same principle can be applied,
however, the edit boundary (the points zq and zpg) will
move up rather than down.

In solving the three-region problem for the axial
flux shapes in regions u, w and r, we require the average
radial transverse leakage rates for each of those three

regions. Unfortunately, the nodal method solution gives
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only the node-averaged transverse leakages of node u
and of the PRN, and the individual transverse leakages
of subnodes r and w are unknown. Several approaches
for finding.these transverse leakages will be described
later; for the present these rates are assumed to be
known.

Because Method 1 is a special case of Method 2 (i.e.,
when z, = zo in Fig. 4.2a), only the flux reconstruction
steps and predicting procedures associated with Method

2 will be analyzed in detail in the following sections.

4.3 De-Homogenization and Prediction

Predicting the axial flux shape within a PRN at
the Predictor-stage requires axial flux reconstruction
within a PRN at the Collector stage and its axially adjacent
nodes (see Fig. 4.2). The flux iterations performed
at each inner iteration of a time step (n)in a transient
problem are identical with those of the steady-state
problem., Hence, the steady-state equation (Eq. 2.9)
can be solved for the axial flux shape at time step (n)

making use of the global nodal solution at that time

step. Rewriting Eq. 2.9 in two-group form gives

100
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where the superscript k represents one of the three regions
of the Collector stage, u, w and r. The zg has been
defined by Eq. 3.4, and all the cross sections are homogenized
ones, Approximation of the transverse leakage terms,

Sg(z), in QUANDRY-type quadratic polynomials yields

2 .

sgtz) = 5 o 2

(4.2)

The group expansion functions Qg_ are defined in Appendix

J
2.1.

4.3.1 De-Homogenization Yielding the Axial Flux Shapes

A general solution 52(2) of the linear nonhomogeneous
differential equation (4.1) is the sum of a general solution
Hg(z) of the corresponding homogeneous equation and
an arbitrary particular solution pg(z) of Eq. 4.1.

H:(z) has the same form as Eq. 3.4:

k P S 1 k ]

Hy (2) 1 1 Cy sin[K .z ]+ C, cos|K 2 |
k k k | S k

H (2) r s Cy sinh[U, Z }+ C, cosh[U,Z ]

When the nonhomogeneous term S:(z) is given by Eq. 4.2,
the method of undetermined coefficients can be used to
find the pg(z) in terms of quadratic polynomials. The

resulting particular solution is

k ~ Kk k 2 k

P} (2) P; P z Py
= +

k k k k

P2(Z) ql 9, z { Q3
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'jf are functions of Q;
j
and cross sections, and are given in Appendix 2.2. Hence,

where the coefficients P? and q

the general solution is

Tk [k N
¢l(z) Hl(z) Pl(z)
= + K =r,u,w
<k k k
¢2(z) H,(z) P, (z)
(4.3)
where
zn = 22 -z for k = u
= zc - Z for k = w
= g - zc for k =r

are to be substituted for convenience.

The corresponding current solution is given by

=k Tk ok Tk e k -
Ji(z) _ Di Di 3 | C; sin[Rez [+ C, cos[K.z ]
= k pkok| dz | K _. o k S
Jo (2) D,r" D,s | C3 sinh[Upz b C, cosh[U,z |
k. _k kk 1T
_| *1P P;Py 2
k_k k_k
20,9, Dyay | |2

(4.4)

To solve for the twelve constants cg which yield
fluxes in the three regions, we use eight equations from
the flux and current continuities at two interfaces of
the three regions, r, u and w, and four more equations
from the boundary conditions at zy and z3. At these

boundaries the surface-averaged currents known from the
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available nodal solution are taken as the boundary condi-

tions.

The flux continuity at the interfaces gives

u 1 [ W
1 1]|¢ kwsm[K (z,-2z,)] O | C,K,
u .ul|{~u L . W
br s _.C4 0 51nh[Uw(zc-zzn C3
[ W
1 1l cos K (z 2 C2
w W W
7 st o cosh[U_(z-z,)] Cy
R u w _u| 2 i
P; 7P Py~P, zz Pg‘Pg
= +
w _u u
19 ~9 99-93 | | 2, qg’qg
' (4.5a)
and
[ AW (~r] [ r_.Ww r_.w 2 r_.w
114Gy (¥ 1 [Cy) [P1"Py Py7Py| [2c| |P37P3
- = + .
W W|| W r r r r_.w r_.w r_.w
T 57| Cy| [T s {Cs) [Hmm9 9279 |Zc| {9379
Also the current continuity yields (4.5b)
u u [ u R w
D1 UuD1 ClKu D1 Ule
- 4
unu usu u W W W W
_r D2 Uus D2 C3 r D2 Uws D2
. _ s e
cos[Kw(zc—zzﬂ 0 CK,
w
0 cosh[Uw(zc-zzﬂ Cs
[ W W o _ [ W
D, u.Dy K sin K (z -2,)) 0 ] C,
W W W.W o _ w
[ r'D, U,s'D, 0 sinh [U_(z-2,)]| | C4
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_ 2
ngg-ngY ngg-ngg 1l (4.5¢c)
and
fng U, DY -CYKW [ D] vy ||CIK,
.rwng u,s"Dy | |<3 ' r*p} U s'Dj c3

[\W. W . T W W . rr r
D, p,-D,p D.pP,=D,pP 2z
1¥1 "1%1 1¥2 7172 c (4.5d)

wWw L I W W . rr
 D2937D29;  D3a37D3qp 1

The surface-averaged currents known at Z; and z,

give four additional conditions:

Iy . | A1
1 -0, |[Rysin(K,(z,-2;)] 0 C,
r? -sy, 0 sinh [U (2,-2,)] | C}
I [ ~U
1 U, cos [k, (z,-2, ) 0 C;K,
+
u u ] u
& s°U, 0 coshLUu(zz-zlﬂ C,
LU u [ =u u
P1 Py | |2%] J)(z)/D;
= +
u ua =U u
9 9 1] |Jx(27)/D, (4.5e)
and e 1
1 u_ |[cos [R (z5-2,)] 0 Ci1Ke
RIE r shu_(z,-z_ | C%
r s U, 0 co r'“3 % 3

104



P _ [ oL
1 u, Krs1n[Kr(z3 z. )] 0 C,
r r : r
r s'U_ 0 sinh [Ur(z3-zc)] Cy4
PI P 224 | |J7(23)/D]
= +
r =r r
Q9% 1| [J2123)/0;],
(4.5f)

where CEKk are combined to avoid imaginary numbers. And
there are six unknown two-element column vectors in

six equations, Eq. 4.5:

u u ][ W W T T r
C].Ku C2 Cle C2 ClKr C2

‘ and

3 L,L%a % [ %], ][ 3 4],

The nonhomogeneous system, Eq. 4.5,1is consistent,
and the unique solution can be obtained directly by the
Gaussian elimination method. Actually, all twelve Cg
are determined by solving twelve linear equations (4.5),
and unique axial group fluxes and currents within the
regions r, u and w are found from Egqs. 4.3 and 4.4, respec-
tively. As boundary conditions, the volume-averaged
group nodal fluxes are also acceptable instead of the

surface currents., One of these two boundary conditions
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is arbitrarily used in the Collector-Predictor method.
4.3.2 FWC and Axial Discontinuity Factors

In reconstruction of the axial flux shapes in the
three regions within z4 - z3, homogeneous cross sections
in regions r, w and u have been explicitly represented,
and in general they may not be the same. This fact must
be accounted for in transferring the flux shapes and
predicting FWC and DF, if the homogenized parameters
in regions w and u in the Collector (see Fig. 4.2a) are
not the same as those of region w' in the Predictor.
When the axial flux shape from the Collector is edited
out and transferred to the Predictor, the axial current
at zg in the Predictor should be predicted from the flux
(Eq. 4.3) and the diffusion coefficient of region w'
(same as that of w) instead of the diffusion coefficient

of region u. That is

<PRN . W dzu

z=2p

(4.6)
This correction is especially useful in BWR's where the
void fraction distribution makes the axial homogenized
cross sections non-uniform. Even in PWR's, this correction
is desirable if axially non-uniform fuel depletion has

occurred. If the distance, zy-zp (the displacement of

the control rod per time step in the transient case),
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is shorter compared to hZRN r the estimated current at

zé becomes more accurate.

The same idea can also be applied in determining
FWC. Transferring only the axial flux shapes yields

the FWC of the PRN in the Predictor (Fig. 4.2):

22 Zc ZT
w Tu W r Ir d
. Z"‘gUz 52(2)dz +Sz ¢g(z)GZJ+Zag Sz b (2) dz
ag = 2 3pRN :

h; ¢g (4.7)

=prN _ _1[(%2 zu %c 2 gyaz + “ 3 (z)az
3 g 3%(z)dz + j Tg(2)dz g
g h z g Zz ']
Z - B 2 o]
(4.8)
: 5 PRN =PRN =PRN =PRN
Given Zag robg o Jg (z3 ) and Jg (zp )¢ we
can find homogenized surface fluxes at 2§ and z¢ if
the corresponding transverse leakage shape within the
new PRN were known. Finding the quadratic transverse
leakage shape of the new PRN is not difficult if the
average transverse leakages of the three regions (the
rodded zone between zq and z3, the unrodded zone between
23 and zg, and the new PRN between zg and zp as a homogenized
node) are determined by partial integrations of the quadratic

shapes that have already been found in the axial-flux

reconstruction step. Then the transverse leakages in
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Eq. 2.21 are replaced by

z
S = + B sY(z)dz
-1 Zp~23 zq
z
- 1 3 r
S - S” (z)dz

2 2
C g¥(z)az +S T s‘(z)dz]
z2 2

5, ;—Tl_;;{ S:z s¥(z)dz + |
B
(4.9)
and the expansion functions, ~(u), are newly obtained
from the three node sizes; zg - z;, zp - 2z, and
zZ3 - Zp.

The resultant reaction rates (Egqs. 4.7 and 4.8)
and surface leakage terms (Egs. 4.6 and 4.9) of the new
PRN are to be used to find the homogenized surface fluxes
of the new PRN by preserving the reaction rates and the
surface currents, and consequently the axial discontinuity
factors. A complete set of equations are given in Appendix

2.3.
4.3.3 Radial Discontinuity Factors

In addition to the homogenized cross sections and
the axial discontinuity factors for the PRN, one needs
to know the radial discontinuity factors. A rigorous
three-dimensional problem for a system including the

PRN could be solved for two-dimensional, radial flux

108



shapes to find the radial discontinuity factors. Fortunately,
however, without any rigorous supplemental calculation,
the radial discontinuity factors can be estimated by
making use of the volume-averaged fluxes ;;' and

Eg' for the two subregions of a PRN (r' and w' in Fig.
4.2b). As previously mentioned, the radially homogenized
cross sections and discontinuity factors for an axially
uniform node are assumed to have been given already.

The PRN in Fig. 4.2b is reproduced below for derivation

of the radial discontinuity factors.

By definition, the heterogeneous surface flux,

5;ihet, and the homogenized surface flux, 5;;h°m,
on the surface x+ of the subnode r’ are related by
-r’het _ _.r’ -r/,hom
dx+ = fx+ Ox+
(4.10a)

Similarly, for the unrodded subnode w, we have

x+| rodded
e PRN

h -h, w’ unrodded

(x+ designates positive-x-directed surface)
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' 4
gurhet . g% sw,hom

x+ 9x+
(4.10b)
And for the complete PRN,
PRN _ ¢PRN het
fx+ = i+
—-PRN,hom
¢x+
(4.10¢c)

The physically true heterogeneous surface flux on the
surface x+ of the PRN can be expressed in terms of its
counterparts for the subnodes r” and w)
h 4 h 4
~PRN,het_ | _¢ Er,het +]1 - =€ | zWrhet
Px+ h x+ h ¢x+
z z
(4.11a)
For the homogenized surface fluxes, no such exact relationship
exists. Nevertheless, we assume that the homogenized
surface fluxes may be approximated by the same relationship
as the heterogeneous surface fluxes:
-PRN, hom h -r’,hom Eg —w/y hom
dx+ ¢ 1R | O+
z z
(4.11b)
Thus, éﬁbstitution of Eq. 4.11 into Eq. 4.10c yields
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h ¢x+
r’ (_z
f + -1 -, hom | £
f:EN ~ x+ hc ¢;; X+
-whhom
hy [zt
1 + h -1 -r"hom
C J ¢’x+

(4.12)

As a practical matter, the radial discontinuity factors,'

fg; and fgl, are assumed to be independent of h,, and

are provided as input data from the two-dimensional assembly
calculations.

The ratio of homogenized surface fluxes in regions

r’ and w” is, however, not known. Accordingly, we assumed

that the ratio of homogenized surface fluxes can be approxi-

mated by the ratio of corresponding volume-averaged fluxes:

gwﬁhom =y’
X+ ]
~r’,hom =r’

byt 0]

Substituting this into Eq. 4.12 results in

r' =r’ w =w’
PR o 3 4 (hhg) 63

(4.13)
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which is the sum of the radial discontinuity factors
of the two subnodes weighted by the volume fluxes of
those subnodes.

Many test results have shown that this approximation
is acceptable. Two such tests are shown in Tables 4.1
and 4.2 for a 3 X 3 X 3 symmetric system (Fig. 3.3) and
an asymmetric system (Fig. 3.7), respectively.

For these tests, the non-unity radial discontinuity
factors in the x- and y- directions from the assembly
calculations (ADF) were used in addition to the AXS given
in Table 3.1. The accuracy of the volume-flux-weighted
radial discontinuity factors has been found to be greater
than 99% for most estimations for the PRN of the symmetric
or asymmetric 3 X 3 X 3 systems.,

As a first test of the overall scheme, an extended
3 X 3 X 4 symmetric system (axial node sizes = 10, 20,
20 and 10 cm from the bottom) with a control rod fully
inserted intc the upper two nodes was solved for information
needed in Collector step, and then Method 1 was applied
to obtain FWC and three-dimensional discontinuity factors
for PRN's in 3 X 3 X 3 symmetric and asymmetric systems.
Results are shown in Table 4.3. For either a symmetric
or an asymmetric system, errors in eigenvalues are much
less than 0.01% and the accuracy in nodal power is greater

than 99%. The largest error occurs when the control
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Table 4.1 Tpe Volume-Flux-Weighted Radial Discon-
t1nu1tx Factors for a PRN of a 3 X 3 X 3
Symmetric System (Fig. 3.3).

control volume-
rod tip |group exact flux-~
position a P weighted error
h, (cm) xg fxe (%)
1 1.0030 1.0030 0.0
Olo
2 0.9380 0.9380 0.0
5 1 1.0080 1.0078 -0.020
X0
2 0.9757 0.9750 -0.072
1 1.0132 1.0130 -0.020
10.0
2 1.0191 1.0180 -0.110
1 1.0189 1.0188 -0.010
15.0
2 1.0736 1.0726 -0.093
1 1.0219 1.0218 -0.010
1 L]
750 5] 1,106 | 1.10m9 £0.063
1 1.0250 1.0250 0.0
20.0
2 1.1390 1.1390 0.0

(Pecausg of gpe sympmetry of the system
ff = £y, £ = ;E! and £, = fo;
all energy gro‘tv.lps ancf‘ for all %c.)
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Table 4.2 Radial Discontinuity Factors for Three
PRN's of a 3 X 3 X 3 Asymmetric System
(Figo 307) ]

control volume-

. loca- max.
rod.z}p tion grgu; + exact*t we{ég%;d%*error
pgs% 1(;11 of fx or f £ £ (%)

. 1 1.0030 1.0030 0.0
right | 5 0.9380 0.9380 0.0
1 1.0030 1.0030 0.0
0.0 |front| , 0.9380 0.9380 | 0.0
1 1.0030 1.0030 0.0
left 2 0.9284 0.9284 0.0
. 1 | 1.0118~ 1.0135 1.0124 | -0.11
right 5 | 3.0123~ 1.0149 1.0125 | -0.24
0.0 | fromt| 1 | 1.0122+1.0125 1.0122 | -0.03
ron 2 | 1.0109-1.012% 1.0109 | -0.15
left 1 | 1.0111=1.0131 1.0119 | -0.12
€ 2 | 1.0004~1.0026 0.9999 | -0.27
. 1 | 1.0220~1.0226 1.0222 | -0.o04
right} 5 | 7.1087-~1.1100 1.1089 -o.ég
1 | 1.0218~1.0225 1.0221 | -o0.
18.0 | front| 5 | §'i075-~1.1092 | 1.1079 | -0.12
Left 1| 1.0211-1.0218 1.0213 | -0.053
€ 2 | 1.0919 ~1.0934 1.0905 | -0.27
) 1 1.0250 1.0250 0.0
right| 5 1.1390 1.13%0 | 0.0
1 1.0250 1.0250 0.0
20.0 | front| , 1.1390 1.1390 | 0.0
Left 1 1.02ko 1.02%0 0.0
e 2 1.1210 1.1210 0.0

3
*fx =fy for h, and hy, = 20 cm from asgembl
gﬁ}cuf%tionsf:and ﬁie ranges of ff ang

y are shown for other values of hc.

**f: = ft for all h., values and all ener
groups.y ¢ i
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Table 4.3 Test of the Use of Volume-Flux-Weighted
Radial Discontinuity Factors ( VFWRDF)

along with FWC and Axial Discontinuity

Factors.
k max.
system hC eff er;gr
1
tested (cm) | exact VFWRDF error | nodal
power
. 10.0 | 0.97006 | 0.97004 |-0.002% | 0.32%
symmetric
3x3x3 17.5] 0.96671| 0.96671| 0.0 0.17%
. 10.0{ 0.95210| 0.95202 (-0.008%| 0.95%
asymmetric
3%x3x3 ¥ | 18,0 0.94185| 0.94184|-0.001%| 0.46%
asymmetric .95203]-0.002%| 0.65%
Jx3%3 *% | 0.95205 0.95203

*with all three control rods at the same
level.

**The control rod levels in three PRN's
are different; h. = 10, 18, and 3 cm

for left, front, and right, respectively
(see Fig. 3.7).
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rod is inserted to around the midpoint of the PRN. The
remarkable accuracy resulting from use of volume-flux-
weighted radial discontinuity factors will also be demon-

strated for realistic problems in the next chapter.

4.4 Transverse Leakage from a Partially Rodded Node

The quadratic shaped-transverse leakage has been
used for axial flux reconstruction within a PRN under
the assumption that the average transverse leakages from
the adjacent five nodes (including two subnodes in the
PRN) are known. Actually, among these five nodes, the
average transverse leakages from the two subnodes of
the PRN (r and w in Fig. 4.2a) cannot be found directly
from the global nodal solution. Only the average leakage
from the whole PRN is known.

404.1

In solving Eq. 4.1 for axial flux shapes, the average

transverse leakages §§ and §g from the subnodes r and

w are not known (Fig. 4.3). Four approximations for
finding them will be considered.

The simplest approximation is to assume that §5
and §g are spatially flat and equal to the average radial
leakage,§§RN ,from the PRN (called Method 2F). The sudden

changes in the transverse leakages at the vicinity of
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rodded
subnode (r)

unroddect
subnode (w)

Figure 4.3

e

NG

g

3 glower

g=energy group

Axial currents and average transverse
leakages from the nodes in a rodded assembly.
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the control rod tip makes this approximation unattractive.

An alternative to this flat approximation is to
consider a quadratic approximation (Eq. 2.21) for the
shape of the transverse leakage of the PRN based on the
transverse leakages from the PRN and its lower and upper
neighbors. One then can integrate the quadratic shape
over each of the two subnodes r and w to estimate §5

and S¥. This method is called "Method 2Q".

g*

For examination of Method 2Q, the symmetric system
shown in Fig. 3.3a, was solved in the 3 X 3 X 4 node
layout for the average transverse leakages in the four
nodes of the central rodded assembly. Figure 4.4 shows
the group transverse leakages, §lower' §;' §; and -S'gpper
for hy = 10 cm. The Sg(z) represents the quadratic
transverse leakage shape in the PRN, and its averages
in the subnodes w and r are ES'Q and §;'Q . Even for
the simple 3 X 3 X 3 system, the quadratic approximation
results in poor accuracy in estimating the average transverse
leakages from the subnodes. For the thermal group the
error is nearly 70%, and it is about 40% for the fast
group. Because the thermal group neutrons play an important
role in the control rod cusping problem in LWR, the quadratic

w
approximation seems to be unfavorable in estimating Sg

=T
and Sg .
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Figure 4.4 Average transverse leakage from the nodes

in the rodded assembly of a 3 X 3 X 3
sxmmetric system (h, = 10 cm and leakages,
gr in normalized scale).
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Some not consistent improvement in determining §g
and §§ from §5RN can be obtained if §g and §;'are estimated
by taking the averages of §§RN and §éower and §;pper

{called Method 2M) as follows:

§; - %[ggRN + §;ower]
57« 3 (5o + sopPer)

For the 3 X 3 X 3 system, one can see from Fig. 4.4 that
this average approximation slightly improves the accuracy
compared to the quadratic approximation (compare the
dotted line with the dotted line with cross). This average
approximation does not guarantee that the total transverse
leakage of the PRN is preserved when the resultant §5
and §g are themselves averaged. Thus, the average approxi-
mation violates neutron balance within the PRN, and may
cause unphysical flux reconstruction,

Thus the first three approaches are direct but defi-
cient. A more rigorous but indirect approach can be
established if neutron balance within the PRN and some
conditions associated with the node face at z, in Fig. 4.3
are incorporated into a relationship between S¥, §§ and
SERN (called Method 27):

(o3

(4.14)
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This relationship specifies the surface averaged transverse
leakage of the PRN, and is exact. If one additional
relationship between 38 and §5 could be found, then the
magnitudes of §g and gé can be determined. To do so,
we consider the neutron balance in the subnode r. Rewriting
Eg. 2.7 yields

1 (3 -3 r =r
hc (Jg(z3) Jg(zc)] + ztg g

-§[__1_

r r =r 34
+ = -§
go1l Kegg (9 VIE Z99'] ¢g'= T5g

f£ g

(4.15)
From the available global nodal solution for the Collector
step, 59(23) and cross sections of the subnode r are
known, but ;; and Eg(zc) are not. The average flux,

$§s in region r can be obtained from the two equations;

h h )=r
=PRN _ L |=w ,|_¢
s T [1 h J ’s +[th s

z
(4.16a)
and
FPRN =PRN _ [1 _ EqJ Wz +[Eg]z =r
tg g | hz tg g hz tg g
(4.16b)

In the second equation, the absorption-plus-scattering
reaction rate is used because of the significant difference

between z: and Zi . Hence the only unknown in Eq. 4.15
g g
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is the axial net-current at the control rod tip, Eé(zc).
Provided Eg(zc) is found, both Qg and §5 will be determined
from Egs. 4.14 and 4.15. Since the exact Sg(zc) is not
available, an approximation must be made. One approach
is to make use of the fact that Jé(zc) does not change
much if there are small changes in h,. In the transient
problem, the change in h, per time step is negligible
compared with the node size. Hence, Jg4(z;) obtained
in the Predictor step of the previous time step (n-1)
can provide the approximate Jg(zc) for the present time
step (n):

J (n)(zc) = J

g g total power (n-1)

(n-1) (2,) [ total power (n) J

(4.17)
Normalization by total reactor power is necessary at
each time step because of power transient. If the Sg(zc)
is predicted accurately by the scheme for every step,
the 5§ and §§
The accuracy of the methods introduced in this section

will be estimated correctly.

will be discussed in the next chapter for several transient
problems,
4,4.2 - Partially Rodded Surface-Nodes

Because the shape of the transverse leakage within
a subnode of a PRN is expressed as a quadratic polynomial

the shape of which is specified by the node-averaged
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transverse leakages of three adjacent nodes, a problem
arises for PRN's located on the reactor core surface.

If the top and bottom reflectors are represented
as explicit regions, the transverse leakage of the reflector
node can be used directly as the third leakage term,
For problems without axial reflectors, however, a fictitious
external nodal leakage value is necessary, and it must
reflect somehow the boundary conditions of the problem.

For problems with a zero-flux boundary condition,
the fictitious flux in a fictitious external node might
have a negative value if the flux distribution in the
surface PRN were extrapolated into the external node.
If the transverse leakage from the PRN is to fall off
towards zero at the external zero-flux boundary, it
seems plausible to set the transverse leakage of the
fictitious external node equal to the negative of the
transverse leakage of the surface PRN.

For problems with zero net-current boundary conditions,
we may construct a fictitious mirror node next to the
surface PRN, This mirror node is then taken to have
the same average transverse leakage as that of the surface
PRN,

An albedo boundary condition may be applied at the
interface of the core and top or bottom reflector, having

the form [K-3] 5z =2



whereag is the ratio of net-current in z-direction and
flux at the interface, and is constant along the interface.
For this situation it has been proved [S-4] that the
axial power éistribution is almost insensitive to the
transverse leakage in the reflector node. Hence, the
transverse leakage of the fictitious external node can
be assumed to be zero to determine the quadratic transverse
leakage shape in a subnode within the PRN. Parsons [P-1]

has verified that this procedure results in sufficient
accuracy for two-dimensional problems with the radial

reflector replaced by albedo boundary condition,

4.5 The QUANDRY Code and the Collector-Predictor Method
4.,5.1 The OUANDRY Code

QUANDRY solves the two-group,steady-state and transient
nodal diffusion equations with thermal-hydraulic feedback.
The nodal diffusion equations are coupled to the heat
conduction and transfer equations for a simple lumped-
heat-capacity fuel pin and coolant channel model.

The steady-state problem is solved by a fission
source iteration which is accelerated by use of Wielandt's
fractional iteration [W-3], and the time-dependent neutronics
solution is found by use of the theta method time-integration
scheme. The advanced fluxes at each time step are obtained

by solving the point kinetics equations and using the
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theta method extrapolation. The node-~averaged flux distri-
bution is found by a Gauss-Seidel iteration. To enhance
convergence of the flux iteration, the Cyclic Chebychev
Semi-Iterative (CCSI) method is applied in both steady-state
and time-dependent solution methods. In most transient
problems, less than five flux iterations are required
to achieve an error-reduction of 10~3 in the nodal fluxes.
However, a large number of iterations may be required
when sudden movements of the control rods take place
or in the time domains near power extrema because the
extrapolated fluxes by the theta method are poor estimates
of the actual fluxes in these cases.

The analytic nodal method embodied in the QUANDRY
code provides an accurate solution of the neutronics
equations., However, the simple lumped-heat-capacity
thermal-hydraulics model is not suitable for realistic
LWR analyses, especially for BWR analysis with boiling.
Because of this fact, the actual application of the afore-
mentioned methods for resolution of the control rod cusping
problem will be limited to transient problems with no
thermal-hydraulic feedback. If resolution of the control
rod cusping problem is achieved for transient neutronics
problems, the same method ought to be accurate when thermal-

hydraulic effects are accounted for.
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4,5.2 The Transient Routine and jts Extension

The subroutine TRAN in the QUANDRY code is the transient

calculation driver. This routine controls the initialization

of the transient parameters and sets the control 1logic

to be passed to operational subroutines. The neutronics

transient control flow is basically the following:

(1)

(2)

(3)

(4)

(5)

(6)

Set up the matrices for time step (n) by making
use of all information calculated in the previous
time step.

Update all the coupling matrices to reflect new
homogenization parameters for perturbed nodes such
as a partially rodded node.

Re-estimate the prompt flux and leakage extrapolation
frequencies from the point-kinetics solution, and
extrapolate the fluxes and leakages.

Calculate the transient fluxes iteratively using
the CCSI method, and calculate the directional net
leakages for each node.

Perform the node-wise delayed neutron precursor
solutions for the next time step (n+l).

Normalize node-wise fluxes and leakages prior to
commencing the subsequent time step.

In order to account for control rod cusping effects

in QUANDRY, new homogenization parameters for the partially

rodded node must be found and updated between steps (1)

126



poy3iau I1030TPaid-103093TT0D YL G°y 2InbTJ

daas 10301paxag °2

s1030®3 A3TNUTIUOOSTP [eIXE putd

L)
s9xnTJ 92oevjins paztuabouoy o:wEuwuma—

1

Ni¥d M2u ay3 JO S3ualInd pue
g9xnTJ 20evJins snoausaboialzay purd

i

*831030egd
A3tTnutjuossta TeTPRY

nagd pue o8 pura

L]

(T+u) doas 2wty 3xdU
9Yy3 I03 N4 MU 3Tpd

de3s 103031T0D ‘T

(u) da3s auwt3l 3UIIND 9Y3 I03J
uoTINTOS XNTF TRIXE TRIaUdD

}

suotinTos Ietnoriied 103 aATOS

t

suoibax ¢ Jo sabeyeal asiaasuell
o13eipenb 2j3eutxoaddy

1

‘sabeyed 3sI9ASURIY pue maw putd
‘w9 TqoId uorbai-aai1yy suryag

1

JuauwLAOU POl
1013u0d 3Da3ad

127



and (2). In the subroutine PURTO which is called by
TRAN, cross section perturbations and a partial coupling
matrix update can be performed for a transient calculation
with a moving control rod. The Collector-Predictor Method
is written in the subroutine PURTO; the functional chart
is shown in Pig. 4.5. Programming and calculations were
done with the IBM 3033/N computer at M.I.T.
4.6 Summary

In this chapter, two new "Collector-Predictor” methods
have been developed for determining the homogenization
parameters of a partially rodded node, the aim being
to resolve the control rod cusping problem in a practical
and systematic way. The first method (Method 1) is rather
simple, It is for steady state problems, but requires
some local information from a solution of the same system
with no partially rodded nodes. For this reason Method
2, which seems to be adequate for both static and transient
problems, was introduced. For this scheme all the required
information is internal to the QUANDRY solution. The
basic idea of the methods is to use the QUANDRY solution
to reconstruct the axial flux shape in a partially rodded
node, and thereby to determine flux-weighted cross sections
and axial discontinuity factors.

In order to apply the two Collector-Predictor schemes,

the QUANDRY code has been changed and extended for transient
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calculations relating to control rod motion. A brief
explanation of the changes and additions was given.

In the next chapter, the Collector-Predictor method
will be applied to several light water reactor benchmark

problems in both static and transient cases.
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Chapter 5
APPLICATION OF THE COLLECTOR-PREDICTOR METEOD

5.1 Introduction

The discussion in the previous two chapters explains
that the use of discontinuity factors along with flux-weighted
cross sections can eliminate the control rod cusping
problem for QUANDRY computations. The possibility of
making use of tabulation-interpolation methods was examined,
but showed that these methods are problem-dependent,
require additional complete global calculations and demand
considerable machine memory space - all unattractive
features.

In the last chapter, a new method was developed
which is simple, systematic, reliable and problem-independent
way (the Collector-Predictor method) toc solve the control
rod cusping problem using data internal to QUANDRY.
This Collector-Predictor method as implemented in the
QUANDRY code will be examined and evaluated in this chapter
for several benchmark problems. Results obtained will
be compared with those of both the volume-weighted cross
section (VWC) approximation and the quadratic axial flux
shape approximation currently programmed into the QUANDRY.
Three-dimensional benchmark problemswill first be introduced,
and the use of the QUANDRY solutions as numerical standards
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will then be justified by comparing with PDQ-7 solutions.

5.2 Three-Dimensional Models

Three three-dimensional benchmark problems are used
in this chapter to test the Collector-Predictor method.
These problems are representations of the inner portions
of a typical PWR and two simplified BWR. The heterogeneous
core zones are explicitly mcdeled. However, zero-current
conditions are imposed at the radial boundaries.
5.2.1 The CC3-PWR Model

To examine the Collector-Predictor method for PWR's,
a small three-dimensional problem, the CC3-PWR (Core
Central region of a 3-dimensional PWR model) benchmark,
was chosen [K-2]. Figure 5.1 describes the two distinct
horizontal sections and vertical section of the model.
The CC3-PWR model consists of the sixteen quarter-assemblies
of two different fuel enrichments (compositions 1 and
2 in Fig. 5.la) which are arranged in a checkerboard
pattern, Four quarter-assemblies from a single fuel
assembly are shown in Fig. 5.2, Each fuel assembly has
15 X 15 fuel cell locations, sixteen of which are either
rodded or filled with coolant water. The central cell
is non~fueled and unrodded. The two off-centered quarter-
assemblies (designated as composition 3) are altered

by the partial insertion of a control rod cluster. Zero
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(a) horizontal sections
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Figure 5.1 Horizontal and vertical sections of the

4 X 4 X 8 CC3-PWR model.
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model.
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net-current boundary conditions are imposed at the four
radial boundaries.

The vertical section of the model is divided into
eight 20 cm nodes including reflector nodes at the top
and bottom (shown as composition 4). Part of heterogeneous
geometric detail of the two-dimensional plane is illustrated
in a 16 X 32 mesh layout in Fig. A3.1 of Appendix 3.
The heterogeneous two-group cross sections are provided
in Table A3.1, Appendix 3. To avoid errors arising from
use of isolated assembly calculations to compute radially
homogenized cross sections and discontinuity factors,
two-dimensional 16 X 32 fine-mesh calculations for full
planes (Fig. A3.1 in Appendix 3) were carried out using
QUANDRY. This was done for two different types of planes,
one rodded and the other unrodded. The resultant homogenized
nodal cross sections and corresponding radial discontinuity
factors are listed in Table A3.2 of Appendix 3.

5.2.2 BHR Models

In the course of investigation of the control rod
cusping problem in the previous two chapters, only simple
homogenized models based on typical PWR properties were
considered. From the point of view of radial heterogeneity,
a BWR assembly complicated with a control blade, is more
heterogeneous than its rodded PWR counterpart. Therefore,

it is desirable to test Method 1 for a static BWR problem,
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The CISE-BWR benchmark problem [S-5, F-5] was chosen
for this purpose, Smith [S-5] showed that the CISE-BWR
problem provides an example of the inaccuracy of the
conventional flux-weighted parameters, and concluded
that use of the discontinuity factors can improve the
accuracy significantly. Hence, the CISE-BWR model is
a good example for testing the Collector-Predictor method
for which the discontinuity factors are an essential
tool.

The CISE-BWR core consists of 208 fuel assemblies
with widths of 15 cm. However, for the present test,
only nine central assemblies are taken to form a
3 X 3 X 3 partially rodded benchmark problem. A detailed
description of the model is given in Fig. 5.3. Zero
net-current boundary conditions are imposed at all external
nodal faces, and the axial node sizes are all 20 cm.
Note that the definition of the variable h, is different
from that of Fig. 3.3. Flux-weighted cross sections
and radial discontinuity factors are summarized in Table
A4.1, Appendix 4. It can be seen that the values of
the discontinuity factors are far from unity.

The CISE-BWR problem does not contain any void in
the coolant, and this must be accounted for in more realistic
BWR problems. There is a benchmark problem, the TRD-BWR

model (three-dimensional BWR) composed of the Vermont
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(2) horizontal sections (numers represent fuel types)
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Figure 5.3 The 3 X 3 X 3 CISE-BWR model.
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Yankee assemblies, which does explicitly reflect the
effects of axial void distribution, Finck [F-5] created
and analyzed this model. He examined two-dimensional
homogenized parameters, and proved numerically that the
use of unity axial discontinuity factors in the TRD-BWR
problem does not affect the accuracy of the nodal sclutions.
This fact is very important at the point of view of justifying
the use of QUANDRY solutions as numerical standards in
the following sections of this chapter. Because the
TRD-BWR model represents well the characteristics of
a realistic BWR with a control blade partially inserted
and with several different regions of voiding, the TRD-BWR
model will be used in evaluating the Collector-Predictor
method.

Figure 5.4 shows a 3 X 3 X 10 core configuration
for the TRD-BWR model. Two off-centered assemblies are
partially rodded, and the core consists of eight planes
involving four different regions of voiding. Void fractions
of 0%, 40% and 70% are considered as shown in Table A4.3a,
Appendix 4. The water reflectors are not voided, and
the void fraction increases towards the top of the core.
The assembly widths are 15.31 cm, and the axial core
node sizes are 15 cm. The thickness of water reflectors
were chosen to be 20 cm - enough to justify zero flux

boundary conditions. Zero net-current radial boundary
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(a) horizontal section

(b) vertical section
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Core layout for the TRD-BWR.
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conditions were imposed. The major simplifications in
the TRD-BWR model are that the actual fuel heterogeneities
(different fuel enrichments, gadolinium pins and the
water holes) are represented homogeneously. However,
all control blades and water gaps which play important
roles in the homogenization of a partially rodded node
for the control rod cusping problem, are explicitly modeled
as illustrated in the 8 X 8 mesh layout of Fig. A4.l,
Appendix 4. The hetercogeneous cross sections of each
composition of the rodded and unrodded assemblies are
given in Table A4.2, Appendix 4., With these heterogeneous
cross sections, two-dimensional 24 X 24 mesh full plane
(Fig. A4.2) calculations were carried out using QUANDRY
to determine homogenized nodal cross sections and radial
discontinuity factors for the nine nodes. The same
24 X 24 mesh calculations were run for five different
planes, and the resultant nodal homogenization parameters
are listed in Table A4.3, Appendix 4 for the 45 distinct
nodes representing the core of the 3 X 3 X 10 TRD-BWR
model. The radial discontinuity factors are spread over
a wider range (0.46 ~ 1.71) than those of the CC3-PWR
model (0.93 ~ 1.17). Homogenized cross sections for
reflector nodes are those of the Vermont Yankee BWR and

unity discontinuity factors were taken there.
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5.3 Numerical Standards

The application of the Collector-Predictor methods
for resolution of the control rod cusping problem requires
that accurate standard solutions be provided. Because
of the nature of the three-dimensional problem, spatial
truncation error from spatial mesh discretization can
be major source of inaccuracy. For time-dependent problem,
temporal instability problem caused by inadequate choice
of the time interval between time steps can be another
source of error for the numerical solutions,
5.3.1 Spatial Convergence

The PDQ-7 finite-difference model is generally regarded
as capable of providing quite accurate solutions to various
light water reactor problems. However, the number of
mesh points is restricted to a practical limit such that
spatial truncation error is almost unavoidable. Thus,
it is necessary to give reconsideration to the fact that
PDQ-7 solutions may not be fully converged spatially.
5.3.1.1 Planar Calculations for Radial Homogenization

The spatial convergence problem of the PDQ-7 solutions
for a rodded plane of the CC3-PWR model was investigated
by solution of the same problem using three different
mesh sizes, 1.4 cm, 0.7 cm, and 0.35 cm. A quadratically
extrapolated solution was used as a reference. This

was estimated as follows:
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We define a solution value A(h) as

A{(0.7) = PDQ-7 solution for mesh size h = 0.7 cm

A(0.35) = PDQ-7 solution for mesh size h = 0.35 cm
A(0.) = extrapolated PDQ-7 solution for h = 0.0

A(h) = ah? +bh + ¢

To determine A(0.), we use two data points, A(0.7) and
A(0.35), and impose at h = 0 an asymptotically converging

condition,

da(h)
dh

"
o

Solving for the three unknowns, a, b and c¢ then yields

an asymptotically converging solution,

A(0.) = 3 [4A(0.35) - A(0.7)]

where the A's may be either power densities or eigenvalues.

Figure 5.5 presents the PDQ-7 solutions for three
mesh sizes along with the extrapolated PDQ-7 solution.
Also it gives the corresponding QUANDRY solution with
one mesh region per pin cell. As this figure shows,
the agreement between the 1.4 cm, 0.7 cm and 0.35 cm
PDQ-7 solutions for the unrodded nodes is fairly good.
However, for the node in which control rods are present,
the results show that the use of even the finer-mesh
spacings 0.7 cm and 0,35 cm yields errors of 2.7% and

0.7% in nodal power density. The comparison demonstrates
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(a) quarter assembly power density

0.7586 0.6168 |
0.7686 0.6456
0.7727 0.6589
0.7741 0.6633
1.0877 0.8417
1.0371 O.Sﬁgé
1.0870 0.8485
1.0870 0.8491 zggded
1.0871 0.8495 ©
1.2498 1.0124
1.2390 1.0070 unrodded
1.2345 1.0043 node
1.2330 1.003%4
1.2320 1.0027
1.0956 1.3373 1.4cm mesh PDQ-7
1.0851 1.3210 0.7cm mesh PDQ-7
1.0801 1.3141 0.35cm mesh PDQ-7%
1.0784 1.3118 extrapolated PDQ-744
1.0772 1.3103 1.4%cm mesh QUANDRY
(b) eigenvalue
0.9564
0.9568
0.95703 # 55 gec computing time
0.95711
0.95712 ** 21 sec computing time
Figure 5.5 Comparison of PDQ-7 and QUANDRY solutions

for a two-dimensional, heterogeneous,
rodded 2 X 4 nodal plane of the CC3-PWR.
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that the QUANDRY solution with one mesh region per cell
provides a far more accurate reference than the same
mesh PDQ-7 solution. In fact the extrapolated PDQ-7
solution and fhe QUANDRY 1.4 cm mesh solution show remarkable
agreement in nodal power density and eigenvalue. Even
the use of four or sixteen mesh regions per cell for
the PDQ-7 solutions do not achieve that accuracy. Note
also that the QUANDRY solution with 1.4 cm mesh was obtained
in a shorter computing time than the PDQ-7 solution with
0.35 cm mesh (21 sec vs. 55 sec). The main cause of
the serious spatial convergence problem of PDQ-7 for
the CC3-PWR model is the significant radial heterogeneity
caused by the control rod cells and water holes. 1In
QUANDRY, the analytic solution method and the quadratic
transverse leakage approximation can resolve the radial
heterogeneity problem with pin-sized mesh intervcls.
Accordingly, in the following sections, the numerical
standard solutions for radial homogenization problems
will be obtained from fine-mesh QUANDRY computations.
5.3.1.2 Unity Axial Discontinuity Factors

The two-dimensional fine-mesh calculations provide
no systematic way of estimating discontinuity factors
at nodal interfaces in axial direction, and it is standard
to use unity discontinuity factors (UDF) at those locations.

It seems prudent, however, to examine the validity of
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this approximation.

Straightforward comparison of PDQ-7 and QUANDRY
solutions are presented in references K-2 and F-5
for the CC3-PWR and TRD-BWR models. They show that the
use of unity discontinuity factors in the axial direction
is acceptable (kogf predicted to 0.05% and nodal powers
to within 3%). However, because the comparison of the
QUANDRY solution with the PDQ-7 solution does not distinguish
error caused by radial heterogeneity and spatial convergence
from that caused by use of unity axial discontinuity
factors, it is advisable to compare two QUANDRY solutions
of different axial mesh intervals, To do this, the original
2 X 4 X 8 CC3-PWR mesh system was altered to have twenty-two
axial finer-mesh intervals (2 X 4 X 22 system) shown
in Fig. A 3.2 of Appendix 3. All the axial discontinuity
factors are set to unity for both mesh systems. Results
of the finer-mesh solution are edited and compared with
those of the 2 X 4 X 8 problem. The comparison is presented
in Table A3.3 of Appendix 3. The differences are negligibly
small. The deviation in eigenvalue is 0.0012% and the
maximum difference in nodal power is only 0.03%, and
this occurs in the low-powered rodded node next to the
top reflector. Because of this excellent agreement,
unity axial discontinuity factors will be used for all

axially homogeneous nodes, rodded or unrodded, and a
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finer-mesh QUANDRY model will serve as reference solution
for three~-dimensional benchmark problems.
5.3.2 Temporal Stability

A finité-difference approximation to the temporal
derivatives is used in solving time-dependent QUANDRY
nodal equations. 1In Chapter 2, two approximations were
introduced for time-dependent QUANDRY solutions. These
are the Theta Method and the Frequency Transformation
Method expressed in Eq. 2.22 and Eq. 2.23, respectively.
For accurate description of delayed neutron behavior,
the interval At, between time steps (n) and (n+1) should
be small enough not to cause temporal instability. Vota
et al. [V-1] suggested a stability condition

Age Atp < 0.1

for all decay constants, A3, of delayed neutron precursor
of group 4., Table A 5.1 of Appendix 5 gives typical
delayed neutron data and other input data for transient
problems [L-2]. Si.... the typical range of Agq for six
delayed neutron groups in U235_.fueled LWR is 0.013 -
3.9 sec~l, the time interval in kinetic problem with
s8ix delayed neutron groups must be less than 25 msec.
In Appendix 5, the acceptability of this limit for prompt
neutron behavior will be verified through numerical.test.
This limit is then imposed in determining numerical standards

and testing various methods for resolution of the control
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rod cusping problem, and the data in Table A 5.1 will

be used in all transient calculations.,

5.4 Applicaticn to Steady-State Problem

Although the control rod cusping problem is of greatest
importance for time-dependent power excursions during
which a control rod is being withdrawn, it also causes
difficulties in steady-state calculation. During the
course of a reactor criticality search, control rod clusters
may assume accurate criticality positions that lead to
partially rodded nodes, and power shape predictions are
desired for this situation. Operational constraints
on local power density and its rate of change to insure
fuel integrity are of concern for reactor startup procedures.
Again accurate power distributions for situations involving
partially rodded nodes (PRN) are needed.

This section deals with steady~-state problems involving
partially rodded nodes. The partially rodded node problems
were solved by Method 1, and the criticality eigenvalues
and nodal power distributions were compared with finer-mesh
QUANDRY reference solutions. The CISE-BWR, TRD-BWR and
CC3-PWR models without any feedback effect are examined.
5.4.1 The CISE-BWR Problem

The system which is being analyzed is the simple

three-dimensional BWR problem shown in Fig. 5.3. The
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diagonally symmetric system is characterized by a cruciform
control blade surrounded by four fuel assemblies containing
no void, and a part of a control blade at a corner.
This problem ﬁas devised to examine the accuracy of volume-
flux-weighted radial discontinuity factors (VFWRDF) for
a PRN in a BWR and to apply Method 1 to a problem with
two control blades positioned at different elevations.

For an initial solution, a 3 X 3 X 4 system was
created by extending the axial dimension of the CISE-BWR
so that there are four axial meshes of 20 cm widths,
The lower two planes are completely rodded. First, this
3 X 3X 4 problem was solved to provide necessary information
needed at the Collector stage. The axial flux shape
was then edited out for various magnitudes of h, (the
distance the rod is removed from a fully rodded node);
Fig. 5.3b. Two cases were tested; one is almost fully
rodded (h, = 2 cm), the other halfway rodded (hg = 10 cm).
For each case, two different sets of radial discontinuity
factors (VFWRDF and UDF) were used for the partially
rodded node. Results are shown in Table 5.1. The VFWRDF
approximation is clearly superior to the use of unity
radial discontinuity factors for a PRN. For VFWRDF,
the error in Kk.ee is less than 0.006%; the maximum error
in nodal power is 0.25% and occurs at one of the lower

nodes in the rodded assemblies. Moreover, there are
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Table 5.1 Tes.t Results for Method 1 and the Volume~-Flux~
Weighted Radial Discontinuity Factors
(VFWRDF) for the CISE-BWR.

(a) using VFWRDF approximations for PRN's

comparison hc= 2 cm hc= 10 cm
reference
3x3xh calel 0.992948 | 1.008414
keff Method 1 0.992944 1.008352
error -0.0004% ~-0.0061%
max.
error top node -0.12% -0.16%
of
P -
nodal RN 0.10% 0.15%
POWEL | pottom mode 0.14% 0.25%
density

(b) using unity radial discontinuity factors for PRN's

only
comparison hc= 2 cm hc= 10 cm
Method 1 0.991587 1.007908
k
eff error -0.14% ~-0.050%
max.
error top node 1.1% 0.38%
of
nodal PRN 8.2% 6.4%
power i ottom node -0.85% 0.67%
density
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no noticeable errors in power for nodes radially adjacent
to the PRN's.,

On the other hand, the use of unity radial discontinuity
factors yields very poor solutions. The maximum errors
in kogg and nodal power exceed 0.1% and 8%, respectively.
The error in power of nodes radially surrounding the
PRN is also about 8%. These results establish that the
VFWRDF approximation is quite acceptable even for BWR
problems where the radial heterogeneity is more pronounced
than for PWR problems (see Section 4.3.3 for a PWR test
result).

The same CISE-BWR model was altered to have the
configuration shown in Table 5.2b. In the altered system,
two control blades were partially inserted to different
elevations. The homogenization parameters of the PRN's
were determined by making use of information from the
solution of the aforementioned 3 X 3 X 4 extended system.
Results are compared with the solution of a 3 X 3 X 5
finer-mesh layout shown in Table 5.2a. They are excellent
(<0.005% error in k.ee and ~0.2% in nodal power).

5.4.2 The TRD-BWR Problem

Static tests were performed for two TRD-BWR situations,
the particular cases simulated being chosen because of
the importance of control rod operational patterns during

the startup procedure.
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Table 5.2 Comparison of ke and Nodal Powers of
a CISE-BWR Static %&oblem with Non-uniform
Control Blade Levels.

error in nodal power density

eff bottom

top node PRN node

%
§§§§5(3)1-004928 1.2128 0.9221 0.7930

Method 311.004885 | 1.2110 | 0.9206 | 0.7947

3x3x3
error -0.0043%| -0.15% -0.16% 0.21%
(a) 3 X 3 X 5 system (b) 3 X 3 X 3 system
(front view) (front view)
15 15 15 6o o3 15 15
top |
node
18
2212; C//k 30 PRN
. o
;//
///// ///// botgomﬁ
node
$
; (cm)
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5.4.2.1 A Partially~-Rodded Interior Node
The first case examined involved a control rod pattern
in the central region of a core as shown in Fig. 5.6.

The control rod was withdrawn across an internal node

from z 80 cm to z = 65 cm. Figure 5.7 and Tablé 5.3
show the results for three elevations of the control
rod, Method 1 predicts Kegfg within 0.01% error, while
VWC method yields maximum error of about 0.1% in keff'
Accuracy of nodal power predicted by Method 1 is also
improved by about a factor of 10.
5.4.2.2 A Partially Rodded Node With Shallow Rods

Because of axial wvoid distribution, the axial power
distribution in a BWR tends to be skewed toward the lower
part of the core. The direct way of reducing the power
peak near the bottom water reflector is to use shallow
rods. However, if the power distribution is flattened
too much by use of the shallow rods, their complete withdrawal
can cause a power overshoot in the lower part of core.
Therefore, it is important to predict accurate rod worth
and power distribution when shallow control rods move
through a node next to the bottom reflector in a BWR.

For the purpose of shallow rod simulation in the
TRD-BWR model, the orginial TRD-BWR was slightly modified
as specified in Fig. 5.8. With shallow rods, the reactor

power near the rods is assumed to be significant.
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Table 5.3 Comparison of k ££f and Nodal Power Errors
for a TRD-BWR St&%lc Problem with an Internal
PRN,

control tip positions
comparison methods

77 cm 72.5 cm| 68 cm
5552737°% 0.97855 | 0.98149 | 0.98437
Kk Method 1 0.97853 0.98140 0.98428
ofT 13%3%10 ~ [(-0.0023%)|(-0.0093%)| (-0.010%)
(% error
in 0.97802 0.98053 0.98368
parenthe-) T¥5x10  [(-0.054%) [(-0.097%) | (-0.071%)
max. Method 1 -0.18% -0.53% -0.51%
nodal 3x3x10
power YIWG
error 3x3x10 -3.2% -4 1% -3.0%
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Consequently, the void fraction was increased as indicated
in Fig. 5.8. The tip of the control blade was simulated
as being withdrawn from the upper face of the bottom
fueled node (i.e., z = 35 cm). Method 1 was applied
to the system with the tip at z = 35 cm. Table 5.4 displays
the numerical data, and they are plotted in Pig. 5.9.
The results demonstrate that the accuracy of Method 1
is improved by about a factor of 10 in kegf and power
density over the conventional VWC method. In contrast
to what happens with an internal PRN, Method 1 applied
to the shallow rod slightly overpredicts the power density.
The difference is due to the effect of the thermal flux
peak in the bottom reflector. The effect of the reflector
cannot be well reflected by Method 1 when the Collector
procedure has been performed with the tip of the control
blade far from the core-reflector interface,

Nevertheless, these static benchmark problems demon-
strate that Method 1 is superior to VWC method and is
quite acceptable when applied to the control rod cusping
problem for steady-state BWR calculations.,

5.4.3 The CC3-PWR Problem

A similar test was performed to test Method 1 for
the static CC3-PWR problem described in Section 5.2.1.
Calculations were done for the tip of the control rod

located at 13 axial positions ranging from the 80 cm
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Table 5.4 Comparisons of k and Nodal Power
Error for a TRD-Sﬁﬁ Static Problem

with a PRN Next to the Bottom Refl-
ector.

control blade
comparison |methods tip position

27.5 cm 23 cm

refergnce 1 0.98236% | 0.983052

keff Method 1 0.982360 0.983085
3x3x10
(% error (-0.0004%) | (0.0034%)
in
parenthe-
sis) VWeC 0.981672 0.982609
3x3x10 (-0.070%) (-0.045%)
max. Method 1
nodal 3%3x10 0.55% 0.91%
power
error ;ggxlo -5.5% -4.0%
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to the 140 cm (Fig. 5.1). Three auxiliary Collector
stage calculations were carried out when the tip of the
rod reached the axial nodal interfaces at z = 80, 100
and 120 cm.‘ Three-dimensional QUANDRY problems making
use of the homogenization parameters given in Table A3.2b
of Appendix 3, and with an extra axial plane. inserted
at the location of the tip of the control rod in the
PRN, were taken as reference solutions,

Eigenvalues and power density for the PRN as computed
by the VWC method and by Method 1 were compared with
these reference solutions. Results are displayed in
Table 5.5 and Fig. 5.10. For Method 1, errors in kKegf
remain below 0.01% in most cases, and those in power
density are less than 1% except for one case when the
PRN is next to the top water reflector. There the error
is -2.1%. Errors arising from use of the volume-weighted
constants and unity axial discontinuity factors are much
greater., It is interesting to notice that as the tip
of the control rod moves toward the bottom of the core,
the error pattern in both the VWC methcd and Method 1
is similar. Peak errors in a node increase steadily.
However, the peak error near the reflector does not have
serious consequences since the maximum linear heat rate
and minimum DNBR (departure from nucleate boiling ratio)

do not occur in this region of low power generation.
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Table 5.5 Error in kefff and Maximum Nodal Power
or

Error (AP) the CC3-PWR Model (Static
Problem) .
control
" . max, error
pgggt;;g error in keff (%) in nodal power (%)

(cm) VWC Method 1 VWC Method 1

2x4x8 2xLx8 2x4x8 2x4x8
85 -0.066 -0.0058 -2.6 -0.23
90 -OIO97 "00011 -401 -0.68
98 -0.039 -0.0071 -2.2 -0.50
100 0.0 0.0 0.0 0.0
105 -0.058 -0.0055 -3.3 -0.29
110 -0.057 -0.0099 -5.8 -0.94
118 -0.032 -0.0046 -2.7 -0.57
120 0.0 0.0 0.0 0.0
125 -0.034 -0.0049 -5.7 -0.84
130 -0.046 -0.0082 -8.7 -2.1
138 -0.017 -0.0027 -3.4 -0.67
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Figure 5.10 Comparisons of keff and nodal power

of the CC3-PWR.
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These results, obtained from a series of test calcula-
tions, demonstrate that the Collector-Predictor method
(Method 1) clearly resolves the control rod cusping problem
for various static problems and improves the accuracy

by a factor of 5 to 10 over the conventional VWC scheme.

5.5 Time-Dependent Problems

The Collector-Predictor methods are tested in this
section for transient TRD-BWR and CC3-PWR benchmark problems.
Homogenized cross sections and discontinuity factors
for homogeneous nodes have been determined in Section
5.2, Finer-mesh QUANDRY solutions (see Section 5.3)
serve as a numerical reference solutions, and the conventional
volume-weighted cross section and quadratic axial flux
approximation methods along with the Collector-Predictor
method (Method 1 and HMethod 2) are evaluated by reference
to those solutions. As mentioned in Section 4.4, Method
2 can be applied with four options depending on the way
the transverse leakage rates are estimated for the two
subnodes in a partially rodded node:

Method 2F --- flat transverse leakage over a PRN.

Method 2M --- median of transverse leakages of

a PRN and an axially neighboring

node.
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Method 2Q --- quadratic transverse leakage shape
over a PRN.

Method 2J --- net surface current in axial direction
at the tip of the control rod is
employed.

These different approximations will be compared for a
CC3-PWR transient case.

Three transient cases associated with the control
rod cusping problem were examined: a control rod drop
event in the TRD-BWR, a rod insertion in the CC3-PWR
and a rod ejection in the CC3-PWR. Because of the similar
model configurations and use of common conditions (e.g.,
boundary conditions, delayed neutron data and no feedback
effect), only the results of the third problem, the CC3-PWR
rod ejection, are extensively analyzed and evaluated.

Choosing proper time step size is an important task
in transient calculations., Justifications of taking
the time step interval limit discussed in Section 5.3.2
through numerical solutions for several values of interval
size (1.25, 2.5, 5.0 and 10 msec) is presented in Appendix
5.

5.5.1 The TRD-BWR Rod Drop

The first application of the Collector-Predictor
method to transient problems is a three-dimensional

rod drop simulation for the TRD-BWR model. An important
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design-basis accident for boiling water reactor is the
control rod drop accident.

The magnitude of the effect depends on reactor condi-
tions. Moderator feedback is particularly important
when there are voids in the core or when the core is
near saturation conditions., Other factors are power
level, flow rate, rod drop speed, rod worth, and delayed
neutron fraction. It is known that accident consequences
are not sensitive to the delayed neutron fraction and
rod drop speed, but sensitive to inlet subcooling and
accident rod worth [C-4], However, our interest concerns
only three-dimensional neutronic effects caused by a
PRN, Accordingly, feedback effects will not be considered
in this thes.s.

A typical BWR rod drop speed of 150 cm/sec [C-4]
was used for the TRD-BWR calculation., Data for delayed
neutron are given in Table A5.1 of Appendix 5.

The reactor (Fig. 5.4) was assumed to be initially
critical, and rod withdrawal was accomplished in ten
time steps for 100 msec (i.e., 1.5 cm withdrawal per
10 msec time interval) through a node from z = 65 cm
to z = 50 cm. The transient power levels from five different
solution methods are summarized in Table 5.6, and are
plotted in Fig. 5.11. During the transient, total power
level increased rapidly from 100 watts to 1695.5 watts.
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Figure 5.11 Comparison of transient power
predictions for the TRD-BWR.
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Comparison with finer-mesh solution shows the inadequacy
of the VWC scheme and quadratic axial flux approximation
method. On the other hand, remarkable accuracy was achieved
by the Collector-Predictor method - particularly Method
2. The error throughout the transient has been reduced
by a factor of ~20 for Method 2Q, and remains below 1%.
5.5.2 The CC3-PWR Rod Insertion

In this case, a reactor scram is modeled for the
CC3-PWR illustrated in Fig. 5.1.

Initially the rod was positioned at z = 100 cm,
and was then inserted to z = 80 cm position during the
scram. Scram rod speed was 200 cm/sec, and the control
rod was inserted for 0.1 sec after scram was activated.
The insertion was completed in ten time steps at a rate
of 2 cm/10 msec. Method 2 was tested along with the
VWC and quadratic flux approximation methods. Error
of total power and maximum error of nodal power at each
time step are summarized in Table 5.7. During scram,
the power level lowered to a half of the initial power.
The quadratic axial flux approximation improves marginally,
while Method 2 leads to negligible error (<1%). The
computing time of Method 2 is marginally greater than
that of VWC method (8.8 sec vs. 9.5 sec). Actually two
kinds of Method 2 were tested, and in this rod insertion

problem, Method 2M is more accurate than Method 2J (methods
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2M and 2J for Method 2 were defined in Section 4.4).
For all methods, the maximum error occurs when the tip
of the control rod passes through'the middle of a node.
5.5.3 The CC3-PWR Rod Ejection

The final test of the Collector-Predictor method
is to simulate a rod ejection accident in the CC3-PWR
model. Initially, the tip of the control rod was located
at z = 100 cm in the critical CC3-PWR (Fig. 5.1). The
rod was then ejected from the node in plane number 6
(z = 100 cm to z = 120 cm) at a speed of 200 cm/sec for
0.1 sec. During the event, tne reactor power rose rapidly
from 100 w to 283.8 w. The problem was solved by six
different methods. Results are given in Tables 5.8 and
5.9 and illustrated in Fig. 5.12 to 5.14.

Pirst, prediction of the total reactor power transient
are compared. The VWC method has a 19.2% maximum error
achieved when the control rod has traveled through about
two-thirds of the PRN. The quadratic axial flux approximation
does not show any significant improvement, while Method
1 redues the error to less than 5%. Use of the various
Method 2 schemes clearly improves the accuracy of the
solution, and does not show any cusping in power versus
rod position (see Fig. 5.12). As anticipated by the
discussion in Section 4.4, Method 2J results in a more

accurate prediction than Method 2M or Method 2Q. The
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Table 5.8 Comparison of Total Reactor Power for
a CC3-PWR Transient with a Cecntrol Rod
Withdrawn from 2z = 100 cm to 120 cm.

(a) conventional methods and Method 1

;ggizign reference | error in total power (%)
s e
100 100. 0.0 0.0 0.0
102 106.63 -2.7 -1.6 0.02
104 117.05 -7.0 -4.6 -1.1
106 128.79 -10.6 -7.0 -1.8
108 142.45 -13.7 -9.2 -2.6
110 158.15 -16.3 -11.1 -3.3
112 176.54 -18.2 -12.6 -4.0
114 197.96 -19.2 -13.3 4.7
116 222.56 -18.8 -13.2 -5.1
118 250.94 | -16.4 -11.7 4.9
120 283.81 -10.9 -8.6 4.0

%gﬁg?:igf 21.9 7.8 8.3 8.2
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Table 5.8 (continued)
(b) Method 2
;ggi:i::gn re;‘;ﬁzgge error in total power (%)

Z Method 2M|Method 2Q|Method 2J
(cm) (W) 2x4x8 2x4x8 2xhx8
100 100. 0.0 0.0 0.0
102 106.63 0.02 0.02 0.02
104 117.05 -0.42 -0.61 -0.05
106 128.79 -0.49g -0.63 0.20
108 142.45 -0.58 -0.62 0.32
110 158.15 -0.90 -0.68 0.41
112 176.54 -1.16 -0.03 0.22
114 197.96 -1.51 -0.51 -0.34
116 222.56 -1.92 -0.92 -0.88
118 250,94 -2.30 -1.53 -1.61
120 283.81 -2.70 -2.32 -2.33

gggfe"ggc’g) 21.9 8.5 8.7 8.7
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Figure 5.12 Total reactor power during a CC3-PWR
transient.
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Figure 5.13 Errors in total power predictions

during a CC3-PWR transient.
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error in total power remains below 0.5% for Method 2J
except for the last two time steps. Rapid increases
in error are observed for the last few time steps for
Method 2Q and Method 2J. These will be discussed below.

The accuracy of the conventional methods is worse
for predicting local nodal power than it is for predicting
total power level. As summarized in Table 5.9 and Fig. 5.14,
the maximum error in nodal power density from VWC scheme
is greater than that in totél power (25.5% vs., 19.2%).
Note that the maximum errors in both total and nodal
power densities occur at the same time step for the conven-
tional methods. Method 1 shows a similar error distribution.
However, utilizing Method 2 achieves the same accuracy
for nodal power density (<0.8% for Method 2J) as for
the prediction of total power. This result clearly demon-
strates that the use of Method 2 (particularly Method
2J) can resolve the control rod cusping problem in a
PWR at a marginal increase in computing time (7.8 sec
and 8.7 sec).

In Fig. 5.13, it can be seen that there are sudden
rises in the error curves for Method 2Q and Method 2J,
which are considered to be the most accurate solutions,
Deviations in these two methods fluctuate, but remain
within a certain error bound (<+ 1%) until they start

to increase at time step 9 (z = 118 cm). In order to
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Table 5.9 Comparison of Nodal Power Density of the
PRN for a CC3-PWR Transient with Control
Rod Withdrawn from 100 cm to 120 cm.

(a) conventional methods and Method 1

;ggézign rej:zz:;e error in nzgiiaizzer density
(cm) (mormalized s Fxigd fiux) "gHiod !
100 0.6385 -0.39%* ~-0.39% -0.39%
102 0.7150 -4.2 -1.8 -0.31
o4 0.8322 -10.2 -5.9 -1.8
106 0.9694 ~15.1 -9.2 -2.6
108 1.1336 -19.3 -12.4 -3.6
110 1.3265 -22.4 -14,.9 4.4
112 1.5558 | -24.6 -16.9 -5.3
114 1.8260 | -25.5 -17.8 -6.0
116 2.1391 -24.5 -17.6 -6.2
118 2.5004 | -21.1 -15.8 -5.6
120 2.9089 ~-13.9 -11.7 4.1

* due to spatial convergence error.
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Table 5.9 . (continued)

(b) Method 2

;ggizign rgig;igce error in no?%} power density
fom) [normalized) " Sehes | oxixs | oxkxs
100 0.6385 -0.39% —0.3§; -0.39%
102 0.7150 -0.31 -0.31 -0.31

. 104 0.8322 -0.50 -1.09 -0.26
106 0.9694 -0.41 -0.94 +0.25
108 1.1336 -0.30 -0.74 +0.55
110 1.3265 -1.23 -0.72 +0.78
112 1.5558 -1.21 +0.76 +0.60
114 1.8260 -1.56 -0.18 | -0.05
116 2.1391 -2.00 -0.65 -0.73
118 2.5004 -2.42 -1.44 -1.58
120 2.9089 -2.76 -2.38 -2.40

* due to spatial convergence error.
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Figure 5.14 Nodal power densities of the PRN during
a CC3-PWR transient.
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investigate these sudden increases in error, another
finer-mesh reference solution was compared with the original
reference solution (the 2 X 4 X 17 mesh calculation).
In addition to the ten fine meshes within the PRN
(z = 80 ~ 100 cm in Fig. 5.1) six more fine-meshes were
constructed to create a 2 X 4 X 23 mesh system for the
CC3-PWR. The mesh layout of the 2 X 4 X 23 system is
shown in Table 5.10. This system then was used to analyze
a rod ejection event in the same manner as the 2 X 4 X 17
calculation.

Comparison of the total power transients as predicted
by the 2 X 4 X 17 and 2 X 4 X 23 calculations is given
in Table 5.10, and their relative difference as a function
of control rod position (or, function of time) is plotted
in Fig. 5.15. The difference is not significant until
it reaches time step 9. After time step 9, the difference
grows to 0.61%. Comparing Fig. 5.15 with the lower two
curves in Fig. 5.13, one is able to see a common behavior,
namely the sudden rise at the final stage of transient.
In Fig. 5.15, this is regarded as a result of a combination
of spatial truncation error (largely from quadratic leakage
approximation in QUANDRY model) and accumulated error
from time step discretization. It is then reasonable
to conclude that the relatively large error (about 2%)

in Method 2J (also in Method 2Q) at the final stage of
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Table 5.10

Comparison of Total Reactor Powers from
Fine-Mesh QUANDRY Reference Solutions

Two

for a CC3-PWR Transient.

pgggtggg 2§Z:ﬁ7* 2§g§§3** difference

(c%) cal?ﬁ%ation cal?x}ation (%)
100 100. 100. 0.0

102 106.63 106.56 0.07
104 117.05 117.11 0.05
106 128.79 128.89 0.08
108 142.45 142.56 0.08
110 158.15 158.46 0.20
112 176.54 176.72 0.10
114 197.96 197.94 0.01
116 222.56 222,87 0.14
118 250.94 251.96 0.41
120 283.81 285.53 0.61

* axial mesh spacings

** axjal mesh spacings

20,20,20,20,20,2,2,2,

2,2,2,2,2,2,2,20,20 cm
from the bottom.

20,20,20,20,10,5,3,2,

2,2'2,2’2’2’2'2'2’2'2’
3,5,10,20 cm from the

bottom.
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Figure 5.15 Differences in total power levels
between 2x4x17 and 2x4x23 mesh calcula-
tions for a CC3-PWR transient.
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Table 5.11

Axial Power Distributions for the CC3-PWR
70 msec,

with the Rod Tip at 114 cm.

(a) plane power density

t =

plans | reference | °"T°F fRgPiame power (%)
number 2xhx17 vadratic
VWC xial fix | Method2r
2 1.1547 -18.1 -12.6 -0.33
3 2.1311 -18.3 -12.8 -0.33
4 2.6454 -18.8 -13.2 -0.33
5 2.5477 -19.8 -13.7 -0.33
6 1.8569 -20.7 -14.2 -0.39
7 0.8866 -19.4 -12.8 -0.31

(b) nodal power density of the rodded assembly

plane reference error in nodal powggg(%)

number 2x4x17 | vwe g;?éf%ﬁi Method 27
2 1.2685 -18.1 -12.6 -0.33
3 2.3393 -18.4 -12.9 -0.31
L 2.8989 -19.0 -13.3 -0.37
5 2.7706 -21.0 -14.8 -0.04
6 1.8260 -25.5 -17.8 | -0.05
7 0.6577 -18.0 -10.7 -1.10
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Figure 5.16 Normalized power distributions for the
CC3-PWR model at time step 7 during a
rod withdrawal.
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the transient is at least partially caused by uncertainties
in the reference solution rather than totally due to
limitations of the Collector-Predictor methodology.

As a fihal test of the Collector-Predictor method,
global power distributions predicted by Method 2J were
compared with those predicted by conventional methods.
To represent the worst cusping effect, solutions at time
step 7 were examined. These are summarized in Table
5.11 and Fig. 5.16. The magnitudes of errors for the
conventional methods are unacceptably large and are comparable
to those of total reactor power. By Method 2J the axial
planar power density was estimated to -*:e accuracy of
99.6%. The same accuracy was obtained in axial nodal
power distribution along the rodded assembly except for
a rodded node next to the top retlector in which error
is ~1.1%. And this amount of relative error is not seriously
considered because the absolute power density there is

far less than those of other nodes.

5.6 Summary

The Collector-Predictor methed along with the conven-
tional volume-weighted cross section (VWC) and quadratic
axial flux approximation methods, was tested and the
results were compared for the CC3-PWR, CISE-BWR and TRD-BWR

benchmark problems.
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For the CC3-PWR model, static tests were performed
for the tip of the control rod located at a wide range
of positions. QUANDRY solutions of three-dimensional
problems with an extra axial piane inserted at the location
of the tip of the control rod in the partially rodded
node, were taken as numerical standards. Eigenvalues
and power distributions as computed by Method 1 and by
the VWC method were compared with these numerical standards.
Results showed that Method 1 is far superior to the VWC
scheme. The rod cusping effect can be seen to be present
for the VWC results but absent when Method 1 is used.
The same CC3-PWR model was used for transient tests.
The results showed that both Method 1 and Method 2 are
much more accurate than the VWC or quadratic axial flux
schemes., Since the running time is only marginally greater,
Method 2Q or Method 2J (the most accurate) is favored.

A similar study was performed for the TRD-BWR model.
Static problems for the rod fixed at various locations
in an internal axial node and in an axial node next to
the bottom reflector were tested. The acceptability
of Method 1 as well as its superiority to the conventional
VWC method was again demonstrated. The results of a
rod withdrawal transient for the TRD-BWR model showed
the inadequacy of the VWC or quadratic flux fix-up schemes

and the remarkable accuracy of the two new methods -
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particularly Method 20. Both for PWR and for BWR benchmark
problems the errors in predicted reactor eigenvalues
and power distributions decreased by a factor of about
10.

It is believed that these results demonstrate that
the new method, the Collector-Predictor method, provides
a satisfactory resolution of the control rod cusping
problem for the QUANDRY code. The scheme can be applied
simply and automatically entirely within the framework
of the QUANDRY equations using data already generated
during normal operation of the code. It is cheap to
implement and appears to yield, consistently, very accurate

results,
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Chapter 6
SUMMARY ANRD CORCLUSIOR

6.1 Overview of the Thesis

The objective of this thesis was to develop and
test accurate, reliable and systematic procedures for
resolving the control rod cusping problem for nodal methods
in light water reactor calculations. Even though the
solution of the neutron diffusion equations by finite-
difference approximation is standard, obtaining the full-
core solution by this method is expensive and computationally
inefficient, especially for transient situations. An
excellent alternative is the analytic nodal method developed
at M.I.T. and embodied in the QUANDRY code. When a reactor
is represented by a nodal model, it is customary to homogenize
the cross sections over a whole node. The presence of
control rods partially inserted in a node and use of
inaccurate homogenization parameters there cause the
control rod cusping problem. Thus the main task of this
study was to develop methods for determining accurate
homogenization parameters for a partially rodded node
based on the analytic nodal method.

In Chapter 2, nodal equivalence theory and the QUANDRY
analytic nodal method for both steady~state and time-dependent
problems were reviewed. Also the homogenization parameters
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based on equivalence theory and the QUANDRY model were
reviewed because of their importance to the resolution
of the control rod cusping problem.

Extensive discussion of the control rod cusping
problem was presented in Chapter 3. The causes of the
cusping problem were analyzed, and several new solution
methods were introduced. The feasibility of making use
of tabulation-interpolation methods was examined for
estimating homogenized cross sections and axial discontinuity
factors for a partiaily rodded node. The volume-weighted
cross section approach and an asymptotic axial flux construc-
tion method were also introduced. However, it was found
that these methods are problem-dependent, and either
require complete global calculations or demand considerable
machine memory space.

Chapter 4 described a new solution scheme, the Collector-
Predictor method. Actually two such methods were developed.
The first method (Method 1) is rather simple and useful
for steady-state problems, but requires some information
from a solution of the same system with no partially
rodded nodes. For this reason the second method (Method
2) was introduced. This scheme is adequate for both
static and transient problems, and all the required infor-
mation is internal to the QUANDRY solution. The basic
idea of the Collector-Predictor method is to gollect

186



the QUANDRY solution information to predict the axial
flux shape in a partially rodded node, and thereby to
determine flux-weighted cross sections and axial discontinuity
factors., An overall procedure for incorporation of the
Collector-Predictor method into the QUANDRY model was
described there.

Finally, in Chapter 5, the Collector-Predictor method
was employed to solve the control rod cusping problems
in steady-state and transient calculations. Severai
benchmark problems were solved, and the results were
examined along with those of the conventional volume-weighted
cross section (VWC) and quadratic axial flux approximation

methods,

6.2 Results and Conclusion

A partially rodded node (PRN) is present whenever
the control rod tip locations do not match exactly the
axial nodal interfaces. It was found that if exact homo-
genized group cross sections and the discontinuity factors
(both in radial and in axial directions) for the PRN
are given, the control rod cusping problem caused by
the presence of the PRN can be eliminated. For the deter-
mination of accurate homogenized cross sections and discon-
tinuity factors, four new schemes were daevised and examined

in this thesis:
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(1) Tabulation and interpolation of the homogenized

cross sections and discontinuity factors
(2) Volume-weighted cross sections and corresponding

discontinuity factors
(3) Asymptotic flux ratio approach
(4) The Collector-Predictor method

* Method 1

* Method 2 --- methods 2F, 2M, 2Q and 2J

For tabulation of flux-weighted cross sections,
the relative difference of various types of flux-weighted
and volume-weighted cross sections for several positions
of the control rod tip in the PRN were approximated by
quadratic polynomials. It was found that except for
thermal group absorption cross section, the errors in
flux-weighted cross sections are negligible. Similarly,
an attempt was made to approximate axial discontinuity
factors by higher-order polynomials. The motivation
for doing this was based on the fact that the general
shapes of the discontinuity factor curves are not altered
much when the size or composition of the PRN is changed.
However, fitting the interpolated curves for the axial
discontinuity factors by cubic polynomials or region-wise
cubic spline interpolations, resulted in poor agreement,
especially in thermal group. Because of the importance

of thermal group cross sections and discontinuity factors
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in solving the control rod cusping problem, relatively
large errors in thermal group parameters make the tabulation-
interpolation scheme unattractive. Other drawbacks are
that this scheme is strongly problem-dependent, requiring
complete global calculations and demands considerable
machine memory space.

an approach employing the volume-weighted cross
sections and corresponding discontinuity factors was
tested for a simple one-dimensional rodded node. The
result showed that this approach could not reproduce
the exact "individual®™ reaction rates within the PRN
even though it was able to reproduce exact eigenvalue
and nddal leakage rate. Along with this drawback, the
wide spread in discontinuity factors associated with
using simple volume-weighted cross sections provides
a potential source of error when these factors must be
computed approximately.

Because of the deficiencies of the tabulation and
interpolation methods and the inadequacy of volume-weighted
cross sections, analytic and problem-independent methods
were developed. One of them is an asymptotic axial flux
construction method which determines homogenized flux-weighted
cross sections by solving for asymptotic one-dimensional
flux shape within a PRN neglecting transverse leakages.

The accuracy of this method was poor for three-dimensional
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problems where the transverse leakages are present.
However, this method did lead to an idea for the reconstruc-
tion of the axial flux shape by taking the transverse
leakage into account -- the Collector-Predictor method.

The Collector-Predictor method can determine accurate
homogenized cross sections and the discontinuity factors
in axial and radial directions for a partially rodded
node. It was embedded in the QUANDRY code, and applied
to several static and transient benchmark problems.
Numerical standards were taken from fine-mesh QUANDRY
solutions of the same problem. For static problens,
eigenvalues and power distributions computed by Method
1 and by the VWC method were compared with these numerical
standards. Results showed that Method 1 is far superior
to the VWC scheme; errors were reduced by a factor of
5 to 10 in the CC3-PWR and the TRD-BWR problems. For
transient analyses, both Method 1 and Method 2 were used
to estimate total reactor power and nodal power distributions
for three transient situations; a rod drop in the TRD-BWR,
a rod insertion in the CC3-PWR and a rod ejection event
in the CC3-PWR model. The results showed that both Method
1 and Method 2 are much more accurate than the VWC and
quadratic axial flux schemes. The control rod cusping
effect can be seen to be present in the VWC result and

in the quadratic axial flux scheme but absent when Method
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2 was used. Both for PWR and for BWR benchmark problems,
both global and local errors in predicting power levels
caused by making use of the volume-weighted cross sections
vere reducea by at least a factor of 10, the maximum
error being less than 2 § in most cases.

The overall results of application of the Collector-
Predictor method to several benchmark problems demonstrated
that the Collector-Predictor method is systematic, reliable,
problem-independent, and can provide a satisfactory resolution
of the control rod cusping problem at a marginal increase

in computing time.

6.3 Recommendations for Future Work
Several specific areas of potential interest for
the control rod cusping problem have not been explored,
and suggestions are made for further study.
1. Additional Testing for an Extended Core
Current application of the Collector-Predictor
method was limited to interior sections of reactor
cores. Even though the effect of the control rod
cusping problem in a low-powered zone such as core
periphery is not so serious as in a high-power,’
interior zone, it would be valuable to extend the
testing to a three-dimensional quarter-core or full-

core configuration., Because of the difficulty of
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gaining access to a three-dimensional, transient,
fine-mesh "reference®™ solution (The memory space
of the IBM 3033/N at M.I.T. is 3052K maximum), the
investigations in this thesis were restricted to
small benchmark problems., However, if such a reference
solution were available, the Collector-Predictor
method embedded in the QUANDRY code could be examined
for an extended core.
Application to Thermal-Hydraulic Feedback Problem
The homogenized cross sections and discontinuity
factors for fully rodded and completely unrodded
nodes involved in the current studies were fixed
throughout the transient (no feedback). For more
realistic transient problem with thermal-hydraulic
feedback effects included, the homogenization parameters
will change as the transient proceeds. Conventional
tabulation-interpolation seems +to be inadequate
for this situation because of the large number of
cases to be prepared fér data acquisition. However,
the Collector-Predictor method is expected to be
quite efficient even in this situation since all
that is required by the Collector-Predictor method
is the homogenization parameters for fully rodded
and completely unrodded nodes under specific thermal
hydraulic conditions. These would be provided by

thermal hydraulics model calculations.
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Non-Unity Axial Discontinuity Factors for Axially
Uniform Nodes

It is standard to use unity discontinuity factors
in axialidirection for an axially uniform (neutronically)
node. The use of unity discontinuity factors for
a node next to the reflector or for a node of signifi-
cantly different composition (e.g., fully rodded
node and completely unrodded node) has occasionally
shown an uncomfortable error in eigenvalue or power
distribution, especially in BWR problem. A systematic
way of finding accurate non-unity axial discontinuity

factors for these nodes is desirable.
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THE HOMOGENIZATION PARAMETERS FOR A PARTIALLY RODDED NODE

Appendix 1

Al.l1 Flux-Weighted Cross Sections for a 3 X 3 X 3 System

Table Al.l Flux-Weighted Cross Sections vs. Control
Rod Tip Position for a Partially Rodded
Node in a 3 X 3 X 3 System (Fig. 3.3).
rod tip = - - -
position|STOUP Dg Ztg Lgg' vzfg
(czi g (cm) (cm-1) (em-1) (em-1)
0.0 1 1.513 0.03045 0.02113 0.004625
0.3951 0.1414 0.0 0.1645
1 1.5017 0.031283 0.021165 0.0046268
5.0 1 2 | 0.39158 0.1510 0.0 0.16567
.5 1 1.4958 0.031715 0.021184 0.0046277
2 0.38971 0.15619 0.0 0.16631
10.0 1 1.4898 0.032169 0.021203 0.0046286
2 0.38764 0.16196 0.0 0.16701
15.0 1 1.4768 0.033156 0.021245 0.0046307
2 0.38281 0.17570 0.0 0.16869
17.5 1 1.4699 0.033683 0.021267 0.0046319
2 0.38004 0.18374 0.0 0.16968
20.0 1 1.4630 0.03422 0.02129 0.004633
2 0.3772 0.19210 0.0 0.1707
\)= 2.5
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Al.2 Interpolations of the Axial Discontinuity Factors

In Fig. 3.5 of Chapter 3, two polynomial interpolations
of the axial discontinuity factor for a partially rodded
node were illﬁstrated. This section gives those polynomials
and data for the curves in Fig. 3.5.
Al.2.1 A _Cubic Polynomial Interpolation

A cubic polynomial for approximate discontinuity
factors £ in terms of the position of a control rod

g
tip, h,, is given by

+ 3 2 X
fg = ahc + bhc + chc + d

To determine four unknowns a, b, ¢ and 4, two end points
at hy = 0 and 20 cm and two additional, arbitrary points
at h, = 7.5 and 15 cm (Table 3.3) were interpolated.

Solving for a, b, ¢ and 4 yields

+ +
f— . - - . -
o (15.0) -1 . £5 (7.5) -1
562.5 703.125
+ _ + _
- £2 (15.0) -1 ) ££ (7.5) -1
= 20.455 20.089
+
£X (7.5) -1
c= —9 - 56.25a -7.5b
7.5
d=1

The interpolated values of the axial discontinuity factors

are given in Table Al.2.

200



Table Al.2 The Axial Discontinuity Factors Interpolated
by a Cubic Polynomial for a Partially
Rodded Node in a 3 X 3 X 3 System (Fig. 3.3).

rod Fip
Poi;tlon fi fé f; f;

(cm)
0.0 1.0 1.0 1.0 1.0
1.0 1.0113 1.0005 0.9723 0.9308
3.0 1.0335 1.0285 0.9307 0.8289
5.0 1.0542 1.0816 0.9057 0.7702
7.0 1.0716 1.1471 0.8947 0.7475
8.0 1.0787 1.1806 0.8937 0.7476
10.0 1.0884 1.2411 0.8993 0.7661
12.5 1.0905 1.2881 0.9173 0.8147
4.0 1.0852 1.2915 0.9322 0.8522
16.0 1.0691 1.2560 0.9548 0.9060
17.5 1.0493 1.1923 0.9724 0.9452
19.0 1.0224 1.0910 0.9894 0.9803
20.0 1.0 1.0 1.0 1.0
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Al.2.2 A Cubic Spline Interpolation

Given a set of points, x, = {xj}?=0 where
a4 = X5 < X3 < eveeee < X = b, and a set of functional
values, {F(xj)}g=0, a piece-wise cubic spline, Sj(x),

interpolating at all Xy is given in X4 £x £ X441 by [J-1]

Ys Ys
= —d _ 3 —j+l - 3
Sj(x) Ghj (xj+1 X)~ + 6hj (x xj) +

where Fj = F(xj)
hj = xj+l - Xj

" - g"(x.

yj = 8" (x5)

This cubic spline S(x) satisfies the following three
properties:

1. S(x) € C2[a,b]

2. S(xj) = F(xj) for 0 j £ n

3. S(x) is a cubic polynomial on each subinterval

(x5, %4411 for 0 < j < n-1.

To specify Sj(x), yg must be found. This can be
accomplished by requiring Si(xj) = Sﬁ-l(xj) for
1 < j £ n-1. This yields the following linear system

of (n-1) equations in the unknowns {yg}g=0=
" " z[AFs _AF.
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whereAFy = Fy41 - Fj. It is common to set yg = yj =
0 in order to form a "natural cubic spline".

A three-region natural cubic spline was chosen for
approximating axial discontinuity facters in Fig. 3.5

as the following:

Xg = 0 Xy = 7.5 cm X9 = 15 cm X3 =20 an
hy = 7.5 cm hy = 7.5 cm h, = 5 cm

Fo = 1.0 F3 =1.0

Fy = discontinuity factors at hg = 7.5 cm (Table 3.3)

= discontinuity factors at hg 15 cm (Table 3.3)

g
N
I

The results are tabulated in Table Al.3 for several values
of the control rod tip position h, for a 3 X 3 X 3 system

shown in Fig. 3.3.

Al.3 Volume-Weighted Cross Sections and Corresponding

Axial Discontinuity Factors

This section provides a test problem examining the
use of volume-weighted cross sections (Egg) and their
corresponding discontinuity factors as homogenization
parameters for a partially rodded node (PRN). (see Section
3.4.2 of Chapter 3). For simplicity, a one-dimensional
1 X1 X 3 node problem (Fig. 3.3b) is tested:

rodded —

<— unrodded

T
e

B 2 T
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Table Al.3 The Axial Discontinuity Factors Interpolated
by a Natural Cubic Spline Function for
a Partially Rodded Node in a 3 X 3 X 3
System (Fig. 3.3).

rod-tgp
Posizlon fi fé f; f;
(cm)
0.0 1.0 1.0 1.0 1.0
1.0 1.0113 1.0179 0.9807 0.9531
3.0 1.0334 1.0553 0.944L4 0.8650
5.0 1.0538 1.0980 0.9147 0.7940
7.0 1.0714 1. 1494 0.8962 0.7515
8.0 1.0789 1. 1794 0.8925 0.7445
10.0 1.0898 1.2418 0.8961 0.7582
12.5 1.0927 1.2953 0.9156 0.8108
4.0 1.0865 1.2973 0.9318 0.8514
16.0 1.0671 1.2458 0.9547 0.9051
17.5 1.0448 1.1684 0.9718 0.9420
19.0 1.0186 1.0705 0.9887 0.9771
20.0 1.0 1.0 1.0 1.0
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Let us assume that an exact heterogeneous solution
is known and consequently flux-weighted cross sections
for the PRN (fag) are determined. When h, is specified,
Iyg is readily known. From Eq. 2.7, we can obtain two
sets of neutron balance equations within the PRN associated

with fgg and Egg, respectively. Those are

_1,sF <F -F =F -F =F
[J5(z,) - Jdy(25)] + 25 ¢ = —Fl- L
h, V1'% 1'%p 1% kF e VO£, )
(Al.1)
1,sF _ SF -F =F _ =F =F
h, M2(%p) = Jp(2g)] + 33 8, =1y &
and
Lr=zv v -V =V 1  =v =v
[J;(z,) - J,(z.)] + = = P
h, "1'°r 1'% 191 T kv Vi, 2
(A1.2)

dr=zv =V =V _ =V =V
h Ma(2p) = Ja(2g)] + 25 05 =13 &

where 7, = 3, - —— vi,. , and the superscripts F
1 t k fl

1 eff
and v represent properties of the PRN associated with
Egg or Egg. Forcing Eq. Al.2 to preserve eigenvalue
and surface currents given by Eq. Al.l yields

-1 -F —I =-F I =

=y =V ~1 =v

¢ z VI z : VI ¢
1 1 kegg 1 kege £ 1

=y -v =v =F =F =
%2 | “I21 P “Z3 Z P
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Thus, substituting this [EY EX]T and surface currents
Jg(zB) and Jg(zT) in the last equation of Appendix 2.3
produces homogenized surface fluxes, 5g,hom' corresponding
to the use of fgg, and consequently discontinuity factors,
fY, corresponding to the use of Egg.

g

For numerical test, cross sections given in Table
3.1 was used for the PRN of he = 10 cm and h, = 20 cm.

Data and results are summarized below.

using EEg using Egg

g=1 g=2 g=1 g=2
D, 1.4949 0.38951 1.488 0.38615
ftg 0.03179  0.15673 0.032335  0.16675
fgg. 0.02119 0.0 0.02121 0.0
vffg 0.004628  0.16637 0.004629 0.1676
Eg 2.8236E13 3.8317E12 1.2911E13  1.6560E12
fg(zB‘ 2.1692E12 8.4595E10 - - - -
Eé(zT>1.3373E12 3.8720E10 - - - -
$é(zB) 4.4483E13 6.6218E12 2.4844E13  3.2251E12
5é(zT) 1.3999E13 1.5682E12 2.8390E12  3.8482E11
£,(25)| 1.0979 1.1990 1.7905 2.0532
fg(ZT) 0.7855 0.6403 L.9310 4.0750
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Using 7{g and f£§ in the 1 X 1 X 3 problem resulted
in the exact value in kegg. However, individual reaction
rates for the PRN were not preserved by introducing fgg

v
and fg.
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fgp umles ¢
Appendix 2
S gnadeat i BEURNE IR Fut BIARSYSL B LERbOROS
A Quadratic Expansion for Transverse Leakages
Sl s« nugiend i ng Sapawsk it end Gnstans Flue
and Corresponding nomogenized Surface Flux

B8 ¢+ Bapanbiok bustbiviante foo o WuaNeAbis Foansveses
A2.1 Expansion Coefficients for a Quadratic Transverse
b ngs  Saget e tant dan
Leakage Approximation

¥ L T LR T T 0 b ar amian
In Section 4.3, for solving Eq. 4.1 for an axial
P4 RE Bpk ek I T8 SR Y T HAR h g cEs e, B% WAk

flux shape, the transverse leakage term Sk(é) was
AE L R ARV Ed e b 8 ¥ 43
approximated by Eg. 4.2 as

3 2

# EY 2
sg(é) = L. 0f #
By Brgpat £¥ Jﬂe‘ﬁf'*ﬁ*** ¥l e Ancastmiued we  bhat
The expan51on coefficients QXK “dre determined so that
R S E Y IR KR BT B T g mﬂb%iuwﬁ PR nwwr & I
the integrals of the approximated shapes over a reglon
RS AT R T T IR I I B AL S T I O

of interest (k) and its two adjacent regions (k-1) and
o4 grEBEr o8 E6E RO BF REE Ry EnuBi de iRk agene st thwoe
(k+1) preserve the average transverse leakages of these
(AR L B T R LEXS &% uk FRR e ld ek mE bl 8 Bebsede
three regions. Here, each region can be either a subnode
ce R Eh pRi b gty 1 ndBed e BB w8 whetl bode wees b4
in the partlally rcdded node or a whole node next to
BEE BRET LR c e pulBRd o BE Bk b i aBbs R e bw i e
the partially rodded node as illustrated below.

& ¥ f % ' Bt . B :
( -2) t (k=1) i (k) i (k1) i (k+2) b e
i i, R Sz
z ¥ z! ¥ - z F 2 BLXT U X 2 BT
k-2 k=1 k Zr+1 k+2 k+3

T T PRt Swe  bgaly ‘ -
'rhus, the reqmement for fmdmg%qg‘ﬁb i'a% %"ol’l%’w’s”é“‘
J
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k-1 Zy k k k 2
(zp, - 2,_4) S = S (Q. + Q- z+ Q 2%)dz
k k-1 "g Zgy 99 97 95
=k Zr+1l Kk k k 2
(z - 2z.) S = S (0° + Q. z+ Q 2°)dz
k+1 k g . zk g0 gl 92
=k+1 Zx+2 , k k k 2
(z -z ) S = (Q. + Q- z+ Q> z%)dz
k+2 k+1 g zk+1 g0 gl 92

Solving for the three unknown coefficients, we obtain

sk-1 _ zk, _ gk _ gk+1 _ -
Qg - (8 §g) - (55 - B;™") (A - a))/(B, - Aj)
2 (B, -B, - (B, - By) (A, - a,)/(A, - &)
zk-1 _ zk, _ gk _ gk+l - -
ok - 15 8§g) - (8g - 5;™") (B; - B))/(B, - By)
1 (A - Ay - (A, - aj) (B; - B,)/(B, - Bjy)
k. gk  _ a0k _gaok
%," %q 209, B2,
where Ap = % (Zp im=1 t Zkem=2)
5 =i (32 2

m =3 Zkam-1 * Zkem-1 Zk+m-2 T Zk+m-2) °

A2.2 A Particular Solution for the Axial Flux

The linear nonhomogeneous equation, Eg. 4.1,

be solved completely for an axial flux shape 65(2) if

a particular solution Pg(z) in Eq. 4.3 is found in terms

of a quadratic polynomial with the nonhomogeneous term

Sg(z) approximated by a quadratic polynomial as determined

in the previous section.
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In Section 4.3.1, Pg(z) was given in the form,

k(2] [o¥ o] [22| [of

"
+

s
wx

pk (z) q q z q

To determine the unknowns pg and q% (j = 1,2,3), we may

use the method of undetermined coefficients. Then, Eq. 4.1

can be written as

) 2 ) ) )
k _d° k . k 1( 2
D -z \22 P P z P
15,2 "1 Keer £,]|[P1 2 3
< + >
2
k k a2 _ _k k k 2 k
221 P2 2 ~ T2 | ||%1 a3 3
k k 2] k
Q1 955 |2 Q0
= +
k k k
Q2 Q| |2 Q20

)
Thus, making use of the method of unknown coefficients,
we obtain the following six linear equations for six

unknowns, P§ and q§ (3 =1, 2, 3):

Bt R A A
2 |9 @ |9 %
and

o k][] [akemlet]
h ]S [l



Finally, solving for P§ and qk yields

3
k
k k k ) RV k k
P} Py Lo Keeg £, 95, 93
_1
M
k k k k k k
Q9 sy I Qo 9
and
ok ok 1 ok 1 ik kKT
Py o Kore szz Q10-2Dyp,
1
M
k k k K k. k
93 o R Q5072D,qy |
where
1 K _k kK _k
M = vk Z -7 T
Kepg £, 721 TR I,

A2.3 Homogenized Surface Flux

As discussed in Section 4.3, for finding the axial
discontinuity factors for a partially rodded node (PRN),
the homogenized surface fluxes should be determined so
that they preserve nodal reaction rates, surface current
and reactor eigenvalue. In this section, a formula for
the homogenized surface flux for a PRN will be derived.
A diagram shown on the following page illustrates a homo-
genized PRN along with its adjacent nodes. The axial
positions zZg and zq represent the bottom and the top
of the PRN. The surface net-currents and homogenized
surface fluxes at zp and zg are designated as 3; and
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5;: plus sign (+) for zgp surface and minus sign (-)

for zpg surface. S (z)
——
- $g fg
Jg—- PRN Jg—*
Zg " Zq o

The transverse leakage Sg(z) is approximated by
a quadratic polynomial, and a particular solution for
Eq. 4.3 is found from a formula given in Section A2.2.
Then a general solution for an axial flux in the homogenized

PRN can be given (from Eq. 4.3) as

o A Sy -
¢, (2) 1 1 g sin[kz ] 0 KC,
= +
3, (z) r s 0 L sinh[uz] |uc
2 i U 3
[ ] [ 2
cos [Kz ] 0 C, Py P, z Py
+ +
0 cosh [uz ] C, qy q z a5
(A2.1)

All constants are found from the homogenized cross sections
of the PRN. First, the surface flux 6; at z = zp is
considered. For this, we define z, = z - zg. At z = zg,

Eq. A2.1 then gives

2o - 2
¢y 1 1 Cal |P1 P2| | 25| | P3

N
[ S
o}
n
(@]
>
Q
-
Q
N
N
w
Q
w
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The corresponding surface current J:

And node-averaged

]

©-1l

1

S
B

21

L

L}; sin [Kh]

1

1
0 3

0

sinh

1

1

B

P

is

p2 ZZB

93

(A2.3)

flux is found by integrating Eq. A2.l;

1 -ig (1 - cos [Kh)) 0 RC,
+
s|/| o -1 (1 - cosh[un) | | uc,
: U
- .
% Py Py l%'(zé + zpzg + zg) P4
+
[on} [c,\ |q Loz, + 2z q
_ 1 92 2 v T B J 3
(A2.4)

To find the unknowns Cy and C4 for the surface flux

in Eg. A2.2, we can eliminate RCy and UC3 in Egs. A2.3

and A2.4.

KCl

UC3

where

[B™]

From Eq. A2.3 we obtain

~1
(s-r)

-r

1 =]
-1\| - J
ﬁl 1
L-_
1|t -==— J
| Dy "2
2zB
1

213

-[B ]

(A2.5)



From Eq. A2.4 we have

c, |Rh/sin[RH = 0 s -1
T (s-r)
C, 0 Uh/sinh([Uh]| |~r 1
(1 1|[L @ -cos(rr) o0 |
-1 K
[C] h 1
r s o - =2 (1 - cosh[uhbJ
where )
P By | [ 3 (2% + gz + ) P3
[C] = +
@ 9 | |7 (% *z) 93

Eliminating KC; and UC3 from Egs. A2.5 and A2.6, and

substituting the resultant Co and C4 into Eq.2.2 yields

5] 1 1] [kn/sin[gn] o |[s -1
o1
_ (s-r)
53 r s||0 Uh/sinh|Uh)||lr 1
1 1 1"Fn sin[kh of[s -1
~ (s-r) -
r sjl 0 g sinhiUh{ -r 1
~[BJp+ [A7]
where 2

[a7]

1]}
+
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Next, the surface flux $; at z = zp can be found
in the same manner by defining z, = z2p - z in Eq. A2.1.
Thus defining

P P2 28] [P3
[a*]

i
-+

q dz Zp q3
and
P1 Py [22p

[8*]

we can have a final formula for group surface fluxes,

$i (1 1| [Rh csc[kn o s -1 31
ol R
-+ (s-r) =
03 r s 0 Uh cschub)||-r 1 ¢
[ -1 Eh
1 1 tan[39] o s -1
Kh 2
—h
-[Clr £ (s-r)

- 8%} + %,
e . 31
52 2

For K2 < 0, it is necessary to replace as follows:

kh csc [k — /&Zh csen [ /K% n]
‘I](‘H tan [gh] —_— ﬁ;tanh [12‘ m h]
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Appendix 3
CROSS SECTIORS AND MESH LAYOUT FOR THE CC3-PWR

Table A3.1 Heterogeneous, Two-Group Cross Sections
for Pin Cells of the CC3-PWR.

groupn
type Dg Ztg Zgg' \)Z:fg
g (cm) (cm-1) (cm-1) (cm-1)
1| 1.50 0.033 0.02 0.0065
fuel 1 2| 0.40 0.18 0.0 0.24
1 1.50 0.03 0.02 0.005
fuel 2 2| 0.40 0.15 0.0 0.18
control 1 1.113 0.0838 0.0038 0.0
rod 2 | 0.18% 0.96 0.0 0.0
vater 1] 1.70 0.036 0.035 0.0
0.35 0.050 0.0 0.0
v = 2.5
"t Tag T ‘g’
X ,= 0.0
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| T
(1,%) (2,%)
X
X O
X X ] 0
2 1
(1,3) (2,3)
X X X X
X X
X X
1 2
n*J=0 n+J=0
T (1,2) (2,2)
X X 8 water hole
X X 0.7x0.7cm
X X X X B water noie
1 2 1.4x1.4cm
i N E]:rodded cell
(1,1) (2,1) 1.4x%1.4cm
X X X X
fuel cell of
X 4 composition
X % 1 or 2
2 1 . .
(i,j) quarter
. T— assembly
n-J=0 index for
i=1,2 and
j=1,2,3,4

Figure A3.1 The 16 X 32 mesh layout of rodded plane
of the CC3-PWR model. Zero net-current
boundary conditions are imposed.
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Table A3.2 Flux-Weighted Cross Sections and Radial
Discontinuity Factors for the CC3- PWR
(16 X 32 mesh calculation result).

(a) node layout for the CC3-PWR

ewater reflector

17 17
17 17
17 17
17 17

sunrodded lower plane (node 8 is unrodded)

7 f8
5 6
3 b4
1 2

«rodded upper plane (node 16 is rodded)

13 | W
11 12
9 10
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Table A3.2 (continued)
(b) flux-weighted cross sections and radial discontinuity
factors
t 12 Vig ir
1 1 1
D
2 s, 221 "Zf‘2 Zf,
node X X fx+ +
1 2 1 3
- - + +
ok £ y y
1 2 1 2
1.5133 0.030449 0.021123 0.0046258 0.0018503
0.39508 0.14128 0.0 0.16431 0.065724
1
1.0015 0.97534 1.0032 0.93344
1.0015 0.97534 1.0032 0.93344
1.51340 0.033226 0.021128 0.00601143 0.0024045
0.39508 0. 16866 0.0 0.219070 0.087628
2
1.0034 0.93384 1.0012 0.96769
1.0012 0.9677 1.0034 0.93384
1.5134 0.033226 0.021128 0.0060113 0.0024045
0.39508 0. 16866 0.0 0.219070 0.087628
3
1.001%2 0.98770 1.0034 0.93384
1.0034 0.93384 1.0012 0.96769
1.5133 0.030449 0.021123 0.0046258 0.0018503
0.39508 0.14128 0.0 0.16431 0.065724
4
1.0032 0.93344 1.0014 0.97534
1.0032 0.93344 1.0014 0.97534
1.5134 0.033226 0.021128 0.0060113 0.0024045
0.39508 0. 16866 0.0 0.219070 0.087628
5
1.0012 0.96770 1.0034 0.93384
1.0012 0.96769 1.0034 0.93384
1.5133 0.030449 0.021123 0.0046258 0.0018503
0.39508 0.14128 0.0 0.16431 0.065724
6
1.0032 0.93344 1.0014 0.97534
1.0014 0.97534 1.0032 0.93344
1.8133 0.030449 0.021123 0.0046258 0.0018503
0.39508 0.14128 0.0 0.16431 0.065724
7 .
1.0015 0.97534 1.0032 0.93344
1.0032 0.93344 1.001S 0.97534
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Table A3.2 (continued)
D X X \)Zf if
1 t1 12 1 1
AV
D It, 221 it I,
node X~ - £t +
1 2 1 2
y- y- y+ £yt
5 2 ] 2
1.51340 0.033226 0.021128 0.0060113 0.0024045
0.39508 0. 16866 0.0 0.219070 0.087628
8
1.0034 0.93384 1.0012 0.96769
1.0034 0.93384 1.0012 0.96770
1.51330 0.03045 0.02112% 0.004625 0.001850
0.39507 0.14127 0.0 0.164280 0.065713
9
1.0015 0.97544 1.0032 0.93332
1.0015 0.97485% 1.0032 0.93344
1.5134 0.033226 0.02113 0.0060102 0.002404 1
0.39506 0. 16864 0.0 0.21902 0.087608
10
1.0035 0.93377 1.0012 0.96818
1.0012 0.96760 1.0034 0.93333
1.51340 0.033225 0.021127 0.00601 18 0.0024047
0.39508 0. 16867 0.0 0.219090 0.087637
11
1.0015 0.96667 1.0032 0.93370
1.003 0.93365 1.0017 0.96813
1.51330 0.030448 0.021120 0.0046266 0.0018507
0.39509 0.14130 0.0 0.1684330 0.065733
12
1.003% 0.93370 1.0012 0.97412
1.0036 0.93367 1.001 0.97541
1.51350 0.033227 0.021135 0.0060082 0.0024033
0.39504 0. 16858 0.0 0.218920 0.087569
13
1.0011 0.96854 1.0034 0.93336
1.0008 0.96692 1.0037 0.93345
1.5134 0.030452 0.02113 0.0046235 0.0018494
0.39504 0.14121 0.0 0.164190 0.065674
14
1.0044 0.93481 1.0011 0.97860
1.0018 0.97426 1.0028 0.93071
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Table A3.2 (continued)
D pX z
1 £ “12 VI Zf
1 1 1
D
2 Ly 2219 “Zfz If,
node
fx- - fx+ +
1 2 1 2
- - + +
4 7 y Yy
1 2 3 3
1.5133 0.03045 0.021124 0.0046253 0.0018501
0.39506 0.14425 0.0 0.16424 0.065696
15
1.0013 0.97413 1.0038% 0.93100
1.0048 0.93518 1.0008 0.97783
1.46590 0.036478 ©.018956 0.0060297 0.0024119
0.38329 0.20765 0.0 0.229860 0.021942
16
1.0147 1.1253 1.0123 1.169¢
1.0149 1.1252 1.0116 1.1688
1.7 0.036 0.035 0.0 c.0
0.35 0.05 0.0 0.0 0.0
17
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
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Appendix 4
CROSS SECTIONS AND MESH LAYOUT FOR BWR MODELS

Table A4.1 AXS and ADF for the 3 X 3 X 3 CISE Model.

ssembly | unrodded rodded unrodded rodded
ype f:le]f f/ : fue]tr/ fuel :
gii 1 k 2 [ 2 |
ADF
b, 1.8440 1.8580 1.8440 1.8580
Ty, | 0.02481 | 0.02576 | 0.02482 | 0.02576
224 0.01864 | 0.01772 | 0.01874 | 0.01772
vIg, 0.004556 | 0.004565 | 0.003796 | 0.003804
ﬁ2 0.4284 0.4283 0.4284 0.4283
Tt 0.05946 | 0.07416 | 0.05946 | 0.07415
Z1o 0.0 0.0 0.0 0.0
VIf, 0.07254 0.07558 0.06595 0.06870
fzq 0.9623 1.0150 0.9625 1.0160
@éz 1.4510 1.8880 1.4510 1.8890
feq 0.9623 0.8955 0.9625 0.8949
fop 1.4510 0.6492 1.4510 0.6488
£51 0.9623 1.0150 0.9625 1.0160
fiz 1.4510 1.8880 1.4510 1.8890
f¥1 0.9623 0.8955 0.9625 0.8949
foo 1.4510 0.6492 1.4510 0.6488
+
fyg ) v :—_-' f..s -
- T____,L " Ztg = Zag Zgg'
X8 X8 Xy = 1.0
g X, = 0.0



0.9 VAV /A A NS
1.6
1.63
} z
3.26 %
5 y. /.
+ Z
3.26 [ /)
i 7
T 7
26
e | 7
g;g@“ [2.11000 10104 VL0TL 101,

mesh size in cm

fuel

// water

control blade

Figure aA4.1 Heterogeneous quarter assembly of the
TRD-BWR model (8 X 8 mesh layout).
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Heterogeneous, Two-Group Cross Sections

Table A4.2 . :
for the TRD-BWR Model (Vv = void fraction).

(2) for unrodded assemblies

. group
material
void g -1
fraction,v (cm) (cm—1) (em-1) (cm-1)
1 1.417  0.02618 0.01696 0.005983
fuel,V= 0 %
2 | 0.3696 0.07986 0.0 0.1019
1 | 1.696 0.,01883 0.01015 0.005715
fuel,v=40 %
2 | 0.5276 0,07658 0.0 0.09909
1 1.696  0.01443 0.005739 0.005694
fuel,v=70 %
2 | 0.5262 ¢,07688 0.0 0.1006
1 1.531  0,03131 0.03074% 0.0
water,v=0 %
2 | 0.2942 0,00916 0.0 0.0
1 | 1.610 0.02827 0.02772 0.0
TNater,v=Ll-O %
2 | 0.3166 0.00855 0.0 0.0
1 | 1.610 0,02826 0.02771 0.0
water,v=70 %
2 | 0.3167 0.008547 0.0 0.0
v = 2.5
x1 = 1.0
Xo = 0.0
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Table A4.2

(continued)

(b) for rodded assemblies

matgrial group
void g Dg ztg Zgg' vzfg

fraction, v (cm) (ecm-1) (ecm-1) (em-1)

1 1.406 0.02596 0.01667 0.005963
fuel, v=0 %

2 0.3735 0.08025 0.0 0.1048
control 1 1.113 0.08742 0.00375 0.0
blade, v=0%| , 0.1840 0.9673 0.0 0.0

1 1.52 0.0268 0.0262 .
water, v=0% 523 5 > 0.0

2 0.3123 0.008559 0.0 0.0
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8 meshes shown
in Fig. A4.1

A
T
=
8 meshes | — §
shown $ ;
in = :
Fig.A4. 1| _ 3
\—
. E ii
N ..
N ..
\ \
N ~.

water

fuel E control blade
I water ii

Figure 2A4.2 Horizontal section of the TRD-BWR model
(24 X 24 mesh layout).
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Table A4.3 FWC and ADF of Nodes of the TRD-BWR Model.
FWC and ADF are Found from Two-Dimensional
24 X 24 Fine-Mesh Calculations.

(a) node index system and node-wise void fractions for
3 X 3 planes

node index void fraction (%)
region &
& 71819 70 | 70 | 70
b | 516 — |70]70}70
112 |3 70170 |70
region 3 16 |17 |18 70 | 4o |40
13 1% |15 — 70 170 |70
10 {11 |12 70 |70 |70
region 2
(unrodded) 25 |26 |27
22 123 |24
19 |20 |21 bo | o} o
. bo (40 |b4o
region 2
(rodded) 4 |35 |36 50 |k0 |40
31 |32 |33
28 129 |30
region 1 43 |4k '45 0 0 0
Bo 41 b2 | — [0 |0 | o
37 |38 |39
water
reflector 46 46 46
L6 W6 b6
L6 W6 6
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Table A4.3 (continued)

(b) flux-weighted cross sections and radial discontinuity

factors
z vz
Dy Zt, 12 £, Lf,
vl z
Dy Lt, Lag £, £,
node £X- - £X* X+
1 2 1 2
S
y- Y- fy"' fy
3 £2 1 2
1.6722 0.018110 0.011585 0.0041791¢ 0.0016716
0.4169% 0.049814 0.0 0.060754 0.024301
1
0.95219 1.70600 0.97920 1.32020
0.97922 1.32020 0.985219 1.70600
1.6722 0.018110 0.01158S% 0.0041791 0.0016716
0.4169S 0.049814 0.0 0.0607%4 0.024301
2
0.97920 1.32020 0.95219 1.70600
0.97921 1.32020 0.95219 1.70600
1.6722 0.018110 0.011585 0.0041791 0.0016716
0.41695 0.049814 0.0 0.060754 0.024301
3
0.95217 1.70600 0.97921 1.32020
0.97921 1.32020 0.95217 1.70590
1.6722 0.018110 0.011585 0.0041791 0.0016716
0.4169% 0.049814 0.0 0.0607%4 0.024301
4
0.95219 1.70600 0.97919 1.32020
0.95218 1.70590 0.97920 1.32020
1.6722 0.018110 0.01158% 0.0041791 0.0016716
0.41695 0.0498 14 0.0 0.060754 0.024301
5
0.97919 1.32020 0.95218 1.70%590
0.95217 1.70590 0.97919 1.32020
1.6722 0.018110 0.011585 0.0041791 0.0016716
0.416985 0.0498 14 0.0 0.060754 0.024301
6
0.95218 1.70600 0.97921 1.32020
0.95219 1.70600 0.97920 1.32020
1.6722 0.018110 0.011885 0.0041791 0.0016716
0.41698% 0.049814 0.0 0.060754 0.024301
7
0.95219 1.70600 0.987920 1.32020
0.97920 1.32020 0.95219 1.70600
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Table A4.3b (continued)
D, g £
t 12 Vig If
5 i 1 1
z I
2 t, 21 \’Zfz Efz
node fx fx +
- - <+
1 2 £ £
- - + 4
£y £y X4 Y
1 2 5] £3
1.6722 0.018110 0.011585 0.0041791 0.00167 16
0.41698 0.049814 0.0 0.060754 0.024301
8
0.97920 1.32020 0.95219 1.70%90
0.97920 1.32020 0.95219 1.70600
1.6722 0.018110 0.01158% 0.0041791¢ 0.0016716
0.4169% 0.0498 14 0.0 0.060754 0.024301
9
0.95218 1.70800 0.97921 1.32020
0.97920 1.32020 0.95219 1.70600
1.6722 0.018113 0.011589 Q.0041779 0.0016712
0.4169% 0.049802 0.0 0.060736 0.024295
10
0.95230 1.70530 0.97933 1.32020
0.97941 1.31960 0.95233 1.70500
1.6722 0.018114 0.011591 0.0041773 0.0016709
0.41688 0.049791 0.0 0.060719 0.024288
11
0.97929 1.31920 0.95233 1.70530
0.97935 1.31870 0.95241 1.70530
1.6722 0.018113 0.011590 0.0041776 0.0016711
0.41690 0.049797 0.0 0.060729 0.024291
12
0.95228 1.70%40 0.97928 1.32010
0.97940 1.31890 0.95241 1.70500
1.6722 0.018108 0.011583 0.0041796 0.0016718
0.41699 0.049827 0.0 0.060773 0.024309
13
0.95234 1.70820 0.97916 1.31810
0.95230 1.70850 0.97909 1.31880
1.6722 0.018107 0.011580 0.004 1802 0.0016721
0.41694 0.049811 0.0 0.060749 0.024299
14 .
0.97943 1.31790 0.95179 1.69260
0.95263 1.70330 0.97783 1.30820
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Table A4.3b (continued)
D T
1 Zg 12 Vig Lf
1 1
Dy Ty Z29 Vig Le
node 2 2 2
£X- pX= + +
1 2 1 2
- - + v+
o ol £y £
1 2 1 2
1.6723 0.018104 0.011575 0.0041816 0.0016726
0.41700 0.049829 0.0 0.060775 0.024310
18
0.95181¢ 1.69580 0.97915 1.31640
0.95268 1.70640 0.97763 1.30630
7
1.6722 0.018108 0.011582 0.0041797 0.0016719
0.41690 0.049800 0.0 0.060732 0.024293
16
0.95275 1.7033@ 0.97786 1.30690
0.97934 1.31760 0.95180 1.69300
1.6722 0.021342 0.014826 0.004 1940 0.0016776
0.42339 0.051454 0.0 0.062493 0.024997
17
0.98077 1.26150 0.95059 1 56420
0.98072 1.26190 0.95050 1.56420
1.6723 0.021338 0.014818 0.004 1966 0.0016786
0.42336 0.051447 0.0 0.062483 0.024993
i8
0.95088 1.56220 0.97921 1.25690
0.98080 1.260920 0.95000 1.5%630
1.6722 0.021342 0.014824 0.004 1946 0.0016778
0.42316 0.051385 0.0 0.062392 0.024957
19
0.95113 1.55490 0.97953 1.25360
0.97958 1.25340 0.95115 1.55450
1.6722 0.021342 0.014826 0.0041942 0.0016777
0.42313 0.051377 0.0 0.062380 0.0249%52
20
0.97953 1.25310 0.95111 1.55490
0.97957 1.25270 0.95115 1.55520
1.6722 0.021342 0.014825 0.0041945 0.0016778
0.42314 0.051381 0.0 0.062386 0.024955
21
0.95112 1.55490 0.97952 1.25350
0.97961 1.25290 0.95118 1.55470
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Table A4.3b (continued)
t 12 f T
1 1 1
node
££- %= = =t
1 2 1 2
- - oo 4
o £y y y
1 2 ] 3
1.6722 0.021339 0.014820 0.0041959 0.0016784
0.42317 0.05138¢° 0.0 0.062397 0.024959
22
0.95112 1.55790 0.97921 1.25120
0.95110 1.55840 0.97915 1.25140
1.6723 0.021337 0.014815 0.004 1975 0.0016790
0.42292 0.051313 0.0 0.062287 0.0243815
23
0.979%52 1.25220 0.9%010 1.54380
0.95182 1.55030 0.97667 1.24430
1.6723 0.02133% 0.014812 0.0041987 0.0016795
0.42292 0.051313 0.0 0.062288 0.024915
24
0.94999 1.54740 0.97923 1.25040
0.95185 1.55380 0.97630 1.24210
1.6723 0.021337 0.014816 0.0041972 0.0016789
0.42289 0.051306 0.0 0.062277 0.024911
25
0.95188 1.55060 0.97670 1.24340
0.97947 1.25190 0.95008 1.54430
1.4455 0.027539 0.020610 0.0043981 0.0017592
0.33816 0.054208 0.0 0.064928 0.025971
26
0.97888 1.26470 0.94140 1.52230
0.97885 1.26510 0.94142 1.52230
1.4454 0.027536 0.020602 0.0044016 0.0017606
0.33804 0.054103 0.0 0.064777 0.025911
27
0.94222 1.51760 0.97577 1.25540
0.97886 1.26440 0.94026 1.51520
1.6724 0.021327 0.014798 0.0042033 0.0016813
0.42347 0.051478 0.0 0.062527 0.025011
28
0.94991 1.55720 0.97888 1.25320
0.97827 1.25750 0.94979 1.55680
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Table A4,.3b (continued)
t 12 f if
1 1 i
Dy Lt, 221 vI £, I,
node
%= £X- £X* Xt
1 2 1 2
- - + +
fy fy fy Y
1 2 1 3
1.6724 0.021320 0.01478% 0.0042074 0.0016829
0.42373 0.051556 0.0 0.062641 0.025056
29
0.97900 1.2585%0 0.94957 1.85630
0.97838 1.25940 0.94928 1.55810
1.6724 0.021324 0.014792 0.0042051 0.0016820
0.42358 0.051512 0.0 0.062577 0.025031
30
0.949374 1.55640 0.97942 1.25%420
0.97812 1.25970 0.94930 1.55780
1.6722 0.021344 0.014829 0.0041930 0.0016772
0.42280 0.051279 0.0 0.062238 0.024895%
31
0.94900 1.55310 0.97977 1.25180
0.948%98 1.55310 0.98074 1.24730
1.6723 0.021338 0.014819 0.004 1965 0.0016786
0.42308 0.051362 0.0 0.062358 0.024943
32
0.98479 1.27340 0.94200 1.51920
0.95069 1.55890 0.97824 1.22990
1.6721 0.021354 0.014848 0.004 1869 0.0016748
0.42249 0.051184 0.0 0.0862099 0.024839
33
0.94150 1.5i680 0.98695 1.26750
0.94880 1.55270 0.98126 1.22970
1.6723 0.021331 0.014804 0.0042011 0.0016804
0.42337 0.051450 0.0 0.062487 0.024995
34
0.94951 1.55950 0.97836 1.23830
0.98620 1.27630 0.94114 1.51610
1.4189 0.028145 0.018446 0.0044063 0.0017628%
0.35003 0.07203% 0.0 0.074694 0.029878
35
1.03690 1.63730 0.85475 0.52648
1.03710 1.63600 0.85736 0.52804
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Table A4.3b (continued)
D b X
1 t X T
node X o . 2 2
- - <+
1 2 £ 2
- - 4 +
£y £y y y
1 2 1 3
1.4180 0.028278 0.0184 14 0.0043954 0.0017582
0.34988 0.072626 0.0 0.074730 0.029892
36
0.86186 0.5407¢ 1.05110 1.65800
1.04570 1.67180 0.83965 0.46131
1.4452 0.027527 0.020577 0.0044126 0.0017650
0.33801 0.054073 0.0 0.064733 0.0258923
37
0.94006 1.51390 0.97510 1.25250
0.97453 1.25670 0.94009 1.51450
1.4451 0.027522 0.020566 0.0044176 0.0017670
0.33811 0.054169 0.0 0.064872 0.025949
38
0.97524 1.25780 0.93948 1.51270
0.97475% 1.25930 0.93971 1.515%590
1.4452 0.027525% 0.020572 0.0044149 0.0017660
0.33805 0.054%15 0.0 0.064794 0.025917
39
0.93953 1.51240 0.97562 1.25350
0.97445 1.25920 0.93986 1.51590
1.445% 0.027538 0.020608 0.0043991 0.0017596
0.33773 0.053827 0.0 0.064378 0.025751
40
0.93936 1.50870 0.97621 1.25200
0.93926 1.50790 0.97711 1.247140
1.4455 0.027537 0.020604 0.0044011 0.0017604
0.33790 0.053977 0.0 0.064595 0.025838
41
0.98053 1.26910 0.93315 1.48850
0.94013 1.54740 0.97838 1.23870
1.4457 0.027547 0.020631 0.0043891 0.0017557
0.33766 0.053767 0.0 0.064292 0.025717
42
0.93186 1.48090 0.98386 1.26690
0.9387% 1.51020 0.98138 1.23900
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Appendix 5
TEMPORAL TRURCATION ERROR FOR THE CC3-PWR

Time step interval plays an important role in evaluating
transient problem solutions. In Section 5.3.2, it was
suggested that the time step size be less than 25 msec
for a transient problem employing six delayed neutron
groups to assure temporal stability. However, because
the limit of time step sizes is strongly restricted by
power rate during a transient, it is prudent to examine
the temporal truncation error before a time step size
is set for transient problems in Section 5.5 of Chapter
5. For the test, the delayed neutron data given in Table
A5.1 was used.

The CC3-PWR (Fig. 5.1) was activated to remove the
control rod from z = 100 cm to z = 120 cm for 0.1 sec.
The control rod was withdrawn 2 cm per 10 msec step by
step as shown in Fig. A5.1. The period of 10 msec was
then divided into 2, 4 and 8 fine intervals (i.e., 5,
2.5 and 1.25 msec). Four different time step sizes were
tried to predict total reactor power for a 2 X 4 X 17
mesh CC3-PWR which had 10 fine meshes within a plane‘
extended from z = 100 to z = 120 cm. The results are
summarized in Table A5.2. The fluctuations in power

levels from different time steps (ranging from 1.25 msec
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Figure A5.1 Contrcl rod tip position (z) vs. time

steps for 2 X 4 X 17 CC3-PWR mesh system.

238



to 10 msec) remain within 2%, and decrease almost linearly
as time step size decreases. Thus, it seems to be reasonable
to set the time step at 10 msec for the transient problem
in Chapter 5;

Also, for a direct justification of use of 10 msec
as a time step size for the CC3-PWR, a 2.5 msec time
step size was chosen to solve the same CC3-PWR problem
in Section 5.5.3. Because the axial node extended from
z = 100 cm to z = 120 cm contains now 40 time steps,

the node was sliced into forty very thin planes to create

Table AS5.1 Delayed-Neutron Data [L-2].
group, d decay constant,)g | yield Bg
(sec‘l)

1 0.0127 0.000247
2 0.0317 0.0013845
3 0.115 g 0.001222
4 0.311 . 0.0026455
5 1.4 . 0.000832
6 3.87 0.000169

Vi = 1.25X 107 cm/sec
2.5 X 102 cm/sec

V2
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Table A5.2 Comparison of Total Power Transient for
CC3-PWR for Different Time Step Sizes.
A 2 X 4 X 17 Mesh System was Used.
At
t(ms) 1.25 ms 2.5 ms 5.0 ms 10 ms
0 100.0 w 100.0 W 100.0 W 100.0 W
o | e e s
O I 25 I R R
I B £ N € RN e R
4o 145.28 S TR e 4 S o 18
o | LR e iy
6o | T RS 8% LR
O I
80 R &1 % T N R
20 st % BR%y  BuY
100 288.35 ‘(253 %’.%%) ?9 %'.2762) (2831 %)1
c:rfggl?ﬁng 70.5 k2.5 28.5 21.9

Percent error is given in parenthesis.
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a 2 X 4 X 47 node system for a reference sclution calcula-
tion. Solutions from six different methods along with
the reference solution are summarized in Table A5.3.
We notice thét the error distribution in 2.5 msec solutions
are almost identical to those in 10 msec solutions given
in Table 5.9, and that Method 2 demonstrates its consistency
and reliability. Also note the computing time taken
in reference solution and in Method 2 (175 sec vs. 19.5

sec).
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