Simulation Tools for Digital LSI Design
by

Christophier Jay Terman

Submitted in Partial Fuifiliment of the Requirements
for the Degree of Doctor of Philosophy
at the
Massachuseits Institute of Technology

September 1983

Copyright ©® Massachusetts Institute of Technology 1983

Signature of Author

Dcpartment of Electrical Engincering and Computer Science
August 30, 1983

Certified by . . —
T - 4 Thesis Supervisor

Accepted by - “ e L R
Chairman, Departmeftal Committee on Graduate Students

Bng:
MASSACHUSETTS NSTITUTE
OCT 51983
LIBRARIES

Simulation Tools for Digital LSI Design
by

Christopher Jay Terman

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 1983 in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Abstract

This thesis proposes a timing simulator (kSiM) based on a uniquely simple transistor model. RSIM
allows a designer to determine both the functional and approximate timing characteristics of a MOS
network with more accuracy than gate-level simulation, and using larger circuits than are
accommodated by circuit analysis programs. In RSIM, transistors are modeled as resistors; the logic
states of a transistor’s terminal nodes determine its effective resistance. Using this model, a MOS
network is simulated as a network of resistors where each node’s value is determined by the resistance
of its connections to various inputs. Transition times are determined from the RC time constant
calculated for the node by examining the surrourding network; (R from the transistors, C from the
interconnect and gate capacitance). The network’s behavior as inputs are given valués is calculated by
an efficient event-driven algorithm.

Two changes to the underlying model are also investigated:

(1) further simplifying the transistor model to an on/off switch (which can be
thought of as a degenerate resistor). Several approaches to switch-level
simulation are developed, one particularly well-suited for unplementatmn using
parallel hardware.

(2) modeling the behavior of a network of switches by a system of logic equations.
Various compilation strategies are evaluated for producmg code that implements
the system of equations.

Name and Title of Thesis Supervisor:

Stephen A. Ward,

Associate Professor of Electrical Engineering and Computer Science
Key Words and Phrases:

circuit simulation, logic simulation, timing analysis, CAD tools

ACKNOWLEDGMENTS

Thanks everybody:
Steve Ward Ron Rivest Gerry Sussman,,
Bert Halstead Clark Baker Mark Johnson
and the rest of RTS, past and present
Dave Gross Doug Williams Bob Yodlowski
Jeff Fox
Debbie Cohn

The good advice, kind words, insight, and support provided over the years by these fine fclks, and
others, have made this thesis possible.

This research was supported by the Advanced Research Projects Agzncy of the Department of
Defense and was monitored by the Office of Naval Research (Contract Nos. N00014-75-C-0661 and

N00014-83-K-0125).

TABLE OF CONTENTS

1. Introduction

1.1 Overview of the thesis
1.2 Outline of the remaining chapters

2. A Linear Network Model for MOS Simulation

2.1 RSIM’s transistor model

2.2 RSIM’s node model

2.3 RSIM’s network model

24 Calibrating and using the RSIM model

2.5 Summary

3. Justification of the Linear Network Model

3.1 Electrical models for mosfets and gates

3.2 Node voltages

3.3 Propagation delay: overview

3.4 Propagation delay: logic gatés

3.5 Propagation delay: source-followers and pass transistors
3.6 Implications for the RSIM model

4. Simulation Using a Linear Network Model

4.1 The RSIM simulation algorithm
4.2 Speeding up the simulation

4.3 Escape mechanisms

44 An evaluation of RSIM

5. Simulation Using a Switch Network Model

5.1 Representing node values
5.2 Developing the switch model
5.3 The global switch model

5.4 The local switch model

6. Simulation Using a Pre-compiled Network Model

6.1 Reducing switch paths to logic equations
6.2 Compiling logic equations for simulation

7. Conclusions

Appendix 1. Proof of Lemma 5.3

Appendix 2. RSIM Calibration Tables for a S nMOS Process
Appendix 3. Approximation for Resistor Divider and Scrics Resistor

References

12

13
16
21
28
3

35

35
39
43

54
58

61

61
76
80
82

85

85
92
94
106

119

120
127

136
141
146
150

155

CHAPTER ONE

INTRODUCTION

Simulation plays an important role in the design of integrated circuits. Using simulation, a
designer can determine both the functionality and the performance of a design before the expensive
and time-consuming step of manufacture. The ability to discover errors early in the design cycle is
especially important for MOS circuits, where recent advances in manufacturing technology permit the
designer to build a single circuit that is an order of magnitude larger than ever before possible. This
thesis presents three new algorithms designed specifically for the simulation of large digital MOS
circuits.

Today’s MOS circuits offer special challenges to a simulation program, challenges that are not met
very well by current simulators. New integrated circuits can incorporate hundreds of thousands of
transistors; the sheer number of transistors dictates that a simulation algorithm use simple,
computationally efficient transistor models. In addition, designers take advantage of the symmetry of
the MOS transistor to build circuit configurations with behavior beyond the ken of traditional logic

simulators. The new simulators introduced here are designed to meet these challenges.

1.1. Overview of the thesis

To use a simulator. the designer enters a design into the computer, typically in the form of a list
of circuit components where each component connects to one or more nodes. A node serves as a wire,
transmitting the output of one circuit component to other components connected to the same node.
The designer then specifics the voltages or logic levels of particular nodes. and calls upon the simulator
to predict the voltages or logic levels of other nodes in the circuit. The simulator bases its predictions
on models describing the operation of the components; a simulator is characterized by the types of
component models it employs. Two of the more popular approaches are:

e component models based on the actual physics of the component; for example, a
transistor model that relates current flow through the transistor to the terminal
voltages, device topology, and manufacturing parameters of the actual device.

e component models based on a description of the logic operation performed by the
component, e.g., NAND and NOR gates.

The first type of model is found in circuit analysis programs such as ASTAP [Weeks73] or SPICE
[Nagel75] which try to predict the actaal behavior of each component with a high degree of accuracy.
Current circuit analysis programs do the job well, perhaps too well; at no small cost, they provide a
wealth of detail, at sub-nanosecond resolution, about the voltage of each node and the amount of
current through each device. (For example, a properly calibrated circuit analysis program is able to
predict, within a few per cent, the amount of current that flows through ar actual transistor.) This
level of detail would swamp the designer if collected for the entire circuit while simulating, say, a
microprocessor. Fortunately, the designer is spared this fate, since the computational cost of circuit

analysis restricts its applicability to circuits with no more than a few hundred devices.

One solution to the problem of simulator performance is to addpt a simpler component model,
such as the gate-level model introduced above. This approach works weil when dealing with
implementation technologics that adhere to gate-level semantics (e.g., bipolar gate arrays). However,
MOS circuits contain bidirectional switching clements that cannot be modeled by the simple
composition of Boolean gates. Since many of the circuit techniques that make MOS attractive for LSI
and VvisI applications take advantage of this non-gate-like behavior, it is important o model such
circuits accurately.

This thesis explores the possibility of providing the essentizl information (functionality and
comparative timing) for large digital circuits by using models that bridge the gap between the gate-

level and detailed models discussed above. The goals to be met by these new models are summarized

in the following list:

(i} ‘The underlying model must be computationally tractable {or large circuits. The

empirical nature of the verification provided by simulation suggests that it must
be applied extensively if the results are to be uschul: timely simulation
encourages (his.

(i) ‘'Transistos-level simulation is necessary to accurately model the circuil structures
found in MOS designs. This allows the designer o simulate what was designed -
an advantage, since requiring scparaic specification of a design for simulation
purposes only introduces another opporiunity for error.

(iii) The results must be correct, or at least conservative; a misleading simulation that
results in unfounded confidence in a design is probably worse than ne simulation
at all. Here, we must trade off the conflicting desires of accuracy and efficiency.

Two models ar2 examined in detail by the thesis:

o a linear model in which & transistor is modeled by a resistance in series with a
voltage-controlied switch. The state of the switch is controlied by the voltage of
transistor’s gate node.

o 2 switch model, similar to the linear model, except that resistance values are limited
to one of two quantities: 0 for for n- and p-channel devices, and 1 for depletion
devices.

MOS circuits are easily transformed to use either model, as illustrated by the following figur
o
“> 1
44/64 B
o c }——J\/‘\/\//—oc —oc
A B

{(a) original circuit (b) linear model (c) switch model

Figure 1.1. Two approaches io modcling a simple MOS circuit

The lincar mode! forms the basis for the RSIM simulator. In RSIM, networks of transistors and clectrical
nodes form an R-C network (R for the transistors, C for the interconnect and gate capacitance), the
network's behavior under different inputs is calculated by a sclective-trace (event-driven) algorithm.
The comparatively fast "pscudo circuit analysis" that is possible with the lincar modcl allows the
designer to determine both the functional and approximate timing characteristics of a neiwork. RSIM
goes a long way towards mecting the three goals outlined above. The algorithm employed to estimate

the hehavior of a lincar network is much faster than a typical circuit analysis program. Resistors arc

inherently bidirectional; the network analysis makes no a priori assumptions about the direction of
curreat flow through each resistor. Finally, the results are at least qualitatively correct and, in general,
conservative — in some cases more conservative than designers themselves might like. With the

appropriate choice of model parameters, the results can even be quantitatively useful.

The switch model is a simplification of the lincar mode! that is useful when only a circuit’s
functionality is of interest {ie., no information on performance is wanted). Like a traditional gate-level
simulator, a switch-level simulator bases its predictions on an abstraction of the actual circuit, but the
switch model is able to handle the bidirectional nature of MOS transistors much more successfislly than
a gate-level model. The switch model is incorporated by ESIM, a simulator that has seen extensive use

in the last few years.

Certainly a major goal of RSIM and ESIM is to provide a fast, useful simulation of MOS circuits,
but the story does not end there. Another motivation for new simulation algorithms is the changing
nature of the design community. In order to cope with the increasing complexity of integrated circuit
design, new design methodologies have developed (e.g., [Mead80]) that impose constraints on the way
circuits are constructed. One can no longer afford to hand-craft each transistor, so rules of thumb are
created to aid in the choice of transistor sizes. Clever circuit configurations are avoided in favor of
circuits composed under the guidance of éomposition rules (e.g., [Bell81]) that rule out arbitrary circuits

and the obscure electrical behavior they imply.

These new design methodologies have opened up the field of LSI design to a new breed of
"Mead and Conway" designer, ie, a designer who is a sophisticated architect, but who is not a
specialist in LSI technology. An important aspect of the simulators described in this thesis is that their
underlying models are easily understood by this new breed of designer. The abstractions embodied by
the simulators are faithful enought to the actual electrical behavior of a circuit that the achievement of
a successful simulation run indicates freedom from a large class of potential failure modes. If a
simulation does point out an error, it does so in a manner that leads even the novice designer to a
good understanding of the circuit as actually designed and the ways in which it might differ from the

intended design.

However, the simulators are based on models of actual behavior. As with any model,
T{'.Siaicz_-;f-—tﬁc:;ﬁ"&ésigns intentionally exploit the “obscure" behavior of certain circuits (e.g., sense ampliliers), often
to considerable commercial advantage. RSIM and its relatives are not as useful for this type of design as convention-
al circuit analysis programs. But the professionals engaged in such well-focused designs are not the audience ad-
dressed by Mcad and Conway (and RSIM).

discrepancies arc likely to exist between the model predictions and the actual bchavior of a circuit.
The tools described here attempt to be conservative, ie., to give pessimistic predictions, but this cannot
be guaranteed. Thus, it is important that the designer become acquainted with the inner workings of
the models and their shortcomings. The tools perform a calculation one could do by hand (only faster
and with greater accuracy and consistency) — they should rot be treated as black boxes. The models

presented here are simple enough to enable any designer to gain the necessary understanding.

A final motivation for new simulation technology is the desire to improve simulator performance.
It seems that digital computers ought to be well suited for the simulation of digital logic.
Unfortunately, current simulation schemes involve several layers of interpretation (e.g., command
interpretation, access to the network data base, model evaluation), and their performance suffers as a
result. Happily, much of this overhead can be eliminated through the application of traditional
compilation techniques. This is the theme of the final section of the thesis, and the motivation for the
development of CSIM, a combination compiler/simulator. CSIM compiles a network into a simulation
subroutine; the subrouﬁne contains code to compute the new value of each node from its old value
and the values of other nodes in the network. The compilation is particularly easy when the node is
the output of a logic gate, and the work presented here extends the compilation technique to any node
in a MOS circuit. Simulating the network entails executing the subroutine repeatedly until no nodes
change value. If the circuit is very active, ie., if many nodes change value each time the network is
simulated, the simulation subroutine computes new node values many times faster than the
corresponding event-driven simulation. There has been much interest recently in special purpose
hardware for simulation [Pfister82, Zycad83]. It may be that such developments are premature, and

that substantially better simulation performance can still be obtained from general-purpose computers.

The relationship among RSIM, ESIM, and CSIM is illustrated in the table below.

RSIM ESIM CSIM
node values logic-level - logic-level logic-level
(from voltages)

model level transistor transistor nodc equations
components resistors & switches & cquations

capacitors capacitors | (from switches)
scheduling cvent-driven cvent-driven | compile-time
relative speed 1 S-3 J - 100

No one simulator has a speed advantage, for rcasons explained in subsequent chapters. It is not

unusual to use all three simulators during the course of a design, since cach brings out a different

-10 -

aspect of a circuit’s behavior. ESIM is often used during the carly stages of a design when the designer
is fleshing out the logic. RSIM is used to determine which portions of the design are in need of a
careful performance analysis; usually the performance of most of the circuit can be debugged with the
level of detail provided by RSIM. Finally, CSIM is useful for long simulation runs intended to verify the

functionality of the design through extensive diagnostics.

This thesis presents the new models and their accompanying simulators in detail, exploring the
ramifications of each model and discussing the accuracy and usefulness of their predictions. The next

section gives a brief outline of the remaining chapters.

1.2. Outline of the remaining chapters

The thesis has three main parts. The first part focuses on the linear model and the RSIM

simulator.

Chapter 2 description of the switch/resistor transistor model incorporaied by
RSIM: outline of the method for calculating a node’s value using the
linear transistor model; propagation of changes through the network;
choosing model parameters; analysis of sample circuits using linear
model.

Chapter 3 justification of the linear model by analysis of true behavior of MOS
logic gates; comparison of actual voltages and propagation delays
with RSIM’s predictions; proposal for modifications to the model
based on insight gained during analysis; analysis of sample circuits
using updated model.

Chapter 4 details of converting the linear model into a workable simulation

: algorithm; optimizations for improving simulator performance;
mechanisms for controlling the voltage and transition time predictions
for specific nodes; review of the successes and failures of the linear
model.

The second part (Chapter 5) presents the switch-level model. The chapter begins with a
discussion of the representation of node values and explains why many extant simulators adopt a
representation that leads to unnecessary difficulties. Next, two switch-level algorithms are presented.
The first is a straightforward adaptation of the RSIM algorithm, replacing its resistance computations
with simpler ones that reflect the resistance value constraints of the switch model. The sccond
algorithm is based on an cntirely different approach; each computation handles a single transistor and
uses only local information (the type of the transistor and the states of its terminal nodes). The
computation is easy to understand and appeals to our intuition about the way transistors really

operate. The simulation proceeds by repeatedly computing new node values for the source and drain

-11 -

nodes of individual transistors, choosing the transistors in any convenient order. The simulation is
complete when no further changes in the network state are possible. The termination of this
relaxation algorithm is proved, and the final network state is shown to be independent of the order in
which the individual computations are performed. The second aigorithm is well suited for
implementation on the new parallel architectures just now becoming available; the approach discussed

here is a first cut at designing simulation algcrithms tailored for use on parallel engines.

The third part (Chapter 6) investigates the possibility of using various compilation schemes to
improve the performance of the switch-level simulator. A technique is proposed for constructing a set
of equations for each node in the network. These equations relate the new value of a node to its
current value and the values of other nodes in the network. The network can be simulated by
evaluating each node’s equations in turn; several ways of ordering the nodes for evaluation are
discussed. The section concludes with several examples of simulation routines that were compiled
directly from the network data base. When executed, these routines result in a simulation several

orders of magnitude faster than otherwise possible.

The thesis concludes with a discussion of other work in the area of simulation and its relationship

to the ideas presented here.

-12 -

CHAPTER TWO

A Linear Network Model for MOS Simulation

The electrical model described in this chapter can be used as the basis for a logic-level simulation
of a network of MOS transistors. Other models are of course possible, ranging in accuracy and detail
from circuit analysis to high-level functional simulation. While the chosen model does not encompass
many of the operational dctails of rcal MOS nctworks (most notably, detailed transistor modeling) it is
adequate to efficiently determine the basic functionality and the approximate timing characteristics of
a network. Short circuits, charge sharing, nodes with multiple drivers, bidircctional "pass” transistors,

and so on are modeled correctly.

The first section describes the switch/resistor transistor model incorporated by RSIM. Using this
model, a MOS network is simulated as a resistor network where cach node’s value is determined by the
resistance of its connections to various inputs. The sccond section outlines the method for calculating
the value of each node. This is followed by an explanation of the use of component models to predict
the propagation of new input values through a network. The fourth section discusses techniques for
choosing modcl paramcters and compares RSIM's predictions with those of a circuit analysis program.

'The chapter concludes with a summary of the medel's ingredients.

2.1. RSIM's transistor medel

The transistor model in RSIM can be quite simple since it is only used to predict the firal logic
state of a node and the length of time each state transition takes. As an cxample of how the model
works, consider a simple inverter: one can think of the effective resistance of its component devices at

any moment as

ids: ids:
ds : pullup Reﬂ‘:pulldown - ds :pulldown Q.1

Regpullyp =
e :pullip Vds :puilup Vds :pulldown

The following figure shows the actual effective resistance of an inverter’s pullup and pulldown as a

function of the inverter's output voltage (assuming no load cutrent).

A
Reﬂ'
pullup
Vds:pullup
-4 vdS:p\.l“dO\Vﬂ /
pulldown
= >
¢ Vds:pulidown

Figure 2.1. Effective device resisiances in an inverter

Although the effective resistances of the transistors change as their terminal voltages vary, it might be
possible to use "average channel resistances” to characterize the transistors’ behavior.

The other salient feature of a transistor's operation is its switch-like behavior. With certain
voltages on a transistor’s terminal nodes, it makes no conncction at all between its source and drain
terminals — the transistor is "off". As the relative terminal voltages change, the transistor turns “on",
conducting current between its source and drain terminals. As illustrated in the previous figure, the
transistor is more "on" at some times than others, but the distinction among the different “on™ states

can be ignored for simplicity.

There are three basic types of transistor swiiches found in MOS circuits:

A°F

drain drain drain

gate 0—{ ‘i gate O"Ji l:z gate O—I ”i
source source

source
ON when gate = 1 ON when gate = 0 always ON
OFF when gate = 0 OFF when gate = 1
{a) n-channel switch {b} p-channel switch (c) depletion switch

Figure 2.2. Three types of MOS transistor switches

The difference between n-channel and p-channel switches is the logic level which turns on the switch.
The depletion switch is always on; it is usually connected to VDD in a way that provides a source of
current to keep its output node charged high. More precise distinctions between the switch types, and

the need for a depleticn device (and why sn ordinary switch does not suffice) are discussed in Chapter

3.

One can build on the observations made above to construct a linear transistor model for RSIM:

drain drain
? open Vgale =0
gate & — - closed Voate = 1
gate o__] unknown Voate = unknown
Reﬂ'
source source
(a) n-channel transistor (b) RSIM model

Figure 2.3. RSIM model for n-channel transistor

It is easy to tabulate the sort of conncction that exists between the source and drain terminals as a
function of the gate voltage:
Rey switch closed (vgare =1)

Res = 0 switch open (vgare =0) 2.2)
IRegoo) switch unknown (vgare =X)

Note that uncertainty about the state of the switch leads naturally to an interval describing the

resistance of the source-drain conncction. In fact, all the network calculations use interval arithmetic,

- 15 -

and the bounds of the resulting intervals are used when converting voltages to logic states, etc.; no
other mechanisms are neceded to deal successfully with X states in the network. Modecls for other

types of transistors differ in the way the position of the switch is determined from vgqpe :

drain drain
? open Vaate = 1
gate & - - closed Voate = 0
unknown gate = X
Reff Reff
source source
(a) p-channel transistor model (b) depletion transistor model

Figure 2.4. RSIM models for p-channel and depletion transistors

The effective resistance Rgy is determined separately for each transistor and depends on

width, length dimensions of the active transistor area. Various non-linear effects
make Rqr a more complicated function of the transistor geometry
than just length/width.

type Most MOS circuits contain more than one type of transistor. The
different types are distinguished by different values for their
threshold voltage. Since the current conducted by a transistor is a
function of its threshold voltage and hence its type, the modcling
resistance also depends on the transistor type.

context Accuracy in choosing the effective resistance can be improved by
distinguishing several contexts in which a transistor may appear: for
example, an enhancement transistor can be used as a pulldown or
source-follower in addition to its default pass gatc configuration.
Surprisingly few contexts need to be recognized to encompass a large
portion of digital MOS designs.

The determination of Ry is made once for each transistor and does not depend on any dynamic
propertics of the circuit to be simulated. During simulation the only device information RSIM uses

about a transistor is its ¢ffective resistance.

Actuaily RSIM uscs not one, but three effective resistances for cach transistor. To understand
why, recall that RSIM trics to predict the transition time and final voltage for a node, as shown in the

following figure.

- 16 -

node __S— slarting point

__S— switching threshold

b - - - - -

T final voltage
>V

time

—>
transition time

Figure 2.5. R eff is used to predict transition time and final voltage

One would like to calibrate the model to give accurate predictions for both quantities, but that is
impossible with a single set of resistances. To solve this problem, RSIM uses three resistances for each
transistor:

Rstatic when calculating the final voltage.

Rayniow when calculating the transition time for high-to-low transitions.

Raynhigh when calculating the transition time for low-to-high transitions.
Two "dynamic" resistances are used so that the asymmetric behavior of pass devices can be accurately
predicted. Computations involving Ry are triplicated, one for each of the three actual resistances, so

subsequent calculations can use the appropriate value.

2.2. RSIM’s node model

Voltages in this moel are quantized into one of three values; this corresponds to our intuition
for digital logic and greatly simplifics the simulation calculations. If all node voltages are normalized
to fall in the range [0, 1], then the possible quantized values are

0 Tlogic low — voitages in the range [0, viou};
1 logic high — voltages in the range [vaign, 1]

X intermediate voltages, [Viow. vhign]. or unknown voltages, [0, 1] — to be
conservative X is always interpreted as representing the larger interval;

where vy and vpigy are the predetermined logic thresholds.
How is the value of a node determined? Using the transistor model described in the previous

section, the original network is transformed into a network of resistors (formerly transistors) and

capacitors (formerly nodes). If a node is not connected o any input, it is said to be charged with a

-17 -

logic state determined by the state of the last driven node it was connected to. If two or morc charged
nodes in different logic states are connected then charge sharing occurs. In this case, all the connected
nodes reach the same logic state; this state is determined by the relative capacitances and initial logic
states of the nodes in the stage. For example, if a large (high capacitance) node such as a data bus
were connected by a pass transistor to a small node such as the input to a register cell, then the small
node would "sharc" the charge of the large node as its final value regardless of the charge it nad
initially. Even nodes that ultimately have a connection to-an input participate in charge sharing; the
extent of their participation is governed by the relative sizes of the charge-sharing time constant and

the time constant associated with the input connection.

Electrically connected nodes form natural groupings, called stages, bordered by input nodes

(usually vDD and GND). If nodes in a stage are allowed to share charge, all will reach the same

voltage, Vshare, given by

Eci 2c,~+ Zci

1 nodes 1 nodes X nodes
Vshare:min = Vshare:max = \ 2.3)
¢i 2 C

all nodes all nodes

where the sums are over nodes in the current stage. Since nodes at logic state X contribute an
undetermined amount of charge to the result, ¥suare is an interval whose bounds represent the worst
case assumptions about the actual values of X nodes. These bounds are compared with the logic

thresholds when calculating the charge-sharing value:

0 Vshare:max < Viow
Charge-sharing value = 1 Vshare:min 2 Vhigh ' 2.4
X otherwise

This calculation is not strictly accurate when the stage contains transistors with gates of X. Such
transistors might not makc any conncction at all; invalidating the various sums in cquation 2.3. An

alternative charge-sharing calculation that addresses this problem is discussed in Section 4.1.1.

When one accounts for the resistance between nodes, it is difficult to calculate transition times
for any nodes that change value because of charge sharing. RSIM simply schedules any charge-sharing

transitions so they happen immediately. A more reasonable time constant might be (ER,-)C‘QI where
i

the first term is the sum of all the resistances in the stage and

-18 -

ci Charge-sharing value = 1

0 and X nodes

Cop = 2 ¢ Charge-sharing value = 0 (2.5)
Yand X nodes
0 otherwise

is the amount cf capacitance in the stage that needs to be charged/discharged to reach the charge-
sharing value. This time constant is surely an upper bound on the time of any transition in the stage.

Note that transitions to X still happen immediately, a conservative assumption.

If a stage is connected to one or more inputs, the inputs determine the final voltage of each node
in the stage. The effect of inputs on a particular node is characterized by the Thevenin equivalent for

the stage (including the inputs at the toundary), regarding the given node as the output:

Rarive

’W\,G:MITD

vlhev Cload

Figure 2.6. Equivalent circuit for a network node

Viey a voltage interval [V _, V 1] in the range [0, 1] specifying the possible voltages
the output node may have. This value is calculated using each transistor’s
Rsaic resistance.

Rarive a resistance interval [R —, R 4] in the range [0, ©0]. Three versions of this
value are calculated: Rgrive:low, USing Rayniow for each transistor; Rarive:nigh.
using Raynnigh: and Rgrive:x (sce section 4.1.2). The appropriate version is
chosen depending on the final voltage predicted by Vipey.

Vinev and Rgyrive are generally intervals, since the effective transistor resistances from which they are
derived might themselves lic in an interval. Chapter 4 describes how Vipey, Cigad. and Ryrive are

estimated for nodes in actual networks.

It is sometimes uscful to categorize a node according to its equivalent Ryyive. ie., how it affects
neighboring nodes to which it becomes connected by conducting transistors:

input (R4rive = 0). Nodec is a designated input node (e.g, VDD or GND). The value of
input nodes can only be changed by cxplicit simulator commands; the assumption is
that inputs supply cnough current to be unaffected by connections (possibly shorts to
other inputs) made by transistors.

-19 -

driven (R grive < 00). Node is part of a voliage divider between two inputs. Le., it is
connccted by transistors to other driven or input nodes. Driven nodes can affect the
value of charged nodes without being affected themselves, but may be forced to an X
state if shorted to a driven or input node that has a different logic level.

charged (Rgrive = ©0). Node is connected, if at all, only to other charged nodes.
Until reconnected to some other part of the network, charged nodes maintain their
current logic state indefinitely (charge storage with no decay).

If Rgrive is infinite, equation 2.4 predicts the correct final value for the node and nc further work is
needed. If Rgive < . and the node is not an input, the final state of a driven node is calculated from
the Vypey interval [V _, V4]
0 Vi< vow
Final value = 1 V-2 nigh (2.6)

X otherwise

As an example, consider several different states of a NOR gate:

T
r‘ R1 R1 Rl R1
——< A nor B

A "‘I R2 R3 I— B R2 R2 [R3,00]

(a) NOR gate MA=B=0)A=1B=0 dA=18=X

Figure 2.7. qu)ivalent circuits for a NOR gate with different inpuis

1 Sfigure2.7(b)
- R>
Vthev = m ﬁgur e 27((.‘) (27)

Ry || R3 R>

T R TRy Fie Ryl B

If the final value of a node differs from its charge-sharing value, then the appropriate cvent is

scheduled Ry Ceg scconds in the future, where

Rdrivc:l:igh final value =1
Reg =1 Rarive:low final value = 0 (2.8)
Rarive:x final value = X

-20 -

Cj Jinal value = 1
0 and X nodes
Cop = 2 i final value = 0 ' (2.9)
! and X nodes
ci final value = X
0 and 1 nodes

where the sums are computed for nodes in the current stage. Note that transitions to X are not
immediate, but have a time constant related to the fastest transition the node can make. This means
that a momentary short-circuit, such as that shown in the following figure, does not necessarily cause a

node to become X; what happens depends on the relative sizes of the various time constants.

D

: -0

"IL large capacitance

Figure 2.8. A momentary short-circuit does not necessarily cause an X value

0-1¢

If the delay through the inverter is small compared to the time constant of the output node, no X
transition will be processed for the output node (one is scheduled, but is aborted when the pullup
turns off).

To better understand the interaction between the charge-sharing and final-value calculations,

consider the following example:

i 7
T =
ICA ICB

Figure 2.9. Samﬂe circuit for charge-sharing and final-value calculation

Assuming that Cp is initially charged low and that charge sharing happens immediately (an
assumption RSIM makes), there are several different scenarios:

C4<<Cp node A gocs low immediatcly because of charge sharing with B. Then,

-21-

both nodes are driven high by the pullup — node A at time
R1(C4 +Cpg). and node B at time (R 1+ R)(Cyq +Cp).

C4>>Cp node B goes high immediately because of charge sharing with A; the

pullup has nothing to contribute.

C4 = Cp both A and B go to X immediately and are then pulled up with the same

If R, is reasonably smaller than R}, then the assumption that charge sharing happens quickly is valid,
and these scenarios are satisfactory. As R3 approaches R in value, the time constants associated with
charge sharing approach those of the pullup, and the assumption of immediate charge sharing is a

relatively poor one.} Augmenting the charge sharing calculation as described in equation 2.5 would

time constants as for C4 <<Cp.

improve the prediction in this case.

In summary, calculating a node’s value involves two separate computations, each of which can

generate a new event:

ey

)

Chapter 4 describes the way these two events are reconciled with cach other and with pending events

a charge-sharing event describing an immediate change in the node’s state caused
by the redistribution of charge among the capacitors for nodes in the current
stage. This type of event is generated when two stages are merged (ie, a
transistor turned on).

a final-value event describing what the final, driven state of the node will be.
This type of event is generated when Rgriye < 0.

to produce a final set of transitions for a node.

2.3. RSIM's network model

The networks$ simulated by RSIM are made up of two basic components:

M

(ii)

Some nodes (e.g., VDD and GND) arc designated as inputs that supply the current needed to change the

electrical nodes which serve as wires. Each node has a capacitance that is the
sum of two contributions: (1) capacitance bciween other layers and the
conducting layers that make up the node; and (2) capacitance from the gate
junctions formed by the node.

three-terminal transistors (mosfets) which act as switches. FEach transistor
conditionally connects two nodes (called the source and drain of the transistor)
depending on the voltage of the third node (called the gate of the transistor).

+This illustrates the asymmetry between the timing of transitions due to charge sharing and those due to the final
value calculation, ie. R2 affects only the final value transition. This anomaly could be cxploited to produce rather
bizarre predictions, e.g.. a node changes faster if it is connected to a capacitor than if it is connected to an input! As
a1 practical matter, circuit performance seldom depends on the timing of charge-sharing transitions, and these
anomalics arc not significant.

+Nciworks can be cntered as schematics [I'erman82] or extracted from layout information [Haker8(]. The latter ap-
proach provides fairly accurate estimates of the capacitance of each node.

-22 -

voltage of a node by charging/discharging the nodc’s capacitor. As the voltage of a node changes,
switches controlled by the node open or close, making connections that cause the voltages of other
nodes to change. It is RSIM’s job to predict the dynamic behavior of a network of nodes and switches,
estimating the voltage of each node, the state of cach switch, and the charge/discharge rate when a
node changes value. From the designer’s point of view, this translates into knowledge about the logic

level of each node and the transition time associated with each change of logic level.

It is easy to build switch configurations that compute simple logic functions of node values. For

L ,g%

(a) constaat 1 (b) nMOS inverter (c) cMOS inverter

example:

Figure 2.10. Examples of switch configurations that perform logic operations

The output node in figure 2.10(a) is connected to a depletion switch configured as a current source; its
value is always a logic high. Such circuits are called pullups because their output nodes are always
"pulled-up” to logic high. In figure 2.10(b) a "pulldown” switch has been added, controlicd by node
A. The pulldown is sized so that, when it is on, it conducts more current than the pullup supplies.
When A is 1, the output node is "pulled-down" to 0. Of course, when A is 0, the pulldown is off and
the pullup ensures that the output is 1; the net result is an inverter circuit. Figure 2.10(c) is an
inverter constructed from one p-channel and one n-channel device. Typically, the manufacturing
process can provide cither p-channel devices or depletion devices, but not both, in the same circuit.

More complicated logic circuits are constructed using series and parallel switch configurations.

drain drain

vl o

source source

(2) connection if (A or B) (b) connection if (A and B)

Figure 2.11. Logic functions associated with series and parallel configurations

If the two-switch circuits shown above replace the pulldown in figure 2.2(b), the result is a two-input
NOR or NAND gate.

In all the circuits presented so far, the inputs are electrically isolated from the outputs, Le., if the
output signal is corrupted somehow — by a short circuit, for example — the input signals are
unaffected. The isolation provided by the gate conncction leads to a natural decomposition of the
network into stages made up of nodes and transistors. Nodes belong io different stages only if they
are guarancced to be electrically isolated. For example, in the following circuit, nodes A, B, C, and D

are all isolated from one another. Node E is not isolated from D, so it is in the same stage as D.

mputs outputs

| Lo
ﬁ.g? 3 BC
s

B —> > D
c-> = E

Figure 2.12. Simple circuit that has three stages

Note that vDD and GND (and, in fact, any input) are not trcated as nodes in the ordinary sensec when
checking to sce if two nodes belong to the same stage. For example, node B is not considered to
connect to node C by a path involving GND and two of the pulldown transistors. Given a particular

node, a tree walk of the network is performed to find ali other nodes in the stage. The tree walk first

-2 -

locates all "on" switches which have a source/drain connection to the original node. Nodces connected
to the drain/source of those switches are part of the same stage as the original node. 'The tree walk |
continues until it locates all nodes that can be reached from the original node by a path of "on"
switches; this set of connected nodes and the “"on" transistors that form the connections make up a
single stage. Note that the decomposition of the network into stages is a dynamic process, ie., one
that depends on the node values of the network.t For example, the foliowing circuit can be

decomposed into 2, 3 or 4 stages depending on the value of nodes A and B.

ﬁi? E‘T

HE ><L_r! | G

ol L]

Figure 2.13. Circuit with multiple decompositions

Node F is always in a separate stage. If A=0 and B=0, then C, D, and E all form a single stage; if
A=1and B=0, then D is isolated from C and E; and so on.

When RSIM simulates a network, it does its analysis stage by stage. Since the values of nodes in
a stage are closely related (the nodes are shorted together), it makes sensc to calculate all the values at
the same time. By the same rcasoning, all the transistors and nodes that influence ihe value of a
particular node are in the same stage as that node. Stages are the analogs of gates in a gate-level
simulator. In a gate nctwork, cach node’s value is determined by a single gate, and the output of a
gate is electrically isolated from the inputs; the gate is the ideal unit of analysis. In MOS nctwerks with
bidirectional devices, the traditional gate model is not adequate; hence the motivation for stages.

+This differs from the notion of “transistor group” introduced by [Bryant81]. A transistor group contains all nodes
that mighr become connecied, Le, a stage with all switches considered to be conducting. Transistor groups can be
quite large — for cxample. in circuits with barrel shifters that potentially short together all bits in a data path —
whereas stages are usually quite small.

-25 -

A simulation step starts when the designer changes the value of an input. (By dcfinition, any
node given a value by the designer is treated as an input node by the simulator.) The value of the

input influences other pieces of the network in two ways:

1 , _
L ' stage stage

stage

input &-—¢

0

@ {b)

Figure 2.14. Two ways in which an input affects a network

The simulator first recalculates the values of nodes in stages connected to the input by the
source/drain connections of conducting switches (figure 2.14(a)). Then, for each switch controlled by
the input, stages on each side of the switch are analyzed (figure 2.14(b)). If the switch becomes
conducting because of the new input value, the pieces of the network on either side form one large
stage. If the switch just turned off, it partitions what was previously one large stage into two smaller
stages.

If a node changes valuc as a result of analyzing a stage, RSIM calculates the transition time by
estimating the length of time required to charge/discharge the node’s capacitance. The name of the
node, its new value, and the cstimated time when the transition to the new valuc occurs are all
remembered as an event. The simulator maintains a list of pending events, keeping the list sorted by

time, with the earliest cvent first.

When processing new input values causes a node to change value, a new cvent is generated and
saved on the event list. After all inputs have been processed, the simulator processes events, starting
with the first clement of the event list. For cach cvent, the specified node is assigned its ncw value.
Then, any stages affected by this change (as shown in figure 2.14(b)) are analyzed, possibly generating
new ecvents, which are then added to the event list. The simulator continues processing events until
the event list is empty. ‘The network is said to have "scttled” at this point, and the new input valucs

have been completely propagated through the network.

-26 -

Note that if no nodes change valuec when a stage is analyzed, no new cvents are generated.
Portions of the network that remain quicscent are not analyzed, since the simulator only analyzes
stages affected by inputs or by nodes on the event list. By limiting simulation effort to the changing
portions of the network, the cvent list mechanism enables the simulator to handle large circuits. The
amount of computation required for a simulation step is proportional to the amount of circuit activity,

not the size of the circuit.

To get a better feeling for the way a change propagates through a network, consider the
following simulation of the XOR circuit presented in figure 2.13. Nodes A and B are inputs; values for

the other nodes are determined by the simulator,

A] A
B : | B
C+l ; c

LT T b

§

2o

|
| |
| I
| |
I |
| |
7 8

v —
[
o

|
|
|
events: 1

' Figure 2.15. Waveforms for simulation example

Event #1. Node A is set to 1 by the user. The simulator recalculates all stages
affected by A, in this case, the stage containing nodes C, D, and E
(which form one stage because C and I are 1}.

All three nodes are pulled down by the switch controlled by A, so events #2, #3, and #4 are
scheduled to set C, D, and E to 0. Note that the simulator calculates a different transition time for
each node. C changes most quickly since it is connected directly to the pulldown. D is the slowest
since it discharges through the two pass devices connecting it to the pulldown.

Event #2. C changes from 1 to 0, causing the stages containing D and E to be
analyzed.

At the time event #2 is processed, nodes D and E are still 1, although they both have events pending
for transitions to 0. When node C goes lbw, it partitions what was once cne large stage into two stages
— onc containing only D, the other contsining both C and E. Analysis of the stage containing D

shows that D is no longer pulled down, invalidating the upcoming transition. The simulator has

severai choices:

(1) Notice that D is currently 1, so just remove the pending event for . This results
in 1D never changing value. This is not a bad prediction if D is scheduled to
change substantially after C.

(2) Schedule another event (#5) for node D, which changes its value back to 1; set
the event time so that #5 happens after #4. This choice is best if C and D are
both scheduled to become 0 in close succession.

(3) Remove D's pending event as in (1), but report a glitch (an aborted transition) to
the user [Thompson74]; a sort of compromise between (1) and (2). Some
simulators only report glitches if the aborted event has been pending "long
enough" [Nahm30].

(4) Schedule another event as in (2) that changes D)'s value back to 1; also change
the pending event to be a transition to X, or, alternatively, remove the pending
event and schedule an immediate transition to X.

As one can see, scheduling a new event is a thorny issue when it involves a node that already has
events pending. Since D's value does not really matter (it does not control any switches itself), the
first alternative seems the most reasonable. Given the simplicity of the RSIM model, it probably does
not pay to overly complicate the scheduling of events. The transition-time estimates are not accurate
enough to allow subtle distinctions to be made based on the relative transition times of nodes; RSIM
avoids choices (2), (3), and (4) since they involve such distinctions. Note that a similar problem arises
for node E. It has an event pending for a transition to the correct value (E is still going low), but the
event could be rescheduled to reflect a faster transition time since the pullup on node D no longer

impedes the transition. Chapter 4 details the exact choices made by RSIM under various circumstances.

Returning to the example:

Event #3. Node E is changed to 0, causing the stage containing node F to be
analyzed. F is calculated to change value, so event #6 is scheduled.

- Events #4,5. Discussed in the preceding paragraph.

Event #6. Fissctto 1. F does not affect any other stages, so no ¢vents are added
to the event list.

At this point, the event list is empty, and the network has settled. If the user now changes node B to

1, a somewhat simpler sequence of events ensucs:

Event #7 Node B is set to 1 by the user, causing the simulator to analyze the
stage containing D. D is predicted to go low, resulting in the scheduling
~ of event #8.

Event #8. D is set to 0, separating C and E into different stages which are then
analyzed. C shows no change, but E is scheduled to go high (event #9)
now that it is disconnected from C’s pulidown.

-28 -

Event #9. E changes to 1, and as a conscquence F is predicted to change to 0
(cvent #10). Note that the low-to-high transition time can be very
different than the high-to-low transition time; RSIM takes into account
the relative sizes of the pullup and pulldown.

Event #10. Finally, F is sct to 0.

Once again the event list is empty, and the network has settled.

24. Calibrating and using the RSIM model

From a practical viewpoint, the success of RSIM depends to a large degree on the choice of the
modeling resistance for each transistor. The principal goal of the calibration process is to choose
resistances that lead to accurate predictions. Actually, there are two separate sets of resistances to be
chosen: static and dynamic. Static resistances, used to estimate node voltages, are comparatively easy
to chcose. When a circuit does not depend on device ratios for correct operation — e.g., a pulled-up
node or a cMOS gate — the values chosen for static resistances do not affect the voltage computation,
since the nodes connect to only one polarity of input. When a circuit makes a connection to inputs of
different polarities -— €.g., a nMOS gate with a logic-low output — the intervening nodes become part
of a voltage divider, and the transistor resistances must be chosen to predict the divider’s output
voltage. Since only the ratio of the pullup and pulldown devices is constrained, there is considerable
freedom in choosing the actual resistance values. Of course, inauspiciously chosen values can run

afoul of range and round-off problems in the computation, but such problems are easily avoided.

A more interesting problem is the choice of appropriate dynamic resistance values. One
approach involves performing a series of experiments designed to measure the resistance of each type

of transistor in various circuit contexts:

initially OV “—l initially OV “‘"l initially OV

7/ / /s
"1 "1 "1
(a) pullup (b) depletion source-follower (c) n-channel source-follower
~T— initially 5V : initially SV
e 7/

—-I 1pf —J_—L—{ 1pf
I 1075 I

(d) n-channel pulldown {e) n-channel pulldown w/ threshold drop

Figure 2.i6. Simple experiments for measuring channel resistances

Ideally, the experiments should be performed using actual circuits; when this is impractical, a well-
calibrated circuit analysis program can be used to gather the needed measurements. Each of the
experiments entails measuring the length of time required for the output to risc or fall from its starting
voltage to the switching threshold. (Section 3.4.1 describes the reason for using single threshold, and
the method for choosing it.) If the load capacitance is known, an appropriate channel resistance can be
calculated, essentially in\'rerting the computation performed by RSIM. Appendix 2 presents the

transistor resistances derived in this manner for a typical Su nMOS process.

Unfortunately, while the experiments outlined above lead to usable predictions of circuit
performance, the predictions are not as accurate as one might like. The problem with the experiments
is that the resistance measurements are made in a rather artificial context. Factors important in
determining the behavior of a transistor in a particular circuit (e.g., shape of the input waveform,
Miller capacitances, etc.) are not measured by the proposed experiments, Since the simple RSIM model
does not account for these factors, they are missing completely from the calculations, leading to
inaccurate predictions. There are two alternatives: '

(1) Moadify the RSIM model to include effects deemed important when making
performance preuictions. It is difficult to start down this road and still keep the
model simple; carried to its logical conclusion, this course of action leads to a
circuit analysis program — the very thing RSIM trics to avoid. There are,
however, alternatives that fall short of abandoning the simple model; these arc
discussed at the end of Chapter 3.

-30 -
(2) Conduct morc sophisticated cxp riments using circuit configurations found in

actual designs.

An example of the second approach is the following experiment:

shapes yt waveform lo;c:}weru:r
v v Dc v D¢ v {>°
S RLY

pair delay

Figure 2.17. Deriving resistances by measuring inverter pair delay

The delay through a pair of inverters involves both a rising transition (measuring the pullup resistance)
and a falling transition (measuring the pulldown resistance). The initial inverter provides an
appropriately shaped input waveform; the last inverter provides a realistic output load. The measured
pair delay is arbitrarily split into a rising delay and a falling delay (say, % and % respectively), so that
the pullup and pulldown resistances can be calculated. This leads to good predictions for the chains of
inverting logic so common in MOS designs. Similar experiments can be designed to measure other
resistances. The danger in this approach is that, because of the ad hoc nature of the experiments, the
resistances might be inappropriate for new circuit configurations. However, with a prudent choice of

circuits during calibration and design, this danger can be minimized.

The following examples are analyzed using the simple calibration given in Appendix 2. The
results give a feel for the performance of the “pure" resistance model, and also sct the stage for the
model improvements suggested in Chapier 3. The calculation of node voltages is straightforward and
is not mentioned in the discussion below, which focuses on the calculation of transition times. The

first example is a path through a PLA:

-31-

clock signal . input buffer poly line AND plane OR plane
v r A R 2s A v A ~N
5/5 N_ 5/20
c E
5/5
01 D> b5 N S0 s N 50 !
L e P e P
asel:1 | 5/5 NUS/20 [/5 N_5/2 1 1 1
o (° D” 05 1 V7 i 10/5 2p 3p —
case 2: 0 T
A B J

Figure 2.18. Sample circuit showing path through PLA

Transistor sizes are given in microns as width/length. When the clock signal goes high, the input
signal (buffered by the inverter on the left) propagates through the input buffer and the two PLA
planes. The following figure shows the equivalent resistor/capacitor network; resistances are given in

K@ and capacitances in pf.

16

Figure 2.19. Equivalent RC network for PLA circuit (shows dynamic resistances)

Note that the pullup for node C is recognized as a depletion source-follower without considering the
actual voltage on its gate. Since depletion devices are always on, the inverter which leads from node B
to the gate of the pullup is ignored by RSIM, and the timing for node C is always controlled by node B.
Also note that the resistance chosen for the pulldown for node B reflects the threshold drop of node
A.

When calculating Rgyniow, RSIM simply calculates the net resistance to ground, ignoring the
effects of any pullups. For example, a falling transition for node B takes (16)(.05) = 0.8ns. This
approach is not only simpler, but is conservative. (Adding the pullup resistance actially decreases the
fall time from the 'I‘hcvcnin'point of view). Using this approach, the table shows the rcsults of
propagating two diffcrent data values through the PLA. The time of each nodc’s transition is shown
in nanoseconds, as predicted by RSIM and SPICE.

-32-

Al B | C|D]|E

transition ¥ t $ t $
Casel RSIM | 03 | 40 | 49 | 140 | 149
SPICE | 08 | 35 | 68 | 155 | 207

transition t $ t $ t
Case2 RSIM | 16 | 24 | 30 | 43103
SPICE | 06 | 19 | 33 | 64 | 121

The discrepancies between the RSIM and SPICE predictions (-28% in case 1, -14% in case 2} can be

traced to the fact that the current RSIM model does not account for the shape of the input waveform

when analyzing a stage.t This is particularly noticeable in case 1 for the transition of node E. The

long rise time of node D slows the falling transition of E to a considerable extent; a fact blithely

ignored by RSIM.

The second example is a section of the OM2 data path {Mead80] consisting of the logic to drive a

register select line, a register cell, and a bus line. The path to be analyzed starts with the clock going

high, driving the select line high, finally causing the register cell to discharge the pre-charged bus line.

clock

\ 15/5

10/5 D 5/10

I

H

20/5
2

select line

~
¢

pre-charged bus

|
o

-1
1 e— i

15/5 A

1L

I

! 20/5 8
T

1L

T A

2
10/5

5/35 j 21/5 1
PN
I register cell

Figure 2.20. Register select and bus drive circuitry from OM2 data path

+Examining the times in this example, one might be tempted to multiply the effective resistances by a constant factor
in an effort to improve the accuracy of the predictions. But not all predictions underestimate the true transition time,
and, as will be scen in Chapter 3, there are other improvements that can be made that address the root of the prob-

lem.

=
3

T ORI BRI

-33-

140.7

flﬂ I 226

744

29

41
29 I

Figure 2.21. Eqguivalent RC network for OM2 data path example

The comparative analysis is given below; RSIM comes to within 9% of the SPICE prediction.

A B C D

transition 4 T t 4
RSIM 24 | 106 { 133 | 359
SPICE 2.6 91 | 196 | 396

25. Summary

The RSIM model can be summarized as follows:

o Transistors are modeled as switches with series resistors. Three resistances are
chosen for each transistor and used to predict node voltages and transition times.
Resistance values are determined by experiments, either with actual circuits or
using a circuit analysis program.

e Using the transistor model, a network of transistors and nodes is simulated as a
network of resistors (from transistors) and capacitors (from nodes). A node’s
value is determined by voltages calculated in two ways: (1) from charge sharing
with electrical neighbors, and (2) from the Thevenin equivalent circuit for pieces
of network connecting the node to the inputs. When a node changes value, the
timing for the transition is given by an RC time constant calculated using the
resistances and capacitances of the surrounding network.

e The network is viewed as an assemblage of small stages, each simple enough that
its operation can be predicted in a straightforward manner. Information
propagates through the network as a series of events (changes in a node’s value);
each event leads to an analysis of affected stages using the models described
above. The isolation between stages of digital circuits allows each stage to be
analyzed separately; the relative independence of one stage from another is one
reason why the very rough approximations of RSIM are so serviceable.

Several factors important for making accurate performance predictions are missing from both the RSIM
model and the simple calibration experiments proposed in scction 2.4. Chapter 3 suggesis some

modifications to the model that correct the more important oversights. Many implementation details

P 'S FT) NEess W oI BRI IEE T

-34-

unspecified in this chapter are: discussed in Chapter 4. Chapter 4 also catalogs the successcs and

failures of the RSIM model, as finally implemented.

-35-

CHAPTER THREE

Justification of the Linear Network Model

This chapter undertakes a performance analysis of logic gates and other digital circuits with the
goal of establishing a physical justification for the RSIM model. By comparing the resulting equations
with those proposed by RSIM, one can judge the accuracy with which the RSIM model predicts circuit
behavior. As an added. bencfit, insight into actual circuit operation helps to motivate model

modifications that improve the accuracy of the predictions.

The first section lays the groundwork for the analysis, presenting the first-order equations that
describe the operation of MOS transistors. The second section describes the node voltages found in
common digital logic circuits and compares the results to RSIM’s predictions. The next two sections
analyze the propagation delay of logic gates and other network components. Finally, several
modifications to the RSIM maodel are proposed, and the resulting predictions are compared to those of

the original model.

3.1. Electrical models for mosfets and gates

The active component in a MOS circuit is the mosfer, a type of transistor. The mosfet has three
terminals: the source and drain (two symmetric conncctions), and the gate. By convention, the source
and drain arc chosen such that vy, the voltage of the drain with respect to the source, positive. vg,

the voltage of the gate with respect to the source, can be cither positive or negative. Depending on

- 36 -

the relative voltages of the three ierminals, the mosfet conducts varying amounts of current between

the source and drain terminals. The amount of current conducted depends on the region in which the

mosfet operates. There are three possible regions:

0 vgs — vip <0 (off)
iy = %(vg, -) 0L ves—vin < vas (saturated) 3.0
K(vgs — vip — lZﬂ)vd_, Vgs — Vih > Vis (linear)

where vy, is the threshold voltage of the mosfet and

=-‘;-#Co~—(5&cr;—t1—2—) (3.2)

is a constant that depends on the width w and length / of the particular mosfet under consideration.
The numeric estimate is for a typical nMOS process. These equations ignore second order effects on
ids-

In an nMOS process, there are two types of mosfets, distinguished by the sctting of their

thresholds:

type of device threshold (VDD = 1)

n-channel Vip == 0.14

depletion Vid == -0.6

As we saw in Chapter 2, the simplest form of logic gate that uses these devices consists of:

a single depletion pullup with its gate and source attached to the output node and its
drain attached to VDD, and

one or more pulldown paths connecting the output node to ground, cach path
containing one or more n-channel devices.

.
Y

4

Figure 3.1. nMOS logic gates

The depletion‘ bullup is configured so that vgs.py = 0; since the threshold of a depletion device is
negative, vgs:py — Vi > 0, and the pullup is never off. Each n-channel pulldown is configured to be
on when its gate voltage exceeds v, and off otherwise. If all the n-channel devices in a particular
pulldown chain are conducting, the output load capacitance is discharged through the pulldown path
and the output voltage is lowered (vour = voy = logic low); otherwise the pullup pulls the output high
(Vour = Von = logic high). ,

Equation 3.1 can be specialized for a depletion pullup, using the fact that vgs:p, is always zero:

K

~5=1va? v | < (1= vour)
= - (33)
Kpu”"rdl - Ljﬂd)(l-vom) [via | > (1 =vour)

where vy, is the voltage of the gate/source node of the pullup. Since the drain of the pullup is
connccted to VDD, vgs:py = 1 — vour. To avoid confusion, the equations will be writien in terms of

| vig | since vy is negative. The current conducted by the n-channel pulldown in an inverter is given

by:

0 Vin — Ve <0
. K ‘
Ipdg = Tpd(v,-,, - v,‘,)2 0 < Vin—vee < Vou (34)
v
Kpd(Vin — Ve — _32'3_’,,)‘,0", Vin = Yo > Vour

where v, is the voltage of the gate node of the pulldown. Note that the source of the pulldown is

connected to ground (vip = vgs:pg) and the drain is connected to the inverter’s output (vVour = Vig:pd).

For proper operation of the inverter, the sizes of the pullup and pulldown are chosen so that ipg > ipy

when the pulldown is on.

To understand the behavior of an inverter in more detail, it is useful to plot iz of the

component devices as a function of the inverter’s output voltage:

s A

vyl 1 Yout v, 1 Vout

(a) depletion pullup (b) enhancement pulldown

Figure 3.2. mosfet i-V characteristics

The iz of a depletion .pullup depends only on vy, and thus a single curve suffices to show their
relationship. For the n-channel pulldown, there is a family of curves for iz corresponding to different

values of vj,.

The intersection of the igs curves for the pullup and pulldown shows the inverter's output

voltage, given a particular input voltage:

>

ids 4 ids A

. N

A} . B
1 out Vol H

~
>

Vout

{(a) Vout = 1 when Vin < Vie . (b) Yout = Vol when v, = 1
Figure 33. v out 'S determined by Tou and ind

In fact, one can plot the DC voltage transfer curve for an inverter, which shows the inverter’s output

voltage as a function of its input voltage.

1 pulldown = off pullup=linear
1 pulldown =sat putlup =linear
1| pulldown =sat pullup=sat

v pulldown=linecar pullup=sat

= Vin
1

Figure 3.4. Voltage transfer curve for an inverter

The four regions (I—IV) of the curve corfespond to various combinations of the pullup’s and
pulldown’s operating regions. Note that the relationship between v;; and v,,, shown in figures 3.3
and 34 applies when the voltages are allowed to stabilize; in a circuit with changing voltages, the
relationship between the vj, and v, is considerably more complicated, as will be seen in section 3.4.
The next few sections use the equations presented here to develop equations for the quantitics
predicted by RSIM — node voltages and transition times — so that the RSIM model can be evaluated

and perhaps improved.

3.2. Node voltages
When v;; < v, the n-channel pulldown conducts no current; the depletion load continues to
conduct as long as v,y < 1. Therefore, the logic high output voltage of an inverter is given by the

cquation:
vop =1 3.5

When vj, > v, the n-channel pulldown is on and the output node reaches an cquilibrium voltage vy,
which is determined by (1) the relative sizes of the pullup and pulldown and (2) the gate voltage on
the pulldown. v,y is that voltage where the current of the pulldown (at this point in its lincar region)

is balanced by the current of the pullup (in saturation):

Y, K
Kpd(Vin — Ve — "20'1‘)"01 = _lel‘,’dlz } (3.6)

If one assumes that v, = 1 (as is the case when vp, of the previous stage is 1) and that

VOl << 1 — Ve, then

1 lval? _ 021
~ 1) 3.
R (-ve) R @37)

Yol

where R = d - bu_ ¥pd is the ratio of the sizes of the pullup and pulldown. R is chosen so as
Ko Wi pa

to guarantee that the low output of a gate turns off the pulldowns of gates connected to the output,

ie., so that v, is less than v, by a comfortable margin; typically R is chosen to be about 4 if v, = 1.

Now consider the RSIM model for an inverter:

pu pu
Yout Yout
Rpd
(a) Vip & logic low (b) Vin & logic high

Figure 3.5. RSIM inverter model

When vj, is low, the pulldown is off and the inverter is modeled with a single resistor. In this

configuration, RSIM predicts
Voh:RSIM =1 (3.8)

agreeing with equation 3.5, indcpendent of the value chosen for Ry, . When vip is high, the inverter is

maodcled by a voltage divider. RSIM predicts

___ Ruw
Vol:RSIM = Rod + Rpu 3.9

One should choose Rp, and Rpg so that vo:gsias is the same as vol, as given by cquation 3.7. Thus
the RSIM model can accurately predict the output voltages of logic gates; in fact, there are two

unknowns and only onc equation to satisfy, so there is some frecdom in choosing the static resistance

valucs.

-4] -

There are circuits for which RSIM does not properly predict node voltages. For example, in the

followirg circuit, the voltage of node B only rcaches 1 — v,:

,I R1 R4
1 R3
_L' |
07-[>¢ L , } =R2 B RS
A B

(a) sample circuit (b) equivalent resistor networks

Figure 3.6. Sample circuit illustrating voltage drop across pass transistor

N-channel devices configured the same way as the horizontal transistor in figure 3.6(a) are called
"pass” transistors, and are used to implement dynamic latches, various types of steering logic, and so
on. Figure 3.6(b) shows the equivalent resistor networks for the circuit. According to this model, the
voltage for node B should reach vDD when node A is low. In the actual circuit, however, the pass
transistor cuts off when B reaches 1 — v, since, at that point, vgs:pass = vee. In general, the source
voltage of a pass transistor never rises above a threshold-drop below its gate voltage. Thus the RSIM

model incorrectly predicts the voltage of node B.

In fact, the network’ analysis performed by RSIM does recognize that node B never reaches VDD.
As shown by ceveral examples in Chapter 2, the resistance for a pulldown with a gate that has a
threshold voltage drop is not chosen in the same way as the resistance for a normal pulldown. In
other words, the value of RS in figure 3.6(b) reflects the knowledge that node B has a threshold drop.
This knowledge could also be used to adjust the prediction of B's voltage, but this is not currently part
of the calculation.

There are many other circuit configurations that are beyond the ability of RSIM to analyze,
although most such circuits could not, in all fairness, be called digital. Onc important exception, which

RSIM docs not handle, but which occurs in performance-critical digital circuits, is called boorstrapping.

small bootstrap node
&
L A

— |
00— 1< © I
/l/ B
|
isolation transistor I » <
/ large capacitance
coupling capacitor I

Figure 3.7. Bootstrap circuits lead to voltages greater than VDD

Node A is small compared to node B, to which it is capacitively coupled. The coupling capacitor need
not be explicit; often enough coupling is provided by the gate/source overlap capacitance of the
transistor controlled by A. Node A is driven high through a pass transistor, and in turn enables the n-
channel pullup that is controlled by A and connected to node B. Since the capacitance of A is small
compared to that of B, A reaches a significant voltage before the voltage of node B begins to change;
the difference is usually around 3 volts in common bootstrap configurations. As the voltage of node B
increases, the coupling capacitor maintains this initial voltage difference between nodes A and B, and
so the voltage of A increases correspondingly.§ It is not unusual for node A to reach 8 velts or more.
This, of course, increascs the voltage on the gate of the pullup, which in turn increases the current
flowing into node B. The net result is that node B reaches its final value much more quickly than one
might expect. Just as important, the voltage of B rises all the way to VDD instcad of stopping two

threshold drops below, as a simple analysis might predict.

Both the faster transition time and higher-than-expected voltage for node B are completely
missed by RSIM. Since such circuits are often used in time-critical portions of the network, it would be
nice for RSIM to make correct predictions in this case. Unfortunately, there is no simple change to the
simple RSIM model that achieves the desired result. However, by systematically replacing bootstrap
circuits with more conventional circuits sized to give the same performance, RSIM can produce the

correct results. 'This technique is discussed in the section on escape mechanisms in Chapter 4.

In summary, RSIM

+The pass device through which node A is driven isolates A from the driving circuitry. After the voltage of node A
reaches 1 — vye. the pass device cuts off, and stays off no matter large the voltage on node A becomes. This is be-
cause Vg:pgss — Vie Will be less than the voltage on cither the source or the drain.

-43 -

(i) predicts the output voltage of logic gates with acceptable accuracy.

(ii) does not predict threshold drops introduced by pass transistors, but does perform
a static analysis of the network to recognize transistors whose gates are subject to
a threshold drop, and adjust the modeling resistance accordingly.

(iii) does not handle bootstrap and other more exotic circuits. However, a pattern
matching/replacement technique is available for substituting equivalent circuits
that simulate correctly.

3.3. Propagation delay: overview

When choosing a single number to characterize the timing behavior of a circuit, one often settles
for determining the propagation delay: a measure of the length of time required for a change in an
input value to be reflected in the output value. In digital circuitry, a significant change is one where
the signai changes from logic low to logic high or vice versa. For a particular transition it is common
to define "change" in relation to a threshold; the signal is said to change when it crosses the threshold.

Consider the following single input, single output circuit:

T

I CIRCUIT —
Vin I ‘L I Vout

Figure 3.8. Test setup for measuring propagation delay

The propagation delay is defined as

by = louput — linput (3.10)
where

loutput is the time when the output voltage crosses the output threshold voltage;

linput is the time when the input voltage crosscs the input threshold voltage.

This definition works well for a transition between 0 and 1; however, delays associated with a
transition to the X state are still not well defined since it is unclear whether the signals in question
cross the threshold or not. Aside from this technical difficulty, the notion of propagation delay
involving X's is rather muddy sirice X is not a "rcal” logic value, but more of an crror state. The
simulation algorithin must assign some dclay to such a transition, and RSIM conscrvatively chooses the

fastest possible transition of which the node is capable (see equations 2.8 and 2.9).

'The next step is to choose the input and output thresholds, a choice that depends on the

particular circuit to be analyzed. Therc are two important criteria for choosing thresholds:

(1) The delay should never be negative. The thresholds should be chosen so that the
input always crosscs its threshold before the output docs. The simulation
algorithm quite naturally processes events in the scheduled order; ailowing a
negative delay might require backing-up a previously processed event.

(2) The output threshold for a circuit should be chosen without regard to its use,
allowing a single threshold to be chosen for all inputs and outputs. In that case,
only one delay computation is needed for each signal transition.

Though these criteria are not compatible in general, they can both be met for the digital circuits of
interest here.

To simplify the analysis below, will restrict the class of input waveforms considered. In his work
on waveform bounding, Wyatt [Wyatt83] observes that the transfer functions characterizing digital MOS

circuitry meet certain criteria which guarantee that

if two monotonic trial waveforms are chosen that bound the actual input waveform
(which also must be monotonic), then the response of the circuit to the trial waveforms
will bound the actual output waveform.

Thus one can choose computationally convenient input waveforms, e.g., simple voltage ramps, and

determine the bounds on the propagation delay by analyzing ramps that bound the true input

waveform.

3.4. Propagation delay: l(igic gates

In order to explore the timing behavior of MOS logic gates, this section analyzes the behavior of
an nMOS inverter with a simple voltage ramp on its input. The analysis is based on the first-order
equations for the component devices, presented in the previous section. The derivation is easily
extended to more complex gates by adjusting the parameters of the inverter's pulldown to model the
net pulldown-path resistance of the currently active pulldowns in the complex gate (sce scction 3.4.4).
The derivation also applics to ¢MOS logic gatcs; the analysis of the low-to-high transition causcd by‘ a
p-channel pullup is very similar to the high-to-low transition caused by an n-channel pulldown. For

simplicity, only nMOs gates arc considered below.
For the purposes of the analysis, the inverter output is connected to a fixed capacitance that

modecls the load driven by the inverter.

L e = e P e ———— T

-45-

0=
“ f_{ I Cload :["out

Figure 3.9. Inverter circuit to be anclyzed

At each moment, the output voltage and the current charging/discharging the load capacitance are

related by

dv,
itoad = Cload —;’i (3.11)
t
Unfortunately, this differential equation is hard to use as it stands because ijpoq is a function of both
vour and . However, if one can find a suitable approximation for ijs that removes the dependency

on vy, then the change in output voltage over a given time period can be determined by integrating:

4
Cload Avour) = [ioaa(t) dt (3.12)

The time needed for v,y to change a specified amount is calculated by first performing the integration
and then solving the resulting equation for ¢ This suggests the following plan of attack:

(i) Find suitable approximations for ijeq to remove the dependencies on voyr.

(ii) Compute the output transition time using equation 3.12.

(iii) Subtract from (ii) the input transition time, giving the actual delay from input to
output. Rearrange the answer into an RC term (what RSIM predicts) and an
error term.

This discussion starts with a small digression on choosing the appropriate threshold voltage.

34.1. Choosing the input/output threshold

To see if one can choose a single logic threshold and still guarantee that the predicted delay is

never negative, it is useful to consult the voltage transfer curve for an inverter:

- 46 -
Vout
A —
Vin™ Yout

I pulldown = off pullup=linear
1l pulldown =sat pullup =linear

<_—-——L-— choose lhreshold here “l pulldown =sat pu"up =sat

v pulldown=linear pullup=sat

I
Ve Vet |vw|/sqn(R) 1

Figure 3.10. Voliage transfer curve for inverter

The transfer curve shows the static behavior of the inverter; for any given input voltage, it tells what
the output voltage must be for the pullup and pulldown currents to balance. If the input changes
rapidly enough, the output voltage may lag behind. If the input is going from low to high, then the
transfer curve shows the minimum output voltage for a given input voltage; for a high-to-low input

transition, the transfer curve shows the maximum output voltage for a given input voltage.

Since it is desirable for the input and output thresholds to be the same, the input/output
threshold voltage varesh is chosen to be the point on the transfer curve where vy = vour.T This means
that during a low-to-high input transition, if vin < Vihresh. then Vour > Viiresh, RO matter how fast or
slow the transition. In other words, the propagation delay is never negative. A similar argument
applies for the other transition. To estimate Venresh. first notice that at the region II—region Il

boundary,

VY,
Yin = Vie + '!7%.— and Your = 1 - Iv1d| (3.13)

If R = 4. then vj, = .44 and vpy, = .4, and SO Vyresn is in region I (ust barely). In this region the
pulldown is in saturation and the puilup is in the lincar region:

1-—- 2
52— el = (v |0 =) = S0 (.14

FThe same choice of threshold has been made in several other simulators [Koppel78. Nahm80).

! Y TREEE T

. 8N | 8

-47 -

Setting vin = Vour = Viresh, and solving for vipresn yiclds vypresn = 439 — close enough to the =111

boundary that the distinction is not important.

3.4.2. Low-to-high output transition time, tplh'

To calculate fpj4, an approximation for ijaq is needed. ijpgg is just the difference between the
pullup current (i) and the pulldown current (ipg). so one strategy is to approximate the current
through each component individually. Recall that vy.s, is near the region 11—region 11l boundary of
the inverter’s voltage transfer curve, and notice that the part of the transition involved in the
prediction (vgy, rising from 0 to vuresn) takes place almost entirely with the inverter operating in

regions III and IV. This means that the pullup is in saturation, ie.,
. _ Kpu 2
Ipy = Tlvtdl = Imax : (3.15)

Choosing a specific approximation for iy is not as straightforward. However, a good starting point is

an approximation of the form shown in the following figure,

id Hoad
A
ima.x] imax |
1 i
1 |
1 t 1 > t
ly boff b tofr
{a) approximation for ipd (b) resulting approximation for iload

Figure 3.11. Approximation of 'p d Jor ’p Ih calculation

log is the time at which vj; = v,. At this point in the development, there is not much one can say
about /4, the time at which the pulldown current first starts to decrease. Certainly 14 = 1o is an
upper bound (resulting in a step function for ipg). Similarly, 14 = 0 is a lower bound since that is the

time when the input voliage first changes. The choice of a specific value for 14 will be discussed later.
With this approximation, the output transition time, 1, is given by

1
Cload itresh) = [, " itoaa (1) dt (3.16)

where

- 48 -

0 1 < 1q
. t -1 .
loadl1) = | ima(=—2) 10 <1 <1y (317)
a
imax ’g_ﬂ' Sl

Solving equation 3.16 for Iy yields

Rpu Cloaa + ';—(10,0’ + lq) Ih 2 log

n = 1 (3.18)
RRou Cload(togy —1a)]? + 1 1 < g '

Vihresh .
where Ry, = : . Recalling that Ipth = th — linpys,
max

Rpu Cload + %(laﬂ' + ta) = linpur Ioth 2 loff = linpur

by = 1 (3.19)

[2Rpy Cload (toy —’m)]lr + la = linpu pih < logy — linpur

The following figure plots ty as a function of linput .

Note that there is a relationship among the
values of fipp,,, logr, and (4.

For this plot, a linear relationship is assumed for the values. Their exact
relationship is determined by the shape of the input waveform, a topic pursued below.

bl
A

RouCload

Figure 3.12. ’plh as a function of ’ir;put

Scveral interesting obscrvations can be made. When the input is a voltage step, logrs ta, and ljypy, are

all zero, so Ipth:siep = Rpu Cloaq. Le., a simple RC time constant — precisely the prediction made by

the RSIM model.

-49 -

To sce what happens when the input is not a step, notice that
1
oin < RpuCload + ‘2‘(10_0' + 1a) = linpur (3.20)

since

1
[2Rpu Cload (togy —’a:)r2 + la = linput € RpuCload + —;'(loﬁ + 1a) = linpur (3.21)

when tpjp > loff — tinpur. (This can be verified by comparing the derivatives of the two sides of the
inequality or by simply extending the linear portion of the Ipin curves — those portions above the
dotted line — in the plot above.) Equation 3.20 looks like the response for a step input delayed by an

amount that depends solely on parameters of the input waveform.

Figure 3.12 provides some insight into the choice of an appropriate value for ¢,. From the plot,
one can see that #y/; eventually goes to zero for some choices of 14, but increases indefinitely for other
choices. By determining whether 1, goes to zero in an actual circuit, it is possible to narrow the
range of choices for 14. If the input changes slowly enough, one expects the output voltage to follow
the voltage transfer curve very closely. (This is essentially the definition of the voltage transfer curve.)
Thus, when vin = Viaresn, it follows that voy, = Viresh SINCE Vyress is the balance point of the inverter.
This implies t,;, = 0 for sufficiently slow input transitions.

Examining the bottom term of equaticn 3.19, one can see that Ipip is zero for slow input
transitions only if 14 < figpur.T In other words, if 14 > tinpur, the predicted propagation delay can
never be zero; the prediction will be longer than the true propagation delay. Thus, it is possible to

rewrite equation 3.20 using 1g = fnpy, and still preserve the inequality.
oih < Rpy Cload + ';‘(’a,[f = linpur) (3.22)

This equation can be simplificd still further with some assumptions about the input waveform.

:ri'lhbe. l;m(om(cml has the form [l'(!)]% + g{1) which reaches zero for large t only if g(1) is negative.

-50 -

tinput 0

Figure 3.13. Assumed input waveform for low-to-high output transition

If the input is a falling voltage ramp which starts at ¢ = 0 and reaches zero at ¢ = §, then

linpur = (1 — Vihresn)8 and toy = (1 — v,e)8. Substitution into equation 3.22 yields
toh < R Cloaa + >-tesh = W) = R Cloaa + (0.15)8 (323)

where the numerical estimate is computed for a typical 5p nMOS process. Thus RSIM potentially
underestimates for a logic gate with a slow input transition (a large 8). As & decreases (a faster
input transition), the accuracy of RSIM’s predictions incrcascs. Note that Ry, is exactly the resistance

measured by the experiment proposed in figure 2.16(a).

3.4.3. High-to-low cutput transition time, tphl‘

In the previous section, the equation for fp; was developed by overcstimating the current
through the pulldown, leading to an upper bound for the low-to-high propagation dclay. The same
technique can be used to cstimate #py, the high-to-low transition time. In this case, however, one
wants to underestimate the pulldown current (and overestimate the pﬁllup current) to find an upper

bound for fpp.F

For the portion of the high-to-low output transition which is of interest (v, falling from 1 to
Vihresn), the pullup is in its lincar region. As before, ip, can be approximated by the pullup’s
saturation current; an overcstimate, but one consistent with the goals of this section. Also as before,

cstimating the pulldown current is difficult. Consider the following diagram of various load lines for
tMost MOS circuits use multiple-phase clocking. with simple logic circuits between latches controlied by different

phase clocks. 'This means that circuit performance is determined by the mavimum propagation delay through the

simple logic: this is the only quantity cstimated by RSIM. Other technologies (1711, 1ECL) support single-clock, syn-

chronous designs in which minimum propagation delays can be very important for correct circuit operation, ‘This is

rare in MOS circuits, and such designs are not supported by RSIM.

-51 -

the pulldown. The trajectory of a load line shows Ipa as a function of time:

A fast transition

A

approximation —
|

| d

islow transition

Vihresh 1

N
-~

Vout

Figure 3.14. Load lines for the pulldown for various input transitions

When the input transition is fast in comparison to the output transition, the pulldown turns on to its
maximum current capacity (the upper load line in figure 3.14). As vy, drops, the current in the
pulldown also decreases, and the trajectory follows the maximum current curve until it reaches veyesh.
When the input transition is slow, the output voltage falls fast enough to keep the pulldown and
pullup currents balanced (the bottom load line in figure 3.14), so the trajectory for ipa follows the iy,

curve.

In the proposed approximation, i rises linearly to a maximum current equal to the actual
current through the pulldown when vi; = 1 and voyy = vgpresn. This certainly underestimates the
actual pulldowr current for a fast transition, and is roughly equal to the pulldown current for a slow
transition, except for the last part of the transition. Fortunately, in this portion of the transition (near
the threshold), a small change in the input voltage causes a large change in the output voltage, so only
a small amount of time is actually spent in the overestimated part of the transition. This

approximation leads to the following cstimate for ijpgg:

~il0ad
A

max [~

la 4

Figure 3.15. Lstimate of i load Jor Ip W calculation

where 1) is the time at which vy, = 1 and imax is the maximum pulldown current minus the pullup
current.

. v K
imax = Kpa(1 — Vie = ~2 Yoihresh — ~2 | vug | (3.24)

As before, 1, will be chosen to ensure that the estimate is an upper bound to the actual propagation
delay.
The derivation of a formula for f; and the choice of 14 is very similar to that of the previous

section, so only the conclusion is presented here:

toht < R Cloat + 501 = tnpu) (325)
where Rpg = l%.‘i(’i’ﬂ If the input is a rising voltage ramp that starts at ¢ = 0 and reaches 1 at
max
{ = §, then
tott < Rpa Cload + 21 = Vitres) = Ry Cloaa + (028)8 (3.26)
2

As before, RSIM potentially underestimates fpp; for a logic gate with a slow input transition (a large 8).
As & decreases (a faster input transition), the accuracy of RSIM’s predictions increases. Note that the
experiment proposed in figure 2.16(d) does nof measure Rpg. Instead, the experiment measures the
average resistance associated with the fast input transition shown in figure 3.14, omitting the
contribution of the pullup. This resistance is less than Rpy, although is it not clear by how much. This

net result is a tendency to undercstimate fp by the original RSIM model, calibrated as in Appendix 2.

3.4.4. Why analyzing inverters is sufficient

The results of sections 3.4.2 and 3.4.3 were developed for the nMoS inverter. This section
extends the results to NAND and NOR gates as well. Equations arc developed for the amount of
current flowing through the NOR and NAND pulldown configurations and then the results are

compared with the equations for a simple inverter.

-53-

nor inand
v

r—o A

— #1
o1l #1 #2 ’-—O -—- Vout
Vin #2 Y
v
(a) NOR pulldown configuration {b) NAND pulldown configuration

Figure 3.16. Currents through NOR and NAND transistor configurations

The propagation deiay of a NOR gate with a single active pulldown is exactly that of an inverter. If
both pulldoWns are active simultaneously, iyo, = i1 + i3, since the current through each putldown can
be computed independently. Thus, when both pulldowns are on, and their gates are at the same

voltage (ie., logic high), the total current through the pulldowns is

(k1 + k)(Vin — Ve — v‘;” Wour (linear)
Inor = 3.27)
ol ; K2 in = vie)? (saturated)
which is equivalent to the current through a single pulldown sized so that
Ksingle pulldown = K1 + K2 (3.28)

As one might expect, this is the formula for combining two conductances in parallel.

The analysis of a NAND gate is more complicated because the currents through the two

pulldewns are not independent. The currents through the pulldowns are given by

Your — Vm .
Ki(Vin — Vm — Ve — —-——2—)(vom = Vm) (linear)

i1 = X1 (3.29)
T(VM — Vm — V) (saturated)

iy = Ko(Vig — Ve ~ 12"'-);',,, (linear) (3.30)

-54 -

where vy, is the veltage of the node that is common to the two pulldowns, ‘Two equations are needed
for the top pulldown, because the pulldown may be in cither its saturated or linear region, depending |
on the relative values of vj; and voyr. Only one equation is needed for the bottom pulidown, because
it is assumed that v, is never large encugh for the bottom pulldown to become saturated. In the
steady state /7 must equal /5. This gives a set of equations to solve for v,,; substituting the solution

into equation 3.29 yields the net current through the pulldown. The result is

K1K2 Yout . .
m("m - Ve — OTW)Vout (linear) .
inand = K1K K]
-Z—OCI—]::EE)'(V,'" - V[e)z (saturated)

This is the same amount of current as that for a single pulldown sized such that

kK2 (3.32)

Ksi =
single pulldown K1 + K2

Again, as one might expect, this is the formula for combining two conductances in series.

The conclusion to be drawn from equations 3.28 and 3.32 is that the current flowing through a
parallel or a series configuration of pulldowns can be modeled as the current flowing through a single
pulldown of the appropriate size. This means that the formulas for the propagation delay through an

inverter are directly applicable to more complex logic gates.

3.5. Propagation delay: source-followers and pass transistors

The analysis which follows is not very rigorous; its purpose is to show that the RSIM models for
logic gates overcstimate the propagation delay through a circuit containing pass transistors and
source-followers. Although better estimates would be desirable, the existing models are sufficicnt

given the relatively constrained use of these components in actual circuits.

A source-follower (so called because the voltage of the source node "follows” the voltage of the

gate node) is an n-channel device with its drain conncected to vVDD.

- 5§ -

Hoad

'max {
input °—| :
~© output l—> ¢

lon Y

(a) source-follower circuit (b) approximation for iload

Figure 3.17. Source-follower circuit configuration

In the circuit shown in figure 3.17(a), the output voltage of the source-follower cannot rise higher than
a threshold drop below the voltage of its input. Thus, the maximum voltage for the output of a
source-follower is 1 — vg,; this is why a depletion pullup (which can drive its output to VDD) is

preferred in an ordinary logic gate.

Since a source-follower can only pull a node up, only the propagation delay associated with the
low-to-high output transition needs to be analyzed. (A rising output transition corresponds to a rising
input transition; unlike most logic circuits, a source-follower does not invert the sense of its input).
During a very slow input transition, the output voltage tracks the input voltage, and the propagation
delay is equal to the time needed for the input to rise from vipresh tO Vipresh + Vie. For a ramp input,

this implies tp7, = (ve)8 = (0.14)8 where § is the time needed for the input to rise from 0 to VDD.
For a fast input transition — one where the input reaches 1 before the output reaches viresh —

the current through the source-follower can be approximated as shown in figure 3.17(b). {,, is the

time at which vj; = v, and /] is the time at which vj, = 1. imay is estimated by the average current

flowing through the source-follower during the transition:

. K v,
imax = ~2-(1 = vie = = vphech (3.33)

One can calculate #,, using an approach similar to that of scction 3.4.2; the result is

pih = Ry Cloga + %(’1 + lon) — linpur (3.34)

v N , -
where Ry = n:—"f‘-'s—"— If the input is assumed to be a voltage ramp with transit time 8, the final
max

cquation for fpy is

- 56 -

Ry Cioaa + (0.35)8 (small §)

Plh =1 (0.14)8 (large) (2.35)

A source-follower is usually used to drive a large output load, so when § is small, the RC term

dominates. This suggests that the two pieces of the equation can be reconciled as
ih = Ry Cloaq + (0.14)8 (3.36)

This equation is very similar to 3.23, which describes tp”,' for an ordinary logic gate, so no special

handling is needed for a source-follower.

In the analysis of section 3.4 and the first part of this section, each examined device had
essentially two terminals, since one terminal of each device connected to VDD or GND. Moreover,
input signals were applied to the gate node of the device. The analysis now turns to circuits that
contain three-terminal components, Le., pass transistors. A pass transistor is any transistor not
configured as a pulldown, pullup, or source-follower: some examples of circuits containing pass
transistors are presented in section 3.2.

There are two basic configurations for a pass transistor; one with the gate node as input, and the
source and drain as outputs; the other with the source/drain as input, and the drain/source as output
(assuming that the gate is at logic hight). As the following table shows, when the gate of a pass

transistor is the input, the pass transistor behaves like one of the components analyzed carlier.

input source or

(gate) drain pass device acis as analyzed in

falls rises pulldown turning off section 3.4.2

falls falls enhancement pullup turning off —

rises falls pulldown turning on section 3.4.3

rises rises source-follower beginning of this section

The sccond pass transistor configuration presents a new analysis problem. Assume that the drain
connection is the input (which remains constant) and that the source node undergoes a transition. If
the drain undergoes a step transition from high to low at time 0, and the source follows, [Horowitz83)

suggests the best estimate for the voltage of the source is

{
Vsource(1) = 1 — tanh(—r—) (3.37)
Rpass Cload
}Alrlh(-)ugii-u’wﬂz.ma‘iims focuscs on n-channcl pass transistors, it can be extended to p-channel pass transistors in a
straightforward manner.

-57-

This equation can rcarranged to give the propagation delay:
toht = Rpass Cloagtanh ™Y1 = vipresn) = (0.63)Rpass Cload (3.38)

Similarly, Horowitz suggests the best estimate for the voltage at the source, given a rising step at the

drain, is
_ 1
Vsource(1) = 1 — P (3.39)
—_—]
which gives
v
bpih = Rpass Cload‘f—_,%’:;;" = (0.79)Rpass Cload (3.40)

In both cases, the RC time constant of the RSIM model overestimates the propagation delay of a step
input. For a slow input transition, the source voliage tracks the drain voltage, resulting in essentially
zero propagation delay. (In this respect, the delay through a pass transistor is similar to the delay
through a logic gate.) Although no direct evidence is provided here, the circumstantial evidence
indicates that the predictions for propagation delay through a logic gate are upper bounds for the

propagation delay through a pass transistor, regardless of the speed of the input transition.

Pass transistors are often used in series within a switching-logic implementation of multiplexors,

etc.
1 1 1 1
A a L B L ¢ L b
1 I i |
i“P““"—]mlTIRzL‘IJmlTJm'—J
111
Figure 3.18. Pass transistors connected in series

Horowitz extends his cstimates for the voltage of a particular node e to a chain of pass transistors by

replacing the RC terms in equations 3.38 and 3.40 with

De = ;Rkec‘k (3.41)

where Rge is the resistance of the path common to node e and node k. ‘Thus, his cstimate for the

- 58 -

delay associated with a falling transition on node 1) of figure 3.18 is
o = (0.63)[R1C1 + (R1+R)Cy + (R1+R2+R3)C3 + (R1+R24+R3+R4C4] (3.42)

If all the resistances are equal, and all the capacitances are equal, fpp = 6.3RC'. The RSIM estimate

for the same transition is

ton = (;Rk)‘;q‘) = 16RC (3.43)

which overestimates the delay by a considerable margin. For a long chain of pass transistors, the RSIM
estimate is very pessimistic; fortunately, performance constraints limit designers to chains of length
four or less. Nevertheless, performance prediction for a circuit containing pass transistors is clearly an

area where RSIM can be improved.

3.6. Implications for the RSIM model

The analysis of the propagation delay of logic gates indicated that an RC time constant is a very
good estimate for the delay of a gate when the input waveform is a voltage step. The analysis
concludes that a simple RC time constant underestimates the actual propagation delay if the input
waveform is assumed to be a voltage ramp with a rise/fall time of §. More accurate estimates for the

propagation delays are

ih < RpuCload + Ain:fa »
Lit < RpaCload + Din:rise (3.44)

where

Binsgut = 3 Otresh = ve)d = (O15)8
' 1 (3.45)
Ain:rise = 5(1 = Vihresh)8 = (0.28)8

are offscts that depend only on parameters of the input waveform. Section 3.5 shows that these
equations are satisfactory upper bounds on the propagation delay through other (non-gatc) circuit

configurations.

i‘ll is straightforward modification of RSIM to make it use equations 3.38 and 3.40 instcad of the lumped RC formu-
la. However, these equations only apply to circuits containing a single driver: until the theory is extended to include
multiple-driver configurations, it scems safest to use the conservative lumped RC approximation,

The computation of the propagation delay would be easier if it involved only the + of the output
node. A rearrangement of the time accounting accomplishes this:

(1) Report the time of the output transition as happening at = time units after the
input transition.

(2) Schedule the event associated with the output transition for 7 4+ A time units
after the input transition where A = (0.28)(¢otal rise time) for rising transitions,
and A = (0.15)(total fall time) for falling transitions.

In other words, the effects of the input rise/fall time are factored in when the input transition is
scheduled, so the A terms in equation 3.44 can be omitted when computing subsequent 7's. This

rearrangement is illustrated in the following figure.

IN IN

_ —_]
—3{RC + 4 e~ -4, | RC =
ouT our
(a) according to equation 3.44 (b) proposed rearrangement

Figure 3.19. Rearrangement of time accounting for transitions

The total rise and fall times of a transition are related to the RC time constant of the transition. When
the input is modeled as a ramp, the total rise/fall time is (2.3)7 since 7 is measured using vypresh = 0.44.
As a result, the transitions of a given node can be handled in the following way:

(1) Compute the RC time constant (r) for the node.

(2) Report the time of the transition as 7 time units in the future.

(3) Schedule the associated event at
(1.6)r time units in the future for a rising transition, or
(1.3) time units in the future for a falling transition.

Note that 1.6 =1 + (2.3)(0.28) and 1.3 =1 + (2.3)(0.15). This scenario assumes that all
consequences of a rising transition involve a falling transition, and vice versa. This is not always the
case for a source-follower or a pass transistor, but the error involved (the difference between 1.6 and
1.3) is not large enough to be significant. The old scheme (accounting for the input transition time

during each delay computation) can be used if desired.

Now that the model incorporates some information about the input waveform, it is interesting to

review the cxamples presented in section 2.4. First the PLA calculations:

- 60 -

RSIM SPICE RSIM
node | transition T predicts | predicts | schedules
transition | transition event

A) 0.3 0.3 0.8 04

B £ 7 4.1 35 6.3

Case 1 C ¢ 09 1.2 6.8 1.5
D t 9.1 16.6 15.5 221

E ¥ 09 230 20.7 —_

A % 1.6 1.6 0.6 2.6

B) 0.8 34 1.9 2.6

Case 2 C * 0.6 42 33 4.6
D b 13 59 64 6.3

E 4 6.0 123 12.1 —_

As one can see, RSIM's estimates are now better, and they overestimate transition times with reasonable

consistency, (One expects overestimates because of the inequality in equation 3.44), The estimate for
Case 1 is 11% greater than the SPICE prediction; for Case 2, 2% greater. The story is similar for the
OM2 data path example:

RSIM SPICE RSIM
node | transition ? predicts | predicts | schedules
. transicfon | transition event

A) 24 24 2.6 31
B t 8.2 113 9.1 16.2
C * 2.7 189 19.6 232
D $ 22,6 45.8 19.6 —

RSIM's prediction is 15% greater than that of SPICE. Note that the event for node B is scheduled using
the rule for a rising transition — formulated assuming that any consequent transitions will be falling —
even though node C is aiso undergoing a rising transition. This accounts for rauch of the overestimate
by RSIM.,

In conclusion, this chapter shows justification for the linear transistor model, especially if ali
waveforms can be modeled as sieps. OF course, transitions are not steps in actual circuit operation;
this fact motivated changes to the lincar model, still allowing it to provide accepiable predictions of
cirenit behavior,

- 61 -

CHAPTER FOUR

Simulation Using a Linear Network Model

This chapter focuses on various RSIM implementation issues. The first section presents a detailed
description of the simulation algorithm, with step-by-step accounts of the charge-sharing and final-
value computations. Several techniques for speeding up the computations are described in the second
section. The third scction outlines some mechanisms available to the user for forcing the value and

timing predictions for given nodes. The chapter concludes with an evaluation of the strengths and

weaknesses of RSIM.

4.1. The RSIM simulation algorithm

RSIM uses the following simple recipe for simulating a circuit:

(i) Accept new input values from the user. Perform the new-value computation
(figure 4.2) for cach new input value: this propagates the new value to nodes
connected to the input by the source/drain conncectien of a transistor switch (see
figurc 2.14(a)). In addition, schedule the appropriate cvent so that any
transistors affected by the new input value will be processed.

(ii) Process events from the event list, stopping (1) when the event list is empty, 2)
when a node the user is tracing changes value, or (3) when the specified amount
of simulated time has clapsed.

(i) Loop back to (i) to accept new inputs.
'The main loop of the simulator (step (i) above) is described in the following figure. The node

-62 -

associated with cach cvent is assigned its new value, and all stages affected by the new value are
located and processed. (An affected stage is one that contains a source/drain node — called a seed
node — of a transistor which has the event node as their gate.) The processing of a stage has two
steps: first a charge-sharing computation for the stage, then a calculation of the final value of each
node in the stage. Before each of the two steps, the COMPUTE flag of each seed node is set to indicate
that the stage containing the sced node needs processing. A stage is processed only if its seed node
has the COMPUTE flag set; as part of the processing, COMPUTE flags for nodes in the current stage are
reset. This mechanism ensures that a stage is processed only once, even if it contains more than one

seed node.

while event list not empty {
n := node associated with first event on event list
remove first event from event list
set n's value to the value specified by the event

/* do charge-sharing computation for each affected stage [see section 4.1.1] */
for each transistor with n as gate node, set COMPUTE flag for source
for each transistor t with n as gate node
if t has just turned on and COMPUTE still set for source node
do charge-sharing computation for source

/* do new-value computation for each affected stage [see figure 4.2] */

for each transistor with n as gate node, set COMPUTE flag for source and drain

for each transistor with n as gate node {
if COMPUTE still set for source, do new-value computation for stage containing source
if COMPUTE still set for drain, do new-value computation for stage containing drain

}
}

Figure 4.1. Main loop of RSIM algorithm

Note that the charge-sharing computation deals only with the source stage of each transistor, but the
final-value computation deals with both the source and drain stages. This is because the charge-
sharing calculation only deals with transistors known to be on; therefore, the source and drain belong

to the same stage, and a stage computation involving the source automatically involves the drain.

The procedure for calculating the final value for cach node in a stage is outlined in the following

figure.

-63-

initialize connection list to have starting node as only clement
set pointer to beginning of conncction list
if starting node is an input, input_found : = true, clse input_found := false

/* find all nodes in current stage */
while pointer not at end of connection list {
n := node currently pointed at
for each "on" transistor with source connected to n {
if drain is an input, input_found := true
else if drain not on connection list, add drain to end of list

}

advance pointer to next list element

}

/* compute new final value for each node in stage */
if no inputs found, all done (charge-sharing has computed the correct value)
else for each node on connection list {
if node is an input, do nothing (its value is set by user)
compute final value for node [section 4.1.2]
reset VISITED flag (set by final-value computation) for each node on conncction list

reset node’s COMPUTE flag

Figure 4.2. Subroutine to compute new final value for every node in stage

The details of the charge-sharing and final-value compuiations are presented in the next two

subsections, followed by a description of event management in RSIM.

4.1.1. Charge-sharing coniputation

When a transistor turns on, its source and drain nodes become part of the same stage. As
explained in section 2.2, if the voltages of all the nodes in a stage are not already identical, they
become so through charge sharing. In order to calculate the charge-sﬁaring value for each noce, RSIM
computes three summary capacitances from the capacitances of each node in the stage:

Chigh total capacitance of nodes with current state of logic high.
Crow total capacitance of nodes with current state of logic low.
Cy total capacitance of nodes with current state of X.
The summary capacitances are used to compute the charge-sharing value for the stage, as spccified by

equations 2.3 and 2.4:

C high + Cy
Crow + Chigh + Cy

< Vigw

. Chigh
charge-sharing value = | 1 g > Vhieh 4.1)
B! 8 Cow + (Iligh + Cy " (

X otherwise

An cvent is scheduled for each node, specifying an immediate transition to the charge-sharing value.
(See section 4.1.3 to find out what happens to new events.)

The charge-sharing computation is outlined in the following figure. The procedure performs a
tree walk of a stage starting with a node passed as an argument from the new-value procedure. Since
the nodes in the stage do not requirc processing in a particular order, the procedure is implemented

without recursion.

initialize list to have starting node as only element
set pointer to beginning of list
reset capacitance accumulators

/* visit all nodes in stage, compute summary capacitances */
while pointer not at end of list {
n := node currently pointed at
add capacitance of n to appropriate accumulator
for each "on" transistor t with source connected to n {
if drain is an input or static(t) > maxres, do nothing
else if drain not on list, add drain to end of list

}

advance pointer to next list element

}

/* make each node in stage have charge-sharing value */
compute charge-sharing value using cquation 4.1
for each node on list {

reset node’s COMPUTE flag

schedule immediate transition to charge sharing value

}

Figure 4.3. Non-recursive routine for charge-sharing computation

If the resistance of a transistor is large enough, its source and drain nodes might not sharc charge — at
least not very quickly. The user can specify a maximum resistance parameter (smaxres) that controls
the scope of the charge-sharing calculation; the traversal of nodes in a stage stops at transistors with a
resistance greater than maxres. ‘The COMPUTE flag indicates to the main RSIM loop which stages have
been processed by the charge-sharing calculation; the main loop uses the flag to ensure that the

charge-sharing calculation is performed only once for cach stage.

Equation 4.1 leads to incorrect results when the surrounding netwerk contains X transistors
(transistors with gates of X). A portion of the network that can be reached only through X transistors
might not be connccted to the original node at all, and so should not make an active contribution to

the node’s charge-sharing value. An alternative (suggested by Dave Gross) is the use of capacitance

.65-

intervals to accumulate the contribution of X connections. In this scheme, the capacitance
accumulators have interval values, e.g., Chigh = [Chigh.min, Chigh-max}. 'The minimum value is the
total capacitance of nodes guarantced to be connected to the current node; the maximum value also
includes the capacitance of nodes only reachable by X transistors. A scparate charge-sharing

computation occurs for cach node in the stage, as outlined in the following figure.

if node is input, Chigh = Ciow = Cx = [0,0]
else {
local_Chigh := local_Cpow 1= local_Cy := [0,0}
add node’s capacitance to max and min of accumulator for node’s value
set VISITED flag for current node
for each "on" transistor, t, with source connected to current node {
if drain does not have VISITED flag set {
recursively uetermine parameters for drain node
if value of gate node for tis not X {
local_Chigp.min : = local_Chigh.min + Chigh .min
local_Clow.min : = local_Cjow.min + Coy.min
local Cy.min := local_Cy.min + Cy.min
}
local_Chjgn.max := local_Chjgh.max + Chigh-max
local_Cjow.max := local_Cjpw.max + Cloy.max
local_C'y.max := local_Cy.max + Cy.max

}

set Chigh = local_Chigh, and so on

}

Figure 4.4. Subroutine to compule capacitance intervals

The results determine the maximum and minimum node voltage, which determine the charge-sharing

value for the node:

Chigh.max + Cx.max
Clow.min + Chign.min + Cx.min

Viow

Chigh.min
charge-sharing value = 1 g o .
i ’ Crow-max + Cpigh.max + Cy.max high 4.2)

X otherwise

Capacitances for nodes connected by X transistors contribute to the final value only in a ncgative
sense, Le., they may cause a node to go to X, but never contribute to a value of 0 or 1. l.caving the
viSITE.* flag sct as cach new node is discovered ensures that cach node is visited only once. After

completing the charge-sharing computation for a node, its COMPUTE flag is reset; the VISITED flags for

- 66 -

all nodes in the stage are also reset, in preparation for the next nede’s computation.

One disadvantage of the interval approach is that a scparate calculation is performed for cach
node in the stage, whereas the original scheme required only one calculation per stage. In addition,
the interval calculation must be performed by a recursive trec walk to ensure the correct handling of X

trangistors. Fortunately, this computation can be merged with the tree walk described in the following

section, so the incremental cost is fairly small.

4.1.2. Final-value computation

The final, driven value of a node is determined by the resistance of paths from the node to
various inputs. As we saw in chapter 2, a convenient way to characterize these paths is to calculate the
Thevenin equivalent for the portion of the network that can be reached from the node of interest.
Equation 2.6 relates the final value of a node to Vpey, the Thevenin equivalent voltage. The time
constant for a transition in the value of a node is also determined by the surrounding network; the
necessary parameters can be computed during the Thevenin calculation.

For computational convenience, RSIM actually computes RH and RL, the resistances of a resistor

divider that represents the effect of the surrounding network.

] [RHI Rl {h] < net resistance of all paths to VDD

[RLy.RLy] T Z— qet resistance of all paths to GND

Figure 4.5. characteristic resistor divider for a node

RH and RL might be resistance intervals (RH = [RH;, RHp]and RL = [RL;, RLp)) if there are X

vaiues in the surrounding nctwork. The Thevenin equivalent voltage is easily calculated from the

characteristic divider:

RL; RLy

RL; + RHy' RLy + RH;] “3)

Vihev = [Vi, Vi]: [

For example, the lowest possible voltage is calculated using the least resistance to GND (specified by

R1;) and the greatest resistance to VDD (specified by RHj). Couching the computation in terms of

the characteristic resistance is advantageous for scveral reasons. Resistances to vDD and GND
represent, in a natural way, the connections made by MOS logic, as shown in chapter 3. With the aid
of some simple rules, it is casy to incrementally analyze any MOS network in terms of its component
resistances. Because resistances are directly related to the implementation, they can represent certain
circuit configurations — e.g., short circvits (RH = RL = 0) — that cannot be simply characterized
using the Thevenin equivalent. The remainder of the scction describes a tree walk algorithm to
compute the parameters needed for determining a node's value and for scheduling the appropriate
transition.

The computation of RH and RL proceeds by tracing paths to the inputs that are reachable from
the node of interest, and then calculating the resistance of each path, starting at the input and working
back toward the original node. Two rules arc helpful for calculating path resistance. The first rule

specifies the apparent path resistances when a divider exists on the other side of a resistor:

(PP [R,R;) [ApAL]
[QQ] [B;.By]
(a) initial network (b) approximation

Figure 4.6. Reduction rule for resistor divider with series resistor

The parameters for the apparent resistances (A4 and B in figure 4.6(b)) cannot be determined exactly,
an approximation is therefore necessary. Appendix 3 explains why this is so, and derives the following

formulas for the approximation:

Py Py Py,
A =P+ R; + Rj— Ap = Py + Rj— + R;j—
1=P+ Rt Rig h=Po+ R+ Ry "
Bi=Qr+ R+ RI—Q,I By = oy + R0 4 R 20

Py Q Py

The second rule is much simpler; it indicates how to merge the resistances of two scparate paths to

obtain the net resistance for both paths:

- 68 -

[AB] rQl [AlP.BIIQ]
[C.D] [R,S] [CIR.DJIS)
(a) dividers for two parallel paths (b) resulting dividet

Figure 4.7. Reduction rule for combining two parallel paths

To compute the Thevenin equivalent for a particular node, one starts by locating all conducting
transistors connected to that node and then recursively analyzing the network on the other side of
each of the transistors. Each node is marked as its analysis begins; recursive calls ignore portions of
the network involving marked nodes. This keeps the analysis expanding outward, eventually
terminating at a dead-end (no paths leading to unmarked nodes) or an input. These particular circuits

are easy to analyze, as shown in the following figure.

RH=w® RH=0 RH = o0
RL=0 RL = ®© RL = 0©
(a) low input (GND) (b) high input (VDL (c) dead-end

Figure 4.8. Characteristic dividers for input nodes and dead-ends

The resistance of paths leading from a particular node are combined using the two reduction rules
above. Using the first rule, the results of a recursive call (shown as P and Q in figurc 4.6) are
combined with the resistance of the conducting transistor lcading to that picce of the network (shown
as R), to yicld the net resistance of the path. This resistance is combined with the resistances from
other recursive calls using the sccond reduction rule. When all paths have been accounted for, the
analysis for the node is complete. The resulting divider is the desired answer, or, is used as part of the

analysis of some other node if the analysis was performed because of a recursive call. The process is

diagramed in the following figure.

- 69 -

195
TTT

(a) initial network (b) after recursive analysis of subnets

o

(c) after applying first reduction rule (d) after applying second reduction rule

Figure 4.9. Network analysis by repeated rule application

The complete analysis procedure is outlined in the next figure. The results are stored in eight

global variables:

RH resistarice interval for net resistance of all paths to vDD. Path resistance
' computed using static resistance of cach transistor.

RL resistance. interval for net resistance of all paths to GND. Path resistance
computed using static resistance of each transistor.

Ry net resistance to VDD, computed using the dynamic-high resistance of each
transistor. Simple series/parallel calculation; paths containing X transistors
are ignored.

Rgna net resistance to GND, computed using the dynamic-low resistance of cach
transistor. Simple scries/parallel calculation; paths containing X transistors
are ignored.

Ry net resistance to all inputs, computed using the dynamic-high resistance to
high inputs, and dynamic-low resistance to low inputs. Simple serics/paraliel
calculation; includes paths containing X transistors.

Chigh total capacitance of r:odes with current state of logic high.

Clw total capacitance of nodes with current state of logic low.

Cy total capacitance of nodes with current state of X.
If the interval charge-sharing calculation is merged with this calculation, the upper limit of the
capacitance intervals in the charge-sharing calculation can be used in place of the three capacitance

accumulators just defined. The procedure also uses four stack-allocated local variables to accumulate

-70 -

the first four quantities listed above, during the calculation for cach node.

if node is logic low input {
return with RH = Ry = ®0 and RL. = Rgpy = Ry =0
} else if node is logic high input {
return with RH = Rygyy = Ry = 0and RL = Rgpg = 0
} else {
local_Rygg := local_Rgng := local_Ry := local RH := local RL:= 00
add node capacitance to appropriate accumulator
set VISITED flag for current node
for cach "on" transistor, t, with source connected to current node {
if drain does not have VISITED flag set {
recursively determine parameters for drain node
combine static(t) with RH and RL using first reduction rule
combine result with local_RH and local_RL using second reduction rule
if value of gate node fort 1= X {
local_Ryzz := local_R,44 || (dynhigh(t) + Ryuz)
local_Rgng := local_Rgng || (dynlow(t) + Rgng)
}
local_Ry := local_Ry || (min(dynhigh(t),dynlow(t)) + Ry)

}
}
set Rygg = local_Ry4z, RH = local_RH, and so on

}

Figure 4.10. Subroutine to compute parameters of resistor divider

Marking each node as it is visited (by setting its VISITED flag) avoids cycles and keeps the tree walk
expanding outward from the starting node. If the network docs contain cycles, the subroutine only
approximates the true resistance to VDD and GND. For example, consider the following logic gate

where the output (the pulled-up node) is the node of interest:

P

R1 R1 ng

R2 RS either R2 or RS R2 R4 R4 RS

R3 R6 R3 R4 R6 R3 R6 R3 R6
(a) circuit containing cycles (b) circuit as analyzed (c) circuit as analyzed if marks removed

Figure 4.11. Analysis of circuit containing cycles

Since the marks arc not removed when the analysis of a path is completed, RSIM treats the cycle as if
the circuit were configured as shown in the circuit in figure 4.11(b). 'This approximation results in an

overestimate of the actual resistances. If a node’s mark were removed as the procedure exited, all

-7 -

paths through the neiwork would be explored (as shown in figure 4.11(c)); in this case, the resistance

would be underestimated, leading to optimistic performance predictions.

Cycles are relatively rare in nMOS designs; when they occur, the extra path is often redundant,
Le, the circuit is designed to work correctly if any path in the cycle became the sole connection. This
means the approximation used by RSIM is usually not out of line with the designer's intentions. This

statement holds for cMUS as well, with one notable exception — the cMOS pass gate:

AL e

Figure 4.12. A cMOS pass gate

In this circuit configuration, one device is sized to carry most of the load, and the other exists simply to
ensure no threshold drop across the gate. In analyzing such a circuit, RSIM arbitrarily chooses the
transistor that makes the connection; the other transistor's contribution is ignored. This is satisfactory
if the transistor with the smaller resistance is chosen, but such is not always the case. To correct the
problem, the transistor list for each node can be arranged in order of increasing resistance; this ensures
paths of least resi~ance are cxamined and marked first. Note that this solution only works when the
paths in a cycle have a length of one transistor (as in the pass gate above). If the paths are longer,
there is no guarantee that the path of least total resistance will happen to start with the transistor that
has the least resistance.

After the various parameters are calculated, the final value of a node can be calculated using

cquations 2.6 and 4.1:

0 Vi < vigw or (old value=0 and RH;=00)
final value = { 1 Vi > vhigh or (old vaiue=1 and RI.;=00) (4.5)
X otherwise

The extra clause for "0" and "1" values prevents a node from being unnecessarily forced to X when it
has no connection to inputs of the opposite logic state. The appropriate event is scheduled Ryy Copr

seconds in the future, where

Rynd final value = 0
Ry = Rt Sinal value = 1 (4.6)
Ry Sfinal value = X

Chigh + Cx Sinal value = 0
Ciow + Cx Sfinal value = 1 4.7
Crow + Chigh Sfnal value = X

Coy

The disposition of this event depends on the nature of any pending events and the node's current

value; see sectivn 4.1.3 for the detalls of event management.

The user has some control over the final-value computation. The time constant for event
scheduling can be forced to 1, implementing a unit-delay simulation. 'I'his is useful when a node value
is to be calculated using transistor resistances, but transition timing is not important. Another option is
flagging those events corresponding to transitions to X, where the X value is specifically caused by a
ratio error (rather than other X's in the network). Such transitions are characterized by RHp <
and RLy < 00 if an X exists in the surrounding network, one or both of these parameters is inilnite.
When a flagged event I8 processed, the transition is reported to the user as a ratio error. Becausc the
error report is delayed until the flagged event is processed, short-lived ratio errors (those caused by
small diffzrences in propagation delays) are ignored, and the error reports reflect only significant ratio
errors. OF course, in some designs, even long-lived ratio errors might not affect correct circuit

operation, so the reporting is optional.

When RH) = RL) = 00, the node Is not connected to any inputs, and the charge-sharing
computation described in the previous section correctly computes the node's final value, Ordinarily,
the Anal-value calculation dves not schedule any events in this case, but the user can optionally
request the scheduling of a charge-decay event. A charge-decay event sets the node value to X after a
specified interval which the user can set. At flrst glance, it might scem odd to schedute all decay
events using the same interval; a more suitable estimate might be based on factors such as the node’s
capucitance, the number of transistors connected to the node, and so on. However, precise predictions
are not necessarily the most useful here. "The actual decay time for MOS circuits is in the millisecond
range. Since it is unlikely that a simulation spans that long a period of simulated time, a precise
accounting of the decay time never results in a decay! A more useful approach is based on the
observation that a designer usually intends for all dynamic nodes to be refreshed every few clock

cycles. When the decay time is set to an interval slightly lauger than the intended refresh rate, the

-73-

unrefreshed nodes decay quickly, and the user reccives a suitable error report. ‘Thus, even a short
simulation run catches a decay problem. This type of dcbugging cexperiment can be much more

effective than a precise estimate in pinpointing a problem.

4.1.3. Event Mansgement

Up to two cvents can be pending for a node:

(1) a charge-sharing (CS) event. CS events are always immediate events, ie., they
are scheduled for the current simulated time.

(2) a final-value (FV) event, scheduled for sometime in the future.
Thus, up to two transitions are possible for a given node. Each event corresponds to a real transition,
Le., the new value of a CS event always differs from the current value of the node, and the new value
of a FV event differs from that of the CS event (or the current node value if there is no pending CS
event). Since only two transitions can be pending at any moment, newly calculated events must be
merged with the pending events. Section 2.3 hinted at the issues involved; in general, RSIM makes its
choices based on the principle that the most recently calculated event best reflects the current network
configuration. Since no information is availabie that explains why any pending events were created,

there is little (it any) reason to save a previously-calculated event in preference to the newer one,
The following figure describes the simple merging rules used by RSIM:

if merging new CS event {
abort pending CS and FV events
if new charge-sharing value is different from current node value
schedule new CS event

}
if merging new FV event {
if new value differs from CS value (or, if no CS event pending, current node value)

schedule new FV event

Figure 4.13. Merging a new event with pending events

A new CS event aborts a pending FV cvent because a new final-value computation always occurs afer
the charge-sharing computations are complete. Although this approach is simple, it occasionally leads
to pessimistic predictions. For example, if one input of a two-input N9R gate turns on substantially
before the other, the propagation delzy is actually determined by the time of the first input's
transition. With the merging scheme outlined above, the two events scheduled at the time the second

input turns on cause other events to be aborted — those scheduled because of the first input's

-74 -

transition. This occurs cven if one of the aborted events is scheduled for an carlier time than the
second cvent. In other words, with the merging scheme above, the propagation delay of a NOR gate
might be incorrectly measured from the later input. There is no simple fix to the merging rules above
that solves this problem. The correct solution requires knowledge of both the new CS event and the
new FV event, so that pending events can be saved if they are compatible with both newer events. If
the charge-sharing and final-value calculations are merged, as suggested at the end of scction 411, it

should be straightforward to implement the correct merging scheme.

There are several alternatives for dealing with aborted events. The simplest approach is to
handle the event as if it were never scheduled, ie., do nothing. This is the approach RSIM adopts.
Another approach is motivated by the physical significance of an aborted event. Since the signal
changes between the transition start time (the time when the charge-sharing or final-value computation
was performed) and the transition end time (the scheduled time of the event), the action of aborting
the event corresponds to a stop in mid-transition. Aborted transitions are termed glitches
[Thompson74]; these malformed signals sometimes have significant impact on the operation of a circuit
and should be reported to the user. This report can be in the form of a forced transition to X, or just
a simple error message. Interestingly, a user who has the option to receive glitch reports almost always
disables that feature [Ulrich73]). The reason given is that the duration of an aborted transition is
usuaily short enough so that the actual signal does not change significantly; hence no glitch actually

occurs. {

Scheduling an event entails inserting it into the event list, placed according to its scheduled time.
An event list implemented as a simple list would impose a noticcable scheduling overhead. RSIM
adopts several techniques for reducing this overhead. It quantizes simulated time, and rounds off each
event time to the ncarcst time quanta; in the current implementation, the time quanta is 0.1
nanosecond. The event list is implcmented in two picces:

(1) an event array. Each array clement is a doubly-linked list of events for a
particular time quanta.

(2) an overflow list, a doubly-linked list of events, sorted by event time.

This organization is similar to that found in many conventional gatc-level simulators [Vaucher7S,

}_S‘m"t;&:r;ﬁ;;—pmmse showing transitions between logic states as (-X-1 or 1-X-0, where the initial transition to
X happens immediately. Thus aborted events leave the node value at X until some subsequent event re-cstablishes a
legitimate logic state. This suggestion doubles the number of events in a simulation: a cost which might outweigh the

advantages.

-75 -

Ulrich76). The cvent lists arc doubly-linked to allow quik removal of an aborted event from the list.

The data structures are diagramed in the following figure.

event array
+i+1 ———t1—avent—> ...
+i+2
< ~
L overflow list
+N-2 EE‘—>evenl—'>cvcm~——>
+N-1 :
current time ~——> 0 ——t—3ovent—> ..,
+1
+2
L 4
o« e N
+i *——1-—3>cyent

A

offset, in quanta, from current time

Figure 4.14. The event list is implemented with an event array and overflow list

The event array is managed as a circular buffer in which the N array elements hold events for the next
N time quanta. An array index indicates which array clement corresponds to the current simulated
time. If a new event is scheduled for a time M quanta in the future, where M <N, the event is added
to the end of the event list stored in array element (index + M) mod N; no sorting or scarching is
required. If M>N, the event is inserted into the overflow list according to its scheduled time. The
array size is chosen so that most events are scheduled directly into the array. With a time quanta of
0.1 nanoscconds, a 128- or 256-element array captures most events in modern MOS designs. Note that
events are added to the end of an event list. This ensures that events are processed in first-in, first-out

order, iLe, in the order created. Thus, cause-and-effect relationships are preserved.

To find the next event to process, the event array is searched starting at the current index, until
an event is found. Each increment of the index corresponds to advancing simulated time by onc time
quanta. If the array is cmpty, simulated time is advanced to equal the scheduled time of the first
event on the overflow list; this event becomes the next one to processed. When an event is located
for processing, the overflow list is cxamined to find events whose scheduled times are less than N time
quanta away from the new simulated time. Such events arc moved from the overflow list to the

appropriate list in the cvent array. This preserves the first-in, first-out event ordering mentioned

above.

-76 -

4.2. Speeding up the simulation

No simulator is fast enough. Increased simulator performance is always in demand, cither to -
achieve faster turnaround during the design process, or to allow more complete testing during
verification. This section discusses several techniques for improving the performance of the algorithms

presented in the previous section.

It is not surprising to learn that, during event processing, most of the time is spent in the final-
value calculation.t To compute the final value for a given node, the final-value computation must visit
all the nodes in the current stage. Thus, if there are n nodes in the stage, processing the entire stage
takes O(n?) time. Since the remainder of the processing is proportional to the size of the stage, the
real bottleneck is the final-value computation. Performance can be improved by

(1) introducing a cache for final-value computations, with the intent of eliminatng
the recalculation of parameters for subnetworks.

(2) reducing the number of nodes in the'stage.

(3) reducing the cost of each calculation, for example, by substituting integer
arithmetic for floating-point. This alternative will not be discussed further,
except to note that a 32-bit integer has over 9 orders of magnitude of dynamlc
range, sufficient for representing MOS resistances.

Clearly, the first improvement is most significant when n is large. The third improvement is important
when n is small and the dominant cost is the actual arithmetic. The second improvement works on

making (3) more important than (1). The improvements are discussed in turn below.

As it is currently formulated, the final-value procedure performs many redundant computations.
Consider the circuit diagram for a 5-node stage shown in (a) below, and one of its subcircuits, shown

in (b) below.

+The discussion in this section is limited to that portion of the simulator which propagates new valucs through the
nctwork. RSIM has an interpreted 11SP-like command language which the designer uses to prepare new input
valucs and process (¢ results of a simulation step. Depending on the sophistication of the simulation environment
built by the uscr, a substantial portion of the total time can be spent in the command language interpreter. Of
course, there is room for improvement here too. but that is outside the scope of this thesis.

-77 -

R R I T W
| J] -
I Rl | L l L‘ I I
E
(a) 5-node tage (b) example subcircuit

Figure 4.15. Stage coniaining 5 nodes and 4 transistors

When one traces the computations performed by the final-value procedure (see figure 4.10), it
becomes apparent that the parameters for a specific subcircuit are calculated several times. The
computations for nodes A, B, and C all need the same information about the subcircuit in figure

4.15(b); there is no reason to compute the information more than once.

The amount of redundant computation can be reduced by caching the result from each call to
the final-value procedure.} Before each call, the cache is searched to see if the subcircuit was analyzed
previously; if so, the results are taken from the cache and not recomputed. If the cache has constant
access time, the cost of the final-value analysis for a stage is reduced to O(n), a significant saving
when n is large. In RSIM, the cache does not need to accommodate arbitrary amounts of information:
associating two cache entries with each transistor (one for the source, one for the drain) is sufficient.

The source cache retains the network parameters for the subnetwork connected to the drzin node

completed, the result is placed in the appropriate cache.

(including the transistor), and the drain cache is similar. When the analysis of a subnetwork is
s g 2 o l

source cache drain cache source cached filled

1

(a) circuit showing caches (b) circuit after analysis of subnet #2

Figure 4.16. Transistor cache scheme

In the figure above, once subnet #2 has been analyzed and the result saved in the source cache,

subsequent analyses involving the same transistor and subnet use the cached result. The following

1This m.cining technique is known in the LISP community as memoization.

-78 -

figure shows the cache status after calculation of the final value for node P of figure 4.15(a).

A 1 B L ¢ L p L E
i Imlmlml
= B85 B0 B8 O

Figure 4.17. Cache status after final-value calculation for node D

Subsequent analysis of node C, for cxample, requires only. a single recursive call (rather than four as
before).

There are several reasons why the transistor cache might not be the ideal solution. The amcunt
of information in each cache entry — 8 parameters — is quite large compared to the transistor data
base. This suggests that cache eniries should be dynamically allocated when needed, and returned
when the computation is complete. The combined costs of storage management and cache access
might exceed the cost savings realized on siages of modest size. These objections can be addressed by
associating cache entries with nodes instead, or using the cache only when the stage exceeds a
specified size.

However the cache is organized, its introduction has a substantial impact on the amount of
computation required for the final-value analysis of a stage. Another improvement mentioned at the
beginning of the section is reducing the number of nodes in a stage. The key element of this is the
notion of useless nodes, ie., nodes that do not connect to any transistor gates and hence whose values
are irrelevant. Such nodes commonly occur in a pulldown path containing more than one transistor,

such as the node marked by an asterisk in figure 4,18(a).

I—Rl

A - R2
®- C-| R4 D—-IER’S gj}—[gum
B—| R3
| \ 4 14
(a) ;IMOS logic gate (b) pulldown after removing useless node

Figure 4.18. Removing useless nodes from a stage

Section 3.4.4 mentions that a pulldown with more than one transistor is electrically equivalent to a

-79 -

single-transistor pulldown of the appropriate size. ‘This suggests that such a pulldown can be replaced
by a circuit like the onc shown in figure 4.18(b). Alll the nodes in the pulldown except the output and |
GND are eliminated, and all the pulldown transistors are replaced by a single transistor, The gate value
of the single transistor is the logical conjunction of the values of the gates of the original pulldown

chain. In fact, RSIM uses a compact representation for the generalized MOs gate:

A

B

null 7 first pulldown

static R2+R3
dynlow R2+R3
C

null

> second pulldown
static R4

dynlow R4
D

null

> third pulldown
static RS

dynlow R5

null

static R1
dynhigh R1

pullup

Figure 4.19. Efficient internal representation of an nMOS logic gate

All transistors and nodes that make up the gate are eliminated, and the resulting gate structure is
associated with the output node. The output can still connect to other transistors that are not
recognized as part of a logic gate; only those transistors that implement a MOS logic gate are
compressed. The resistance parameters of a gate structure are computed very efficiently by RSIM —

many times more quickly than the analysis of the equivalent network.

The compression of gate circuits into the compact internal representation also results in a
considerable space saving. Somewhere between 40% and 80% of the transistors in most circuits are
eliminated when the gate structures are built. This resulting simulation runs roughly twice as fast as

the uncompressed network. This optimization is probably the single largest contributor to the ability

- R0 -

of RSIM to dea! with very large MOS circuits.

4.3. Escape mechanisms

Previous sections of this chapter introduced mechanisms that allow the user to adjust the
operation of the simulator as a whole. There are occasions, however, when a large-scale adjustment is
inappropriate, and only the predictions for a single node need correction. This section discusses
several “escape” mechanisms provided by RsIM for adjusting the predictions for small groups of nodes

and transistors.

The modifications discussed here are ad hoc in nature; their motivation arises from purely
practical considerations. The mechanisms are not intended to allow wholesale changes in the
simulation computation, but are provided so the designer can correct particularly egregious or far-
reaching errors in the simulation of specific circuits. Since the mechanisms treat the symptoms and not

the disease, their effectiveness is limited to local improvements.

The are four user-adjustable parameters for each node:

vLOW the logic low threshold for the node (specified in normalized voltage units).

VHIGH the logic high threshold for the node (specified in normalized voltage units).

TPLH | the low-to-high transition time for the node (specified in time quanta).

TPHL the high-to-low transition time for the node (specified in time quanta).
By adjusting the logic thresholds with VLOW and VHIGH, the user can prevent predictions of X values
for circuits with non-standard pullup/pulldown ratios. This can be useful in a circuit wlere a node’s
voltage swing is reduced for performance or other reasons (for example, in input buffers or bit-lines of
dynamic memory circuits).

The transition time parameters force the timing of all the node’s transitions. These parameters
allow adjustment of the timing of critical nodes to agree with predictions of circuit analysis programs.
Clocks, for example, often are generated by special circuitry designed to drive the a capacitive load.
Intricate timing chains involving bootstrapping, etc. increase the speed of clock distribution circuitry to
acceptable levels. Most of these circuit techniques afe beyond RSIM's ability to predict accurately;
incorrect predictions for critical signals can throw off the whole simulation. Using the transition time
parameters, the designer can force the rise and fall times of critical signals to their proper values,

improving the quality of the remainder of the simulation.

It is obvious how transition time parameters affect the scheduling of events, but what about the

-81-

timing of a node connecied directly to a forced node by a source/drain connection? A workabie
scenario treats a node with forced timings as an input, sctting its dynamic resistance
(Rvad, Rgnd. and Ry) and capacitance paramcters to Zero. (Note that the value calculation, which uses
static resistances, is unaffected.) The transition time for a node connected to a forced node is the sum
of the given transition time for the forced node and the RC time constant of the path from the forced

node.

Rl 1 0 rise ime = tplh, + R3 C
J_

r’ . ? R3 1.3 / fall time = tphl, + R3C

—' |—J forced timings I C I ¢

(2) original circuit with forced node (b) equivalent network for node B

Figure 4.20. How forced timings affect neighboring nodes

If a node is connected to more than one forced node, the smallest forced time constant is used.

Neighbors of forced nodes always change value after the forced node — a reasonable prediction.

A much more powerful mechanism for forcing the desired prediction is modification of the
circuit itself, replacing tfoublesome configurations with others that simulate correctly. Piecemeal
modification of a large circuit can quickly lead to a loss of confidence in the simulation resuits,
especially if the replacements are performed in a haphazard manner. On the other hand, the
systematic identification and replacement of specific subcircuits, draWing from a library of approved

replacements, offers the opportunity to improve simulation accuracy for common subcircuits.

The pattern matching/replacement program MATCH, written by John Iler [ller83], provides an
efficient way to systematically modify pieces of large circuits. The circuit to be modified is identified
by a pattern specifying a prototype subcircuit. Each node in the prototype is given a type which
controls what nodes it matches in the actual circuit:

(1) matched only by a circuit node with exactly the same connections specified in the
pattern. '

(2) matched by a circuit node with at least the connections specified in the pattern,
but the circuit node may also have other conncections.

(3) matched by a node with the same name.

-82 -

The pattern indicates which prototype nodes attach to each transistor in the prototype, and can further
constrain the match by giving an explicit size or resistance for each prototype transistor. The
replacement can modify parameters of existing circuit components, and add or delete components.

For example, the following figure shows a pattern and replacement for the bootstrap circuit discussed

in section 3.2.
type (3) nodes

L g T
| —][wa

A O W/L A w/L

!
e A
type (2) node type (1) node B =0 B
AN
type (2) node
(a) pattern (b) replacement

Figure 4.21. Pattern/replacement for bootstrap circuit

MATCH is regularly used in at least one industrial environment to improve the predictions of
RSIM. ller suggests other uses for the program: gathering of circuit statistics, identifying common
circuit errors, and implementing circuit changes (ECO's) without requiring the regeneration of the

entire netlist. MATCH has proved to be a handy tool.

4.4. An evaluation of RSIM

RSIM has simulated a large number of designs, both in university and industrial environments.
Industrial designers are attracted to RSIM because of its ability to correctly predict the functionality of
most MOS circuits without designer intervention — a unique capability in a logic simulator efficient
enough to accommodate large designs. RSIM’s timing estimates are helpful in locating gross timing
errors in industrial designs, but the conservative nature of the estimates make them unsatisfactory for
fine tuning critical circuitry. In short, RSIM altows the verification of large industrial designs, at a level
of detail not obtainable with other simulators.

Timing estimates appear to be more important for academic users who, more often than not,

have not paid as much attention to the performance of each individual circuit component. RSIM makes

a good breadboard for locating performance bottlenecks and experimenting with potential solutions.

-83-

Since transition timings automatically reflect output loadings and device sizes, the naive user's
attention is focused on critical portions of the design. RSIM is a good companion for the novice

designer because of its ability to qualitatively model much of the behavior of MOS circuitry.

RSIM advances the state of the art of simulation in several ways. The linear model embodied by
RSIM is a systematization of a common rule-of-thumb for estimating circuit performance. The
simulator was originally developed simply to automate the calculation of RC time constznis, and to
reap the benefits of applying the same timing criteria uniformly to the entire circuit. The analysis of
propaga;ion delay in Chapter 3 justifies the use of the linear model as a simple approximation and
extends the rule-of-thumb to include the affects of the input waveform timings on gate propagation
delay. RSIM breaks new ground by combining logic-level simulation with the ability to automaticaily
estimate transition times directly from the electrical properties of the circuit components. While the
results are less accurate than circuit analysis, thc designer is compensated by an increase in
computation speed by several orders of magnitude. RSIM represents a first cut at a stylized form of
circuit analysis which attempts to modei the significant effects at far less cost than traditional analysis
techniques. The proven utility of RSIM augurs well for further developments in the area between logic

simulation and circuit analysis.

The introduction of intervals to characterize the operation of circuit components controlled by
X-valued signals is a novel technique for merging electrical analysis with the logical concept of
unknown signal values. The use of intervals allows one to easily compute the electrical consequences
of unknown node values, resulting in predictions more satisfactory than those obtainable from

conventional logic simulators or circuit analysis programs.

There is, of course, plenty of room for improvement in RSIM! For example, interconnect is not
modeled at all. As a circuit's physical size decreases, the transmission delay introduced by the
interconnect is as large as the propagation delay of the gates. Certain layout techniques, such as a
long run of polysilicon, are inherently slow and might become the fatal flaw in an otherwise carefully
tuned design. [Penficld81] offers some computationaliy reascnable models for predicting transmission
delays; these models are well-suited for incorporation into RSIM. His analysis, along with that of
{Horowitz83], offers some insight into the correct modeling of pass gates and distributed capacitances.
(The lumped approximation uscd by RSIM can be very pessimistic.) Along the same lines, the
development of better time constants for charge-sharing events would improve the modeling of circuits

containing both large and small capacitances.

-84 -

Another class of problems is introduced by the onc-pass nature of the computations. In order to
limit the amount of computation needed for each prediction, the algorithms arc constrained to make
only one pass over the surrounding network. While most MOS circuits are trces, and hence amenable
to a one-pass analysis, circuits that contain cycles are not handled correctly. The proposed solution —
choosing a single path through the cycle to represent the cycle's resistance — is definitely ad hoc;

performing the correct serics/paraliel analysis would be preferable.

There is also a need to consider the effects of deviations in device performance from that
predicted by first-order theory. Some effects (channel length modulation, body effect, short channel
effects) might best be handled during the calibration process. Other effects (Miller capacitance) may
lead to further modifications in the model or calculation of device parameters in order to ensure
conservative predictions. Finally, there is the possibility that work on waveform bounding [Wyatt83],
which seeks to obtain closed-form equations for the waveform of each node of a circuit, can provide a

replacement for the linear model presented here.

-85 -

CHAPTER FIVE

Simulation Using a Switch Network Model

If a designer is only interested in the logical properties of a circuit, ie, those propertics
independent of performance issues, it is possible to simplify the linear model of the previous chapter
even further by modeling cach transistor as an on/off switch whose state is determined by the type of
transistor and the state of its gate node. This chapter discusses the switch model from two points of
view: first, as a special case of the linear model, and then as a self-contained model. But first, a small

digression on the representation of node values is in order.

5.1. Representing node values

The success or failure of a logic-level simulator often hinges on the choice of the sct of possible
node values. If the set is too small, the actual node value may not be precisely described by any one
of the available values and the simulator must choose an approximation. Usually the approximation
involves some variant of the X (unknown) value which may carry logical implications beyond what the
network itself imposes — such a choice is termed cither "conservative” or "pessimistic” depending on
onc's point of view. If the set is large, it becomes difficult to establish whether the simulator’s
calculations are correct in all cases. Relying on the accumulated evidence of many simulation runs
when arguing correctness lacks the rigor that leads to total confidence in the algorithm. This section

develops criteria for evaluating a set of node valucs.

- 86 -

‘There are three major influences on the choice of the node-value set:

(1) the need to report node valucs to the user;

(2) the need to determine the state of each network component from the values of
its terminal nodes; and

(3) the nced to represent intermediate values during an incremental simulation
calculation.

If only the first two influences are considered, a three-value set — 0, 1, and X} — will suffice for
logic-level simulation. Users and component models cannot reasonably expect more information than
provided by this set, since most iogic-level algorithms cannot support more detailed deductions from

arbitrary MOS networks with any degree of accuracy. It is the third influence that ieads to all the
complication.

Almost all logic simulators analyze a network picce by piece, modifying their estimates for node
values as the effect of each piece of the network is determined. Until the new-value computation is
completed, the intermediate node values serve as accumulators that store all the information the
simulator has about the effects of network pieces already examined. Thus, distinct values arz needed
for all qualitatively different intermediate states; e.g., a node currently at logic high might have that
value because examination of the network to date revealed that it was (i) storing charge, (ii) connected
tc a depletion pullup, or (iii) being precharged by an enhancement device. The simulator must
distinguish among these possibilities, since the final value of node may be different in each case if, for
example, further network processing discovers a pulldown for the node. The exact number of values
needed depends on the details of the simulation computation; most simulators fall into one of the two

categorics discussed below. As will be seen, the two categories are distinguished by their approach to

X values.

coupled inverters) from other types of X values. X' values are well behaved in logic operations, for example, B +
= = 1if the value of B is X', but equals X if the value of B is X. Such distinctions might be important during ini-
tialization. [Stevens83] describes a simulator that uses this distinction to improve its predictions for certain simple log-
ic circuits.

-87-

S.1.1. Cross-product value sets

having several distinct attributes chosen from independent categories. Thus, for cxample, one might
characterize a node’s logic state and the "strength” of the value scparately. The logic state is usually
one of 0, 1, or X; sometimes a high-impedance state, Z, is included to represent the output of tri-state

logic gates [Flake80, Holt81]. The strength indicates what sort of network connection exists hetween

One intuitively appealing approach to choosing a set of node values is to think of each value as

the source of the value and the current node:

Other strengths can be included to model the effects of differently sized transistors, node capacitors,

etc.

input. Node is a designated input (e.g., VDD or GND). The value of an input node can
only be changed by explicit simulator commands — the assumption is that inputs
supply enough current to be unaffected by connections (possibly shorts to cther
inputs) made by transistor switches.

driven. Node is connected by closed switches to inputs or other driven nodes. Driven
nodes can affect the value of weak or charged nodes without being affected
themselves, but may be forced to an X state if shorted to an input or driven node that
has a different logic level.

weak. Node is connected to an input node by a depletion-mode transistor. Weak
nedes can affect charged nodes without being affected themselves, but are forced to a
driven state when connected to another driven or input node. A weak node returns
to the appropriate weak state when completely disconnected from driven or input
nodes (ie., a weak node can never enter the charged state).

charged. Node is connected, if at all, only to other charged nodes. Until reconnected
to-some other part of the network, charged nodes maintain their current logic state
indefinitely (charge storage with no decay). This is the default state of all non-weak
nodes. : :

The plethora of 9-, 12-, and 16-state logic simulators (sce [Ncwion80]) use values chosen from

the set formed by the cross product of the various value attributes. For example, a 9-state simulator

might use

logic state
0 1 X

driven | DL | DH | DX

strength weak WL | WH | WX

charged | CI. | CH | CX

- 88 -

Note that in this formulation, X is trcated as sort of a third logic value on a par with 0 and 1;

presumably X's are generated by the simulator io model invalid combinations of 0's and 1's. 'The

implication is that one can determine if a value should be X without any considcration of strengths.
(Remember that the main motivation of forming the cross product is that the various atiributes are

independent). This can lead to pessimistic predictions, as is shown in an example below.

It is useful to order the possible signal values according to their relative strengths. Intuitively,
value A is stronger than value B, written A > B, if value A predominates when both signals are shorted
together. Of course there are situations where neither value emerges unscathed — for example, when
two signals of the same strength but opposite logic states are shorted — in which case neither signal is
said to be stronger than the other. The notion of strength can be formalized using a lattice of node

values, for example:

DX
P
DH DL
~N

WX
N
WH WL
~

X
P
CH CL

\ /
A
Figure S.1. Lattice of node values for a 9-state simulator

The node value A is used to represent the null signal, Le., no signal at all.

| Referring to the lattice, given two values A and B, A > B if A is not cqual to B and there is an
upward path through the lattice that starts at B and reaches A. For example
DX is greater than all other signals,
DH is greater than WL, but
WL is not greater than WH.

The least upper bound (Lu.b.) of two values A and B, written A U B, is defined to be the value C

such that
i) C2A
(i) C>1B

(iii) for every value D, if D> A and D> B, then D> C.

-89 -

Examining the lattice above, it is easy to scc that the Lu.b. 2lways cxists for any two node values.
Note that if A > B, A U B = A: the Lu.b. captures our intuition about what should happen when two
signals of differcnt strengths are shorted together. With the appropriate placement of X values in the

lattice, the Lu.b. can be used to predict the outcome when any two signals are shorted.

The interpretation of X values captured by the lattice above is quite appropriate for describing

the logic state of nodes involved in a short circuit:

-
8

DX = DHU DL

Figure 5.2. A short circuit leading to an X value

Assuming the two transistors are the same size, the middle node’s value is the result of merging two
equal strength signal values. According to our laitice, this merger yiclds an X value. Short circuits are

the mechanism by which X's are introduced into a neiwork previously containing only 0's and Is.

However, the situation is not as straightforward when one considers connections formed by
transistors with a gate signal of X. The resulting values cannot be computed dircctfy using the U
operation on the source and drain signals, and once that hurdle has been surmounted, there is some
difficulty in choosing which value to use from the cross-product value set. Consider the following

analysis of a node with stored charge and connection to two transistors.

f o

DH WH

@ ®) | ©
Figure 5.3. Incremental analysis of a simple network
Before any connecticns to the nede have been discovered (figure 5.3(a)), the node maintains the

charge of its last driven value, say, logic low; the simulator would assign the node a value of CL.

After the first transistor is discovered (figure 5.3(b)), the facts change:

-90 -

(i) Because of the X on the gate of the transistor, one cannot be certain what type
of connection exists between the node in question and the DH on the other side
of the transistor. Thus, the new logic state of the node should be X.

(i) The strength of the new value is uncertain, but clearly "weak” or "charged”
would be inappropriate since they understate the strength in the case where the
unknown gate value was actually a 1.

Since a weak or charged value could be overridden by an enhancement pulldown discovered later on,
mistakenly leading to DL value, the simulator has no choice but to select a driven value. The
conclusion: DX is the only state available that handles all eventualities in a conservative fashion. Of
course, with knowledge of what the rest of the network contains, the simulator could make a more

intelligent choice, but this is beyond the ken of an incremental algorithm.

By the time a connection to a depletion pullup is discovered (figure 5.3(c)), the die has been cast:
the previously chosen DX value overrides any contribution by the pullup (DX U anything = DX).
While this answer is not wrong, it is more conservative than required; at this point the logic state of
the node should be 1. The pullup guarantees a logic 1 with the unknown connection to DH, only

leaving doubts about the strength of the value (somewhere between weak and driven).

Proponents of cross-product value sets might point out that the analysis would have gencrated a
different answer if the transistors had been discovered in a different order. The somewhat
embarrassing ability to produce two different answers for the same network, both correct, is caused by
the fact that the merge operation is not associative when connections are made through transistors
with X gates. In fact, most incremental simulators that use cross-product value sets perform the
incremental analysis in an order that yiclds a reasonable answer on the example above. Unfortunately,
it is usually possible to confound them with more complex circuits comaining X’s; while such circuits

are not commonplace, they often crop up during network initialization when all nodes start off at X.}

In conclusion, it is possible to build effective simulators using cross-product value sets; however,
they can make conservative predictions on circuits that contain X’s. In practice, this lcads to difficulty

in initializing some circuits and to occasional over-propagation of X values.

F[Bryant81] suggests using an incremental calculation only for subnetworks of nodes connected by non-X transistors.
Once these values have been computed, a separate computation merges subnets connected by X transistors. Since
this computation has global knowledge of the network, it can avoid the problems mentioned here.

-91 -

5.1.2. Intervai value sets

The difficultics with the cross-product value set arise because of its separation of the notion of -
strength and logic state. Once a node value is set to an X value at some strength, it cannot return to a
normal logic state unless overpowered by a stronger signal; if a node is set to the strongest X value, it
stays at that value for the rest of the computation. As in the example above, this icads to conservative
predictions when the strongest X value is chosen because of the lack of suitable alternatives.
Specifically the difficulty came about because the simulator had to pick the highest strength to be on
the safe side; there was no value available that would indicate that the logic low signal which
conin’buted to the intermediate X value was of very low strength and hence might be overridden by
later network components.

This suggests a different approach to constructing the set of possible nodes values, one based on
intervals, First one starts with a set of node values with a range of strengths and 0/1 logic states, for
example, the six non-X states used above: {DH, DL, WH, WL, CH, CL}. Then additional values are

introduced by forming intervals from two of the basic values; if there are six basic values, then there

are (g) = 15 such intervals, leading to a total of 21 node values altogether.

Intervals represent a range of possible values for a node. The size of the range is related to the
strength of its end points. If we arrange the six basic values in a spectrum ranging from the strongest

1 (DH) to the strongest 0 (DL), the possible node values can be shown graphically:

logic high WH °

logic low WL
DL °©

Figure 5.4. The 21 node values of the interval value set

Intervals that do not cross the center line correspond to a valid logic state: intervals above the line
represent logic high values, and those below the line, logic low. Intervals that cross the center line
represent X values. (The X values of the previous section correspond to intervals with equal strength
end points: DX = [DL.DH), WX = [WIL,WH], and CX = [CL.ClI].) Thus, X values result from

ambiguity about which of the base values best represents the true node value. As will be seen below,

this is more satisfactory than thinking of X as a third, independent logic state.

When the simulator merges two node values, it chooses the smallest interval that covers ail the
possible node states. However, unlike the cross-product value set, the interval set can represent X
values without loosing track of the strengths of the signals that lead to the X values. Consider the
problems raised by figure 5.3(b). Using an interval value set, the resulting node value is naturally
represented by [CL,DH], an interval that corresponds to an X logic state. When the pullup is
discovered (figure 5.3(c)), the simulator can narrow this interval to [WH,DH] since the pullup

overpowers the weaker CL value. This corresponds to a logic high signal — a sensible answer.

An algebra for calculating the result of merging two interval node values is developed in
[Flake83]; a different approach is adopted in section 5.4.1 where a detailed description of the merge
operation can be found. With an interval value set, the merge operation is commutative and
associative, and the network can be processed in any order without affecting the final node values.
The extra 12 values introduced by the interval value set are needed to carry sufficient information
about how the current value was dctermined, to ensure that the final answer is independent of the

processing order.

The examples above suggest the following conjecture about the correct size of a node value set.
Assuming that one has s different signal strengths and two logic levels (0 and 1), then 2s + (223) values

are necded to ensure that the signal algebra is well-formed. In simulators with too few states, some
states take on multiple meanings; for example, the DX value in the cross-product value set is used to
describe nodes that fall into § separate values in the interval value set:

[DLDH] [WLDH] [CLDH] [WHDL] [CH,DL]
This lack of expressive power on the part of cross-product value scts is what leads to pessimistic

predictions for node values in certain networks.

£.2. Devcloping the switch model

Switch models of MOS circuits arc of interest since a switch is the simplest componcent that meets
the criteria outlined in Chapter 1: switches are inherently bidirectional and the logic operations they
implement can be computed with acceptable cfficiency in large networks.

Randy Bryant [Bryant79], onc of the first to apply switch-level simulation to MOS transistor
networks, viewed the network as divided into equivalence claz-es. Two nodes are cquivalent if they

arc conncected by a path of closed switches. Nodes in the same cquivalence class as VDD are assigned a

-93 -

logic high state; those cquivalent to GND, a logic low state. A pullup (a depletion-mode transistor
which is always on in the switch model) gives the node to which it is attached a special property: if an
equivalence class of nodes does not contain either VDD or GND, but does contain a pulled-up node, all
the nodes in the class are assigned a logic high state. Finally, if an equivalence class contains ncither

an input nor a putled-up node, it is "storing charge" and maintains whatever logic staie it had last.

The simulator based on this switch modzl iteratively calculates the equivalence classes for all the
nodes in the network until two successive calculations return the same result (ie, no nodes change
state). Unfortunately this pure switch model has some deficiencies:

(i) Switches in indeterminate states (those with "gate” nodes of X) make the
equivalence calculation somewhat more difficult. The desired computation is
inefficient since it involves a ccmbinatorial search; all combinations of on/off
assignments to switches in the X statc need to be investigated to determine
whether a switch’s state makes a difference. If the network is unaffected by a
switch’s state, the switch can be ignored; otherwise all affected nodes are

assigned the X state.

(i) The equivalence calculation is much more time consuming than necessary since it
deals with the whole circuit rather than focusing only on the parts which change.

(iii) In certain circuits transistor "size" is impoitant. and the notion of size cannot be
expressed in the pure switch model. A pullup is a trivial example: viewed as a
switch it was always on, but more “"weakly” than the "strong" switches in the
pulldown. The size of transistors also determines the “strength” of various driver
circuits; for example, it is common for the writc amplifier of a static memory to
force a value into a memory cell by simply overpowering the weaker gate in the
cell itself.

The remainder of this chapter investigates different approaches to solving the first two problems
outlined above. The third problem is addressed with some success by RSIM which uses size

informaion not only to calculate node values but to provide timing information as well.f

The following scctions present two different formulations of the switch model:

e a model where each node valuc is computed via a “global” cxamination of the
network. If the network has no explicit feedback, each node value is computed
exactly once, but this calculation is more expensive than the one below.

e a model based on "local” interactions where the simulator examines the source and
drain nodes of cach transistor and updates the state of one or both nedes. ‘The
examination/update process continues until there are no further updates to be
made, ie., the network has "relaxed” into its final state. Under this scheme cach
calculation is trivial but a node value might be computed more than once even

'flifyanl [Iiry-a—n-lﬂ-li—pmpnscs extending the switch madel to include a hierarchy of switch sizes, a generalization of the
ad hoe solution for pullups. His thesis develops an algebra, in the spirit of Boolean algebra. for dealing formally with
such nctworks. .

-04 -

when there is no explicit feedback in the circuit.
ESIM (the author’s switch-level simulator) is a hybrid of these two formulations. ESIM implements a
global node-valuc calculation using a node-value representation close to the one used by the local ‘
simulator. This results in a calculation very similar to that implemented by RSIM, except that abstract
"logical" resistances (Rggy = 0, 1, and ©0) are substituted for the “"real” resistances used in RSIM.
Since this type of simulation algorithm is discussed at length in Chapter 4, it will not be pursued here.

Instead, the remainder of this chapter focuses on the new formulations introduced above.

The local formulation is attractive because it appeals to our intuition about how transistors really
work. The high degree of potential parallelism in the update calculation makes it a very attractive
algorithm for many of the new parallel architectures now under developmeni; the combination of
parallel hardware and intrinsically parallel algorithms may be the key to overcoming the capacity

limitations of current simulation techniques.

5.3. The global switch model

The global simulator calculates a node’s value by computing the effect of each input on the node
of interest. The simulation is global in that each node value is based directly on the values of the
inputs to which it is connected. Thus, the values of non-input nodes do not enter into the
computaticn. This means that 0, 1, and X will suffice as final node values; a node state nced only

capture the logic state of the node and no strength information is necessary.

5.3.1. Node values in the global switch model

Each transistor switch in the network is assigned a state determined from the transistor’s type
and the current value of its gate node. This state models the switch-like qualitics of the source-drain
connection without trying to capture any more detailed information about the conncction — a

simplification of the linecar model presented in carlicr chapters.

The state of a transistor switch summarizes the type of conncction that exists between its source
and drain nodes. For MOS circuits. the possible switch states are:

open no conncction, the state of a non-conducting n-channel (gate = 0) or p-
channel (gate = 1) transistor.

closed source and drain shorted, the state of a conducting n-channel (gatc = 1)
or p-channel (gate = 0) transistor.

unknown uncertain conncection between source and drain, the state of an n- or p-

-9§ -

channel transistor whose gate is X.

weak the state of a depletion transistor. Depletion devices are always assigned
this state, regardless of the state of their gate nodes.

The relationship between a switch’s state, its types, and its gate value is summarized in the following

figure.
drain logic(gate} n-channel p-channel depletion
j 1 closed open weak
gate & - - 0 open closed weak
L X unknown unknown weak

source

Figure 5.5. Switch state as a function of transistor lype and gate voltage

In the global simulator, the value of a node is determined by the inputs to which it is connected
and the states of the intervening switches. During the calculation of a node’s value, the simulator uses
the interval node-value set presented in figure 5.4. When the calculation is complete, the resulting

interval is used to determine the final logic state of the node, using the following table.

final logic state = 0 | final logic state = 1 | final logic state = X
CL DH [DH,CL]
[CLWL] [DH,WH] [DH,WL]
{CL.DL} [DH,CH] [DH,DL]

WL WH [WH.CL]

{WL,DL] [(WH,CH] [WH,WL]

DL CH [WH.,DL}
[CH,CL]
[CH.WL}
[CH,DL]

Table 5.1. Relationship between final logic state and computed interval value

The calculation of a node's value begins by discovering all the inputs which can be rcached from the
node by paths of closed, weak, and unknown switches. If no inputs can be reached, the final logic
ctate of the node is determined by a charge sharing calculation described in the next section. If one or
more inputs can be reached, their contribution to the node’s value is determined by an incremental

calculation which starts at the inputs and works its way back toward the node.

The value of a logic low input is DL; the value of a logic high input is DH. As the calculation
works back toward the node of interost, it computes an cffective value that indicates the effects of

intervening switches on the original input value. ‘The cffect of a switch on a value it transmits is

specified by the switch function:

input

\a

&

-96 -

1
g1

<

9

AN

value = swilch(ol, input value)

Figure 5.6. Effective value of an input after passing through a switch

‘The effect of a switch on a value is a function of the value and the swiich’s state:

value switch state

open closed weak unknown
DH A DH WH [DH.A]
[DH,WH] A [DH,WH] | WH [DH,A]
[DH.CH] A [DH.CH] | [WH.,CH] | [DH.A]
[DH.CL] A [DH,CL] | [WH.CL} | [DH,CL]
[DH,WL] A {DH,WL} | [WHWL] | [DH,WL]
{DH,DL] A [DH,DL] | [WH,WL] | [DH.DL]
WH A WH WH [WH.A)
[WH,CH] A [WH,CH] | [WH.CH] | [WH.A]
[WH.CL] A [WH.CL] | [WH.CL] | [WH,CL]
[WH, WL} A [WH WL} | [WHWL] | [WH,WL]
[WH,DL] A [WH.DL] | [WHWL] | [WH.DL]
CH A CH CH [CH,A]
[CH,CL] A [CHCL] | [CH.CL}] | [CH.CL]
[CHWL] A [CHWI] | [CHWL] | [CHWL]
[CH,DL] A [CHDL] | [CHWL] | [CHDL]
CL A CL CL [ACL]
[CL.WIL] A [CLWL] | [CLWL] | [AWL]
[CL..DL] A [CLDL] | [CLWL] [[ADL]
WL A WL WL (A WL]
[WL.DL] A [WLDL] | WL {ADL]
DL A DL WL [ADL]

Table 5.2. switch(o,value) as a function of o and value

A new value, A, is introduced to describe the value transmitied by an epen (non-conducting) switch,

i.e.. no value at all. The value A is weaker than CH or CL., and corresponds to a logic state of X.

When two paths merge, their effective value is determined using the U operation introduced in

scction 5.1.1.

-97 -

1

vaiue —r——l———' switch(o.value,) —
A o] ! A switch(o | value) U

| +—0 r——o —
switdl(az.valueB)
—JT.I——— switch(az.valucB) E—
2
(a) two values to merge (b) values including effect of switches (c) merged value

valucB

Figure 5.7. Merging the values for two paths which join

The U operation is defined using the lattice shown in the following figure.

I~
T
<
)
E
=
g

/}w /\[w
/S N/
H L

w
|

[DH, LDL)
/
{DH,CL] L/ [CH,DL)

|~ | — |

[DHCH] [WILCL] [CHLwl] [CLDL)
/
[DHA] [WHCH] [CHCL] [CLWL} [ADL]

[WH,A] CH CL AWL]

[CHA] [ACL]

Figure 5.8. Lattice for interval-node value set

Following the procedure outlined in figure 5.7, the contributions of all inputs connccted to the node of
interest can be reduced to a single interval. This interval is merged (using U) with the contribution

from the node’s current logic state

CL if current logic stcte = 0
contribution of current logic state = CH if current logic state = 1 (5.1)
[CH.CL] if current logic state = X

to give the final interval characterizing the node’s new logic state.

As an cxample of how the new-value calculation works. consider the following circuit:

98

Ui
1_1§

Figure 5.9. Example circuit

Assume that the current logic state of the output is 0. The new-value calculation for this circuit is

shown in the following figure.

1
pi— L 1 WH 4 1

weak M M

© -0 ———r_L———o
"I— unknown L unknown CL DL unknown CL
I |
DL closed DL
(b) ©)

(a)

Figure 5.10. New-value calculation for circuit in figure 5.9

The final interval for the output node is CL U [A\,DL] = [CL,DL] which corresponds to a logic low
state. This makes sense; the previous state of the output node was logic low, so the uncertain
connection to the inverter does not affect its legic state, just the strength with which its driven. Note

that it is important to merge the values of paths that join before continuing with the calculation since
switch(a, a U B) # switch(e, a) U switch(o, B) (5.2)

when using this particular value set and switch function. For example, if the WH and DL values had
been merged affer transmission by the switch in the unknown state, the final interval for the output
node would have been [DH,WL], which corresponds to an X logic state. The calculation described

here performs all possible merges before transmitting the result through the appropriate switch.

-99 -

5.3.2. ‘'The global simulation algorithin

This section outlines the basic steps for propagating new information about the inputs to the rest
of the network, recalculating node values (where necessary) using the global value calculation in the

previous section.

When a node changes value, it can affect the network in onc of two ways:
(i) directly, through source/drain connections of conducting transistors.

(i) indirectly, by affecting e state of transistor switches controlled by the changing
node. This is turn can cause the source and drain nodes of those switches to
change value.

The global simulator accounts for these two effects using to different mechanisms. Directly affected
nodes are handled implicitly by the new-value computation which recomputes new values for all
directly affected nodes whenever a node changes value. This is a reasonable organization: if A directly
affects B, then B directly affects A; it makes sense to compute both values at the same time since they
are closely related. Direct effects are not handled implicitly, however, when the user changes the
value of an input node. In this case, the simulator invokes the new-value computation on the input,
not to recompute the input's value (which is set by the user), but to recompute the valucs of all

directly affected nodes.

The indirect effects of a value change are managed by an event list that identifics all transistor
switches that have changed state. Actually, the event list keeps track of the nodes that have changed,
but this is equivalent since the network data base maintains a list of transistors controlled by each
node. The simulator operates by removing the first node from the event list, and then performing a
new-value computation for the sources and drains of all transistors controlled by that node. The new-
value computation accounts for all the dircct effects of the new transistor statc and adds events to the
event list if indirect cffects are present. This process continues until the event list is empty, at which

point the network has "scttled” and the simulator waits for further input.

- 100 -

while event list not empty {
n := node associated with first cvent on cvent list
remove first event from cvent list
for cach transistor with n as gate node {
set COMPUTE flag for source and drain
}

for each transistor with n as gate node {
if COMPUTE still set for source, compute new value for source [fig. 5.14]
if coMPUTE still st for drain, compute new value for drain

Figure 5.11. Main loop of global simulation algorithm

Finding nodes affected by an event is straightforward; recomputation of vaiues is needed for the
sources and drains of all transistors with the changing node as gate. For example, if the node marked

(*) in the following figure changes, nodes B and C need recomputation.

0) X
L L 1 }'"I
1 1 1

0Ok O [e
&

Figure 5.12. Event for node (*) involves nodes B and C

Of course, node D also nceds to be recomputed, ac will be discovered during the processing of B and

C'(sec below).

To recompute the value of a given node, the simulator first makes a connection list containing all
nodes connected to the first node by a path of conducting transistors. The idca is to start with a node
known to be affected by an cvent, and then find that node’s clectrical neighbors, and so on, halting
whenever an input is reached. In the example above, if the (*) node’s value is 1, the conncction list
for node B contains nodes B, C, and D. If the (*) nodc's value is 0, the connection list for node B
contains only node B. Node A is not included in the list in cither casc because it is not connected to
node B by a path of conducting transistors. In the code below, which computes the connection list for
a given node, the terms “source” and “"drain” are used to distinguish onc terminal node of a transistor

from the other, and do not imply anything about the terminals’ relative potential.

- 101 -

initialize list to have starting node as only clement
set pointer to beginning of list
INPUT_I'OUND : = false
resct capacitance accumulators
while pointer not at end of list {
n := node currently pointed at
add capacitance of n to appropriate accumulator
for each "on" transistor with source connected to n {
if drain is an input, INPUT_FOUND : = true
else if drain not on list, add drain to end of list

}

advance pointer to next list element

}

Figure 5.13. Non-recursive routine to build connection list

In addition to the connection list, the routine sets INPUT_FOUND to true if the tree walk discovered at
least one input, and maintains thre: capacitance accumulators, one for each logic state. The

connection iist drives the new-value computation:

make connection list starting with given node [fig. 5.13]
if no inputs found, do charge sharing
else for each node on connection list {
compute interval value for node [fig 5.15]
determine new logic state using Table 5.1
if different from old logic state {
update logic state to new value
enqueue new event
}
}
reset COMPUTE flag for each node on connection list

Figure 5.14. Subroutine to compute new value for node

If no inputs arc found while building the connection list (INPUT_FOUND is false), the group of nodes is
completely isolated from any inputs and a charge sharing computation determines the nodes’ new

values. Assuming that all the node capacitors are shorted together, the resulting voltage is

Ecapacilors at logic high

voltage of shorted capacitors = STl capacitors (5.3)
(8

Capacitors with a logic state of X are assumed to be charged high when computing the maximum

possible voltage, and charged low when computing the minimum voltage:

Chigh + Cx

Crotal

<02

charge sharing value = 1 f high > 08 {5.4)

Val B

-102 -

where Crorer is the sum of the capacitance accumulators, Cpigy is the accumulator corresponding o

logic high, and Cy is the accumulator corresponding to logic X.

If one or more inputs are found (INPUT_FOUND is true), the value of each node is determined in
accordance with the procedure described in the previous section. The interval value is calculated for
cach node in turn and the node’s new logic state is computed using Table 5.1. New events are added
to the end of the event list whenever a node changes value. If a changing node is already on the

event list, nothing happens (the node is not moved to the end of the list).

For efficiency, each affected node’s value is only computed once while processing a given event.
The connection list ensures that all affected nodes are recomputed; the COMPUTE flag ensures that
once a node has appeared on some connection list, it will not be resubmitted for processing during the

current event.

The computation of a node’s value is easily described by a recursive procedure which analyzes

the surrounding network:

if node is logic low input {
return DL
} else if node is logic high input {
return DH
} else {
LOCAL_IV : = value specified by equation 5.1
set VISITED flag for current node
for each "on" transistor, t, with source connected to current node {
if drain does not have VISITED flag set {
recursively determine interval value for drain node
LOCAL_IV := LOCAL_IV U switch(a,, drain’s interval value)
}
}
reset VISITED flag for current node
return 1L.OCAL IV

Figure 5.15. Subroutine to.compute interval value for node

The variable LOCAL 1V is a stack-allocated local variable of the subroutine. Returning to the example
in figure 5.12, assuming that the (*) node’s valuc is 1, and that the old values for B, C, and D are

B =1, C=0, and D =0, the following calls arc madc when computing the new value for node C:

- 103 -

compute_params(C)
LOCAL IV = CL.
compute_params(1})
1OCAL IV = CL
compute_params(VIDD)
return DH
LOCAL IV = CLU WH = WH
compute_params(GND)
return DL
LOCAL_IV = WHU DL = DL
return DL
LOCAL IV = CL U [A,DL] = [CL.DL]
compute_params(B)
LOCAL_IY = CH
return CH
LOCAL_IV = [CL.DL}JU CH = [CH,DL]
return {CH,DL]

Figure 5.16. Trace of interval value computation for example in figure 5.12

Marking each visited node (by retting its VISITED flag) avoids cycles; this keeps the tree walk
expanding outward from the starting node. The VISITED flags are reset as the routine backs out of the

tree walk, so all possible paths through the network are eventually analyzed.

S
L= 1 AL
- |

(a) original circuit (b) circuit as seen by tree walk

L

Figure 5.17. The tree walk traces out all possible paths

If the network contains cycles, the tree walk might lead to more computation than a series/paraliel
analysis; this is a problem for circuits containing many potential cycles (such as barrel shifters),
especially during initialization when many of the paths are conducting because control nodes are X.
To speed up the calculation, a node’s VISITED flag can be left sct, restricting the scarch to a single path

through a cyclic network. This technique produces correct results only if paths leading away from a

- 104 -

node are explored in order of increasing resistance, Le., one must cnsure that the first time a node is
reached, it is by the path of least resistance. Of course, the flags must be resct once the entire
computation is complete; fortunately, the connection list provides a handy way of finding all the nodes
that are visited without resorting to yet another tree walk. Another alternative for specding up the

calculation is the caching technique described in section 4.2.

5.3.3. Interesting properties of the global algorithm

The event list serves to focus the attention of the global simulator; new valucs are computed
only for nodes which appear on the event list or which are electrically connected to event-list nodes.
Portions of the network that are quiescent are not examined by the simuiator. Algorithms that have
this property are said to be selective-trace or event-driven algorithms and generally run much faster

than algorithms which are not event driven [Szygenda75].%

An interesting implication of selective trace is that special care must be taken to ensure that
"constant” nodes, such as the output of an inverter with its input tied to GND, are processed at least
once (otherwise they will have the wrong values). One technique is to treat VDD and GND as ordinary
inputs when first starting a simulation run — sort of a power-up sequence as VDD and GND change
from X to 1 and 0 respectively. Computing both the direct and indirect conscquences of changes in
VDD and GND might involve a tremendous amount of computation since the whole circuit is affected;

often only computing the indirect consequences is a sufficient and less costly alternative.

Although there is no explicit mention of time in the global simulator, the first-in, first-out (FiFO)
processing of events imposes some ordering on the changes of node values. This ordering is similar to,
but not the same as, the unit-delay ordering used by many gate-level simulators. In an event-driven
unit-delay algorithm, the output of each gate that had an input change is rccomputed using the current
values of the input nodes. ‘The new output values are saved and imposed on the network only after
processing all gates. The net effect is that cach computation cycle (representing a unit of time)
propagates information through onc level of gate, ie., cach gate has unit delay. Because changes in
node values are imposed all at once, values change simultancously, which can lead to problems in
Tlxcc;all()ncfolhxs rule are some hardwarc-based simulation alporithms, such as programs mun on the Yorktown
Simulation Engine [Pfister82]. The builders of the YSE¥ point out that simulations might well run slower because the
cxtra communication and branching needed to implement selective trace would compromise the paratielism and pipe-

lining used to great advantage in the YSE. However, if sufficiently large portions of the circuits could be ignored,
the overhead of selective trace could be worth the investment (sce Chapler 6).

- 105 -

circuits containing feedback paths.

'The global simulator implements a pscudo unit-delay algorithm. New cvents are added to the
end of the event list, so the oldest changes are processed before any conscquences of those changes
are processed. 'Thus, FIFO event management leads to the same sequence of gate evaluations as a
unit-delay algorithm. However, because the global algorithm changes values in the network
incrementally rather than all at once, it is possible to find circuits that behave differently under the two

simulators:

1-0—+1-.. 10

01 —% 0-»1 o—4

1-0—+1-—... } ~0 1

(a) unit delay (b) pseudo unit-delay

Figure 5.18. Circuit that distinguishes unit-delay from pseudo unit-delay

A 0-1 transition on the input causcs a unit-delay algorithm to loop forever. The global algorithm
predicts only one transition — the output of whichever gate it processes first. Neither answer is
completely correct; the actual circuit enters a meta-stable state on a 0-1 input transition, eventually
settling to a particular configuration determined by subtle differences in the gains of the two gates. It
will not remain in the meta-stable state forever, so an infinite oscillation is a poor prediction. On the
other hand, the final configuration chosen by the global simulator depends on the order of some list in
the nctwork data base. The predicted outcome is the same cach time, not nccessarily the best
prediction.¥ The global simulator does not offer a general solution to the oscillation problem; both

simulators will oscillate on the following circuit.

t{Bryant81] suggests that the oscillation can be detected and the offending node values replaced by X, but the tech-
nique for determining the number of oscillziions to allow yiclds answers S0 large for circuits of any substantial size
that this is not a very practical allernative.

- 106 -

01 0—4

D

Figure 5.19. Circuit which causes both simulators to oscillate

Along the same lines, the global simulator predicts that the output of the circuit below will

osciilate when the input changes from 1 to 0.

!‘_i _J '_J 0 010
120
Il \'\ node which is both an input and output

Figure 5.20. Circuit with a node that is both an input and output

The actual output quickly rises to the balance point of the pullup/pulldown combination. In a logic-
level simulation, this corresponds to finding a solution to the equation & = =& which has the solution
a = X (a reasonable logic-level representation for the balance point). This example is drawn from a
larger class of circuits where a node is both an input and output of the circuit. Since the new-value
computation uses current transistor states (determined by current node values) to predict the new
values, it is impossible to predict the value of a node that depends on its own value. This limitation

has not proven to be a problem in practical circuits.

5.4. The local switch model

It is interesting to speculate about replacing the tree walk performed by the global simulator with
a strictly local computation. After all, the models of transisior behavior presented in Chapter 3 show
that a transistor is controlled by the voltages of its three terminal nodes, ie., cach transistor operaics
independently, basing its behavior on only local information available at its terminals. The simulation
model described in this section works in much the same way. The basic operation involves updating
the terminal node values of a transistor switch using only information about their previous values and

the state of the switch.

Relaxation-based algorithms leave one a little nervous. Will the relaxation terminate? Doces the
final answer depend on the order in which the individual computations are performed? ‘These

questions are answered below, after a description of the algorithm itself.

5.4.1. Nede values in the local switch model

The set of node values and the computation developed for the global simulator must be adapted
for use by the local simulator. The necessity for an adaptation is explained at the end of section 5.4.2.
(The discussion is postponed until after the local simulation algorithm has been presented, when it will

be easier to explain why the glabal simulator’s techniques do not work in the local simulator’s context.)

In the local simulator, a node value is a pair
<high,low>
that separately lists what type of connection exists to each of the two possible input signals. The high
component summarizes what is known about paths to VDD, and the low component describes paths to
GND. Ignoring for the moment switches with gates of X, four types of connecctions can be
distinguished for each component:
00 no paths to inputs, no charge storage.
S charge storage.

1 there is a path to the appropriate input, but it passes through one or more
depletion switches.

0 there is a path of conducting n-channel (gate = 1) and p-channcl (gate = 0)
switches to the given input.

A switch with a gate of X may or may not make a connection; the resulting path is characterized by an
interval describing the range of alternatives. (g) = 6 intervals arc nceded to describe all possible
combinations of pcths.

The value of vDD is <0,00> and of GND is €00,0>; some other examples are showi in the

following figure.

S

1 “, CL I CL % 1L CH
@) <1, 0> (b) <[0.2], 5> () <S, $»

Figure 5.21. Examples of node values in the local simulator

This organization provides for many more values than actually necded by the simulator; many of the
values make distinctions that are not important in determining a node’s logic state. For example, <1,0>
and <S,0> both represent values corresponding to pulled-down nodes — it does not matter what the
high component contributes if it is weaker than the low component. The advantage of this notation is

the ease of computing what a given signal looks like from the other side of a transistor switch:

1 X ' 0
. 1 1. 1
<10 I 7 A J 7 A e N 7 A JL ?
@) <1, 0> (b) <[1,00}, [0,00]> ©) <1.1> (d) <00,00>

Figure 5.22. <1,0> value as seen across various transistor switches

This will prove very useful in describing the update operation below.

Using the technology developed in section 5.1.1, a lattice can be constructed that indicates the

relative ordering of the various component values:;

- 1Y -

0

I
(0]

PN

1 {0.5]

o~ 70N

(18] [0.c0]

N7
S [1,00]

~

[S.00]
|

0

Figure 5.23. Lattice for the ten possible ccmponent values

The U operation can be used to calculate the result of considering two paths in parallel:
<hy, 2> U <hz, h> =<h1 U hy 1 U L> (5.5)

Each component is merged separately according to the lattice given above. Similarly, two values can

be ordered by comparin;; their components:

<hy, h> <<hyp, > iff mM<hyand H <1 (5.6)

A logic state can be associated with a value <h,I> using the following table:

h

0 01 [0S] [000] 1 ns] e} S [S,00] 0

0 X X X X 0 0 0 0 0 0
01 |x X X X X X X 0 0 0
[0S | x X X X X X X X X 0
[0.0] | X X X X X X X X X X
;1 1 X X X X X X 0 0 0
ns) |1 X X X X X X X X 0
[i.00] | 1 X X X X X X X X X
S 1 1 X X 1 X X X X 0
S0 {1~ 1 X X 1 X X X X X
o |1 1 1 X 1 1 X 1 X X

Table 5.3. Logic state associated with <hI>

= 1iu -

5.4.2. The local simulation algorithm

The local simulator implements a relaxation-based calculation for propagating input values

through the network. The calculation has three major steps:

Step 1. Determine the state of each transistor switch from its type and the logic
state of its gate node. If no switches are found that changed state since
the last examination, the network is said to have "scttled" and the
simulator waits for more input.

Step 2. Reset each non-input node value to its charged value, a value that
corresponds to the node's last logic state but does not have sufficient
strength to force the value of any neighboring nodes.

Step 3. Repeatedly pick a transistor and update the values of its source and drain
nodes according tc the formula given below, continuing until the
relaxation is complete (no node changes value as the result of an update).
Upon completion, return to Step 1.

Each of these steps is described in more detail below.

Figure 5.5 shows how a switch’s state is determined from its type and the logic state of its gate
node. Once determined, the switch state remains stable through Steps 2 and 3 even if the gate
changes value. This arrangement is necessary for the correct operation of the simulator since a node’s
value might temporarily be incorrect during the relaxation compuiation while information continues to
propagate towards the node from various inputs. For example, the output of a NAND gate may
momentarily appear to be pulled-up, because the near-by pullup affects the node’s value before
information can propagate from GND up the pulldown chain. Since there are no guarantees about the

ordering of updates, a node’s value is known to be correct only when the relaxation process

terminates.

Step 2 makes sure that the rclaxation starts off with a clean slate; when this step is complete,
only input nodes have values that can cause the values of neighboring nodes to change. This ensures

that values for non-input nodes arc determined exclusively by the values of the input nodcs.

<00, $> current logic state = 0
charged value = <§, 00> current logic state = 1 4.7)
<S§,8> current logic state = X

If a node is not cornccted to any input, the charged value is an accurate representation of its final
value. The update calculation performs a rudimentary charge sharing computation; a charged node
can become connected to another charged node with the same logic state, and still maintain its value.

Conncction to a charged node with a different logic state results in both node values becoming €S,S).

- 111 -

Notz that precharge/discharge circuits are simulated correctly.

An update operation involves the source and drain nodes of a single transistor switch. The ncw

values of the source and drain are calculated from their old values and the state (o) of the switch:

Vsource = Vsource U switch(o, Vdrain)

Vdrain = Vdrain U swilch(o, Vsource)

(5.8)

The function switch(s, value) formalizes our intuition about the cffect on a value as it passcs through a

switch in a given state (see figure 5.22). The new value of a terminal node is the result of merging its

old value with the old value of the other terminal node after it has passed through the switch,

switch(a, <h,1>) =

o0 o = open

<h,I1> o = closed

<h + [0,00],] + [0,0]> 6 = unknown G.9)
<h + L1, 7 + [L1]> o = weak

where "+" is the series operation described in the following table:

+ 00 [0 [0S]
(00 | [00]

1 |1 [0l

0s) |[Ls s} [0S)
[0.00] | [0.00] [0.00] (0.9
Ly |y pyo ns
sy | s s s
[Leo] | [1e0] [Loo] {1.0]
[sS] | [sS] [sS] [SS]
[s.0] | [s.00] [S.00] (8.
[00,09] [00,00] [00,90] [00,00]

Table 5.4.

0] [L [1S! [Lee] (SS] (80] [0,]

[0,00]

[1e0} [L]]

o] [LS] {18}

floo] [Leo] [Leo] [1,09]

[S..0] [S.S] [S.S] 15.00] [S.S]

[Se0] [S.0] [S00] [S00] [800] [5.%0]
[00,00] [00,00] [00,00] [00,00] [00,00] [00,00] [00,00]

Series operation for local simulator

In general, the local algorithm’s predictions are more pessimistic than those of the global

simulator. The following figure illustrates the analysis performed by the local simulator for the circuit

shown in figure 5.9. (The global simulator’s analysis is shown in figure 5.10)

DH

DL

1 1
e I .
<0,00> X <0,00> X
1 1
1 S I BN <00 8> 1 I R NN <[1.90], [0.Sp
1 1
S I
<o, —'I_L—— <00,0>
(a) original configuration (b) after network settles

Figure 5.24. Local simulator analysis for circuit in figure 5.9

As shown in figure 5.24(b), the local simulator predicts the logic state of the output node to be X — a
pessimistic answer. (The global simulator predicts a logic state of 0.) On the other hand, the local
simulator cannot simply adopt the value set and computation of the global simulator. The reason why

is illustrated by the following figure.

1 1 L
I X DH —-—ﬁ— X DH X
#1 L L #1 A
1) G N N 1 | S I RN 1 I
L #3 CL s #3 [CL.DL] L #3 [WH.DL)
L DL S g — DL]
#2 #2 #2
(a) original configuration (b) update order: #1, #2, ... (c) update order: #1, #3, ...

Figure 5.25. Global simulator’s computation using update operations

The figure shows the final node values (ie., the values zfter the network has scitled, and further
updates make no change to the network), assuming that the first few updates were performed in
different orders. Figure 5.25(b) shows the final node values if switch #1 is updated first, followed by
switch #2. Figure 5.25(c) shows the final node values if switch #1 is updated first, followed by

switch #3. As one can see, the valuc of the output node differs in the two examples.

If the local simulator’s predictions of the final node values are to be independent of update

order, it must be the case that
switch(a, a U B) = switch(o, a) U switch(o, B) (5.10)

«n other words, it cannot matter if carly estimates of a node's value () are transmitted to neighhoring
nodes bhefore additional information (B) arrives. Unfortunately, cquation 5.10 is in dircct conflict with

cquation 5.2 which indicates that order makes a difference in the analysis of certain circuits (such as

the cne in figure 5.9) when using the global simulator’s value set. Thus, the local simulator cannot

simply adopt the global simulator’s value set.

5.4.3. Intcresting properties of the local algorithm

In order to answer the questions raised when first introducing the local algorithm, some
definitions will be useful. Let S be the set of switch-state vectors o103 - - - o, where ¢ is the number
of transistor switches in the network. Similarly, let V be the set of node-value vectors Vivae -t - Vg
where n is the number of nodes in the network. Then SXV is the set of possible network states.

Definition. Let X and Y be network states. X > Y if Sy = Sy and Vy 2 Vy
where comparison between vectors is done component by component.

The update operation changes one network state to another; one writes X =Y if a sequence of zero
or more updates changes the network state X in.o the network state ¥. X —,, Y means that m or
fewer updates will change X into Y.

The update operation can potentially change two elements of the node-value vector; the switch-
state vector is never affected by an update. Not every update causes the network state to change. For
example, if the update chooses an open switch, the resulting network state will be the same as the
original state. In the presentation below, it is useful to distinguish those updates that result in a

change in the network state from those that do not:
Definition. Let X and Y be network states. X = Y ifX —; Y and ¥ # Y.

In fact, X => Y implies ¥ > X, a simple conscquence of equation 5.9 and the definition of U. A
stable network state is one which does not change as the result of any update:
Definition. Let X be a network state. X is stable if, for any network state ¥, ¥ — ¥
implics X =Y.
It follows directly from this definition that a state is stable if and only if no => operations are possible
on the statc. Once a stable state is reached, the rclaxation process can safely be terminated since
further updates will not change the network state. This suggests the following metric for measuring
how far the relaxation process has to go:

Definition. [.ct X be a network state. order(X') is defined to be the largest integer m
such that there exist staics Vi, ..., Y where X = Y= .. = V,.

- 114 -

‘I'he termination of the relaxation process is assured by the following thcorem:
Theorem 5.1. For any nctwork state X, order (X) is finite.

The proof is based on the observation that there are only finitely many network nodes and possible
node values. This means for any given network state X, therc are finitely many states Y such that
Y > X. Since each => operation produces a state strictly greater than its predecessor, one can

perform the = operation only finitely many times before all the possible states are exhausted. B

For a given starting network state, Theorem 5.1 tells us that a stable state can be reached with
only a finite number of = operations. In fact, one can prove that there exists a unique stable state
for any network state, but first we must lay a little more groundwork.

Lemma 5.2. Let W and X be network states. If order(W) = m and W => X, then
order(X) < m.

Suppose that order(X) > m, then there exists a sequence of => operations

W= X= Y;=> -+ = Yorqer(x) This implies order(W) 2 m+1,a contradiction. &

Lemma 5.3. (Church-Rosser property) Let W, X, and Y be network states. If

W —1 X and W — Y, then there exists a network state Z such that ¥ — Z and
Y- Z.
Appendix 1 presents a proof based on a case by case analysis of the possible choices for X and Y,

demonstrating for each case a sequence of updates that lead to a common state Z.

This sets the stage for proving the uniqueness of the stable state. For readers acquainted with
the lambda calculus, the following theorem has a familiar ring. There are many similaritics between
the update operation and A-conversion: the discussion of normal forms and the Church-Rosser
theorem found in [Curry74] inspired the concept of stable statcs and the existence and uniquencss

theorems presented here.

Theorem 54. Let W, X, and Y be nctwork states. If W — X and W = Y, then

there exists a network state Z such that X — Z and ¥ — Z.
The proof proceeds by induction on the order of W. If ordertW) = 0, then W is stable and so
W=X=Y=2Z. Without loss of gencrality, if order(W) > 0, onc can assume X > W and
Y > W since if this were not the case, the result follows trivially. If order(W) = 1, the result follows
as a direct consequence of lemma 5.3. To show for order(W) = n+1, first note that there cxist

states A and Bsuch that W = 4 — X and W = B — Y. Then, by L.emma 5.3, there also cxists a

- 115 -

staic Csuch that 4 = C and B — C.

L W1 order = n+1
N
X C Y
NN\
N/
Z
Figure 5.26. Relationship between states in proof for Theorem 5.4

Using Lemma 5.2, note that the orders of 4, B, and C are all less than n+1. Thus, by the iqgluction
hypothesis, there exists a state D such that X = D and C — D. Similarly, there exists a state E such
that ¥ = E and C — E, also by the induction hypothesis. Finally, by a third appeal to the
induction hypothesis, there exists a state Z such that D — ZandE-»Z. 8

Taken together, Theorems 5.1 and 5.4 imply the following corollary:

Corollary 5.5. Let X be a network state. There exists a unique network state Y such
that Yisstableand X = --- = Y.
Thus, the relaxation process terminates for any starting network configuration, yielding the same stable

state regardless of the order chosen for performing the updates.

One of the artractions of the local algorithm is the opportunity it affords for parallel processiné,
especially during the relaxation process. Allowing parallel updates introduces the problem of merging
conflicting node values at the end of the updates. The simplest solution is to allow updates to happen
simultaneously only if they operatc on separate portions of the network state. With this restriction,
each node is imolved in at most onc update operation, and the potential for conflict is avoided. If the
number of available processors is a lot smaller than the number cf nodes in the network, there is only
a small probability of a processor lying idle, because there are an insufficient number of allowable

updates.

Parallel implementations that avoid conflicting updates are covered by the existence and
uniqueness results obtained above, since it is casy to convert the set of updates performed at any time
step into an cquivalent sequence of sequential updates. This approach has sufficient parallelism to

keep many current paralicl architectures quite busy. However, there are architectures on the drawing

- 116 -

boards with very large numbers of processors; it is interesting to speculate about algorithms that can

usefully employ as many processors as, say, there are transistors in the network.

To explore the possibilitics, imagine a multi-processer constructed of the following clements:

source drain B
N
gaie C
(a) transistor element {b) node element

Figure 5.27. Simulator processing elements

Both types of elements synchronize their operation to a four-phase global clock:

Phase 1. The transistor element samples the values of its source and drain
connections and calculates new values using internal information about its
type and current state.

Phase 2. The newly updated values are driven on to the source and drain
connections by the transistor elements.

Phase 3. Each node element samples one of its three conncctions and computes
the least upper bound of the sampled valuec and its stored state. The
connections can be sampled in any convenient order; the only
requirement is that a connection not be ignored indefinitely.

Phase 4. The node elements drive their connections with the value computed
during Phase 3.

Note that the node element is particularly capricious; it ignores two of its three conncctions in any
given cycle. This complicates the notion of an update since there is no guarantee that the two node
elements attached to the source and drain connections of a transistor element will be listening when
the results of an update arc made available. It becomes cspecially confusing when one of the elements
is listening and one is not, which results in "half* an update. Of course, one can conceive of less
bizarre node clements, but if it is possible to prove correct operations under the proposed conditions, a

much wider class of parallel architectures will be appropriate for the local algorithm,

The elements are wired together in a way that mirrors the topology of the network to be
simulated; multipie node elements arc used to model network nodes with a large number of

conncctions.

-117 -

/7
()
B

(a) circuit schematic (b) element interconnect

Figure 5.28. Example wiring diagram for simulator elemenis

By providing one processor per transistor and node, this implementation exhibits all the parallelism
one could reasonably expect. Steps 1 and 2 of the local algorithm are accomplished in a single clock
cycle. During Step 3, an update calculation for each transistor is performed every clock cycle. A
wired-or’ed signal visiting all the node elements can detect when the relaxation process is complete; a
similar signal connected to all transistor elements can indicate when the network has settled.

This scheme is not as fanciful as it seems — the Connection Machine project [Hillis31] now
underway at the M.LT. Artificial Intelligence Laboratory has an architecture well suited to an
implementation simiiar to the one described above. Fully configured, its one million elements would
be able to simulate sizeable circuits at very high speeds. However, the real purpose in proposing this
architecture is to provide a vehicle for analyzing the operation of the local algorithm in a parallel
environment.

A key insight into the design of a parallel engine is that the value stored by each node element
must be non-decreasing with time, Le, if Vijo oy Vi AT€ the values of node element i at successive clock
cycles, then v; < -+ <. The "ratcheting" of node values up the lattice, which was crucial in
showing termination of the relaxation in a sequential implementation, must be preserved in the paraliel
implementation. With this in mind, consider adding a communications link between two node

elements:

- 118 -

Figure 5.29. Simulation engine incorporating communication link

Since the system must already accommodate the unpredictable behavior of node elements, the
demands on the link are minimal; messages cannot be garbled and the network cannot become
partitioned indefinitely. However, messages can be dropped or delivered in any order since these

failures do not affect the monotonicity of a node’s value.

Two important questions remain to be answered about parallel implementations that allow
conflicting updates:
(1) Is there an analog for Lemma 5.3?

(2) Does this parallel implementation give the same answer as the sequential
implementation?

The author’s speculation is that both questions can be answered affirmatively. This belief is based on
the observations that no information is lost that cannot be recalculated, and the operation of the
switches and merging of results remains unchanged. Given that the order in which the propagation
happens was shown to be irrelevant by Theorem 5.4, it seems unlikely that the slightly more baroque

propagation mechanism of a parallel impiementation would seriously change the picture,

-119 -

CHAPTER SIX

Simulation Using a Pre-compiled Network Model

The simulation algorithms presented in previous chapters rely on examination of the surrounding
network to determine the value of a given node. The surrounding network is re-examined everyv time
the node’s value needs recalculation. This chapter investigates breaking this process into two steps: a
single complete network analysis which builds a set of four logic equations for each node, indicating
the types of connections between the node and vDD or GND; and simulation, where the value of each
node is determined by evaluating its equations built during the first step. Not only is the overhead of
a tree walk avoided each time a node value is calculated, but evaluating logic equations is also a very
fast opcration for most computers.

Each step is discussed in a scparate section. The first section describes the derivation of logic
equations for each network node — even those which are not directly cutputs of MOS logic gates. The
second scction presents several approaches for building a logic simulator based on the evaluation of

the node equations.

6.1. Reducing switch paths to logic equations

The switch-level algorithm in Chapter 5 determines the value of a node from information about
the node's current connections to VDD and GND. The information is regathered cach time a new value
is calculated for the node. In most cases, only a small number of potential paths exist from a node to
vDD and GND. This suggests that it might be economical to determine ahead of time the conditions for
which a path exists to, say, GND. For example, the output of a NOR gate with inputs A and B is pulled
down if either A or B is non-0. The existence of a pulldown path can be determined by evaluating the
expression "A OR B"; a scarch of the network is not required to discover which pulldowns are

currently conducting.

This section describes the derivation of a set of four Boolean equations for each node:

DH4 An expression indicating under what conditions a path of conducting n-
channel and/or p-channel devices exists from node A to VDD.

DL4 An expression indicating under what conditions a path of conducting n-
channel and/or p-channel devices exists from node A to GND.

WH, same as DH 4, except the path contains at least one depletion device.

WL, samec as DL 4, except the path contains at least onc depletion device.
If an expression evaluates to true (1), the corresponding path exists; if the expression evaluates to false
(0), no path exists. Since nodes can have X values, expressions involving node valucs can evaluate to
X; in this case, the corrqsponding path may or may not cxist. The cquations involve the ordinary
Boolean operators AND ("), OR ("+"), and NOT ("—"). These operations are easily extended to

accommodate X values:

anp [0 1 X orR |0 1 X NOT

0 0 0 o0 0 (0 1 X 0 1
1 0 1 X 11 1 1 1 0
X 10 X X X1X 1 X X i X

The algorithm for constructing logic cquations is similar to that for computing the Thevenin
equivalent for a node (sce scction 4.1.2). The algorithm begins with an expanding tree walk, stopping
when an input or dead-end is reached. During the tree walk, all switches are assumed to be on, since
the tree walk is performed before any node values are calculated. (During simulation, the actual state
of the switch is represented symbolically in the equation.) The algorithm continucs by retracing the
steps of the tree walk back toward the original nodc: during this process, the equations are built. The

cquations for the terminal nodes are trivial: the following table is the analoguc of figure 4.8:

- 121 -

terminal node DH DI WH WL

VDD 1 0 0 0
GND 0 1 0 0
dead-end 0 0 0 0

Merging the equations for two (or more) paths which join at a given node occurs in several steps.

S\
DH, | DH’,
DLy, \ [L Dy U
WH, i WH',
A) DH', + DH’
Wa Wea) DLt + DL
—0 —0 A B —_
3 WH', + WH'y
DHp A DH'g WL, + WL'p
DLy \ [DL'p
WH ! WH' :
B B B
WLy J WL'g
(a) two paths to merge (b) after incorporating switches (c) final path equations

Figure 6.1. Merging the equations for two paths which join

The process begins by modifying the equations for each path to reflect the contribution of the switch
in scrics with the path (figure 6.1(b)). The nccessary formulas appear below. For example, DH "is the

new equation derived by combining DH with gate, the value of the switch’s gate node.

DH - gate n-channel switch

DH = DH - mgate p-channel switch 6.1)
0 depletion switch
DL - gate n-channel switch

DL = DL - —gate p-channel switch 6.2)
0 depletion switch

The equations for the "strong"” paths (above) are straightforward; when the conncection is made by
regular switch, the path cquation and the the switch's gate value arc combined using AND. If the
conncction is made with a depletion device, the strong path is terminated. Equations for "wcak" paths
(below) are slightly more complicated since a depletion switch changes a strong path into a weak one.
These formulas also reflect the fact that a strong path overpowers a weak pati, ie., equations for weak
paths arc forced to 0 if a strong path is present. The reason for this extra complication will be clear in

an cxample below.

gate - WH - DI
WH = Sgate - WH - DI

DH + (WH - DL)

gate - WL - °"\DH
WL = —gate - WL - °"DH

DL + (WL - DH)

=122 -

n-chaniel switch

p-channel switch (6.3)
depletion switch
n-channel switch
p-channel switch (6.4)

depletion switch

After the equations for each path are modified to include the series switches, they are combined (using

OR) to derive the final equations for the node, as shown in figure 6.1(c). When the analysis for a node

is complete, the four equations characterize all paths from the node to VDD and GND.

surrounding

network

(a) original retwork

DH —{

L
$

(b) network after analysis is complete

Figure 6.2. The four equations characterize all paths from node

In other words, for each node, the surrounding network (figure 6.2(a)) has been reduced to an

equivalent, but much simple network (figure 6.2(b)). All the information about paths in the original

network is now stored in the node equations, where it can be cfficiently utilized. For example, to

determine if a node is pulled-down, ail onc has to do is evaluate the DL cquation — no cxamination

of the network is nccessary.

The value of node can be determined from the values of the four cquations and the node’s

previous value, by table lookup:

- 123 -

DI/WIIT

00 01 0X 10 11 X X0 X1 XX

00 prev 1 prev+X 1 1 1 prev+X 1 prev+X
01 0 X X 1 1 1 X X X
0X | prev*X X X 1 1 1 X X X
10 0 0 0 X X X X X X
DL/WL 11 0 0 0 X X X X X X
1X 0 0 0 X X X X X X
X0 | prev*X X X X X X X X X
X1 0 X X X X X X X X
XX | prev - X X X X X X X X X

Table 6.1. Node value table for equation-based simulation
There are a few special cases which can be summarized more concisely.} For most nodes in nMOS
circuits, DH = WL = 0, ie, connections to VDD are made only through depletion pullups, and
depletion devices are not used elsewhere in the circuit. In this case, the value of a node is given by a

single equation:
node value = {WH + previous value) - DL (when DH = WL = 0) (6.5)

Equation 6.5 can be simplified further for a node that is directly pulled up (WH = 1), ie., a node

which is the output of a logic gate:
node value = —\DL (when DH = WL = 0and WH = 1) 6.6)

In most cases, therefore, calculating the value of a node requires evaluating only a single equation.

Some examples will help illustrate the analysis. First, consider an inverter with a pass gate

connected to its output.

WH = B- ™A

A WL =0

Ii B
I-| | DH =0
'1 ML __ocd DL=B"A

Figure 6.3. Logic equations for output of inverter with series pass gate

implement the function tabled above as efficiently as, say, Booican operations. This is not true of most general
purpose machines: hence the motivation for finding simpler representations where possible.

- 124 -

Using equation 6.5, the value of C is given by C = (B-—7A + C)- (B - A4). The value of this

equation is tabled below for the various valucs of 4 and B.

B
C'| 0 1 X
0 C 1 C+X
A 1 C 0 c-X
X C X X

When B is 0, the pass gate is turned off, and C retains its old value. When B is 1, the pass gate is on,
and C is the complement of 4. Finally, when B is X, C is also X, except when the output of the
inverter is the same as the previous value of C. In this case, the output retains its old value, which
makes sense since there is nothing forcing it to change. This last statement is true only because
WHc = B - 4 the =4 term forces the pullup equation to 0 when the pulldown of the inverter is
active. If the WH equation did not reflect the contribution of the pulldown, Le, if WHc = B, the

value C would be unnecessarily forced to X when the value of B was X.

The next example is the XOR gate presented in Chapter 2.

i,

AN

Figure 64. XOR logic gate

The equations for each node appear in the following table.

- 125 -

node DH DL WH WL
C 6 A+DCB 1 0
D 0 B+CDA 1 0
E 0 CB+DA 1 0
F 0 E 1 0

These equations might seem incorrect at first — it is not at all obvious that F = 4 xor B. However

simplifying the the equations for C and D shows:
C="(A+D-C-B)y="(A+(B+C-4)-C-B)="4 6.7)

and similarly, D = = B. These results can be used to rewrite the equation for F in terms of 4 and B:
F="E=C-B+D-A="4-B+-B-A=A4AX0RB (6.8)

In actual use, the equations are not simplifiec. The above substitutions do verify, however, that the

equations compute the correct value for F.

Some circuit configurations have very simple connection paths during actual operation of the
circuit, but the circuits can appear very complicated when no information is known about the values of
various control lines. This is especially true of a circuit containing nMOS switching logic, such as a
barrel shifter or tally circuit. If no information is available about the values of the control lines in a
barrel shifter, it appears to short together ail the incoming and outgoing data bits. The logic equations
for a node in such a circuit can become very large — in some cases, large enough to be impractical.
The analysis procedure monitors the size of the equations under construction. If they grow too large,
the procedure is aborted and the node is flagged. At simulation time, the value of a flagged node is
determined using the normal switch-level simulation algorithm.} Flagging a small number of nodes
eascs the analysis of the remainder of the circuit. (The number of flagged nodes has been less than
1% of the total number of nodes in all the designs processed to date.) Using this technique, the speed-
up in simulation afforded by the use of logic equations can be enjoyed by circuits even where 100%

conversion to cquations is not possible.

Keeping track of gate cxpressions for transistors crossed during the initial, expanding phase of

the tree walk allows the equation-building algorithm to climinate duplicate AND terms in the results.

purpose computers, but can be next to impossible for special-purpose hardware.

- 126 -

A B A A'B
| | | |
[S T B J L
(a) original circuit {b) reduced circuit

Figure 6.5. On-the-fly elimination of duplicate AND teims

This minor optimization can reduce equation size substantially in some circuits. Consider, for example,

—_r ° 73
17

s L ° 72
! :__b

— 71

a tally circuit from [Mead80}.

1

¢

I

-
|

HRERERE

NENER

F-—- D - B-—

T T

Figure 6.6. Tally circuit

This tally circuit has three inputs: 4, C, and E. A tally circuit counts the number of l-inputs; Z0 =1
when no inputs are high, Z1 = 1 when exactly one input is high, and so on. The cquations produced

for the outputs appear somewhat complicated, for example:
DLz, = B(A+D(C+F+E-F)+C(D+E+F-E)) + A(B+C+D-(C +E+F-E)) (69)
WHz, = B(D-E+C-F+A-C-E) + A-D(F+C-(£ +B-E)) (6.10)

These equations are hard to verify as they are, but they can be simplified by removing B, D, and F.
(Again, the simulator does not simplify the cquations, but this is the casiest mcthod for us to use to

verify the operation of the algorithm.) Using the identitics B = =4, D = 2C, and I = =/, the

-127 -

cquations reduce to:
DLzy = 2 A-CHE + 2A4-CE + AC + ACE (6.11)
WHzy = A C-£ + 1 A-CE + AC-—E (6.12)
Substituting these formulas into equation 6.5 gives
Z1 = A-1C-™E + =4-C—E + m4-CE (6.13)

As expected, Z/ is true if exactly one input is high. Of course, evaluating this last equation would be
much faster than using the original equations, 6.9 and 6.10. Unfortunately, equation simplification is a
very time consuming operation; the computational investment required to process all the equations for
a large circuit would probably not be recovered by decreased simulation time. In addition, the
equations for most nodes are simple, and simplification beyond that suggested by equation 6.6 (a

simplification which is easily recognized) does not result in much improvement.

6.2. Compiling logic cquations for simulation

It is easy to build a simulator that uses the node equations developed in the previous section,
The simplest approach [Denncau82] is to allocate two node-value arrays; one to hold the current
values of each node, and the other to collect new node valucs as they are computed. Each node is
assigned an index which can be used to access its carrent value in the first array, or to store its new
value in the second array. A simulation subroutine for the network is built by generating code that
calculates the value of each node, where the code for one node is followed by the code for the next.
(Since new node values are kept separate from the current node values, the order in which nodes are
processed by the compiler does not matter.) A single simulation step, which propagates new input
values to other nodes in the network, is implemented as follows:

(1) For each input node, set its current-value array entry to the designated input
value.

(2) Exccute the simulation subroutine. This fills the new-value array.

(3) Comparc the current-value and new-value arrays. If their contents are identical,
the network has scttled and the simulation siep is over. Otherwisc copy the
new-value array to the current-value array, and return to step (1).

This simulation algorithm has several interesting propertics. Each exccution of the simulation

subroutine corresponds to one step of a unit-delay simulator. Node values are updated all at once in

- 128 -

step (3); hence, the simulator implements a true unit-delay algorithm as described in section 5.3.3.
Note that no special handling of input nodes is required when gencrating code — the new values
calculated for input nodes in step (2) are overridden by user-specified values in step (1). Note also
that the calculations of the simulation subroutine are not event driven; the implications arc discussed

below.

The value of a node is computed from its four node equations, using the code generated by one

of the following alternatives:

(1) If DH = WL = 0and WH = 1, emit code that calculates the node value using
equation 6.6.

Q) If DL = WL = 0and WH # 1, emit code that calculates the node value using
equation 6.5.

(3) Otherwise, emit code which evaluates each of the four node equations, and then
concatenates the resulting values with the previous value of the node to create an
index into Table 6.1. As an optimization, the code generator can check for other
special cases (constant values for WH and WL) and generate accesses to smaller
tables if appropriate.

Code is generated for each equation using standard compilation techniques. The logic instructions of
the target machine are used for expression evaluation. (Some provision must be made to incorporate
X values in a way that still permits use of the native logic instructions; see the example at the end of
this section.) Access to a node’s current value requires only an indexed reference into the current-value

array; storing generated values requires an indexed reference to the new-value array.

There are some inefficiencies inherent in this approach. An extra execudon of the simulation
subroutine is performed during each simulation step — “extra" in the sense that the last execution
produces the same result as the one before (that is how the simulator identifies it as the last
exccution). In addition, the value of each node is calculated during each call to the simulation

subroutine, even if the inputs to the node’s cquations have not changed.

This last objection can be addressed by making a more intelligent choice about the order in
which .node values are calculated, by identifying the nodes that affect node A's value (ie., nodes that
appear in the equations for 4) and then generating code to compute the values of these nodes before
generating code to compute the value of A [Case78, Denncau82). In addition, references to a node’s
current value are directed to the new-value array if a new value for the node was computed earlier in

the subroutine. For example, the circuit in the following figure has several cascaded logic gates.

b >°—D°q" |
_ Bl

Figure 6.7. Cascaded logic gates

Under the new organization, the compiler generates code for nodes 4 and B before generating code
for node E, and so on. The resulting code propagates a new input value from A to H in a single
execution. (The earlier scheme would have required three calls to the simulation subroutine to achieve

the same effect.)

To implement this scheme, the compiler assigns a numeric /evel to each node. The level of input

nodes is defined to be 0; the level of a non-input node a is
level(a) = 1 + max(level of nodes affecting a) (6.14)

Referring to the example in figure 6.7, if nodes A through D are inputs, level(E) =1 and
level(H) = 3. Code is first generated for level 1 nodes, then level 2 nodes, ard so on. When
compiling an equation, if a node value is needed, the node’s level determines where that value comes
from. The value of a level 0 node is taken from the current-value array, and the value of a node with
a level greater than 0 is taken from the new-value array. (New values are stored in the new-value

array, as always.)

The definition of a node’s level in equation 6.14 runs into some difficulty if the circuit has

feedback. Consider, for example, the following circuit:

I o—

J o— L

Figure 6.8. Circuit with feedback

In attempting to assign a level to node K, one discovers that the definition is circular, ie.. the level of
node X is defined in terms of itsclf. The compiler solves this problem by arbitrarily splitting a node

that is in the feedback loop into two nodes. One copy is treated as an input, and the other as a

normal network node. Both are assigned the same index so that the input value is updated cach time
the new-valuc array is copied to the current-value array. Thus, the circuit in figure 6.8 is compiled as

if it had the following configuration:

treated as input

AN L
J=lD e g St

Figure 6.9. Feedback circuit as it appears to the compiler

value fed back during step (3)

For the purposes of compilation, the feedback loop is broken; the value is actually fed back during
step (3) above when the new-value array is copied to the current-value array. This means that a
circuit containing feedback might require more than a single execution of the simulation subroutine
before the network settles. As it turns out, most MOS circuits contain feedback loops since charge
decay requires that storage nodes be refreshed. A clocked feedback loop offers special compilation

opportunities, which are discussed below.

Compiling nodes by level ensures that only a single execution of the simulation subroutine is
needed to settle the network, assuming the nctwork contains no feedback. The new organization
introduces other differences from the original compilation strategy. Node values are riot updated all at
once in this scheme; the simulation subroutine implements a pscudo unit-delay simulation. Input
nodes must be assigned a level of 0, which means nodes must be declared as inputs before the
compilation process begins. This climinates the possibility of interactive debugging, where one wants
the capability to consider any node as an input. Typically, the designer uses the original compilation
strategy when initially checking out the circuit, and then uses compilation-by-level when performing

long verification runs.

Most node-value references are satisfied using the new-value array in the compilation-by-level
scheme. This suggests that is might be worthwhile to climinate the storage overhead and copying time
involved for managing two arrays by merging them into a single array. This is straightforward,
provided a new technique is developed for detecting when the simulation step is complete. If the
circuit has no feedback, only a single excecution of the code is nceded. When there is feedback, a
single exccudion also suffices, if the current and new value of spiit nodes (e.g., K and K "in figure 6.9)
agrec. Only when the old and new values are different is another exccution required. ‘This can be

arranged by comparing the two values before the new value is stored into the array. If the

444

comparison shows them to be unequal, a flag is sct to indicate that another execution is nceded. Note
that the whole simulation subroutine is re-exccuted; this is simpier than trying to untangle interlocking

feedback loops to determine the subset of the code that must be re-executed.

With this improvement, the compilation-by-level scheme produces a simulation subroutine that:
(i) uses a single node-value array.

(ii) evaluates nodes in a reasonable order: the values of a node’s inputs are
calculated before the value of the node itself is calculated.

(iii) deals with fecdback by splitting some node in the feedback loop into an input
node (assigned level 0) and a regular node. Both nodes are assigned the same
index, so when the value of the regular node is recomputed it updates the value
of the input node also. Before storing the value of a split node into the node-
value array, it is compared with the current value; if the values are different a
flag is set.

(iv) uses the flag described in step (iii) to indicate when another iteration is needed.
If the flag is set during an execution of the code, another iteration is performed:
otherwise, the subroutine is finished.

The following is an extended example which illustrates the result of a compile-by-level for a single bit

in a nMOS counter. The circuit diagram for the counter bit is shown in the following figure.

PHI2

iy

D
1
PHI |>' —< CouT

D SRS N S P
A B } 30—4—°OUT

Q
z
f

Figure 6.10. Circuit diagram Jor a one-bit counter

The target machine for this example is the DEC VAX-11. A node value is 2-bit quantity (logic lew =
0, logic high = 3, X = 1) stored in a byte location; the node-value array is implemented as an array
of bytes. Logical AND} and OR instructions produce the desired answers with this value encoding.
However, using this encoding, the complement iastruction does not correctly implement the NOT

tThe VAX docs not. in fact, have an AND instruction. Instend, a "bit clear” (BIC in VAX parlance) is provided,
which implements an AND-COMPLEMENT opcration. This introduces a few circumlocutions in the gencrated code.

S lJae

operation, so NOT is performed by table lookup. The index of cach node is indicated symbolically in

the code below (the index of node A is written *_A").

; r10 = pointer to value array

; ntb]l = table giving NOT of value
; xtb1 = table giving bit complement of value

; xntbl = table giving bit complement of NOT of value

step:
clrl
clrl
movb

1: movb
bisb3
movb
bicb3
bisb2
bisb3

movb
movb

movb
bisb3
movb
bicbh3
bisb2
bicb3

movb
movb

movb
bicb3
movb

movb
bicb3
movb

movb
bicbh3
movb

movb
movb
movb

movb
bicb3
cmpb
beql
movb
clirb

bbcs
rsb

r0
ri
#1,iterate_flag

_PHI2(r10),r0
ntb1(r0), _OUT(r1}.r0
_CUT(r10).ri

xtb1(rt), PHI2(r10),rl
_IN(r10),r1
xtbi(rl),r0,_IN(r10)

_IN(r10),r0
ntb1(r0), A(r10)

_PHI1(r10),r0
ntb1(r0), A(r10),r0
_A(r10),r1
xntb1(r1),_PHI1(r10),r1
_B(r10),r1

xtb1(r1),r0, B(r10)

_B(r10),r0
ntb1(r0),_C(r10)

_C(r10),r0
xtb1(r0), CIN(r10),r0
ntb1(r0),_D(r10)

_C(r10),r0
xtb1(r0),_D(ri0),r0
ntb1(r0),_E(r10)

_D(r10).,r0
xtb1(r0), _CIN(r10).r0
ntb1(r0),_f(r10)

_D(r11),r0
ntb1(r0), COUT(r10)
_D(r10),_COUT(r11)

_E(r10),r0
xtb1(r0), F(ri10),r0
ntb1(r0),_0UT(r10)
2f

ntbi(r0), OUT(r10)
iterate_flag

#1,iterate_flag,1b

..

..

so regs can be used index registers

nwonzero indicates no iteration needed

r0 = Iphi2 + out = !(phi2 * lout)

rl = (phi2 ®* out) + in
in=r0*r1
a=11in

r0 = tphil +a = t(phil * la)

r1 = (phi1 * ta) +b

b=r0*r1
c=1b
d=1(c*cin)
e =1(c*d)

f =1(d*®cin)
cout = id

check !(e ® f) against o1d value

if different, save new value
and set iterate flag so we do it again

; check flag, iterate if set

The code is a relatively straightforward implementation of the cquations for cach node. Nodes PHII,

PHI2, and CIN are designated as input nodes. Note that the feedback loop is broken by splitting
node OUT, an arbitrary choice. The resulting simulétion is several orders of magnitude more efficient
than a standard switch-level simulation. For example, the value of B is calculated in six instructions;
the value of C in only two. The code is also relatively compact compared to the usual network data

base.

Although compiling by level greatly reduces the amount of wasted computation, there are still
occasions when the values of nodes are unnecessarily calculated. Some input transitions have little
effect on node values; e.g., when PHII or PHI2 in the one-bit counter above change from 1 to 0,
This suggests that the performance of the simulator can be improved by generating multiple simulation
routines, where each routine corresponds to a fixed value for one or more inputs. This is particularly
advantageous when the inputs selected for special processing have a major impact on the circuit to be
simulated. For example, in a circuit using two clocks, three separate simulation routines can be
gencrated: one generated assuming both clocks are low (called, say, cLOCK00), and the other two
generated assuming one of the clocks was high (CLocK10 and CLOCK01). A four-phase clock cycle is

simulated by executing the simulation subroutines in the correct order:

Jsb clock10 i PHI1 high
Jsb clock00 : both clocks iow
Jsb clock01 ;i PHI2 high
Jsb clock00 ; both clocks low

To generate a input-specific simulation routine, the user specifies which nodes are inputs, and for each
input

(1) gives the input's logic value, and

(2) indicates whether the input is stable or has just changed to the specified value.
The compiler applies several optimizations during code generation{: constant folding based on
knowledge of input node values, and compile-time selective trace that ignores nodes whose values
remain unchanged. (The stable/changing specification is used by the selective trace optimization.) The

selective trace is especially effective in reducing the amount of generated code.

In the examples below, PHII/ and PHI2 are specified as changing inputs, and CIN an
unchanging input. The first example — the code generated for the one-bit counter with both clocks

low — illustrates just how effective the optimizations can be:

‘-l':lh“e— ;l;ﬁﬂ;;ﬁ;;;-m inspired by those found in traditional optimizing compilers [Harrison77, Wulf75]. Because of
the branch-free nature of the code and the pervasive influence of clock signals, many of the optimizations are much
more effective in this domain than in traditional compilation problems.

i

clock00: ; code for phit =0, phi2 =0, cin =1

cirb _PHI1(r10) - s phil =0
¢lrb _PHI2(r10) ; phiz =0
rsb

The values nf PHII and PHI?2 are set by the code since they are specified as changing inputs. (The
value an unchanging input is assumed to be set by the user, or by code executed earlier.) Node B is
determined to be unaffected by the change in PHII, as are nodes /N and FHI2. In fact, the compile-

time selective trace does not find any nodes that change value, except for the changing inputs.

The next code sequence, corresponding to PHII going high, is somewhat longer, since that is the

transition when the circuit performs most of its work.

clock10: ; code for phii =1, phi2 =0, cin =1
clirl r0 ; so reg can be used as index register
movb #3,_PHI1{r10) i phil =1
cirb _PHI2(r10) s phi2 =0
movb _A(r10),_B(r10) ib=a
movb _B(r10),r0
movb ntb1(r0),_C(ri0) ;e=1b
movb _C(r10),r0
movb ntb1(r0),_D(r10) ;d=1{(c*cin) =1lc
movb _D(r10),r0
movb ntb1(r0), _COUT(r10) ; cout = 1d

movb _C(r10),r0
bicb3 xtbi(r0), D(r10),r0

movb ntb1(r0),_E(r10) ;e=1(c*d)
movb _D(r10),r0
movb atb1(r0),_F(r10) ;T =1(d*cin) = Id

movb _E{r10),r0

bicb3 xtb1(r0),_F(r10),r0

movb atbi(ro),_0OUT(r10) ;out = 1{e*)

rsb
A node that connects to the rest of the network through a single pass transistor (e.g., node B in the
counter) is treated specially by the compiler, because such nodes are so common in MOS networks.
When the pass transistor is turned on by fixed-value input, the generated code is particularly efficient

(a single move in the example above).

The last code sequence, corresponding to PHI2 going high, is relatively short; the compile-time

selective trace finds only a few nodes whose values needed to be computed.

clock01: ; code for phil =0, phi2 =1, cin=1
cirl r0 ; $0 rag can be used as index register
cirk _PHI1(r10) ; phil =0
movb #3, PHI2(r10) s phiz =1
movb _0uT(r10),_IN(r10) ; in=out
movb _IN(r10),r0
movb ntb1(r0), _A(r10) a=tin
rsb

Simulation of a four-phase clock cycle using these three routines requircs exccuting only 36 VAX

instructions. The carlier compiled code sequence requires 39 instructions for a single simulation step,

for a total of more than 150 exccuted instructions when simulating a full clock cycle. Input-specific

subrourines result in a considerable improvement.

Although the impact of compile-time selective trace makes it a worthwhile optimization, only so
many input-specific routines can be generated. Assuming that ali combinations of inputs are possible,
the number of routines needed grows exponentially with the number of fixed inputs. Thus, while
computations caused by the changing of a few inputs can be reduced io the bare minimum, many
unnecessary computations are still performed. For example, in a 10-bit counter, the nodes comprising
the higher data bits are recomputed during each clock cycle, even though those nodes actually change
value far less frequently. Presumably, the appropriate checks could be inserted into the code, resulting
in branches around sections of code that do not need to be executed. In the counter example, when
the carry-in of a data bit is zero, the code for its level and all higher levels does not need to be
executed. However, a very sophisticated compiler would be needed to handle this situation. It is

unclear what further gains will be possible in the search to reduce unnecessary computation.

In summary, the compilation techniques discussed in this chapter are well-suited for producing
code that implements a fast switch-level simulation of a stable design. The potential increase in
simulation speed allows more exhaustive checkout than is possible with interactive (and slower)
simulators. Compilation-based simulation is most appropriate for a circuit with a high degree of circuit
activity; if each circuit component is active during each simulation step, there is very little unnecessary
computation by the simul;'ition subroutine. Or: the other hand, for a large circuit with little activity, an
event-driven interactive simulator might actually outperform a compiled simulation. Fortunately, not

many designers strive for designs in this latter category.

CHAPTER SEVEN

CONCLUSIONS

The models and simulators presented in this thesis were developed to fill the need for simulation
tools suitable for large MOS designs. At the outset of the project, there were surprisingly few
alternatives; even today, much of the work in the area of simulation tools concentrates on refurbishing
traditional gate-level simulators and circuit analysis programs. (The current state of these efforts is
outlined at the end of the chapter.) The work reported here takes a different approach, secking to
develop new algorithms, guided by the following goals: '

(1) The algorithms must be suitable for the logic-level simulation of large digital MOS
circuits; "large” meaning circuits containing 10,000 to 50,000 transistors.

(2) Important aspects of MOS behavior (bidirectionality, charge sharing/storage,
pullup/pulldown ratios, ctc.) should be modeled in a uscful way.

(3) Performance estimates should be calculated directly from the actual parameters
of the circuit components. Ideally, the calculations are based on the same rules
of thumb uscd by designers when cstimating circuit performance.

The RSIM simulator mcets all three goals, while maintaining a reasonable balance between sitnulator
performance and accuracy of predictions. Rather than performing a detailed simulation of cach
transistor’s operation, RSIM uscs the fincar model to dircctly predict the logic state of cach node and to
cstimatc transition times when nodes change state. The net cffect is a trade of some prediction
accuracy for an increase in simulation speed. When the lincar model is conservatively calibrated, its

predictions can be used to identify problem circuits in need of more accurate analysis. Usually; a large

-137 -

percentage of a circuit passes the scrutiny of RSIM, and so the cxpense associated with detailed
simulation of the whole circuit is avoided. In addition to serving as the basis for simulation, the lincar
modecl can be used in timing analysis and might serve to quickly generate initial waveforms for a

relaxation-based circuit analysis program.

RSIM has been in use in both university and industrial environments since the spring of 1982,
During that time it has simulated several hundred designs, ranging in size from very small to
approximately 40,000 transistors. Because RSIM is fast enough to simulate a whole circuit, it often
uncovers circuit flaws that have fallen between the cracks during the simulation of smaller pieces of
the design. The trend shows that RSIM is viewed as a companion to circuit analysis, using it for all
logic-level verification and preliminary timing analysis, and resorting to circuit analysis for those paths

identified as critical by RSIM.

The simulation algorithm is embedded in a LiSP-like command language [Terman82] that has
been used to write quite elaborate programs to drive the simulation and process the results. Since
programs to prepare simulation input are much less tedious to construct than the input itself, designers
have been able to conduct more tests than they might otherwise do. For example, it is a simple matter
to use a set of test vectors that drive a register-transfer-level simulation as input to an RSIM run, and

compare the predictions of the two simulations, all under program control.

With careful calibration, RSIM's predictions for combinational logic are within 30% of those of
SPICE. For circuits relying on analog behavior (sense amplifiers, bootstrapped nodes, etc.) or chains of
pass devices, the predictions are less accurate. To compensate, several "escape” mechanisms exist
which allow the designer to specify the logic thresholds and transition times for individual nodes so
that the results of more detailed simulations can be incorporated into RSIM. Usually this mechanism
need be invoked for only a few critical nodes (e.g, clock driver outputs). Another alternative is to
identify subcircuits and replace them with logically equivalent circuits that can be simulated casily; a
network preprocessor [ller83] that performs subcircuit matching and replacement is available and has
been used to good cffect. With these enhancements, RSIM has proved to be a fairly reliable filter for

detecting circuits in need of more carcful analysis.

For those stages of the design process that do not require performance information, a switch
modecl might be more appropriate than a lincar model. A switch-level simulation is particularly uscful
in the carly stages of a design when one is experimenting with the organization of the logic, and sizing

cach device would be distracting. The switch models presented in this thesis are straightforward,

- 138 -

cspecially in the trcatment of X values and their effect on the nctwork. 'The switch model as
embodied in ESIM (which uses the global algorithm outlined in Chapter 5) is quite compatible with the
lincar model used in RSIM. In fact, in the current implementation both models exist side by side and
one can choose either model when propagating a sct of changes through the network. This flexibility

is useful during initialization of a network, when performance information is not a major concern.

Simulator performance is always an important issuc, one that has been addressed throughout the
thesis. Chapter 4 describes several techniques for spceding up the RSIM algorithm; using a compressed
representation of logic gates and caching subnetwork calculations decreases the execution time of RSIM
by a factor of two or more. The local switch algorithm presented in Chapter 5 is ideal for
implementation on parallel architectures. Like many relaxation algorithms, it can effectively utilize
many processors, and so holds the promise of large performance improvements in simulation when
parallel processors move out of the experimental stage. A different approach for improving the
performance of switch-lavel simulation is described in Ch.ipter 6, which proposes performing the
network analysis once, Bcfore simulation, and using the results to compile a sct of logic equations for
each node. When evaluated in the proper order by a conventional computer, the resulting switch-level
simulation is many times faster than simulation using traditional techniques. The node equations can
also be used to develop instruction sequences for special-purpose simulation hardware — e.g., the
Yorktown Simulation Engine, or the Zycad multi-processor — extending the benefits of high-speed

gate evaluation to arbitrary MOS networks [Barzilai83).

The remainder of this chapter discusses other work in the area of simulation related to the topics
of concern in this thesis. These topics include:

e algorithms for fast circuit analysis; circuit analysis using simpiified models
e mixed-mode simulation

e logic-level simulation using pre-determined transition delays

e modecls for cstimating circuit performance

¢ other switch-level simulation algorithms

Each of these areas is discussed below.

The most detailed and accurate network simulation is provided by circuit analysis programs, such
as ASTAP [Wecks73] or SPICE [Nagel75]. The capacity limitation of circuit analysis is a prime motivation
for the development of simpler simulation models; recent improvements in circuit analysis algorithms
arc making inroads into the traditional performance problems of circuit analysis. Device models are
the heart of a circuit analysis program. The modecls are usually analytic; they contain formulas that

predict device performance from information about voltage historics, physical propertics of tnaterials,

- 139 -

etc. In a circuit. the behavior of a particular device might be determined by several clectrical nodes
which, in turn, are affected by other devices; ie., a system of circuit cquations is needed to describe
the behavior of the circuit as a whole. To make finding a solution computationally feasible, most
circuit analysis programs proceed in two steps:

(1) The circuit is partitioned so that, at a particular time step, the change in voltage
on each node is approximated as a linear function of the node voltages (and their
derivatives). It is during this step that device models must be evaluated.

(2) Sclving the resulting set of equations numerically (see [SV80]).
These two steps can be quite time consuming, although for large circuits the second step becomes the
dominant factor [Newton80]. RSIM reduces both costs by using a very simple device model whose

effects can be predicted without the need for expensive numerical techniques.

The cost of model evaluation can be reduced by replacing the analytic device models with tables
relating device current to terminal voltages [Chawla75, Fan77]. These tables can be derived from a
one-time evaluation of the original analytic models, or filled directly from device measurements. In
these simulators, the current charging/discharging of each node capacitor is dctermined from the
present node voltages: thus, the change in node voltage for each time step can be calculated directly
and the cost of solving a set of simultaneous equations is avoided. Another approach to reducing the
cost associated with dealing with large matrices of equation coefficients uses a relaxation technique
[Lelarasmee81, Newton83] to successively approximate the voltage waveform for each node in the
circuit. The solutior for cach node is computed separately, using the estimates of other node voltages
computed during earlicr iterations. Again, this avoids the cost of solving a large set of simultaneous
equations. It is also possible to skip the recalculation of a node’s waveform during a particular
iteration if it can be determined that the estimates for the surrounding network have not changed
substantially since the last iteration (i.e., selective-trace comes to circuit analysis). These techniques can
speed up circuit analysis by an order of magnitude or more, but the programs are still limited to

circuits with a few thousand components.

Recent work on simulators has tried to combine the computational advantages of gate-level
simulation with the precision afforded by circuit analysis; this has lead to a new family of mixed-mode
simulators: [Chen78, Gardner79, Hill79, Agrawal80, Newton80). ‘The designer can specify gate-level or
functional simulation for simple or previously-verified picces of the circuit, reserving the expense of
circuit analysis for critical scctions of the design. There are two problems that remain to be solved in

mixed-mode simuiators: conversion between the different representations of node values used by the

- 140 -

different levels, and the related problem of choosing which type of simulation should be usced for each
subcircuit. The designer can introduce errors into the simulation by an unfortunate choice of level at a
critical point in the circuit; special care must be exercised to avoid discontinuities and other pitfalls of
the numerical solution techniques. Like circuit analysis, mixed-mode analysis still requires the touch of

an expert lest it produce misleading results.

Clearly, it is only a matter of time before mixed-mnde simulation becomes true hicrarchical
simulation in which the resuits of detailed low-level simulation are automatically summarized for use in
subsequent high-level simulations. A hierarchical system would also decide what level of simulation is
appropriate for each subcircuit. Viewed in this light, RSIM can be thought of as the first step toward
automatic identification of critical subcircuits. With a foot in both worlds, RSIM provides an easy path

for descending into circuit analysis or for abstracting toward higher-level logic functions.

Another approach to timing simulation that retains the speed advantages of gate-level simulation
is decermining the transition delays for each node before simulation begins. Some gate-level
simulators [Szygenda72, Case78] allow the user to assign node delays. This type of simulator can be
extended to handle MOS networks, after a fashion [Sherwood81, McDermott82). The result is a system
that can quickly calculate estimates for signal delays in a network. Unfortunately, the delays are not
calculated automatically (and hence are prone to error or wishful thinking on the part of the designer),
and are approximate at best for pass transistor circuits so common in MOS circuits. A more effective
technique for pre-computing delays is the use of the results of actual measurements or circuit analysis
runs [Pilling73, Nahm80]. The delays are measured/calculated for "standard” gate configurations, and
the results used to estimate the performance for the actual configuration of each node in the network.
[Nahm80] mentions several shortcomings of this approach. Circuits with multiple inputs are difficult to
analyze since a particular input transition is chosen when performing the analysis; also, the effect of
overlapping input transitions, the slope of the input waveform, and dynamic changes in the output
load are not considered. (Intcrestingly, all these problems are solved in a straightforward way by RSIM,
at no great loss in exccution speed, as evidenced by the performance figures quoted by Nahm.)
[Okasaki83] suggests overcoming these problems by expanding the set of "standard” configurations to
include most of those commonly found in MOS circuits (complex and/or gates, pass gates, ctc.). The
price for the increase in accuracy is a corresponding increase in the complexity of the model for each
gate; his simulator spends a fair amount of time determining which pre-computed delay should be

used, given the current configuration of the network. In summary, the performance variations

- 141 -

introduced by non-standard circuit configurations, and changes in the network due to changing node

values seem to offset any advantages offered by pre-determined transition dclays.

Not much has been published about models that are suitable for quickly determining the
transiti_on times for particular network configurations. A switched linear Thevenin model is described
in [Glasser80]; a simulator based in part on this model is described in [Tamura83]. Multiple resistances
are used to describe each transistor; conceptually, the appropriate resistance is selected by a rotary
switch controlled by the transistor’s gate voltage. Each resistance is chosen to model the actual
channel resistance in a particular region of device operation. The linear model presented in this thesis
can be viewed as a simplification of Glasser’s model, with only two possible switch positions selecting
between resistances of Rey and ©0. A simple ve}sion of the linear model also appears in
[Ousterhout83] and [Jouppi83]; both indicate that the model improvements suggested in Chapter 3 are
needed in order to improve prediction accuracy. [Horowitz83] presents a simple model that describes

the performance of a network of pass gates; his model is discussed in section 3.5.

One simulator with many of the same aspirations as the switch-level simulators described in
Chapter 5 is MOSSIM, written by Randy Bryant [Bryant81]. MOSSIM uses a switch transistor model
similar to that presented here, but its calculations are organized differently since (1) node values are
represented using a cross-product value set and (2) the analysis is based on a static decomposition of
the network. A major difference in the simulation calculation comes in the handling of X values and
their effect on the surréunding network. Bryant handles such values in a separate stage of the
computation, using global knowledge of the network configuration to resolve values of subnetworks
connected by X transistors. (Other differences between the two apprpaches are discussed in Chapters
2 and 5. The extra complexity of his algorithms results in some degradation in simulator performance

over that achieved by the simulators described here.

- 142 -

APPENDIX ONE

Proof of Lemma 5.3

Lemma 53. Let W, X, and Y be network states. If W =1 X and W - Y, then

there exists a network state Z such that X — Z and Y — Z.
Recalling how the update operation works, it is not hard to believe that the emma is true. The value
of a node indicates the resistance of paths from the node to VDD and GND. An update exchanges path
information across a switch, and the U operation ensures that information is never lost (the indicated
resistance to an input can never increase). Intuitively, an update only adds information about possible
paths to the network state, so no matter what switch is chosen for an update, one can also go back to

other switches latter on.

The proof is straightforward, demonstrating how a state Z can be constructed for each possible X

and Y. The proof depends on some simple propertics of the U operation and the swirch function:

AUA = 4
AUB = BU A
a U swirch(o, a) = a (ALl

swilch(a, switch(e, @)) = swilch(o, a)
switch(o, a U B) = switch(e, a) U switch(s, B)

which can be verified dircctly from the definition of U and cquation 5.9,

If the two updates leading to states X and Y involve only one switch, X = ¥ and the l.emma is

- 143 -

trivially true. If two scparate switches are involved, there are three cases to consider which differ in

the number of nodes affected.

A o B) B 4
A o 4 0y C A— —— B
C 0’2 D 0'2
(a) Case 1 (b) Case 2 (c) Case 3

Figure AL.1. Three cases in proof of Lemma 5.3
For notational convenience, define the functions f and g to describe the effects of switch 1 and 2
respectively:

f(a)=switch(oy, a)

g(a)=switch (o3, a) (AL2)

Each of the two updates is labeled by the switch it operates on; for example, S refers to an update

involving switch 1. A sequence of updates is written as SiSj, which is taken to mean update S;,

followed by update S;.

Case 1: no nodes in common. As the following diagram indicates, when the updates have no nodes in

common, they result in the same state when applied in either order.

SI/W\SZ
X\ /Y
52 7 S1

Figure A1.2. State diagram when no nodes in common

- 144 -

This is shown by considering the values for nodes A, B, C. and D after each update:

sequence A B C D

3 AUSfB) | BUfIA) | C D

$,S, AUfB) | BURA) | CUgD) | DUgO)
S, A B CU D) | DU g)
5,8y AUfB) | BURA) | CUgD) | DUgC)

The final states of the two sequences are the same, demonstrating the desired network state, Z.

Case 2: one node in common. As the following diagram indicates, when the updates have one node in

common, S1.5251 is equivalent to $25152.

51/w\sz
X Y

52 lSl

P Q
Sl\ Z/S?.

Figure A1.3. State diagram when one node in common

This is shown by cohsidering the values for nodes A, B, and C after each update:

sequence A B C

S, A U f(B) BU flA) c

55, A U f{B) B U flA) U g(C) CUgBU flA)

545,58 AURBIURBURA)UgC) | BURAUKC)URAUAB) | CUgBU A)

S, A B U g(C) C U gB)

5,5, AU fiBU gC)) B U g(C) U fA) C U g(B)

555,85, AU fIBU gC)) BUgC)URA)Ug(CUgB) | CUgB)UgBUC)U RA)

Using the identitics in equation Al.l, the final values of A, B, and C for each sequence can be

simplified to
Afnat = AU f(B)U f(g(C))
Biina = B U g(C)U f(4) (AL3)
Chinat = C U g(B)U g(f(4))

The final states of the two sequences are the same, demonstrating the desired network state, Z.

Casc 3: two nodes in common. As in Casc 1, when the updates have no nodes in common, they result

in the same statc when applied in cither order. This is shown by considering the values for nodes A

- 145 -

and B after cach update:

{ sequence A B
S, A U f(B) BU flA)
515, AURBUgBURA) | BURA)U gA U IB)
S, AU gB) B U g(A)
5,5, A U f(BU g(A) BU g(A) U flA U g(B)

Again, using the identities in equation Al.l, the final values of A and B for each sequence can be

simplified to

Afma = A4 U f(B)U g(B)
Bina = B U g(4)U f(4)

(Al4)

The final states of the two sequences are the same, demonstrating the desired network state, Z. &

- 146 -

APPENDIX TWO

RSIM Calibration Tables for a Sp nMOS Process

RSIM’s transistor model relies in part on three modeling resistances for each transistor in the
network:
Rsuatic for calculating Vipey,
Rayniow for calculating the transition time for high-to-low transitions, and
Raynnign for calculating the transition time for low-to-high transitions.
These resistances are chosen for each transistor on the basis of its geometry, type, and usage in the
circuit. The static resistance is chosen to obtain a good prediction for the 0-output voliage of a logic
gate. Actually this constrains only the ratio of the n-channel and pullup static resistances, so there is
considerable freedom in choosing these values.
The dynamic resistances for each transistor. type are specified in the following diagram. Because
of their special nature, depletion devices configured as pullups arc treated scparately from other

depletion devices.

- 147 -

transistor type R dynlow R dynhigh

n-channel Tables A2.1 & A2.2 | Table A2.3

depletion (sce text) Table A2.4

pullup — Table A2.5

The tables appear at the end of this appendix. Riyniow is not needed for a pullup, but might be
needed for other configurations of depletion devices (e.g., if one appeared in a pulldown path). If
desired, a very high Rayniow can be specified for depletion devices to flag the use of a depletion device

in a pulldown path.

_ The tables below were prepared by analyzing the simple SPICE experiments proposed in section
24. As mentioned in that section, more sophisticated experiments might be more appropriate for
designers who wish to push RSIM to its limits. These tables are used by examples in the thesis; for
actual simulation, some of the values should be derated (increasing the resistance) to ensure

conservative estimates.

The experiments were run using version 2G.5 of SPICE with the following device models (a
typical 5p nMOS process):

MODEL ENH NMOS (LEVEL=2 VT0=1.0 PHI=0.55 GAMMA=0.4 CGSO=4.5E-10 PB=0.86
JS=1E-18 CJ=7.2E-5 CJISW=3.6E-10 TOX=1E-7 NSUB=1.0E16 XJ=1E-6 LD=0.7E-8
U0=690 UCRIT=1E5 UEXP=0.12MJ=0.5 MISW=0.27)

MODEL DEP NMOS (LEVEL=2 VT0=-3.3 PHI=0.55 GAMMA=0.47 CGS0=4.5E-10 PB=0.85
JS=1E-18 CJ=7.2E-5 CJISW=3.6E-10 TOX=1F-7 NSUB=1.0E1§ XJ=1E-6 LD=0.7E-6
U0=690 UCRIT=1E5 UEXP=0.12MI=0.5 MISW=0.27)

Rise time is measured as the length of time needed for an output to rise from 0 volts to 2.134 volts —
the balance point of a 4:1 inverter built using this process. (Scctjon 3.3.1 explains why the balance
point is chosen as the threshold.) Fall time is the length of time needed for an output to fall from 5
volts to the threshold.

Note that widths and lengths arc shown in microns, and the table values are in units of K per
square of channel; one must multiply the appropriate table entry by the number of squares of channel
(length+width) to get a transistor’s resistance. For table entries marked "*" no value is available

because of a SPICE bug.

- 148 -

, l.cngth
enh 5 10 | 20 | 30 | 40 | 50 | 100
S| 87136162171 (175 (178 | 184
10 88 | 137 (162|171 | 176 | 178 | 18.5
20 88 138] 163|173 | 178 [18.0 | 189
Width | 30 | 90 | 138 | 165 | 174 | 179 | 182 | 192
40 | 96 | 140 | 166 | 17.6 | 18.1 | 185 [196
S0 | 100 | 140 | 168 | 17.7 | 183 | 18.7 | 200
100 | 10.0 | 150 | 17.0 | 187 | 193 | 19.8 | 21.9

Table A2.1. Channel resistance (K1) for n-channel pulldowns

R Length
enh-thresh | § 10 | 20 | 30 | 40 | 50 | 100
51160 263 [315|333 | 341 | 346 | 356
10 | 166 | 269 | 32.1 | 33.7 | 34.6 | 350 | 359
20 | 176 | 28.0 | 329 | 344 [351 | 355 | 355
Width | 30 | 18.6 | 28.8 | 33.5 | 348 | 354 | 358 | 364
40 {192 | 296 | 338 | 351 | 357 | 36.0 | 36.6
S0 {200 | 300 | 343 {353 [359 [362 | 368
100 | 220 | 310 | 355 | 363 | 368 | 370 | 376

Table A2.2. Channel resistance (K1) for n-channel pulldowns with threshold drops

R Length
enh-sf 5 10 | 20 | 30 | 40 | 50 | 100
51126 | 228 [288 | 312 | 325 [33.5 | 36.7
10 | 12.8 | 23.1 | 295 [322 | 34.0 | 354 | 40.5
20 | 12.8 | 23.6 | 30.8 | 343 | 26.9 | 39.0 | 48.1
Width | 30 | 132 | 243 [32.1 | 365 | 39.8 | 427 | 55.7
40 | 13.6 | 248 | 336 | 385 | 427 | 464 | 633
50 | 140 | 25.5 | 35.0 | 40.7 | 45.6 | 50.1 | 709
100 | 140 | 280 [415 [51.3 | 60.3 | 68.6 | -

Table A2.3. Channel resistance (KQ/) for n-channel source-followers

- 149 -

R Length
dep-sf S 1102030 40 | 50 [100

513043 (50|53 54| 56| 66

10 (30 |43 |51 |54 | 57| S9 | 66

20| * |44 |53 |58) 62| 64| 178

Width | 30| * [45|56 62| 66| 70| 89
40 | * |48 158 |65 | 71| 76| 101

50 * |50]|60|68| 75| 821{113

100 | * * | 751871100112 | 17.2

Table A2.4. Channel resistance (KQ/1T]) ﬁr depletion source-followers

R Length
dep 5 10 20 30 40 50 | 100
5188|151 | 186 | 199 | 204 | 208 | 216
10 | 88 | 152 | 18.7 | 199 | 205 | 20.8 | 21.6
201 * (152 | 188 | 20.0 | 20.6 | 21.0 | 21.7
Width | 30 | * | 153 | 189 | 20.1 | 20.7 | 21.0 | 21.8
40 | * | 155|190 { 20.1 | 208 | 21.1 | 219

*

*

50 15.5 [19.0 | 203 | 209 | 21.3 | 220
100 * 1195207 | 215 | 21.8 | 225

Table A2.5. Channel resistance (KL/T) for depletion pullups

- 150 -

APPENDIX THREE

Approximation for Resistor Divider and Series Resistor

As part of the incremental computation for the Thevenin equivalent of a network, it is necessary

to approximate a resistor divider and series resistance (figure A3.1(a)) by a simple resistor divider

(figure A3.1(b)).

PPy RR,] [ApAp)
(a) initial network (b) approximation

Figure A3.1. [Initial resistor network and desired approximation

As usual, cach resistance is potentially a resistance interval. An cxact choice for the modeling
resistance is impossible (as will be shown below) so the goal of this appendix is the choice a suitable
approximation.

Consider a resistor divider with pullup resistance P and pulldown resistance Q.

- 151 -

Rthcv
d AM—e
+
\Y
thev
Q
(a) resistor divider (b) Thevenin equivalent

Figure A3.2. Resistor divider and Thevenin equivalent
The parameters of the Thevenin equivalent are

Virey = ?%Q— and Rye =P || Q (A3.))

which can be rearranged as linear equations relating Rypey and Vipey:
Rihey = P Vihey and Rpey = Q (1 = Vipey) (A3.2)

If P and Q are intervals — P = [P}, Py]and Q = [Q;. ;] — then the Thevenin parameters also are

intervals:

] Ohn

Vthev=[Q1+Ph; o +P1] and Reppey =[P |1 Q. Pr || Qn) (A3.3)

If one plots the Thevenin parameter values (Ryey vs. Vipey), as P and Q are varied indcpendently
over their respective intervals, equation A3.3 suggests the resulting area would be rectangular, but this

is not the case, as is illustrated by the following figures.

'Rmcv thcv Qh Rthev
A A A
Py
Q .
) ! . b
1 Vihev 1 Vinev 1 Vihev
(a) P, Q constant (b) P constant, Q varying (c) P varying. Q constant

Figure A3.3. Thevenin plots as P and Q are varied one at a time

Equation A3.2 tells us that if, say, @ is held constant and P is varicd, the plot is a straight line of slope

Q. which, if extended, would intersect the Rypey axis at Fopep =1 (sce figure A3.3(c)). When both P

and Q arc varicd (scc figure A3.4), the plot produces a diamond-shaped quadrilateral, and not a

rectangle.
Rthev
b Q Ph
PP,] PyllQn [
Q
[Q.Qp] P
PIHQI B
1] v
) ¢ ;7 Tthev
Ql+Ph Qh+Pl

Figure A3.4. Thevenin plot as P and Q are varied simultaneously

Although the limits of Rypey and Viypey are the ones shown in equation A3.3, certain combinations of

Thevenin parameters permitted by the equation are clearly ruled out by the diagram above.

If a series resistance R is now added, the resulting Thevenin plot is shown in the following

figure.
Rihev
A
Ry, + PIIQ, [
P
Ry -R
| h™ ™1
[Ql Qh] Rl + Pl"Ql R Ky
1 | LS
Q R Vinev
Q+Py Q,+P

Figure A3.S. Thevenin plot when series resistance is added

The result is not a plot of a resistor divider at all. In order to approximate the circuit by a divider, a

decision is nceded concerning which information to preserve with the approximation.

Since the approximation under development is used to calculate Vyey, it is important to preserve

-153 -

information about the maximum and minimum of the circuit's voltage. 'This constraint fixes the right
and left vertices of the diamond. The top and bottom vertices are constrained by the choice of
resistance information to preserve; since it is better to overestimate than to underestimate resistances,
the minimum value of Ry, is preserved. The resulting divider is shown graphically in the following
figure. The voltage constraints are shown as dashed vertical lines: the resistance constraint as the

circled vertex.

thev Bl‘l Al‘l
A
]
ALA
[I h] B | vexticies from fig. A3.5
? ‘/
A
| 1
[Bl'Bh] R +PllQF/ ¢)
| 1
1 [l v
Q ¢ ;7 Vthev

Figure A3.6. Thevenin plot showing approximating divider

The values for 4; and B; are determined by the second constraint and equation A3.2;

o
Pr+ Q

R+@ NP =42 and R+(Q||P)= Bl -

T) (39

This fixes the two lines that form the bottom half of the diamond. Next, the values of A and By are
chosen so that the left and right vertices of the diamond have the same Vinev coordinates as in figure

AldS:

By - _ @
An + By Py + O

By Oy
and A +5 P +o (A3.5)

Solving cquations A3.4 and A3.5 for the parameters of the approximating divider yields:

P P P
A,=P1+R1+R16:— A;,=P;,+RIT';+R1?’I'

o On On
Bi=Qr+ R +R= By=0Qy+ R 4 pEL
= Q1+ Ry I h = On "0 Ip,

(A3.6)

- 154 -

Note that all resistances are greater than the minimum resistance of the serics resistor (R;). A
different choice of what resistance information to preserve (as was made in early versions of RSIM),

might cause A4; and B; to be less than Ry, leading to pessimistic voltage predictions for some nMGS

circuits.

[Agrawal80]
[Baker80]
[Barzilai83]

[Bell81]

[Bryant79]
[Bryant81]
[Case78]
[Chawla75]
[Chen78]
[Curry74]
[Dennecau82)

[Fan77}

[Flake80]

[Flake83]

[Gardner79]

=155 -

REFERENCES

V. Agrawal, et al, "A Mixed-mode Simulator," Proceedings of 17th Design
Automation Conference, June 1980.

C. Baker, Artwork Analysis Tools for VLSI Circuits, M.LT. Laboratory for
Computer Science TR-239, May 1980.

Z. Barzilai, et al, "Simulating Pass Transistor Circuits using Logic Simulation
Machines," Proceedings of 20th Design Automation Conference, June 1983.

A. Bell, M. Stefik, and L. Conway, The Deliberate Engineering of Methodologies for
Integrated System Design, Knowledge-Based VLSI Design Group, Xerox PARC,
Memo KB-VLSI-81-3 (working paper), April 1981.

R. Bryant, PhD thesis proposal, M.L.T. Department of Electrical Engineering and
Computer Science, December 1979.

R. Bryant, Logic Simulation of MOS LSI, M.LT. Laboratory for Computer
Science TR-259, 1981.

G. Case, "SALOGS-IV — A Program to Perform Logic Simulation and Fault
Diagnosis,” Proceedings of 15th Design Automation Conference, June 1978.

B. Chawla, H. Gummel, and P. Kozak, "MOTIS — An MOS Timing Simulator",
IEEE Transactions on Circuits & Systems, Vol. CAS-22, No. 13, December 1975.

R. Chen and J. Coffman, "Multi-Sim, A Dynamic Multi-Level Simulator,"
Proceedings of 15th Design Automation Conference, June 1978.

H. Curry and R. Feys, Combinatory Logic, North-Holland Publishing Company
Amsterdam, 1974. '

M. Denncau, "The Yorktown Simulation Engine,” Proceedings of 19th Design
Automation Conference, Junc 1982,

S. Fan, M. Y. Hseuh, A. Newton, and D. Pederson, "MOTIS-C: A New Circuit
Simulator for MOS LSI Circuits,” Proceedings IEEE International Symposium on
Circuits and Systems, April 1977.

P. Flake, P. Moorby, and G. Musgrave, "Logic Simulation of Bi-dircctional Tri-
statc Gates," Proceedings of IEEE International Conference on Circuits and
Coemputers, October 1980,

P. Flake, P. Moorby, and G. Musgrave, "An Algcbra for logic Strength
Manipulation,” Proceedings of 20th Design Automation Conference, Junc 1983.

R. Gardner and P. Weil, "Hicrarchical Modeling and Simulation in VISTA."
Proceedings of 16th Design Automation Conference, June 1979,

[Glasscr80]

[Harrison77]

[Hill79}]

[Hillis81]

[Holt81]

[Horowitz83]

[Tler83)

[Jouppi83]

[Koppel78]

[Lelarasmee8l1]

[McDermott82}

{Mead80]

[Nagel75]

[Nahm80]

[Newton80]

- 156 -

1.. Glasser. The Analog Behavior of Digital Integrated Circuits, M.LT. VL.SI Memo
No. 80-36, December 1980.

W. Harrison, "A New Strategy for Code Generation -— the General Purpose
Optimizing Compiler,”" Proceedings of Fourth ACM Symposium on the Principles of
Programming Languages, 1977.

D. Hill and W. vanCleemput, "SABLE: A Tool for Generating Structural, Multi-
level Simulations,” Proceedings of 16th Design Automation Conference, June 1979.

W. D. Hillis, The Connection Machine, M.L.T. Artificial Intelligence Laboratory
Memo No. 646, September 1981.

D. Holt and D. Hutchings, "A MOS/LSI Oriented Logic Simulator," Proceedings
of 18th Design Automation Conference, June 1981.

M. Horowitz, "Timing Models for MOS Pass Networks,"” Proceedings of the IEEE
International Symposium on Circuits and Systems, 1983.

J. Nler, A VLSI Circuit Recognizer for Enhancing Simulator Accuracy, MS Thesis,
M.LT. Department of Electrical Engineering and Computer Science, January 1983.

N. Jouppi, "TV: An nMOS Timing Analyzer," Proceedings of the Third Caltech
VLSI Conference, 1983.

A. Koppel, S. Shah, and P. Puri, "A High Performance Delay Calculation Software
System for MOSFET Digital Logic Chips," Proceedings of 15th Design Automation
Conference, Junc 1978.

E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The Waveform
Relaxation Method for Time Domain Analysis of Large Scale Integrate Circuits,
Memorandum No. UCB/ERL M81/75, Electronics Research Laboratory,
University of California, Berkeley, June 1981.

R. McDermott, "Transmission Gate Modeling in an Existing Three-value
Simulator,” Proceedings of 19th Design Automation Conference, June 1982.

C. Mcad and L. Conway, Introduction to VLSI Systems, Addison-Wesley,
Massachusetts, 1980.

L. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits, ERL
Mcmo No. ER1.-M520, University of California, Berkcley, May 1975.

H. Nham and A. Bose, "A Multiple Delay Simulator for MOS LSI Circuits",
Procecdings of 17th Design Automation Conference, June 1980.

A. Newton, Timing, Logic and Mixed-mode Simulation for Large MOS Integrated
Circuits, NATO Advanced Study Institute on Computer Design Aids for VLSI
Circuits, Sogesta-Urbino, Italy, July/August 1980.

[Newton83]

[Okasaki83)

[Ousterhout83]

[Penfield81]}

[Pfister82]

[Pilling73]

[SV8Q]

[Sherwood81]

[Stevens83]

[Szygenda72)

[Szygenda75]

[Tamura83]

[Terman82]

[Thompson74)

[Ulrich73]

[Ulrich76]

- 157 -

A. Newton and A. Sangiovanni-Vincentelli, Relaxation-based Electrical Simulation,
University of California, Berkeley, 1983.

K. Okasaki, T. Moriya, and T. Yahara, "A Multiple Media Delay Simulator for
MOS LSI Circuits,” Proceedings of 20th Design Automation Conference, June 1983.

J. Ousterhout, "Crystal: A Timing Analyzer for nMOS VLSI Circuits," Proceedings
of the Third Caltech VLSI Conference, 1983.

P. Penfield and J. Rubinstein, Signal Delay in RC Tree Networks, M.I.T. VLSI
Memo No. 81-40, January 1981.

G. Pfister, "The Yorktown Simulation Engine: Introduction,” Proceedings of 19th
Design Automation Conference, June 1982,

D. Pilling and H. Sun, "Computer-Aided Prediction of Delays in LSI Logic
Systems,” Proceedings of 10th Design Automation Workshop, June 1973,

A. Sangiovanni-Vincentelli, Circuit Simulation, NATO Advanced Study Institute on
Computer Design Aids for VLS! Circuits, Sogesta-Urbino, Italy, July/August 1980.

W. Sherwood, "A MOS Modelling Technique for 4-State True-Value Hierarchical
Logic Simulation,” Proceedings of 18th Design Automation Conference, June 1981.

P. Stevens and G. Arnout, "BIMOS, an MOS oriented multi-level logic simulator,"
Proceedings of 20th Design Automation Conference, June 1983,

S. Szygenda, "TEGAS2 — Anatomy of a General Purpose Test Generation and
Simulation System for Digital Logic," Proceedings of 9th ACM Design Automation
Workshop, June 1972.

S. Szygenda and E. Thompson, "Digital Logic Simulation in a Time-Based, Table-
Driven Environment," I1EEE Computer, Vol. 8, March 1975.

E. Tamura, K. Ogawa, and T. Nakano, "Path Delay Analysis for Hierarchical
Building Block Layout System," Proceedings of 20th Design Automation Conference,
June 1983.

C. Terman, User’s Guide to NET, PRESIM, and RNL, M.LT. Laboratory for
Computer Science, September 1982,

E. Thompson, et al, "Timing Analysis for Digital Fault Simulation Using
Assignable Delays," Proceedings of 11th Design Automation Conference, June 1974.

E. Ulrich and T. Baker, "The Concurrent Simulation of Nearly Identical Digital
Networks,” Proceedings of 10th Design Automation Workshop, June 1973.

E. Ulrich, "Non-integral Fvent Timing for Digital Logic Simulation,” Proceedings .
of 13th Design Automation Conference, June 1976.

[Vaucher75)

[Weeks73)

[Wulf75]

[Wyatt83]

[Zycad83]

- 158 -
J. Vaucher and P. Duval, "A Comparison of Simulation Event List Algorithms,”
Communications of the ACM, April 1975.

W. Weeks, et al, "Algorithms for ASTAP — A Network Analysis Program," IEEE
Transaction on Circuit Theory, Vol. CT-20, November 1973.

W. Wulf, et al, The Design of an Optimizing Compiler, American Elsevier, New
York, 1975.

J. Wyatt, et al, "Waveform Bounding for VLSI Timing," Proceedings IEEE
International Conference on Computer Design, October 1983.

LE-1000 Series Logic Evaluator Intermediate Form Specification,, Release 1.0,
Zycad Corporation, Roseville, MN, 1983.

