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ABSTRACT
Accurate estimation of rare failure occurrence probability is cru-
cial for ensuring the proper and reliable functioning of integrated
circuits (ICs). Conventional Monte Carlo methods are inefficient,
demanding an exorbitant number of samples to achieve reliable
estimates. Inspired by the exact sampling capabilities of normaliz-
ing flows, we revisit this problem and propose normalizing flow
assisted importance sampling, termed NOFIS. NOFIS first learns
a sequence of proposal distributions associated with predefined
nested subset events by minimizing KL divergence losses. Next, it
estimates the rare event probability by utilizing importance sam-
pling in conjunction with the last proposal. The efficacy of our
NOFIS method is substantiated through comprehensive qualitative
visualizations, affirming the optimality of the learned proposal dis-
tribution, as well as 10 quantitative experiments, which highlight
NOFIS’s superior accuracy over baseline approaches.
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1 INTRODUCTION
A rare event [4] is characterized by an occurrence probability close
to zero (e.g., less than 10−4). The estimation of such rare event proba-
bilities is of significant interest across various domains, particularly
in integrated circuits (ICs) [10, 11, 14–17, 20, 21]. For instance, it has
been illustrated that for an SRAM array to function properly, each
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individual SRAM cell needs to have a failure rate (i.e., probability)
less than 10−6 [2, 8, 10, 12].

The Monte Carlo (MC) approach is widely recognized as in-
efficient for the rare circuite failure probability estimation prob-
lem [7, 20]. For instance, when aiming to estimate a small probability
such as 10−6, the MC method may require more than 108 samples
to achieve a relatively low estimation variance. However, gathering
such a large number of samples can be unaffordable, as typically the
data acquisition needs to invoke expensive circuit simulations. In
other words, beyond the pursuit of estimation accuracy, the number
of data samples used is a critical metric as well.

To confront this challenge—ensuring precise probability estima-
tion for rare circuit failure within a data sample budget, various
methods were established [1, 10–12, 14–17, 20, 21, 23], with the
earliest dating back to at least [10]. To name a few works, sub-
set simulation [1] involves constructing a series of nested subset
events [1] with progressively decreasing occurrence probabilities,
with the last subset representing the original rare event of interest.
It has been applied to estimate SRAM and DFF rare failure proba-
bilities under semiconductor process variations [19]. Importance
sampling (IS)[4, 10, 14] aims to obtain a proposal distribution and
estimate the rare circuit failure probability through a weighted
ratio. APA[23] and APE [21] are specifically designed, utilizing the
correlated characteristics of cells in an SRAM array, to yield more
accurate estimates compared to loop flattening [23]. Meta-model
with tensor approximation [15] and scaled-sigma sampling [20]
have also been proposed for addressing this problem.

We posit that the recently popularized technique of normalizing
flows (NFs) [5, 6, 13] provides an unprecedented and highly efficient
tool for rare circuit failure probability estimation. The elegance of
applying it to this task is that NFs impose a sequence of transfor-
mations to shift a base distribution to a desired target distribution,
and we realize that this procedure could be adapted to reflect the
learning of a sequence of proposal distributions associated with
several nested subset events [1]. By setting the original rare event
as the last subset event, the ultimate shifted distribution in the
NFs will be a good proposal distribution for the original rare event.
Thus, this final proposal distribution can be combined with IS to
generate an accurate estimate of the original rare event probability.
To verify the proposed NOFIS method, we conducted extensive
2-D visualizations to justify its strong capability in recovering the
theoretically optimal proposal distribution. Moreover, compared to
six baseline methods across 10 test cases (covering Opamp, Charge
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Pump, and photonic Y-branch), NOFIS consistently demonstrates
superior estimation accuracy with fewer data samples.

2 PROPOSED METHOD
Mathematically, the rare circuit failure probability estimation prob-
lem is defined by a tuple F = (𝑝,Ω), where 𝑝 (·) ∈ P𝐷 represents
a 𝐷-dimensional data generating distribution, and Ω ⊆ R𝐷 rep-
resents the integral region associated with the rare event. With-
out loss of any generality and for conciseness, we parameterize
Ω = {x ∈ R𝐷 |𝑔(x) ≤ 0} by a characteristic function 𝑔(·) : R𝐷 → R.
As an example, semiconductor process variation is usually modeled
as a standard multivariate Gaussian distribution 𝑝 (x) = N(0, I).
Evaluating 𝑔(x) needs to invoke a simulation to obtain the circuit
performance, and 𝑔(x) ≤ 0 means the circuit fails the specification
requirement (e.g., 𝑔(x) = Gain(x) − 60dB for an Opamp). Our goal
is to estimate the rare event probability represented by the integral:

𝑃𝑟 = 𝑃 [Ω] =
∫
Ω
𝑝 (x) 𝑑x =

∫
1[x ∈ Ω] 𝑝 (x) 𝑑x (1)

where 1[·] represents the indicator function. The challenge lies in
that 𝑃𝑟 is exceptionally small (e.g., less than 10−4) due to either Ω
having an extremely small volume, or its majority being concen-
trated in the tail of the distribution 𝑝 . In our context, the distribution
𝑝 is easy to evaluate and sample from, often following a standard
Gaussian distribution [20]. On the other hand, Ω is complicated
and unknown in advance, while evaluating the function value 𝑔(·)
is time-expensive. Thus, our goal is to accurately estimate 𝑃𝑟 with
as few function calls to 𝑔(·) as possible.

The IS approach introduces a proposal distribution 𝑞(·) ∈ P𝐷
and estimates 𝑃𝑟 by drawing 𝑁IS i.i.d. samples from 𝑞:

𝑃 IS𝑟 =
1
𝑁IS

𝑁IS∑︁
𝑛=1

1[x𝑛 ∈ Ω] 𝑝 (x
𝑛)

𝑞(x𝑛) , x𝑛 ∼ 𝑞(·) . (2)

It is evident that as long as the support of 𝑞 includes that of 𝑝 , the
IS estimator remains unbiased (i.e., E𝑞 [𝑃 IS𝑟 ] = 𝑃𝑟 ). Additionally,
simple derivations demonstrate that the proposal distribution:

𝑞★(x) ∝ 𝑝 (x)1[x ∈ Ω] = 1
𝑃 [Ω] · 𝑝 (x)1[x ∈ Ω] (3)

is theoretically optimal, as it can result in a zero-variance unbiased
estimator [3, 4]. It is important to note that since Ω is defined by
the characteristic function 𝑔(·) which requires expensive circuit
simulations, 𝑞★(x) is unknown in practice, and furthermore, direct
sampling from 𝑞★(·) might not be feasible. As a result, it is common
to implement the IS method by limiting the range of consideration
for𝑞(·) to a parametrized distribution family Q that allows for exact
sampling, such as a finite mixture of Gaussian distributions [3, 14].

NFs are ideal to compose the distribution family Q, due to their
great expressive power and the capability to do exact density evalu-
ation and sampling. For later simplicity, we introduce the notation
Ω𝑎 = {x ∈ R𝐷 |𝑔(x) ≤ 𝑎} for any 𝑎 ∈ R. Motivated by [1], we
start from 𝑀 nested subset events Ω𝑎1 ⊋ Ω𝑎2 ⊋ · · · ⊋ Ω𝑎𝑀 with
decreasing occurrence probabilities, which are induced by a strictly
decreasing sequence {𝑎𝑚}𝑀

𝑚=1 satisfying 𝑎𝑀 = 0, ensuring that
Ω𝑎𝑀 = Ω. We emphasize that the value of 𝑀 and the sequence
{𝑎𝑚}𝑀

𝑚=1 are both hyper-parameters of our algorithm, and we de-
fer the empirical rules for setting them to the end of this section.

As shown in Figure 1, we exploit an NF model defined by a base
distribution 𝑞0 (·), and𝑀𝐾 invertible and trainable transformations
{f𝑖 (·) = f (·;𝜽 𝑖 ) : R𝐷 → R𝐷 }𝑀𝐾

𝑖=1 , where 𝜽 𝑖 represents the 𝑖-th
learnable parameters. The NF model starts from a random variable
z0 ∼ 𝑞0 (·) on the left end, and repeatedly applies each function
f𝑖 according to z𝑖+1 = f𝑖+1 (z𝑖 ). For simplicity, we denote the dis-
tribution associated with the intermediate random variable z𝑖 by
𝑞𝑖 ∈ P𝐷 . According to the change of variable theorem and the
inverse function theorem, we have:

𝑞 𝑗+1 (z𝑗+1) = 𝑞 𝑗 (z𝑗 )
����det ( 𝑑z𝑗𝑑z𝑗+1

)���� = 𝑞 𝑗 (z𝑗 ) ���det Jf𝑗+1 ���−1 (4)

where det(·) denotes the determinant of a square matrix, and Jf
represents the Jacobian matrix of function f . Take the logarithm of
both sides in Eq. (4) and sum it by varying index 𝑗 , yielding:

log𝑞𝑖 (z𝑖 ) = log𝑞0 (z0) −
𝑖∑︁
𝑗=1

log | det Jf𝑗 |. (5)

We use {z𝑚𝐾 }𝑀𝑚=1 as anchor points and aim to transform their
associated distributions {𝑞𝑚𝐾 }𝑀𝑚=1 into effective proposal distribu-
tions for estimating the probabilities of the𝑀 nested subset events
{𝑃 [Ω𝑎𝑚 ]}𝑀𝑚=1. Our key motivation is that we have the freedom
to make the distinction between Ω𝑎𝑚 and Ω𝑎𝑚+1 to be small. Con-
sequently, the shift from 𝑞𝑚𝐾 to 𝑞 (𝑚+1)𝐾 is also expected to be
marginal and to be easily learned by the NFs through 𝐾 function
transformations {f𝑚𝐾+𝑖 }𝐾𝑖=1. In the following, we describe an 𝑀-
step training process, where the𝑚-th step aims to train 𝑞𝑚𝐾 .

2.1 Step 1: Training 𝑞𝐾 Associated with Ω𝑎1
Let us for now ignore all components after z𝐾 in Figure 1 and focus
on training {f𝑖 }𝐾𝑖=1 to produce 𝑞𝐾 as an effective proposal distribu-
tion for estimating the probability 𝑃 [Ω𝑎1 ]. As the data generating
distribution 𝑝 in our concerned problem is easy to evaluate and sam-
ple from, we could take it as the NF’s base distribution, i.e., 𝑞0 = 𝑝 .
To begin with, we modulate the data generating distribution 𝑝 to
produce a distribution 𝑝𝜏1 ∈ P𝐷 :

𝑝𝜏1 (x) =
1
𝑍
𝑒min(𝜏 (𝑎1−𝑔 (x) ),0) 𝑝 (x) (6)

where 𝜏 > 0 is a temperature hyper-parameter, and𝑍 is a normaliza-
tion constant ensuring valid distribution. Recall that the condition
𝑔(x) > 𝑎1 is equivalent to x ∉ Ω𝑎1 , we can understand that 𝑝𝜏1
essentially compresses the height of 𝑝 (x) when x lies outside the
set Ω𝑎1 , and the extent of this compression is determined by the
margin between 𝑔(x) and 𝑎1. Next, we use 𝑝𝜏1 as a target to learn a
proposal distribution that allows for easy sampling. Noticing that
any distribution defined in the NF model (such as the one we con-
sider here, 𝑞𝐾 ) is easy to sample from, we minimize the following
KL divergence loss to drive 𝑞𝐾 to be close to 𝑝𝜏1 :

𝐷 [𝑞𝐾 | |𝑝𝜏1 ] =
∫

𝑞𝐾 (z𝐾 ) log
𝑞𝐾 (z𝐾 )
𝑝𝜏1 (z𝐾 )

𝑑z𝐾 ≈ 1
𝑁

𝑁∑︁
𝑛=1

log
𝑞𝐾 (z𝑛𝐾 )
𝑝𝜏1 (z

𝑛
𝐾
)

∝ − 1
𝑁

𝑁∑︁
𝑛=1

𝐾∑︁
𝑗=1

log | det J𝑛f𝑗 | −
1
𝑁

𝑁∑︁
𝑛=1

log 𝑝𝜏1 (f𝐾 :1 (z
𝑛
0 ))

(7)
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Figure 1: An illustration of our proposed NOFIS approach. Nodes {z𝑗𝐾 }𝑀
𝑗=1 along the normalizing flow highlighted in orange

serve as anchor points. The distributions {𝑞 𝑗𝐾 }𝑀
𝑗=1 associated with these nodes will be learned to align with the constructed

target distributions {𝑝𝜏
𝑗
}𝑀
𝑗=1, achieved by adjusting the functions {f𝑖 }𝑀𝐾𝑖=1 . When learning 𝑞𝑚𝐾 , the gray-filled arrows represent

frozen functions, the gray dashed-line arrows are learnable, while the gray solid-line arrows are yet to be trained.

where z𝑛0 is a sample drawn from 𝑝 . To derive the last line, we
use Eqs. (4-5), 𝑞0 = 𝑝 and the short notation z𝑛

𝐾
= f𝐾 :1 (z𝑛0 ) =

f𝐾 ◦ f𝐾−1 ◦ · · · ◦ f1 (z𝑛0 ), and omit those terms don’t depend on the
learnable functions {f𝑖 }𝐾𝑖=1. Note that the normalization constant
𝑍 in 𝑝𝜏1 is not needed in the computation, as it will appear as a
constant log𝑍 in Eq. (7) which won’t affect training.

Several important clarificationsmust bemade. Firstly, the NFs uti-
lize specific network architectures to parameterize f𝑖 (·) as f (·;𝜽 𝑖 ).
It is crucial to meticulously design the form of f (·;𝜽 𝑖 ) [5, 6], to en-
sure that the evaluation of the determinant of its Jacobian matrix, as
required by Eq. (7), is straightforward. Secondly, we have the option
to employ the learned 𝑞𝐾 for estimating 𝑃 [Ω𝑎1 ] by incorporating
it with the IS approach. However, we won’t pursue it as our sole ob-
jective is the final rare event probability 𝑃 [Ω𝑎𝑀 ] = 𝑃 [Ω]. Namely,
learning 𝑞𝐾 is for ease of learning subsequent distributions such
as 𝑞2𝐾 , 𝑞3𝐾 , and ultimately 𝑞𝑀𝐾 . Thirdly, since when 𝑎1 → +∞,
𝑃 [Ω𝑎1 ] → 1.0. We can freely choose 𝑎1 such that 𝑃 [Ω𝑎1 ] is not
too small (e.g., greater than 0.1) to ensure an adequate number of
samples z𝑛

𝐾
are located within Ω𝑎1 .

Fourthly, based on Eq. (3), we know that the theoretically opti-
mal proposal distribution for estimating 𝑃 [Ω𝑎1 ] equals 𝑝 (x)1[x ∈
Ω𝑎1 ]/𝑃 [Ω𝑎1 ]. For convenience, we denote this best proposal as 𝑝∞1 ,
since it is the limit of 𝑝𝜏1 when 𝜏 → ∞. It seems appealing to use 𝑝∞1
as the target in Eq. (7) instead of 𝑝𝜏1 . However, we observe that it
brings severe training issues in practice. This can also be explained
in theory — if there exists a sample z𝑛

𝐾
= f1:𝐾 (z𝑛0 ) located outside

Ω𝑎1 , then 𝑝∞1 (f1:𝐾 (z𝑛0 )) strictly equals zero, rendering the training
loss undefined. On the other hand, if all sampled z𝑛

𝐾
’s locate inside

Ω𝑎1 , then we actually drive 𝑞𝐾 to the data generating distribution
𝑝 because 𝑝∞1 (f1:𝐾 (z𝑛0 )) ∝ 𝑝 (f1:𝐾 (z

𝑛
0 )) holds true for all 𝑛 and the

normalization constant doesn’t matter when training with Eq. (7).

2.2 Step 2 ∼ 𝑀 : Training 𝑞𝑚𝐾 by Freezing 𝑞 (𝑚−1)𝐾
Once the successful learning of 𝑞𝐾 is achieved through the training
of {f𝑖 }𝐾𝑖=1 using the approach discussed in the previous subsection,
we could train {f𝐾+𝑖 }𝐾𝑖=1 to learn a subsequent 𝑞2𝐾 working as a
proposal distribution for Ω𝑎2 similarly by minimizing 𝐷 [𝑞2𝐾 | |𝑝𝜏2 ].
To facilitate our discussion, we will describe a general𝑚-th step,
where 𝑚 is any integer between 2 and 𝑀 . At the beginning of

the𝑚-th step, all functions {f𝑖 } (𝑚−1)𝐾
𝑖=1 are trained such that 𝑞 𝑗𝐾

is an effective proposal distribution associated with Ω𝑎 𝑗 , for any
𝑗 = 1, 2, · · · ,𝑚 − 1. Our goal in this step is to train {f(𝑚−1)𝐾+𝑖 }𝐾𝑖=1 to
enforce 𝑞𝑚𝐾 working as an effective proposal distribution for Ω𝑎𝑚 .
Similar to Eq. (6) and (7), we use the following training loss:

𝐷 [𝑞𝑚𝐾 | |𝑝𝜏𝑚] ∝ − 1
𝑁

𝑁∑︁
𝑛=1

𝑚𝐾∑︁
𝑗=1

log | det J𝑛f𝑗 | −
1
𝑁

𝑁∑︁
𝑛=1

log 𝑝𝜏𝑚 (f𝑚𝐾 :1 (z𝑛0 ))

(8)
where z𝑛0 ∼ 𝑝 (·) and 𝑝𝜏𝑚 ∈ P𝐷 is a constructed target distribution:

𝑝𝜏𝑚 (x) = 1
𝑍
𝑒min(𝜏 (𝑎𝑚−𝑔 (x) ),0) 𝑝 (x) . (9)

When minimizing Eq. (8), the functions {f𝑖 } (𝑚−1)𝐾
𝑖=1 will be held con-

stant (as indicated by the gray-filled arrows in Figure 1). Our focus
will solely be on training the functions {f(𝑚−1)𝐾+𝑖 }𝐾𝑖=1, which are
represented by the gray dashed-line arrows in Figure 1. Recall that
𝑞𝑚𝐾 is related to 𝑞 (𝑚−1)𝐾 through the learnable transformations
{f(𝑚−1)𝐾+𝑖 }𝐾𝑖=1 and that the distribution 𝑞 (𝑚−1)𝐾 has already been
well calibrated matching to Ω𝑎𝑚−1 . Consequently, there is no com-
pelling reason to further train the previous f𝑖 ’s (where 𝑖 ≤ (𝑚−1)𝐾 )
in the𝑚-th step, as {f(𝑚−1)𝐾+𝑖 }𝐾𝑖=1 alone possess ample expressive
power to capture the distribution shift from 𝑝𝜏

𝑚−1 to 𝑝
𝜏
𝑚 effectively.

Summary. Algorithm 1 outlines the major steps of the proposed
NOFIS approach for rare circuit failure estimation. It is worth men-
tioning that the NOFIS method necessitates a total of (𝑀𝐸𝑁 +𝑁IS)
function calls to 𝑔(·). We empirically find that NOFIS is suitable
to estimate 𝑃𝑟 ≤ 10−4, otherwise, the advantages of NOFIS over
MC may be limited given the same function call budget. We will
provide a quantitative explanation in the numerical result section.

Firstly, to estimate probabilities 𝑃𝑟 ≈ 10−𝑥 (where 𝑥 is a positive
integer), we empirically find that choosing 𝑀 equals 𝑥 is adequate.
This observation aligns with previous experiences [1, 19]. As a rule
of thumb, {𝑎𝑚 }𝑀

𝑚=1 should approximately make the elements in
{𝑃 [Ω𝑎𝑚 ] }𝑀

𝑚=1 scaled by 0.1 in order.
Secondly, regarding the temperature hyper-parameter 𝜏 , let us

consider two points x ∈ Ω𝑎𝑚 and x′ ∉ Ω𝑎𝑚 . Then our constructed
𝑝𝜏𝑚 should satisfy the constraint: 𝑝𝜏𝑚 (x) ≥ 𝑝𝜏𝑚 (x′) for it to be
meaningful as a target. Substituting the expression of 𝑝𝜏𝑚 as shown
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in Eq. (9) into this inequality results in a lower bound on 𝜏 . Moreover,
as we discussed in the fourth remark in Section 2.1, 𝜏 cannot be
excessively large either. For more numerical results, please refer to
the ablation studies in Section 3.2.

Finally, if our sole objective is to estimate 𝑃 [Ω𝑎1 ] which is
around 0.1, we don’t need learning at all. Instead, we could perform
MC sampling from 𝑝 . However, when being applied to estimate
𝑃𝑟 = 𝑃 [Ω𝑎𝑀 ], MC would likely yield a trivial estimate of 𝑃𝑟 = 0
because all generated samples lie outside Ω𝑎𝑀 . Essentially, our
NOFIS approach attempts to simplify estimating 𝑃𝑟 = 𝑃 [Ω𝑎𝑀 ] by
memorizing Ω𝑎𝑚−1 and its associated 𝑝𝜏

𝑚−1 through 𝑞 (𝑚−1)𝐾 in
the NFs. This enables the subsequent learning of Ω𝑎𝑚 to become
manageable, because Ω𝑎𝑚 is chosen to only have minor change
from Ω𝑎𝑚−1 , and sampling from 𝑞 (𝑚−1)𝐾 is tractable due to NFs.

Algorithm 1 NOFIS

1: Provide a data generating distribution 𝑝 ∈ P𝐷 and an integral
region Ω = {x ∈ R𝐷 |𝑔(x) ≤ 0}.

2: Define a NF characterized by a base distribution
𝑞0 = 𝑝 , and a series of invertible transformations
{f𝑖 ( ·) = f ( ·;𝜽 𝑖 ) : R𝐷 → R𝐷 }𝑀𝐾

𝑖=1 .
3: Choose hyper-parameters: (i) a strictly decreasing sequence

{𝑎𝑚}𝑀
𝑚=1 satisfying 𝑎𝑀 = 0, and (ii) the temperature hyper-

parameter 𝜏 > 0.
4: for𝑚 = 1 to𝑀 do
5: If𝑚 ≥ 2, freeze {𝜽 𝑖 } (𝑚−1)𝐾

𝑖=1 .
6: for 𝑒 = 1 to 𝐸 do
7: Draw 𝑁 samples {z𝑛0 }

𝑁
𝑛=1 from the base 𝑞0.

8: Calculate the loss 𝐷 [𝑞𝑚𝐾 | |𝑝𝜏𝑚] using Eq. (8).
9: Perform backward propagation and update the model pa-

rameters {𝜽 (𝑚−1)𝐾+𝑖 }𝐾𝑖=1.
10: end for
11: end for
12: Return 𝑃 IS𝑟 using the learned 𝑞𝑀𝐾 as the proposal distribution

based on Eq. (2).

3 NUMERICAL RESULTS
As justified in Section 2, we set 𝑝 = N(0, I) for all of our numerical
experiments and utilize RealNVP [6] as the backbone NF model.
In the subsequent Section 3.1, we present visualizations of several
2D test cases, assuming an unlimited number of function calls to
𝑔(·). Its primary objective is to qualitatively justify that our NOFIS
approach can learn a 𝑞𝑀𝐾 fully recovering the optimal proposal
distribution, in an ideal scenario where there is no limit on function
calls. Conversely, the limited function call scenario represents the
practical situation when deploying the algorithm.We quantitatively
evaluate NOFIS’s performance in Section 3.2 under this restricted
scenario. Our algorithm is implemented in Pytorch and runs on
a Linux cluster with V100 GPUs. Our source code is available at:
https://github.com/zhengqigao/NOFIS-DAC24/.

3.1 Qualitative Analysis
We deliberately design several functions 𝑔(x) in 2D to make the
integral region Ω to possess different shapes and locate at the
tail of 𝑝 . Figure 2 shows the learned 𝑞𝑀𝐾 in these cases. Taking

Figure 2 (b) as an example, we consider the integral region Ω =

{(𝑥1, 𝑥2) | 𝑔(𝑥1, 𝑥2) ≤ 0}, where 𝑔(𝑥1, 𝑥2) = min[(𝑥1 + 3.8)2 + (𝑥2 +
3.8)2, (𝑥1−3.8)2+ (𝑥2−3.8)2] −1. The best proposal distribution 𝑞★
defined in Eq. (3) is shown in the top row of Figure 2 (b). It is evident
that 𝑞★ lies at the tail of the original data generating distribution 𝑝 .
Directly using an NF model to learn this 𝑞★ is not feasible due to
numerical issues in training.

We set 𝐾 = 8 and𝑀 = 5 in our NOFIS approach, so 𝑞8, 𝑞16, 𝑞24,
𝑞32, and 𝑞40 will be taken as anchors matching to 𝑝𝜏1 , 𝑝

𝜏
2 , 𝑝

𝜏
3 , 𝑝

𝜏
4 ,

and 𝑝𝜏5 . To further justify our approach, we visualize intermediate
distributions {𝑞8, 𝑞16, 𝑞24, 𝑞32} in Figure 3 (a)-(d), while 𝑞40 is al-
ready displayed in the bottom row of Figure 2 (b). The region Ω𝑎𝑚
induced by 𝑎𝑚 encompasses two circles centered at (±3.8,±3.8)
with a radius of

√
𝑎𝑚 + 1. According to Eq. (3), the heatmap of the

optimal proposal distribution for estimating 𝑃 [Ω𝑎𝑚 ] corresponds
to "modulating/coloring" Ω𝑎𝑚 based on the magnitude of 𝑝 , result-
ing two thin leaf shape as exemplified in the top row of Figure 2 (b).
Furthermore, as 𝑎𝑚 decreases alongside𝑚, the radius also decreases,
leading to a gradual outward shift of the two thin leaves from the
origin. This phenomenon could indeed be observed in Figure 3
(a)-(d). Moreover, {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} are set to {26, 15, 8, 3, 0} in this
case, and the radii of the learnt leaf shapes in Figure 2 (a)-(d) are
surely consistent with the expression

√
𝑎𝑚 + 1. Last but not least,

training loss curves are plotted in Figure 3 (e).

3.2 Quantitative Experiments
To substantiate the effectiveness of the proposed NOFIS approach,
we assess its performance across 10 test cases outlined in Table 1.
These cases include five synthetic scenarios (#1-#5), three instances
featuring real circuit examples (#6: Opamp [22], #8: Charge Pump [9],
#9: Photonic Y-branch under process variation, one involving a
physical oscillator (#7) [18] subjected to position variation, and
the remaining one illustrating the performance degradation of
ResNet18 under parameter variation (#10). Due to page limit, here
we briefly describe the settings for the three circuit examples. For
the Opamp and Charge Pump, the width of the MOS transistors in
the circuits follow a standard Gaussian distribution due to process
variation, and the integral region Ω represents Gain smaller than
72 dB in Opamp and current mismatch at the output larger than
370 uA in Charge Pump, respectively. For the Y-branch example,
x represents the random boundary deformation, and Ω represents
the power transmission smaller than 32%. Generally, in our experi-
ments, we set 𝐸 to 15 ∼ 20, 𝑁 to 100 ∼ 400, 𝑁IS to 20 ∼ 5000,𝑀 to
4 ∼ 6, and 𝜏 to 10 ∼ 30. Specific values vary depending on the test
cases; for example, in the #2 Cube test case, 𝐸,𝑀 , and 𝑁 need to be
larger as the target 𝑃𝑟 is extremely small.

Two evaluation metrics are considered: (i) the number of func-
tion calls and (ii) the prediction error measured in the logarithm.
The golden 𝑃𝑟 is obtained by a large number of MC samples for
all cases, except for the Cube test case (#2) where an analytical
solution exists. Furthermore, we implement the following six base-
line methods for comparison purposes: (i) MC: The conventional
Monte Carlo method [4]. (ii) SIR: Simple regression. A deep neural
network is first trained to learn the mapping 𝑔(x) using 𝑁 samples.
Afterwards, 𝑁eval samples (e.g., 𝑁eval = 109) are generated from
the distribution 𝑝 , and their function values are evaluated using
the neural network. The rare event probability estimation involves

https://github.com/zhengqigao/NOFIS-DAC24/
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Figure 2: (a) The heatmap represents the data generating distribution 𝑝 = N(0, I). (b)-(e) The top row displays the theoretically
optimal proposal distribution 𝑞★ defined in Eq. (3), while the bottom row illustrates the learned proposal distribution 𝑞𝑀𝐾
generated by the NFs using Algorithm 1. They exhibit a strong alignment in every case. When we overlay (b)-(e) onto (a), we
notice that the region Ω’s highlighted by green in (b)-(e) occur at the tail of 𝑝 in (a).

Figure 3: (a)-(d) The intermediate distributions {𝑞8, 𝑞16, 𝑞24, 𝑞32} of the NFmodel are plotted. They have been successfully trained,
and the highlighted regions are centered at (±3.8,±3.8) with radii that match our expected expression

√
𝑎𝑚 + 1. (e) The training

loss in each step is plotted against the epoch. For better visualization, the Y-axis is presented on a logarithmic scale.

Table 1: Results on synthetic (#1-#5) and real-world (#6-#10) experiments averaged from 20 repeated runs are reported in the
format ‘number of calls / logarithm error’. Here ‘K’ represents one thousand, and ‘—’ indicates algorithm failure.

Dim. Golden 𝑃𝑟 MC SIR SUC SUS SSS Adapt-IS NOFIS (ours)
(#1) Leaf 2 4.74E-6 50.0K / 9.11 50.0K / 9.30 47.5K / 4.79 42.0K / 0.23 40.0K / 0.70 35.0K / 0.25 32.0K / 0.11
(#2) Cube 6 2.15E-9 500K / 11.33 500K / 10.62 279.9K / 7.28 206.0K / 0.096 400.0K / 1.53 227.0K / 6.23 197.5K / 0.078
(#3) Rosen 10 4.69E-4 7.0K / 1.87 7.0K / 0.96 8.3K / 0.85 7.0K / 0.40 8.0K / 0.46 8.4K / 15.07 7.0K / 0.32
(#4) Levy 20 3.70E-6 50.0K / 11.80 50.0K / 14.56 50.0K / 4.31 49.0K / 0.53 — 56.0K / 9.20 48.2K / 0.44
(#5) Powell 40 3.15E-5 10.0K / 11.0 10.0K / 3.66 9.6K / 3.52 9.0K / 5.80 8.0K / 0.84 7.9K / 15.56 7.0K / 0.38
(#6) Opamp 5 1.30E-5 100K / 5.4 50K / 3.63 49K / 3.58 45K / 0.08 60K / 0.85 48K / 2.89 45K / 0.07
(#7) Oscillator 6 1.81E-6 100K / 13.58 50K / 0.24 40.1K / 4.33 45K / 0.13 40K / 1.17 43K / 2.62 31K / 0.12
(#8) Charge Pump 16 5.75E-6 100K / 8.27 100K / 8.73 50.5K / 3.66 45K / 0.15 40K / 1.31 43K / 12.77 35K / 0.12
(#9) Y-branch 26 4.27E-5 50K / 2.52 50K / 4.18 23.9K / 2.84 35.0K / 0.18 40K / 0.30 43K / 15.28 32.5K / 0.11
(#10) ResNet18 62 6.00E-5 20K / 4.16 20K / 8.13 22.9K / 3.62 20K / 0.55 20K / 3.12 — 18K / 0.61

calculating the ratio of how many of these 𝑁eval samples fall within
Ω. (iii) SUS: Subset simulation [1, 19]. (iv) SUC: Subset classification.
In short, the MCMC sampling in SUS is replaced with modern deep
neural networks. (v) SSS: Scaled-sigma sampling [20]. (vi) Adapt-IS:
Adaptive importance sampling [4, 14].

Table 1 reports the rare event estimation results on all test cases.
NOFIS attains the lowest error while requiring the fewest function
calls across all examples, except for the last ResNet18 case where it
performs slightly worse than SUS. Taking the case (#1) Leaf as an
example, our NF model is trained using𝑀 = 4 steps, 𝐸 = 20 epochs,
and a batch size of 𝑁 = 400, resulting in a total of 𝑀𝐸𝑁 = 32000
function calls. Additionally, generating the IS estimator requires
extra 𝑁𝐼𝑆 = 20 function calls in the end. The left part of Figure 4

showcases the learned proposal distribution 𝑞𝑀𝐾 , and the right
part further reveals that when increasing 𝑁𝐼𝑆 , the estimation could
become evenmore accurate. It is worth noting that the Leaf test case
here is precisely the one depicted in Figure 2 (b). Comparing the left
part of Figure 4 to the lower part of Figure 2 (b), we conclude limiting
the number of function calls leads to a degradation in the learned
proposal distribution, but NOFIS still successfully captures the two-
leaf shape and generates highly accurate probability estimates.

Lastly, we examine the effects of various implementation choices
on the performance of NOFIS using the circuit examples — Opamp,
Charge Pump (CP), and Y-branch. The results previously reported in
Table 1 are labeled as the “nominal" configuration. The left segment
of Figure 5 displays the prediction error when a single incremental
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Figure 4: Although limiting the number of function calls
leads to degradation in the learned distribution, NOFIS still
generates accurate estimates. Left: The learned 𝑞𝑀𝐾 for Case
(#1) in a single run with 32K function calls. Right: Utilize this
acquired 𝑞𝑀𝐾 to generate an IS estimator with varying 𝑁IS.
The X-axis and Y-axis denote 𝑁IS and logarithm probability.

change is applied to the nominal setup. For the ‘LongThre’ parame-
ter, we set𝑀 = 9, and for ‘SmallTemp’, we use 𝜏 = 1, whereas the
nominal settings have𝑀 ∈ [4, 6] and 𝜏 ∈ [10, 30]. It is noteworthy
that altering the freezing approach, using extended threshold se-
quences, or employing smaller temperatures doesn’t consistently
lead to improvements in NOFIS performance. Moreover, the right
part of Figure 5 uncovers two significant observations: (i) NOFIS
demonstrates great robustness within the temperature range of
𝜏 ∈ [10, 200], and (ii) a carefully tuned temperature 𝜏 could poten-
tially yield even better outcomes for the proposed NOFIS method.
For example, the optimal results (depicted by the lowest markers)
on the red Opamp, blue CP, and green Y-branch curves in the right
section of Figure 5 achieve prediction errors of 0.026, 0.054, and
0.023, respectively. These estimation errors are considerably smaller
than their counterparts (i.e., 0.07, 0.12, and 0.11) reported in Table 1,
while utilizing the same number of function calls.

Figure 5: Left: Ablation studies are carried out on non-
freezing, long threshold sequences, and small temperature 𝜏 .
Right: NOFIS’s error is plotted versus 𝜏 . The Y-axis in both
figures represents the logarithm prediction error.

4 CONCLUSIONS AND LIMITATIONS
In this paper, we introduce NOFIS, an efficient method for esti-
mating rare event probabilities through normalizing flows. NOFIS
learns a sequence of functions to shift a base distribution towards
an effective proposal distribution, using nested subset events as
bridges. Our qualitative analysis underscores NOFIS’s adeptness in
accurately recovering the optimal proposal distribution. Our quan-
titative exploration across 10 test cases justifies NOFIS’s superiority
over six baseline methods. The effectiveness of NOFIS hinges on
accurately configuring nested subset events. Yet, the prevailing
approach, both in this work and previous studies [1, 19], entails
human intervention. Developing an automated method for defining
nested subset events stands as a crucial avenue for future research.
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