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Hardness of Approximate Diameter: Now for Undirected Graphs

MINA DALIRROOYFARD, Machine Learning Research, Morgan Stanley Canada, Calgary, Canada

RAY LI, Mathematics and computer science, Santa Clara University, Santa Clara, United States

VIRGINIA VASSILEVSKA WILLIAMS,Massachusetts Institute of Technology, Cambridge, United States

Approximating the graph diameter is a basic task of both theoretical and practical interest. A simple folklore algorithm can
output a 2-approximation to the diameter in linear time by running BFS from an arbitrary vertex. It has been open whether
a better approximation is possible in near-linear time. A series of papers on ine-grained complexity have led to strong
hardness results for diameter in directed graphs, culminating in a recent tradeof curve independently discovered by [Li,
STOC’21] and [Dalirrooyfard and Wein, STOC’21], showing that under the Strong Exponential Time Hypothesis (SETH), for
any integer � ≥ 2 and � > 0, a 2 − 1

�
− � approximation for diameter in directed�-edge graphs requires�1+1/(�−1)−� (1)

time. In particular, the simple linear time 2-approximation algorithm is optimal for directed graphs.
In this paper we prove that the same tradeof lower bound curve is possible for undirected graphs as well, extending results

of [Roditty and Vassilevska W., STOC’13], [Li’20] and [Bonnet, ICALP’21] who proved the irst few cases of the curve, � = 2, 3
and 4, respectively. Our result shows in particular that the simple linear time 2-approximation algorithm is also optimal
for undirected graphs. To obtain our result, we extract the core ideas in known reductions and introduce a uniication and
generalization that could be useful for proving SETH-based hardness for other problems in undirected graphs related to
distance computation.

CCS Concepts: · Theory of computation → Problems, reductions and completeness; Graph algorithms analysis;
Approximation algorithms analysis.

Additional Key Words and Phrases: Fine-grained complexity, Hardness of approximation, Graph Diameter, Undirected Graphs

1 Introduction

One of the most basic graph parameters, the diameter is the largest of the shortest paths distances between pairs
of vertices in the graph. Estimating the graph diameter is important in many applications (see e.g. [13, 19, 24]).
For instance, the diameter measures how fast information spreads in networks, which is central for paradigms
such as distributed and sublinear algorithms.

The fastest known algorithms for computing the diameter of an �-node,�-edge graph with nonnegative edge
weights solve All-Pairs Shortest Paths (APSP) and run in time � (min{�� + �2 log log�, �3/��� (

︁

log�)}) time

[20, 28]. For unweighted graphs one can use fast matrix multiplication [5, 23] and solve the problem in �̃ (�� )
time, where � < 2.372 is the exponent of matrix multiplication [4, 16, 25, 29].
Any algorithm that solves APSP naturally needs �2 time, just to output the �2 distances. Meanwhile, the

diameter is a single number, and it is apriori unclear why one would need �2 time, especially in sparse graphs,
for which� ≤ �1+� (1) .
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There is a linear time folklore algorithm that is guaranteed to return an estimate �̂ for the diameter � so
that �/2 ≤ �̂ ≤ � , a so called 2-approximation. The algorithm picks an arbitrary vertex and runs BFS from it,
returning the largest distance found. The same idea achieves a near-linear time 2-approximation in directed
and nonnegatively weighted graphs by replacing BFS with Dijkstra’s algorithm to and from the vertex. A long-
standing question, which our work answers negatively assuming SETH, is whether this simple 2-approximation
is optimal:

uestion 1.1. Is there a better-than-2 approximation of diameter in near-linear time?

This question was known at least since the work of Aingworth, Chekuri, Indyk and Motwani [3]. It motivated
a number of works, discussed below, and was highlighted again in a recent survey [22].

Following [3], Roditty and Vassilevska W. [21], designed a 3/2-approximation algorithm running in �̃ (�
√
�)

time, for the case when the diameter is divisible by 3, and with an additional small additive error if it is not
divisible by 3. Chechik, Larkin, Roditty, Schoenebeck, Tarjan and Vassilevska W. [12] gave a variant of the
algorithm that runs in �̃ (min{�3/2,��2/3}) time and always achieves a 3/2-approximation (with no additive
error). These algorithms work for directed or undirected graphs with nonnegative edge weights. Cairo, Grossi
and Rizzi [9] extended the techniques of [21] and developed an approximation scheme that for every integer
� ≥ 0, achieves an łalmostž 2 − 1/2� -approximation (i.e. it has an extra small additive error, similar to [21]) and
runs in �̃ (��1/(�+1) ) time. The scheme only works for undirected graphs, however. These are all the known
approximation algorithms for the diameter problem in arbitrary graphs: the scheme of [9, 21] for undirected
graphs, and the three algorithms for directed graphs: the exact �̃ (��) time algorithm using APSP, the �̃ (�)
time 2-approximation and the 3/2-approximation algorithms of [12, 21]. These algorithms are depicted in blue in
Figure 1.
A sequence of works [6ś8, 14, 17, 18, 21] provided lower bounds for diameter approximation, based on the

Strong Exponential Time Hypothesis (SETH) [10, 15] that CNF-SAT on � variables and � (�) clauses requires
2�−� (�) time. The irst such lower bound by [21] showed that any 3/2 − � approximation to the diameter of a
directed or undirected unweighted graph for � > 0, running in � (�2−� ) time for � > 0, would refute SETH, and
hence the [21] 3/2-approximation algorithm has a (conditionally) optimal approximation ratio for a subquadratic
time algorithm for diameter. Later, Backurs, Roditty, Segal, Vassilevska W. and Wein [6] showed that under
SETH, any � (�3/2−� ) time algorithm can at best achieve a 1.6-approximation to the diameter of an undirected
unweighted graph. Thus, the [21] 3/2-approximation algorithm has a (conditionally) optimal running time for a
(1.6 − �)-approximation algorithm.
Backurs, Roditty, Segal, VassilevskaW. andWein [6] also provided a tight lower bound running time/approximation

tradeof under SETH for the related eccentricities and ST-diameter problems in undirected unweighted graphs.
Their constructions gave hope that similar lower bounds could be obtained for the diameter problem as well.

Indeed, building upon the work of [6] and subsequent works of Li [17] and Bonnet [8], Li [18] and independently
Dalirrooyfard and Wein [14], provided a scheme of tradeof lower bounds for diameter in directed graphs. They
showed that under SETH, for every integer � ≥ 2, a (2 − 1/� − �)-approximation algorithm for � > 0 for the
diameter in�-edge directed graphs, requires at least�1+1/(�−1)−� (1) time. In particular, under SETH, the linear
time 2-approximation algorithm for diameter is optimal for directed graphs, partially answering Question 1.1.

For undirected graphs, however, only three conditional lower bounds are known: the�2−� (1) [21] lower bound
for (3/2 − �)-approximation, the�3/2−� (1) [17] lower bound for (5/3 − �)-approximation, and the�4/3−� (1) [7]
lower bound for (7/4 − �)-approximation (see Figure 1).

The tradeof lower bounds for directed diameter of [14] and [18] crucially exploited the directions of the edges.
One might think that one can simply replace the directed edges with undirected gadgets. However, this does
not seem possible. A very high level reason is that the triangle inequality in undirected graphs can be used in
both directions. The directed edges in the prior constructions were used to make sure that some pairs of vertices
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Fig. 1. Algorithms and Hardness results for Diameter (in undirected graphs). The �-axis is the approximation factor and the
�-axis is the runtime exponent. Red regions represent impossibility (under SETH), blue regions represent algorithms, and the
teal cross-hatched region represent nondeterministic algorithms, which give evidence for algorithms and (under NSETH)

rule out SETH-hardness. [9] gives an "almost 2 − 2−� " approximation, meaning that it also loses an additive factor. The lower
bounds labeled [6, 18], were first proved for weighted graphs in [6], and then for unweighted graphs in [18]. For unweighted

graphs, [6] proved a weaker lower bound that a 1.6 − � approximation needs�3/2−� (1) time.
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have short paths between them, while leaving the possibility of having large distances between other pairs. If
undirected edges (or even gadgets) are used instead however, the triangle inequality implies short paths for pairs
of vertices that the construction wants to avoid. A short path from � to � and a short path from � to � does imply
a short path from � to � in undirected graphs, but not in directed graphs. This simple reason is basically why
no simple extensions of the results of [14] and [18] to undirected graphs seem to work. (See Section 4 for more
about this.)
The fact that the triangle inequality can be used in both directions in undirected graphs, makes it diicult

to extend the lower bound constructions to undirected graphs, but it also seems to make more algorithmic
tradeofs possible for undirected than for directed graphs, as evident from the Cairo, Grossi, Rizzi [9] algorithms.
It thus seems possible that a better than 2 approximation algorithm running in linear time could be possible for
undirected graphs.
The main result of this paper is to answer Question 1.1 negatively: Under SETH, there can be no better

near-linear time approximation algorithm for undirected unweighted diameter than the simple 2-approximation
algorithm that runs BFS from an arbitrary vertex. We give a delicate construction that achieves the same tradeof
lower bounds for diameter in undirected graphs as the ones in directed graphs, thus showing that undirected
diameter is just as hard. Namely:

Theorem 1.2. Assuming SETH, for all integers � ≥ 2, for all � > 0, a (2 − 1
�
− �)-approximation of Diameter in

unweighted, undirected graphs on� edges requires�1+1/(�−1)−� (1) time.

The theorem is stated in terms of the number of edges�; our lower bound constructions are for the special case
when� = �1+� (1) (i.e. very sparse graphs).

Theorem 1.2 was proved previously for � = 2 [21], � = 3 [6, 17], and � = 4 [7]. However, while these results
suggest a pattern in the runtime/approximation tradeof, there is no such pattern in the proof techniques, and
extending these results to larger � appears much more challenging; even from � = 2 [21] to � = 3 [6, 17] to � = 4

[7], the diicultly of the lower bounds progresses signiicantly. In order to obtain the new lower bounds tradeof,
one of our main contributions is to unify and generalize all previously known lower bound constructions into a
single powerful framework. Previously, the three known lower bounds [6, 7, 17, 21] for undirected graphs all
used similar in spirit but ultimately ad-hoc constructions, specialized for the particular value of � . It was not
apriori at all clear how to extend them to a full tradeof for undirected diameter. In the preliminaries we deine
the necessary objects that we need to obtain the uniied construction.
We also point out that, in addition to answering Question 1.1, there is evidence that our hardness results

are tight, not just for near-linear-time, but for every runtime/approximation tradeof. While the current best
diameter algorithms [9, 21] do not always match our lower bounds, there are nondeterministic algorithms [18]
that do exactly match Theorem 1.2 for every runtime/approximation tradeof (See Figure 1). This (i) implies that,
assuming a hypothesis called NSETH [11], our Theorem 1.2 gives the best possible SETH-hardness results, and
(ii) gives evidence that algorithms matching Theorem 1.2 do exist Ð indeed, in other contexts, nondeterministic
algorithms have paved the way for deterministic algorithms [1, 2].

Outline. In Section 2, we give some preliminaries for our construction. In Section 3 we show how to prove
Theorem 1.2 for small cases � = 4 and � = 5 to illustrate some of our ideas. We (re)prove Theorem 1.2 for � = 4,
giving a simpliied proof of Bonnet’s result, and show how the proof can be modiied to give a proof for � = 5.
The full proof for � = 5 is deferred to Appendix A. In Section 4, we highlight some of the ideas in the construction.
Afterwards, we prove our formal results. In Section 5, we prove Theorem 1.2 in full generality.

2 Preliminaries

For a positive integer �, let [�] = {1, 2, . . . , �}.

J. ACM
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� [1] � [2] � [3]
�1 1 1 1

�2 1 1

�3 1

� [1] � [2] � [3]
�1 1 1 1

�2 1 1

�3 1

� [1] � [2] � [3]
�1 1 1 1

�2 1 1

� [1] � [2] � [3]
�1 1 1 1

�2 1 1

Fig. 2. In each of the above, � = (� [1], � [2], � [3]) is a 4-coordinate array. The let two tables depict ways that stack (�1, �2, �3)
satisfies � , and the right two tables depict ways that stack (�1, �2) satisfies � .

�-OV.. A �-OV instance Φ is a set � ⊆ {0, 1}❞ of � binary vectors of dimension ❞ = Θ(log�) and the �-OV
problem asks if we can ind � vectors �1, . . . , �� ∈ � such that they are orthogonal, i.e. for all � = 1, 2, . . . , � we
have �1 [�] · . . . · �� [�] = 0. The �-OV Hypothesis says that solving �-OV requires ��−� (1) time, and it is implied
by SETH [26, 27].
Now we give the new deinitions that we introduce in this work for our construction. At a high level, we

start from a �-OV instance and create a diameter instance. To do so, we make a graph where each node is a
łconiguration." Each coniguration consists of a number of łstacks", where each stack has some of the vectors of
the �-OV instance. The stacks must łsatisfyž certain relationships, which we capture with łcoordinate arraysž.
All prior diameter reductions use a similar high level setup, where each node in their construction represented
a tuple of vectors and coordinates that satisfy a constraint. The łcoordinate arrayž primitive was implicit in
prior works [6ś8, 14, 17, 18] in simpler formats, where [6] were the irst to use it. The primitives used instead
of stack were somewhat ad-hoc and diferent for each construction; they were typically either a single ordered
or unordered tuple of vectors together with a coordinate tuple. What it meant for a vector tuple (ordered or
unordered) to satisfy a coordinate tuple also difered for each construction. One of our main contributions is
to unify and generalize the constructions in prior work, allowing us to obtain a full lower bound trade-of for
diameter in undirected graphs.

Stacks. Given a �-OV instance � ⊂ {0, 1}❞, we make the following deinitions. A stack � = (�1, . . . , � |� | ) is a
vector of elements of � whose length |� | is a nonnegative integer. Denote �1 as the bottom element of the stack
and � |� | as the top element of the stack. We let () denote the empty stack, i.e., a stack with 0 vectors. Given a
stack � = (�1, . . . , �ℓ ), a substack �≤ℓ ′ = (�1, . . . , �ℓ ′ ) is given by the bottom ℓ ′ vectors of � , where ℓ ′ ≤ ℓ . We call
these tuples stacks, because of the following operations. The stack ������ (�) is the stack (�1, . . . , �ℓ−1), i.e., the
stack � with the top element removed. For a vector � ∈ � and a stack � = (�1, . . . , �ℓ ), the stack � + � is the stack
� + � = (�1, . . . , �ℓ , �). The use of stacks as a primitive in our construction is motivated in Section 4.

Coordinate arrays.

Definition 2.1. A �-coordinate-array � is an element of [❞]�−1.

In the reduction from �-OV, we only consider �-coordinate arrays, so we omit � when it is understood. For a
�-coordinate array � ∈ [❞]�−1 and an integer ℓ ∈ [� − 1], let � [ℓ] denote the ℓth coordinate in the coordinate
array � . Also for a coordinate � and a vector � ∈ �, �[�] is the �th coordinate of �. We index coordinate arrays by
� [ℓ] and vectors in � by �[�], rather than �ℓ and �� (respectively), for clarity. For a set of non-orthogonal vectors
{�1, . . . , �� } for � ≤ � , let ��� (�1, . . . , �� ) return a coordinate � such that �� [�] = 1 for all � = 1, . . . , � (note that �
may not be unique).

Definition 2.2 (Stacks satisfying coordinate arrays). Let � = (�1, . . . , �� ) be a stack where |� | ≤ � − 1,
and let � ∈ [❞]�−1 be a �-coordinate array. We say that � satisies � if there exists sets [� − 1] = �1 ⊃ · · · ⊃ �� such
that, for all ℎ = 1, . . . , � , we have |�ℎ | = � − ℎ and �ℎ [� [�]] = 1 for all � ∈ �ℎ . (See Figure 2)

J. ACM
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Lemma 2.3. If stack � satisies a coordinate array � , then any substack of � satisies � as well.

Proof. This follows from the deinition of satisiability. □

Lemma 2.4. Let � = (�1, . . . , � |� | ) and � ′ = (�1, . . . , � |� ′ | ) be stacks, each with at most � − 1 vectors from �, the
�-OV instance, such that any � vectors from among �1, . . . , � |� | , �1, . . . , � |� ′ | are not orthogonal. Then there exists a
coordinate array � such that � and � ′ both satisfy � .

Proof. By Lemma 2.3, it suices to prove this in the case that |� | = |� ′ | = � − 1. Then � = (�1, . . . , ��−1) and
� ′ = (�1, . . . , ��−1). Let � [ℓ] = ��� (�1, . . . , ��−ℓ , �1, . . . , �ℓ ). Then for all ℎ = 1, . . . , � − 1, we have �ℎ [� [ℓ]] = 1 for
ℓ ≤ � − ℎ, so � satisies � with sets �ℎ = {1, . . . , � − ℎ}. Additionally, for all ℎ = 1, . . . , � − 1, we have �ℎ [� [ℓ]] = 1

for ℓ = ℎ, . . . , � − 1 so � ′ satisies � with sets �ℎ = {ℎ, . . . , � − 1}. Hence, both � and � ′ satisfy � . □

Lemma 2.5. Let �1, . . . , �� be � orthogonal vectors. Suppose that � is an index, � is a coordinate array and
� = (�1, . . . , � � ) and � ′ = (�� , . . . , � �+1) are two stacks. Then stacks � and � ′ cannot satisfy � simultaneously.

Proof. Suppose for contradiction that � and � ′ both satisfy � . Let [� − 1] = �1 ⊃ �2 ⊃ · · · ⊃ � � be the sets
showing that stack � satisies coordinate array � , and let [� −1] = �� ⊃ · · · ⊃ � �+1 be the sets showing that stack � ′

satisies coordinate array � . Here, � � has size � − � and � �+1 has size � . We have |� � ∩ � �+1 | = |� � | + |� �+1 | − |� � ∪ � �+1 | =
� − |� � ∪ � �+1 | > 0. Then �1 ∩ �2 ∩ · · · ∩ �� = � � ∩ � �+1 ≠ ∅, so there exists some � ∈ �1 ∩ · · · ∩ �� . For this � , we have
�1 [� [�]] = �2 [� [�]] = · · · = �� [� [�]] = 1, so �1, . . . , �� are not orthogonal, a contradiction. Thus, stacks � and � ′

cannot satisfy � simultaneously. □

3 Main theorem for � = 4

In this section, we prove Theorem 1.2 for � = 4. Theorem 1.2 for � = 4 was previously proven by Bonnet [7]. Here
we present a simpler proof that also illustrates some ideas in our general construction. Similar to Bonnet [7], our
construction consists of several parts. The majority of the vertices are given by elements of �3, where � ⊂ {0, 1}❞
is the OV instance, and the remaining "internal" vertices are given by elements of �2 × [❞]� (1) . Our construction
difers in the choice of these internal vertices: we deine these internal vertices and theirs edge using stacks,
rather than explicitly stating the edge-relationships as [7] does, which results in a simpler deinition and analysis
Ð we only have one internal "part" of the graph (�2), as opposed to three in [7] Ð and demonstrates the usefulness
of the stack primitive.
Our construction for � = 4 can be easily modiied to give a hardness construction that proves Theorem 1.2

for � = 5. We point out how this can be done in the � = 4 construction below. Since the modiication is simple,
and the proof of correctness is similar but more involved, we defer the full proof of the � = 5 construction to
Appendix A, which can be read for more intuition for the main construction. For two stacks � = (�1, . . . , �� ) and
� = (�1, . . . , �� ), let � ◦� denote the stack (�1, . . . , �� , �1, . . . , �� ).

Theorem 3.1. Assuming SETH, for all � > 0, a ( 7
4
− �)-approximation of Diameter in unweighted, undirected

graphs on� edges needs�4/3−� (1) time.

Proof. Start with a 4-OV instance Φ given by a set � ⊂ {0, 1}❞ with |�| = ��� and ❞ = Θ(log��� ). We show
how to solve Φ using an algorithm for Diameter. First check in time � (�3

��
) whether there are three orthogonal

vectors in �. If so, we know that Φ also has 4 orthogonal vectors, as we can add an arbitrary fourth vector to the
triple and obtain a 4-OV solution.
Thus, let us assume that there are no three orthogonal vectors. We construct a graph with �̃ (�3

��
) vertices and

edges from the 4-OV instance such that (1) if Φ has no solution, any two vertices are at distance 4, and (2) if Φ has
a solution, then there exists two vertices at distance 7. Any (7/4 − �)-approximation for Diameter distinguishes

between graphs of diameter 4 and 7. Since solving Φ needs �4−� (1)
��

time under SETH, a 7/4 − � approximation of

diameter needs �4/3−� (1) time under SETH.

J. ACM
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({(a), (d)}, x, y)L2

({(a), (d′)}, x, y)L2
({(a′), (d)}, x, y)L2

({(a), (d)}, x′, y′)L2

({(a, b), ()}, x′, y′)L2
({(a, b), ()}, x, y)L2

(a, b, c)L1L1

L2 ({(a), (a′)}, x, x)L2

({(a, b), ()}, x, x)L2

(a, b, c)L1

({(a′, b′), ()}, x, x)

(a′, b′, c′)L1

({(a, b), ()}, x, y)L2

({(a), (a′)}, x, y)L2

({(a), (d′)}, x, y)L2

({(a), (d′)}, x′, y′)L2

(i) (ii)

Fig. 3. (�) 4-OV reduction graph. The purple edges are coordinate change edges. (��) Paths in the first two cases of the NO
case. Black path is for the case where both vertices are in �1, blue path is for the case where one vertex is in �1 and the other
is in �2 with two stacks of size 1.

Construction of the graph. The graph � is illustrated in Figure 3(i) and constructed as follows.
The vertex set �1 ∪ �2 is deined on

�1 = {� : � is a stack with |� | = 3},
�2 =

{

({�1, �2}, �,�) : �1, �2 are stacks with |�1 | + |�2 | = 2,

�,� ∈ [❞]3 are coordinate arrays such that

�1 ◦ �2 satisies � and �2 ◦ �1 satisies �, OR
�1 ◦ �2 satisies � and �2 ◦ �1 satisies �

}

.

In vertex subset �2, the notation {�1, �2} denote an unordered set of two stacks. As shown in Figure 3, the
vertices in �2 are of two types: ({(�), (�)}, �,�)�2 and ({(�, �), ()}, �,�)�2 for �, � ∈ �, �,� ∈ [�].

Throughout, we identify tuples (�, �, �) and ({�1, �2}, �,�) with vertices of� , and we denote vertices in �1 and
�2 by (�, �, �)�1 and ({�1, �2}, �,�)�2 respectively. The (undirected unweighted) edges are the following.

• (�1 to �2) Edge between (�)�1 and ({popped(�), ()}, �,�)�2 if stack � satisies both � and �.
• (vector change in �2, type 1) For some vector � ∈ � and stacks �1, �2 with |�1 | ≥ 1, an edge between
({�1, �2}, �,�)�2 and ({popped(�1), �2 + �}, �,�)�2 if both vertices exist.
In particular, as Figure 3 shows, ({(�, �), ()}, �,�)�2 has an edge to ({(�), (�′)}, �,�)�2 if both vertices exist.
These are the only type 1 edges.

• (vector change in �2, type 2) For some vector � ∈ � and stacks �1, �2 with |�1 | = |�2 | = 1, an edge between
({�1, �2}, �,�)�2 and ({popped(�1) + �, �2}, �,�)�2 if both vertices exist.
In particular, as Figure 3 shows, ({(�), (�)}, �,�)�2 has edges to ({(�′), (�)}, �,�)�2 and ({(�), (�′)}, �,�)�2
if the vertices exist. These are the only type 2 edges.

• (coordinate change in �2) Edge between ({�1, �2}, �,�)�2 and ({�1, �2}, � ′, �′)�2 if both vertices exist.

There are at most �3
��

vertices in �1 and at most �2
��

❞
6 vertices in �2. Note that each vertex of �1 has

� (❞2) neighbors, each vertex of �2 has � (��� + ❞
2) neighbors. The total number of edges and vertices is thus

� (�3
��

❞
2) = �̃ (�3

��
). We irst show below how to change this construction for � = 5, and then we show that the

construction for � = 4 has diameter 4 when Φ has no solution and diameter at least 7 when Φ has a solution.

Modiications for � = 5. The construction of the Diameter instance � when � = 5 is very similar. We instead
start with a 5-OV (rather than 4-OV) instance � ⊂ {0, 1}� , and use the exact same graph, except the nodes in �1
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have a stack of size 4 (rather than 3), and the total sizes of the stacks in �2 is 3 (rather than 2). The descriptions of
the edges are exactly the same. We defer the proof of correctness of this construction for � = 5 to Appendix A. It
is similar to the proof for � = 4, but is more involved.

4-OV no solution. Assume that the 4-OV instance � ⊂ {0, 1}❞ has no solution, so that no four (or three or two)
vectors are orthogonal. We show that any pair of vertices have distance at most 4, by casework:

• Both vertices are in �1: Let the vertices be (�, �, �)�1 and (�′, �′, �′)�1 . By Lemma 2.4 there exists coordinate
array � satisied by both stacks (�, �, �) and (�′, �′, �′). We claim the following is a valid path (see Figure
3ii):

(�, �, �)�1 − ({(�, �), ()}, �, �)�2 − ({(�), (�′)}, �, �)�2 − ({(�′, �′), ()}, �, �)�2 − (�′, �′, �′)�1
The irst edge and second vertex are valid because (�, �, �) satisies � (and thus, by Lemma 2.3, stack (�, �)
satisies � ). By the same reasoning the last edge and fourth vertex are valid. The third vertex is valid because
each of � and �′ have a 1 in all coordinates of � , so both (�, �′) and (�′, �) satisfy � .

• One vertex is in �1 and the other vertex is in �2 with two stacks of size 1: Let the vertices be (�, �, �)�1
and ({(�′), (� ′)}, � ′, �′)�2 . By Lemma 2.4, there exists a coordinate array � satisied by both stacks (�, �, �)
and (�′, � ′), and there exists a coordinate array � satisied by both stacks (�, �, �) and (� ′, �′). We claim the
following is a valid path (see Figure 3ii):

(�, �, �)�1 − ({(�, �), ()}, �,�)�2
− ({(�), (�′)}, �,�)�2
− ({(� ′), (�′)}, �,�)�2 − ({(�′), (� ′)}, � ′, �′)�2 .

The irst edge and second vertex are valid because (�, �, �) satisies � and �. Vector � has a one in each
coordinate of � and �, and stack (�′, � ′) satisies � and stack (� ′, �′) satisies �, so stack (�′, �) satisies
� and stack (�, �′) satisies �, so the third vertex ({(�), (�′)}, �,�)�2 is valid, and thus the second edge is
also valid. The fourth vertex is valid because (�′, � ′) satisies � and (� ′, �′) satisies � by construction of
coordinate arrays � and �, and thus the third and fourth edges are valid. Hence, this is a valid path.

• Both vertices are in�2 with two stacks of size 1: Let the vertices be ({(�), (�)}, �,�)�2 and ({(�′), (� ′)}, � ′, �′)�2 .
Let �1 ∈ [❞] be a coordinate where �, �, �′, � ′ are all 1, and let � = (�1, �1, �1) be a coordinate array. Then
the following is a valid path:

({(�), (�)}, �,�)�2 − ({(�), (�)}, �, �)�2
− ({(�′), (�)}, �, �)�2
− ({(�′), (� ′)}, �, �)�2 − ({(�′), (� ′)}, � ′, �′)�2 .

Indeed it’s easy to check that any stack of two of �, �, �′, � ′ satisies �, so all the vertices are valid and thus
all the edges are valid, so this is a valid path.

• One vertex is in �2 with two stacks of size 2 and 0: For every vertex � = ({(�, �), ()}, �,�)�2 in �2 with
two stacks of size 2 and 0, any vertex of the form � = (�, �, �)�1 in �1 has the property that the neighborhood
of � is a superset of the neighborhood of � (by considering coordinate change edges from �). Thus, any
vertex that � can reach in 4 edges can also be reached by � in 4 edges. In particular, since any two vertices
in �1 are at distance at most 4, any vertex in �1 is distance at most 4 from any vertex in �2 with two stacks
of size 2 and 0. Applying a similar reasoning, any vertex in �2 with two stacks of size 2 and 0 is distance at
most 4 from any vertex in �2 with two stacks of size 2 and 0, and any vertex in �2 with two stacks of size 1.

We have thus shown that any two vertices are at distance at most 4, proving the diameter is at most 4.
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4-OV has solution. Now assume that the 4-OV instance has a solution. That is, assume there exists �1, �2, �3, �4 ∈
� such that �1 [�] · �2 [�] · �3 [�] · �4 [�] = 0 for all � . Since there are no 3 orthogonal vectors, vectors �1, �2, �3, �4 are
pairwise distinct.

Suppose for contradiction there exists a path of length at most 6 from �0 = (�1, �2, �3)�1 to �6 = (�4, �3, �2)�1 .
Since all vertices in �2 have self-loops with trivial coordinate-change edges, we may assume the path has

length exactly 6. Let the path be �0 = (�1, �2, �3)�1 , �1, . . . , �6 = (�4, �3, �2)�1 . We may assume the path never visits
�1 except at the ends: if �� = (�) ∈ �1, then ��−1 = ({popped(�), ()}, �,�) and ��+1 = ({popped(�), ()}, � ′, �′)
are in �2, and in particular ��−1 and ��+1 are adjacent by a coordinate change edge, so we can replace the path
��−1 − �� − ��+1 with ��−1 − ��+1 − ��+1, where the last edge is a self-loop.

For � = 1, 2, 3, let �� denote the largest index such that vertices �0, �1, . . . , ��� all contain a stack that has
(�1, . . . , �� ) as a substack. Because we never revisit �1, we have �3 = 0. For � = 1, 2, 3, let �� be the smallest index
such that vertices ��� , . . . , �6 all contain a stack with (�4, . . . , �5−� ) as a substack. Because we never revisit �1, we
have �3 = 6. We show that,

Claim 3.2. For � = 1, 2, 3, between vertices ��� and ��4−� , there must be a coordinate change edge.

Proof. Suppose for contradiction there is no coordinate change edge between ��� and ��4−� . We show a
contradiction for each of � = 1, 2, 3.

First, consider � = 3. Here,��� = �0 = (�1, �2, �3)�1 . Byminimality of�1, vertex��1 is of the form ({(�), (�4)}, �,�)�2
for some vector � . Then stack (�4), satisies one of � and �. Since there is no coordinate change edge between
�0 and ��1 , we must have �1 = ({(�1, �2), ()}, �,�) for the same coordinate arrays � and �, so stack (�1, �2, �3)
satisies both � and �. Hence, there is some coordinate array satisied by both (�1, �2, �3) and (�4), which is a
contradiction of Lemma 2.5. By a similar argument, we obtain a contradiction if � = 1.
Now suppose � = 2. By maximality of �2, vertex ��2 is of the form ({(�1, �2), ()}, �,�)�2 . By minimality of

�2, vertex ��2 is of the form ({(�4, �3), ()}, �,�)�2 . The coordinate arrays � and � are the same between the two
vertices because there is no coordinate change edge between them by assumption. Then stacks (�1, �2) and
(�4, �3) satisfy both coordinate arrays � and �, which contradicts Lemma 2.5. □

Since coordinate change edges do not change any vectors, by maximality of �� , the edge ������+1 cannot be a
coordinate change edge for all � = 1, 2, 3. Similarly, by minimality of �� , the edge ���−1��� cannot be a coordinate
change edge for all � = 1, 2, 3. Consider the set of edges

��3��3+1, ��2��2+1, ��1��1+1, ��1−1��1 , ��2−1��2 , ��3−1��3 . (1)

By the above, none of these edges are coordinate change edges. These edges are among the 6 edges �0�1, . . . , �5�6.
Additionally, the edges ������+1 for � = 1, 2, 3 are pairwise distinct, and the edges ���−1��� for � = 1, 2, 3 are
pairwise distinct. Edge ��3��3+1 cannot be any of ���−1��� for � = 1, 2, 3, because we assume our orthogonal
vectors �1, �2, �3, �4 are pairwise distinct and ��3+1 = �1 does not have any stack containing vector �4. Similarly,
��3−1��3 cannot be any of ������+1 for � = 1, 2, 3. Thus, the edges in (1) have at least 4 distinct edges, so our path
has at most 2 coordinate change edges. By Claim 3.2, there must be at least one coordinate change edge. We now
do casework on the number of coordinate change edges.
Case 1: the path �0, . . . , �6 has one coordinate change edge. By Claim 3.2, since vertex ��3 = �0 is before

the coordinate change edge, edge ��1−1��1 must be after the coordinate change edge, and similarly edge ��1��1+1
must be before the coordinate change edge. Then all of the edges in (1) are pairwise distinct, so then the path has
6 edges from (1) plus a coordinate change edge, for a total of 7 edges, a contradiction.

Case 2: the path has two coordinate change edges. Again, by Claim 3.2, for � = 1, 2, 3, edges ���−1��� must
be after the irst coordinate change edge, and edge ������+1 must be before the second coordinate change edge.
Since we have 6 edges total, we have at most 4 distinct edges from (1), so there must be at least two pairs (�, �) such
that the edges ������+1 and �� �−1�� �

are equal. By above this edge must be between the two coordinate change
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t=1
t=2

t=3

...

GH0
H1

H2

H ′

2

S1 : (a1, a2)

S2 : () S3 : ()

S1 : (a1, a2, a3, a4)

S1 : (a1, a2, a3)

S2 : ()

H3

H4

H5

S1 : (b1, b2, b3, b4)

S1 : (a1, a2)

S2 : (b1)

S1 : (b1, b2, b3)

S2 : ()
S1 : (b1, b2)

S2 : (a1)

Fig. 4. Our Diameter instance � , illustrated for � = 5. Vertices are configurations and edges are operations on configurations.
Edges within configurations hold coordinate arrays (suppressed in the figure).

edges, so edges ��2��2+1, ��1��1+1, ��2−1��2 , ��1−1��1 are all between the two coordinate change edges. However,
this means that vertices ��2 and ��2 are between the two coordinate change edges, contradicting Claim 3.2.

This shows that (�1, �2, �3)�1 and (�4, �3, �2)�1 are at distance at least 7, completing the proof. □

4 Overview of the general � reduction

4.1 The basic setup

To prove Theorem 1.2 in general, we start with a �-OV instance � ⊂ {0, 1}❞ with size |�| = ��� and dimension
❞ ≤ � (log��� ), and construct a graph � on �̃ (��−1

��
) vertices and edges such that, if the set � has � orthogonal

vectors (Yes case), the diameter of � is at least 2� − 1, and otherwise (No case) the diameter of � is at most � .
Throughout, we refer to elements of � as vectors and elements of [❞] as coordinates. Each vertex of� is identiied
by a coniguration � , which contains vectors (in �) and coordinates (in [❞]), along with some meta-data. Vertices
must be valid conigurations � , meaning vectors of � have 1s in speciied coordinates of � . Edges between
conigurations of � change up to one vector and/or some coordinates, and we think of edges as performing
operations on conigurations. We ensure the graph is undirected by choosing operations that are invertible.

4.2 The Diameter instance construction

We now sketch the deinitions of conigurations and operations, which deine the vertices and edges, respectively,
of the Diameter instance � . Figure 4 illustrates our graph � and some vertices and edges.

Conigurations. A coniguration � is identiied by the following:
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S1 S1

S2

(a4, a5)
S3

(a6)
S2 S3 S4

()

S1

S2

()(a4) (a6)

(a1, a1, a3)

node insertion vector deletion

S3 S4

(a1, a1, a3) (a1, a1, a3)

(a4, a5) (a6)

Fig. 5. Two half-operations (one full operation) on configurations of size � = 7. Root stack �1 is in purple. Coordinate arrays
(suppressed in figure) are atached to edges.

(1) A positive integer � and a sequence of � lists of vectors �1, . . . , �� , which we call stacks. Stack �1 is special
and is called the root, and we require �1 to have at least (� − 2)/2 vectors.

(2) A collection of � (�2) elements of [❞]�−1, which we call coordinate arrays, which are each tagged with one
or two of the stacks �1, . . . , �� (here, we omit the details of this tagging).

The size of a coniguration is � +∑�
�=1 |�� |, the number of stacks plus the number of vectors. The vertices of our

Diameter instance � correspond to the valid (deined below) size-� conigurations (see Figure 4).1

Valid conigurations. A coniguration is valid if every coordinate array is satisied (deined in Deinition 2.2)
by its one or two tagged stacks. This technical notion of łstacks satisfying coordinate arraysž, implicit in prior
constructions [6ś8, 14, 18], has two key properties.

(1) (Lemma 2.4, used in No case) If every � vectors among the vectors of stacks � and � ′ are not orthogonal, �
and � ′ satisfy a common coordinate array.

(2) (Lemma 2.5, used in Yes case) If stacks (�1, . . . , � � ) and (�� , . . . , � �+1) satisfy a common coordinate array,
then �1, . . . , �� are not orthogonal.

Operations. Operations (Figure 5) are composed of half-operations, which are one of the following.

(1) (Vector insertion) Insert a vector at the end of a stack.
(2) (Vector deletion) Delete the last vector of a stack.
(3) (Node2 insertion) Insert an empty non-root stack.
(4) (Node deletion) Delete an empty non-root stack.3

(5) (Flip) If � = 2, switch the two stacks �1 and �2, making �2 the new root.

Note, vectors are inserted and deleted łFirst In Last Outž, hence the term łstackž (see Why stacks?).
During node insertion and deletions, we also insert and delete, respectively, coordinate arrays from the

coniguration. Specifying how to do this is a signiicant challenge. At a high level, we associate with each
coniguration a star graph4 having vertices �1, . . . , �� and edges �1�� for � = 2, . . . , � (hence �1 is called the root,
see Figures 4 and 5). We attach each coordinate array to an edge (the edge’s endpoints may be diferent from the
coordinate array’s tagged stack(s)), and insert and delete coordinate arrays when their associated edge is inserted
or deleted.

1Prior lower bounds [6ś8, 14, 18] resemble this construction but with only � ≤ 2 stacks. Handling more than two stacks is nontrivial but
seems necessary for our undirected, general-� result.
2We say łNode insertionž instead of łstack insertionž because in the actual construction, we place the stacks at nodes of a graph.
3In the formal construction, we require that the deleted stack is either ��−1 or �� , and require an analogous condition for node insertions.
The proof holds without this requirement, but it is a notational convenience in the proof of Lemma 5.10.
4We emphasize there are now two types of graphs: the Diameter instance, and the star graphs of each coniguration.
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S1

(a1, a2, a3)

(a4) ()
S2

H

(a1, a2, a3)

(a1, a2)

S1

S1

(b1, b2)
S′

1

(b1, b2, b3)
S′

1

S3

S1

(a1, a2, a3)

()() ()
S2 S3 S′

1

H
′

v′
1

(b1, b2, b3, b4)

S′

2

(b5)

S′

1

(b1, b2, b3, b4)

S′

2

() ()
S1

2 ops 2 ops

Fig. 6. No-case path between configurations � and � ′ for � = 7. We delete all non-root stacks of � before inserting any
non-root stacks of � ′. Orange edges hold auxiliary coordinate arrays not belonging to � or � ′.

A (full) operation consists of two half-operations: a vector insertion or node insertion followed by a vector
deletion or node deletion. We also allow operations to include a lip operation after the half-operations. To
ensure at most �̃ (��−1

��
) edges, we do not allow operations between two conigurations with one stack (� = 1).

An operation is valid if the starting and ending coniguration are valid.5 The Diameter instance � has the edge
(�,� ′) if applying a valid operation to � gives � ′.

Basic properties. We check a few basic properties of the construction.

• Operations leave the size � +∑�
�=1 |�� | of a coniguration invariant, so the edges are well-deined. (this is

why we deined size as � +∑�
�=1 |�� |.)

• Since the Diameter instance deals with size � conigurations, each coniguration has at most � − 1 vectors,
so there are at most �̃ (��−1

��
) vertices. Similarly, one can check that there are �̃ (��−1

��
) edges, and that the

graph can be constructed in �̃ (��−1
��

) time.
• Operations are invertible, so the graph is undirected. For example, a vector insertion/node deletion can be
inverted by a node insertion/vector deletion.

Why stacks? That is, why are vectors inserted łFirst In Last Outž from stacks? Crucially, stacks ensure that � −1

operations are needed to delete the bottom vector of a coniguration with one stack. As in prior constructions, the
Yes case shows that if �1, . . . , �� are orthogonal, the one-stack conigurations � and � ′ with stacks (�1, . . . , ��−1)
and (�� , . . . , �2) are at distance 2� − 1. If we could delete �1 from � in less than � − 1 operations, we could arrive
in � − 2 operations at a coniguration � ′′ such that any � vectors among � ′′ and � ′ are not orthogonal. Then � ′′

and � ′ are at distance � by the No case, so � (�,� ′) ≤ � (�,� ′′) + � (� ′′, � ′) ≤ 2� − 2 by the triangle inequality,
a contradiction.

4.3 Correctness

We now sketch why � has diameter at most � in the No case and at least 2� − 1 in the Yes case.

No case. Suppose any � vectors are not orthogonal. We want to show we can reach any coniguration � ′ from
any other coniguration � with � valid operations. If the operations do not need to be valid, this is easy: insert
the nodes and vectors of � ′ while deleting the vectors and nodes from � . We need � deletions to remove �
(because it has size �), and � insertions to build � ′, so we pair the insertions and deletions to get from � to � ′ in
� full operations.

5We also require validity of intermediate conigurations after one of the two half-operations. In the Yes case, this gives an extra +2, proving
the diameter is 2� − 1, rather than 2� − 3.
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(ak, . . . , ak−i, ∗)
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Fig. 7. The Yes case. We find a coordinate array � satisfied by stack (�1, . . . , ��−�−1) in some configuration and satisfied by
stack (�� , . . . , ��−� ) in another configuration, contradicting Lemma 2.5. Here, coordinate array � is both atached to edge
�1�

′
1 (so it is inserted and deleted with the edge) and tagged with stacks �1 and �

′
1 (so stacks �1 and �

′
1 need to satisfy � ). The

*s represents some (possibly zero) vectors.

Since these operations may not all be valid, we must carefully choose the order of the insertions and deletions.
The root stack is key in choosing the path. Let �1 and � ′1 be the root stacks of � and � ′. Because �1 and � ′1 each
have at least (� − 2)/2 vectors (by deinition, and crucially), we can choose a path from � to � ′ that irst deletes
all the non-root stacks of � while only adding stack � ′1 and its vectors (see Figure 6). Then when � ′1 has at least
(� − 2)/2 vectors, we apply a lip operation, so that � ′1 is the new root, and we build the remainder of � ′ while
deleting stack �1.6

Roughly, this path works because all coordinate arrays tagged with both a stack in � and a stack in � ′ are
łauxiliaryž, belonging to neither� nor� ′; they are attached to �1� ′1, the orange edges in Figure 6. This requirement
is necessary, as � and � ′ are generic conigurations, so stacks of � may not satisfy any coordinate array of � ′

and vice-versa. Furthermore, Lemma 2.4 and non-orthogonality let us choose these auxiliary coordinate arrays to
always be satisied by their tagged stacks, making the path valid.

Yes case. Suppose that there are � orthogonal vectors �1, . . . , �� . We sketch why our graph � has diameter at
least 2� − 3. The formal proof shows the diameter is at least 2� − 1 (see footnote 5).
Let �0 be the coniguration with one stack �1 = (�1, . . . , ��−1), and let �2�−4 be the coniguration with one

stack � ′1 = (�� , . . . , �2). Suppose for contradiction there is a path �0, �1, . . . , �2�−4. At the highest level, we ind
two stacks (�� , . . . , � �+1) and (�1, . . . , � � ) from intermediate conigurations satisfying a common coordinate array,
contradicting Lemma 2.5.

Let � be the smallest index such that conigurations �� , ��+1, . . . , �2�−4 all contain stack � ′1. It is easy to check
that � ≤ � − 3 so �� also contains stack �1. For this sketch, assume that stacks �1 and � ′1 are adjacent in the
coniguration �� ’s star graph.7 Since this star graph is always a tree, and valid operations can only delete leaf
nodes, stack �1 can only be deleted by deleting all of �� minus stack � ′1 (The red stacks/vectors in Figure 7), which
takes � − 1 operations (Lemma 5.11). Thus, conigurations �� , . . . , ��+�−2 all have stacks �1 and � ′1 and the edge
between them.

Our construction guarantees a coordinate array � attached to edge �1� ′1 that is satisied by �1 and � ′1. Hence, �
is satisied by �1 and � ′1 in each of �� , . . . , ��+�−2. In �� , stack �1 must have a preix of (�1, . . . , � (�−1)−� ), which

6 By viewing a path �1, �2, . . . as a sequence of operations on �1, we can naturally identify stacks and coordinates across diferent
conigurations in the path, talking about, for example, a stack �1 of �1 being in �� . For this overview, this informality suices. To avoid
ambiguity in the formal proof, we give stacks a label that does not change between operations (and contract pairs of conigurations that are
equivalent up to permuting labels).
7There are two other cases: �1 and � ′1 are the same stack, and �1 and � ′1 are nonadjacent stacks in the star graph. The irst case is easy, and

the nonadjacent case is similar but more technical, depending on the details of tagging coordinate arrays with stacks.
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thus satisies � . 8 In��+�−2, stack � ′1 must have a preix of (�� , . . . , � (2�−4)−(�+�−2)+2), which also satisies � . Hence
stacks (�1, . . . , ��−�−1) and (�� , . . . , ��−� ) satisfy a common coordinate array, contradicting Lemma 2.5.

5 The main theorem for general �

We describe below a reduction from �-OV to 2� − 1 vs. � Diameter with time � (��/(�−1) ) on graphs with edges
of weight 1 or 0. This immediately gives a reduction from �-OV to 2� − 1 vs. � Diameter with time � (��/(�−1) )
on unweighted graphs, by contracting the edges of weight 0. For clarity of exposition, we describe the reduction
to the 0/1-weighted graph.
Throughout the construction, ix � ′ = ⌊�/2⌋ + 1. Throughout the construction, all coordinate arrays are

�-coordinate arrays. Let Φ be a �-OV instance given by a set � of � vectors of length � (log�). We create a graph
� using this instance. First we need a few deinitions.

5.1 Configurations

Edge constraints. The vertices of our construction are łconigurations" which we are going to deine formally
later. Each coniguration is a small graph, in which each vertex is assigned a stack and each edge puts constraints
between those stacks. These edge-constraints on edges are of the following form. Recall that a coordinate array is
an element of [❞]�−1.

Definition 5.1 (Edge-constraint). In a graph with an edge connecting vertices � and � ′, a (�, � ′)-edge-
constraint � (or edge-constraint when (�, � ′) is implicit) is a tuple of 2� ′ + 1 coordinate-arrays: ��,� and ��′,� for
� ∈ [� ′], and �∗.

We later deine how these 2� ′ + 1 coordinate arrays of a (�, � ′)-edge-constraint relate with the stacks assigned
to � and � ′, as well as the stacks of other vertices.

Conigurations. With these edge-constraints deined, we can now deine a coniguration.

Definition 5.2 (Configuration). A coniguration � is an undirected star9 graph � with nodes � (� ) labeled
by distinct elements of [2� ′], such that

(1) The center node, denoted � (� ), of the star graph � is called the root (if the graph has two nodes, either one
could be the root),

(2) � is equipped with a total order ≺� on the vertices of � such that the root is the smallest node of ≺� ,
(3) Each node � of � is assigned a stack �� (� ), and
(4) Each edge (�, � ′) of� is labeled with an (�, � ′)-edge constraint� �,�′ . As graph� is undirected, we equivalently

denote � �,�′ by � �′,� .

Again, we emphasize that there are now two types of graphs, the coniguration graph, and the Diameter
instance, whose vertices are identiied by coniguration graphs. We say coniguration � is a �-stack coniguration
if � has � vertices. The vertices of our Diameter instance are identiied with conigurations. We use the following
deinition to specify how many nodes and vectors are in these coniguration. As we specify later, the vertices of
our Diameter instance are identiied by conigurations of size � .

Definition 5.3 (Size of a configuration). The size of a coniguration � is the integer
∑

�∈� (� ) (1 + |�� (� ) |).

Note that the size of a coniguration is the number of stacks plus the total number of vectors in all the stacks.

8If a stack satisies coordinate array, its preixes (substacks) also satisfy that coordinate array (Lemma 2.3).
9Recall a star graph is a tree with a center vertex adjacent to all other vertices.
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Fig. 8. The coordinate arrays X�� (� ) that stack ��� (� ) satisfies, for � ≥ 2. The relevant edges are colored red, and the
coordinate array that is satisfied by ��� (� ) is writen on them. The edge �1�� is shown in bold since many coordinate arrays
on this edge-constraint are satisfied by ��� (� ).

Equivalent conigurations. The node labels of a coniguration � in [2� ′] are irrelevant except so that we can
reason about operations on conigurations (deined later) in a well deined way (see footnote 6). Accordingly, we
say two conigurations are equivalent if, informally, one can be obtained by permuting the node labels of the
other. Formally, we have the following deinition.

Definition 5.4 (Eqivalence of configurations). We say two conigurations � and � ′ are equivalent if
there is some permutation � : [2� ′] → [2� ′] such that,

• Coniguration � ′ contains node � (�) for each node � of � , and an edge (� (�), � (� ′)) with (� (�), � (� ′))-edge
constraint �� (�),� (�′ ) for each edge (�, � ′) of � with (�, � ′)-edge-constraint � �,�′ , such that �

� (�),� (�′ )
� (�), � = � �,�′

�,�

and �
� (�),� (�′ )
� (�′ ), � = � �,�′

�′, � for all � ∈ [� ′], and �� (�),� (�′ )
∗ = � �,�′

∗ .

• The stacks satisfy �� (�) (� ′) = �� (� ) for every node � of � .
• The ordering ≺� ′ on � ′ has � (�) ≺� ′ � (� ′) if and only if � ≺� � ′.
• The root of � (� ) satisies � (� ′) = � (� (� )).

In this case, we write � ′
= � (� ).

It is easy to check the following fact from Deinition 5.4. Taking � ′
= �−1 below veriies that the equivalence

in Deinition 5.4 is indeed an equivalence relation.

Lemma 5.5. For two permutations � and � ′, we have � (� ′ (� )) = (� ◦ � ′) (� )

Edge-satisfying and valid conigurations. For a coniguration to be a valid vertex of our diameter instance,
the stacks of a coniguration need to satisfy particular coordinate arrays in the coniguration. We now make
precise how we want the coordinate arrays to constrain the stacks. This is the most technical deinition in the
construction.

Definition 5.6 (Edge-satisfying and X� (� )). A coniguration � with � ≥ 1 vertices �1 ≺� · · · ≺� �� is
edge-satisfying if and only if for every � ∈ [�], the stack ��� (� ) satisies each coordinate array in the following set
X�� (� ) of coordinate arrays.
(1) For every neighbor � ′ of �� , and every index � ∈ [� ′], set X�� (� ) includes the coordinate array � �� ,�

′

�� , �
and � �� ,�

′
∗ .

Note that either � ′ or �� is the root.
(2) For every �′ > � , set X�� (� ) includes the coordinate array �

��′ ,�1
��′ ,�

, where recall that �1 is the root � (� ). See
Figure 8.
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∗ 1 . . . � . . . � − 1 � . . . � ′

∗ ��1 , ��� − . . . − . . . − − . . . −
�1 − ��1 . . . ��1 . . . ��1 ��1 . . . ��1
�� − ��1 , ��� . . . ��� , ��� . . . ���−1 , ��� ��� . . . ���

Table 1. Edge satisfying constraints for � �1,�� in a configuration � . The entry in row � and column � represent the stacks
satisfying �

�1,��
�,� . The entry in row ∗ and column ∗ represent the stacks satisfying �

�1,��
∗ . We drop � in �� (� ) for space

constraints.

We highlight the subtle detail that the edge constraint � �1,�� belonging to the edge �1�� where �1 = � (� )
might hold coordinate arrays constraining the stacks of the nodes other than its endpoints �1 and �� . To get more
intuition, the coordinate arrays a given stack ��� needs to satisfy are illustrated in Figure 8, and for an edge �1��
in coniguration � the stacks that must satisfy each coordinate array in � �1,�� are illustrated in Table 1. Table 1
shows that every coordinate array in the edge-constraint � constrains at most two stacks.

Definition 5.7 (Valid configuration). The coniguration � is valid if it is edge-satisfying and the stack of the
root node satisies |�� (� ) (� ) | ≥ (� − 2)/2. Here, � is the parameter of our reduction. We use this deinition even
when the size of coniguration � is not � .

The choice of our global constant � ′ is motivated by this deinition: Since all valid conigurations have a stack
with at least (� − 2)/2 vectors, all valid size-� conigurations, and hence all conigurations at vertices of our
Diameter instance, have at most � − ⌈(� − 2)/2⌉ = � ′ nodes.

Operations on conigurations. As mentioned earlier, our inal construction consists of conigurations. To relate
diferent conigurations to each other, we deine operations as follows.

Definition 5.8 (Operations on configurations). We deine the following half-operations on conigurations
� , that produce a resulting coniguration � ′.

(1) Vector insertion. � ′ has the same nodes, root node, edges, edge-constraints, stacks, and ordering as � , except
that �� (� ′) = �� (� ) + � for some vector � ∈ � and some node � .

(2) Vector deletion. � ′ has the same nodes, root node, edges, edge-constraints, stacks, and ordering as � , except
that �� (� ′) = ������ (�� (� )) for some node � .

(3) Node insertion. � ′ has the same nodes, root node, edges, edge-constraints, stacks as � , except that � ′ also
contains a node � labeled in [2� ′] \� (� ), assigned with an empty stack �� (� ′) = ∅, and an edge from node
� to the root node � (� ′) = � (� ) with a (�, � (� ′))-edge constraint � , and such that the total order ≺� ′ is a
total order consistent with ≺� on the nodes of � and the new node � as either the largest or second largest node
of ≺� ′ .10

(4) Node deletion. � ′ has the same nodes, root node, edges, edge-constraints, stacks as � , except that for some
non-root (leaf) node � with �� (� ) = ∅ that is either the second-largest or largest node of ≺� , �

′ does not
contain node � or the edge incident to it, and the order ≺� ′ is the order ≺� restricted to the nodes of � ′

(5) Flip. This half-operation is łonly" deined when � has exactly two nodes � and � ′ with � = � (� ) as the root
and |�� (� ) | = |��′ (� ) |. Then � ′ has the same nodes, edges, and stacks as � , but � ′ = � (� ′) is the root of � ′

and the ordering ≺� ′ of the nodes of � ′ is switched accordingly, so that � ′ ≺� ′ � .

Call such a half-operation valid if conigurations � and � ′ are both valid.

10This requirement that the new node � is either the largest or second largest node of ≺� is not necessary, but makes the rest of the proof,
especially Lemma 5.10, easier to write. Similarly, for node deletions, the deleted node does not need to be the largest or second-largest node
of ≺� .
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Fig. 9. Example of a full operation consisting of a vector insertion (in �2), a flip and a vector deletion (from �1). We assume
that � = 7 in this example. Note that when the flip operation happens, the two nodes have the same number of vectors in
their stacks. The root in all four configurations is colored purple.

A full operation is obtained by applying a vector or node insertion, possibly applying a lip (if applicable), and
then applying a vector or node deletion. We say a full operation from � to � ′ is valid if each of the two (or three, if
there is a lip) participating half-operations is valid, and if at least one of � or � ′ has at least two nodes.

By combining a łdelete" (node or vector) half operation to an insert (node or vector) half operation, we make
sure that the endpoints of a full-operation have the same size. For examples of full operations, see Figure 5 and
Figure 9. Full operations have the following useful properties.

Lemma 5.9 (Properties of half and full operations). Let � and � ′ be conigurations.

• If applying a vector insertion to � gives � ′, it is possible to apply a vector deletion to � ′ to get � .
• If applying a vector deletion to � gives � ′, it is possible to apply a vector insertion to � ′ to get � .
• If applying a node insertion to � gives � ′, it is possible to apply node deletion to � ′ to get � .
• If applying a node deletion to � gives � ′, it is possible to apply node insertion to � ′ to get � .
• Applying two lip operations to a 2-stack coniguration gives the same coniguration.
• If applying a valid full operation to � gives � ′, it is possible to apply a valid full operation to � ′ to get � .

Proof. For the irst item, if � ′ is obtained from a vector insertion at node � in � , then � is obtained by a
vector deletion at node � in � . The second, third, and fourth items are similar. For the ifth item, lip operations
do not change the 2-node graph, and two lips preserve the root node and the ordering of the two nodes.
For the sixth item, note that the irst ive items imply that every half-operation has an inverse. If � ′ is

obtained by applying two half-operations to � that give � ′′ then � ′, and both half operations are valid, then
conigurations �,� ′′, � ′ are all valid conigurations. Then the full operation � ′ → � ′′ → � is a valid full
operation. Similarly if� ′ is obtained with a valid full operation including a lip, having intermediate conigurations
� → � ′′ → � ′′′ → � ′, then all the intermediate conigurations are valid, and � ′ → � ′′′ → � ′′ → � is a valid
full operation. □

5.2 Defining the Diameter graph �

We are now ready to deine our graph � . The vertex set of � is the set of valid size-� conigurations. Recall
that for all size-� conigurations, the number of stacks plus the total number of vectors in all stacks is � , and a
coniguration is valid if it is edge-satisfying (Deinition 5.6) and the root stack has at least (� − 2)/2 vectors in it.
The edge-set of � includes the following types of edges:

• edges (�,� ′) such that coniguration � can be obtained from coniguration � ′ by a valid full operation.
We call these edges operation edges. By the last part of Lemma 5.9, (�,� ′) are connected by an operation
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edge if and only if � can be obtained from � ′ by a valid full operation, so these edges can indeed by
undirected.

• weight-0 edges (�, � (� )) for all valid size-� conigurations � and all permutations � : [2� ′] → [2� ′]
(recall � (� ) is deined in Deinition 5.4). We call these edges permutation edges.

• (if � is even) weight-0 edges (�,� ′) if � ′ can be obtained by applying a lip to � . We call these edges lip
edges.

For disambiguation, we always refer to vertices of conigurations as nodes, and vertices of the Diameter instance
� as vertices or conigurations.

Runtime analysis. We irst show that the graph� can be constructed in time�� (��−1��
❞
� (�2 ) ). One can construct

the vertices of � by enumerating over all possible star graphs labeled by [2� ′], of which there are at most �� (1),
and then enumerating over all possible orderings ≺ of the nodes of star graphs, of which there are at most �� (1),
and then enumerating over all possible stacks for each star graph, of which there are at most �� (��−1��

) (each
coniguration is size-� , meaning the total number of nodes (stacks) plus the total number of vectors equals � , and
since there is always at least one node (stack), the total number of vectors is at most � − 1), and enumerating over
all possible edge-constraints, of which there are at most �� (❞(�

′−1) · (2� ′+1) ) ≤ �� (❞2�
2 ). Hence, there are at most

�� (��−1��
❞
2�2 ) vertices of � . Furthermore, for � ≥ 2, there are at most �� (��−2��

❞
2�2 ) many �-stack conigurations

of � .
For any coniguration, there are�� (��� ) vector insertions possible,�� (1) vector deletions possible,�� (❞2�

′+1)
node insertions possible, and�� (1) node deletions possible. Hence, each coniguration of� has at most�� (��� +
❞
2� ′+1) neighbors. Every edge of � has at least one endpoint that has � ≥ 2 stacks (by deinition of valid full

operation), so the total number of edges of � is at most �� (��� + ❞
2� ′+1) ·�� (��−2��

❞
2�2 ) ≤ �� (��−1��

❞
4�2 ).

Hence,� has �̃ (��−1
��

) vertices (conigurations) and edges. Checking whether any half-operation is valid takes

time �� (❞) = �̃� (1). Hence enumeration of vertices (conigurations) and edges of the Diameter graph � is
standard and can be done in time near-linear in the number of vertices and edges, so the construction of � takes
time �̃ (��−1

��
).

5.3 Some useful properties of configurations

We now move on to proving the correctness of our conigurations, showing that the Diameter is at least 2� − 1

when the �-OV instance Φ has a solution (Yes case), and the Diameter is at most � when Φ has no solution (No
case). We begin with some useful lemmas about conigurations.

Lemma for the No case. In the No case, we need to construct length � paths between every pair of nodes and
verify that those paths are valid paths in the Diameter instance. The following natural lemma facilitates these
veriications. Call � ′ a subconiguration of � if � ′ can be obtained from � by vector deletions and node deletions.

Lemma 5.10. If � ′ is a subconiguration of � and � is edge-satisfying, then � ′ is also edge-satisfying.

Proof. It suices to prove that if � ′ is obtained by applying a single vector deletion or node deletion to � , and
� is valid, then � ′ is valid. The full lemma follows from induction of the number of deletions needed to obtain
� ′ from � . Let � have vertices �1 ≺� · · · ≺� �� .

Suppose � ′ is obtained from � by a vector deletion. Then � and � ′ have the same node set and edge set. Let
� ∈ [�]. In the Deinition 5.6, the set of coordinate arraysX�� (� ′) is the same as the set of coordinate arraysX�� (� ),
because � and � ′ are the same graph with the same edge-constraints. Since we assume � is edge-satisfying, we
have that ��� (� ) satisies all the coordinate arrays in X�� (� ) = X�� (� ′), so ��� (� ′) does as well, by Lemma 2.3.
This holds for all � ∈ [�], so we have that � ′ is edge-satisfying.
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Fig. 10. Lemma 5.11. In the example configuration of size � = 7, to delete the root node � ′ = � (� ) (purple) without deleting
� , one needs to delete all the red vectors and red nodes. This requires 3 node deletions and 3 vectors deletions for a total of
6 = � − 1 deletions.

Now suppose � ′ is obtained from � by a node deletion, so that the graph � ′ is a subgraph of the graph � with
a leaf node deleted. We claim that, for all � such that node �� is in � ′, we have X�� (� ′) ⊆ X�� (� ). First, suppose ��
is deleted from � to give � ′. Then, for each � = 1, . . . , � − 1, by Deinition 5.6, the set X�� (� ′) is the same as the
set of coordinate arrays X�� (� ), except with � �� ,�1

�� ,�
deleted, and, if �� is a neighbor of �� (only true for � = 1), with

coordinate arrays � �� ,��
�� , �

deleted for � ∈ [� ′], so indeed X�� (� ′) ⊂ X�� (� ). Now suppose ��−1 is deleted from � to
give � ′. For 1 ≤ � ≤ � − 2, we have X�� (� ′) ⊂ X�� (� ) by the same reasoning as when �� is deleted. Additionally,
we can show X�� (� ′) = X�� (� ): nodes �� and ��−1 are not adjacent in � (node deletions can only delete non-root
nodes so ��−1 is not the root) so all of the coordinate arrays of X�� (� ) and X�� (� ′) in part 1 of Deinition 5.6 are
the same, and X�� (� ) and X�� (� ′) have no coordinate arrays in part 2 of Deinition 5.6 since �� is the largest
node each of ≺� and ≺� ′ .
Thus, we have that X�� (� ′) ⊆ X�� (� ) for all nodes �� in � ′. For all nodes �� in � ′, we have the stacks ��� (� ′)

and ��� (� ) are the same, since no vector insertions/deletions were applied. Thus, since stack ��� (� ) satisies all
the coordinate arrays in X�� (� ), we have ��� (� ′) satisies all the coordinate arrays in X�� (� ′), as desired.
We have shown that if � ′ is obtained by applying a single vector deletion or node deletion to � , and � is valid,

then � ′ is valid. By the irst paragraph of the proof, this completes the proof. □

Lemma for the Yes case. The next lemma is useful for the Yes case. See also Figure 10.

Lemma 5.11. Suppose � is a size-� coniguration containing a non-root leaf node � with �� (� ) = ∅ and edge
(�, � ′) where � ′ = � (� ). Suppose that one applies � full operations among which node � ′ is deleted but node � is never
deleted. Then � ≥ � − 1.

Proof. Let �0 = �,�1, . . . , �� be the sequence of conigurations such that �� is the result of applying a valid
full operation to ��−1 for � = 1, . . . , � . Let � ′′ ∉ {�, � ′} be an arbitrary node in � . We claim that node � ′′ must be
deleted before node � ′. Let � ∈ {0, . . . , �} be the largest index such that � ′′ and � are both in coniguration �� .
Node � ′ is on the path from node � ′′ to node � in coniguration graph �0. Only leaf nodes can be deleted in a
node deletion. Thus, as � and � ′′ are both in �0, . . . , �� , all the nodes on the path from � to � ′′ are also nodes in
�0, . . . , �� . In particular, node � ′ is in �0, . . . , �� , so node � ′′ must be deleted before � ′.

Hence, the only way to delete node � ′ without deleting node � is to irst delete all nodes other than � ′ (by irst
deleting the vectors in their stacks and then the node) and then deleting � ′. This results in deleting all nodes
other than � , which takes at least

∑

�∈� (� ) (1 + |�� (� ) |) − (1 + |�� (� ) |) = � − (1 + 0) deletions. Since each full
operation applies at most one deletion, the number of full operations needed to delete � ′ without deleting � is at
least � − 1. □
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Permutations commute with valid full operations. The next few lemmas justify the informal statement that
łpermutations commute with valid full operationsž. This statement is convenient in the Yes case because it allows
us to assume that all permutation edges are at the end of a path. Intuitively, we expect this lemma to be true
because changing the node labels of a coniguration gives essentially the same coniguration.

Lemma 5.12. Let � : [2� ′] → [2� ′] be a permutation. Let � be a coniguration, and suppose that applying a
vector insertion (vector deletion, node insertion, node deletion, lip) on � gives coniguration � ′. Then there exists a
vector insertion (vector deletion, node insertion, node deletion, lip) that, applied to � (� ), gives � (� ′).

Proof. A vector � ∈ � is inserted at node � in � (� is a node label in [2� ′]) to give a coniguration � ′. Suppose
that inserting vector � at node � (�) in � (� ) gives a coniguration � ′′. We claim � ′′

= � (� ′). By deinition
of vector insertion, � ′′ has the same nodes, edges, edge-constraints, root node, and ordering as coniguration
� (� ). Furthermore, since conigurations � and � ′ have the same nodes, edges, edge-constraints, root node,
and ordering as coniguration, so do � (� ) and � (� ′), and thus so do � ′′ and � (� ′). Furthermore, the stacks
�� (�) (� ′′) and �� (�) (� (� ′)) are both equal to �� (� ) + �, and the stacks �� (�′ ) (� ′′) and �� (�′ ) (� (� ′)) are both
equal to ��′ (� ) for nodes � ′ ≠ � in � , so we indeed have � ′′

= � (� ′).
This proves the lemma for vector insertions. The proofs for vector deletions, node insertions, node deletions,

and lips are similar. □

Lemma 5.13. Let � : [2� ′] → [2� ′] be a permutation. If coniguration � is valid, then coniguration � (� ) is
valid.

Proof. The root node � (� (� )) of � (� ) has the same stack as the root node � (� ) of � , which has at least
(� − 2)/2 vectors. By deinition of � (� ), for each node � ∈ � (� ), the set of coordinate arrays X� (�) (� ) is the
same asX� (� ). Since� is valid, �� (� ) satisies every coordinate array inX� (� ), so �� (�) (� (� )) = �� (� ) satisies
every coordinate array in X� (�) (� (� )) = X� (� ). This holds for all � , so � (� ) is edge-satisfying and thus valid. □

As a corollary of Lemmas 5.12 and 5.13, we have that permutations commute with valid full operations.

Corollary 5.14. Let � : [2� ′] → [2� ′] be a permutation. Let � be a coniguration, and suppose that applying
some valid full operation on � gives coniguration � ′. Then applying some valid full operation on � (� ) gives � (� ′).

5.4 No case.

We now prove that when Φ has no solution, our Diameter instance has diameter at most � . To do so, we ind a
length � path between any two conigurations � and � ′. As sketched in the overview, we apply � full operations
to get � ′ from � , and each operation inserts a vector or node łfrom � ′ž and deletes a vector or node łfrom �ž.
For an example of such a path when � = 7, see Figure 11.

Let� be an arbitrary size-� coniguration with vertices �1 ≺� · · · ≺� �� for some � ≥ 1, where �1 = � (� ) is the
root, and with edges �1�� with edge-constraint� �1,�� for 2 ≤ � ≤ � . Let� ′ be an arbitrary size-� coniguration with
vertices � ′1 ≺� ′ · · · ≺� ′ � ′�′ for some �′ ≥ 1, where � ′1 = � (� ′) is the root, and with edges � ′1�

′
� with edge-constraint

� �′1,�
′
� for 2 ≤ � ≤ � . By taking a permutation edge (of weight 0) from vertex � ′ in the Diameter instance �

to obtain an equivalent coniguration, we may assume without loss of generality that the set of node labels
{�1, . . . , �� } of � are disjoint from the node labels {� ′1, . . . , � ′�′ } of � ′.
We now deine an edge-constraint � , containing the only łextraž coordinate arrays we need in the path from

� to � ′. Let � be a (�1, � ′1)-edge constraint such that,

• For � ∈ [� ′], coordinate array ��1,� is satisied by stack ��1 (� ) and, if � ≤ �′, by stack ��′
�
(� ′),

• For � ∈ [� ′], coordinate array ��′1,�
is satisied by stack ��′1 (�

′) and, if � ≤ � , by stack ��� (� ), and
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Fig. 11. The path of length 7 between � and � ′ for � = 7. Full operations are indicated by red arrows and roots are indicated
by purple. The łextraž edge-constraint � that belongs to neither � nor � ′ is labeled in orange.

• �∗ is satisied by ��1 (� ) and ��′1 (�
′).

As conigurations � and � ′ are size-� and have at least 1 stack, any stack of � or � ′ has at most � − 1 vectors.
Hence, the coordinate arrays of � all exist by Lemma 2.4. Note that the deinition of � is symmetric with respect to
� and � ′, in the sense that if we switch � with � ′ (and � with �′ and (�1, . . . , �� ) with (� ′1, . . . , � ′� )), the deinition
of � stays the same.

We now deine two intermediate nodes ���� and � ′
���

, which are on our desired path from � to � ′. Let ����

be the coniguration with nodes �1 and � ′1, with the connecting edge having (�1, � ′1)-edge constraint � , where
• �1 = � (���� ) is the root,
• ��1 (���� ) is the bottom ⌈(� − 2)/2⌉ elements of ��1 (� ), and
• ��′1 (���� ) is the bottom ⌊(� − 2)/2⌋ elements of ��′1 (�

′).
Let � ′

���
be the coniguration with nodes �1 and � ′1, with the connecting edge having (�1, � ′1)-edge constraint

� , where

• � ′1 = � (� ′
���

) is the root,
• ��′1 (�

′
���

) is the bottom ⌈(� − 2)/2⌉ elements of ��′1 (�
′), and

• ��1 (� ′
���

) is the bottom ⌊(� − 2)/2⌋ elements of ��1 (� ).
We have that ���� and � ′

���
are valid: by the deinition of the edge-constraint � , we have that ��1 (� ) and thus

��1 (���� ) satisies ��1, � for all � ∈ [� ′], and also satisies coordinate array ��′1,1
and �∗. Similarly, ��′1 (�

′) and
thus ��′1 (���� ) satisies ��′1, �

for all � ∈ [� ′], and also satisies coordinate arrays �∗. Thus, ���� is edge-satisfying
and thus valid. By a symmetric argument, � ′

���
is also valid. Note that ���� and � ′

���
are symmetric with respect

to � and � ′, in the sense that if we switched � and � ′, then ���� becomes � ′
���

and vise-versa.
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Fig. 12. Claim 5.15, the configuration �̃ for Figure 11: all configurations on the path from � to ���� are subconfigurations

of �̃ . By Lemma 5.10, showing �̃ is valid implies that the path from � to ���� is valid.

Claim 5.15. One can apply ⌊�/2⌋ valid full operations on � to obtain ���� , and ⌊�/2⌋ valid full operations on
� ′ to obtain � ′

���
.

Proof. We prove this for � and ���� , and the result for � ′ and � ′
���

follows from a symmetric argument (the
symmetry holds because the deinition of � and the deinitions of ���� and � ′

���
are symmetric with respect to

� and � ′). Let �̃ be the coniguration obtained by adding node � ′1 to � with stack ��′1 (�
′
���

) (of size ⌊(� − 2)/2⌋),
with an edge (�1, � ′1) having edge constraint � , and such that the ordering ≺�̃ agrees with ≺� on the nodes of

� , and � ′1 is the largest node of ≺�̃ (see Figure 12). Note that �̃ has size larger than � (to be precise, it has size
� + ⌊�/2⌋).

We irst prove that �̃ is edge-satisfying. First, the set X�′1
(�̃ ) has coordinate arrays �∗ and ��′1, �

for � ∈ [� ′], by
part 1 of Deinition 5.6, and has no coordinate arrays from part 2 of Deinition 5.6 as � ′1 is the largest node of ≺�̃ .
By deinition of � , stack ��′1 (�

′) satisies all these coordinate arrays, and thus by Lemma 2.3 stack ��′1 (���� ) does
as well, satisfying the requirement of Deinition 5.6 for node � ′1. For � ∈ [�], the set of coordinate arrays in X�� (�̃ )
is the same as the set of coordinate arrays X�� (� ) plus the coordinate array ��′1,�

, and, if � = 1, plus the coordinate

arrays �∗ and ��1, � for � ∈ [� ′]. By deinition of � , we have that ��� (�̃ ) = ��� (� ) satisies coordinate array ��′1,�
.

Furthermore, ��1 (�̃ ) = ��1 (� ) satisies coordinate arrays �∗ and ��1, � for � ∈ [� ′]. Since coniguration � is
edge-satisfying and the above coordinate arrays are satisied, we conclude that coniguration �̃ is edge-satisfying.
We now note that ���� can be obtained from � by applying the following half-operations
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• Insert node � ′1 as the largest node in the ordering
• Insert vectors into � ′1 ⌊(� − 2)/2⌋ times.
• For each � = �, � − 1, . . . , 2, delete vectors from ��� until the stack is empty, and then delete node �� .
• Delete vectors from ��1 until the stack has size ⌈(� − 2)/2⌉.

We can check that there are ⌊�/2⌋ insertions and
∑�

�=1 (1 + |��� |) − (1 + ⌈(� − 2)/2⌉) = � − ⌈�/2⌉ = ⌊�/2⌋
deletions. We can obtain � from ���� by alternating these insertions and deletions, giving a conigurations
� = �0, �0.5, �1, . . . , �⌊�/2⌋−0.5, �⌊�/2⌋ = ���� , so that applying the �th insertion to ��−1 gives the size-� + 1

coniguration��−0.5, and applying the �th deletion to��−0.5 gives the size-� coniguration�� . These half-operations
indeed satisfy the deinition of half-operations: all the vector insertions/deletions are legal, the single node
insertion is legal as � ′1 is inserted as the largest node, and all the node deletions are legal as the deleted nodes
are always the second-largest node in the ordering. Furthermore, if we perform only the insertions, we obtain
coniguration �̃ . Hence, any � = 0, 0.5, . . . , ⌊�/2⌋, we can obtain coniguration �� from coniguration �̃ by
applying vector deletions at node � ′1 until stack ��′1 is the right size, and then applying the irst ⌊�⌋ node/vector
deletions above (at nodes �� , ��−1, . . . ). Thus, for � = 0, 0.5, . . . , ⌊�/2⌋ coniguration �� is a subconiguration of
coniguration �̃ . Since coniguration �̃ is valid, by Lemma 5.10, each �� and ��+0.5 is valid, so we have a sequence
of ⌊�/2⌋ valid full operations that gives ���� from � . □

With Claim 5.15, we have nearly proved the No case. It remains to show that ���� and � ′
���

are at distance
either 0 or 1, depending on the parity of � .
If � is even, then ���� can be obtained by applying a lip to � ′

���
, and thus the two conigurations are at

distance 0 in the Diameter graph � . Thus, there is a length 2 · ⌊�/2⌋ = � path from � to � ′ through ���� and
� ′
���

by Claim 5.15.
If � is odd, then���� is distance 1 from� ′

���
:� ′

���
is obtained from���� by applying a vector insertion at node

� ′1, giving a coniguration ����,+, followed by a lip, giving a coniguration � ′
���,+, followed by a vector deletion

at node �1, giving coniguration ���� . The lip can be done because ����,+ and � ′
���,+ both have two nodes, each

of which has a stack of size ⌈(� − 2)/2⌉. We now check these half-operations are all valid operations, by checking
that conigurations ����,+ and� ′

���,+ are valid conigurations. Since no vectors are deleted at node �
′
1 from����,+

to � ′
���

, we have ��′1 (����,+) = ��′1 (�
′
���

) is a substack of ��′1 (�
′), and similarly ��1 (����,+) = ��1 (���� ) is a

substack of ��1 (� ). Hence, by construction of � and Lemma 2.3, stack ��′1 (����,+) = ��′1 (�
′
���

) satisies coordinate
array ��′1, �

for all � ∈ [� ′] and also satisies coordinate array �∗, and the stack ��1 (����,+) = ��1 (���� ) at the root
node of ����,+ satisies ��1, � for all � ∈ [� ′] and also satisies coordinate arrays ��′1,1

and �∗. Hence, coniguration
����,+ is edge-satisfying, and thus a valid coniguration. By a symmetric argument, coniguration � ′

���,+ is valid.
Hence, conigurations ���� and � ′

���
are adjacent in the diameter instance with an edge of weight 1, and we

have a path from � to � ′ through ���� and � ′
���

of length 1 + 2 · ⌊�/2⌋ = � by Claim 5.15.
In either case, we have shown that, when � has no � orthogonal vectors, then for any two conigurations �

and � ′, there is a length � path from � to � ′. This completes the proof of the no case.

5.5 Yes case.

We now prove that the Diameter of � is at least 2� − 1 in the Yes case. Suppose � has an orthogonal �-tuple
(�1, . . . , �� ). Throughout this section ix � ∈ [2� ′] to be an arbitrary node label (say � = 1). Let � be the 1-stack
coniguration with a single node � assigned with a stack �� (� ) = (�1, . . . , ��−1) (and a trivial ordering). Let � ′

be the 1-stack coniguration with a single node labeled � assigned with a stack �� (� ′) = (�� , . . . , �2). We claim
conigurations � and � ′ are at distance 2� − 1 in the Diameter graph � .
Consider a path �0 = �,�1, . . . , ��+1 = � ′ from � to � ′ using edges of � , and assume for contradiction this

path has length 2� − 2 (if it has length less than 2� − 2, we may assume without loss of generality that in one of
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the �-stack vertices for � ≥ 2, there are trivial valid full operations (e.g., node insertion followed by node deletion),
which give self loop edges of weight 1, increasing the path length to 2� − 2). This path contains some valid
full operation edges, possibly some weight-0 lip edges if � is even, and possibly some weight-0 permutation
edges between equivalent conigurations. By Corollary 5.14, we may assume without loss of generality that
all weight-0 permutation edges are at the end of the path, and furthermore if there are multiple permutations
�1, . . . , �ℓ : [2� ′] → [2� ′], we may replace them by a single permutation � = �1 ◦ · · · �ℓ by Lemma 5.5. Hence,
we may assume that our path has 2� − 2 valid full operation edges, followed by a single weight-0 edge applying a
permutation � .
Thus, we may assume that � = 2� − 2, and coniguration � ′ is � (�2�−2) for some � : [2� ′] → [2� ′], so that

coniguration �2�−2 contains a single stack at node � ′ := �−1 (�), and so that for � = 1, . . . , 2� − 2, coniguration
�� can be reached from ��−1 by an operation edge, and possibly a lip edge. For each � = 0, . . . , 2� − 3, the valid
full operation on �� has one valid vector/node insertion, possibly followed by a lip operation, followed by one
valid vector/node deletion, possibly followed by a lip, so we can let ��+0.5 denote the result of only applying the
insertion and possibly a lip to �� , so that ��+1 is the result of applying a deletion, possibly followed by a lip, to
��+0.5. By deinition of a valid half-operation, coniguration ��+0.5 is valid (and has size � + 1).

The following two claims reason about the stacks and the edge-constraints that must be on the path.

Claim 5.16. If an edge (�,� ′) appears in coniguration �� for some integer � = 1, . . . , 2� − 3, it also appears
(with the corresponding edge-constraint) in conigurations ��−0.5 and ��+0.5. Further, �� (�� ) is a substack of both
�� (��−0.5) and �� (��+0.5), and ��′ (�� ) is a substack of both ��′ (��−0.5) and ��′ (��+0.5)

Proof. Coniguration ��+0.5 is obtained by applying a vector or node insertion to �� , possibly followed by a
lip, so no vector, node, or edge is deleted from �� to ��+0.5. Coniguration ��−0.5 is obtained by possibly applying
a lip to �� , followed by a node or vector insertion, and again no vector, node, or edge is deleted. □

Claim 5.17. For 0 ≤ � ≤ � − 1, we have �� (�� ) and �� (��+0.5) both contain (�1, . . . , ��−1−� ) as a substack. For
� − 1 ≤ � ≤ 2� − 2, we have ��′ (�� ) and ��′ (��−0.5) both contain (�� , . . . , �2�−� ) as a substack.

Proof. For the irst item, we have �� (�0) = (�1, . . . , ��−1), and each of the irst � full operations deletes at
most one vector from this stack, so stack �� (�� ) has (�1, . . . , ��−1−� ) as a substack. By Claim 5.16, �� (��+0.5) does
as well. Similarly, we have stack �� (�2�−2) = (�� , . . . , �2). Applying 2� − 2 − � full operations from �2�−2 gives
�� , but each operation deletes at most one vector from the starting stack ��′ (�2�−2) = (�� , . . . , �2). Hence, stack
�� (�� ) has (�� , . . . , �2�−� ) as a substack, and by Claim 5.16, stack �� (��−0.5) does as well. □

Let � be the largest index such that node � is in conigurations �0, . . . , �� (� exists because �0 contains node �).
Let �′ be the smallest index such that node � ′ is in conigurations ��′ , . . . , �2�−2 (again �′ exists because �2�−2
contains node � ′). By the maximality of � (and since we assume no permutation edges are used in �0, . . . , �2�−2),
node � has an empty stack in coniguration graph �� . Node � also has a size � − 1 stack in �0. Since each valid
full operation can delete at most one vector from some stack, we have that � ≥ � − 1. Similarly, we have that
�′ ≤ � − 1, so �′ ≤ � . Thus, nodes � and � ′ both appear in each of the conigurations ��′ , . . . , �� . We have three
cases, and in each case, we show that our path contradicts Lemma 2.5.

Case 1. � = � ′. This implies that �′ = 0 and � = � , and node � appears in every coniguration �0, . . . , �2�−2. We
have that the stack �� (�0) = (�1, . . . , ��−1), and �� (�2�−2) = (�� , . . . , �2). Thus, to obtain �� (�� ) from �� (�0),
one needs to apply � − 1 vector deletions followed by � − 1 vector insertions. Since each valid full operation
applies at most one vector insertion followed by at most one vector deletion, the irst � − 1 full operations of our
path must include a vector deletion at node � , and the last � − 1 edges must include a vector insertion at node � ,
inserting the vectors �� , . . . , �2 in that order. In particular, we have �� (�� ) = (�� ).

Because valid full operations must have one endpoint with at least two nodes (except self-loops), the �0 to �1

operation must include a node insertion of some node� ≠ � with an edge (�,�). By Claim 5.16 the edge (�,�)
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with an edge constraint � �,� appears in coniguration �0.5, so stack �� (�0.5) = (�1, . . . , ��−1) satisies coordinate
array � �,�

∗ . Furthermore, since there are no node-deletions in the irst � − 1 valid full operations (because each full
operation deletes either a vector or node, not both), we know the edge (�,�) exists in each of �1, . . . , ��−1. By
Claim 5.16 the edge (�,�) labeled with the edge constraint � �,� also exist in coniguration ��−0.5. Additionally,
as we reasoned earlier, �� (��−0.5) = (�� ), so stack (�� ) satisies coordinate array � �,�

∗ . However, this means that
stacks (�1, . . . , ��−1) and (�� ) both satisfy � �,�

∗ , which is a contradiction of Lemma 2.5.
Case 2. � ≠ � ′ and nodes � and � ′ are adjacent in coniguration ��′ . Clearly we have �′ ≥ 1 and � ≤ 2� − 3

in this case. In coniguration ��′ , node � ′ is a non-root leaf node with an empty stack ��′ (��′ ) = ∅ and incident
edge (�, � ′). Furthermore, from coniguration ��′ to ��+1, node � is deleted, but node � ′ is in conigurations
��′ , . . . , ��+1. Hence, by Lemma 5.11, we have (� + 1) − �′ ≥ � − 1.

By Claim 5.16, both conigurations ��′−0.5 and ��+0.5 contain the edge (�, � ′) with edge-constraint � �,�′ . By
Claim 5.17, in coniguration ��′−0.5, node � is labeled with a stack that contains (�1, . . . , ��−�′ ) as a substack, so by
Lemma 2.3, stack (�1, . . . , ��−�′ ) satisies coordinate array � �,�′

∗ . Similarly, by Claim 5.17, in coniguration ��+0.5,
node � ′ is labeled with a stack that contains (�� , . . . , �2�−1−� ) as a substack, so stack (�� , . . . , �2�−1−� ) satisies
coordinate array � �,�′

∗ . Since � − �′ ≥ (2� − 1 − �) − 1, we have that, for � = � − �′, both stacks (�1, . . . , � � ) and
(�� , . . . , � �+1) satisies coordinate array � �,�′

∗ , which is a contradiction by Lemma 2.5.
Case 3. � ≠ � ′ and nodes � and � ′ are not adjacent in coniguration ��′ . In any coniguration, the root

node is adjacent to all other vertices, so � and � ′ must both be non-root nodes. Suppose that in coniguration ��′ ,
the root node is � = � (��′ ). Since only leaf nodes in a coniguration can be deleted, and since nodes � and � ′

are not deleted in ��′ , . . . , �� , we have that node� exists and has degree at least two in each of ��′ , . . . , �� , and
therefore must be the root node in each of ��′ , . . . , �� . In particular, since the total order ≺� and root node of
a coniguration � can only be changed when there are at most two vertices, no full operations from ��′ to ��

include lip operations. Consequently, nodes � and � ′ have the same order with respect to orderings ≺��′ and ≺��

Assume without loss of generality that � ≺��′ �
′ and � ≺��

� ′ (the reverse direction is symmetric). Let � ′ be
the largest index such that node� is in coniguration �� ′ (� ′ ≤ 2� − 3 because coniguration �2�−2 only contains
node � ′). By maximality of � ′, from coniguration �� ′ to �� ′+1, node� is deleted, so by Lemma 5.11, � ′ − �′ ≥ � − 2.
By Claim 5.16, both � and � ′ are in ��′−0.5. Let �� be such that � is the ��th smallest node in coniguration
��′−0.5 according to ≺��′−0.5 . Because � ≺��′−0.5 �

′, and since coniguration ��′−0.5 is valid, Deinition 5.6 gives

that stack �� (��′−0.5) satisies coordinate array � �′,�
�′,��

. By Claim 5.17, (�1, . . . , ��−�′ ) is a substack of �� (��′−0.5),
so by Lemma 2.3, stack (�1, . . . , ��−�′ ) also satisies coordinate array � �′,�

�′,��
. On the other hand, by Claim 5.17,

(�� , . . . , �2�−1−� ′ ) is a substack of �� (�� ′+0.5). Additionally, by Claim 5.16, edge (� ′,�) is also in �� ′+0.5, so stack
�� (�� ′+0.5), and thus stack (�� , . . . , �2�−1−� ′ ), satisies coordinate array � �′,�

�′,��
. Since � − �′ ≥ (2� − 1 − � ′) − 1, we

have that for � = � − �′, stacks (�1, . . . , � � ) and (�� , . . . , � �+1) satisfy the same coordinate array � �′,�
�′,��

, which is a
contradiction by Lemma 2.5.

In all cases of � and � ′, we have shown a contradiction. Thus, the path from coniguration � to coniguration
� ′ in the Diameter instance � cannot have length 2� − 2. Thus, when � has � orthogonal vectors, the Diameter
of � is at least 2� − 1. This completes the proof.
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A Main theorem for � = 5

In this section, we prove Theorem 1.2 (again) for � = 5. This proof shows how the � = 4 proof in Section 3 can
be easily modiied to give a hardness reduction for � = 5. We include this proof because it is simpler than the
� = 5 instantiation of the general-� proof in Section 5, so it may help to reader gain intuition for the general
construction. To avoid confusion, we highlight the main diferences between the proof in this section and the
general proof specialized to � = 5.

• In the general proof specialized to � = 5, vertices have up to three stacks. In this proof, vertices have up to
two stacks. This diference is the main simpliication.

• To make this simpliication work, we include łcoordinate change edgesž (as in the � = 4 proof). By contrast,
the general proof does not have such edges.

• To make this simpliication work, we also let coordinate arrays constrain stacks diferently. In the general
construction, if a coordinate array � constrains two stacks � and � ′, that means both � and � ′ satisfy � .
Here, we only require � ◦ � ′ or � ′ ◦ � to satisfy � .

Theorem A.1. Assuming SETH, for all � > 0 a ( 9
5
− �)-approximation of Diameter in unweighted, undirected

graphs on � vertices needs �5/4−� (1) time.

Proof. Start with a 5-OV instance Φ given by a set � ⊂ {0, 1}❞ with |�| = ��� and ❞ = � log��� . We can
check in time �4

��
where there are 4 orthogonal vectors in �, if so, we know Φ has 5 orthogonal vectors, so

assume otherwise. We construct a graph with �̃ (�4
��

) vertices and edges from the 5-OV instance such that (1) if
Φ has no solution, any two vertices are at distance 5, and (2) if Φ has a solution, then there exists two vertices at
distance 9. Any (9/5 − �)-approximation for Diameter distinguishes between graphs of diameter 5 and 9. Since

solving Φ needs �5−� (1)
��

time under SETH, a 9/5 − � approximation of diameter needs �5/4−� (1) time under SETH.

Construction of the graph. The vertex set �1 ∪ �2 is deined on

�1 = {(�, �, �, �) ∈ �4},
�2 =

{

({�1, �2}, �,�) : �1, �2 are stacks with |�1 | + |�2 | = 3,

�,� ∈ [❞]3 are coordinate arrays such that

�1 ◦ �2 satisies � and �2 ◦ �1 satisies �, OR
�1 ◦ �2 satisies � and �2 ◦ �1 satisies �

}

Throughout, we identify tuples (�, �, �, �) and ({�1, �2}, �,�) with vertices of � , and we denote vertices in �1 and
�2 by (�, �, �)�1 and ({�1, �2}, �,�)�2 respectively. The (undirected unweighted) edges are the following.

• (�1 to �2) Edge between (�, �, �, �)�1 and ({(�, �, �), ()}, �,�)�2 if stack (�, �, �, �) satisies both � and �.
• (vector change in �2) For some vector � ∈ � and stacks �1, �2 with |�1 | ≥ 1, an edge between ({�1, �2}, �,�)�2
and ({popped(�1), �2 + �}, �,�)�2 if both vertices exist.
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• (vector change in �2, part 2) For some vector � ∈ � and stacks �1, �2 with |�1 | ≥ 1, an edge between
({�1, �2}, �,�)�2 and ({popped(�1) + �, �2}, �,�)�2 if both vertices exist.

• (coordinate change in �2) Edge between ({�1, �2}, �,�)�2 and ({�1, �2}, � ′, �′)�2 if both vertices exist.

There are �4
��

vertices in �1 and at most �3
��

❞
8 vertices in �2. Note that each vertex of �1 has� (❞8) neighbors,

each vertex of �2 has � (��� + ❞) neighbors. The total number of edges and vertices, and thus the construction
time, is � (�4

��
❞
8) = �̃ (�4

��
). We now show that this construction has diameter 5 when Φ has no solution and

diameter at least 9 when Φ has a solution.

5-OV no solution. Assume that the 5-OV instance � ⊂ {0, 1}❞ has no solution, so that no ive (or four or three
or two) vectors are orthogonal. We begin with the following lemma:

Lemma A.2. If stacks (�, �) and (�′) satisfy � , then (�, �, �′) and (�′, �, �) satisfy � . If stacks (�, �) and (�′, �′)
satisfy coordinate array � , then the stack (�, �, �′) satisies coordinate array � . If stacks (�′, �′, �′) and (�) satisfy
coordinate array � , then stack (�, �′, �′) satisies coordinate array � .

Proof. For the irst item, (�, �, �′) satisies � because (�, �) satisies � and �′ is 1 in every coordinate of � .
Similarly, (�′, �, �) satisies � because � and �′ are 1 in every coordinate of � , and � is 1 in at least 3 coordinates of
� .

For the second item, since (�, �) and (�′, �′) satisfy � , we have �[� [�]] = 1 for � ∈ [4], and there exists �2, �2 ⊂ [4]
of size 3 such that � [� [�]] = 1 for � ∈ �2 and �′ [� [�]] = 1 for � ∈ �2. We have |�2 ∩ �2 | = |�2 | + |�2 | − |�2 ∪ �2 | ≥
3 + 3 − 4 = 2. Thus, �1 ⊃ �2 ⊃ (�2 ∩ �2) certiies that (�, �, �′) satisies � .
For the third item, because stack (�′, �′, �′) satisies � , there exists [4] = �1 ⊃ �2 ⊃ �3 with �′ [� [�]] = 1 for

� ∈ �2 and �′ [� [�]] = 1 for � ∈ �3. Since �[� [�]] = 1 for all � ∈ [4], we thus have �1 ⊃ �2 ⊃ �3 certiies that (�, �′, �′)
satisies � . □

We show that any pair of vertices have distance at most 4, by casework on which of �1, �2 the two vertices are
in.

• Both vertices are in �1: Let the vertices be (�, �, �, �)�1 and (�′, �′, �′, � ′)�1 . By Lemma 2.4 there exists
coordinate array � satisied by both stacks (�, �, �, �) and (�′, �′, �′, � ′). Then

(�, �, �, �)�1 − ({(), (�, �, �)}, �, �)�2
− ({(�, �), (�′)}, �, �)�2
− ({(�), (�′, �′)}, �, �)�2
− ({(), (�′, �′, �′)}, �, �)�2 − (�′, �′, �′, � ′)�1

is a valid path. Indeed, the irst edge and second vertex are valid because (�, �, �, �) satisies � (and thus, by
Lemma 2.3, stack (�, �, �) satisies �). By the same reasoning the last edge and ifth vertex are valid. The
third vertex is valid because (�) and (�′, �′) both satisfy � and thus both (�, �′, �′) and (�′, �′, �) satisfy �
by the irst part of Lemma A.2. By the same reasoning, the fourth vertex is valid.

• One vertex is in �1 and the other vertex is in �2 with stacks of size 1 and 2: Let the vertices be
(�, �, �, �)�1 and ({(�′, �′), (�′)}, � ′, �′)�2 . By Lemma 2.4, there exists a coordinate array � that is satisied
by stacks (�, �, �, �) and (�′, �′, �′), and there exists a coordinate array � satisied by both stacks (�, �, �, �)
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and (�′, �′, �′). We claim the following is a valid path:

(�, �, �, �)�1 − ({(�, �, �), ()}, �,�)�2
− ({(�′), (�, �)}, �,�)�2
− ({(�′, �′), (�)}, �,�)�2
− ({(�′, �′), (�′)}, �,�)�2 − ({(�′, �′), (�′)}, � ′, �′)�2 .

The irst edge and second vertex are valid because (�, �, �, �) satisies � .
For the third vertex, we have (�, �, �, �) and (�′, �′, �′) satisfy coordinate array � , so by Lemma 2.3, stacks
(�, �) and (�′) satisfy coordinate array � . Then by the irst part of Lemma A.2, stack (�′, �, �) satisies � . Sim-
ilarly, (�, �, �, �) and (�′, �′, �′) satisfy coordinate array�, so stacks (�, �) and (�′, �′) satisfy coordinate array
�, so by the second part of Lemma A.2, stack (�, �, �′) satisies �. Thus, the third vertex ({(�′), (�, �)}, �,�)�2
is valid.
For the fourth vertex, we similarly have stacks (�′, �′) and (�) satisfy � , so stack (�′, �′, �) satisfy�. Addition-
ally, stacks (�′, �′, �′) and (�) satisfy � so (�, �′, �′) satisies �. Thus the fourth vertex ({(�′, �′), (�)}, �,�)�2
is valid.
The ifth vertex ({(�′, �′), (�′)}, �,�)�2 is valid because (�′, �′, �′) satisies � and (�′, �′, �′) satisfy � by
construction of � and �.
Hence, this is a valid path.

• Both vertices are in �2 and have two stacks of size 1 and 2: Let the vertices be ({(�, �), (�)}, � ′, �′)�2
and ({(�′, �′), (�′)}, � ′′, �′′)�2 . By Lemma 2.4, there exists a coordinate array � that is satisied by (�, �, �)
and (�′, �′, �′), and there exists a coordinate array � satisied by both stacks (�, �, �) and (�′, �′, �′). Then
the following is a valid path:

({(�, �), (�)}, � ′, �′)�2 − ({(�, �), (�)}, �,�)�2
− ({(�, �), (�′)}, �,�)�2
− ({(�), (�′, �′)}, �,�)�2
− ({(�′), (�′, �′)}, �,�)�2 − ({(�′, �′), (�′)}, � ′′, �′′)�2 .

By construction of coordinate arrays � and �, vertices ({(�, �), (�)}, �,�)�2 and ({(�′, �′), (�′)}, �,�)�2 are
valid. We now show vertex ({(�, �), (�′)}, �,�)�2 is valid, and the fact that vertex ({(�), (�′, �′)}, �,�)�2 is
valid follows by a symmetric argument. We have stacks (�, �) and (�′, �′) satisfy � , so (�, �, �′) satisies �
by the second part of Lemma A.2. Furthermore (�, �, �) and (�′) satisfy �, so stack (�′, �, �) satisies � by
the third part of Lemma A.2.

• One vertex is in �2 with two stacks of size 3 and 0: For every vertex � = ({(�, �, �), ()}, �,�)�2 in �2 with
stacks of size 3 and 0, any vertex of the form � = (�, �, �, �)�1 in �1 has the property that the neighborhood
of � is a superset of the neighborhood of � (by consider coordinate change edges from �). Thus, any vertex
that � can reach in 5 edges can also be reached by � is 5 edges. In particular, since any two vertices in �1
are at distance at most 5, any vertex in �1 is distance at most 5 from any vertex in �2 with stacks of size 3
and 0. Applying a similar reasoning, any two vertices in �2 with stacks of size 3 and 0 are at distance at
most 5, and any vertex in �2 with stacks of size 3 and 0 is distance at most 5 from any vertex in �2 with
stacks of size 2 and 1.

We have thus shown that any two vertices are at distance at most 5, proving the diameter is at most 5.

5-OV has solution. Now assume that the 5-OV instance has a solution. That is, assume there exists�1, �2, �3, �4, �5 ∈
� such that �1 [�] · �2 [�] · �3 [�] · �4 [�] · �5 [�] = 0 for all � . Since we assume there are no 4 orthogonal vectors, we
may assume that �1, �2, �3, �4, �5 are pairwise distinct.
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Suppose for contradiction there exists a path of length atmost 8 from�0 = (�1, �2, �3, �4)�1 to�6 = (�5, �4, �3, �2)�1 .
Since all vertices in �2 have self-loops with trivial coordinate-change edges, we may assume the path has length
exactly 8. Let the path be �0 = (�1, �2, �3, �4)�1 , �1, . . . , �8 = (�5, �4, �3, �2)�1 . We may assume the path never visits
�1 except at the ends: if�� = (�)�1 ∈ �1, then��−1 = ({popped(�), ()}, �,�)�2 and��+1 = ({popped(�), ()}, � ′, �′)�2
are in �2, and in particular ��−1 and ��+1 are adjacent by a coordinate change edge, so we can replace the path
��−1 − �� − ��+1 with ��−1 − ��+1 − ��+1, where the last edge is a self-loop.

For � = 1, 2, 3, 4, let �� denote the largest index such that �0, �1, . . . , ��� all contain a stack that has stack
(�1, . . . , �� ) as a substack. In this way, �4 = 0. For � = 1, . . . , 4, let �� be the smallest index such that vertices
��� , . . . , �8 all contain a stack with stack (�5, . . . , �6−� ) as a substack. In this way, �4 = 8. We show that,

Claim A.3. For � = 1, . . . , 4, between vertices ��� and ��5−� , there must be a coordinate change edge.

Proof. Suppose for contradiction there is no coordinate change edge between ��� and ��5−� .
First, consider � = 4. Here, ��� = �0 = (�1, �2, �3, �4)�1 . Then, ��1 is a vertex of the form ({�1, �2}, �,�) where

(�5) is a substack of �1. Since there is no coordinate change edge, we must have �1 = ({(�1, �2, �3), ()}, �,�) for
the same coordinate arrays � and �, so stack (�1, �2, �3, �4) satisies both � and �. Then �1, and thus (�5), satisies
one of � and �, so there is some coordinate array satisied by both (�1, �2, �3, �4) and (�5), which is a contradiction
of Lemma 2.5 By a similar argument, we obtain a contradiction with � = 1.
Now suppose � = 3. Vertex ��3 is of the form ({(�1, �2, �3), ()}, �,�). Then stack (�1, �2, �3) satisies both

coordinate arrays � and �. Vertex ��2 is of the form ({� ′1, � ′2}, �,�) where (�5, �4) is a substack of � ′1. Then stack
� ′1 ◦ � ′2 satisies one of � or �, and thus (�5, �4), a substack of � ′1 ◦ � ′2, satisies one of � or �. Thus, there is some
coordinate array satisied by both (�5, �4) and (�1, �2, �3), which is a contradiction of Lemma 2.5. By a similar
argument, we obtain a contradiction with � = 2.
Thus, we have shown that for all � = 1, . . . , 4, there must be a coordinate change edge between ��� and ��5−� . □

Since coordinate change edges do not change any vectors, by maximality of �� , the edge ������+1 cannot be a
coordinate change edge for all � = 1, . . . , 4. Similarly, by minimality of �� , the edge ���−1��� cannot be a coordinate
change edge for all � = 1, . . . , 4.

Consider the set of edges

��4��4+1, ��3��3+1, ��2��2+1, ��1��1+1, ��4−1��4 , ��3−1��3 , ��2−1��2 , ��1−1��1 . (2)

By above, none of these edges are coordinate change edges. These edges are among the 8 edges �0�1, . . . , �7�8.
Additionally, the edges ������+1 for � = 1, . . . , 4 are pairwise distinct, and the edges ���−1��� for � = 1, . . . , 4 are
pairwise distinct. Edge ��4��4−1 cannot be any of ���−1��� for � = 1, . . . , 4, because we assume our orthogonal
vectors �1, �2, �3, �4, �5 are pairwise distinct and��4−1 = �1 does not have any stack containing vector �5. Similarly,
��4−1��4 cannot be any of ������+1 for � = 1, . . . , 4. Thus, the edges in (2) have at least 5 distinct edges, so our path
has at most 3 coordinate change edges. By Claim A.3, there must be at least one coordinate change edge. We now
casework on the number of coordinate change edges.

Case 1: the path �0, . . . , �8 has one coordinate change edge. By Claim A.3, since vertex ��4 = �0 is before
the coordinate change edge, edge ��1−1��1 must be after the coordinate change edge, and similarly edge ��1��1+1
must be before the coordinate change edge. Then all of the edges in (2) are pairwise distinct, so then the path has
8 edges from (2) plus a coordinate change edge, for a total of 9 edges, a contradiction.

Case 2: the path has two coordinate change edges.Again, by Claim A.3, for � = 1, . . . , 4, edges���−1��� must
be after the irst coordinate change edge, and edge ������+1 must be before the second coordinate change edge.
Since we have 8 edges total, we have at most 6 distinct edges from (2), so there must be at least two pairs (�, �) such
that the edges������+1 and�� �−1�� �

are equal, and by above this edge must be between the two coordinate change
edges. Thus, each of ��4��4+1, ��3��3+1, ��2��2+1, ��1��1+1 and ��4−1��4 , ��3−1��3 , ��2−1��2 , ��1−1��1 have at least
two edges between the two coordinate change edges. This means that vertices ��2 , ��1 , ��2 , ��1 are all between the
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two coordinate change edges. By Claim A.3, vertices ��3 and ��3 cannot be between the two coordinate change
edges. Thus, we must have ��1��1+1 = ��2−1��2 and ��2��2+1 = ��1−1��1 . Since we use at most 8 edges total and
exactly 6 distinct edges from (2), we have �1 = �1 = �2 + 1 = �2 − 1. However, this is impossible, because that
means node ��1 = ��1 has two stacks, one containing vector �1 and one containing vector �5. By maximality of
�1, the stack containing vector �1 has no other vectors, and by minimality of �1, the stack containing vector �5
has no other vectors, so vertex ��1 = ��1 has two stacks with a total of only two vectors, a contradiction of the
deinition of a vertex in �2.

Case 3: the path has three coordinate change edges. Since the distinct edges of (2) are

��4��4+1, ��3��3+1, ��2��2+1, ��1��1+1, ��4−1��4 , (3)

we must have

��3��3+1 = ��1−1��1
��2��2+1 = ��2−1��2
��1��1+1 = ��3−1��3

Hence, by Claim A.3, there must be a coordinate change edge between any two edges in (3), so we must have
four coordinate change edges, a contradiction.

This proves that there cannot be a length 8 path from (�1, �2, �3, �4) to (�5, �4, �3, �2), showing that the diameter
is at least 9, as desired.

□

Received 23 May 2023; revised 15 August 2024; accepted 6 November 2024

J. ACM


	Abstract
	1 Introduction
	2 Preliminaries
	3 Main theorem for k=4
	4 Overview of the general k reduction
	4.1 The basic setup
	4.2 The Diameter instance construction
	4.3 Correctness

	5 The main theorem for general k
	5.1 Configurations
	5.2 Defining the Diameter graph G
	5.3 Some useful properties of configurations
	5.4 No case.
	5.5 Yes case.

	Acknowledgments
	References
	A Main theorem for k=5

