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ABSTRACT

This work treats the generic problem of constructing analog
gain blocks whose signal gain (or loss) can be modulated electronically.
It consists of two major parts. A systematic survey of the known
approaches forms the background for an investigation of a proposed
refinement in bipolar-transistor variable-gain circuits.

In the survey portion, some important applications of variable-
gain elements are studied, and desirable control-law and dynamic-range
properties identified. The basic methods for performing this function
—-— based on solid-state devices and circuits -- are then examined and
compared. This section considers, in a unified manner, many of the
practical examples that have appeared in the literature. Circuits
based on field-effect transistors and bipolar junction transistors are
treated in depth.

Large-signal variable-gain blocks based on the logarithmic
junction law of bipolar transistors (and related devices) exhibit
errors due to imperfect logarithm conformance over wide ranges of
current. The origins of these errors are reviewed. Experimental
results demonstrate the errors obtained from small-area transistors
operated at collector currents in the low milliampere range.

A proposed correction strategy leads to a class of correction
circuits having a four-transistor core, with junction current densities
that are related by a ratio parameter. As the current-density ratio
grows large, the circuits can correct increasingly well for high-order
effects like current crowding and high-level injection in the base.
These correction circuits are potentially useful in a variety of
situations where log conformance is important -- including, but not
limited to, variable-gain circuits. One attractive form of correction
circuit uses transistors with ratioed emitter areas.

Applications and design considerations are explored. Experi-

ii
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ments with a simple form of the correction circuit, applied to a
variable-gain amplifier, show an order-of-magnitude improvement in
signal-path linearity at high collector currents.

Thesis Supervisor: James K. Roberge

Title: Professor of Electrical Engineering
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

This thesis is virtually two works in one. It considers the

broad question of how to construct a gain path that can be adjusted

electronically, and the uses for such a function. It also investi-

gates the particular problem of reducing static nonlinearity in a

bipolar-transistor variable-gain circuit operated over a wide

of currents.

range

The duality of purpose divides the thesis roughly into two

parts. Chapters 2 through 6 deal with variable-gain techniques and

applications. Chapters 7 and 8 treat a class of second-order

effects

in bipolar transistors, their consequences in variable-gain circuits,

and ways to mitigate them.

The purpose of chapters 2-6 is both to put the specific in-

vestigation into perspective and to survey systematically the
variable-gain devices and circuits presently known. The many
butions in this area have come from diverse sources. It seems
while to bring them all together, identify common themes, and
their performance in relation to typical applications.

The emphasis throughout is on large-signal approaches

sundry
contri-
worth-

consider

with

frequency response including DC (i.e., baseband). 1In addition, small-

signal, narrowband, and AC-only techniques are treated briefly.

N s




i.2 Brief History of the Subject

Large-signal variable-gain elements (VGEs) are based on active
devices or phenomena whose large-signal mathematical descriptions pro-
vide a direct means for varying the transmission of a signal. This
differs from the small-signal case, in which the signal path is linear
only to the extent that the signal amplitude is infinitesimal.

Before the widespread use of semiconductors, large-signal
VGEs were a rarity. For one thing, there are rather few basic mecha-
nisms that yield the large-signal multiplication of an input with a
controllable factor; whereas small-signal gain control may be obtained,
in principle, from any device with a static nonlinearity. A second
reason was that the large-signal linearity was not often needed for
the tasks performed by the technology of the day.

With the advent of transistors and the increasingly high-
performance analog systems they engendered, it became both convenient
and necessary to use large-signal, baseband methods for controlling
gain. It could not always be assumed that the signal was narrowband
and that subsequent filtering would remove distortion and noise intro-
duced by the VGE. Wideband AGC, analog multiplication, remote ampli-
tude control and other applications demanded accurate, predictable
control of gain that was in turn made possible by field-effect tran-
sistors, PIN diodes, and, later, bipolar transistors in suitable
circuit configqurations.

Since about 1970 the bipolar-transistor large-signal variable-
gain circuits have had ghe broadest utility (except for high frequen-

cies, where PIN diodes dominate). Such circuits enjoy the economics
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of planar integrated-circuit fabrication. Because they depend on an
accurate logarithmic junction law, good static performance requires
attention to parasitic effects in the transistors and often restricts
the available gain range. Emerging applications, such as open-loop
remotely-programmable amplifiers, are taxing the limits of the existing

circuits.



CHAPTER 2

VARIABLE-GAIN ELEMENTS: FUNDAMENTALS

2.1 Terminology and Static Characteristics

Figure 2.1 shows an arbitrary, memoryless device or system
with two inputs Sa, Sb and one output So. The output is a con-
tinuous, instantaneous function of both inputs. This device

might be described by a function

So = f(Sa,Sb) (2.1)

or, under certain conditions, by a power series of the form

So = C00 [constant term]
+C. S +C 82 + [S feedthrough terms]
105a 20524 - a ee roug er
2
+ COlsb = COZSb + ... [Sb feedthrough termsl
+ Cllsasb fmultiplicative term]
2 3
+ ClZS Sb + ClBS Sb cee
+ C st + C 8252 {higher-order terms]
21°a"b bttt 9
3
+ ...
* C315:35%

(2.2)
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Figure 2.1-—-Memorylees 2-input

operator.

INPUTS AND QUTPUT MAY BE VOLTAGES, CURRENTS, ETC.



This thesis is concerned with practical realizations

of a subclass of such systems, in which (2.1) has the special form

So = Sag(Sb) (2.3)

In other words, the output depends linearly on one of the inputs,
termed the signal input, and has (in general) otherwise arbitrary
dependence on the other input (the control input).

Thus, between the signal (Sa) input anu the output there
is linear gain (or loss) whose value depends on the control (Sb)
input. This generic structure subsumes many practical devices,
where the inputs and output are voltages, currents or some com-

bination. Some typical names are voltage-controlled amplifier,

voltage-controlled attenuator, current-controlled amplifier, analog

multiplier, variable-gain amplifier, and so on. All of these

terms describe special cases of what will be called a variable-
gain element (VGE).

The gain of the VGE is SO/Sa = g(Sb): The notation g(-)
will be used in reference to the whole function (as opposed to
its value for a particular argument Sb). g(-) is the gain
function of the VGE, also referred to as the "control law" or
"gain law."

In most cases of practical interest, g(-) will be a
monotonic function. Certain specific forms are of particular
importance:

1. g(sb)= Ksb, the class of analog multipliers

2. g(Sb) = éi + the class of analog dividers
b
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3. g(Sb) = Kle » the class of exponential VGEs
Note that, in principle, one gain function may be transformed into
another by performing suitable operations on the control input.

Because the two inputs of the VGE have very different sig-
nificances, it is Customary to treat the block not as a two-input
system but as a one-input system with a parameter, the control input.
Consequently the characterization (with respect to signal distortion,
overload limits, etc.) is not very different from that of an amplifier
or attenuator. For example, harmonic signal distortion in a practical
VGE might be approximated by

2

s, +c S:]g(s )

s =[s +¢
a

o 2

3 b

In principle, the terms involving Sj and Sg, along with an expansion
of g(sb), may be put in the very general power-series form of (2.2).
However, when dealing with observabiez like signal distortion, it is
preferable to separate out the gain function whenever possible and
treat the remainder of the system description in the same manner as

an ordinary two-port.

2.2 Dynamic Characteristics

Similarly, issues of frequency response, transient response,
frequency-dependent distortion and so on are treated by the familiar

methods, with the control input as a parameter, as long as the control

input is "static". A variable-gain element with a rapidly-varying

control input will function as a modulator or mixer. This function,



indispensable in communications systems, requires a different kind of
characterization, since the dynamic response of the output with respect
to both inputs is important.* However, the present work is concerned
with the usual implication of "variable gain"; that is, cases where
only the signal-input frequency response is of concern.

The usual categories of small-signal/large-signal, broadband/
narrowband, and so on, apply to VGEs, and refer to the signal input.
Any device with a large-signal nonlinearity may be used as a small-
signal VGE; the incremental slope of a driving-point or transfer
characteristic is modulated by shifting the operating point. See
section 4.1.

Narrowband applic;tions also admit a wide range of variable-
gain devices, both small-signal and large-signal. 1In a narrowband
system, the presence of filtering relaxes the constraints on the VGE
because it tends to remove noise and distortion that the VGE may intro-

duce. This is the case usually treated in communications literature.

2.3 Feedthrough Issues

When the control input corresponds to zero gain the output
should indeed be zero; similarly, the output ideally will contain no
vestige of the control input when the signal input is zero and the
control input is varied. Any deviation from zero output is referred

to, respectively, as signal feedthrough or control feedthrough.

*So important that in many high-frequency mixers the use
of minority-carrier devices of any kind is precluded, so none of
the techniques in chapters 6, 7 and 8 are very useful.



Control feedthrough often occurs because of an imbalance in
the circuit, either inherent (in the case of very simple VGE designs)
or accidental (from component mismatch). Where component mismatch is
the cause, there may be an effective input offset; that is, a DC
signal input other than zero renders the output identically zero.
Control feedthrough may be tolerated in those applications where con-
trol and signal inputs occupy well-separated frequency regimes, since
the undesired component in the VGE output is readily filtered out.

For this reason, the AGC elements in receiver circuits are often de-
signed without regard to control feedthrough.

Signal feedthrough‘may be due to imbalances in a cancellation
scheme or to the existence of rarasitic paths around the variable~gain
mechanism. The feedthrough of high-frequency signals can be especially
troublesome; it can arise through capacitive parasitics and limit the
frequency response of an otherwise attractive design. The worst form
of high-frequency feedthrough occurs when there is capacitive coupling
around an inverting gair stage. The composite transfer function will
then include cne or more right-half-plane zeros. These limit the
attenuation at high frequencies and, because the two forward paths
have opposing phase, lead to rapid phase variation that can be fatal
in closed-loop applications.

This problem figures in the design of wideband VGEs from bi-

polar transistors; see sections 6.4.1 and 6.4.2.

2.4 Generic Techniques

The practical large-signal VGE approaches may be divided

roughly into two categories. The "direct" techniques yield a signal
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modulation because of their elementary structure, while the "algor-
ithmic" methods synthesize it from simpler devices using some kind of
mathematical identity.

Most "direct" VGEs work by varying the resistance of a con-
ducting region through control over the number of available carriers.
Examples are the channel of a FET in the nonsaturation mode, the
photoresistor in a lamp/photocell unit, and the intrinsic region of
a PIN diode. The two classical "algorithmic" approaches use quarter-

square multiplication
AB = ¢ [(A+B)2 - (A-s)z]
and logarithmic multiplication
AB = exp(ln A+ 1ln B)

In practice, square-law and (especially) logarithmic devices can be

used in other convenient ways (this is discussed in chapters 5 and 6).

2.5 VGEs and Analog Multipliers

The analog multiplier is, formally speaking, only a special
case of a variable-gain element. Nevertheless the terms carry dis-
tinct connotations and it is convenient to treat a multiplier as a

different device with different applications.

2.5.1 Differing Objectives

Analog multipliers were originally designed exclusively for

analog-computer use, although, like operational amplifiers, their use
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has broadened, due largely to I.C. economics. They are employed in
signal-manipulating circuits that require an explicit nonlinearity,
such as RMS operators and graphic display drivers. They are used in
communications circuits as high-performance balanced mixers up to
high VHF or low UHF frequencies. Many of the VGE schemes in subse-
quent chapters, useful for applications other than multiplication (i.
with a nonlinear control law), arose in the search for accurate, in-
expensive, wideband multipliers.

One pivotal specification for a multiplier is the set of ad-
missible input polarities. From the region in the plane formed
the two input variables, it is conventional to refer to one-, two-
or four-quadrant multiplication. Various tricks of offsetting or
switching permit one- or two-quadrant versions to operate with addi-
tional input polarities. Variable-gain applications, by contrast,
usually call for two-quadrant operation (bipolar signal, unipolar
gain). Circuits for such applications are designed accordingly; with
rare exceptions (see section 6.4.3), they are not constructed of one-
quadrant cells.

Devices designed as general-purpose multipliers are rarely
ideal for gain control; two specific factors weigh against them.
First, such multipliers (which usually are four-quadrant devices) are
designed with more-or-less interchangeable inputs and are optimized
for minimum multiplication error with full-scale inputs. They do not
perform well in applications requiring consistent signal-path per-

formance over a wide gain range.
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The second reason is the linear control law that multiplication
implies. Only for a small subset of VGE applications is a linear law
convenient. The reader will find more details about this in chapter 3,

which treats typical applications.

2.5.2 Changing the Control Law

If a linear gain function is not desired, it is always possible
in principle to modify this function by predistorting the control in-
put. Satisfactory techniques exist for producing common nonlinearities
(e.g., exponential, power or root) with bipolar transistors. Such an
approach may be applied to any type of VGE.

In practice, the use of a general-purpose multiplier in this
way is probably not justified since the added nonlinearity does not
extend the useful gain range at the same time. On the other hand,
custom-designed variable-gain circuits often exhibit naturally-
nonlinear gain functions of useful kinds. Techniques that give, for
example, exponential and reciprocal-law gain control with wide gain

range are detailed in chapter 6.

2.5.3 Linearizing the Control Law through Feedback

It is possible to obtain multiplication from arbitrary
variable-gain elements without explicit predistortion of the control
input. The standard servo-type linearization is shown in Figure 2.2.
A feedback amplifier forces the output of one VGE to equal an external
input. If both VGEs have linear signal response and are well matched,
the result is an accurate multiplication regardless of the original

control function. Another way to view this is that the lower VGE, in
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vy ———— VGE “wr'%%ér

VREfF —> \/[;EZ -

vz‘-L -+
(NEW CONTROL. INPUT)

HIGH-GAIN
FEEDBACK AMPLIFIER

Figure 2.2 —Standard technique for
1inearizing the control law, using

feedback and a second identical VGE.
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a feedback loop, serves to predistort the control signal of the upper
VGE, generating the exact inverse of the original control law.

The control law must be monotonic for this scheme to work, as
it must be for any method to convert a VGE to a multiplier (otherwise
the inverse of the control law is not single-valued). Bandwidth of
the new control input will depend on the dynamics of the feedback
loop; such systems are often slow. Accuracy of the linearized gain
function depends on the static loop gain. This general structure
appears in a number of published multipliers cited in later chapters.
It is even possible to add additional "slave" gain paths by driving

other control inputs from the output of the feedback amplifier.

<,



CHAPTER 3

SOME APPLICATIONS AND ASSOCIATED ISSUES

In any systematic consideration of gain-control implementa-
tions, it is instructive to look at the applications for which the
function is used. Although there are far too many specialized
applications to be comprehensive, it is possible to say a little that
applies to almost all applications and to say a lot about a few
applications that, though specific, are very common.

3.1 Range-Compressing versus Range-Expanding
Applications

Practical variable-gain elements exhibit maximum input levels,
or input overload levels, beyond which they produce unacceptable
signal distortion. The distortion may take the form of hard limiting
(as in translinear circuits when the input current range is exceeded)
or a gradual nonlinearity (as in certain FET circuits). In either
situation, an input overload level may be defined to correspond with
a given degree of acceptable distortion. This level will, in some
cases, vary along with the gain of the element. In others it will not.
At the same time, many applications of VGEs fall into one

of two categories. In range-compressing applications, the VGE is

exploited to normalize a signal amplitude, compressing a wide range
of input levels to a smaller range of output amplitudes. Automatic
level control typifies this class. The second and complementary

category, range-expanding applications, includes amplitude modulators,
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dynamic-range expanders and the like. The salient point is that the
overload level-versus-gain behavis>r of the particular VGE used must
match the category of application in order to obtain the best
performance.

In concrete terms, this means that a VGE used in a signal-
modulation application should have an input overload level independent
of gain (since the input amplitude will be constant), while a VGE
for a signal-normalization task will ideally have an input overload

level that varies inversely with gain (since the output amplitude is

constant). In both of these cases the variation of maximum permissible
input level with gain tracks the variation of expected input level
with gain, so that at all times the VGE is operating with the maximum
possible input level consistent with overload limits. A mis-tracking
would result in degraded signal-to-noise ratio because of wasted

input "headroom" or in a constricted gain range due to premature input
overload.

This issue of tracking between device input limit and expected
input signal will assume particular importance in the case of trans-
linear gain control using bipolar transistors. The remainder of this
chapter deals with some generic and frequent applications of VGEs,
both to motivate the specific VGE realizations that follow and to
identify other ways in which the application context determines

VGE requirements.
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3.2 Automatic Gain Control

Perhaps the most well-established application of variable-gain
elements is to the automatic reqgulation of signal amplitude. Found
in rad:n receivers, telephony circuits, audio equipment and many
other situations, this function is pervasive enough to warrant some
detailed examination.* It also demonstrates the utility of a non-
linear control characteristic g(Vc), and it is the quintessential
case of a range-compressing application (section 3.1).

This function is usually called automatic gain control (AGC).
A more descriptive name would be automatic level control, and indeed
the term automatic volume control (AVC) was formerly used. However,
"AGC" will be retained here because of its popularity. i

The objective of automatic gain control is to adjust the
amplitude of a signal so as tomeet certain constraints. One common
criterion, and the one emphasized in the following discussion, is
that the average signal amplitude be regulated to a constant value.
In effect, "slow" fluctuations of the original signal's amplitdue

are to be removed without distorting the "fast" level changes that

constitute useful information. Other criteria are sometimes used,

especially in audio applications. Dynamic range compression seeks
to reduce the variation of average signal level without eliminating

it altogether. Amplitude limiting passes the signal unchanged if

below a certain amplitude and regulates it if that amplitude is

exceeded.

*Consider that a typical household contains at least one
(feedback-type, narrowband, small-signal) AGC system embedded in an
RF receiver; although the character of the demodulated signal may
seem to scarcely justify the effort, such systems clearly are
ubiquitous.



The differences among such categories lie in the relationship
of input signal amplitude to output (controlled) amplitude and in the
dynamics {(response of the system to time-varying input amplitudes).
Blesser [3.1] has examined in detail the considerations involved in
compression for audio applications, and Blesser and Kent [3.2] have
analyzed the dynamics of feedback-type audio limiters. The remainder
of this section will treat a case encountered frequently in communica-
tions and instrumentation: systems to provide a constant output

amplitude, independent of input level.

3.2.1 The Basic Problem

An observable signal is assumed to be the product of a proto-
type signal S(t) and an "envelope" Vl(t), which may be slowly varying
or constant (but unpredictable). Vl(t) is nonnegative. S(t) has
an "average" amplitude (i.e., average absolute value) of unity, with
"average" defined to cover a duration of interest. S(t) may be a
baseband signal or it may be a modulated carrier, as in the case of
AM communications. The objective is to recover S(t) from the product
S(t)Vl(t) without distortion.

It should be noted in passing that this problem can be
addressed directly by the theory of multiplicative homomorphic systems,
which leads to numerical methods for separating two functions in

different frequency ranges that have been multiplied together ({3.3].

3.2.2 Feedback AGC and "Optimal" Control Laws

Figure 3.1 shows a block diagram of a basic feedback-type

AGC system. The output signal Vb is requlated by detecting its

UT

average amnlitude V2, comparing this against a desired value VREF’
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and adjusting the control input of the VGE to force V_ towards VRE

2 F’
The loop filter, with a lowpass transfer function H(s), serves to
define the time scale for amplitude averaging (hence the range of
envelope frequencies that the loop will reject) and to filter out
ripple components in the output of the amplitude detector. Both
H(s) and the control law of the VGE influence the dynamics of the
loop, as well as the accuracy of amplitude regulation.

The amplitude detector derives an estimate of the output
amplitude Vz(t). In this analysis, for convenience, H(s) is assumed
to include all of the significant frequency dependence in the loop,
so that the amplitude detector is memoryless. In a baseband system,
the estimate will therefore consist cf a rectified version of VOUT
and will contain substantial "ripple" due to S(t). Failure of H(s)
to adequately "smooth" this estimate is one source of distortion in
such a loop. More generally the amplitude detector may be a square-
law or other nonlinearity, in which case some measure other than

average amplitude of V is regulated. In a narrowband (modulated

outT
carrier) system there are additional options, such as multiple-
phase rectification or quadrature (Pythagoras' law) detection ([3.4],
which reduce or eliminate the ripple problem. In some cases
coherent (synchronous) detection may be used, with the great benefit
of discriminating against wideband noise in vaT'
The AGC loop shown in Figure 3.1 is a nonlinear control

system involving a mixture of control variables (Vc’ Vd' VREF)

' v ). In order to derive some

and modulated-singal variables (VI ouT

N

simple small-signal results, the nonlinearity (due to the VGE)

will be linearized around the large-signal operating point. To
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avoid carrying the cumbersome S(t) factors, VIN and VOUT will

be manipulated in terms of their amplitudes V1 and V2 respectively.

I1f we assume

where vl, vc and v2 are incremental values, then the incremental

(linearized) response of the VGE is

v, = vlg(ch) + vcg'(ch)v (3.1)

2 1q

where g'(.) is the derivative of the control function.
This linearization permits analysis of the small-signal loop

properties as a function of large-signal operating point. As with

any feedback system, the closed-loop dynamics are determined by a

combination of H(s) and the additional gain in the loop. From (3.1),

this additional gain depends heavily on the function g(.). The net

small-signal loup gain is given by

T(s) = H(s)g'(ch)Vlq

The dependence of loop gain on g'(.) and the operating-

point variables ch, v leads to a useful criterion for choosing

1qg
the function g(.). We require that T(s), and hence the small-signal
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loop dynamics, be independent of the large-signal input level qu.
This criterion is used, explicitly or implicitly, in most derivations
of "optimal" control laws g(.).

There are good reasons for this choice. Obviously it is
attractive to have the loop dynamics (i.e., the response to time-
varying input amplitude) well defined and independent of the absolute
input level. Moreover, in many situations the lowest-frequency
components in the desired signal S(t) are sufficiently close in
frequency to the undesired envelope Vl(t) that the gain varies
slightly in response to these components. Unless the loop dynamics
are amplitude-independent, the result is a slight variation in
the loop’s group delay in response to S(t). For a narrowband signal,
this gives phase modulation (PM); a spurious AM-to-PM conversion in
the AGC section can be disastrous in certain communications systems.

The exact form of the "optimal" g(-) function depends on
certain assumptions about the loop filter H(s).

3.2.3 Feedback AGC Systems with Averaging
Loop Filters

There is a substantial body of theory applying classical
control concepts to feedback-type AGC, all of it based on the tacit
assumption that H(s) contains no integrations. Since H(0) has a
finite value, such an AGC loop cannot achieve perfect steady-state
regulation of the output amplitude. There will be a characteristic
variation of V2 as a function of Vl, with the degree of regulation

depending on the control law g(.) and the zero-frequency filter

transmission H(0).
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A further consequence of this assumption is that VREF alone
does not determine the nominal output amplitude. Indeed, in early
AGC systems, quite often VREF = 0 was used and the characteristics
of g(-) then set the output amplitude. A nonzero VREF could be
used to offset the control law to provide a threshold effect:
the VGE operated "wide open," with no gain variation, until the
input amplitude reached a certain level. This behavior, which can
be very useful in certain applications, has traditionally been termed
"delayed" AGC--an unfortunate usage since it has nothing to do with
time delay.*

Oliver [3.5] established the basic small-signal theory of
such AGC loops, in which H(s) is an "averaging" filter, typically
a first-order lag. Others, such as Victor and Brockman [3.6],
extended it to treat noise, time-domain effects, etc. The criterion

of constant loop gain leads to an "optimal" control law of the form

g(Vc) = (3.2)

<|?¢

(o]

for the case of VRE = 0 in Fiqure 3.1. This was demonstrated, for

P
example, by McFee and Dick [3.7], and Vol'pyan [3.8]. If we assume
for convenience that H(0) = 1, as in a passive "averaging" filter,

then the output signal amplitude resulting from (3.2) is

_ 1/(n+1)
V2 = (KVl) (3.3)

where steady-state values are implied.

*"Terminological inexactitude"--Winston Churchill.
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If the exponent n has a large value in (3.2), then g(vc)
tends to drop from a large gain to zero in the vicinity of Vc =1,

so the loop adjusts so as tomake VC x 1. A nonzero VRE in

VOUT F

this case causes an offset in the nominal value of VOUT’ as long
as (3.2) still holds; in practice, however, g(vc) will saturate
at some maximum value of gain, so that a "delayed" AGC results if
VREF is sufficiently positive.
The "optimal" control law of (3.2) is an example of a nonlinear
and perhaps unlikely-looking gain-versus-voltage characteristic that
is useful in practice. In this case the linear control law found in
an analog multiplier is quite inappropriate. McFee and Dick
pointed out that a common technique for small-signal gain control
in bipolar transistors, using the gm—to—Ic relation, leads to problems

in radio receivers precisely because of its linearity. The small-

signal gain obtained has a control law of the form

g(Vc) = (l—KVc) (3.4)

Used in a feedback-type AGC with an averaging loop filter, this
yields loop dynamics that are substantially dependent on input
amplitude. The loop "speeds up" under large input amplitudes and
distorts the lower-frequency components of the desired signal.
Quite a different situation exists when the loop filter

contains an integration.
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3.2.4 Feedback AGC Systems with Integrating
Loop Filters

If the loop filter transfer function H(s) contains a pole at
the origin, the topology of Figure 3.1 will maintain exact steady-
state regulation of output amplitude, regardless of the functional
form of g(Vc).* It is no longer necessary to calculate how the output
level varies with steady-state input level, since it doesn't. The

steady-state output level is determined entirely by V , as the

REF
integrator will continually adjust Vc so as to force (Vd—VREF) toward
zero average value. Using the same criterion as in the previous case
leads to a different "optimal" gain function--exponential rather

than power-law.

This approach is generally preferred today for high-performance
continuous-time AGC systems, because it is a simple way to obtain
near-perfect amplitude regulation. The use of an integration in
H(s) was not considered in the earlier AGC studies [3.5-3.8], perhaps
because of the difficulty (or perceived difficulty) of building
integrators in the technology of the day. Recent articles in the
trade press by Hughes [3.9] and Porter f3.10] outlined practical
design procedures for loops of both types.

The analysis of small-signal loop dynamics will be presented
in this section, along with the derivation of an "optimal" control
law for the VGE in the case of an integrating loop filter. The
function g(-) will be assumed monotonically decreasing; this implies
that g'(.) is negative, and hence (from (3.1)) a negative net loop

géin is obtained without the need for an inversion in the loop

*Assuming that the required gain is within the gain range
of the VGE, and that g(-) is a monotonically decreasing function.
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filter. The algebraic sign of g'(-) is a small issue, since an
inversion may easily be added elsewhere in the loop (between the
amplitude detector and the VGE control input).

The small-signal analysis will use the variables defined in
section 3.2.2. The amplitude detector is assumed to have unity gain,
with all remaining ripple removed by the loop filter, so that
Since Vc is the output of the loop filter, (3.1l) gives

d 2°

v, = vlg(ch) + VZH(S)g'(VCq)qu : (3.5)

where lower-case v's denote incremental values. Rearranging gives
the basic small-signal transfer function, in terms of Laplace

transforms:

v gv_)

2 cq A
< = : = G(s) (3.6)
vy 1l - H(s)g (ch)vlq

Note that g'(ch) is negative.

Reiterating, v, and v_ are incremental amplitudes of signals

1 2

at the input and output of the AGC loop. An optimal control law

g(-), using the criterion of constant small-signal loop dynamics,

is easily found from (3.6). Since the frequency dependence in (3.6)
depends on the filter transfer function H(s) and the frequency-
independent factor g'(ch)qu, we require the latter to be constant
(independent of large-signal operating point). But since the operating

point is a steady-state condition, and since an integration in H(s)

i = in s dy s e ha
insures qu VREF n steady state, w ve
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vlqg(ch) = v2q = Ve
or
- VREF (3.7)
1q g(ch)

Combining (3.7) with the requirement that g'(ch)v1q be

a (negative) constant yields the condition

g'(Vé )
g (ch)

= CONSTANT (negative) (3.8)

Calling the constant - 1/Vo, the general solution to the differential

equation of (3.8) is

-(V/VA)
g(V) = Ke (3.9)

with Vo positive and K arbitrary.* The ideal of an exponential
gain-control characteristic appears to be widely pursued in RF
engineering. It was recognized by McFee and Dick [3.7], who criticized
it as inappropriate (an assertion that was correct under the hypothesis
of an "averaging" loop filter).

Equation (3.6) gives a general expression for the small-
signal "amplitude transfer function" of the AGC loop in Figure 3.1.

It is valid for both "integrating" and "averaging" loop filters.

*This result was first pointed out to me by David Hodsdon
of the MIT Lincoln Laboratory.
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In the case where the filter is a simple integrator with time
constant 1, for example, a simple and reasonable transfer function

results. If we take

=1
H(s) = = (3.10)

then (3.6) gives

<
u
Q
<

= G(s) = cq (3.11)

i = = =
If we define Go g(v&q) and w g'(v_)v

cq lq/T (note that W

is positive since g' is negative) then (3.11) becomes

G(s) =G (—s—) (3.12)
° o]

which is a single-pole highpass transfer function. This loop is

therefore highpass with respect to amplitude modulation: variations

in input level at a rate much faster than wo are transmitted, while
those at a rate much below‘m° are suppressed. The result is, of
course, rigorous only for small variations about the quiescent
input amplitude, but it reflects a reasonable type of behavior for
an AGC system.

Equation (3.12) is also the transfer function of a single-
pole RC lead circuit (or "RC differentiator") with w, = 1/RC

(neglecting the gain factor Go)° Zelenz [3.11] examined the
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effect of cascading AGC loops having this response. He noted a
degradation in transient response that can have serious effects
in communications systems, due basically to the highpass character
of (3.12).

Little has been said here about the filter transfer function
H(s), beyond the important distinction of whether or not it includes
a pole at s = 0. There is considerable flexbility in choosing H(s),
allowing for zeroes or an additional pole, for example. As with
any feedback control system, the design of this filter is a crucial
issue, determining such performance indices as sharpness of the
"highpass" behavior and ability to track ramping, as well as
constant, input amplitudes. A stability question will arise if
H(s) contains more than one pole or if additional phase shift
appears in the loop.

Moreover, there are many variations, not discussed here,
on the basic loop of Figure 3.1. One of the most important is
the pulsed or discrete-time AGC loop, arising whenever (as in
pulsed radar) the input signal is not continuous in time. The
treatment of such a signal involves modifying the circuitry so
that Vc is updated periodically rather than continuously.

Such considerations are important in the design of a com-
plete AGC system. Of more interest in the present context is the
consequence of abandoning the loop format altogether, in favor of

a feedforward topology.

3.2.5 Feedforward AGC Systems

A feedforward AGC is extremely simple in concept. An

incoming signal's amplitude is measured, and the measurement
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used to control a variable-gain element, which adjusts the signal
gain appropriately (Figure 3.2). If the gain of the VGE is made

to vary inversely with input amplitude, this structure will clearly
yield a constant output amplitude. Perhaps more significant, the
relation between input and output amplitudes may be explicitly

and quite aribtrarily set (it need not even be monotonic) through
the choice of the VGE control law g(-).

In contrast to feedback-type AGC, this approach was not
much used until the advent of accurate, repeatable VGEs using bi-
polar transistors. As with all feedforward systems, it lacks the
automatic verification of output behavior and concomitant immunity
to component imperfection or drift. It also lacks stability
problems, and great freedom is possible in the design of the filter
transfer function H(s). Since it is no longer enclosed in a self-
adjusting loop, H(s) can contain no poles at the origin. It will
generally be an averaging filter that serves to define the separa-
tion between envelope and desired-signal frequencies, and to block
the ripple components, if any, in the output of the amplitude
detector.

If the amplitude detector renders an accurate estimate

of the input amplitude V., and H(s) is a unity-gain averaging filter

l'
so that H(0) = 1, then the gain law necessary for constant output

amplitude is

g = —= (3.13)
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Figure 3.2 —— Feedforward-type
AGC System
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where Vo is now the desired output amplitude. For Figure 3.2,

a small-signal analysis using (3.1) and (3.13) yields

<

2 - 4
— = q(qu) [1-H(s)] G(s) (3.14)

1

<

and in the case of a single-pole lowpass filter,

=1
H(s) = 7 T, (3.15)

this becomes

S
Go (m—) (3.16)
(o]

g(qu)——exactly the same frequency response as the feedback-

G(s)

with Go
type AGC with an integrator as the loop filter.

In principle, the feedforward AGC topology allows for a
sharp-cutoff averaging filter, for accurate discrimination between
envelope and signal frequencies. However, as with any feedforward
system, there is a simultaneity issue: both input and control
must arrive at the VGE in synchronism. Any "skew" will cause
distortion in the output. A high-order averaging filter will
exhibit, at best, substantial phase delay; worse, the different
frequency components will tend to disperse if the phase response
is not linear. This aéplication suggests the use of maximally-flat-
delay (so-called Besel or Thomson) filter characteristics.

The existence of bipolar-transistor large-signal VGEs
with highly predictable gain-control laws has made possible high-

quality audio AGC systems using feedforward topologies.*

*The products of dbx, Incorporated make extensive use of
this technique.
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In some cases, the output-versus-input amplitude relation is con-
tinuously adjustable, from zero output change, through equal output
and input, to an output excursion greater than that of the input
(dynamic range expansion). Such a capability is extremely dif-

ficult in a feedback-type AGC.

3.3 Oscillator Amplitude Stabilization

The classical sinewave oscillator of the resonant circuit
type synthesizes a pair of conjugate imaginary poles and, by per-
turbing the positions of the pair, regulates the amplitude of
oscillation. Clarke and Hess [3.12] identified at least four
different ways of accomplishing this regulation; these may be
divided into two basic groups, nonlinear and linear time-variant.
The nonlinear method of amplitude regulation, by far the most
common, employes the soft-limiting action of an (essentially
memoryless) nonlinearity in the signal path. Although not strictly
amenable to s-plane analysis, the nonlinear method, roughly
speaking, achieves tﬂe pole-shifting by the dependence of in-
cremental gain on amplitude in the nonlinear element. This is
obtained at the expense of some waveform distortion and a shift of
oscillation frequency away from the ideal value of a truly linear

. system. The shift is quantified by Groszkowski's Theorem [3.12].

The alternative approach, linear time-variant amplitude
reqgulation, uses only linear elements in the signal path, but
one or more is made to vary its gain in response to a control
signal. The oscillation amplitude is sensed and used to drive
the control signal, varying the circuit's pole locations (which

migrate along the root lccus) and hence the oscillation amplitude.
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This has the advantage of very low waveform distortion and good
frequency stability even with low-"Q" resonant elements. It is
generally preferred for low (e.g., audio) frequency and low-
distortion oscillators that must be tunable.*

The linear time-variant approach is an application of
variable-gain elements similar to automatic gain control. As
with the nonlinear approach, a pole-zero analysis is not strictly
valid (the network parameters are varying with time). However, it
is an excellent approximation since the rate of variation is
normally much slower than the oscillation frequency.

Figure 3.3 shows a basic amplitude-stabilized oscillator
in which the VGE follows the output. This is a range-expanding
application, since the VGE's input amplitude is fixed and its
output amplitude must rise or fall to compensate for the variations
in the frequency-determining network. The alternative is to place
the VGE just before the oscillator output, which would impose a
range-compressing role. However, the version shown in Figure 3.3
has the advantage that any distortion in the VGE's signal path
is filtered by F(s), which is typically a lowpass or bandpass
function.

The dynamics of the amplitude-stabilization loop depend on
F(s), H(s), and the control law g(.). In particular, there is
usually an implicit integration in the small-signal transfer

function between Vc and V A small increment or decrement to

2°

*Lest the nonlinear approach be slighted, it should he noted
that based on that approach, some years ago, Messrs Hewlett and
Packard founded an enterprise that was later to prove successful.



35

mmmnmcmmmmnmouuvj
VARIABLE-
GAIN % F (&) >
ELEMENT SINEWAVE OUT
AMPLITUOE = V.
GAIN = Vo ! 2
g(Vo) AMPLITUDE-CONTROL LOOP )
AMPLITUDE
H(s) + DETECTOR
AMPLITUDE-CONTROL v,
FILTER

Figure 3.3 —- Amplitude—etabilized

Sinewave (Oscillator

Amplitude-control loop fcrces the output amplitude V2 to

equal VREF‘ F(s) is the resonant or phase-shift network that

determines oscillation frequency.
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Vc causes the poles of the regeneration loop to move slightly into
the left or right half plane, and therefore causes V2 to begin
ramping up or down. The regeneration loop may be analyzed in this
manner, and represented by a certain transfer function from Vc

to V2. The H(s) response may then be chosen for the desired
amplitude-stabilization properties. An example of this was
treated by Roberge [3.13] in the case of a gquadrature oscillator
with a FET VGE.

Provided that H(s) contains an integration, it should be
possible to use a wide range of VGE control laws in such an
application.* Provided that the VGE has a very linear signal path,
this technique can yield an extremely low distortion level in
the output sinusoid. For this reason it is used in high-quality
low-frequency laboratory oscillators.

3.4 Amplitude Modulation and Remote
Amplitude Control

The use of a VGE in an amplitude-modulator role is a
rather obvious possibility, and demands a linear control law
(i.e., the VGE is an analog multiplier). This is a good example
of a "range-expanding" application: the input amplitude is con-
stant and the output amplitude changes according to the control
(modulation) input. For such applications the appropriate VGE
will have an input overload level that is independent of gain.

Remote amplitude control is, in effect, an electronic

substitute for a potentiometer. This may arise in a

*According to David Hodsdon, MIT Lincoln Laboratory,
considerations similar to those in section 3.2.4 lead to an
"optimal” control law of the form g(V) = K/V.
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computer-controlled data acquisition system, an automatic audio
mixing console, or a programmable signal generator, tor example.
It will be either a range-compressing or range-expanding applica-
tion depending on whether the output level or input level is
fixed (respectively).

Typically, a substantial gain range is required from a
VGE in such a situation. This tends to rule out elements whose
attenuation is derived from the caﬁcellation of two opposing
signal paths. Although sometimes adequate for amplitude modulation,
such structures (typically found in four-quadrant analog multipliers)
exhibit unstable nulling and output noise that tends not to drop
with gain. Moreover, the cancellation will often degrade rapidly
with frequency, so that the useful gain range may be as low as
one decade.

More successful are the fundamentally two-quadrani approaches
based on two pairs of bipolar transistors operated at different

current densities. A number of these are discussed in chapter 6.

3.5 Electronic Parameter Adjustment

The technical literature has included a plethora of cir-
cuits in which variable-gain elements impart electronic program-
mability by a straightforward replacement of fixed gain paths.
Only a few representative cases will be considered here.

Afuso and Ishikawa [3.14] obtained an electronically-
variable synthetic grounded inductance by means of a variable
gyrator with a capacitive load. The gyrator was rendered variable

by inserting a large-signal bipolar-transistor current steering
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network in the signal path. The result was a current-controlled
gyrator, which Afuso and Ishikawa operated in a voltage-controlled
mode through series resistors.

Sparkes and Sedra [3.15] inserted off-the-shelf analog
multipliers into second-order state-variable networks to obtain
active filters with voltage-controlled parameters. Because
the multipliers used had substantial internal phase shift (in
an internal I-to-V conversion), some modification of the networks
was required. This filter concept is a straightforward modification
of a standard state-variable structure and has appeared many times.
Recently, Fukahori [3.16] described a monolithic programmable filter
with a similar architecture. Fukahori's device, however, merges
the multipliers and integrators, yielding, in effect, a state-
variable filter network whose integrators have programmable time
constants. This avoids much of the phase shift introduced in
earlier circuits by repeated voltage-current-voltage conversion
using op amps.

From programmable linear filters it is but a small step to
programmable sinewave oscillators (a step which, no doubt, many
have taken inadvertently). Ryan [3.17] described an early applica-
tion of a bipolar-transistor four-quadrant multiplier to a
sinusoidal oscillator that could be tuned electronically over
a fraction of its center frequency. Bhattacharyya and Viswanathan
(3.18] produced an electronically variable inductor from a fixed
inductor and a variable current gain cell (Figure 3.4). This was

then used in a standard ILC oscillator configuration. The technique
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After Bhattacharyya and Viswanathan [3.18]
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could be used with other impedance elements as well. By select-
ing the proper control law, a linear frequency-to-control input

relation can in principle be realized this way.



CHAPTER 4

MISCELLANEOUS GAIN CONTROL TECHNIQUES

Many different devices and circuits have been used for elec-
tronically variable gain, with varying degrees of success. Korn and
Korn [4.1] give an extensive bibliography emphasizing analog multi-
plication, although it is somewhat dated (1972). Some of the approaches
were considered and abandoned as analog multipliers, but still may be
useful for other variable-gain functions or specialized applications.
The important ones are included in this chapter.

Desirable attributes of a VGE include signal-input linearity,
flat frequency response, low control and signal feedthrough, repeat-
ability in manufacture, and compatibility with standard solid-state
device fabrication. The techniques in this chapter are all deficient
in one or more of these areas, especially the last. Most large-signal
applications today are handled economically with the bipolar-transistor
VGEs of chapter 6 or, less often, the FET techniques of chapter 5.
However, some of the "miscellaneous" methods have particular strengths

and maintain their importance despite this competition.

4.1 Small-Signal Methods

Although peripheral to the present study, the theory of
small-signal gain control will be briefly reviewed because of its

practical importance. It is encountered most often in narrowband

(e.g., receiver) automatic gain control and in low-cost applications.

41
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The theory has been treated extensively in the communications liter-
ature; the book by Clarke and Hess [4.2] summarizes typical cases.

Small-signal gain control works by assuming that the signal
input is practically infinitesimal; then any device it is applied to
will appear incrementally linear. The driving-point impedance or
gain, for a small-signal input, is controlled by varying the large-
signal operating point. Every conceivable device with a monotonic
large-signal static nonlinearity has at one time or another been used
this way: pn and Schottky diodes, bipolar transistors, field-effect
transistors, vacuum tubes, and others. Sometimes variations on
standard structures have superior properties for this application:
remote-cutoff vacuum tubes and tetrode BJTs, for example. Other
cases are discussed sporadically in subsequent chapters.

For a concrete example, consider a field-effect transistor
in saturated operation. The relationship of drain current ID to gate-

source voltage V in such a device can be approximated by

GS

I =1 1 - — (4.1)

where IDSS and VGS are parameters. The range of validity of (4.1) is

for V_ hetween zero and V typically (in a junction FET), so the

T T’

characteristic is monotonic. If we now take VGS = Vl + v, where v

is the incremental signal input, we obtain
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where
Vl 2
I. =1 1 - —
1 DSS Vé
and
dr DSS Vl
i=v v = -2 v l - v v (4.2)
GS T T

as long as v is "sufficiently small"

The last qualification is present in all such systems. Be-
cause small-signal gain control exploits the linear term in a Taylor
series -- hence the derivative in (4.2) -- distortion will increase
steadily as the signal input v increases. In wideband applications
this constrains dynamic range, since the signal input amplitude is
hemmed in by noise at one extreme and distortion at the other. In
narrowband situations this is not so; much of the noise power will
be filtered out, as will distortion components, although in-band
intermodulation products may still limit maximum signal amplitude.

The above example includes control feedthrough (the I, com-
ponent in ID), although, as explained in chapter 2, this is often
acceptable for a small-signal VGE. It can be eliminated with a bal-
anced circuit configuration. Many small-signal VGE circuits using
bipolar transistors employ a differential (emitter-coupled) pair for
this and other reasons. Examples are given in chapter 6; also, an

analysis by Yen [4.3] gives convenient closed-form distortion results.
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4.2 Piecewise-Linear Approximation

An arbitrary nonlinear function of one variable can be approxi-
mated by a series of straight line segments. This is the classical
technique for generating nonlinearities in analog computers, and it
has been used to determine the waveform in variable-frequency oscil-
lators, converting a triangle wave to an arbitrary shape (e.g., the
Intersil 8038 voltage-controlled sinéwave oscillator). The segment
slopes and breakpoints are set with a series of resistor values,
while clipping elements (e.g., diodes) provide the switching from
one slope to the next.

This method provided accurate, temperature-insensitive
squaring operators for the "quarter-square" multipliers used in
analog computers; Korn and Korn [4.1] treat this topic extensively.
These could be considered a variable-gain element. More directly,
Wilkinson [4.4] and others used diode-resistor networks to approxi-
mate functions of two or more arguments, specifically multiplication.

These techniques are capable of good static accuracy when
driven with known input amplitudes. Like other fixed-scale multi-
pliers, they tend to have serious fractional distortion under wide
gain-range operation. In particular, because of the piecewise
approximation, they exhibit nondifferentiable (cuspate) rather than
smooth signal distortion. Moreover, the array of slopes and break-

points is clumsy to implement in low-cost (monolithic) form.

4.3 PIN Diodes
Semiconductor diodes with a p-intrinsic-n (PIN) doping

profile provide a large-signal variable resistance to-signals at




45

frequencies up to several Gigahertz. This behavior, however, depends
on a large separation between control and signal frequencies. Signal
components below some critical frequency limit, typically a few
Megahertz, begin to modulate the resistance, and signal distortion
results. Such a constraint is inevitable in a one-port VGE where the
same port receives both signal and control, distinguished only by
their frequency ranges.

The high-frequency resistance depends on low-frequency control
current with a roughly 1/I characteristic. PIN diodes can accommodate
high voltages (hundreds of volts) and substantial power levels (tens
of watts, more if pulsed) when properly designed. They are most
important in RF and microwave applications [4.5-4.7] where few devices
can perform a variable-gain function with large signal excursions.
Used as the resistive elements in a pi-type attenuator, they provide
constant input and output resistance (when suitably driven) and an
attenuation range of 40dB or more [4.8, 4.9].

Different device geometries allow various tradeoffs between
minimum signal frequency and maximum control frequency. PIN diodes
are confined to RF applications (Megahertz and above), so they are
in a different class from most of the variable-gain elements dis-
cussed here. The others are capable of low-frequency and even DC

operation.

4.4 Photoelectric Systems

One of the oldest forms of large-signal gain control consists
of a light-sensitive resistor illuminated by a controllable light

source. Early forms used incandescent bulbs, which suffered from
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aging problems, poorly-controlled gain functions and slow control
response. Thermal lag in the lamp generally imposed turn-on times
in the tens of milliseconds. Sophisticated versions used tricks to
improve this figure. Aiken and Swisher [4.10] achieved response
times in the tens of microseconds, suitable for high-performance
audio gain control, by adding a derivative component to the control
current applied to the lamp.

More recently, light-emitting diodes have been used in place
of lamps, with attendant improvements in dynamics and reliability.
Edwards [4.11] incorporated an LED-photoresistor structure in a
high-performance AGC circuit with very low signal distortion.

The compound structure of these devices requires expensive
assembly and the components must be preselected to give predictable
characteristics. Edwards circumvented the predictability problem,
and the poorly-controlled gain law, with a feedback stabilizing
technique. Since his signal input occupied a narrow frequency range,
he was able to inject a DC component in the photoresistor and use it
to sense fhe resistance, which was then forced to the desired value.
This technique would, of course, be impractical if the signal and
control bandwidths were to overlap, as is the case in more general

applications.

4.5 Thermoelectric Systems

Heat-sensitive resistors are another natural device for
variable-resistance gain control. These have been constructed from
"discrete components", i.e. resistance wire and heating filament wound

together. They suffer from predictability and time-constant problems
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just as photoelectric versions do, with response times in the tens of
milliseconds. Székely [4.12] described a more sophisticated version
that was completely monolithic.

The use of a self-heating thermistor for audio AGC is one of
the few cases where the thermal time constant works to the user's ad-
vantage. A thermistor with negative temperature coefficient, employed
as a load resistor in an amplifier, tends to lower its resistance (and
hence the gain) in response to increasing average signal power. The
resulting requlation and dynamics are far from ideal, but the simpli-
city of a one-component AGC is remarkable. Kornev [4.13] reported
accurate amplitude regulation and constant phase response over a 100:1

range of input amplitudes at 1lKHz.

4.6 Modulated-Carrier Systems

There is a broad category of systems in which a high-frequency
waveform or carrier is used to facilitate multiplication (or a related
function) of two much-lower-frequency signals. Pulseheight/width or
"time-division" multipliers, discussed at length by Korn and Korn
[4.1], are the best-known of this class. With static accuracies as
high as 0.0l percent, time-division multipliers are commercially im-
portant in the highest-accuracy low-speed applications. Holt [4.14]
has described a low-zost monolithic implementation.

Many other carrier-type topologies have been developed.
Brown's multiplier [4.15] @erived multiplication and division from
the exponential time waveform in a periodically-triggered RC lag
circuit. Davis [4.16] used a pair of tuned amplitude-modulation

circuits in a feedback-linearizing system (section 2.5.3). Each
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modulator had an output amplitude that was the product of an amplitude-
limiting voltage and some function of a gain-control input. Racoveanu
[4.17] obtained a multiplier of limited accuracy and dubious stability
by multiplying a (voltage-controlled) squarewave frequency with a
(voltage-controlled) varactor capacitance. In another variable-
frequency scheme, Kraus [4.18] used a fashionable switched-capacitor
architecture for a multiplier. Packets of charge, proportional to

one input voltage, were transferred to a summing node at a frequency
proportional to the other input voltage. This gave an average output
current proportional to the product of the two inputs.

These modulated-carrier systems share a drawback common to
thermoelectric and photoelec;ric approaches: limited speed. More-
over, the limited frequency response usually applies to the signal
input as well as the control input, rendering them inadequate for any
but the slowest variable-gain applications. The heavy output fil-
tering that is required to remove carrier components generally limits
the signal frequency to about 1/100 of the carrier frequency [4.1],

hence at most a few kilohertz.



CHAPTER 5

LARGE-SIGNAL GAIN CONTROL USING FIELD-EFFECT DEVICES

5.1 Introduction

Junction field-effect transistors {(JFETs) , metal-oxide-silicon
field-effect transistors (MOSFETs) , and related devices have a number
of properties that make them useful in variable-gain functions,
especially analog multiplication. They are subordinate only to bi-
polar transistors as solid-state devices for large-signal, wideband
gain control.

The different ways in which FETs can be used reflect the
distinct operating regions of the devices. In the nonsaturation region,
the FET channel resistance can be modulated electronically, and this
variable resistance--although inherently nonlinear--is a natural start-
ing point for various signal-path modulation schemes. This is, at
present, the major mode for FET-based variable-gain elements.

In the saturation region of operation, the FET loses its
variable-resistor property, but its square-law transfer characteristic
can be used indirectly to yield large-signal multiplication. The
MOSFET has yet another useful mode, the subthreshold regime where
its channel is weakly inverted. 2an exponential current-voltage
characteristic results, which, while not as accurate as the correpond-
ing relation in bipolar transistors, potentially can be exploited

in the same way.

49
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Finally, various field-effect devices other than conventional
transistors have been explored as gain control elements. The last
section of the chapter discusses some alternative structures that
have been used or proposed.

Much of the work in this area occurred prior to the emergence,
in the early 1970s, of bipolar-transistor "translinear" circuits as
the dominant technique for analog multiplication. Some of the more
recent work has been directed at the exploitation of MOS IC technology
for analog circuits, especially in the context of analog charge-
coupled devices (CCDs). The many FET variable-gain circuits in the
literature are really variations on a few ke ideas, and the major
purpose of this chapter is to explore these ideas systematically.

The development proceeds from the static current-voltage character-
istics of the basic devices.

Throughout this chapter, n-channel devices are assumed for
convenience, and the voltage and current polarities are chosen
accordingly. For analytical flexibility, basic device equations are
expressed both in terms of individual terminal voltages (VD, VS, etc.,
all referred to an arbitrary zero-volt reference node) and in terms

of the more conventional interterminal voltage drops (VDS' VGS' etc.).

5.2 FETS in the Nonsaturation Region

In the nonsaturation region of ouperation (also called the
ohmic, linear, prepinchoff, or triode region), a FET presents a
relatively low resistance from drain to source. The drain-to-source

voltage, or V__, is small enough that the FET channel is not fully

DS
depleted or “"pinched off" along any part of its length; the drain
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current then depends strongly on both VD and gate bias. Interaction

S

between these two dependences forms the basis for multiplication or

gain control in the nonsaturated mode. This interaction includes a

rather accurate multiplicative term in the case of MOSFETs, while in

JFETs there is a more complex characteristic that can approximate the

same effect. Various ingenious schemes have been developed to cancel

both undesired terms in the drain-gate interaction and process-

dependent FET parameters that are unpredictable and temperature-sensitive.
Before examining actual circuits, it is worthwhile to review

basic device behavior. The discussion will emphasize those aspects

most important in electronically-variable gain applications

5.2.1 JFET Characteristics in Nonsaturation

The junction FET in nonsaturation is basically a voltage-
controlled resistor, in which a conducting channel is bounded by
depletion regions. The depletion regions are established by a reverse
bias on the gate-to-channel pn junction; changing the bias modulates
the width of the depletion regions and hence of the channel. Because
the terminal properties of the JFET derive from the behavior of these
depletion regions, it is necessary to specify the doping profile in
the channel. From elementary pn junction theory, the voltage-
dependent shape of the regions is a function of doping profile.

For a three-~-terminal n-channel JFET with a rectangular
channel region, a constant channel dopant density Nd’ a one-sided
step junction between gate and channel regions, and symmetrical source
and drain, the classical expression for drain current in nonsaturation

is [5.1, 5.2]:
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W 2 2€ 1/2 3
Ip =@ WNgE<V) - Vg - 3 2 [(¢;-v +vp)

/2

_ 3/2
- (¢i VG+VS) ]

(5.1a)

in terms cf individual terminal voltages VD’ VS, V. (with respect to

G

an arbitrary reference), or

2¢e 1/2
W 2 s ) 3/2 372
D =T Vet Vs ~ 3 2 [0 VagtVpg) 7 = (0=, )77
gN .t
a
(5.1b)
, where

in terms of VDS and VGS

W is the width of the channel, L the length
un is electron mobility in the channel
t is metallurgical channel depth

kI Nd
¢, = — 1n . is the built-in voltage for the "one-sided"

i q i
gate~channel junction

qut2
can be

In addition, the "threshold voltage" V. = ¢, 6 =~
T i 265
defined: when VCS reaches this (negative) value, the channel is
entirely pinched off (depleted). The nonsaturation region, where

the above equations apply, is delimited by

DS GS T
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for positive VD with a similar constraint (but roles of drain and

g’
source reversed) for negative VDS' A further restriction is that the
gate-channel junction not become sufficiently forward-biased that
current flows across the: junction.

Equations (5.1) follow directly from the original development
of Shockley [5.3] some thirty years ago. The derivation makes use
of the "gradual channel" approximaticn (in the depletion regions,
electric fields are essentially perpendictvlar to the channel) and
neglects series resistances in the drain snd source paths due to the
bulk regions of the semiconductor. Implicit in the derivation of
(5.1) are two important assumptions: that the gate-channel junction
has an abrupt doping profile, with uniform doping in the channel;
and that the electron mobility un in the channel is constant.

The 3/2-power behavior of the terms -ontaining VG in (5.1)
is a consequence of the assumed doping profile. Different dopings
in the channel and gate yield modified versions (5.1) with different
functional forms. While it has been demonstrated that JFET character-
istics can be rather independent of doping profile in saturation
(5.4-5.7], this is leus true in the nonsaturation region. Bockemuehl
[5.8] considered the effects of certain limiting doping profile cases.
Cobbold and Trofimenkoff [5.9] treated various combinations of abrupt
and linearly-graded profiles, leading for example to a 5/3~power
dependence in a simple linearly-graded case. For dopings more
elaborate than a simple linear grading, the theoretical analysis
generally becomes intractable and numerical techniques must be used.
In modern JFETs with epitaxially-grown channel regions and (often)

ion-implanted gates [5.2], the agreement with (5.1) can be good,
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tt least within the limits imposed by the constant-mobility
approximation.

The approximation of constant mobility assumes that electron
(or in p-channel FETs, hole) velocity is directly proportional to
electric field. 1In practice, it has long been known that this
velocity tends to saturate at high values of field, so that the
effgptive carrier mobility falls off. The effect in JFETs is to
produée a lower ID than would otherwise be predicted, under large
values of VDS' Moreover, both the low-field mobility and the shape
of the mobility-versus~field characteristic depend on the total
impurity level (Nd+Na) in a given region.

Trofimenkoff [5.10] proposed a practical, empirical model for
field-dependent mobility, and derived corresponding JFET current-
voltage characteristics. A more thorough derivation was given sub-
sequently by Cobbold in his book [5.11]. Trofimenkoff's basic ex-

pression for mobility in the channel is

u

0
0
where p_ is the low-field mobility, E is the local field magnitude

0

along the channel, and E_  is an empirically determined critical field

0
value (typically in the range 10-2C KV/cm for silicon). In contrast
to other formulations, (5.2) has proven both analytically convenient
and well suited to the modelling of measured behavior in silicon.

Under certain assumptions, the resulting drain current ex-

pression, as derived by Cobbold [5.11], takes the form
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I
D “n"“no

I = (5.3)
D 1+ (VDS/LEO)

where the numerator is the ID of (5.1) and L is the channel length.
This permits field-dependent mobility to be incorporated into (5.1)
with slight modification, and also illustrates that low values of
VDS and long channels tend to minimize mobility-degradation effects.

Thus, both the doping profile and non-constant mobility
influence the validity of (5.1). Additional refinements are possible;
for example, a four-terminal JFET formulation in which the gate
regions on either side of the channel are electrically independent.
This has been treated in detail by Cobbold [5.11]. Such a modification
may be necessary in monolithic JFETs whose channel region is bounded
on one side by a common substrate,* although the effect will be minor
if the substrate is lightly doped in comparison with the gate region.
Another complication is the resistive bulk regions which inevitably
separate the drain and source terminals from the active channel
region, causing ohmic voltage drops.

With these limitations in mind, (5.1) will now be used to
explore the basic suitability of JFETs as variable-gain elements.
Although (5.1) is usually derived on the assumption that VDS is
positive, it applies also for VDS negative, as a simple substitu-

tion will show. This assumes, of course, that the JFET remains out of

saturation and the gate-channel junction is not forward-biased.

* This applies, for example, to FETs whose channel is formed
in an epitaxial layer. Other structures, such as the ion-implanted
shallow surface channel FET of certain compatible JFET-bipolar
processes, may not have this complication.
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We can therefore regard VGS as a control signal and examine the

relationship of V

to I i
DS D at a given V

cs” A series expansion of

(5.1) around VDS = 0 gives

2
L 2V 1_(“’1_11@:5_)”2 , .1 Vs
D L x ¢, -V DS 4 _ 1/2,, . 1/2
i T (¢i VGS) (¢i VT)
3
v
1 DS
+ = - .. (5.4)
24 3/2 1/2
(¢i VGS) (¢i VT)
QN t
where (¢i—VT) = and Gx = qunth.

In the limit as VDS approaches zero, we can approximate this

with the linear term
¢, _V 1/2
ID = w G |1 - (—3;———§§) \Y (5.5)
L X .

which is indeed a voltage-controlled resistance, but a small-signal
one with a nonlinear control law.

In order to admit some nonlinearity in Vbs, a quadratic
approximation can be used, and this is often done in practice. The

above expansion yields
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2
m=2g 1 - %1 - Ts) V2 v -+ "s
L %x b, -V, S T, 2, 172
iVes i Vr
(5.6)

The nonlinearity in the "parameter" V

Gs’ which may appear formidable,

is in fact rather weak, except when VGS approaches VT. The detailed
VGS dependence in (5.6) is of limited value in practice since it
follows from the idealized doping distribution assumed in (5.1).

A much more popular approach is a semi-empirical expression,

quadratic in VDS' which suppresses gll nonlinearity with respect to

VGS' It has the form

v
= ~ _ _bs
ID =K [(VGS VT)VDS 2 ] (5.7

for some transconductance constant K.

Middlebrook [5.5] derived this using a simple charge-control
analysis, without considering the device doping profile explicitly.
Von Ow [5.12] obtained the same expression by fitting a quadratic
function of VDS to the presumed behavior of ID at the origin

= = 4 i k! = -
(VDS ID 0) and at the onset of saturation (JDS VGS VT'

2 . .
ID = IDSS(l-VGS/VT) -~-see section 5.3). Von Ow compared this

approximation graphically to the measured characteristics of a
practical FET; according to his data, the agreement was within a

few percent.
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The approximation of (5.7) has propagated through the litera-
ture as a basis for analog multiplication and gain control; the basic
idea is to exploit the VGSVDS product term in (5.7), discarding the
other terms by suitable circuit design. It must be remembered,
however, that (5.7) neglects higher-order nonlinearities appearing
in a more fundamental (and specific) result such as (5.1). The
nonlinear VGS dependence that appears in (5.1) but is neglected in

(5.7) is an important facet in the comparison of JFETs and MOSFETs,

to be considered in section 5.2.3.

5.2.2 MOSFET Characteristics in Nonsaturation

A Metal-Oxide-Semiconductor FET is not unlike a JFET (whose
"gate" is the bulk or "body" of the MOSFET*) with an additional
oxide~-insulated gate terminal. As long as this gate is biased above
threshold, a surface inversion layer exists directly beneath the
gdte oxide, forming a conducting channel of opposite polarity from
the bulk region (an n-type channel, if the bulk is p-type). If the
gate is biased substantially below threshold, the channel disappears
and so does the analogy to a junction FET.

In both the JFET and the MOSFET, the shape of the conducting
channel is influenced by an adjacent.depletion region. However,
in the MOSFET, conductance of the channel is controlled primarily

by varying the amount of charge in the inversion layer rather than

* The term "substrate" is avoided here in reference to the
bulk region of a MOSFET, both because the subscript "B" denotes
this region or terminal and because the region is not .necessarily
the actual substrated of the silicon chip.
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by directly modulating the depletion region. Such modulation can

of course be accomplished‘through bias of the MOSFET bulk region,
but this lightly-doped region forms a poor control gate and is rarely
used for this purpose. Whereas in the JFET the channel is defined
by explicit doping, the MOSFET channel is electrically induced. The

dependence of ID on V in nonsaturation is a function not of an

GS

a-priori doping profile but of the charge-to-voltage relationship

in the oxide; the dependence is therefore inherently linear.
Corresponding to (5.1) for JFETs is the n-channel MOSFET

nonsaturation-region drain current expression from a distributed

analysis [5.13, 5.14]:

w -
— ' -— - - — - ——— -
I T % cox[VG Veg T 2%pg 2 ) 2 (Vp=Vg)

2 1/2 3/2 1 3/2
- 5 (2ean) [(2¢FP+VD—VB) = (20 4V V) ] (5.8a)

in terms of the voltages VD' VS’ VG, VB (with respect to an arbitrary

reference), or

3/2

DS SB

2 1/2
- 3-(ZesqNa) [(2¢FP+V +V__) s

3/2
- (2¢Fp+v B) ] (5.8b)

in terms of node-pair voltages VD V.., VSB' where

s’ GS
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Céx is gate oxide capacitance per unit area

VFB is the flatband voltage, a constant determined by

fabrication details

N
¢Fp = %g-ln,<ﬁi) is the Fermi potential of the p-type bulk
i

silicon, i.e., the contact potential between intrinsic

silicon and the bulk material

Na is the bulk dopant concentration

and the subscript "B" refers to the bulk or body terminal. The
flatband voltage VFB[5.15, 5.16] allows for nonzero oxide and fixed
surface charges and for a contact potential between the gate electrode
and the bulk silicon. The other parameters are as in (5.1); note,
however, that the correct value for H in the present case is the
surface mobility, which is lower than the bulk mcbility by about a
factor of two.

Equations (5.8) again neglect both high-~field mobility
degradation and extrinsic source and drain resistances. The cor-

responding threshold voltage, which depends on bulk bias, is

V. =V__ +2¢ /2

T FB (5.9)

1 1
Fp + E;- [2esqNa(2¢Fp+vSB)]

A}
The condition for nonsaturation is more complicated for a

MOSFET than for a JFET. Instead of a limit on VDS' there are con-

straints on both drain and source voltages with respect to the bulk:
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< 1
VSB v
v < V!
DB
where
2
€ gN 2C'
s” a ox 1/2
vt =v_ =V __ - 2¢ - [ (V.. - ) -1
2 N 0
GB FB Fp c é : esq a GB B

(5.10)

Equations (5.8) and (5.10) provide a summary of device behavior
in nonsaturation and are valid for both positive and negative VDS'

Note that (5.8) is linear in V__, with the constant of

GS
proportionality (W/L)unCéx. There is a difference of 3/2-power
terms, as in the JFET case, but these arise from the effect of bulk
bias and do not depend on VGS'
As with junction FETs, carrier mobility in the channel is
reduced in the presence of high electric fields, and this must be
taken into account if a more accurate expression than (5.8) is
desired. The situation is somewhat different for MOSFETs since
there is a substantial, usually dominant, electric field through the
oxide, perpendicular to the channel. Because of this, mobility
degradation sets in at high gate voltages even if VDS = 0 (an example
is plotted in Grove [5.17]). With JFETs, in contrast, the channel
is bounded by depletion regions and the electric field in the

channel is directed essentially between source and drain. Moreover,

the MOSFET channel is located at or near an oxide-silicon interface,



62

and the presence of this interface greatly influences the mobility [5.13].
The effective surface mobility has been measured as a function
of electric field through the surface, or, equivalently, as a function
of induced surface charge. The results have been well summarized
by Sze [5.13], Grove [5.18}, and Cobbold [5.19]. The upshot is
that effective mobility appears independent of surface field up
to about 150 KV/cm for typical doping levels, and above this value
the effective mobility decreases with increasing field. As was
pointed out by Cobbold, the value of 150 KV/cm corresponds approximately
to the onset of degenerate conditions in the inversion layer, and
represents a very high level of channel conductivity. Unfortunately
there is no exact theoretical description for this effect, and
empirical methods must be used as with JFET mobility effects.
In one of the few multiplier studies to actually consider
mobility degradation, Bosshart [5.20] has obtained the empirical

approximation

Effective Mobility _ 1
Low-Field Mobility (1 + (V¢S/2°)

2)1/2

for the data shown in Sze [5.13]. Bosshart used this to estimate
nonlinearity in the ID—versus-VCS relation.

Along with this surface-field dependence, attributed to
scattering effects at the oxide-silicon interface, the mobility
is also degraded by high fields along the channel due to carrier
velocity saturation. As with JFETs, large values of VD or short

S

channels cause an additional mobility reduction. Klaassen [5.21, 5.22]
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has demonstrated that both surface-normal field (VGS-dependent)
and longitudinal-field (VDS—dependent) mobility degradation can be

accurately modelled by an empirical expression of the form (compare

(5.3))

Effective Mobility _ 1
~Fi bili — T
Low-Field Mobility 1 + G(VGS VT) (VDS/LEO)

(5.11)

This may be used to predict distortion in a device where (5.8) is
exploited for a gain-control function; it summarizes major deviations
from the linear dependence of ID on VGS'

Also paralleling the JFET case, (5.8) can be approximated

by an expression quadratic in V

bs* A simplified form that neglects

the variation of potential along the length of the channel (i.e.,

assumes V_ = V is
D S)

2
v
DS
D ] (5.12)

W '
=z = v -V -
I L uncox [( v

which may be obtained directly from a charge-control analysis or
from (5.8) in the limit VDS 2z 0. The approximation becomes more
accurate as the background concentration Na is reduced or the oxide
capacitance C;x is increased. E#tensions of (5.12), replacing the

leading factor g-uncéx by an empirical constant and adding an
empirical coefficient in the V;S term, can achieve fair agreement

with measurements for nonzero Vbs as well.
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5.2.3 JFETs versus MOSFETs

Both JFETs and MOSFETs have been used in the nonsaturation
mode for large-signal variable-gain applications, in circuits so
similar that one might conclude the devices are completely inter-
changeable. The broad properties of MOSFETs and JFETs are indeed
similar (compare (5.7) and (5.12), for example) , but there are im-
portant and revealing differences in second-order behavior.

In comparing the two types, the objective here is not so
much to recommend one over the other as to elucidate the key
attributes of each. Often, in fact, the designer does not have a
choice, so that a recommendation is not particularly useful.

Both devices exhibit a controllable, nonlinear channel
resistance in which the dependence of current on voltage is approxi-
mately quadratic. Charge-control arguments show that this quadraticity
is the natural tendency in a field-effect device regardless of con-
struction details. Thus the same first-order expression is widely
applied to both:

Vo
Ip =K [(VGS_VT)VDS - T] (5.13)
-

The major differences from a circuit viewpoint are in the
gate properties rather than the channel characteristics. This
reflects the difference in control mechanisms. The JFET channel
is built in during manufacture and selectively depleted of carriers
by a reverse-biased pn junction, while the MOSFET channel is created

and controlled by the field through an oxide layer.
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As was cited in section 5.2.2, the MOSFET drain current con-
tains a "clean" VGSVDS product. This is because the conductivity in
its channel region depends linearly on field through the oxide,
hence on gate voltage. In the JFET, the relation between channel
conductivity and gate voltage is determined by the electrostatic
properties of the gate-to-channel depletion region, yielding a non-
linear function that varies with doping profile. The MOSFET, then,
has an inherent superiority as a low-distortion multiplying element,
at least until mobility degradation sets in.

Against this distortion advantage stand a number of practical

problems in the MOSFET. Because it is influenced (through V__) by

FB
charges in the oxide and at the oxide-silicon interface, the MOSFET
threshold voltage is difficult to control accurately and may even
fluctuate with age. The device has a well-earned reputation for

DC instability. Even today, after many fabrication p;oblems have

been overcome, it is rare to see (for example) MOSFETs used at the
input of a discrete-component or hybrid operational amplifier, chiefly
because of DC offset and instability problems.

Moreover, MOSFETs are four-terminal devices, and the disposi-
tion of the bulk electrode is an important issue. Bias on this
electrode can affect drain-source characteristics ("body effect"),
especially when the FET is being used as a floatiqg "variable
resistor.” This is addressed in subsequent sections. JFETs,
by contrast, may or may not be four-terminal elements. Although

the classical JFET has one gate junction bounding each side of the

channel, discrete versions and some monolithic types avoid having
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separate gate terminals either by tying them together internally or
by an asymmetric structure with control applied to only one side of
the channel.

The following sections detail practical gain-control schemes
that exploit the device behavior outlined above. The starting point
in each case is the first-order model of (5.13). Many of these tech-
niques are useful for both JFETs and MOSFETs; peculiarities of each

are considered where necessary.

5.2.4 The FET as a Simple "Voltage-Controlled Resistor"

The basic expression (5.13) consists of two terms:

~ A simple multiplicative term, ID proportional to (VGS-VT)VDS;

and

2 .
- A VDS term which accounts for the curvature of the non-

saturated ID—VDS characteristics.

The second term is very small at small values of VDS'

specifically at magnitudes of VDS well below (VGS-V ). Many simple
2

gaia~modulation schemes and early multipliers got around the VDS

nonlinearity by simply neglec*ing it, and keeping |VDS| small.

In the simplest FET variable-gain scheme, then, we assume

= - 5.14
Ip = K(V g V) Ve (5.14)

whereupon the FET channel presents a conductance

P~
E

® 945 = KVgg™Vg) (5-15)

d<

S
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Thus, a single FET may be regarded as an electronically
variable resistance, althouagh the signal range for linear operation
is restricted. The quadratic nonlinearity is fairly weak, so the
"voltage-controlled resistor" viewpoint, although a small-signal
approximation, is more useful in this case than with many other
devices. In pn junction diodes operated as variable resistors,
for example, distortion sets in much more quickly as a function of
signal amplitude.

A variable resistor is not a complete variable gain element,
but it can easily form the basis for one. To effect controllable
gain/loss, FET "resistors" of this kind have been used variously
as one arm of a resistive divider [5.12, 5.23], as input and/or
feedback resistors in op amp gain circuits [5.24], as the emitter-
degeneration resistor in differential transistor pairs [5.25, 5.26],
and as general replacements for resistors in a variety of "cookbook"
applications [5.27, 5.28].

Limitations that may be more serious than the quadratic
distortion are the dependence on the parameters K and VT’ hence
on fabrication and temperature, and the control-dependent dynamic
range. If we wish to limit the Vss term to some fraction £ of the

amplitude of the multiplicative term, we ottain the constraint

- .16
|vDS| < 2£(V V) (5.16)

.17
or IVDSI < (2f/K)g o (5.17)
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A signal voltage limit that is directly proportional to
conductance is the wrong kind of constraint for most circuit
applications. As the resistance goes up the permissible signal
level goes down--the opposite of the desired behavior if, for example,
the FET is being used as the bottom leg of a voltage divider in an
amplitude-modulation task. In order to minimize distortion from
the FET while maximizing dynamic range, the circuit environment
must be such that maximum VDS is applied when Ips is greatest. If
the FET is substituted for a gain-setting resistor in an amplifier
or attenuator circuit, this criterion is usually not satisfied.

Leighton [5.29] considered this problem for signal-range-
compressing (specifically AGC) applications. He noted that bridge-
type circuits--where signal gain depends on the imbalance of two
resistances--can have the desired property, and he showed a practical
version using a differential op amp. Other authors have generally
neglected this consideration, or have simply recommended fixed
limits on lVDS" which gives a variable distortion level.

More sophisticated schemes using FETs in nonsaturation im-
prove on this "voltage-controlled resistor" idea in one or both

of the following ways:

- Linearization of the ID vs. VDS characteristic by

removing the Vgs term to give a true large-signal

controllable resistance

- Eliminating the nonlinearity and/or dependence cn the

parameters K and Vi by using multiple-FET configurations.

These refinements are the subjects of the next two sections.
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5.2.5 Linearization of Drain-Source
Characteristics

The major limitation of the simple FET "voltage-controlled
resistor" is signaljpath nonlinearity, due (at least) to the Vgs
term in (5.13). One successful solution to this is the cancellation
of the V§S term through a modification of the way in which the gate
is driven. Instead of a fixed VGS being imposed, the gate is biased
with respect to a voltage halfway between drain and source potentials.
For a theoretical FET that obeys (5.13), the result is a truly
linear, large-signal, controllable resistance between drain and
source. More accurate models for the JFET and MOSFET reveal some
residual nonlinearity, but it is greatly reduced, and always sym-
metrical for both polarities of VDS’
Consider the simple model of (5.13) expressed in terms of

individual electrode voltages (all referred to an arbitrary zero-

volt reference):

(VD+VS)

ID = K [(VG—VT) - —_E_—] (VD—VS) (5.18)

Now, if we shift the gate voltage by adding the average of the drain

and source voltages, so that

(V. _+V))

D S
v = + o—_— 5.19
G Vx 2 ( )

for some Vx, the result is




0250

o

NORMALIZED DRAIN CURRENT (ID/Kvg)

T0

NORMALIZED DRAIN-SOURCE VOLTAGE (vDS/vT)

Figure 5.1 -- Comparison of theoretical drain characteristics

for FETs in the nonsaturation region.

(a) Simple FET with (VGS-VT) = VT/2. From equation (5.13).

(b) Linearized FET of section 5.2.5, with (v,-v.) = v_/2.
. X T T
From equation (5.20).
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I = K(Vx-VT)VD (5.20)

D S
(see Figure 5.1). 1In effect, the small-~-signal behavior of the FET
channel around VDS=0, as in (5.14), has been extended to include
the entire nonsaturation region.

This technique is usually presented in a special case where
the FET source terminal is grounded. It is explained as "adding
half the drain voltage to the gate” (note that VS=0 in this case).
The more general case is described succinctly by (5.19). Another
way to view this is that the drain and source experience equal and
opposite swings with respect to a reference voltage, and the gate
bias is referred to this voltage as well. The situation is
illustrated in Figure 5.2. It is easy to see how, if the FET is
constructed symmetrically (drain and source interchangeable), such
an arrangement treats drain and source nodes identically and results
in symmetry in the ID-VDS plane. Linearity follows, in theory,
from the form of (5.13), and more fundamentally because gate-source
and drain-source biases have equal and opposite influence on drain
conductance in a charge-control analysis.

In the usual implementation of this technique, the average
of the drain and source voltages is obtained with a pair of equal
resistors, as shown in Figure 5.3. A version with a convenient
control (Vx) input, which does however attenuate the control
voltage by a factor of two, is illustrated in Figure 5.4. Often
the unity-gain voltage buffer is omitted; however, this does add
the resistors and control signal to the controlled resistance port.

An asymmetrical FET construction may be accommodated by a resistor
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L
®

Vi Gg’ VDS/2

Figure 5.2 —— Linearization

of Channel Characteristics

Offsetting the gate bias by a potential halfway between
drain and source yields a nearly-linear relation between

ID and VD Vy controls the scale factor (i.e., resistance).

S.
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Figure 5.4

Practical realizations of Figure 5.2. The unity-gain

voltage buffers are optional.
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ratio other than 1:1. This has been done [5.12], although it is
not clear whether such finesse is called for in the simple applica-
tions to which the technique is usually put. Departures from the
idealized model of (5.13) place an ultimate limit on the available
linearity, and the chief merit of this approach is its great
simplicity.

The technique, attributed to Martin [5.30] originally, has
been discussed by several others assuming junction FETs. Elliott [5.31]
presented a one-page qualitative explanation; Todd [5.32], in a primer
on applications of JFETs in nonsaturation, showed experimental
results (which show the imperfect linearity achieved with practical
JFETs). Leighton [5.29] and von Ow [5.12, 5.33] emphasized voltage-
controlled attenuator applications, Leighton considering in detail
a configuration to maximize signal dynamic range and von Ow using
the FET as the lower [5.12] or upper [5.33] arm in a resistive
voltage divider. Both Leighton and von Ow employed variations on
Figure 5.3 in which the gate was coupled to the other terminals of
the FET through capacitors. Von Ow claimed [5.12] a reduction in
harmonic distortion by a factor of 50 over a simple FET; he allowed
one of the resistors in Figure 5.3 to be trimmed.

A more detailed JFET expression reveals that the technique
will leave some residual odd-order nonlinearity. Using (5.1)

instead of (5.13), and substituting (5.19), gives

3/2

v _2 4 vy 12 -
Ip = ¢ TNgE {VDS 3 (457Vqp) [(q>, Ve ¥ 2 Vg

1 3/2
-4 -V - ]} (5.21)
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which is an odd function of VDS' at a given Vx.

Thus the drain-source characteristic is again symmetrical
about the origin in the ID—VDS plane; it is also nonlinear, although
weakly so. A similar result is obtained if the 3/2-power terms
in (5.21) are replaced with other power-law dependences, such as
those obtained with a nonuniform doping profile in the channel region.

In applying the linearization to a MOSFET rather than a
JFET, a complication immediately arises. The MOSFET is inherently
a four-terminal device; what do we do with the bulk terminal?*
Bilotti [5.34] considered the MOSFET version, using the usual
simplified expression (5.13), and recommendad that the bulk be left
floating. This worked well for Bilotti, with a discrete FET in an
isolated test circuit, but it is a questionable practice because of
the possibility of leakage or capacitive coupling of charge into
the sensitive floatingnode. Moreover, in monolithic MOSFET circuits
the FET bulk is often committed to a common bias voltage and is
therefore not available to the designer. Exceptions are the
isolation-well transistors of CMOS processes--the n-channel devices
in traditional CMOS, and the p-channel FETs in the now-ascendant
n-well CMOS. Bilotti further suggested, in passing, that the bulk
terminal could also be tied to the source terminal of the FET.

The formulation of (5.13) implicitly deals with bulk bias
through the VT term, as in (5.9). To more rigorously analyze the

linearized MOSFET, including bulk bias, consider the detailed model

* The same question arises in a JFET with two gates, and
similar conclusions apply.
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of (5.8a). Using (5.19) for the gate voltage, with control

voltage Vx'

_¥ vty v _2 1/2 _y y3/2
Ih=1 un{cox[vx Vep~2%pplVps ~ 3 (26, AN) L2605, +V=V5)
o\ 3/2
- (2¢Fp+vs VB) ]} (5.22)

Note that, unlike the JFET case, the predicted dependence
on the control voltage Vx is exactly linear. Equation (5.22)
reveals that the linearized MOSFET behaves like the ideal vairiable
resistance of (5.20)--the part of (5.22) before the %-—- in parallel
with a nonlinear resistance, independent of Vx, due to the 3/2-power
terms (the "body effect"). The relative magnitudes of these two
resistive components depend on Céx and Na; the shape of the body-
effect nonlinearity depends on how the bulk terminal is driven.

The bulk potential VB enters through the 3/2-power terms.
Because of the symmetry of this pair of terms, their difference will
be an odd function of VDS if the drain and source experience equal
and opposite excursions with respect to VB' This suggests that,
if the bulk terminal is at the disposal of the designer, it should
be biased in a manner similar to the gate; see Figure 5.5. A
practical implementation could follow the approach of Figure 5.4 with
a second voltage divider to drive the bulk terminal. Figure 5.5
could even be applied to MOSFETs whose bulk regions are connected
in a common substrate, as long as balanced voltage swings can be

maintained on drain and source.
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Vps/2

Vps/2 .

Figure 5.3 —— Bulk-terminal

Bias Scheme for a

Linearized MOSFET

THE BIAS VOLTAGE Vyxg NCRMALLY WOULD BE NEGATIVE
FOR AN N-CHANNEL FET.
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If the bulk and source are connected together, as recommended

by Bilotti, we find

120 20 +v_)3/?

Fp DS

)
I
=

2 1
' - - - =
un{cox[vx VFB 2¢Fp]VDS 3 (zesqNa)

- (2¢FP)3/2]} (5.23)

so that ID is no longer an odd function of V There is also a

DS®
tendency for the drain-bulk junction to become forward-biased when
VDS swings negative; this will limit the negative voltage excursion
across the voltage-controlled "resistor" to the order of one-half
volt. Such a limit can be avoided in the circuit of Figure 5.5

since a substantial reverse bias can be applied to the bulk terminal.

Regardless of the bulk'connection, linearity of the channel
resistance is greatly improved over a simple MOSFET. The crucial
modification of (5.19) cancels the V;S term present in (5.8b), and
hence the majority of the curvature in the nonsaturation drain
characteristics.

This discussion has established that most of the channel-
resistance nonlinearity in both JFETs and MOSFETs can be eliminated
if the gate (and bulk, if any) is properly driven. It is indeed
possible, then, to construct a large-signal electronically variable
resistor from a FET; however, as a gain control component, it has
practical shortcomings. The characteristics of the variable resistor
depend strongly on device parameters such as ch and Na; the control

input Vx must be offset by a FET threshold voltage. In a monolithic

design, obtaining either the balanced drain-source drive of Figure 5.2
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or the voltage divider of Figures 5.3 and 5.4 may be a major obstacle.
The linearized FET is probably most useful as a very simple variable-
resistance element with modest performance or as a component in

multiple-FET topologies that cancel the remaining parameter dependences.

5.2.6 Multiple~FET Configurations

As with bipolar transistors, both fabrication-dependent
parameters and signal-path nonlinearity can be circumvented by using
muitiple matched FETs. A judicious choice of topology will cancel
unwanted behavior which is common to different devices, while preserv-
ing the device characteristics that yield the desired gain modulation.

As before, a first-order model common to both junction and
MOS FETs will be assumed initially. A further assumption is that
device parameters are well matched between FETs. Analysis of mis-
match effects is straightforward, and is not included here.

Since the essential property of the FET in nonsaturation is
a voltage-controlled channel resistance, it is natural to substitute
FETs (with or without the linearization of section 5.2.5) for gain-
setting resistors in various gain/loss networks. The preceding
sections described single FETs used in resistive voltage dividers
and similar networks. They have also been used in pairs in an
effort to cancel common device parameters.

Shore [5.35] used a pair of MOSFETs with identical gate-
source voltages. One FET served as a gain-setting resistor in an
op amp signal-path circuit and the other was a reference device,
its drain current set by a control input. Shore's basic approach
was to assume the FETs were linear voltage-controlled resistors

(that is, he neglected the V2

bS term of (5.13)) and then to force
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the two VGSS to be equal. The result was that the parameters K

and V_ cancelled, leaving the basic relation

T
I
‘_19_1.__. = VD}_ (5.24)
DS1 DS2

which could then yield, say, a multiply/divide function with one of
these four variables taken as the output and the other three as inputs.
The neglected quadratic term in (5.13) limits this approach to

signal excursions well below the bounds of the nonsaturation regime.

Miller [5.36] employed a bridge-like scheme where the two
input resistors to a differentially connected op amp were replaced
by linearized JFETs. His circuit compensated for the parameter K
in (5.13) but not for VT' Trofimenkoff and Smallwood {5.37] used
a similar pair of linearized JFETs as shunts at the inputs of a
differential amplifier. The result was sensitive to the FET parameters
and required a thermistor to maintain temperature stability.

A different approach involving a pair of FETs has been used
very successfully to cancel both the nonlinearity and the threshold-
voltage dependence. It ranks with the single-FET linearization of
section 5.2.5 as one of the most elegant and useful FET subcircuits
for the class of gain-control applications. The basic configuration,
as shown in Figure 5.6, is two FETs with:

- Identical Vb (which forms one input variable)

S

- Differential VG (the difference V is the

s as1 Vas2
second input)

- Drain currents which are subtracted to form the output.
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Ves1 il Ves2
Ioutr = Ip; - Ip2

Figure 2.6 —— FET-pair
Multiplier Cell

OUTPUT Igyt IS ACCURATELY PROPORTIONAL TO THE

PRODUCT OF Vpg AND THE GATE VOLTAGE DIFFERENCE
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From the model of (5.13), this gives

\'4
_ _ _ DS
Ipp =K [(VGSI VT)VDS 2 ]

2
_ _ _ s
Ipa = K [(Vcsz V) Vbs 2 ]
Tour = Tp1 = Tp2 = ¥VpsVes1Vas2! (5.25)

2
Both VT and the Vb term have cancelled in the output. Also,

S

both VD and (V ) can have either polarity, so this is in-

s Gs1™VGs2
herently a four-quadrant multiplication.

This technique appears to have been first disclosed by
Highleyman and Jacob in 1962 [5.38], although, like many such
artifices, it is reinvented regularly. @sterfjells [5.39], Bosshart
[5.20, 5.40]1,* Mavor et al. [5.41], and McCaughan et al. [5.42}, for
example, have presented it in various forms. The methods of imposing
the inputs and extracting the output vary considerably. Highleyman
and Jacob drove JFETs through transformers; McCgughan et al. actually
time-shared the input stage of a CCD to act as two MOSFET devices.
The latter authors‘[5.20, 5.40-5.42] were addressing the problem of
building compatible (i.e., all-MOS) analog multipliers on analog
CCD chips.

According to (5.25), the technique yields exact cancellation

of nonlinear channel conductance and hence an accurate multiplication.

*The FET equations in Bosshart's ISSCC paper [5.40] contain
typographical errors, but the result is correct.
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In fact, this result holds for MOSFETs even when more accurate drain
current expressions are used. In (5.8), the generalized formula for
MOSFETs, there are additional 3/2-power terms arising from the bulk-
to-channel interaction. As Bosshart has pointed out [5.20], these
terms cancel in the configuration of Figure 5.6 since they are
independent of gate-source voltage and are thus identical for both
FETs. The bulk bias or "body effect" does not, therefore, enter
directly in the output (although it does affect the saturation
threshold, and therefore the multiplier input range). The result of
the more detailed MOSFET model is basically the same as (5.25),
subject to higher-order effects such as high-field mobility degrada-
tion (section 5.2.2). Measurements [5.20, 5.40] confirm that
accuracies better than 1% are attainable with MOSFETs.

For junction FETs with uniform channel doping the conclusion
is not quite so clean, since exact cancellation of all nonlinearities
is not predicted. However, an approximate analysis reveals the same

general behavior. If we assume balanced gate drive so that

Ves1 = Vgso t AV
Ves2 = Veso ~ A

then for the configuration of Figure 5.6, (5.1) gives

2 3/2 3/2 3/2
I I =3 A[(VR+V +AV) + (vR AV) - (VR+VDS AV)

D1 D2 DS

- (Vrav) 3/2 (5.26)
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W qunth
where A = I 172 and V_ = ¢i -V . The important thing to

1 R GsO
(¢i VT)
notice is the group of 3/2-power terms, in which the input gquantities

VDS and AV appear. Using the series expansion

i) ¥2 = 32 +%Vl/2v +%V-1/2v2 - ...

- and discarding terms beyond v2, (5.26) collapses to

A

Iy~ o2 T2 VpglV
v
R
s B __ v w__-v_) (5.27)
- ov 1/2 DS GS1 GS2 :
R

which, at least for sufficiently small signals, confirms (5.25) for

JFETs that satisfy (5.1).

5.2.7 Linearity and Parameter-Independence: The
Nonsaturation-Mode Analogs of Translinear Circuits

For FETs in nonsaturation, as for certain other active
devices, it is possible to systematically combine multiple devices
so as to realize "pure" algebraic input-output relations. In such
cases the output depends entirely on controllable variables (inputs,
references, dimensionless scale factors) and not on unpredictable,
temperature-sensitive FET parameters--at least in principle.

Equation (5.24) is an example of such a relation; however, (5.24) is
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a small-signal result. More accurate and general functions may be
obtained by replicating either the FET-pair multiplier of section 5.2.6
or the linearized FET-bf section 5.2.5.

The scheme of Abu-Zeid and Groendijk [5.43] uses two of the
FET pairs of Figure 5.6, with a feedback loop driving the second
pair in a "slave" arrangement as shown in Figure 5.7. The effect of
the feedback loop is to force the drain current difference in the
second pair to equal the drain current difference in the first pair.
Under this condition, (5.25) gives (allowing for possibly different

Ks in the two different pairs)

K ¥ps18%es1 = ¥2¥ps22Ves2 (5.28)
K VpsitVes1
or Nesr "€ v (5.29)
2 DS2

Equation (5.29) is a flexible multiply/divide function in
which each voltage on the righthand side may be either an input or
a reference (constant). Unlike the circuits discussed previously,
the relation is independent of all FET parameters except the ratio
Kl/Kz' This ratio will be essentially independent of temperature
for isothermal FETs of similar construction, such as those on a
common monolithic substrate; it may not be so for FETs only pairwise
matched, although Abu-Zeid and Groendijk obtained good results
even then. The ratio will be unity if all FETs are identical; it

may be intentionally made other than unity (by design of FET
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T ,,

AVggo } <—¢—> OUTPUT
Ip2 Tp22
. =
-
FEEDBACK AMPLIFIER FORCES DIFPERENCING
ITS TWO INPUT CURRENTS AMPLIFIER
TO BE EQUAL. THEREFORE,
Ip11 - Ipg2 = Ip21 - Ip22

Figure 3.7 —- Multiplier
Using Two FET Pairs and a

Servo Loop

AFTER ABU-ZEID AND GROENDIJK [S. 431
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geometry or by paralleling identical FETs) to give a fixed scale
factor.

Although (5.29) and Figure 5.7 imply that VGS2 is taken
as an output, the fundamental relation of (5.28) may be exploited
in other ways as well. For example, a modification of the feedback
loop in Figure 5.7 could force the drain current differences to be
equal by driving the drains of the second pair rather than the gates.
This drain voltage could then be taken as the output, so that the

roles of Vv and AVGS in (5.29) would be reversed. Further

DS2 2

practical considerations are the choice of common-mode voltage on
the gates, which affects the standing drain currents, and the need
for a fast feedback amplifier, which (as in any such servo system)
largely determines the bandwidth.

Abu-Zeid and Groendijk [5.43] described a special case of
this topology using two monolithic JFET pairs. They claimed a
maximum error of *1% as an analog multiplier with an input voltage
range of #0.3V (the FET thresholds were on the order of -2V).
Since (5.25) is particularly accurate when MOSFETs are used, they
should provide comparable or better results.

A different approach was disclosed earlier by Abu-Zeid
et al. [5.44] and, in a more specialized form, earlier still by
Hutcheon and Puddefoot [5.45]. It follows a similar principle:
equating internal, parameter-dependent variables to obtain a
parameter-independent relation analogous to (5.28). 1In this case,
however, the basic subcircuit is the linearized FET of section 5.2.5.

Recall that the linearization of Figure 5.3 or Figure 5.4 removed
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the major nonlinearity in ID vs. VD and gave a relation of the

S

form

I =K( - .
D V-~V Vs (5.30)

in which the device parameters K and VT are still present. Vx is the
gate bias with respect to a voltage halfway between VD and VS;

VbS may be of either polarity. Shore's topology [5.35] led, as
cited earlier, to (5.24), but only in the limit of very small signal
excursions. The linearized FET has the capability of extending

Shore's result to large signals as well.

Rearrangement of (5.30) gives

v =—2- 4y (5.31)

If we now arrange two such circuits with identical values of V , we
P: S

find from (5.31) that K and VT cancel out. The result of equating

the two sz, allowing again for different values of K, is

I I
D1 __ __ D2 . (5.32)

KiVpsi XVps2

Kl .
-1 : 5.3
Tp1Vps2 ~ & Tp2'ps1 (5.33)

or

N

As with (5.28), this is a flexible relation that may be used in a
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variety of ways. One possible implementation is shown in Figure 5.8,
i .
where VDsl s a constant, IDl and VDSZ are inputs, and the product

is obtained by measuring ID This was the configuration of Abu-Zeid

5"
et al., and uses op amps to force the desired node conditions.
Hutcheon and Puddefoot actually used a single linearized FET and
time-shared it to serve as both devices.

Abu-Zeid et al. employed discrete JFETs and reported an
accuracy of about 1% for an input range of #0.3V. As Abu-Zeid and
Groendijk later pointed out [5.43], the linearization technique does
require greater complexity than the approach of Figure 5.7. Moreover,
the requirement of accurately ratioed resistors may be difficult to
meet if, for example, an all-MOS version is needed.

There is an interesting sidelight to these two schemes.
Equations (5.28) and (5.32) both result from forcing certain internal
signals to be equal, and in both cases the parameters vT and K
(except for a ratio) are absent in the final equation. The topologies
‘that led to (5.28) and (5.32) may be generalized: instead of using
a pair of subcircuits and equating the corresponding internal
variables (AI in the case of éigure 5.7, Vx in the case of Figure 5.8)
in the pair, we set up an arbitrary number of similar subcircuits
and impose a linear constraint on these internal variables.

For example, the basic linearized-FET subcircuit of
section 5.2.5 obeys (5.31). Suppose that we have four identical

linearized FETs arranged so that

V. +V =V + Vv (5.34)
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VREF Vps2 LOAD

Figure 3.8 —- Multiplier

Using Two "Linearized”

FET Subcircuits
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Then substitution of (5.31) gives

-
—

I I
DL, D2 _ D3 _ D4 (5.35)

VDSl VDS2 VDSB VDS4

which could be exploited in a number of ways, depending on which of
the variables were considered inputs, constants and output. If
VDsl were the output, the other VDS variables all inputs and the

currents all set to the same reference value, for example, (5.35)

would give

\ = (5.36)

This is not a function that one frequently needs; however, it
illustrates a nontrivial algebraic function that is easily accommodated
with such a circuit.

The techniqug may be further generalized by allowing an
arbitrary number of sz to be summed on each side of (5.34), and by
permitting ratios of Ks, which gives added design freedom.

This is reminiscent of the translinear principle for bipolar
transistors (see chapter 6), although it yields a different class
of algebraic relation--an equation in weighted sums of quotients,
such as (5.35). Among the drawbacks are the need to "stack" values
of Vx (analogous to VBE in translinear circuits), and limited

ultimated accuracy due to imperfect FET linearization as discussed
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in section 5.2.5. The general structure is a "loop" of vxs obeying

Kirchhoff's Voltage Law, which may be cast in the form

ZV = EV (5.37)
xn Xn

cw ccw

where the notations cw, ccw refer to those n where the sense of
Vxn is clockwise or counterclockwise around the voltage loop. From
(5.31), any set of linearized-FET subcircuits whose Vx values

satisfy (5.37) will obey

I I

:E :E’%E"" = :E ET{?L" (5.38)
n DSn n DSn

Cw

ccw

A similar line of reasoning leads to a generalization of the
other parameter-independent multipiier/divider discussed above (and
epitomized in Figure 5.7). If the two-FET subcircuit of Figqure 5.6
is replicated four times, for example, and appropriate circuitry

imposes the condition

I + I =TI + I (5.39)

(note that each IOUT variable represents a drain current difference),

then (5.28) generalizes to

A av

Vas1 ¥ ¥2Vps28Ves2 = ¥3Vps3®

Vess + ¥4Vpgal

(5.40)

K, Yps1 Vasa
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in section 5.2.5. The general structure is a "loop" of sz obeying

Kirchhoff's Voltage Law, which may be cast in the form

:E:V%n = E V%n (5.37)

where the notations cw, ccw refer to those n where the sense of
Vxn is clockwise or counterclockwise around the voltage loop. From
(5.31), any set of linearized-FET subcircuits whose Vx values

satisfy (5.37) will obey

ID IDn
DI D I S (5.38)
n DSn n DSn
cwW

A similar line of reasoning leads to a generalization of the
other parameter-independent multiplier/divider discussed above (and
epitomized in Figure 5.7). If the two-FET subcircuit of Figure 5.6
is replicated four times, for example, and appropriate circuitry

imposes the condition

I + I =1 + I (5.39)

(note that each IOUT variable represents a drain current difference),

then (5.28) generalizes to

A A A (5.40)

K1Vps18Ves1 * ¥oVps28Ves2 = ¥3Vps3®Vass * KaVpsa®Vasa
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In practice, as with Figure 5.7, some of the signal variables
in this equation will be employed to force the condition of (5.39).
Corresponding to the constraint of (5.37) is the more general

condition

E snIOUTn =0 (5.41)

n

where sn is +1 or -1 depending on the polarity with which the current
difference IOUTn is summed. Note that it is not necessary to use an
even number of elementary subcircuits in this case, even though the
above example uses four. The preceding technique did require an
equal number of terms on each side of (5.37), hence an even number
of linearized FETs, in order that the VT components of (5.31) would
properly cancel.

Applying (5.25) to the condition of (5.41) yields the

general result of this second technique: a relation of the form

E SnKnVDSnAVGSn =0 (5.42)

n

which is different from the form of (5.38). It is also more
accurate; the underlying relation, in (5.25), is (at least for
MOSFETs) subject to fewer aberrations than that of (5.30) and (5.31).
Note that (5.41), in describing the way that the subcircuits are
linked, is an expression of Kirchhoff's Current Law while (5.37)
corresponds to the Voltage Law.

The ability to obtain theoretically accurate, temperature-

independent relations like (5.35), (5.36) and (5.40) from field-effect
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transistors is a novel extension of the multiplier/divider techniques
that began this section. Although only a cursory description has
been given, without circuit examples, it should be evident that many
different confiqurations can be developed from the general theory
presented here. The novelty of the idea is tempered somewhat by

the restricted types of nonlinear relations that can be realized

and by the various second-order effects that constrain the available
accuracy.

5.2.8 Summary: Strategies for Exploiting
the Nonsaturation Region

In view of the length of section 5.2, it seems appropriate
to review the main topics and conclusions. From the basic idea of
a variable channel resistance, this discussion has developed the
theory of nonsaturation-region FET variable-gain elements. Sections
5.2.4 through 5.2.7 have presented a sequence of increasingly refined
approaches in which various device limitations are dealt with.

With few exceptions, the published papers on nonlinear
analog circuits using FETs have developed theoretical results from
elementary FET models without explicitly considering the hypotheses
of the models. An attempt has been made to consider them here, and
to cast the diverse circuit techniques in a consistent large-signal
formulation.

FETs are not precision nonlin?ar elements. Although their
qualitative behavior is pleasingly simple, they lack the strikingly
predictable static characteristics of bipolar ‘junction devices.
Their peculiarities become manifest when accuracies beyond a few

percent of full scale are sought. At the same time they are very
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simple to make, and are increasingly important as analog devices in
monolithic form. Unlike the bipolar transistor, the FET in nonsatura-
tion presents a useful relationship between three signal variables
(ID, VDS’ VGS); consequently some useful gain-control functions can
be obtained with remarkably simple circuits.

In the simplest "voltage-controlled resistors" of section 5.2.4,
neither the inherent nonlinearity of the FET channel resistance nor
the dependence on device parameters is compensated for, yielding
a controllable two-terminal resistance that is fabrication-sensitive,
temperature~-sensitive and nonlinear. In the MOSFET, the excellent
linearity of drain current as a function of gate voltage suggests
that the gate would have advantages as a signal input, although the
versatility of a controlled resistor would be lost. In section 5.2.5,
a technique is introduced whereby the linearity of the controlled
resistance may be greatly improved, without addressing the parameter
dependence. If a MOSFET is used, residual nonlinearity is due
primarily to body-bias effect. The nonlinearity may be made sym-
metrical to eliminate even-order distortion provided the bulk terminal
is available. Low bulk-region doping and thin gate oxide are
desirable characteristics for such a MOSFET.

In section 5.2.6 a variety of multiple-FET topologies are
cited. The use of FET pairs can give a simple four-quadrant analog
multiplication function that is independent of threshold voltage
and has good linearity with respect to either input. This is
especially.true with MOSFETs, and the need for low-body-effect

devices is removed.
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Finally, section 5.2.7 discusses two classes of circuits
that approach the ideal: input-output characteristics insensitive
to device parameters and free of signal distortion. One class uses
two of the FET-pair multipliers of the previous section, cancelling
the remaining parameter dependence, and gives a versatile equation
relating the product of two voltage variables to the product of
another two. Since four FETs must be well matched and at the same
temperature, monolithic construction is almost mandatory. The other
class employs a pair of the linearized FETs of section 5.2.5, and
leads to an equality-of-ratios equation in which two of the four
variables are voltages and the others are currents. Generalizations
of these two classes can in theory produce more elaborate nonlinear
functions in a manner similar to the translinear principle for bipolar
junction devices.

Little has been said here about signal excursion limits
in these circuits. Always present in the background of the discussion
is the inescapable nonsaturation constraint. ,(There are inter-
dependent bounds on the terminal voltages in each FET, as detailed
in sections 5.2.1 and 5.2.2. Consequently, a device like a multiplier
may be restricted to a subset of the XY input plane in order to keep
the key transistors out of saturation. Further constraints occur,
especially with JFETs, because of the possibility cf forward-biasing
the gate-channel (or bulk-channel) junction. Such considerations
are intimately tied to the specific circuit involved; however, they
form a common shortcoming of nonsaturation-mode large-signal gain

.

control elements.
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5.3 FETs in Other Modes of Operation

In the nonsaturation region, the drain current is sensitive
to both gate bias and channel voltage drop (VDS); a plethora of
multiplication schemes make use of this dual sensitivity. In con-
trast, a FET operating in the saturation region (also called the
pinchoff or pentode region) has a drain current that depends in a
useful way only on gate bias.

The definition of the saturation threshold for JFETs is
different from that for MOSFETs with significant body effect;
see sections 5.2.1 and 5.2.2. Above this threshold (i.e., for a
sufficiently large drain voltage), the FET channel is completely
depleted beyond a "pinchoff" point near the drain end; between this
point and the drain diffusion is a high-field depletion region which
absorbs further increases in drain voltage. Consequently the
voltage along the nondepleted part of the channel is effectively
fixed, accounting for the insensitivity of IDixDVDS. Any large-
signal multiplicative function in this mode must therefore exploit
the ID-to-VGS relation.

In the MOSFET, operation with VGS below the threshold voltage
does not correspond to a completely "pinched off" channel, as in a
JFET, but to a weakly inverted silicon surface. Relatively small
drain currents can flow in this condition, and the dependence of ID
on both VCS and VSB is approximately exponential over a few decades
of current. The exponential property can bé exploited as in bipolar

junction dervices, providing yet another useful mode for MOSFETs.
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5.3.1 JFETs and MOSFETs in Saturation

Although saturation is the most common region of operation
for FETs in nondigital applications (in amplifiers, for example), it
has been little used for large-signal gain control. Ikeda [5.46]
operated a MOSFET with a large drain-to-source bias and coupled the
drain voltage to the gate through a capacitor. This gave an AC
resistance from drain to source that could be modulated by varying
DC drain current (hence transconductance), but it was in fact a
small-signal AC resistance, with quadratic distortion properties
similar to the circuits of section 5.2.4.*

H&zman [5.47] used a more elaborate circuit with two dif-
ferentially connected pairs of MOSFETs, whose source currents were
supplied by a third pair, whose sources were in turn grounded. The
result was an approximate multiplication with an approximate can-
cellation of some parameter dependence, but a severe residual
dependence on temperature and bias. Neither of these two approaches

is very attractive for large-signal applications.

5.3.2 Device Characteristics

Expressions for ID in saturation can be obtained from the
nonsaturation results of sections 5.2.1 and 5.2.2, evaluated at
the onset of saturation. As the drain voltage increases beyond the

saturation threshold, ID will increase slightly as the pinchoff point

* Tkeda emphasized that a FET in saturation could stand off
a DC drain-source voltage without changing its characteristics, unlike
a FET in nonsaturation. Of course, the same thing could be
accomplished by adding a capacitor to a FET in nonsaturation. Ikeda
evidently confused control-input linearity with signal-path linearity
in claiming that his circuit was at least as "linear" as that of
Bilotti [5.34].
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moves further into the active channel, effectively decreasing the
channel length. This effect has been treated extensively in the
literature and can be incorporated into the analysis, but it is a
distraction in the present context so it will be neglected. The
discussion will assume instead that the FETs are operating at the
onset of saturation, with the drain current determined entirely by
VGS (and, in the case of MOSFETs, VSB).

Consider first the result of evaluating (5.1) at the onset of
saturation, which corresponds to VDS = VGS - VT' Equation (5.1)

gives the drain current for a JFET with uniform doping throughout the

channel region. Taken at the onset of saturation, (5.lb) yields

QN t~ 2€ 1/2

1 *g 2 s 3/2
== qu N_t - ¢, += < - =
I " W NgE | Vg ~ ¢ v 3 5t 3 2 (¢ Vss!
s gN._t
a
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=1 [1-3 (=) +2 P (5.43)
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where Ip = %- and the other terms are defined in

section 5.2.1. Now, as Sze [5.1] has pointed out, the corresponding
result for a JFET whose channel doping is a thin, dense sheet rather
than uniform (virtually the opposite extreme from the assumptions

in (5.1)) is of the form

2
$. -V
I =1 |1- (2GS (5.44)
p - 'p 5. -V
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Equations (5.43) and (5.44), relating ID to VGS for two
very different theoretical JFETs, do not at first look at all
similar. Yet when plotted together they very nearly coincide. This
was illustrated by Sze. Indeed, the close numerical similarity of
FET characteristics in saturation is typical. In a series of widely
quoted papers [5.4-5.7], Richer and Middlebrook established that
JFET saturation-region static characteristics fall into a narrow
range, both in theory and for many measured devices. They showed

[5.7] that under certain weak restrictions, the theoretical result

has the form

VGS -n
ID = IDSS (l - V——) (5.45)

where n is always near 2 and is bounded by 2 < n < 2.25. Here,

IDSS is the drain current for zero VGS (following the usual industry

notation) and is different from the Ip of the preceding equations.
Equation (5.45), with n=2, is exactly the form predicted

by the first-order nonsaturation model of (5.13) at the onset of

saturation. The first-order model

VGs 2
ID = IDSS (} - v;—) (5.46)

- (modified perhaps by the inclusion of ohmic source resistance) is

often used in practice.
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Deviations due to high-field mobility degradation in the
JFET are more likely in saturation than in nonsaturation, since the
electric field along the channel is greatest in saturation. Cobbold
and Trofimenkoff [5.9] showed that such effects could account for
values of n as low as 1.5 in (5.45), in contrast to the lower limit
of 2 predicted by the simpler analysis of Richer and Middlebrook.
Cobbold and Trofimenkoff also measured values of n as low as 1.57
and as high as 2.7 in some JFETs, although most showed n close to 2.

Miller and Mever [5.48] demonstrated vividly that two FET
characteristics whose plots are nearly coincident may yield vastly
different results in some applications. They found that classical
theoretical results such as (5.43), augmented by allowing for a
series resistance in the source lead, agreed well graphically with
measured JFET behavior. Yet, for predicting high-order nonlinearities
in the JFET transfer characteristic, the theoretical curve was
inadequate. Nonlinearities above the quadratic depended on exactly
those differences that appeared so slight when (5.43) and (5.44)
were plotted together. Miller and Meyer found it necessary to work
from measured FET data where such nonlinearities were important.*

For the MOSFET, the drain current at the onset of saturation

may be found by evaluating (5.8b) with a drain-to-bulk voltage given

* This seems tc be the case, in both nonsaturation and satura-
tion, whenever the exact static characteristics of JFETs are critical
in circuit design. Published work on FET circuits makes heavy use
of loose expressions like (5.46) or, less often, theoretical abstrac-
tions like (5.43). To accurately predict high-order behavior in
JFETs, it will probably always be necessary to forsake these
models and work directly from measured characteristics.
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by (5.10). The result is*

4
= 1(w ' _ 2 _x 4
I 2 (L uncox) VssVrs 2¢Fp) T a [2 3 J2 2 VastVspVrp)

4 2 W
+ -=v( = ' -
2‘] L v2 2 Ves™VspVre) ] 3 Y( L unCox) [VGS+VSB VEB

Y2 2 3/2 3/2
2 (\l 1+ Y—z VestVsp™VrR) - l)] - (2¢Fp+vSB)

(5.47)

(2e_an ) /2
where Y = and the other terms are defined in section 5.2.2.
ox
The factor y, sometimes called "body effect coefficient," is a measure
of the sensitivity of the FET to bulk (body) bias compared with gate

bias. If the body effect is negligible, Yy (in volts to the 1/2 power)

approaches zero and (5.47) simplifies (considerably) to

—_ ' -
T "nCox Vas™Vr) (5.48)
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T VFB * 2¢Fp.
This has the form of (5.46), although slightly rearranged,
and supports the frequent assumption that MOSFETs fundamentally are

better square-law devices in saturation than are JFETs. Equation (5.47)

* The standard books on device theory (Sze, Grove, etc.)
do not give this expression explicitly. I understood why after
deriving it.
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.

is subject also to mobility-degradation effects as discussed in
section 5.2.2 [5.13].

In summary, both JFETs and MOSFETs operating in saturation
may be described as imperfect square-law transconductors. The near-
square-law behavior is widely exploited in large-signal high-frequency
circuits for communications electronics [5.49-5.51). To date it
does not appear to have been used much for nonlinear analog functions
of the kind central to this thesis. One way in which it might be

used is the classical quarter-square approach to analog multiplication.

5.3.3 Quarter-Square Architectures

If accurate square-law devices are available, they can syn-

thesize an analog multiplication by exploiting the identity
1 2 2
XY = i ((X+Y)" - (x-Y) ") (5.49)

This was once the dominant approach to accurate, high~speed multiplica-
tion, using piecewise-linear diode squaring operators. A direct
implementation of (5.49) requires a pair of squaring circuits, which
must accommodate bipclar arguments (inputs) if the resulting
multiplier is to operate in at least two quadrants of the X-Y plane.

To the extent that they obey (5.46), FETs can in theory act
as the squaring elements in a multiplier similar to this "quarter -
square" structure. The formulation will be slightly different from
(5.49) to allow for the idiosyncrasies of the FET "sequare law":
a one-quadrant "input" (VGS) and an offest term inside the squaring

operator. To ses th: basic id2a, suppose that X and Y are normalized
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input variables suchthat0 < X < 1 and -1 < ¥ < 1. One modification

of the quarter-square identity in (5.49) is
1 2 2
7 [(14+X+Y) - (1+X-Y) ] = XY + ¥ (5.50)

Notice that the quantities within parentheses are now unipolar
(nonnegative) rather than bipolar, and that the inputs span two
quadrants of the X-Y plane (unipolar X, bipolar Y). The added Y term
on the righthand side of (5.50) may be regarded as "Y feedthrough"
or, equivalently, "X offset," and could in principle be subtracted
off to yield a pure multiplication. With suitable scaling of the
input variables, (5.50) may be applied to FETs in saturation, since
the two squaring operations in (5.50) have forms similar to the
ideal FET square law, (5.46).

To provide a concrete example, consider two identical FETs

satisfying (5.46) and having gate-source voltages given by:

[ P VA 5
VGS 5 Vx VY (5.51a)
Vo
w =T, - 5.51b
sz 3 Vx vY ( )

where Vx and V., are the multiplier input variables. Vx will be

Y v -V
unipolar, between zero and-é? i VY will be bhipolar, between 7
v
and 1%-(note that VT is negative for JFETs and depletion-mode

MOSFETs). For variable-gain applications Vx would be the gain
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control input, V& the signal input. The output is then the drain

current difference, given by

41 \' .
= I' = I" = DSS - __2 >3
AID ID ID V2 Vx > VY (5.52)
T

This is very similar in form to (5.20), which applies to a
"linearized" nonsaturation-region FET, even though the structure is
completely different. The desired VXVY product is accompanied by a
device-dependent scale factor and an offset on the Vx input. The
input voltage limits, furthermore, are proportional to VT. However,
it seems likely that these aberrations could be overcome by compound
configurations similar to those discussed in section 5.2. For
example, if a second such multiplier were connected in a "slave"
arrangement such that its output (drain current difference) were
forced equal to the output of the first multiplier, the result would

be to impose the condition

Vo Vp
(Vxl B T) Yy1 = (vxz B '2_) Vy2 (5-53)

which could be exploited for a multiplication independent of the
scale factor 4IDSS/Vi . Another approach might force the drain
current difference of one multiplier to a certain (input) value,

drive a second multiplier such that the two multipliers had the

same vx, and obtain the result
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AT_V
ar, = —2 (5.54)
Y1

--a parameter-independent, bipolar-input multiplier/divider developed
entirely from FETs in saturation.

This discussion has introduced some conceptual approaches
to analog multiplication using saturation-mode FETs. Many variations
on the "quarter-square" theme are possible, and this area should be
investigated further. The accuracy of any such ciréuit hinges, of
course, on the applicability of (5.46) and the matching of the FETs,
neither of which can be taken for granted.

Other nonlinear analog functions can be obtained from (5.46)
as well. Seriki and Newcomb [5.52] described a practical squaring
circuit based on a pair of MOSFETs. The gate-to-source voltages are
driven with signal increments of opposite polarity and the drain
currents are summed. This cancels any odd-order components in the
VGs-to-ID relation, enhances the accuracy of the fundamental squaring
behavior in the FETs, and accommodates a bipolar input. Seriki and

Newcomb also suggested a quarter-square multiplier as an application

of the squaring circuit.

5.3.4 MOSFETs in Weak Inversion

The threshold voltage of a MOSFET is usually defined as the
value of gate-to-source voltage at which the strong inversion condi-
tion occurs at the silicon surface under the oxide. When the gate-
to-source voltage is reduced below this value, the transistor enters
a region of operation where drain current flows by diffusion rather

than drift, is relatively insensitive to drain-to-source voltage,
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Figure 5.9 —-- Simple

Squaring Cell Using

FETs in Saturation
SYMMETRY OF THE CIRCUIT ENHANCES THE FET SQUARE-LAV

TENDENCY BY CANCELLING ODD-ORDER DISTORTION. THIS
IS THE BASIS OF THE CIRCUIT OF SERIKI AND NEWCOMB (S.S21.
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and depends more or less exponentially on VGS' This effect, con-
sidered a nuisance in digital circuits, is potentially useful for
large-signal analog functions.

Vittoz and Fellrath [5.53] have reviewed the work in this area

and isely s i h .
nd concisely summarized the theory In terms of VGS' VDS and VSB'
their expression for drain current is
(1— ) Vs Vs ~WVpg
_ W n kT nKT kT
ID =T IDo e e 1 -e (5.55)

in which IDo is a characteristic current that varies with processing
and n is a capacitance-ratio parameter related to the surface

depletion-region capacitance C'

and the oxide capacitance C'
d ox

(both per unit area) by

n=14+ (5.56)

The other parameters follow the usual MOSFET definitions. The value
of n can be controlled somewhat through the process design; it
ranges from 1 to about 3, tending to 1 for a lightly 3doped bulk
region.

The factor in brackets in (5.55) will be effectively unity
under normal operation (substantial Vbs). The parameters n and IDO
are both weak functions of VSB; moreover, ID depends significantly on

VSB through the first exponential in (5.55). For n > 2 the dependence

is greater on Vv

SB than on V__.

GS



Equation (5.55) is applicable over some three or four decades
of drain current typically, limited at the lower extreme by leakage
currents and at the upper by departure from weak inversion conditions.
The weakly inverted surface does not necessarily correspond to
extremely low drain currents, although it does for MOSFETs of
geometries used normally in the other operating modes, with (W/L)
factors clustered around unity. In order to use (5.55) at currents
above the nanoampere region, the (W/L) factor must be much larger

than unity. Vittoz and Fellrath derived the upper limit on drain

current
n-1 w kT\ 2
€ —_— = ' —_ .
ID - e2 L uncox (q) (5.57)

for weak inversion operation.

The exponential nature of (5.55) immediately suggests the
use of some powerful design techniques developed for bipolar tran-
sistors. Exact large~-signal transfer characteristics could in principle
be created following the "translinear" approach (see chapter 6).
Although Vittoz and Fellrath, as well as others, have investigated
some useful analog circuits (amplifiers, oscillators, current
sources, etc.), these primarily have been other than translinear
configurations. Implementation of multipliers and other variable-
gain elements is a natural and potentially fruitful area that needs
research.

This discussion will not include any practical variable-

gain configurations using weak inversion operation, since they
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have not yet been investigated in depth. However, the obvious
potential for translinear circuits in this mode prompts some con-
clusions regarding such circuits and the important differences
between (5.55) and the analogous relation in bipolar transistors.
First, weak inversion is a low-current regime, or more
accurately a mode of low current per unit channel width. Because
the oxide and reverse-biased junction capacitances are not cor-
respondingly small, there are severe limits to the operating fre-
quencies and large-singal slewing rates in these circuits. While

it may be possible to cover the audio range and perhaps somewhat

beyond, it is unreasonible to expect analog functions extending
into megahertz bandwidths.

The weak-inversion MOSFET is inescapably a four-terminal
device. Because drain current depends exponentially on bulk-to-
source bias, it is very advantageous to have independent bulk
electrodes. Processes such as standard NMOS, with the bulk regions
occupying the common substrate, will require significantly different
circuit topologies than their bipolar counterparts in order to
realize translinear functions. The source potentials will be
tightly constrained; circuits depending on the matching of VGS will
need identical source voltages, and transistors will be unable to
operate at source voltages much above the substrate voltage without
being effectively shut off.

These considerations derive from the exponential behavior
in (5.55). Additional problems are caused by the sensitivities of
n and IDO to VSB' sensitivities which are not shown explicitly in

(5.55). Typically, the accuracy of translinear circuits depends

R



111

critically on the fidelity of the exponential voltage-to-current
relationship, as discussed in chapters 7 and 8. As pointed out by
Vittoz and Fellrath, such circuits can only be used with transistors
whose VSBS are within a few %% of each other. Thus, the "stacking"
of VGSS' analogous to the emitter-to-base coupling of multiple
bipolar transistors, is ruled out whenever the bulk voltages a.e
predetermined.

The FETs are not without advantages in this rode, especially
if the bulk regions are isolated, so that, for example, the bulk of
each can be tied to the source. Current flow into the gate is
effectively zero, thus removing one of the common problems encountered
in bipolar-transistor translinear circuits. Also, the FETs can
be designed with a wide range of aspect ratios (W/L). Translinear

circuits with weak-inversion MOSFETs are a provocative concept,

worthy of further study.

5.4 Special-Purpose Field-Effect Devices

The discussi<wn thus far i. his chapter nas asswied the use
of standard junction and MOS FETs, with emphasis on the planar
structures compatible with monolithic circuits. Other FETs and even
other transistor types have been used and proposed for variable-
gain applications. The emphasis generally has been on improving

the controllable small-signal characteristics (channel resistance

or transconductance), which falls outside the main thrust of this
thesis. However, the topic is significant in the broader context
of variable gain, and it illuminates some limitations of conven-

tional FET structures.
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5.4.1 Devices with Extended Nonsaturation Region

Gosling, in his study of voltage-controlled attenuators
{5.23], was concerned with nonsaturation-region JFETs operated in a
simple "voltage-controlled resistor" mode (see section.5.2.4). He
noted that the classical uniform-channel JFET shows a rapid increase
in small-signal drain-to-source resistance as the gate-to-source
bias approaches the pinchoff (threshold) value. The importance of
this depends on the application; in feedback-type automatic level
control circuits, for example, such a characteristic can give un-
desirable loop dynamics.

Gosling advocated the use of an etched-alloyed JFET, an
annular s*ructure that exhibits a relatively "soft" saturation with

respect to VD as well as a more gradual sensitivity to VGS' This

S
was attractive at the time (1965), planar transistors being relatively
novel and monolithic analog FET circuits being nonexistent. Today,
however, it is less readily available and it is quite incompatible
with monolithic fabrication. Similar results might be possible with

a special monolithic structure, if indeed the benefits justify it,
which is uncertain.

Strachan and Townsend [5.54] suggested a monolithic MOSFET
structure to achieve a similar aim. In the MOSFET, as they pointed
out, the small-signal drain-to-source conductance is essentially
a linear function of VGS in nonsaturation. If several MOSFETs with
different threshold voltages and channel aspect ratios are connected
in parallel, the resulting device exhibits a very wide range of

conductance as successive MOSFETs turn on at different values of

gate voltage. The concept is similar to the method of obtaining
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wide transconductance range in the remote-cutoff pentode vacuum tube.

Strachan and Townsend proposed a planar MOSFET structure in which
both channel length and local threshold voltage would vary across
the device, giving a continuous equivalent of the multiple-FET
configuration.

Nishizawa et al. [5.55] have developed an entirely different
transistor structure, the static induction transistor (SIT). Under
gate-to-source bias this device has a resistive drain-to-source
characteristic that does not saturate as a FET does. However, the
drain-to-source behavicr becomes nonlinear at low currents; the
device does not exhibit the ohmic property found in a FET around

VDS = 0.

5.4.2 Tetrode FETs for Variable Gain

Yang [5.56] investigated the use of a two-gate JFET for
amplitude modulation. The device considered was a standard rec-
tangular FET with electrically independent gates on either side of
the channel. In saturation, such a FET can provide a small-signal
transconductance from one gate to the drain that is nearly a linear
function of the D.C. bias on the other gate. However, the large-
signal transconductance is significantly nonlinear, introducing
signal-path distortion, and Yang found it necessary to use a narrow-
band configuration with a tuned load circuit in order to mitigate

the distortion.




CHAPTER 6

LARGE-SIGNAL GAIN CONTROL USING BIPOLAR JUNCTION DEVICES

6.1 Introduction

This chapter presents a brief survey of the various techniques
for creating large-signal variable-gain elements from bipolar junction
transistors (BJT) and related devices. The number of basic configura-
tions is surprisingly small, and the objective here is to examine the
many published examples in a unified manner.

Because this topic has received a far more systematic treatment
in the literature than the subject of the previous chapter, the discus-
sion will defer to the references on many details. In particular, sim-
plified transistor models will be used for clarity. Base currents
often will be neglected. Chapter 7 goes into details of the logarith-
mic current-voltage characteristics on which much of this material is

based.

6.2 Underlying Principles

6.2.1 Current-Voltage Characteristics

Bipolar transistors in forward-active bias are one of several

device types obeying relations of the form

kT IC
VBE = -C—l— 1n I_ (6.1la)
S
qVv
BE
IC IS exp e (6.1b)
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Such characteristics hold, in modified form, for diodes and
various other semiconductor devices. Details and limitations in
equations (6.1) are treated at length in section 7.2.

A single device obeying (6.1) can be readily employed to

give a controllable small-signal conductance or transconductance.

We have
. - dIC
m deE
_ s (T 6. 22)
=kt P\ kT -ca
kT
= IC/ ((1) (6.2b)

Circuits are easily (and frequently) constructed to employ this prop-
erty. The transconductance yields a signal gain, or alternatively a
driving-point conductance, that follows a linear control law if IC
is the controlling variable or an exponential one if VBE is the con-
trol. Such a small-signal application is available with any non-
linear device. The forms of control law with the bipol;r transistor
are rather convenient, but the basic result is temperature-sensitive,
and signals causing VBE excursions of the order of kT/q or greater
violate the "small-signal" condition, causing excessive distortion.

Because of the logarithmic/exponential functional relation,

a rich set of large-signal variable-gain techniques is also available

from the BJT. These techniques depend on using two or more transistors

to'produce a fundamentally linear signal-path characteristic. At the
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same time, undesirable dependence on device parameters (T, I etc.)

SI
can be removed. These circuits have enjoyed great industrial success,

due largely to the accuracy and predictability of (6.1).

6.2.2 Addition of Logarithms

One rather obvious way to exploit (6.la) is to take the log-
arithms of two currents, sum them, and then obtain the antilogarithm
of the sum, using (6.1lb). This is the basis for some successful analog
multipliers. As stated, however, it is a one-quadrant multiplication
of currents. The requirement for a bipolar signal input in variable-
gain applications requires a more indirect approach. Moreover, many
variable~gain applications do not use a linear control law (see chap-
ter 3).

In practice, differential transistor pairs are commonly used
in variable-gain elements. These conveniently accommodate bipolar
signals; moreover, they have properties that make them, perhaps, more

fundamental than the transistor in such circuits.

6.2.3 Two Ways to Use Differential Pairs

Much of the utility of bipolar transistors in large-signal
variable-gain circuits follows from a key characteristic of differen-
tial (long-tailed) pairs. For a given total collector current, the
fraction of this current that flows in each transistor depends on the
base-emitter voltage difference but not on the total current (Figure
6.1). This is not true of field-effect transistors; it follows
directly from the logarithmic/exponential characteristic of (6.1).

Indeed, requiring that a differential pair of three-terminal active
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Figure 6.1 —Differential BJT pair.

k IS THE FRACTION OF TOTAL CURRENT THAT FLOWS IN THE LEFTHAND
COLLECTOR. IT DOES NOT DEPEND ON THE TOTAL CURRENT I. BUT ONLY
ON AVgg (EXCEPT FOR SECOND-ORDER EFFECTS).
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devices have this property leads to a differential equation whose solu-

tion is the exponential of (6.1lb) for each device.

In practice this remarkable current-steering property is

exploited in two distinct ways. Most successful large-signal variable-

gain circuits using bipolar transistors employ one or both of these

techniques.
Class 1l:
Differential collector currents are imposed on a pair
of transistors in response to the signal input. The
AVBE from this pair is conveyed to the bases of a
second pair operating at a different total collector
current. The output is the differential collector
current in the second pair; control is accomplished
by modulating the total currents or the absolute VBE

values.

Class 2:

A unipolar current, containing a signal component,

is imposed as the total emitter (or collector) current

of a transistor pair. An imbalance of VBE steers part

of this signal current into an output circuit while

the remainder is discarded or subtracted out. The

VBE imbalance is the control input.

Class-1 circuits appear in various forms; a typical case is

shown in Figure 6.2(a). This is known as a "linearized base-driven

pair" or "Gilbert's quad." Various manifestations of class-2 circuits

have been called, for example, "emitter-driven pair" and (in a
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different form) "controlled-cascode multiplier." Figure 6.2 (b)

shows the basic concept.

6.2.4 Translinear Circuits and Current Variables

Class 1, defined above, is in fact a special case of a rich
set of bipolar-transistor analog circuits. These combine multiple
transistors to obtain current-input current-output transfer functions,
linear and nonlinear, that are fundamentally accucate, independent of
temperature and limited only by second-order effects. They are based
directly on the exponential law of (6.1b), which implies a trans-
conductance linear in collector current; hence, translinear.

The general principle was first articulated [6.1] and has
been extensively explored by Gilbert.* A slight generalization was
noted by Hart [6.2], although it was actually implicit in Gilbert's
early papers [6.3, 6.4] . The theoretical basis is reviewed in section
7.3.3 of this report, in preparation for treating certain second-order
effects. This chapter will emphasize practical examples.

A crucial message of the translinear formalism is that any
large-signal gain circuit (fixed or variable) built from BJTs, in order

to be exactly linear, must use currents as inpﬁt and output variables.

In practice, of course, many voltage-mode amplifiers achieve approxi-
mate linearity through the use of linearizing artifices (feedback or
feedforward). But since the variable-gain mechanism in BJT circuits
mandates open-loop operation, all high-performance VGE configurations

require a current-mode signal input and output.

*Although named more recently [6.1], the principle appeared
in an appendix to Gilbert's classic "amplifier" paper [6.3].
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This introduces a voltage-to-current conversion issue if the
circuit is to process voltage signals, as is often true. That issue
is not treated here.* Note that the current requirement applies to
the signal input and not the control input of the VGE. Thus the
common emitter node of a BJT differential pair is a natural signal
(current) input (class 2, Figure 6.2(b)) while additional transistors
are required to convert the bases to a signal input (class 1, Figure
6.2(a)). Of course, linearizing drive is also required on the bases

in Figure 6.2(b) if a linear control law is sought. The circuit then

becomes similar to Figure 6.2(a) except for the definitions of signal

and control inputs.

6.3 Early BJT Variable-Gain Circuits

Prior to the evolution of systematic large-signal methods
using bipolar transistors, numerous specialized circuits were explored
for multiplication and gain control. Hurtig's circuit [6.5], one of
the earliest (1955), was actually a crude form of the "controlled-
cascode" multiplier, which recently has been used for high-performance
variable gain [6.30]. A current-mode input signal was steered between
a common-base (germanium) transistor and an alternate path through a
diode to ground. The steering was controlled by a current input.

Other early VGEs were based mostly on small-signal approxima-
tions, and were therefore limited in dynamic range. Kahn [6.6] and
Romano [6.7] described applications of forward-biased diodes as

current-controlled variable attenuator elements. Although not a

*See, for example, the study of bipolar-transistor voltage-
current converter circuits by Mack [6.15].
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viable large-signal technique, this was relatively successful for
signal-normalizing applications like automatic gain control (see
sections 3.1 and 3.2). 1In such applications, the peak voltage excur-
sion across the diodes, and hence the signal-path nonlinearity, is
approximately independent of gain setting. Put another way, the

VGE has minimum gain when the input signal is maximum. Figure 6.3
shows a simple example; more sophisticated versions, such as Romano's
[6.7], used a pair or bridge of diodes for symmetric saturation be-
havior and reduced control feedthrough.

Other small-signal approaches used the current-controlled
transconductance of bipolar transistors. Deb and Sen [6.8] described
a rudimentary multiplier using AC-coupled common-base transistors.
Frater [6.9] and Morton [6.10] used differential transistor pairs
in "variable transconductance" schemes; these were basically fore-
runners of translinear multipliers, without the linearizing current-
input circuits. Morton's circuit did use a linear voltage-current
converter to supply the emitter currents of balanced differential
pairs; thus it had a linear large-signal response on one input (the
class-2 technique).

The limitations of a small-signal philosophy were recognized
early. In 1963, Kundu [6.11] pointed out the narrow dynamic range
of such circuits by using a large-signal analysis. He subsequently
published [6.12] a large-signal multiplier design using logarithmic/
exponential techniques. It was, however, an unwieldy AC-coupled

configuration.
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Figure 6.3 —A diode as a simple

variable-gain element.

DISTORTION CAN BE SMALL IN APPLICATIONS LIKE AUTOMATIC GAIN CONTROL.,
WHERE GAIN OF CIRCUIT FALLS AS INPUT AMPLITUDE RISES.
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Novel use was made of saturated bipolar transistors in large-
signal, albeit device-sensitive, VGE circuits. Davidson and Leighton
[6.13] showed how a pair of parallel, saturated BJTs, one inverted,
gave a linear variable resistance to ground. Grasselli and Stefanelli
[6.14] described in 1966 what amounts to a translinear two-quadrant
multiplier circuit, with current inputs and output. This circuit
used a pair of saturated transistors, connected in inverse-parallel,

driving the bases of a differential pair.

€.4 High-Performance BJT Variable-Gain Circuits

The "contemporary" circuit techniques that follow are distin-
guished by good signal-path linearity and highly predictable charac-
teristics compared to the early methods. Although distortion sources
remain (the subject of chapters 7 and 8), they arise from deviations
from (6.1) and device mismatch, rather than equations (6.1l) themselves.

6.4.1 VGE Configurations Using Linearized
Base-Driven Differential Pairs (Class 1)

Several reference« [6 2, 6.4, 6.16-6.24] deal with variations
on Figure 6.2(a), which is perhaps the quintessential translinear
circuit. This circuit is also used to investigate the effects of
log-conformance error in chapter 7.

The "input pair" in Figure 6.2(a) operates at a quiescent
current of IA per device, with a differential signal current of

i i " ]
I ignaL: Assuming that beta is large, the "output pair" operates at

a quiescent collector current of IB per device, and the output current,

the signal-dependent component appearing at the collectors, is
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- v
Iour = Tp/Ta) Is1anaL (6.3

It is assumed here that all four devices are matched. The basic
result is treated in more detail in section 7.4. The saturation

limits, where both input and output reach a hard bound, are given by

i <1 (6.4a)

IISIGNAL A

|IOUT| 5’1B (6.4b)

A useful feature of the class-1 variable-~gain circuits is their
ability to operate in either a range-compressing or a range-expanding
mode (section 3.1). Either of the currents IA and IB' or both at
once, may be used as gain-control input. The choice determines how
the linear ranges of signal input and output, as well as the noise

level, will vary with gain setting.

For example, if G is the desired current gain, we may take

or

or
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REF =
I, = —— ¢ I3 = Iggp VO
v G
(where IREF is some reference current).

All three of these control strategies give the same current

gain G, but different relationships between gain and linear range.
In the first example, the input overload point remains constant while
the output excursion expands and contracts with gain. In the second
case the reverse is true. In the third, both input and output limits
vary, but over a smaller range than the current gain.

Moreover, the noise behavior is different. Noise studies by
sansen and Meyer [6.24] and Bahnas et al. [6.22] have demonstrated
that transistor base resistance is the dominant noise source at typi-
cal operating currents, and that the noise magnitude depends signi~
ficantly on the output-pair current IB' Bahnas et al. derived an
expression for white noise in the circuit of Figure 6.2(a), from

which we can obtain

2
IB + (G+2)qIB (6.5)

The expression gives power spectral density (mean squared
noise current per Hertz) in IOUT when the signal input is zero. ¢ is
electron charge, VT is kT/q, Iy is the ohmic base resistance, and G
is the nominal current gain, IB/IA' This assumes four transistors of

identical construction.
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Thus, if IA is fixed and IB varies, as in the first example
above, then the noise level in the output will be roughly proportional
to gain (taking R.M.S. noise current, which is the square root of the
last expression). On the other hand, if IB is held fixed and IA
varies to set the gain, the situation is different. The R.M.S. output
noise will tend to remain constant if the first term on the righthand
side of (6.5) dominates, or to vary with gain if the second term is
larger. This depends on the particular values of Ty IB and G. This
analysis neglects the noise in the current sources, which is some-
times very important as well.

Thus, the signal limits and noise behavior, as functions of
gain, may be tailored to best fit the application.. In a range-
expanding role, such as amplitude modulation or audio dynamic range
expansion, the input-pair current IA should be fixed while the output-
pair current IB controls the gain. This causes the output noise level

to fall as the output signal is reduced.

On the other hand, a range-compressing application, like

automatic gain control, has different requirements. The output swing
of the variable-gain circuit will be approximately constant, so it is
inappropriate to modulate gain by varying the output-pair current.
Instead IB should be held constant and IA should be varied. If ry
dominates among noise sources, as is usually the case, output signal-
to-noise ratio will be maximized this way. This method yields a
reciprocal-type control law (the gain varies as l/IA)’ but the control

law can be changed at will, in principle, by adding a translinear

nonlinearity to drive the input-pair currents.
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An alternative approach for range-compressing applications is
to vary IB and use the resulting variable-gain element in the feedback
path of an amplifier. Bandwidth of the resulting circuit is generally
determined by the amplifier, and will tend to be much lower than for
the open-loop VGE. This method was used by Todd [6.19]; the same VGE
served for both range expansion and (in a feedback path) range com-
pression in an audio compander.

Nonideal effects that impair the performance of class-1
circuits include odd-order distortion due to log-conform~:ice error
(e.g., ohmic resistances), treated in chapter 7, and transistor mis-
match. Unequal IS values in the four transistors, due to processing
variations or mismatched discrete devices, yield even-order distortion

on the order of one percent per millivolt net V mismatch (at 300

. BE
degrees Kelvin). This was examined in detail by Gilbert [6.4].
Trimming may be necessary to zero the base-emitter voltage offset
if the signal-path linearity is critical.
Because it is an open-loop circuit with current-mode input
and output and low-impedance internal nodes, Figure 6.2(a) potentially
has very wide bandwidth. Gilbert showed that the dynamics are domi-
nated by the r, of the input pair (i.e., l/gm) forming a pole with
the C_ of the output pair [6.3]. This gives a pole frequency of about
fT/G, where'fT is the transition frequency for the transistors.
However, the collector-to-base capacitances (CU) of the out-
put pair provide an out-of-phase feedforward path that limits the
available attenuation at high frequencies. As in other situations

where a capacitance feeds around an inverting transconductance, a

right-half-plane transmission zero is created at a frequency
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W = om
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This also distorts the phase response of the circuit. Sansen and
Meyer [6.23], Gilbert and Holloway [6.30], and others have noted this
problem, which is one of the main recommendations for the alternative
(class-2) VGE structure in wideband applications.

The original and definitive development of these circuits is
due to Gilbert, in a pair of papers [6.3, 6.4] and their precursor,
an ISSCC report [6.16]. Subsequently, Sansen and Meyer obtained fun-
damental results on distortion [6.23] and noise [6.24] in these and
related (class-2 and six-pack) variable-gain circuits. Schlotzhauer
and Viswanathan [6.17] presented a practical version, with attention
to base-current effects, for use as a multiplier. Jung [6.18] dis-
cussed practical versions, of moderate performance, that could be con-
structed from available general-purpose integrated circuits. Todd,
as mentioned previously, used the technique in a commercial monolithic
audio compander, the Signetics NE570 [6.19].

Two other versions that have appeared are different from
Figure 6.2(a) but retain the essential class-1 structure, defined in
section 6.2.3. Curtis's voltage-controlled amplifier [6.20] is an
example of gain control accomplished not by varying pair currents but

by directly changing the absolute V E level of one of the pairs (inde-

B

pendent of VBE difference, which is signal-dependent and identical in
both pairs). Figure 6.4 shows the basic circuit. The differential
current gain of the circuit is unity when Ve is zero; nonzero Ve

-~

results in gain (Ve<0) or loss (Ve>0). In general,
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Figure 6. 4 - Curtis’e VCA circuit.

THIS IS A CLASS-1 CIRCUIT WITH CONTROL APPLIED TO Vgg RATHER THAN Ig¢
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_qv
CURRENT GAIN = exp( e) (6.6)

kT

The exponential form and temperature sensitivity are to be expected
whenever a VBE (voltage) difference forms the control input.

The current-gain cell of Hamilton and Finch [6.21)} is an in-
genious variant that links the input and output pairs of a class-1
circuit in a tight positive feedback loop. The result is a circuit
with single-ended current (signal) input and output, with the input
and output at the same DC level. It realizes the full bandwidth of
the basic Gilbert cell of Figure 6.2(a), unlike other single-ended
versions that employ high-gain feedback loops to avoid a differential
input. The circuit also exhibits a symmetrical reverse transmission
from output to input, which may be a nuisance for some applications.

6.4.2 VGE Configurations Using Emitter-Driven
Differential Pairs (Class 2)

References [6.23-6.30] consider variable-gain circuits based
on the second method of exploiting differential transistor pairs. For
the circuit of Figure 6.2(b), the large-signal transfer characteristic
(assuming large beta and neglecting resistive parasitics) is

+
IB ISIGNAL

I2 T 1+ exp(ch/kT) (6.7)

The inherently linear dependence of I, on I motivates this ap-

2 SIGNAL

proach.
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In practice, balanced configurations are usually preferred
over the single pair of Figure 6.2(b). Often two such pairs are

driven with opposite polarities of I and the two outputs sub-

SIGNAL

tracted. This results in cancellation of both control feedthrough

(due to the I_ term in the numerator of (6.7)) and the even-order

B
distortion that arises from nonzero resistive parasitics in the trans-
istors [6.23, 6.28, 6.29].
Class-2 variable-gain circuits differ from class-1 circuits
in several notable respects:
- Gain is determined by the voltage input Vc and
not by the bias current IB' Therefore, class-2

circuits operate naturally in a range-expanding

mode. This contrasts with class-1 circuits,
which can be designed for either range-expanding
or range-compressing operation.

- Class-2 circuits are capable of controlled atten-
uation over a very wide bandwidth, since the
differential pairs are operating common-base.
Signal feedthrough via device capacitances is
still a problem, but less so than in the class-1
case. Feedthrough is in-phase.

- Distortion due to resistive parasitics occurs,
in the same manner as class-1; but the effect is
different: even as well as odd-order distortion
in the signal path. The magnitude of distortion,
for a given operating current, is lower for class-2

[6.23].
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- Class-2 provides current gains less than unity,

whereas class-1 has no such constraint.

Class-2 circuits achieved early acceptance as high-frequency
variable-gain elements, as in the IF amplifiers of Davis and Solomon
[6.25] and McCalla [6.26]. Sansen and Meyer, in their work on noise
and distortion, identified a balanced class-2 form as superior in
several respects to alternative circuits. They developed a high-
dynamic range monolithic VGE based on it [6.24]. Both Sansen and
Meyer [6.23] and Yen [6.28, 6.29] derived low- and high-frequency
distortion results for the basic circuit of Figure 6.2(b).

Faulkner and Grimbleby [6.27] obtained range-compressing
operation from class-2 circuits by placing them in the feedback path
of a high-gain operational amplifier. They employed a balanced con-
figuration of two differential pairs, one NPN, one PNP. More recently,
Gilbert and Holloway [6.30] described a class of "controlled-cascode"
multipliers consisting of balanéed class-2 circuits with both voltage-

and current-mode control inputs.

6.4.3 A VGE Based on a Pair of One-Quadrant Cells

One of the few successful variable-gain circuits not based
on class 1 or class 2 is shown in Figure 6.5. This configuration is
used in the 160 series of audio amplitude compressors manufactured by
dbx, Incorporated. It illustrates yet another approach: two precision
one-quadrant variable-gain cells, each processing one polarity of the
signal.

When ISIGNAL is positive, the NPN pair is active and the PNP

pair is cut off, with reverse-biased base-emiter junctions. The NPN

pair has a collector-current ratio
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Figur‘e 6. 35 —The dbx VCA circuit.

BASED ON TWO UNIPOLAR CURRENT SCALERS, ONE FOR EACH POLARITY OF
THE INPUT.
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I qVv
EQEZ = exp <qu) (6.8)
FB
(compare with (6.6)). The lefthand op-amp forces IFB = _ISIGNAL'
so the signal current gain is also given by (6.8). The righthand

op-amp provides a virtual-ground summing node and a voltage output.
When ISIGNAL is negative, the NPN pair cuts off and the PNP

pair becomes active; thus the two pairs act as precision current-

ratio circuits, providing the same ratio for their two corresponding

signal polarities. A fast op-amp is necessary in such a system to

avoid a momentary dead zone at the zero-crossing.

6.4.4 "Six-Pack" Multipliers

One of the best-known translinear circuits is the four-
quadrant linearized transconductance multiplier or "six-pack"

[6.4, 6.16, 6.22-6.24, 6.31-6.34], shown in essence in Figure 6.6.
This may be regarded as the nexus of class 1 and class 2 circuits,
with inputs applied to both the bases and emitters of the righthand
quad.

This configuration is discussed extensively in Gilbert's early
papers [6.4, 6.16] . High-performance versions where feedback compen-
sates for imperfections in the voltage-to-current converters have been
described also [6.31, 6.32]. At the same time, it has been applied
to the remote programming of wideband communications channels [6.34].

The six—pagk is primarily a multiplier rather than a variable-
gain element. Although it has been used occasicnally in VGE applica-

y
tions, as in the expander circuit of Erratico and Caprio [6.33], it
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has major drawbacks. Because it depends on cancellation of two out-
of-phase signal paths, the zero-output setting is very sensitive to
mismatch. Fractional distortion and signal-to-noise ratio degrade
rapidly at high values of attenuation, as noted by Sansen and Meyer
[6.23, 6.24].

The major feature of the six-pack that distinguishes it from
related circuits is an immunity to resistive parasitics. Log-
conformance error due to ohmic resistances cancels out, provided
the transistors are properly matched. The signal distortion that
plagues class-1 and class-2 circuits at high currents and large gain

ranges is thus avoided.

6.4.5 Bruggemann's Multiplier

Another four-quadrant configuration, due to Bruggemann [6.35,
6.36] is a variation on the "six-pack" scheme. Although not as attrac-
tive as the six-pack for monolithic work, it uses a distinct and
novel principle.

The major innovation in going from small-signal "transcon-
ductance” multipliers [6.10] to the "linearized transconductance"
six-pack (Figure 6.6) was the addition of the leftmost two trans-
istors. This provided an input whose effect on the current steering
in the righthand four devices was linear. Bruggemann developed an
alternative approach, using a feedback loop (Figure 6.7). While one
combination of collector currents gives the desired multiplier out-
put, as in Figure 6.6, a different combination, as it happens, may

be used to sense the degree of modulation in the two output pairs.
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Figure 6.7 — Briggemann’s multiplier.

EACH COLLECTOR CURRENT IS SPLIT BETWEEN A LEFTHAND AND RIGHTHAND RESISTOR
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Brﬁggemann's circuit splits each collector current and uses
it for two purposes. The lefthand portions in Figure 6.7 are used
to sense current steering, which is then forced equal to a desired
input (yIz) by a feedback loop. The righthand portions of collector
current are combined to give the customary six-pack output signal
(which is differential).

The disadvantages of this technique are the (slow) feedback
operation and, most important, the need for a large number of matched

resistors.

6.4.6 Multipliers Included for Completeness

To be noted in passing are a few other configurations that
have appeared in the literature. Faulkner and Grimbleby [6.37]
described a one-quadrant translinear multiplier based on stacked
(NPN and PNP) square-law subcircuits. The multiplier obtained a

product by the roundabout scheme
2 2
I, = v (Ix) (Iy)

Viswanathan and Deep [6.38] also used an NPN/PNP transliner circuit
for a one-quadrant multiplier; a version with offsets yielded four-
quadrant operation. Scratchely [6.39] showed a four~quadrant mul-
tiplier with single~-ended input and output, usingban exotic trans-
linear configuration.

These three circuits were rather complex and have little
to recommend them in view of subsequent (and Previous) designs that

performed at least as well.
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6.5 Special-Purpose Bipolar Devices

As in the case of FETs, some successful use has been made
of non-standard semiconductor devices in variable-gain elements.
Voulgaris and Yang [6.40] demonstrated linear applications of a
~ PNPN four-layer device designed as a silicon controlled switch. Their
application as a variable-gain amplifier and analog multiplier was
basically limited to small-signal conditions, however.

More significant was the carrier-domain multiplier developed
by Gilbert [6.41]. This was one of a family of special devices, con-
structed in a standard bipolar process, whose structure directly per-
formed a useful operation. Multipliers were successfully fabricated
[6.42, 6.43] and investigated as an alternative to "six-pack" cells.
To date, performance has not been sufficient to give them a clear-cut
advantage, but carrier-domain devices retain some promise in this

area.



CHAPTER 7

LOG-CONFORMANCE ERROR EFFECTS IN TRANSLINEAR

VARIABLE-GAIN CIRCUITS

7.1 Introduction

Bipolar junction devices (transistors and diodes) exhibit
a logarithmic I-to-V relation that is undoubtedly the most
useful large-signal nonlinearity in the realm of analog circuits.
This relation is at the heart of all large-signal variable-gain
circuits, and many other classes of circuits, using such devices.
Circuits of this kind are often very sensitive to the fidelity of
the logarithmic relation. It is therefore profitable to examine
deviations from the ideal logarithmic law, and the effect these
have on the input-output properties of translinear variable-gain
configurations.

This chapter first examines aspects of device operation

that give rise to log-conformance error (LCE). The basic con-

sequences of such error for translinear circuits in general,
and variable-gain circuits in particular, are then considered.
The last section presents experimental results from a prototype
"variable-gain configuration. This chapter sets the stage for the
discussion of ICE correction techniques in chapter 8.

In the bipolar trasnsitor, the logarithmic I _-V__ relation

C BE

is useful over perhaps eight decades of collector current. While

141
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this may at first seem adequate for most circuit applications, other
considerations (such as bandwidth and gain) often constrain the
designer to operate at the upper end of the current range.

Practical interest, therefore, focuses on high- rather than low-
current aberrations in the logarithmic behavior. This and the

following chapter emphasize static nonlinearities (in a controlled

signal path) that result from such aberrations. The work does
not address other, potentially important, error sources such as
mismatch errors or localized thermal effects, and treats finite-

beta and high-frequency considerations only briefly.

7.2 Origins of Log-Conformance Error

7.2.1 Basic Log Characteristic

Bipolar junction transistors, pn diodes Schottky barrier
diodes, MOS field-effect transistors with weakly inverted channels,
and various other semiconductor devices all exhibit static current-

voltage relationships of the general form

v = %2 n (_I__) (7.1a)

or equivalently

- v )
I IS exp (nkT) (7.1b)

over some range of currents. Here, n is a dimensionless constant

on the order of unity, Is is a device current parameter, and the
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other constants have the vsual meanings. I and V may both refer
to the same pair of terminals (in two-terminal diodes) or they
may refer to different terminal pairs.

The behavior of (7.1) is fundamental; it arises when a
controllable energy barrier affects the thermal flux of carriers
asymmetrically. The different devices that obey (7.1) are character-
ized by different values of IS and n, and by different current ranges
over which (7.1) is valid.

These equations are sometimes presented in a slightly
different form, arising from a theoretical derivation. For
example, a variant of (7.lb), often called the "ideal diode law,"

is

= vy _
I=1I [exp (kT) %] (7.2)

The -1 term arises from theoretical arguments and allows con-
veniently for I = 0 at V = 0. This -1 term is then cast aside
as quickly as possible in discussions of active bias, since the
argument of the exponential is then well above unity.

The approach preferred here is to do away with the "-1"
term altogether, both because substantial forward current flow
is indeed assumed and because the model of (7.2) is rarely if ever
valid for values of I near Is, contrary to the frequent implication.
For the device types mentioned above, second-order effects generally

determine I at the low-current extreme.
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Of the various devices that satisfy versions of (7.1),
bipolar transistors offer a quite remarkable current range and
a value of n very close to unity when V is taken to be base-emitter
voltage and I is collector current. Data obtained by Sah [7.1],
Gibbons and Horn [7.2], and others -for silicon transistors with
zero collector-to-base voltage indicate adherence to (7.1) over
some eight or nine decades of collector current (at room
temperature). In these cases the measured value of n was within
about one percent of unity over the current range. The scaling of
current extremes depends on transistor construction, but as a
rule of thumb, for a typical discrete transistor of the type measured,
the useful range is from 10 picoamps to 10 milliamps.

Bipolar transistors are unique both in the wide range of
currents and in the value of n so close to unity. Both pn junction
‘diodes (the other major "log" elements) and the BJT emitter
current behavior exhibit a much narrower useful range, as will be
discussed shortly. For this reason, practical application of (7.1)
to translinear and other circuits has emphasized an IC—VBE
embodiment.

The value of n, sometimes called the emission coefficient

(the letter m is also used) is unimportant in translinear circuits,
to the extent that it is truly constant. In fact, any current-
dependent shift in n is a form of log-conformance error (ICE)

and will cause errors in such circuits. This occurs under
high-level injection conditions in BJTs. Under léw-level injection
conditions, the value of n is often assumed to be exactly unity

in BJTs, although slight discrepancies have appeared in the
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published measurements. Recently Hart ([7.3], building on the
earlier work of Gummel and Poon (summarized by Getreu [7.41]),
demonstrated how slight deviations from n = 1 could be predicted
from fluctuations of base majority carrier charge. Hart also
identified a tradeoff between achieving high current gain (beta)

and n near unity through the design of the transistor. Typical
values of n were within 0.5% of unity in Hart's examples, consistent
with earlier measurements.

The collector-base voltage in a forward-active transistor
influences both collector current and current gain through base-~
width modulation. Moreover, nonzero collector-base bias introduces
a small leakage current across the terminals, although it is often
negligible. Generally the circuits treated here operate transistors
with fixed, possibly zero, VCB’ so that in principle there is no
need to modify the form of (7.1). In translinear circuits, if
all VbB values are equal, their effects will tend to cancel; any
significant collector leakage current becomes an equivalent input
or output offset.

Unfortunately, practical transistors--especially low-
power monolithic transistors--have appreciable series collector
resistance. This causes two complications at high collector
currents. First, significant signal-dependent voltage appears
across the internal collector resistance, so true VCB is no
longer constant. This variation can be modelled in terms of its
effect on V E through base-width modulation. The second phenomenon

B
is a possible saturation of the transistor if the DC drop across
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the collector resistance is too large. This will effectively limit
the maximum collector current at low or zero VCB'
With these limitations in mind, a basic large-signal

static relationship useful at low-to-moderate currents in bipolar

transistors is

I
v = DkT . (_E) (7.3)

with n very close to unity (often taken equal to unity as a good
approximation). However, as cited in the introduction, considera-
tions such as bandwidth often preclude operating solely at "low-
to-moderate" currents. If they did not, the remainder of this

chapter would be unnecessary.

7.2.2 Limitations in Diodes

It is appropriate to briefly mention why the log conformance
in pn diodes is greatly inferior to that of bipolar transistors,
a distinction that has long been recognized [7.5].

A number of mechanisms are responsible for current flow in
a forward-biased pn junction. In adiode, unlike a forward-active
transistor, all of the current flows through the two terminals
where the "log" voltage appears. At moderate current levels, the
diode current is due mainly to the injection of minority carriers
across the junction. This current follows the dependence of
(7.1b) on applied voltage, with n = 1. At lower current levels,
in silicon diodes, the dominant current is due to recombination

within the depletion region; this current component follows (7.1b)
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with 1 < n < 2 (and a different value of IS) {7.6, 7.71. Addi-
tional currents may arise because of surface effects (the dif-
ferent properties of the depletion region, and the possibility of
a channel, at the surface). Sah's classic and unified treatment
of this topic [7.1] identified values of n between 1 and 4, and
occasionall} larger, for the different components.

The result of this heterogeneous current makeup is a
current-voltage characteristic that behaves like (7.1) over short
current intervals but undergoes one or more changes of the co-
efficient n over several decades of current. Additional deviations
arise at high currents because of bulk resistances and high-level
injection, but these phenomena also occur in transistors. The
useful current range for a silicon diode, where n is substantially
cdonstant, will typically span two to four decades. Faulkner and
Buckingham [7.8] observed a range of four decades with some diodes,
with a value of n between 1 and 2.

Thus, although potentially useful in translinear configura-
tions, the pn junction diode is less accurate than the bipolar
transistor, as well as less convenient (lacking the separation
between I and V ports). Similar accuracy considerations also
yield an important distinction between collector and emitter

currents in a transistor.

7.2.3 Complications in Base and Emitter Currents

A forward-biased base-emitter junction, like a forward-
biased pn diode, carries various voltage-dependent current com-

ponents. Only one of them--minority carriers in the base injected
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from the emitter--contributes significantly to collector current.
This accounts for the excellent fidelity of the logarithmic law
when Ic is related to VBE'

The remaining components flow in the base and emitter
leads. At moderate collector currents, the base current is due
esseptially to back injection into the emitter and (less so in
modern monolithic transistors) recombination of minority carriers
in the base. Base current tends to be a constant (and small)
fraction of collector current, so collector and emitter currents
may be used almost interchangeably in (7.3). This situation prevails
over an “"optimal" range (perhaps one decade wide) of collector
current. At high currents, corresponding to the onset of high-
level effects that invalidate (7.3), back injection from the base
to the emitter increases and the current gain falls.

At low collector éurrents, the other components of base
current (chiefly that of recombination in the base-emitter space-

'charge region) assume greater importance [7.91. As IC is de-
creased, base current begins to fall less quickly than collector
current (i.e., beta drops off). At a sufficiently low collector
current (on the order of a nanoamp, typically) the base current

will exceed the collector current. Yet (7.3) continues to hold

down to currents so low that IB is substantially greater than Ic.
Thus, as with a junction diode, the IE-VBE relation has a

much smaller range of utility than the IC-VBE version. Emitter

currents can be and are used as variables in translinear circuits,

but over a restricted and well-chosen current range.
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The discussion of diodes and emitter currents has established
that significant log-conformance error problems apply to both,
especially at low currents. The main thrust of this chapter,
however, is the area of log-conformance error at moderate-to-
high currents. Such error arises from device bulk resistances
and high-level injection, and causes significant deviations from
(7.3), the I _~V__ relation, at current levels that are otherwise

C BE

attractive for analog circuits.

7.2.4 Base Resistance

The bulk material separating the base contact from the

base-emitter junction is probably the single most troublesome

source of log-conformance error in the I relation. Its

¢ VBE
resistance introduces an inevitable voltage drop in series with
the base lead, and hence an additive error in the righthand side
of (7.3). At higher operating currents this voltage drop is a
nonlinear large-signal function of collector current.

Beth current crowding and high-level injection contribute
to the nonlinearity, making the effective resistance of the base
bulk region dependent on base current. This is complicated
further by the nonlinear large-signal relation between base and
collector currents (beta nonlinearity). The base resistance is
important in a number of other contexts, whose diversity is apparent
in the different ways of measuring and modelling the resistance.
For small-signal applications where noise or frequency response is
the major issue, a linear resistance r_is used as a model. The

b

measured value of this resistance then depends on operating point.
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This small-signal formulation is not very useful for predicting
log-conformance error in general, but a useful variant does arise
in certain gain-control circuits, as will be shown.

The basic concept of current crowding was explained
graphically by Gray et al. in the SEEC series ([7.10]. Their
approach was to model the base resistance as a truly linear,
"extrinsic" resistance (outside of the active junction area) in
series with a distributed, nonlinear "intrinsic" resistance that
decreases with increasing current. At about the same time,
Hauser.(no relation to the author) developed a quantitative two-
dimensional analysis [7.11]. There have been additional refinements
in the theoretical modelling of nonlinear base resistance, some
of them reviewed by Getreu [7.4]. Rather than predicting it
theoretically, the present work is concerned with measuring the
actual effect and developing a correction strategy that does not
require a-priori knowledge of the base resistance or its current

dependence.

7.2.5 Other Resistive Parasitics

Inevitable series resistances appearing in the emitters
and collectors of practical transistors, as well as incidental
resistance in the interconnections, will cause additional voltage
drops. Because the emitter is much more heavily doped than the
base in modern (high-beta) transistors, the resistivity of the bulk
emitter region tends to be very small, and the series resistance

in the emitter lead is due primarily to the contact interface [7.4].
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This is usually on the order of an ohm, and substantially independent
of current (compared with the base resistance).

The collector is a high-resistivity region, and the series
resistance separating the collector contact from the active collector-
base junction will depend on transistor construction, especially
the presence or absence of a low-resistance diffusion ("collector
plug") shorting the epitaxial collector material. Moreover, the
collector resistance varies with current. However, this resistance
is far less influential in normal operation than is the base resistance,
because voltage drops in series with the collector have a very
small effect on base-emitter voltage. The constant of proportionality
is the base-width modulation factor n (typically between 10_3
and 10-4), as long as the transistor remains out of saturation.

If the collector current remains constant, an incremental change
AV in collector-to-base voltage causes a change -nAV in base-
emitter voltage. The negative sign arises because an increase in
VéB requires a reduction in VﬁE to maintain a constant collectox
current.

The voltage drop resulting from series resistance in the
collector may be represented by a modified series emitter resistance.
If an otherwise ideal transistor has common-base current gain a,
series emitter resistance ré and series collector resistance
r, (both assumed linear for the moment), and the far side of r,
is connected to a voltage source (see Figure 7.1), then to first
order the combined effect of r, and r; is equivalent to a resistor

rec in the emitter alone. The value is
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Figure 7.1 —- Consolidating parasitic

emitter and collector resistances
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= LI
r,, = rs * anr, (7.4)

With typical r, values in the hundreds of ohms for small monolithic
transistors and n less than 10_3, the effect of internal collector
resistance should be small in terms of resistive voltage drops in
VﬁE' Potentially more important is the tendency for the collector-
base junction to become forward-biased (saturation) if a substantial
DC drop appears across this resistance.

Further resistive effects will occur because of resistance
in the contact interfaces at the surface of the transistor structure,
and because of the finite conductivity of the metallization that
interconnects the different parts of the circuit. Some of these
resistive parasitics, specifically those other than interconnect
resistance, will naturally scale as multiple devices are
connected in parallel; the effect of such paralleling on interconnect
resistance is a function of detailed layout topology.

All of these elements introduce excess voltage drops in

series with the ideal (logarithmic) V. Some of the drops are

BE’
linear (ohmic) with current, and some are very small. However,
they all contribute to distortion in circuits that depend on the
accuracy of (7.3). The net effect of the various resistive
parasitics, including base resistance, may be lumped into a net
log-conformance error voltage appearing in series with the

VEE of (7.3). Significant aspects of this error voltage are its
dependence on device geometry (e.g., on junction area scaling)

and its departure from linear (ohmic) behavior, especially at

high currents.
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7.2.6 High-Level Injection

When the density of injected carriers in « region of a
semiconductor becomes comparable to the dopant concentration,
qualitative changes occur in the operation of the device [7.12].
Conductivity becomes current-dependent in the high-injection region,
so that the current-to-voltage relation for a section of bulk
material is no longer linear (ohmic). This accounts in part for
the current dependence of the parasitic base and (especially)
collector resistances. The classic work of Hauser [7.11] on base
current crowding did not allow for high-level injection, although
others (such as Roulston et al. [7.13]) have since incorporated
it. High-level injection causes an additional reduction in
effective base resistance at high collector currents.

Significant other effects arise under high-level injection.
The electrostatics of pn-junction depletion regions are modified
[7.14], for example. In the bipolar transistor, high-level injec-
tion in the base region brings about a reduction in current gain
and, most importantly, a fundamental change in the I —VBE relation.

C
This asymptotically approaches the form [7.12]:

1
n % ln(——c—) (7.5)

This may be difficult to observe in practice because of the series
voltage drop in the base resistance.
High-level, high-frequency signals can introduce still

further compications. At frequencies above about fT/B, the AC
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base current rises with frequency; high-level injection and crowding,
with attendant effects on DC behavior, amy be introduced by the

presence of AC signals [7.10, 7.15].

7.2.7 Special Transistor Designs

The phenomena detailed in sections 7.2.4 through 7.2.6
all relate to deviations from the ideal IC-V'BE relation of (7.3)
at high collector currents, or more properly at high current
densities (since the critical current levels can always be raised
by paralleling devices). For small-geometry transistors in a
typical analog IC process, log-conformance errors large enough to
cause problems are observed at collector currents on the order of
100 yA. Yet this is not a fundamental limit; the upper range of
collector current can be extended considerably further. The fact
is that neither the processing nor (especially) the layout of
“standard" analog transistors is optimized to accommodate high
current densities with good log conformance.

Chapter 8 of this report treats circuit approaches to
circumventing log-conformance error in variable-gain configurations.
Not to be overlooked is the possibility of reducing the error
through judicious design of the key transistors. Parasitic
resistances may of course be reduced at will by effectively
paralleling multiple transistors; a more meaningful objective is
to minimize the resistances for a given total device area. Simple
modifications (such as extra base contacts) to a conventional

transistor geometry can be helpful and cost very little in terms

of area and layout anxiety.
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Some designers have gone far to reduce resistive parasitics,
especially in the context of low-noise amplification of low-
resistance signal sources. Willemsen and Bel [7.16], for example,
described,a transistor structure that resulted from an all-out
effort to minimize series base and interconnect resistances. This
and similgr devices that have been reported are large-area
transistors intended for high total collector current; they are
not designed specifically for logarithmic conformance, but for
low thermal noise.

7.3 Influence of Log-Conformance Error in
a General Translinear Network

Having discussed some practical sources of deviation from
(7.3), the ideal logarithmic law, we now consider some implica-
tions for translinear circuits that exploit (7.3). This section is,
of necessity, rather broad and basic. Detailed analysis of the
input-output error depends on the particular translinear configura-
tion. Section 7.4 deals with the particular case of a four—VBE

‘translinear variable-gain circuit.

7.3.1 Currents and Current Densities

For a given transistor process, the errors in VBE associated
with resistive parasitics and high-level injection are all functions
of transistor geometry and terminal currents. Actually, the
desired logarithmic voltage and (to a large extent) the error
terms are dependent on current densitx in the vicinity of the base-

emitter junction. If the effective device area is doubled by

paralleling two identical transistors, the effect is identical to
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halving the currents in a single device. The IS parameter in
(7.3) tends to scale with base-emitter junction area, as do the
current sensitivities of the various LCE effects, even in the
regime where their voltage-current relation is nonlinear.

In actuality this fendency is not exact for arbitrary
scalings of junction area, because of three-dimensional effects
in the transistor. It becomes exact when "area scaling" is taken
to mean integer ratios of base-emitter junction area AE, obtained
by paralleling multiple identical transistors or identical base-
emitter junctions in a single transistor structure (the typical
monolithic procedure). This will generally be assumed from now on.

To allow for the equivalence of scaling junction areas and
scaling currents, it is convenient to work in terms of current
densities rather than currents. With the equivalence J=I/A,
it is understood that a ratio of two current densitiés (J) may
be realized by ratioing the currents or junction areas or both.
Moreover, the true base-emitter junction current density, besides
being spatially dependent over the extent of the junction, is not
very useful as it incorporates current components that do not appear
at the collector (see 7.2.3). For a precise treatment of logarithmic
VBE-vérsus-IC and log-conformance effects, this report uses a

formalized "current density" variable defined by

J =1./A (7.6)

where IC is collector current in the corresponding transistor

and AE is its base-emitter junction area. This “JC“ is used
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mainly in ratios. It does not correspond strictly to any physical
current density, but embodies the desired dependence on the
particular current and area of interest.

Cast in this more general "current density" form, (7.3)

becomes
J
_ kT C
VBE = p ln( Js ) (7.7)

where JS is now a saturation current density, no longer dependent
on the effective base-emitter junction area. The emission co-
efficient "n" is taken to be unity for simplicity. This is the
idealized relation, lacking log-conformance error terms. It must
be emphasized that JC is not itself a fundamental signal variable,
but rather a shorthand for the ratio of IC, a signal variable,
with AE' a design parameter. Usually it is not the absolute
magnitude of AE that is significant, but the ratio of AE between

different transistors in a circuit.

7.3.2 Models of LCE in a Single Transistor

Figure 7.2 illustrates successive levels of generality in
modelling the IC-VBE relation of a forward-active transistor.
In Figure 7.2(a), for reference, is an idealized device with perfect
log conformance. 1In Figure 7.2(b) a linear (ohmic) resistance
is introduced in the emitter. To the extent that beta is in-
dependent of collector current, this may accurately represent
the net effect of linear resistances present in the emitter, base

and even (see section 7.2.5) collector leads.
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The model of Figure 7.2(b) has been used extensively in
past analyses. The resistance RE was taken to represent the effect
of any (presumed linear) resistance in the base circuit, divided
by (B+1), along with any additional series resistance in the
emitter lead. To distinguish it from the "dynamic emitter resist-
ance" (a/gm) of the transistor, RE has usually been called "ohmic"
emitter resistance. The usage implies that RE is truly linear
(obeys Okm's Law). This is a legitimate approximation at low
collector currents.

Over a sufficiently wide range of collector current,
inevitable nonlinearity develops in both the IC—IB relation and
the resistance of the base region. This is provided for in the
model of Figure 7.2(c), through an equivalent emitter resistor
with arbitrary current-controlled nonlinearity. High-level
- injection in the base may also be accounted for in this way.

The implied dependence of log-conformance error voltage on
emitter current, although in principle quite general, may be
inconvenient.

A completely arbitrary additive error voltage in VBE
may be accommodated by simply adding a controlled voltage source,
as shown in Figure 7.2(d). The voltage source VE is shown
dependent on collector current with an arbitrary functional relation-
ship. 1In principle this format is interchangeable with the model
of Figure 7.2(c), in that arbitrary additive current-dependent
error in VﬁE can be represented either way. However, Figure 7.2(4)
uses the same independent variable (collector current) in both

the desired (logarithmic) and error componeiits of VBE; it avoids
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the implicit sensitivity to beta that accompanies the use of
emitter current. For this reason it may be attractive to use
Figure 7.2(d) even if the LCE is predominantly ohmic.

Because of the complex of process-, current-, and temperature-
dependent nonlinearities that contribute to log-conformance
error, it is dangerous to make conclusive a priori statements
about its functional form. The.approach taken here is to analyze
the consequences of linear LCE and then to examine the departure
from linearity in some practical transistors. There is no reason
why explicit LCE could not be measured (other than experimental dif-
ficulty) and fitted, say, to a power-series form; such a fit could
then be applied to the general results of this chapter and the next,
yielding numerical values. This is a potential topic for fuirther
study.

At sufficiently low currents, below the levels where current
crowding and high-level injection are significant, a linear (ohmic)
LCE is typically observed. 1In this case, Figure 7.2(d) applies with

a linear Vg () function:

= .8
VE(JC) AOROJC (7.8)

where AO is a normalizing area and R, is an equivalent resistance

that would exhibit the same voltage at a current AOJ The form

o
of (7.8) is useful even if VE is not a linear function of JC;
in that case, Ro may be regarded as a current-density~-dependent

parameter.
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The general expression for V

BE’ assuming arbitrary devia-

tion from (7.7), is

JC
v, =1, (—) + V(3 (7.9)

This expression tacitly assumes that the error term VE depends
not on IC and AE separately but on their ratio JC. In order for
the assumption to be valid, all sources of excess voltage drop
in VBE must be duplicated in any junction-area replication that
accomplishes AE—scaling. This may not be true in the case of
interconnection resistance; deliberate attention to layout is

necessary, otherwise the vE term will contain a resistive component

that cannot be assumed to scale with area.

7.3.3 The Basic Translinear Network

An elementary translinear circuit is a loop of an even
number of forward-biased pn junctions. There is no constraint on
the orientation (polarity) of each junction, except that half of
them must be oriented in the opposite direction as the other half
(clockwise versus counterclockwise voltage drops). The Jjunctions
are at the same temperature. Associated with the forward voltage

drop of each junction is a current density; these are denoted by

Vn and Jn respectively, where n is the number of the jﬁnction.
Junction voltage drops and current densities are, ideally, related
by (7.7) for each junction, with a possible prefactor "n" if the
emission coefficient is not unity. Saturation current density

“JS“ in (7.7) is assumed the same for each junction.
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Figure 7.3 shows a typical case, where the junctions are
the base-emitter junctions of bipolar transistors and the
associated current densities are as defined in (776). Although
all of the "clockwise" junctions are shown on one side of the
loop and those "counterclockwise" on the other, this is by no
means a necessary orientation; the two polarities are often
interspersed in practice. The associated circuitry that forward-
biases the junctions, drives the currents, etc., is not shown;
Figure 7.3 is only the essential core of the circuit. The topology

imposes, through Kirchhoff's Voltage Law,

Zvn - Zvn =0 (7.10)
cw

cCcw

If (7.7) is satisfied by each transistor, the sums of

logarithms of J values convert to products of J values, leaving

the classic translinear result

__I_J
n

cw

— =1 (7.11)

T

ccw

With various J values, or linear combinations of them, used as
inputs or outputs,* (7.11) gives rise to a large and striking
variety of linear and nonlinear function circuits. These are

described in more detail in chapter 6. The important result is

*Actually the corresponding currents serve as inputs or
outputs; current densities figure in the circuit equation.

e
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(7.11), which is fundamentally temperature-insensitive and provides
precise large-signal algebraic relations between the different
current densities. All of this depends on exact conformance to

the ideal relation of (7.7).

7.3.4 Translinear Networks in the Presence of
Log-Conformance Error

Arbitrary current-density-dependent log-conformance error
yields a relation like (7.9) for each junction in Figure 7.3.
Schematically, the situation is then equivalent to a loop of ideal

junctions in series with an excess loop voltage, vx. Voltage Vx

represents the algebraic sum of the VE terms in all of the junctions;
by Kirchhoff's Voltage Law these VE terms can be grouped together
for the purpose of analysis.

The situation is shown in Figure 7.4, which now satisfies

_rJn
cw vy
—_—_— = exp | — (7.12)
FT kT
J
n
cew
where

= - J 7.13
A ZVE (@) ZVE( ) (7.13)
cew cw
Equation (7.12), of course, reduces to (7.11) in the absence of
log-conformance error (Vx=0).
Assessing the impact of log-conformance error on the

circuit requires specifying the detailed dependence of Vx on
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the signal variables (J values). In general this will yield an
implicit, transcendental relation among the J values. For example,
if the error voltage is a linear function of J in each device, so

that (7.8) applies, then (7.12) and (7.13) yield

J - J (7.14)

Note that an excess loop voltage VX that is proportional to absolute
temperature (PTAT) will cancel the temperature dependence in the
righthand side of (7.12). This yields a relation similar to (7.11)
but with a dimensionless, temperature-stable factor on the right-
hand side.

Solving an expression such as (7.14) for one of the J
values in terms of the others is not usually possible by analytical
means. Numerical solution is available, however; the result of
log-conformance error is generally a smooth deviation from the
simpler solution of (7.11). Again, it is necessary to be more
specific regarding the varticular translinear configuration. The
discussion therefore focuses on a class of circuits useful in

gain-control applications.
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7.4 Influence of Log-Conformance Error in a Four-Junction
Variable-Gain Circuit

Figure 7.5 shows the translinear configuration to be studied.
This is the classic two-quadrant multiplier of chapter 6, and was
essentially the first translinear circuit to be published [7.17],
Again, only the central core of the circuit is shown. This is a
special case of Figure 7.3 -- four base-emitter junctions in a loop.
The analysis will use the collector currents\of all four transistors
as variables; this departs slightly from Gilbert's original formula-
tion, in which the emitter currents of the lefthand pair served as
inputs. The use of collector currents throughout permits adherence
to the translinear formalism without introducing alpha factors. This
convention is followed also in the measurements of section 7.5; the

experimental setup forces the desired collector currents in the input

pair.

7.4.1 Ideal Circuit Behavior

Associated with the four collector currents I1 - 14 in Figure

7.5 are four current densities J. - J4, where each is the ratio of

1
collector current to base-emitter junction area, as in (7.6). It is

assumed that each pair of currents is balanced; i.e., additional

circuitry not shown imposes

I. + I, =21 (7.15a)

I.+I, =21 (7.15b)

for some fixed values IA’ IB.
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Figure 7.5 —— Basic test circuit

ADDITIONAL CIRCUITRY IMPOSES BALANCED COLLECTOR CURRENTS:
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If the transistors have perfect log conformance, then from
{(7.11) the four current densities will satisfy the translinear-

circuit constraint

J,J
274
'J—J'= 1 (7.16)
13 .
If the areas are pairwise matched, so that A1 = A2 = AA and A3 = A4

AB, then (7.16) is equivalent to

— =1 (7.17)

This, in combination with the balanced-drive condition of (7.15),

yields the basic variable-gain result

I, =111 (7.18)

or, in differential form,

I
B ' .
~I) =T (11-12) (7.19)

(1
4 73 IA

The gain from the input (11—12) to the output (14—13) is
set by the ratio of the two fixed currents I_ and I,. Now consider

B A

the consequences of a linear log-conformance error.
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7.4.2 Effect of Linear LCE

If the VBE of each transistor contains an error voltage pro-

portional to current density, as in the simple model of resistive

parasitics, then (7.16) becomes

3,3, 9B R
JI. - exp KT (J1+J3-J2—J4ﬂ (7.20)
173
--a special case of (7.14). This again does not exactly correspond

to the emitter-resistor model of Figure 7.2(b), since the error

depends on collector current. Now assuming Al = A2 = AA and A3 =

A4 = AB' and using the balanced-current conditions of (7.15), the

result in terms of currents is

(1,-21.)1I 2qR | A A
1 A4 [e] o [e)

T ory = exp Vo | 7 (I,-1,) - — (I,-1I) (7.21)

11(14 21B) kT A, 1°Aa Ay 4 B

In the particular case where the pair currents are ratioed
the same as the pair areas, so that IB/IA = AB/AA, equation (7.21)

has the pleasing solution

so that the linear log-conformance error has no effect. Any other
ratio (IB/IA) causes distortion. This result is well known.
The form and magnitude of the distortion were studied in the

classic works of Gilbert [7.17, 7.18] and Sansen and Meyer [7.19].
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The transcendental nature of (7.21) bPrecludes a general closed-form
solution for I4 in terms of Il' Instead, specialized approaches have
been taken. Gilbert obtained small-signal (gain vs. operating point)
[7.17] and approximate large-signal (assuming low distortion) [7.18]
expressions. The basic form of the error is a symmetric, odd-order
(S-shaped) distortion of the Il—to—I4 transfer curve. The dis-
tortion is approximately cubic, and its polarity depends on the rela-
tive sizes of IB/IA and AB/AA (when they are equal of course, the
distortion vanishes).

Gilbert's approximate large-signal result, recast according

to the nomenclature of this chapter, was

I I
4 1
- +D (7.22)
ZIB 21A R
with

= - 7 JxT-x) (7.23)

where X = Il/IA - 1. Note that the quantities in parentheses in
(7.22) are normalized input and output variables that range from 0
to 1; similarly X is a normalized input variable between -1 ang 1.
The factor (X3-X) has peak values of *0,385 at x = +0.577 and van-
ishes at X = 0 and X = *#1. These results are taken directly from
Gilbert [7.18].

Sansen and Meyer investigated the distortion in terms of

third-order intermodulation. For low-frequency distortion, they
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obtained numerical point-by-point solutions to (7.21) with a sinus-
oidal input current, and expanded the resulting waveform in a Fourier
series. For the high-frequency regime (above about fT/B), a Volterra
series expansion was used, leading to a frequency-dependent distortion
estimate.

A different, but related, problem is the effect of linear
ICE in emitter-driven differential transistor pairs, the basic ele-
ment of the "controlled cascode" multiplier [7.20]. Yen has con-
cisely derived expressions for low-frequency [7.21] and high-frequency
[7.22] distortion effects in this case.

Because Figure 7.5 suffers from distortion at all values of
current gain but one, its utility as a variable-gain element suffers.
The severity of the distortion depends on the average current densi-
ties IA/AA and IB/AB in the two pairs; the larger of these will
account for most of the fractional error, as implied by (7.23). This
sets a fundamental limit on both the absolute current levels and
the gain range in Figure 7.5. Although not treated in detail here,
other translinear circuits are subject to the same kind of errors
and signal limits. An exception is the six-transistor cell commonly
used for four-quadrant analog multiplication, but that configuration
is poorly suited for variable-gain applications, as discussed in

chapter 6.

7.4.3 Nonlinear ILCE

Nonlinearities in the log-conformance error (e.g., current-
dependent base resistance) will of course require a modification of

(7.20). However, if the nonlinearity in VE(J) for each transistor is
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sufficiently weak, a simplified model may be adequate. This exploits
the fact that J1 and J2 will usually be of the same order, as will

J3 and J4, even if the two pairs have widely different magnitudes of
current density. Based on this assumption, the log-conformance error
function VE(J) is regarded as locally linear (i.e., between each pair),
but with different constants of proportionality for the two pairs.

In effect, the equivalent resistance R0 of (7.8) and (7.20) is con-
sidered weakly current-density-dependent and thus possibly different

for the two transistor pairs.

Equation (7.20) then becomes

J2J4 qu

Jl—J3 = exp ) [RA(Jl—Jz) - RB(J4"‘J3)] (7.24)

This approximation is in fact borne out by the experimental results,
with the restriction that the pair imbalance (e.g., Jl_J“) not
approach full scale. This is reasonable, as it insures that Jl and

J2 will remain of the same order.

7.5 Measured Results

A series of measurements was performed to evaluate LCE-
induced distortion from real transistors. The translinear variable-
current-gain configuration of Figure 7.5 was set up using monolithic
transistor arrays from an analog-IC fabrication line. The static
transfer characteristics were then measured under various operating

conditions. These characteristics illustrate quantitatively the

consequences in a translinear circuit of log-conformance error, and
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the degree to which the linear-error approximation of section 7.4.2
is valid.

The same monolithic transistors were used subsequently to
test an LCE-correction strategy. The results are reported in chapter

8.

7.5.1 Experimental Arrangement

Figure 7.6 shows, in detail, the test circuit used for the
measurements. Transistors Ql - Q4 correspond to the devices in
Figure 7.5, the basic test configuration. Associated circuitry in
Figure 7.6 established bias conditions, imposed input and monitored
output.

The base~emitter voltage offset in the Q1 - Q4 quad was ad-
justed to zero, and periodically monitored, in order to remove its
influence from the circuit. Failure to do so yields a characteristic
even-order distortion [7.17] that could interfere with the LCE
measurements. Precision operational amplifiers maintained matched
collector voltages in each of the two pairs (within 2 mV). The
Ql - Q2 pair was operated at a prescribed collector-base voltage, as
described in the measurements, while the Q3 - Q4 pair operated at a

collector-base voltage equal to the average V of the first pair.

BE
The quad was configured as a variable-gain current-normalizing
amplifier. That is, the input pair operated at an adjustable total
current (2IA) while the output pair (Q3,Q4) operated at a fixed total
current (ZIB) of 20.00 microamps. Input and output were monitored

with series DC digital microammeters. The input was a differential

current produced by splitting a single (ZIA) current source between



176

Osl—

pricoor=817 = hr+8x
oS QarsaLay

S NOVLD3S
04 L10D¥ID 153

—eT” 57 33094

Ca)
£1gW?

Zoghnp

1)

hb|

v Lpo!
LS
19°S .w\.r:..

-
o

ol

o
uwv

S0 IWMpodoIW WL - LA

? s YT @ %

INYQIdWI-HI _

435340 ladNl AME S Him 30w IV SdWl 40 Y
90V
NI 0] INMQADY Q3053735 FeY (#) AIAIYW SHOLSISIY .

Ay v ‘LS JI0NN SALSISNWAL Fdy (Q313312) hD-ID o

o'si+
Lue
(azg)neow?




177

the collectors of Ql and Q2, while the output was Q4's collector
current. Care was taken to regulate and measure collector currents
at all times so that transistor current gain would not figure in the
ncminal transfer function.

Tests were performed using eight packaged monolithic trans-
istor arrays provided by Analog Devices Semiconductor. The trans-
istors in these arrays were typical small-area NPN devices used for
contemporary analog circuits. They had 0.8-mil diameter circular
emitters with a nominal emitter saturation current (IS) of 1.2 X 10—15
amperes. Typical early voltage was 45 volts, and BV(CEO) breakdown
was 35 volts. Typical DC beta was about 160 at 10 microamps col-

lector current, 230 at 100 microamps, and 300 at 1000 microamps.

VBE match was better than 0.5 mv.

7.5.2 Signal-Path Linearity

The test circuit ideally performs a variable current gain
function, with perfect input-output linearity, as described by (7.19).

It is convenient to define normalized input and output variables:

X, = —F57—— (7.25a)

X = ——F—/— (7.25b)

These take on values in the range -1 to +1 for given values of the

gain-programming currents IA and IB'
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The ideal input-output relation, fraom (7.19), becomes

X, = X, (7.26)
for all values of IA and IB (in the measurements, IB is fixed and IA
varies). The use of normalized variables allows easy comparison of
input-output linearity at different current gain settings.

Figure 7.7 shows output versus normalized input for I, = 10 uA,

A

250 pA, and 2000 YUA. As in all of these measurements, I_ is 10 uA.

B
Accuracy is *0.1% or better. This introductory plot is from chip #5
and is typical of all devices tested.

For IA = 10 uA, the input-output curve cannot be distinguished
from a straight line. Since the four transistors have the same
area, the ohmic LCE is expected to cancel in this case (IA=IB)'
as discussed in section 7.4.2. Indeed, no error was observed, to
the accuracy of the test setup. For IA = 250 yA, the peak error

of 2.1% is barely visible. For IA = 2000 pyA, the peak error was
12.7%, now quite obvious. These Percentages correspond to an output

scale of *100%. That is,

% error = (X -X.) X 100% (7.27)
o1

Subsequent plots differ from Figure 7.7 in two aspects of
presentation. First, to better illustrate deviations from the ideal
straight-line transfer function, percentage error is plotted rather

than output. Second, the symmetry between first and third quadrants
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X =17
X,=-1
1

o
[

Figure 7.7 -- Output vs. normalized input for circuit of Figure T.5.

Input-pair currents (IA) are (a) 10uA, (b) 250uA, (c) 2000uA.
Output-pair current (IB) is 10uA.
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in Figure 7.7 is essentially perfect, and this was typical of all
measurements. Therefore, only the first quadrant is presented here-
after.

Figure 7.8 presents output error as a function of normalized
input for two different test chips at IA = 100 pA, 250 pA, and 1000 uA.
Corresponding peak error is 0.9%, 2.1%, and 7.5% for the device in
Figure 7.8(a); in Figure 7.8(b) it is 0.8%, 1.9%, and 6.5%. Collector-
to-base voltage for the input pair was zero in these measurements.

The influence of collector-base bias is shown in Figure 7.9.
The first plot, Figure 7.9(a), was obtained at a "moderate" IA value
of 250 YA. For the transistors used, this current would be considered
close to the upper limit for reliable log conformance. The approxi-
mate ohmic resistance to which this error corresponds is treated in
section 7.5.3.

Note that the error magnitude falls slightly as VCB is in-
creased. A likely mechanism for this is the increase in DC beta
(due to basewidth modulation) that accompanies an increase in VCB'
Resistive parasitics in the base region will have less effect as
beta rises.

A more pathological phenomenon occurs at higher collector
currents. Not only are resistive errors in base and emitter larger,
but the drop across the internal collector resistance may actually
drive the transistors into saturation. 1In this case the external
VCB can have great influence on the circuit's behavior.

Figure 7.9(b), with a different vertical scale, illustrates

this. With IA = 2000 pA, the same test device as in Figure 7.9a
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(a) Test device #5
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Figure 7.8 -- Measured input-output error for two transistor arrays.
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shows a peak error of 22.4% when the input pair has vCB = 0. The
error falls to 12.7% for VCB = 1.10V and 10.9% for VCB = 5.00V;

- the minor change between 1.10V and 5.00V suggests that the devices

are out of saturation. Also, the value of xi at the error peak has
shifted slightly, from X; = 0.6 in Figure 7.9a to X,  0.5. The

shift implies a breakdown of the small-error estimate, equation (7.23).

Moreover, the amplitude of the error peak increases less rapidly with

current than predicted by the linear~-LCE model.

7.5.3 Loop Error Voltage and Equivalent Resistance

We would like to extract an equivalent resistance, possibly
current-dependent, that relates LCE voltage in the test transistors
to collector current. Although the measurement of resistive para-
sitics in the base-emitter circuit has been treated extensively in
the literature, the emphasis usually has been different. A dominant
interest in noise, high-frequency or switching implications of base
and emitter resistances has guided past work (for example, [7.23-
7.27]). As a result, the measurements lack the large-signal LCE
formulation sought here.

Rather than attempting to measure the transistors directly,
an indirect approach will be taken here. lLog-conformance error in
the individual transistors will be inferred from the input-output
error in the translinear current-gain circuit. First, the observed
transfer functions will be related to an excess loop voltage Vx,
as in section 7.3.4. An equivalent resistance then can be derived.

In the ideal case where the V of each transistor is an

BE

exact lbgarithmic function of collector current, Figure 7.5 obeys
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the ideal translinear result of (7.16). As discussed in section
7.3.4, nonzero log-conformance error terms in the four base-emitter
voltages may be lumped into an error voltage Vx' Assuming matched

areas, or the electrical equivalent (trimmed V match, as in Figure

BE
7.6), Figure 7.5 satisfies, from (7.12),
e (“_‘Ec_) . 28)
IlI3 kT

In this implicit relation, V_, is also a function of I. through

X 1

14; the dependence is not shown in (7.28). From (7.13), the exact
form of VX will depend on the LCE function VE(°) of the transistors

used. However, (7.28) permits us to calculate V, from the current-

X

transfer data, since all four I variables are known simultaneously.

Thus,
kT 1.1 :

Note that the dimensionless variable qvx/kT is actually cal-
culated, rather than Vx, which would require specifying junction
temperature. This derived result is shown as a function of the nor-
malized current <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>