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A number of N~-symmetric bodies with polygonal

transverse sections are considered in a supersonic flow

at zero angle of attack.

Due to nonlinearity of the conical field equation,

the distribution of velocity components are approximated

using equivalent cone distributions corresponding to a

zero angle of attack, and in such a way as to satisfy all

of the existing boundary conditions.

Depending on whether or not certain boundary condi-

tions were satisfied on the symmetry lines, the problem

was divided into three cases.

Case (1) for ov, /239 # 0, i.e. a relaxation of the
symmetry constraint, gave results which seemed to be un-

reasonable and inconsistent.

Case (2) for CAVA = 0 was imposed on one symmetry
line only, with the “other (at 6 = m/2), represented as a

flat plate at which ov _/36 # 0. These results proved con-
sistant and reasonable.

Finally, for case (3), ov, /96 = 0 was imposed along
both symmetry lines and introduced a singularity for vel-

ocity components.
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The numerical results for this case were not

included; however, an approach has been suggested to

remove the singularity.
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Spherical velocity components

Free stream velocity components

Non-dimensionalized form of velocity

components, V.:= v./U,
. ‘ _ 1/2

Maximum velocity = (2C,Ty)
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components, V_. = Vd ax etc.
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having sinusoidal dependence on ©

Non-dimensionalized velocity for case (1)

Non-dimensionalized velocity for case (1)

having partial sinusoidal dependence on ©
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tang Non-dimensionalized perpendicular distance

from origin '0' to the inner body surface
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dr
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(04 = constant)

Unit normal to the inner body surface

Shock stand off distance from the origin

Shock stand off distance from the origin
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Shock stand off distance from the origin

at 9 = 1/2

Unit normal to the shock

I.ocal normal to the shock

Magnitude of n

a

“iD
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£_(0,M)

(T=

¢ (o 'M )
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Element surface area of the shock

Equivalent cone distribution

£, (o 'M) , equivalent cone distribution

Function related to £.r $= f,./tang
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{-
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~
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Free stream Mach number

Free stream sonic velocity
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Magnitude of velocity vector vy

Unit velocity vector behind an oblique shock

Axis parallel to Z axis, Figure (1)

Unit vector along T axis, see Eg. (le)

Component of Vv; along T axis, Figure (1)

Component of v, along X axis, Figure (1)

Density
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~

Equivalent cone shock stand off distance from
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CHAPTER I

INTRODUCTION

In 1959, G.I. MAIKAPAR (U.S.S.R) and T. NONWEILLER

(England) , suggested that by taking stream surfaces behind

plane shock waves as rigid boundaries, a class of three

dimensional bodies are formed.

For such a class of bodies the leading edges appear

as the intersection between the plane shock and the stream

surfaces.

The aerodynamic characteristic of these bodies are ob-

tained on using plane shock relations at the given Mg

termed as the design Mach number.

This essentially inverse approach has been applied for

example to two shock configurations to obtain different

geometries [1,2].

Also different classes of bodies, with curved inner

boundaries have been obtained, using conical flow between

two intersecting shocks obtained from cones at zero angle

of attack [3].

Here the former case, (i.e. N-symmetric bodies with

polygonal cross sections) are considered, with cross-

sectional distributions that do not vary along the axial

length (Figure (1)).
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For departures of M_ from design Mach number (My) ’

the shock is not planar.

Hence, due to the variation of shock strength, the

flow is rotational. Depending on the departure of M_ from

Mgr three marked shock configurations are obtained.

(1) | M,,~M, | &lt;&lt; M;. The velocity distribution could be

obtained by perturbing the design velocity components,

hence the resulting shock could be taken as the perturbed

planar shock.

(2) M_ &gt; Mg: In this case, one would expect that the

attached plane shock would move towards the body, with

possible shock interactions and reflections from the inner

boundary. This becomes clear if the flow is considered

for a wedge in plane (R'), Figure (1) perpendicular to

the leading edge OL.

(3) M_ &lt; Mye The shock is expected to move outwards

away from the body, and depending on the magnitude MyM,

it may either remain attached or detach from the leading

edges.

The latter case has been considered here. But due

to non-linearity of the field equation, the only possible

solutions are those resulting from the use of numerical

computations.

However, the approach here has been to take accurate

numerical velocity distributions [4], of anequivalent cone,
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(i.e. a cone with equal base area at the same M_) and

modify them so as to accommodate the symmetry and tangency

condition at the body.

Also, a relation between velocity components has been

obtained at the outer boundary (shock), unknown a priori.

This relation is then used to obtain the shock location for

the given approximation.

However, with infinite choices of approximations, a

corresponding infinite number of shock configurations could

be obtained for a given geometry and M_.

The question then arises, which approximated

bution, if any, would be reasonable.

distri-

It is shown that with typical distributions satisfying

the boundary conditions, some reasonable results are ob-

tained. The best choice for such distributions, of course,

requires that some comparison be made with experimental

results.
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CHAPTER 2

DESCRIPTIVE EQUATIONS

Point O (Figure (2)) is the origin of the spherical

coordinate system r,0,0 (angle measured positive from nega-

tive x,z axis), and also is the apex of the conical flow.

Since the flow is conical, it follows that

d (flow properties)
or = C

Hence, the Eulerian equations in a spherical coordinate

system become [5]

oV i oV
r W r _ 2 2

Vn Jo + sing 06 Vn tw

AY aV
gn, WwW "mn 123° oy - W2
noo sing 96 po 90 rn

coty = 0

oW W oW 1 oP
Zt ee  —F—— = + gc =

nic + sing 96 posing 96 t VW Vv. Acok
0

1 .

+J

Here Vv. and Vi are velocity components along and

normal to a radius, r, respectively in the meridian plane

® = constant, and W is normal to this plane (Figure (2)).

Neglecting heat conduction and body forces and

assuming constant total enthalpy, the adiabatic energy

equation provides two additional relations. When solved
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together with equations (1) and the continuity equation,

the rotational field equation is obtained [5]

v

Vv: + w? SV v2 )

2-2) +v cots + —2(1--8) ++ Mg _W,
3 a? sino 36 a?

WV ov

nl —t “}s OW, = (
a? sinc 98 do

(1.1)

This is essentially a relation between velocity com-

ponents throughout the conical field.
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CHAPTER 3

BOUNDARY CONDITIONS (TANGENCY CONDITION AT THE BODY)

Now spherical velocity components Vr Vr W can be

expressed in terms of a cartesian coordinate system XYZ

with origin at 0 (Figure 2)

Vv = -i(V_coso) + j(V_sinocos®) - k(V_sinccosf)

on N .
V = 1i(V sing) +

Xi

j(V, cososinb) - k(V cosoccos8)

j(Wcos0) + k(Wsinb)

(1.2)

The tangency condition at the body is given by

me (V_ + W) = 0, where m is a unit normal to the inner sur-

face of a body. This last relation implies that (Appendix

D)

wh } cot (o;-6)

V.’'b co
n SO,

(1.3)

On the body oy = oy, (6) (Appendix A); hence (W/V_)y

1s essentially a function of 6 for a given geometry.

A number of (W/V) distributions on the basis of the

equation (1.3) are shown in Figures (3.a, 3.b), for differ-

ent o. base angle, rq base lengths for bodies with unit

axial lengths (i.e., ry is in units of axial length), and

N = 4 as a typical polygon case.
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3.1 Symmetry Conditions

From symmetry considerations, one must require the

individual velocity component distributions to be such

that

(W) o=m/4"
J (Wop 0 LV) plgon/a

(Vp! 0=1/2 v

J

( 1.4)

and

OV

(587) g=r/4™ )
av,

(557) =p /2= © (1.5)

In particular, conditions (1.4 and 1.5) require Vo

and W to be symmetric and antisymmetric about the 6 = w/4,

m/2 dividing planes for the polygon section.

3.2 Entropy Considerations

I'he entropy distribution in the cross plane is given

Oy (see [5])-

. 9S 2S

J 51n0ws + Wag G (1.6)

This implies that the variation of entropy is related

to the velocity components and shows that the entropy may

be indeterminate at certain points where W and vo are both

zero simultaneously. Therefore, a singular point of entropy
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exists and hence all of the streamlines in the plane must

converge to such a point or points.

The stronger shock in the region of 6 = 7/2 implies

a pressure field such that the streamlines are expected to

converge to point E (Figure (4a); therefore, W &lt; 0 and

Vv &lt; 0 throughout the field and

WW, &lt;
30’ 0=11/2

J
Ov

- "~
3

) ~ J (1.7)
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CHAPTER 4

DISTRIBUTIONS RELATED TO THE EQUIVALENT CONE

Equating the base area of the wave rider (its geometry

to be determined) to its equivalent cone (a cone with equal

base area) gives:

2 n
mTtan 0 tang

tano 2 = CC ,.m a.
—— 2 a

Nr, tang mttan Og

(1.3)

where Og is the cone semi angle at the same M_ as the wave

rider under consideration.

Now assume that W and Vv, for a body of this class

with geometry specifications osr Tg satisfying Equation

(1.8) are related to the equivalent cone distribution,

(Vv) c= £.(0,M) . For that body, compatible W and Vv, dis-

tributions will be shown to exist.
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CHAPTER 5

APPROXIMATIONS AND ASSUMPTIONS

In relating the wave rider distributions to f.(o/M )
oo

it 1s assumed that:

(1) The functional dependence of W on the g¢

coordinates is separable.

The dependence ofWon ¢ and M is taken to be the

same as its equivalent cone f_(¢,M ), or a modi-

(3)

fied form of far

The dependence of W on § has a sinusoidal beha-

viour as seen to be consistent with the boundary

(4)

conditions.

v, is such that the ratio (W/V) at the body

takes on specific values given by the tangency

conditions.

(5) Constants present in both W and v_ distributions

could be obtained by satisfying the symmetry

constraints.

(6) For N large, the distributions tend continuously

to their equivalent cone values.

On the basis of the last two assumptions, the distributions

are divided into three cases.
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CHAPTER 6

CASES AND INTERPRETATION OF THE CASES

Case (1): Distributions satisfying no symmetry conditions.

Case (2): Distributions satisfying a partial symmetry

constraint.

Case (3): Distributions satisfying all symmetry conditions.

Case (1)

A distribution of velocity components, for which

(dv, /36) # 0 on symmetry lines, can be written as

W. = in(X- “Ty gg -

Ww, = Cysin(z 0)sin(6 5+) sin(8 og.) ¢(0,M)

_ W, coso Cr

V.,o= 2 —P 4 ftano - — 2%__J¢(0,m)
al cot (8-0;) sing + 298° *

1 tano,

(2a
-

~,2)

The choice of these distributions is consistent with

the assumptions discussed in Chapter 5.

On the body, 9h = tan”" [r,/ (sine + cosf/tanoc,)] (see

Appendix A). The constant Co is unity for the wave rider

body segment under consideration and zero to correspond to

a cone. That is, for an equivalent cone, v_ = (V.) a ™

tano¢ (o,M_) , which is set equal to values obtained from

cone tables [4] (i.e.. f£_(o,M). Hence, ¢(0,M) = f../tanc.
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Of course, the approximate assumed dependence of W and v

on 6 could be varied. Though it is logical to assume that

W varies sinusoidally with 6, another W approximation which

does not exhibit this totally has been considered for com-

parison.

= m,n 1/3_. ,T_ . _

W, = CoO 55) sin(3 0)sin(6 0) tano¢ (0,M,

_ W,coso,
Vv = —————— + [tano - (C,r,./(sind® + cosb/tanc.)]o¢(oc,M)

n2 0-0 1 %

cot (6-0,)

+ C,[tano - Cory/ (sind + cosb/tanoc; ]¢
(2)

Both approximations satisfy the boundary conditions of Case

(1), but will clearly result in different shock shapes, and

furnish some measure of the sensitivity of the results to

specific distribution choices.

Case {2)

A distribution that satisfies (OV 7/938) gr rom /N" 0

can be written as:

W
_ -r,sino,

sin(f+c.) sin (coso ) Co
N b!6=n/2-1m/N

i

cos (0+g) cosbf
=— (2.1)

| (tano - tano) |
| Sr

whore

} TT TT

sin(g+0;) sing (cosOy) o_o /o_ 1 /n

A
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and

Wcoso

A ——
cot (6-0) | tano - tano¥ |

r,sind,
[tang = ——]f

cos (6-0) c

Where the value of the constant, A, in W is written in

terms of body geometry and is obtained in such a way that

the partial symmetry constraint is satisfied. The body

under consideration may be assumed to have an attached

infinitely small thin plate in the plane = 7/2, so that

the condition (av, 788) o_ /» = 0 is justified. Also, in

Equation (2.1), cosgy = tan”!(x) .

A suitable choice for tanoy and subsequently 6* needs

explanation: the tangent of of is representative of the

radial distance from the body to the origin. This radial

distance is seen to tend to a constant length in the limit

asN»ow.

This is necessary to ensure that as N + «, W » 0 and

V, &gt; f.(o,/M )ds in assumption (6) (see Chapter 5, Assump-

tions and Approximations). Hence, the "angle" 98%, defining

tanof, is an appropriate "mean" angle in the range of

n/2 - 7/N &lt;0 &lt; 7/2.

Since 7/2 - w/N &lt; 8 &lt; 1/2 as N » », 8 +» n/2, that is

to say, the range of 6 under consideration becomes very

small and tends to 7/2.
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It is justified for large N, to write 6 = 06% &gt;» 7/2,

. _ . _ *

i.e. tanoy = ry sino,/cos(06-0;) + r, and tano} + r,. That

is, for large N, the body tends to a saw tooth cone, with

average radius Lye

For that cone, from Equation (2

 Ww
r,cosef

ee]
O-&gt;m/2

(cosg,) | tano-r| /

==

. 1)

Hence, away from the rough surface of this cone (0,

increasing), for tanoc &gt; ros W tends to zero.

For tano = Tao at the surface of the saw tooth cone,

there is a singularity for W. Hence, a boundary layer type

of problem occurs locally at the surface.

Also, from Equation (2.1)

_ _ tano-tano,

v, &gt; 0-(W) + ———£_
| tano-tano}|

fou

2)

Previous arguments showed that for N + o, tano,, and in

particular, tanc} - r,. From Equation (2.2), vo + 0 (W) + £

so away from the body, Vv, &gt; £f.(o,M) and assumption (6) is

satisfied.

Naturally tanof is varied by different choices of 6%,

from tano} = r. to tano} = rye The best choice of the "mean"

angle p* is not possible, without analytical results available

for comparison.
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Case (3)

This case requires (av _/29) = 0 on both symmetry

lines which essentially represents a wave rider without

an attached plate.

A distribution for W and Vv, could be written as:

W
cosBcos (0+z) g(o,0,M))

so *
tano tano? |

(2.3)

Wcoso r.sino,
 Vv = ____~b ,__r [tano - 0 1 J£

cot(0-0) | tano-tano¥| cos (6-0) ©

However, this does introduce an inconsistency; that is,

it will not satisfy W &lt; 0 throughout the field required

by the entropy distribution that all the streamlines con-

vege to point E, Figure (4a).

If the streamlines in the neighborhood of 6 = m/2-1/N

are assumed to converge to point E, so that (9W/38) &lt; 0,

and streamlines near 8 = 1/2 are assumed to converge to

point B, Figure (4a), then the requirement of (ov _/26) = 0,

on both symmetry lines will imply:

-r sino.f

g(o,6,M) =
1 -— -~ \

sin (28+5) cosoycos(6 0;

This avoids the inconsistency, but introduces instead

a singularity for W and V_ at 6 = 1/2 - m/2N, which unfor-



2:7

tunately is no better than the inconsistency.

It can be shown that this singularity is removed

by assuming that the distribution is discontinuous at

6 = n/2 - w/2N. However, the physical meaning is then

quite unclear, though all the boundary conditions.and

symmetry constraints are then satisfied.
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CHAPTER 7

BOUNDARY CONDITIONS AT THE CONICAL SHOCK

For a general three dimensional shock, one could

use the oblique shock relations (for a plane flow), as

long as the velocity components and Mach number post and

pre-shock are projected along n, the unit local normal

to the shock, Appendix (C). Hence from plane shock

relations, one obtains:

5.3 (y+1) (M_-n)?

(V_ + W)en 2+ (y-1) (M_-n)2
vA 5)

where n, in particular for a conical shock is given by

Appendix (C), and v, and W are given by Equation (1.2)

(V.) = -U_cosog

ng _ = (Vv, + U_sino) sing

™ IW + (V_+U sing)2]1%/?
n co

Ne (V, + W), after expansion, is reduced to (2 6)

~ W2 + V (V +U sing)
ne (¥ +%) = ———1n1*®

n [W2 + (V_+U sing)
n co

~ -M_ (V,+U_sino) sing
Men= —"—mm—m1/2

* [W2 + (V_+U_sing)2]

Throughout this section, the subscript | lg has been

omitted for simplicity knowing that all the relations hold
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only at the shock.

Substituting Equation (2.6) into Equation (2.5):

rm 2W2+2 (V_+U_sino) + (y-1)M2sin?®0 (V_+U_sino) *]

Non dimensionalizing the last equation wath respect to

VA = V_/U_ Ww = N/U_ J 4
0

the above relation becomes:

7. 2 a3 1 1 : 12 ' :

Cytl)Mising[V)(V+sino)+W][V)+sino]

(2.7)

2W' 2+ (V!+sino) 2(2+(y-1)M2sin?0) |]

and also Ve = COSOo

Hence, behind a conical shock, two relations between

velocity components Vor Vis W' exist. Again, relations

(2.7) apply as well to a right circular shock (obtained

from a cone at zero angle of attack). For the cone, W' =

Equation (2.7) reduces to

0

- (y+1)M2sin? =Y+1)Misin®oV! = 2+ (y-1)M2sin’c

which is the expected simplified shock relation.
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CHAPTER 8

STEP BY STEP CALCULATIONS

Once the distributions W and Vo» related to £.(o,M) ’

are evaluated based on the assumptions made, the shock con-

dition may be used to determine the shock location in each

case.

For constant 6, and with Oy, &lt;0 &lt; Or for each in-

crement of angle "o", the numerical evaluations of W and v

is possible using the corresponding £_ (o,M) from Kopal

tables.

With the angle "6" kept constant, a numerical evalu-

ation for specific W and v values from Equation (2.7)

yields that o = Og that corresponds to a shock location.

That is, wherever the numerical values of W and v satisfy

the shock relation a corresponding shock location is possible.

Once the shock shapes are determined in each case, the

results may be examined on physical grounds for consistency.



31

CHAPTER 9

DISCUSSION OF NUMERICAL RESULTS

The results obtained were limited to the configuration

N = 4. The relations could equally well be applied to other

values of N.

For the case (3v,/36) # 0 on both symmetry lines:

the shock shapes for various distributions are shown on a

normalized scale (r/r versus 0), where ry 1s the shock

stand off distance at 6 = 7/2 - 7/2N from the origin, 0.

Table (3) shows a tabulation of M_, Gir Toy r. /rg

(where rr is shock stand off distance at 6 = 1/2), and r

is relative unit length axially, with the equivalent cone

semi angle Og = 20°.

Figure (6) shows the polar plot of shock shapes at a

constant M_ = 1.6054 for different bodies with distributions

py Vo, (see Equation (2)). Both results show sharp vari-

ations in shock shape (Table (3)), which do not appear to

be reasonable on physical grounds.

However, Figure (6) shows the shock distribution for

the smallest considered M_ = 1.6054, which corresponds essen-

tially to being near detachment for the equivalent cone [4].
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Therefore, as the flow for the body was related to the cone,

one would perhaps expect to encounter difficulties at the

snaller M_ .

Hence, other values of Mo were tried, for Mo=1.8714

and ¢g . = 45K°

Figure (7) again indicates shocks with sharp variations

[see (r /r.) , from Table (3)], which still do not seem reason-

able on physical grounds.

Essentially, the distributions that did not satisfy

(3V,/36) = 0 did not give reasonable results.

For the case (3V,/86) y= sor /N = 0 and cone semi angle

bg = 20° and g* = 65°, the shock shapes are shown in Figure

(8) on the same normalized scale. The results accompanied

by Table (4) appear consistent. That is, as M_ increases,

the shock is seen to move towards the body. Also the shock

stand off distance variation is smooth, and finally, the

shock strength at g§ = 1/2 is stvonger than at g = #/4, as

expected.

However, for Mo = 1.6054, the shock shape is seen to

have a sharp discontinuity in the neighborhood of = 7/2.

This is again believed to be due to the near detachment

condition for the equivalent cone.

To show this, a small change in M = 1.6531 was con-

sidered (Figure (8)). The shock shape is seen to be consis-

tent. Figure (9) shows shock shapes for different bodies at
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at M_ = 1.8714 with 6g = 20°, 6* = 65°. The results are

again seen to be reasonable.

Figure (10) shows the same shock shapes on a norma-

lized scale (x/r versus 0), where r, is the shock radius

of the equivalent cone at M_ = 1.8714.

Figure (10) also shows that for both 0; = 22.12° and

o; = 45° (at 6 = 45°), the shocks are inside the equivalent

conical shock, but for 0, = 61.7°, it lies outside. This

is as expected physically in view of the shape of the

bodies considered.

The results for the case (av _/28) = 0 were for

Og = 20° (equivalent cone, semi angle). Since the relative

size of the disturbed region is related to the particular

M _, 64 combination, a Og = 30° case was also completed

[Figure (11) with the corresponding Table (5)].

A comparison between rr from Tables (4) and (5)

shows that for 0g = 30°, the shocks move away from the body

for the same 0, This is reasonable, of course, since for

a given Os increasing Og increases rye

The choice of 8* = 65° was based on the reasonable-

ness of results. An indication of the sensitivity of the

distribution to 6* follows from the 68* = 73° results for

M_= 2.13, and 1.87, 1.65 (411 for o = 22.12°) as shown



34

in Figure (12). The change from 65° to 73° has an appre-

ciable effect on shock shape (Figure (12) and Table (6))

and leads, in fact, to unrealistic contours.
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CHAPTER 10

CONCLUSION

An analytical approach to deriving shock shapes for

different bodies with polygonal cross-sections seems to

fail for Case (1), i.e. (dV _/38) # 0 on both symmetry lines.

This is essentially attributed to the failure in

satisfying the necessary boundary condition (av,/36) = 0,

as was expected, but provides a measure of the symmetry

condition importance. More importantly, there was no

information provided in the corresponding distributions

(Wy, Ww) and! (V qr V5) about the fact that as N +» «, the

velocity distributions should, in fact, approach their

equivalent cone values continuously.

For the case of (dv _/26) = 0 with a plate attached to

the body at 6 = 7/2, reasonable results were obtained.

It was mentioned that there could be other discrete

(or a range of) values of pg*, which might give equally

reasonable results. However, without experiments, to make

comparison with, a best choice of g* is not possible at

this time.

One distribution has been suggested for the case of

(3V_/36) = 0 on both symmetry lines. As mentioned before,
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this makes use of the implied assumption that the component

of the velocity field is discontinuous at some intermediate

value of 9.

Interesting as it is, physically it is impossible for

W to be discontinuous at some 6 in the flow field.

a

Finally, for part (2), i.e. M&gt; My [See Introduction]

form of W and v, could be written as:

W = Wo + EM, Ms, 0, 6)

Vv o=V q+ YM, My, 0, 6)

where Wy and Ln are the velocity components at the design

condition obtained in Appendix (E).

The choice of £ or ¥ should be such that at M_ = My

£ = VY = 0. This would give results for a caret wing with

attached shock at off design condition. The necessary

boundary conditions are (OV, 7/36) 5_ 4 = 0 and (3V,,/38) gp /2

# 0

Once distributions for W and Vv, are selected, in prin-

ciple, one can find v. throughout the whole flow field

[Appendix (d)].

Overall, the approach to obtain consistent results from

satisfying boundary conditions with typical distributions

is reasonable in case (2) (partial symmetry condition).

However, it leads to physically meaningless results in Case
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(1) (no symmetry constraints).

The approach is clearly time saving in comparison to

numerical computation of the field equation. Hence, in

Case (2), quick reasonable results could be obtained as a

guide to the shock shapes found from experiment.

As the wave rider velocity distributions are related

to the equivalent cone, for higher M_ the approximations

may not be reliable. This is due to the fact that for

higher M_, the cone shock will move closer to the surface

of the cone. Hence, this limits the range of the cone

field "og". This, in turn, leads to long range extrapola-

tions for obtaining results for the wave rider.

Care should also be taken for smaller M_, where the

cone shock would be near detachment.

At a given M_, the approximations should be reliable

for different aspects ratio bodies, rye As long as this

does not vary 0g (equivalent cone semi angle) to encounter

the two preceding situations discussed above.
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APPLCNDIX A

OBTAINING THE INNER BOUNDARY CONDITION

From Figure (2b), taking the origin of

coordinate system at O, hence:

the Cartesian

—_— A /

OB = +r, - 1

and
5E = TS _ sinlk
OE = |OE| (cosg] singk)

But from Figure (4a) | OE| = tang, and also

sing _ sin (gy+m/N)

tang ry

Hence&amp;, ~~ OE = tan (cosg3 - singk)

where

§ = tan™L (zr sino, /sin (6, -m/N)

The unit normal m to the body, i.e. the plane OEL from

Figure (1) could be written as

~N

m = oi + B71 + vk

U
* »

|
1.0C = 0 and also o 2 + R22 4 ~2 = 1.

These three equations will determine qo, B, Yr hence

(1l.a)
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W_1CEE"“3
-

m = isind_ + sino.cos§_.]j —- coso,cosl_k
R 1 R 1 R

I
a 73)

Sn = tan™! (x sino) m= tan” (sin(o,+7/N) tans)

But, by the tangency condition at the body:

me (V+ Wl, = C

=&gt; -

as V_ has no component along m.

Where m, V_ W are given respectively by Equations (2.a)

and (1.2), me (V_+ Ww) could be written as:

1 (V + Ww) 1, = (sind,sing,)V, Sp cosdp [sino. (coso, cosbV

NcogsB) - coso =-\/ C080. ~086 + Wsin9)
-

ud

From which corresponds:

W/V.) ;
tand sino, + cosoy,cos (6-0,)

sin(0-0.)
(3.a)

But at the body also meV_ = 0 where V is given by Equation

(1 2)

No»
meV = =\J sosé8_, [coso, tand , = sindcos (6-0 )] = J

implying

-2a0 = tang.

-

20s (@-0
A

]°
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Substituting for tand in Equation (3.a)

(W/V) y = cot(o.-0) /cosco (4.3)

However from Figure (4a) it could be shown that:

50 that

"s tan” (r,sino./cos (co. 3)) ( © 3)[a

(W/V) = x(o,,0(08))
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APPENDIX E

ALTERNATIVE WAY OF OBTAINING INNER

BOUNDARY CONDITION FROM ENTROPY

CONSIDERATIONS

The entroy distribution in an isentropic flow is given

by Equation (1.6) as:

J ~ 3ino (0S/90) + W(95,/09) ) (1l.b)

and since the flow is isentropic

'd2.V)S = 0

where df is an increment along a stream line.

This implies

25 do,3538_30 234% 36 3%
0

Comparing Equation (l.b) with the above relation:

(W/V yp = (d6/do) ;Sino (2.b)

This relation is true along any stream line, or on any stream

lines surface, one of which is the inner boundary of the body.

From Appendix (A), Equation (5.a)

tan *(r,sino./cos (o ~J))
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implying

‘G6/do) =

(sin® + (cos6/tanc.) 2 + rg

r,(cosb-sind (1/tano;)

Substituting for (d6/do) in Equation (2.b), it can be

shown that

W/V) = cot (0.-0 ) /cosa,_
4Db)

Which is exactly the relation obtained in [Appendix (A)],

using the tangency constraint.
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APPENDIX C

DERIVING THE LOCAL NORMAL TO THE SHOCK

IN TERMS OF THE VELOCITY COMPONENT

Figure (5) shows a three dimensional view of a conical

shock surface R, on the assumption that the flow is conical,

i.e. when V.. lies in the surface R.

of

The continuity equation in a plane tangent to an element

surface ds could be written as:

6, - Bn =9_ + (V_+®%- [(V + @-nln} (l.o)

where U_ is the uniform upstream velocity in the negative

direction of the X axis, 1.e.

7 = =U +
oo 0

nh=oqgi+gj+v
A

K

(2.0)

where n is a unit normal to the element of surface ds positive

outwards, written in Equation (2.c) in Cartesian coordinates.

Hence from Equation (l.c), n is obtained in terms of velocity

components. (In this section, the subscript | lg is omitted

for clarity, since all calculations are at the shock.) Sub-

stituting for U_ and n in Equation (l.c) gives

L.H.S. Equation (2.c) = i(a2U_ - U_) + JagU_ + kayU_
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R.H.S. Equation (3.c) = i(Vv sino - V_.coso) + j (V cososing

+ wcos6 + V _sinosinf) + k(Wsin® - V_sinoccosf = V cosccost)

(ai + Bj + vk) [aV sino + B{(V coscsin® + Wcoso6)

4 y (Wsin6 - V_cosccosf) (2.¢)

The R.H.S. of Equation (3.c) was obtained after substituting

for n, Vo, and W from Equations (2.c) and (1.2) respectively

in Eguation (1l.c).

Since the two vectors given by Equation (3.c) must be

of the same magnitude and direction, hence a comparison of

the two vectors gives: (in the ith direction)

(V_sing - V_coso) - 02V sino - aB(V_coscsin® + Wcos6)

ay (Wsinb - V cosocosh) = 0° 4
hd

al
x

H

{ . 3)

(in the jth direction)

V_coscsin® + Wcos6 + V sinosin®-aBV_sino - B? (V cososing

+ Wcosf) = ByY(Wsin® - V cosccosf) = of
Y.

(5.¢c)

(in the kth direction)

Wsin6 - V_sinocos6 - V_cosccosd - ayV,sino - aB (V_cososin®

= NcosB) - y2?(Wsin® - V_cosccosf) = ayU_ (6.c)

From these last three equations, the components ao, B, Y in
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Equation (2.c) are obtained as:

3 x Equation (4.c) - ao x Equation (5.c)
end

a (V, cososing + WcosbO + V,_sin0sin®)
3

9 (7.c)

(V,_sino - V.cosd + U)

Y Xx Equation (4.c) - oa x Equation (5.c) =

Y

 oa (Wsinb -~ V_sinocos® - V,cosocosf)

(V sino - V_coso + U_)

Since n is a unit normal

vy 2 2
+ RBZ + v2 1 (3.C)

Substituting for v,B8 from Equation (7.c) in Equation (8.c):

2X

V sinc - V coso + U
AD 0

civ vv .W)

— : _ 2 .

where £(V_,V_/W) = [(V sino V_coso op U,) ob (V cososind

#icos® + V sinosinf)? + (Wsino

J sinccosf - V_cosocos6)211/2 (9.c)

Substituting for o in Equation (7.c)

 hd

&lt;

Vv, cososin + Wcosf + V,.sinosiné

fv vv JW)
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Wsing - V,Sinccose - V_.cosgcose

£(v ,v ,W)
rn

Therefore, from Equation (2.c), n is obtained:

N

n =

1 . 25 \

£[(V sino V_cosg + u_) i+ (V_cosgsing + Wcosg

de V singsing)j + (Wsing - V_singcoss - V_cosgcosg) k] (10.c)

For a conical shock (V.,.) = U_coso hence substituting

for Vv _ in Equation (9.c), (V/V. W) could be simplified:

E? —— (V_ sing - U_cos?g + U )2%i db (V_cosgsing + WcossH

+ JU &lt;ingcosgsing)? + (Wsing - U cosgsingcosg

/ cosgcosgn)
&gt;

expanded, £2 could be reduced to

£2 = W2 + [v2 pr U sing]
/

Substituting for f in Equation (10.c) and noticing that at

the shock (V_)_ = (U cosg)

~

 Nn ——5 {[(V_ + U_sing)singli

wz + (v_ + U sing) 211/32 "

1 { (V. + U_sing)cosgsing  +4 Wcosolj + |IWs LNG (V

+ J sing) cosgcose lk} (1l1.c)
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If this n is valid for any conical shock surface, in parti-

cular, it should apply for a right circular shock. For a

cone W = 0, Equation (ll.c) reduces to:

2

FaS A A A

n = isino + jcososin® - kcosccosb

A comparison of this last equation with Equation (1.2) for

Vv, shows that 2 is then a unit normal in the Vv direction,

which is the case corresponding to a cone at zero angle of

attack.

Equation (ll.c) applies to any conical shock surface,

for which n is continuous, whereas Equation (10.c) furnishes

the local normal for any shock, since Equation (10.c) was

obtained without the use of the constraint that

Vela = U,cosa,. Therefore, Equation (ll.c) or (10.c) pro-

vides a functional form of n, i.e.

n= F(V_,V_,W
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APPENDIX D

REARRANGEMENT OF ROTATIONAL CONICAL FLOW

EQUATIONS IN TERMS OF V_

The rotational conical flow field equation in spherical

coordinate system was stated as:

av, Vv, ov22732 - 2 + W2 + a2 do Age Bl wn pil eel
v_[2a (V3 We) 1 a*V_coto a ye 3 35

2%

a? ow _wowz _ _w_ Yn _ Vnow? _ |
sing 26 2 936 2sing 236 2 90

(1.4)

But from the adiabatic energy equation:

2ag -1
a2 = [ —- (V2 + V2 + W2)]==

Y=1 n

Substituting for a? in Equation (l.d) and rearranging some

terms

-1
2 2 - X V2 + W2)

Vv .sing{2ag - (v2 + W2)y = (y=1)VZ} + [ag 5 ( 2

V_sino 009 oy ,
= 2 - Bd(vz+w?)-£(v2+ow?)

L 2 y=lye_Y=lige.y2yp28—
firs 0

Expanding the above equation and factorizing a polynomial

in terms of V_, we obtain:
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v2
3 (v1) s] “L(y 9 ow

v. (y l)sinoc + 5 (y=1)I[ ~5(V,sinc) + 5

2 2 . 2 a

ie V. [y (Vv + W°)sino + 2aysing]

Ll]

 1!
 od

= 2a22.(v sing) - (X21) (v2 + Ww?) [&lt;= (V_si aw
= ag; (V_sino) ( 5 ) (vo + W¢) [55 (V, sino) + 5g)

V_sino
2 0W _ n 0d 2 2y _W 0 2 2

20736 5 36 Vn TW) - 5 55Vy+WO) (2.4)

Hence, from Equation (2.d) Vv, = Vv, (V_, W, a, (M_)) in the

flow field.
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APPENDIX E

OBTAINING W, V_ IN DESIGN CONDITIONS

In design condition stream lines are all parallel to

the inner ridge line OE (Figure (l1l)). And all velocity

field behind the oblique shock in the 'plane', say WGS, is

given by:

&gt; 2 7

vy = 1Vv% + tv, (l.e)

A

i.e., where t is a unit vector along GT axis and Ver V, are

corresponding components of Vv, along axes X and T (Figure

(1)), written in terms of U_:

v = -0_[1 - (1l-¢) (sin®o - sin?y) 1

WT - «2 atm?

Vv, = U,coto [(1 ge) (sin Og sin“yu)l

where sinp = a_/U_ and € = (y=-1)/(y+1).

Substituting in Equation (l.e) for v, and v,
*

4

V. = -U_[1 - (l-¢) (sinc  - sin’w)]i
1

(2.e)

- U_coto_[(1-¢) (sin®o - sin?y)]

Also, t = -j cosy + k sing from Figure (4).

Hence, Vy in terms of XYZ coordinates, becomes:

Vo= -U_[1 - (1-¢) (sino - sin?y) li (3.e)

_ «92 _ a) mh _ ~ . m

J coto_[(1 g) (sin 0 sin“yu) 1] (cosg] ksing)us
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Also, if Vy is a unit vector along Vy. then

v = ~icoss + jsinési I - ksinscosk
1 NN 7 (4.e)

The spherical velocity components can now be expressed in

terms of V, since V =V,(V,*V.), where V_ is a unit
1 n 1''1 n n

vector in the direction of A given by Equation (1.2).

Substituting for Vir Vo in the above relation:

J 17% 1/2 _sinccoss + sindcososin(6 +
m

5) 1 (5.e)

Similar]

W = \/ (V.W) oY W= |V..0 11/2

"cos (0 + 2) Ising

ANT3

_ A ~ _ &gt; 5 1/2

V, = Vis (VV) or V. = [VV] [cosScoso

+ sindsinosin(6 + 2) ]

where 19,9, 1 2 is the magnitude of Vy given by Equation

(3.e). Since the inner boundary condition is Mach number

independent, hence

~-tandsinc + cososin(6 + w/N)

cos(6 + w/N

(0.2)

must reduce to (W/V) at off design conditions (Appendix

(A)). From Equation (5.a) [Appendix (A)]:

tand = [tanol y/o _ n/N = r,sino;/sin(o. + w/N) (7.e)

put also from the geometry (Figure (2.b))
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r = tanosinb + tanocosf

0 tano,

implying

tano, = sin(m/N)tand -tanocos®
~ cos (T/N) tan§ + tanosin®

Substituting for tanc, in Equation (6.e), it can be shown

that (W/V _)y = cot (ao, - 6) /coso, which is exactly the inner

boundary condition at off design condition (Appendix (A)).

Also, looking at Equations (5.e), it is seen that at

8 =n%/2 - w/N, W=0, i.e. at symmetry line, but from

Equations (5.e):

(W) 8=1m/" 0 A =0 (3V,/30) g_r/2 7 0
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0; = 30°, ry = 0.5 0; = 20° r= 0.5 05 =10° r= 0.5

(W/V)p go | go |M/V)y go | go |(/Vy)
4.5 “25 {11.8 13 oi

3.85 30 5.75 18

2.85 40 2.8 20

1.8 50 1.76 30

1.15 60 1.22 40

0.9 0.87

0.64 0.61 50

0.46.6

70 9.9 0.585

3014.24 0.88

90 26.6 0.2
— o ba

Js - 2 r Tq - 0.5

nN ©

10

15

20

30

45

50

650

70

80

~ O

1

1.02

05|

1.132

l|.36

L.69

L.88

2.66

14.79

w/v) b

19

7

4.33

3.07

1.85

1.07

0.9

0.62

0.4

0.21

Table (1). Tables of (W/V,)y

for various "o." for

NM = 4 and ro = 0.5

90 26.5 0.09
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$C o go = o = 5 ° =

7,=30 r To 0.1 0. 20°, ry 0.1 0. 10°, Ys 0.1

go| g° (W/V) 8° | RL PWV)y 8 oO | a° (W/V) y

33

40

45

26.59

27

27.3 |

28

30

33.13

37.87|

45

21.33 25

6.36 30

4.202 40

3.112 45

2 50

1.413 60

1.063 70

0.816 80

18.9 12

6

3

2.3 40

1.86 50

1.305 60

0.95 70

0.7 80

0.515 90

15

20

19.8 11.6

5.75

2.78

1.77

1.23

0.87

0.612

0.4

0.24

19.2 10

10.66

11.33

12.77

15.117

19.15

26.2

45

20

20.6

21.55

124.06

'28

30

5Q

30

70

80 |

90 34.3 !

90 | 45

J =20 r Ta=n=0-1

geo 5 ©

W/7a)
7.11

3.079

1.38

1.28

0.901

0.62

0.41

0.22

0.45

10

20

30

40

50

50 |

70 |

2

2.1

2.26

2.5

2.98

3.76

5.3

Table (2). Tables of (W/V Dy, for

various geometry for

N = 4 and ry = 0.1.

30

30

9.5

45
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= 20°
Og 20

N = 4

Mi
oD | os|zg| rp/ed zg | W V r

n 1

l

1.6054 22.12 0.6 | 1.41 112.56 Va 1 |0.245

1.6054| 22.12 0.6

Woo

1.42 1.21 Ww, Vir 2 10.245

1.6054 61.79 0.4 | 1.03 [17.8 | fw, | Vai |1.03

1.6054] 45 | 0.456) 1.36 [13.95| Wy | v_, 0.322

1.8714] 45 0.456] 1.15 h.031d Wy LA lo. 322

1.8714| 45 0.456 1.479 0.84 | W. | Val 0.521

Table (3). Table of M_, Os Tyr ro/Toy r. in Case (1).
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9. = 20°, 6* = 65°, N = 4

M
00

1.6054

1.6531

1.8714

1.8714 |

1.8714 |
{

2.129 I

0?
1

22.12

22.12

22.12

45

ah

61.7

22.12 |

“0

0.6

0.6

0.6

0.456

0.4

0.6

Ts | fs

2.59 0.245

1.286 0.205

1.3 0.245

1.24 0.373

1.03 0.367

1.27 0.245

rr.
i

6.69

0.913

0.772

0.815

0.845

0.679

Table (4). Table of M10 1 Tg ro [Tyr rr, for

3 = 20° and 0% = 65° in Case (2).
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0* = 65° =5°, 6, = 30°, N= 4

Meo |

1.82

1.82

1.82

Table (5).

04

61.7

45

22.12

r, Ir/Ts
r.

I 1

r

S

0.635 1.06 0.533 1.275

0.723 1.18 0.511 1.2

0.9517 1.67 0.388 1.12

Table of M_, Gir Tyr ro [Toy rr for 6, = 30°

9% = 5° 1n Case (2).
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8 = 20° NW = 4

1.6531

1.8714

1.8714

1.8714

2.129

1.8714

o°
1

22.12

22.12 |

45

61.7

22.12

22.12

Lo

0.6

0.6

0.456

0.4

i 0.6

0.6

r /rg

1.33

1.43

1.135

1.03

1.43

1. 35

r.
1

0.243

0.245

0.33

0.36

0.245

0.245

g*o

73

73

73

7

73

50

 Xr
Q

0.913

0.708

0.795

0.836

0.637

| 0.824

A————

2.129

lable (6).

22.12 J.6 J _ 75 0.245 50 0.7133

Table of M_, Gir Tyr ri /Tos ry for 6, = 20°,

73° and 76° in Case (2).
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 ~~ A
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Figure (1). Wave rider on design
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