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Abstract
Due to their reliability, e�ciency, and environmental friendliness,
metro systems have become a crucial solution to transportation
challenges associated with urbanization. Many countries have con-
structed or expanded their metro networks over the past decades.
During the planning stage, accurately predicting station ridership
post-expansion, particularly for new stations, is essential to en-
hance the e�ectiveness of infrastructure investments. However,
station-level metro ridership prediction under expansion scenar-
ios (MRP-E) has not been thoroughly explored, as most advanced
models currently focus on short-term predictions. MRP-E presents
signi�cant challenges due to the absence of historical data for newly
built stations and the dynamic, complex spatiotemporal relation-
ships between stations during expansion phases. In this study, we
propose a Metro-speci�c Multi-Graph Attention Network model
(Metro-MGAT) to address these issues. Our model leverages multi-
sourced urban context data and network topology information to
generate station features. Multi-relation graphs are constructed to
capture the spatial correlations between stations, and an attention
mechanism is employed to facilitate graph encoding. The model
has been evaluated through realistic experiments using multi-year
metro ridership data from Shanghai, China. The results validate
the superior performance of our approach compared to existing
methods, particularly in predicting ridership at new stations.

CCS Concepts
• Applied computing ! Transportation; Forecasting.
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1 Introduction
Recent decades have witnessed accelerating urbanization, marked
by a signi�cant migration from rural to urban areas, especially in
developing countries. While urbanization has propelled substantial
global advancements, it has also introduced a series of transporta-
tion challenges such as tra�c congestion and air pollution. Metro
systems have emerged as a key solution to these issues, o�ering
a reliable, e�cient, and environmentally friendly mode of urban
transportation to support burgeoning populations and economic
activities. In light of these bene�ts, metro systems have seen a
signi�cant surge in popularity and have �ourished in numerous
countries globally. During the planning stage of metro expansion,
accurately predicting station ridership (e.g., in�ow and out�ow) af-
ter expansion, particularly for new stations, is crucial for enhancing
the e�ectiveness of infrastructure investments and the sustainabil-
ity of the urban metro system. In this study, we de�ne this task
as the Station-Level Metro Ridership Prediction under Expansion
Scenario (MRP-E) problem.

Metro network expansion generally includes planning newmetro
lines or extending existing ones. In the expansion scenario, stations
can be divided into three types, as illustrated in Fig. 1. Newly built
stations are those not present before the expansion but added to
the metro system afterward. Updated stations are those that existed
before the expansion but have new lines passing through or extend-
ing after the expansion. Existing stations are those that were part
of the network before the expansion and have no new lines passing
through or extending after the expansion. Among these three types,
new stations have no historical ridership data before expansion.
Although existing and updated stations have historical ridership
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Figure 1: Schematic diagram of station types in the network
expansion scenario.

data, their ridership dynamics are a�ected di�erently during the
expansion (this will be elaborated in Sec. 5.1).

The MRP-E task can be viewed as a crucial precursor to metro
network expansion design. E�ective expansion design requires
accurate demand predictions for new stations during the planning
year. While previous studies have made signi�cant contributions
to metro network expansion design using optimization models
and reinforcement learning algorithms [22, 27, 28, 33], they often
overlook the demand prediction step. Many studies either use the
current year’s all-mode travel demand as a proxy for metro demand
in the planning year or rely on unvalidated estimated demands.
This approach can compromise the e�ectiveness of design models,
as metro demand is not equivalent to all-mode travel demand, and
actual metro demand in the planning year may di�er signi�cantly
from current ridership �gures.

Traditional methods for estimating metro ridership, whether
through travel demand modeling [19, 21] or regression models
[2, 12], either involve substantial costs and produce approximate es-
timates, or fail to capture more complex patterns in the data. While
signi�cant e�orts have been made to apply deep learning methods
for metro ridership prediction [4, 29], these methods predominantly
target short-term prediction scenarios (e.g., 15 minutes) and assume
an unchanged network structure. The potential of arti�cial intelli-
gence (AI) methods to address the MRP-E problem merits in-depth
exploration.

In summary, the MRP-E task is challenging for several reasons.
First, under the expansion scenario, the metro network is dynam-
ically evolving, and the spatial interaction between stations can
change accordingly. Therefore, deep learning models designed for
short-term ridership prediction may not be applicable to the MRP-E
task. Secondly, the demand at a given station varies but remains cor-
related over di�erent times. Previous research primarily focuses on
capturing these temporal relationships to forecast future demand.
However, these models depend on the availability of historical de-
mand data. In the case of newly built stations within the MRP-E
task, where historical data is absent, potential demand must be in-
ferred from surrounding urban contexts and other relevant factors.
Third, metro expansion is not a frequent event; new stations and
updated stations are much fewer than existing stations, especially
in mature metro systems. This limits our ability to obtain su�cient

new samples for model training, leading to high performance in
predicting existing stations but poor performance in predicting new
and updated stations.

In this research, we propose a Metro-speci�c Multi-Graph Atten-
tion Network model (Metro-MGAT) to address the MRP-E problem.
Utilizing various urban context data and multi-year metro network
data, we extract station-based spatiotemporal features. Then, to
capture the complex spatial dependencies, we construct multiple
metro-speci�c correlation graphs. The spatiotemporal features and
spatial dependency features are fed into a prediction network to
generate predicted station demand. The main contributions of this
paper are summarized as follows:

• We develop aMetro-speci�c Multi-Graph Attention Network
model (Metro-MGAT) to address the metro station ridership
prediction challenge under expansion scenarios. To the best
of our knowledge, this work presents the �rst attempt to
predict expanded metro station demand using deep learning
algorithms.

• We design multiple graphs speci�c to metro systems to
encode the complex spatial dependencies among stations.
Speci�cally, a geographical distance graph, a functional sim-
ilarity graph, and a travel impedance graph are incorporated
into the model, and a graph attention mechanism is adopted
to facilitate the learning of spatial interaction features.

• To address the class imbalance issue (i.e., new stations are
much less numerous than existing stations) in the MRP-E
task, we design an age-weighted loss function. This gives
"younger" stations, typically those newly built, higher prior-
ity, enhancing the model’s performance for new stations.

2 Related Works
2.1 Traditional Metro Ridership Prediction

Methods
The traditional approach to metro ridership prediction has pre-
dominantly utilized four-step methods [11, 19] or activity-based
models [1, 21], which are part of the broader travel demand model-
ing framework. In this framework, metro ridership is viewed as the
demand for a speci�c mode of transportation. While these meth-
ods are behaviorally consistent, they require extensive data and a
comprehensive calibration of explanatory variables.

As alternatives, several e�ective models have been proposed
to enhance the detail and accuracy of ridership predictions. Time
series models, extensively applied in forecasting transportation de-
mand, predict ridership based on regression analyses of past values
[7, 34]. Direct ridership models, such as Ordinary Least Squares
(OLS) regression and Geographically Weighted Regression (GWR),
directly link ridership to accessible factors like local demographics,
economic indices, and geographic information [2, 3, 12]. While
these statistical methods provide good interpretability, they often
struggle to capture the nonlinear dynamics of tra�c data and may
falter under complex conditions and large datasets.

Additionally, machine learning techniques have been explored
for ridership prediction. For example, [26] employed the XGBoost
model to predict travel demand in expanding metros. However,
existing models have not been deployed on real-world expansion
datasets, which may fail to capture the complex spatial interactions
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between stations during expansion. Consequently, there is a press-
ing need to develop more accurate models that can realistically
represent the planning and deployment of real-world metro system
expansions over time.

2.2 Deep Learning Methods in Ridership
Prediction

To address the limitations of traditional forecasting methods, some
researchers have turned to neural networks (NN) and hybrid mod-
els to enhance demand forecasting [20, 24]. Neural networks excel
at handling complex nonlinear problems without requiring prior
knowledge of the relationships between input and output vari-
ables. With the rapid advancements in AI, an increasing number of
deep learning algorithms are being utilized to predict metro rider-
ship [17, 29]. Prominent models include Long Short-Term Memory
(LSTM) [9] and Gated Recurrent Unit (GRU) [8, 30]. Furthermore,
spatial dependency has been integrated into models, employing
Convolutional Neural Networks (CNNs) and their hybrid coun-
terparts to explore spatial correlations and achieve network-scale
passenger predictions [18, 32].

However, as these CNN-based models often represent metro
ridership as grid-based data, there are concerns that this approach
may not provide satisfactory accuracy due to the neglect of re-
alistic network topology [4], especially since metro stations are
sparsely distributed across urban areas, potentially leading to inad-
equate capture of representative spatiotemporal patterns [4, 15, 29].
Recently, graph-based models such as the Graph Convolutional
Network (GCN) have gained popularity for their ability to consider
the topological information of the network [4, 31].

Despite these advancements, most AI applications have focused
on short-term prediction scenarios. Over long planning horizons,
the evolving nature of metro networks due to expansion can sig-
ni�cantly in�uence ridership distribution, while short-term deep
learning prediction models often assume an unchanged network
structure. Additionally, although these studies demonstrate the ef-
fectiveness of deep learning models for metro demand prediction,
they generally rely on sequential/temporal dependencies, which are
not applicable for metro expansion scenarios where new stations
lack historical data.

Although some recent studies have addressed demand prediction
problems in long-term expansion scenarios [14, 16], they predomi-
nantly focus on bike-sharing and electric vehicles. Metro expansion
di�ers from these modes in several key ways: 1) the spatial inter-
action between stations in metro systems is more complex due
to the distribution of metro lines; 2) metro expansions are rarer,
thus exacerbating the new/existing station imbalance problem; and
3) in metro expansion, there are new/existing stations as well as
updated stations, each showing distinct dynamics. To the best of
our knowledge, very limited e�orts have been devoted to exploring
deep learning for demand forecasting in metro expansion scenar-
ios. Given the growing interest in applying deep learning-based
methods to future urban and transportation planning, there is a
compelling need to further investigate these advanced methods for
planning metro systems of the future.

3 Problem Formulation
3.1 Preliminaries
3.1.1 Metro Station Demand. For practical purposes, metro station
demand under expansion scenarios does not always necessitate
�ne-grained forecasting such as hourly or daily levels as is typical
in short-term prediction models. Instead, the goal is to capture the
total passenger �ow at relatively macroscopic time scales for newly
planned and updated stations to ensure a reasonable allocation of
resources. In this study, to capture the seasonal dynamics, metro
station demand is observed at the monthly level. For station 8 , we
aim to predict its demand 38,C at month C as the average daily in�ow
and out�ow. This can be computed as 38=/>DC8,C =

Õ"
<=13

8=/>DC
8,C ,< /" ,

where 38=/>DC8,C ,< represents the daily in�ow and out�ow of station 8
on day< of month C , and" is the total number of days in month C .

3.1.2 Multi-relation Graph. We model the urban metro network
as a weighted undirected relational graph. Due to metro expansion,
the structure of the metro network evolves dynamically over time,
which can be denoted as ⌧ = {+ , ⇢,, ,- ,⇡, C}, where + refers to
the metro stations at month C , ⇢ denotes the relationships between
stations at month C ,, represents the weights of the edges at time
C , - indicates the features of stations at month C and ⇡ signi�es the
demand at stations for month C . In this study, we de�ne multiple
graphs according to di�erent relationships between stations, which
will be introduced in Sec. 4.2.

3.2 Metro Expansion Demand Prediction
Problem

Suppose month ? marks the transition from the training to the test-
ing period. Given the metro network structure and station features
from the earlier training period {1, 2, ...? � 1}, this study aims to
develop a mapping function � that correlates station demand with
station features, denoted as ⇡8=/>DC

8,C = � (- 8=/>DC
8,C ). The training

period encompasses several metro expansions, enabling this func-
tion to capture dynamic mapping relationships under expansion
scenarios.

Subsequently, using the anticipated metro network structure
and current station features, we apply the mapping function to
future expansion scenarios in the testing period {?, ? + 1, ..., %} to
generate demand predictions ⇡̂8=/>DC

8,C = � (- 8=/>DC
8,C ). It is important

to note that stations will have their features based solely on the
urban environment, network structure, and temporal information,
rather than historical demand.

3.3 Framework
Fig. 2 presents an overview of the proposed framework for predict-
ing demand in metro expansion scenarios, which comprises three
main components. First, we utilize multi-sourced urban informa-
tion to extract station-based urban context features. Additionally,
temporal factors that in�uence station demand dynamics are en-
coded to capture the station-level temporal information. Detailed
features will be presented in Sec. 4.1. Second, to capture the spa-
tial correlations between stations, we construct multiple relational
graphs to encode various spatial dependency relationships, which
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Figure 2: Overview of the proposed framework for expanded demand prediction.

will be detailed in Sec. 4.2. Third, utilizing the spatiotemporal en-
codings and spatial interaction features, we integrate these features
and input them into the prediction network, generating the antici-
pated demand for newly-built, existing, and updated stations. This
component is outlined in Sec. 4.3.

4 Methodology
4.1 Spatiotemporal Feature Extraction
4.1.1 Spatial Features. We utilize diverse urban and metro net-
work information to extract station-based spatial features. These
primarily include features related to the metro network structure,
the built environment, and multimodal demand. A detailed list of
these features is provided in Tab. 1.

Network structure feature are extracted from the metro net-
work’s topology, denoted as GB8,C 2 R12. This 12-dimensional vector
includes features such as station centrality, the number of con-
nected stations, and the number of connected metro lines. Due
to the dynamically evolving topology, we extract these structure
features for every observation month C .

Built environment features have been found to be highly corre-
lated with metro �ows in previous studies. In this study, we extract
a 21-dimensional built environment feature vector G18 2 R21. These
features, calculated within a 500-meter bu�er around stations, pri-
marily include population density [6], house value 1, and the density
of 14 categories of Points of Interest (POIs) 2. Due to data availabil-
ity, the built environment data is static and was primarily recorded
in 2017.

1Extracted from Lianjia, one of China’s largest real estate intermediary companies.
https://m.lianjia.com/
2Obtained from the Gaode API: https://lbs.amap.com/

Table 1: Summary of features and categories.

Features

Spatial features (dim=37)
1) Network structure (dim=12)
station centralities, metro station connections, metro line con-

nections, interchange station, terminal station. . .
2) Built environment (dim=21)
population density, house value, POI density of 14 categories,

road density, intersection density, landuse diversity. . .
3) Multimodal demand (dim=4)
taxi pick-ups, taxi drop-o�s, bus stop density, bus line density

Temporal features (dim=14)
1) Station status (dim=2)
station age, updated status

2) Month (dim=3<)
observation month embedding

Multimodal demand can potentially re�ect metro demand. For
instance, buses and taxis can either compete with or complement
metro systems, especially over long distances. Hence, these modes
may exhibit complex relationships with metro usage. In this study,
we incorporate bus and taxi demand into the model. Taxi demand
is calculated as the average daily number of taxi pickups and drop-
o�s within a 500-meter radius of metro stations. Bus demand is
represented by the density of bus stops and bus lines within the
same radius. We combine these as the multimodal demand feature
vector G<8 2 R4, with taxi data speci�cally collected from Shanghai
between April 1st and April 30th, 2015.
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Based on the above features, the spatial feature vector for station
8 at month C can be represented as:

G%8,C = [GB8,C k G18 k G<8 ], (1)
where k denotes the concatenation function.

4.1.2 Temporal Features. We include two types of features to en-
code temporal information: station status and month. The former
includes the station’s age G08,C 2 R (the number of months since
it �rst operated) and update status GD8,C 2 R (whether it has had
new lines pass through within the past year). The latter feature
records the month of observation, which is transformed into a
month embedding vector -<

8,C 2 R3< , where 3< is the vector di-
mension. Each month is represented as a unique vector to capture
seasonal �uctuations. The temporal features of station 8 at month C
can be represented as:

G)8,C = [G08,C k GD8,C k G<8,C ] (2)

4.2 Multi-relation Graph Representation
4.2.1 Multiple Graph Construction. The demand at one station can
be in�uenced by other stations within the metro system. Rather
than solely relying on physical topologies or geographic proximity,
we construct multiple graphs speci�cally tailored for metro systems
to capture the complex spatial dependencies among stations.

Geographical Distance Graph: Generally, stations that are ge-
ographically closer tend to be more correlated. We de�ne a distance
graph to model this spatial correlation. In this graph, the geograph-
ical proximity between station 8 and 9 at month C is computed
as:

068 9,C = exp(�(
38BC8 9,C
f6

)2), (3)

where 068 9,C is the geographical adjacency weight between station 8
and 9 in month C , 38BC8 9,C denotes their geographical distance, and
f6 is set as the standard deviations of 38BC8 9,C .

Functional similarity graph: Stations with similar distribu-
tions of land use functions may exhibit closer demand patterns.
For example, if two stations are located within the same functional
zone, the people arriving and departing from these stations are
likely to have similar activity patterns, leading to more similar �ow
distributions. In this study, we use the built environment features
surrounding each station to encode their land use function. The
function similarity between a pair of stations {8, 9} is is computed
as:

018 9,C = exp(�(
⇢D2 (G18 , G19 )

f1
)2), (4)

where 018 9,C is the functional adjacency weight between station 8

and 9 in month C , ⇢D2 (G18 , G19 ) is the Euclidean distance function,
G18 and G19 are built environment vectors described in Sec. 4.1, and
f1 is set as the standard deviations of ⇢D2G18 ,G19 .

Travel impedance graph: For transportation systems such as
bikesharing or taxis, travel cost is highly correlated with the dis-
tance between two locations. However, in metro systems, transfer

times play a critical role in people’s travel decision-making. Thus,
station pairs with lower travel impedance may exhibit higher spa-
tial interaction. The travel impedance proximity between a station
pair {8, 9} is computed as:

028 9,C = exp(�(
�<?8 9,C
f2

)2), (5)

�<?8 9,C = min
A

{;A8 9,C + V=A8 9,C }, (6)

where 028 9,C is the impedance-based adjacency weight between sta-
tion 8 and 9 in month C . �<?8 9,C is the impedance function, which
factors in network distance and transfer times. ;A8 9,C is the number
of link segments in route A between station pair {8, 9} at month C ,
=A8 9,C denotes the number of transfers in route A between station
pair {8, 9} at month C , V is transfer penalty parameter, and f2 is set
as the standard deviations of �<?8 9,C .

Based on the above three types of adjacency matrices, we select
the top-K nearest stations for station 8 as its neighborhood stations
for each category and construct three graphs for each month, de-
noted as ⌧6

8,C , ⌧
1
8,C , and ⌧2

8,C , respectively. Note that for the same
station 8 , its associated graphs may change in di�erent months due
to the addition of new stations.

4.2.2 Graph A�ention Network Encoding. Based on the constructed
graphs ⌧6

8,C , ⌧
1
8,C , and ⌧2

8,C , we can extract the spatial features of
neighboring stations for each station and fuse them through a graph
attention mechanism to generate spatial interaction features ⌘68,C ,
⌘18,C , and ⌘

2
8,C . Given the input spatial feature vector of station 8 G%8,C ,

the spatial interaction feature is computed as the weighted sum of
its neighbors’ spatial feature vectors G%9,C . Taking the geographical
proximity graph ⌧6

8,C as an example, the geographical interaction
feature vector ⌘68,C can be represented as:

⌘68,C =
Õ

92#6
8,C
U8 9,C,G%9,C , (7)

U8 9,C =
4G? (�CC=(,G%8,C k,G%9,C ))Õ

:2#6
8,C
4G? (�CC=(,G%8,C k,G%

:,C
))
, (8)

where #6
8,C denotes the geographical neighborhood station set

of station 8 at month C ,, is a shared parameter matrix used to
perform a linear transformation on all spatial feature vectors. U8 9,C
is the normalized attention weight between station 8 and its neigh-
boring station 9 at month C , and�CC=(·) is a two-layer feed-forward
network used to generate pairwise attention scores.

4.3 Demand Prediction Network
4.3.1 FNN Prediction Layer. In the prediction network, the ex-
tracted spatiotemporal features along with the learned spatial in-
teraction features are fed into the network, generating the in�ow
and out�ow predictions. In this study, we employ a feed-forward
network (FNN) as the prediction layer. Speci�cally, for a target
station 8 at month C , the prediction network performs the following
computations:
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I1 = '4!* (,1 ( [G%8,C k G)8,C k ⌘68,C k ⌘18,C k ⌘28,C ])),
I2 = '4!* (,2I1),
I3 = B86<>83 (,3I2),
3̂8,C =,4I3,

(9)

where G%8,C , G
)
8,C , ⌘

6
8,C , ⌘

1
8,C , and ⌘28,C represent the spatial features,

temporal features, and three types of spatial interaction features,
respectively.,1,,2,,3, and,4 are learnable parameter matrices.
3̂8,C 2 R2 is the predicted in�ow and out�ow demand of station 8 at
month C .

4.3.2 Age-weighted Loss Function. Typically, the loss function is
designed as the sum of squared errors between the predicted and
real-world demand. However, in this model, we prioritize the predic-
tion of newly built stations. Speci�cally, we design a weighted loss
function that adjusts the observation weight based on the station’s
opening age. The loss function is calculated as follows:

!\ =
Õ)
C=1

Õ#C
8=1W8,C (3̂8,C � 38,C )2,

W8,C = 1
G08,C+1

, (10)

where ) is the number of months in the training period, #C is the
number of stations at month C , and W8,C is the sample weight, which
is inversely proportional to the station age G08,C .

5 Experiments
5.1 Data Analysis
In this study, we utilize Shanghai as the case city. The Shanghai
metro ridership dataset spans daily passenger in�ow and out�ow
for each station from January 2014 to December 2019. Due to a
technical issue, data from April 2014 to October 2014 are missing.
Fig. 3 (b) illustrates the number of stations and the average daily
ridership for each month from December 2014 to December 2019.
It is evident that the Shanghai metro network underwent several
expansions during this period, resulting in a general increase in
system-wide average ridership. Fig. 3 (a) depicts the network topol-
ogy in December of 2014, 2017, and 2019. Purple stations represent
existing stations, red stations denote newly built stations since the
previous stage, and blue stations indicate updated stations that
were passed by new lines or received line extensions compared to
the previous stage.

The three types of stations exhibit distinct �ow dynamics due
to the expansion. For example, consider the expansion in Decem-
ber 2015, as illustrated in Fig. 3 (c), where we track the ridership
dynamics from January 2015 (one year before expansion) to Decem-
ber 2016 (one year after expansion) for the three types of stations.
The �ows of 20 sampled existing stations, all new stations, and all
updated stations in this expansion are illustrated in this sub�gure.
The �ow at newly built stations showed a signi�cant increasing
trend since their opening in December 2015. In contrast, the �ow
at existing stations remained relatively stable, with only seasonal
�uctuations evident. Updated stations, compared to existing ones,
displayed more pronounced �uctuations; particularly in December
2015, when the updated stations were �rst served by new lines or
had extensions, some updated stations experienced a noticeable
initial surge in ridership followed by a sudden drop. On the other

hand, contemporaneous existing stations did not exhibit an increas-
ing trend but rather a decline leading up to the Spring Festival
holidays. This suggests that the expansion impacts di�erent types
of stations di�erently: new stations experience a signi�cant and
sustained increase in tra�c, updated stations show a relatively mi-
nor and short-term growth trend, while existing stations are largely
una�ected.

5.2 Experiment Settings
In this study, each station-month pair is treated as an individual
observation. To capture the dynamics of metro expansion, we utilize
data from January 2014 to June 2017 for training and validation,
and data from July 2017 to December 2019 for testing. During the
training and validation period, 303 stations were operational, while
the testing period saw the addition of 31 new stations and updates
to 10 stations (i.e., these stations had new lines introduced or line
extensions during the testing period).

As discussed in Sec. 5.1, the �ow �uctuations exhibit di�erences
between new and updated stations under the in�uence of expan-
sion. For newly built stations in the testing period, all observations
from their months of operation are treated as new observations.
In contrast, for updated stations in the testing period, due to their
relatively minor �uctuations resulting from the expansion, only
observations within one year of the update are considered new
observations. All other station-month observations in the testing
period are classi�ed as existing observations. Consequently, there
are 10,347 observations in the training and validation period, and
9,883 observations in the testing period, which includes 8,960 exist-
ing observations and 923 new observations.

5.3 Baseline Models
We evaluate our Metro-MGAT model against �ve baseline models,
which include three non-deep learning models and two advanced
deep learning models. The details of these models are as follows:

Linear Regression [25] is a commonly used regression model
that assumes linear relationships between metro station demand
and in�uencing factors.

Ridge Regression [10] addresses the issue of multicollinearity
in linear regression by incorporating L2 regularization. The regu-
larization strength is controlled by the parameter U , which we set
at 0.01.

XGBoost [5] is a tree-based ensemble learning algorithm. It uti-
lizes multiple regression trees in a boosting framework to improve
prediction accuracy.

Feed Forward Network (FNN) [23] typically consists of an input
layer, several hidden layers, and an output layer. Unlike graph-based
models, FNNs do not inherently capture spatial relationships. To
ensure a fair comparison, we use the prediction layer from our
model as the benchmark for the FNN.

Multi-graphConvolutionalNetwork (MGCN) [13] is designed
speci�cally for graph data. It aggregates features from neighboring
stations using prede�ned weights rather than an attention mech-
anism. For a fair comparison in this baseline model, we employ
the same multiple graphs as those constructed in our Metro-MGAT
model.
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Figure 3: Spatiotemporal analysis of Shanghai metro data.

Spatially-dependentMulti-graphA�entionNetwork (Spatial-
MGAT) [14] is a graph neural network approach for predicting
the station-level demand in bike-sharing system under expansion
scenarios. This model constructs graphs based on geographical
proximity and built environment similarity, and uses attention
mechanisms to learn the correlation weights between bike stations.

The model performance is evaluated using four metrics: Root
Mean Square Error ('"(⇢), Mean Absolute Error ("�⇢), Mean
Absolute Percentage Error ("�%⇢), and the Coe�cient of Determi-
nation ('2), which are de�ned as follows:
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(11)

where) is the number of months in the test period,#C is the number
of stations in month<, 348,C and 3̂

4
8,C are the true and predict demand

of in�ow/out�ow (4=1 denotes in�ow, and 4 = 0 denotes out�ow).
3̄ is the average demand.

6 Results
6.1 Performance Analysis
In this section, we compare the performance of the Metro-MGAT
model with the aforementioned baselinemodels. For eachmodel, we
conduct experiments �ve times and report the average performance,
as listed in Tab. 2. For new observations, our model outperforms

all other models across all four metrics. Compared to the second-
best model, FNN, our model reduces RMSE, MAE, and MAPE by
7.2%, 6.8% and 8.3%, respectively, while improving '2 by 4.5%. This
improvement may be attributed to our model’s enhanced ability
to leverage spatial knowledge compared to classical deep neural
networks.

Linear regression and ridge regression exhibit similar perfor-
mance, with XGBoost performing slightly better. Unexpectedly,
MGCN performs poorly regarding '2 in predicting new observa-
tions, which may be due to the prede�ned adjacency weights intro-
ducing biased spatial dependencies. In contrast, the graph attention
mechanism in Metro-MGAT e�ectively captures the complex spa-
tial relationships between stations.

For existing observations, XGBoost achieves the best perfor-
mance across all four metrics, while our model generally ranks
third. This is not surprising, as our model prioritizes new observa-
tions by assigning higher weights to newly built stations, which
can lead to relatively lower performance in predicting existing de-
mand. Prediction models for existing stations have been extensively
explored in previous work and have achieved very high accuracy,
making them less of a focus in this study.

6.2 Ablation Analysis
In this subsection, we conduct an ablation analysis to verify the
e�ectiveness of key components in our model. Speci�cally, we cre-
ate variant models by removing di�erent components and compare
their performance with the full Metro-MGAT model. The variant
models include: -SS: Removing station status features, i.e., station
age G08,C and update status G

D
8,C . -MD: Removing multimodal demand

features G<8 . -WL: Using an unweighted loss function, i.e., apply-
ing uniform weights to all samples. -IG: Removing the impedance
graph. The performance of these variants is displayed in Tab. 3.
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Table 2: Comparison of model performance.

New observations Existing observations
Models RMSE MAE MAPE '2 RMSE MAE MAPE '2

Linear regression 8.471e3 6.226e3 1.381 0.680 8.338e3 6.145e3 0.535 0.768
Ridge regression 8.480e3 6.211e3 1.375 0.678 8.335e3 6.141e3 0.536 0.768
XGBoost 7.712e3 3.833e3 0.536 0.698 3.789e3 2.119e3 0.165 0.952
FNN 3.584e3 2.618e3 0.460 0.709 5.710e3 3.857e3 0.305 0.902
MGCN 7.557e3 5.503e3 1.310 0.354 5.689e3 3.894e3 0.348 0.902
Spatial-MGAT 3.829e3 2.894e3 0.473 0.694 5.024e3 3.378e3 0.283 0.923
Metro-MGAT (our model) 3.325e3 2.441e3 0.422 0.741 5.068e3 3.449e3 0.323 0.919

Table 3: Performance of variant models.

New observations Existing observations
Models RMSE MAE MAPE '2 RMSE MAE MAPE '2

Metro-MGAT 3.325e3 2.441e3 0.422 0.741 5.068e3 3.449e3 0.323 0.919
-SS 3.810e3 2.820e3 0.469 0.631 5.692e3 3.456e3 0.266 0.909
-MD 3.736e3 2.812e3 0.474 0.696 5.390e3 3.696e3 0.338 0.908
-WL 3.565e3 2.691e3 0.438 0.734 4.643e3 3.014e3 0.270 0.932
-IG 3.432e3 2.520e3 0.451 0.713 5.657e3 3.735e3 0.347 0.902

The key components of our Metro-MGATmodel are shown to be
e�ective in predicting demand for new observations, as indicated
by the lower performance across all four metrics when these com-
ponents are removed. For existing observations, all components,
except for the weighted loss function, also contribute signi�cantly
to improving model performance, which is expected given that the
weighted loss function is speci�cally designed to prioritize new
observations.

7 Conclusion and Discussion
In this study, we propose a Metro-speci�c Multi-Graph Attention
Network (Metro-MGAT) model to address the challenge of station-
level metro ridership prediction under expansion scenarios (MRP-E).
MRP-E is a complex task due to the absence of historical demand
data for newly built stations and the intricate relationship between
urban context and station ridership. Additionally, the dynamically
evolving network structure and the scarcity of new or updated
stations further complicate the problem, rendering recent deep
learning models designed for short-term prediction unsuitable. To
tackle the MRP-E task, our Metro-MGAT model incorporates three
key components. First, we extract station-based spatiotemporal
features for each month from various urban data sources and net-
work topology. Next, to capture the spatial dependencies between
stations, we construct multiple specialized graphs for metro sys-
tems, including geographical distance graphs, functional similarity
graphs, and travel impedance graphs. An attention mechanism is
employed to e�ectively capture complex spatial correlations. All
features are then fused and fed into a feed-forward network to
generate potential metro demand predictions. To address the issue
of observation imbalance, we design an age-weighted loss function.
To validate our model and capture the complex impacts of net-
work expansion, we conduct experiments on a real-world dataset
from the Shanghai metro system, covering the period from 2014

to 2019. The results demonstrate the superiority of our proposed
model in predicting demand for new observations and highlight
the e�ectiveness of the model’s components.

Additionally, we acknowledge the limitations of our work con-
cerning the adequacy of the experiments and datasets. In the future,
we plan to conduct further experiments to di�erentiate the perfor-
mance of updated stations from that of newly built stations, and
we will utilize additional datasets to validate our model’s perfor-
mance. Furthermore, we aim to enhance our model to develop a
demand-driven framework for metro network design.
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