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Abstract

The processes of molecular design and synthetic route selection are necessarily

intertwined during discovery. Computational tools have been developed to facili-

tate synthesis planning, but in a discovery setting, finding a single route to a single

molecule of interest may be less important than finding a route that enables rapid

access to a library of analogs. Here, we demonstrate how we can estimate route

“diversifiability” and use it as a criterion during route selection. We illustrate how the

chemical space of synthetically accessible analogs is influenced by properties of alter-

native starting materials or constraints on their cost. Finally, we integrate these ana-

lyses with a synthesizability-constrained hit expansion workflow in a virtual screening

pipeline for focused library expansion around putative hits to support molecular opti-

mization. As medicinal chemistry and adjacent fields shift toward more autonomous

design and synthesis of new molecules, it will be increasingly important to embed

considerations of synthesizability into molecular design to ensure that computational

recommendations are actionable.
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1 | INTRODUCTION

The synthesis of new molecules is an essential task during discovery

and is often a practical bottleneck in the design-make-test-analyze

cycle. In principle, at each iteration, we might have multiple mole-

cules for which we must devise multiple distinct experimental syn-

thesis strategies for testing. The ideation of synthetic routes for

new molecules can be supported by computer-aided synthesis

planning (CASP) tools, which have matured in recent years.1

Nevertheless, the complexity of modern active pharmaceutical

ingredients (APIs) and analogously complex preclinical candidates

sometimes exceeds the capability of data-driven CASP tools; even

if a viable route is identified, screening conditions and validating

each step is burdensome.

“Make-on-demand” virtual chemical libraries mitigate the need to

plan new synthetic routes. These libraries are typically defined by a

set of versatile chemical reactions and a set of available chemical

building blocks such that billions of molecules can be enumerated vir-

tually, all of which we expect to be readily synthesizable.2-5 Such

libraries have existed within the firewalls of pharmaceutical compa-

nies for years, but have increased in accessibility recently due to

commercial vendors like Enamine and WuXi.6 They have become

invaluable tools for drug discovery because any candidate hits identi-

fied in silico can be synthesized and tested in vitro with only a short

lag time. Success stories of molecular discovery via these synthetically

constrained virtual spaces in structure-based drug design include the

discovery of new anti-depressants,7 anti-inflammatories,8 analgesics,9

and antivirals.10
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Virtual libraries built in a property-agnostic way are most useful

for hit finding when combined with computational evaluation work-

flows (e.g., structure-based drug design techniques). At later stages of

discovery, during iterative molecular optimization, our evaluations

typically make use of physical experiments. We might have an idea of

what molecule to make in the current design cycle, but we expect that

in the next design cycle we will propose modifications to it in pursuit

of an even-better candidate.11 These modifications are often “local”—
only minor modifications—for at least three reasons: (a) testing similar

compounds from a single chemical family can reveal specific clues

about favorable/unfavorable modifications à la matched molecular

pair analysis;12 (b) if we are using a surrogate property prediction

model to guide generation, its domain of applicability might make it

only reliable in the chemical space closely surrounding known (train-

ing) compounds; and (c) developing new syntheses can be expensive/

difficult, so chemists have a natural preference towards what is feasi-

ble to make given a modest number of familiar synthetic strategies

and minor changes thereto.

As a complement to make-on-demand approaches, more focused

enumeration strategies can generate libraries of chemical analogs. This

can be done with a fragment-based approach, wherein a molecule is

decomposed into constituent substructures that are exchanged with

other predefined substructures and recombined to form new mole-

cules.13-17 While this generates structurally related compounds, the

synthesizability of the enumerated molecules is not guaranteed. Alter-

natively, some iterative approaches start with building blocks and a

set of well-characterized chemical reactions (similar to make-

on-demand libraries) and grow a reaction tree to explore the chemical

space that can be reached from the building blocks with the reac-

tions.18-23 Every enumerated molecule is associated with a unique

synthetic route, but the synthetic routes are not necessarily related to

one another. Finally, tools such as PathFinder24,25 and Synthesia26

employ a reaction-based approach that explicitly constrains the

synthesizability of the generated molecules. The enumeration takes as

input a seed molecule, synthesis plan, and set of building blocks, and

enumerates analogues by running different combinations of building

blocks through the original synthesis plan such that enumerated mole-

cules can theoretically all be synthesized using the same sequence of

chemical reactions.

Using a route-based enumeration strategy to generate chemical

libraries raises the question of how to prioritize candidate synthesis

plans and arrive at the one used for enumeration. While elements of

synthesis planning are frequently applied to the domain of molecular

discovery, the reverse–using elements of the molecular discovery

workflow to select synthesis plans–has not been explored. With the

goal of maximizing the number of chemical analogs accessible with a

single route in mind, a criterion for pathway selection is the extent to

which a pathway is conducive to diversification. Diversification is an

important consideration because the hit expansion and lead optimiza-

tion processes, as alluded to previously, require the synthesis of many

candidates en route to a final preclinical candidate. Understanding up

front which routes lead to a larger accessible space can influence syn-

thetic resource allocation and early selection of robust synthesis plans

that facilitate access to a diverse chemical space can accelerate the

discovery process.

In this article, we report an open-source computational workflow

to (1) score and select retrosynthetic pathways on the basis of per-

ceived route diversifiability, (2) estimate property distributions of the

resulting enumerated space to inform or constrain reactant selection,

and (3) enumerate synthetic pathway-constrained analogs via selec-

tion of suitable alternative reactants. We envision this tool will enable

medicinal chemists to generate large virtual spaces ( > 106), which is

currently a skill set limited to computational chemists and cheminfor-

maticians. The key premise of this article is that considering the ease

of accessing many analogs during route selection is a more efficient

strategy than decoupling molecular design and synthesis, which may

create the need to revise the synthetic route entirely. We demon-

strate this process on a hypothetical virtual screening pipeline and

illustrate how we can improve upon properties of an initial hit com-

pound through pathway-constrained hit expansion. This combination

of our enumeration methodology with property models enables a

readily accessible workflow for the design of new synthesizable mole-

cules accessible to those without traditional computational expertise.

2 | SELECTING PATHWAYS USING A
DIVERSIFIABILITY METRIC

2.1 | Estimating route diversifiability

Evaluating computationally generated synthesis plans in terms of quanti-

tative criteria remains a challenge.27 In the context of molecular discov-

ery, the number and properties of analogous molecules that can be

synthesized with one synthesis plan is an important consideration. Previ-

ous approaches to characterizing the accessible analog space for a given

synthetic route rely on the explicit enumeration of the molecules.24,26

However, explicit enumeration can be a computationally expensive pro-

cedure. Enumerated product spaces are combinatorially large with

respect to the number of building blocks matched to the reaction plan.

The cost of generating and storing enumerated spaces rapidly becomes

nonnegligible once their size starts to exceed 106 distinct compounds.

For this reason, we would like to avoid explicit enumeration of such

spaces and instead perform as much of the analysis as possible with

an implicit enumerated space when considering the set of building

blocks that are deemed compatible with the reaction sequence.

We developed a workflow to estimate the number of product ana-

logs that can be enumerated with a synthetic route and a set of prede-

fined building blocks with no explicit enumeration (Figure 1A). We refer

to the number of accessible analogs as the route's “diversifiability.” To

avoid enumeration, diversifiability is calculated as the number of combi-

nations of molecules from the set of building blocks that can potentially

be run in the forward direction through the synthetic route.

For an input route, a structural query pattern is defined for each

starting material to capture which chemical moieties the molecule

must contain to remain compatible with the synthetic route. This pat-

tern is used to query the building block database for analogs to the
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original starting materials. Examples of building blocks and their corre-

sponding queries are shown for the routes in Figure 1C,D. The num-

ber of analogs for each starting material is counted. The route's

diversifiability is the product of these counts.

We recognize that simple substructure matching is not a sufficient

criterion for determining experimental substrate compatibility, but it

serves as a useful first approximation in this context. Our approach is

consistent with the use of algorithmically extracted reaction templates

in retrosynthetic planning, which provide approximations of compatibil-

ity but still benefit from additional feasibility filters.28,29

This workflow is designed to be useful for users considering either

a small set of manually curated routes or a large set of computer-

generated routes. We expect most users to follow the former human-

in-the-loop workflow at first and transition to a more automated CASP-

driven workflow over time. The input is a synthetic route represented

as a list of single-step reaction SMILES. These require little expertise to

define using an interactive molecule editor such as ChemDraw or they

can be automatically retrieved from the outputs of CASP software. The

network structure of the synthetic route is automatically inferred. This

obviates the need to input the route as a tree graph as in Synthesia,

which can be cumbersome to define manually. Additionally, each reac-

tion from the route is atom-atom mapped using RXNMapper30 and

generalized reaction SMARTS patterns are algorithmically defined using

RDChiral.31 This means that the platform is adaptable to new chemical

reactions without requiring users to manually define any SMARTS pat-

terns, effectively expanding the userbase of this methodology beyond

SMARTS-fluent cheminformaticians.

2.2 | Diversifiability-informed route selection

The reduced computational cost of our route diversifiability calcula-

tion compared to an explicit enumeration of analog space makes it

possible to estimate the size of the accessible space for a route in

1–100 CPU seconds with a set of approximately 106 building blocks,

depending on the complexity of the route. This makes the analysis

of thousands of proposed reaction sequences practical, rendering it

feasible to use diversifiability as an additional metric for comparing

synthetic routes proposed by a CASP tool on top of other commonly

used metrics such as step count or longest linear sequence.

We queried the ASKCOS (v.2023.01)29 tree-builder tool for syn-

thesis routes to three FDA-approved drugs, valsartan (1), mitapivat

(2), and pacritinib (3), and evaluated the diversifiability and pathway

length for each returned route (Figure 1B). The search was limited

to a maximum depth of 5 and a maximum search time of 180 s.

The buyable compound dataset used for the search was left as its

default of 280,469 compounds curated from the Sigma Aldrich, eMo-

lecules, and WuXi Lab Network catalogs with list prices < $100=g.

Each generated route is a set of single-step reaction SMILES that lead

from the buyable building blocks to the final product.

The relationship between path length and diversifiability is not

monotonic. In some cases, a longer path corresponds to a larger num-

ber of starting materials for which there are more analogs in the build-

ing block database, leading to a greater number of product analogs. In

other cases, the longer path introduces more constrained queries for

building block compatibility, reducing the number of matched analogs.

We find that the route diversifiability can vary by many orders of mag-

nitude for a given target molecule, even for routes of the same length.

We highlight how estimates of diversifiability can be used to com-

pare proposed synthesis routes using the angiotensin II receptor blocker,

valsartan (1), as an illustrative example. First, we compare two plausible

strategies proposed by ASKCOS: one where the biaryl core is introduced

by a starting material (4), and the tetrazole ring is formed via condensa-

tion of a nitrile group and an azide salt32 in the final step (Figure 1C) and

one where the the biaryl structure is formed via a Suzuki coupling in the

last step of the synthesis (Figure 1D). The estimated diversifiability of the

Suzuki route is over 106 times greater than the diversifiability of the

route that proceeds via tetrazole ring formation.

The discrepancy in the size of the accessible chemical space

between the two strategies can be better understood by looking at

the number of analog matches for each starting material. Few

building blocks in the database contain both an aryl nitrile and a

benzylic bromide compared to the great number of building blocks

that contain the aryl boronic acid or aryl bromide required for the

Suzuki reaction. There are only 13 matches for the former com-

pared to over 1,000,000 combinations of the latter. Other more

minor differences account for the rest of the discrepancy. The

methyl protected amino acid (5b) has approximately two times

more matches than the benzyl protected amino acid (5a) and the

acid (6b) has approximately 34 times more matches than the acyl

chloride (6a).

The Suzuki coupling can hypothetically be performed with the

aryl boronic acid and the aryl halide on either reactant molecule. The

ASKCOS tree builder returns both options. We sought to understand

how swapping which reactant had which moiety could affect the

diversifiability of the route. The route with the bromide on 7 and

the boronic acid on 8 (Figure 1D(ii)) is estimated to lead to a chemical

space that contains approximately 8�1011 more molecules (12%

increase) than the route with the opposite configuration (Figure 1D(i))

Were our goal the selection of a route that enables the greatest

F IGURE 1 (A) Schematic of reaction-based library enumeration, where required reactive patterns for each starting material are matched to a
building block database. (B) Comparison of path length and route diversifiability for three FDA-approved drugs: valsartan (1), mitapivat (2), and
pacritinib (3). ASKCOS-generated synthetic route for valsartan (1) proceeding via (C) a tetrazole ring formation or (D) two alternative Suzuki
coupling routes. Building block queries and number of matches in the building block dataset are shown with each building block. (E) Distribution
of building block analog similarity to the original building block for molecules that matched the queries from the routes in (D). Example molecules
are shown for each set of matches with their similarity to the original building block indicated on the x axis.
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number of analogs of 1, we should choose the route that proceeds via

a Suzuki coupling with the bromobenzaldehyde building block.

It is important to highlight that the nature of the enumerated

chemical analog spaces will be different and not necessarily overlap-

ping between the routes. Following from the reaction sequence, all

molecules enumerated based on the route in Figure 1C will have a

tetrazole ring in the product but will not necessarily have the biaryl

ring structure. Conversely, all of the molecules enumerated based on

the routes in Figure 1D will have the biaryl ring structure but will not

necessarily have a tetrazole ring. Even between the two alternative

Suzuki coupling strategies, the chemical spaces will be different

because of the different distributions of matched building block

(Figure 1E). Matching the building block analogs to a route before

any enumeration provides interpretable insights about the structures

of the product analogs, as these follow directly from the structures

introduced by the building blocks. The set of matched building

blocks is sufficient to understand which modifications from the origi-

nal product the route enables, and can be used as additional informa-

tion to help select the synthetic approach.

3 | ANALYZING THE INFLUENCE OF
STARTING MATERIAL LIBRARIES ON THE
SIZE OF THE ENUMERATED SPACE

The ability to estimate the size of an analog space enables the interro-

gation of other key parameters in the synthesis planning procedure

such as the choice of building block library. For this analysis, we use

the experimental synthesis route of mitapivat (2) (Figure 2A) from

Sizemore et al.33

We compared the diversifiability of the route when using the

ASKCOS buyables database with a price cutoff of $100/g (the full

database, 2:8�105 compounds), $10/g (1:0�105 compounds), and

$1/g (6:1�104 compounds) and when using the Enamine make-

on-demand building blocks (1:1�106 compounds) as the building

block library. We find that with the Enamine set and no similarity filter

applied to the building blocks, approximately 807 times as many ana-

logs are estimated to be accessible as with the ASKCOS set

(Figure 2B). The major contributing factor in this difference is the

presence of 16 times as many matches for the secondary amine reac-

tant (11) and 13 times as many matches for the sulfonyl chloride (10)

in the Enamine dataset. This is a disproportionate increase compared

to the overall difference in the database sizes. Approximately four

times as many analogs are found for the ester aniline (9) building block

in the Enamine dataset. As an increasingly stringent Tanimoto similar-

ity filter is applied to the building blocks, the disparity between the

estimated size of the enumerated spaces approaches the expected

difference in proportion to the size of the two building blocks sets, in

this case approximately 43. At a threshold similarity of 0.5 between

the analog and original building blocks, the estimated difference in the

combinatorial space size is a factor of 47 and each of the building

block queries match 3–4.5 times more molecules in the Enamine set.

As the threshold is raised more, the difference falls further.

The effect of building block price can be interrogated in this manner

as well. Setting a maximal price per gram of $10 and $1 on the

ASKCOS database reduces the number of building blocks from 2:8�105

to 1:0�105 compounds and 6:1�104 compounds, respectively. With

a similarity threshold between 0.0 and 0.5 on the building blocks, the

size of the enumerated space is approximately 30–60� and 100–

200� greater for the full ASKCOS dataset compared to the dataset
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synthesis route. (A) Reported synthesis route for mitapivat (2) from Sizemore et al.33 (B) Estimated size of product analog space for the
experimental route given different libraries of building blocks with increasingly stringent similarity filters on the building blocks. Note the
log scale used for the y axis.
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with the $10 and $1 cutoff, respectively. This kind of sensitivity analy-

sis can help determine whether a route is conducive to diversifiability

in more specific discovery contexts where there may be constraints

placed on price or building block availability (e.g., in-stock com-

pounds only).

4 | ANALYZING THE INFLUENCE OF
BUILDING BLOCK PROPERTIES ON
ENUMERATED SPACE PROPERTIES

Size of the analog space is not the only important parameter in a

molecular discovery setting. It is also important that the molecules in

the enumerated space exhibit properties specific to the particular

design objectives. Being able to estimate the number of “shots on

goal” in an implicitly enumerated space is useful to compare possible

synthesis routes. Filtering building blocks to focus an enumerated

space can reduce the cost of downstream screening that requires

explicit enumeration or experimental validation, so an understanding

of how filters will impact the size and properties of the enumerated

space is valuable.

While some molecular properties are complex, nonlinear functions

of the component substructures (e.g. clearance), others are more linearly

related to the substructures and atoms that make up the molecule. This

is obviously true for the molecular weight of a molecule, but is also true

for other properties commonly used to approximate “drug-likeness”34-36

that (a) can be counted, like the number of rotatable bonds or hydrogen-

bond donors/acceptors, or (b) can be accurately estimated using group-

contribution methods such as topological polar surface area (TPSA)37

and calculated octanol–water partition coefficient (logP).38

We empirically validated that the sum of the molecular weight,

TPSA, and calculated logP of the building blocks with a constant correc-

tion value for a given synthesis route approximates the computed values

for the product molecule. For a random sample of 1 million molecules

enumerated using the experimental synthesis of mitapivat (2) with the

ASKCOS set of buyables, we found a mean absolute difference between

the summed quantity and the computed quantity for the enumerated

product of 8�10�14 g/mol, 5�10�3 Å2, and 3�10�15 for molecular

weight, TPSA, and calculated logP, respectively. The Pearson correla-

tion coefficient between the summed and the computed values is

> 0:9999 for all three properties for this set of molecules (Figure S1).

The only one of these properties for which summation did not yield a

perfect estimate is TPSA, which is estimated within floating point

error for 999,550 of the compounds. For the remaining 450 com-

pounds, there was a consistent error of 10.14Å2 that can be explained

by the discrepancy between the change in TPSA caused by the alkyl-

ation of aziridines and non-aziridine secondary amines.37

Because these properties are exactly additive (other than floating

point errors) or nearly additive with respect to the building blocks

once leaving groups are accounted for, the distribution of the product

analog properties is well approximated by the distribution of the sums

of the building block analog properties. Distributions of sums of

independent random variables can be computed by convolving the

distributions of the individual random variables. More formally, if a

product molecule property (VP) is additive with respect to the proper-

ties of the building blocks (e.g., VB1 and VB2 ) with a constant pathway-

dependent correction factor for that property CV that takes into

account leaving group effects:

VP ¼VB1 þVB2 þCV : ð1Þ

It follows that the probability density function of the property, fVP , is

the convolution of the probability density functions of the building

blocks, fVB1 and fVB2 , giving:

fVP ðy�CVÞ¼ ðfVB1 ∗ fVB2 ÞðyÞ¼
ð∞
�∞

fVB1 ðxÞfVB2 ðy�xÞdx: ð2Þ

This can be extended to arbitrarily many building blocks as:

fVP0 ðy�CVÞ¼ ðfVB1 ∗ fVB2 ∗ :::∗ fVBn ÞðyÞ: ð3Þ

Computing the convolution of distributions using the NumPy

Python package is negligible in cost compared to enumerating even a

subset of the possible analog space. Furthermore it requires knowl-

edge of the building block properties alone which would need to be

calculated one time for a given building block dataset.

Using the experimental synthetic route of 2 with the ASKCOS

buyables database, we find that the total size of the possible analog

space contains 875,986,622 molecules (607 analogs for 9, 71 analogs

for 10, and 20,326 analogs for 11). In addition to the time required to

enumerate the product analogs, just instantiating RDKit molecule

objects and computing molecular weight, TPSA, and logP for a subset

of 68 million analogs took >100 CPU hours compared to approxi-

mately 10 CPU seconds to compute those properties for the building

blocks and perform the convolution.

Similar to the calculation of diversifiability, the efficiency of the

convolution makes it practical as a method to compute additional

parameters for use in comparing proposed synthesis plans. It allows

rapid estimation of the number of product analogs that fall within

desired ranges of molecular weight, lipophilicity, etc. at a speed that

safely outpaces the rate with which CASP tools are able to return

route suggestions.

Additionally, rapid estimation of the analog space property distri-

butions facilitates further elucidation of the relationship between fil-

ters applied to building blocks and the properties of the enumerated

analog space. For this analysis, we employed two types of filters:

property filters and similarity filters. Property filters were set to con-

strain physicochemical properties computed for each building block

analog. Similarity filters were set to constrain the Tanimoto similarity

computed between the 2048-bit Morgan fingerprint representation

of the analog and original building blocks. As in Synthesia and Path-

finder, we set uniform filters on all building blocks, so all building ana-

logs for all starting materials that do not pass that filter are removed.

Using the experimentally reported synthesis of mitapivat (2) as an

example again, we studied the relationship between the distribution
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of building block and product MW, TPSA, and calculated logP

(Figure 3A–F). Setting increasingly stringent filters reduces the size of

the chemical space by biasing the enumerated chemical space toward

desirable property space. Taking the distribution of TPSA as an illus-

trative example (Figure 3e), approximately 4:4�108 of 8:8�108 mol-

ecules (50%) are estimated to fall below the cutoff of 140Å2 proposed

by Veber et al. 35 for the unfiltered analog space. Setting a cutoff filter

on the building blocks of 80Å2 reduces the absolute number of mole-

cules with a TPSA ≤140 Å2 to 3:7�108, but increases the fraction of

the enumerated space that satisfies the property constraint to 78%.

Even though the focused analog space is smaller in size, it is more

enriched for desirable properties and still does not require explicit

enumeration, leading to significant speed advantages.

Our property distribution estimations allow us to quantify the

tradeoff inherent to setting uniform building block property filters. In

addition to uniform building block filters, we can devise a more effi-

cient way to impose property filters on the implicitly enumerated

space. We describe this on-the-fly application of filters for additive

properties of building blocks that takes into account the contributions

from each analog in the following section.

We also studied the distribution of the structural similarities of the

analogs to the original product (Figure 3G), as this quantifies how broad

of a search is being performed around the original product. This evalua-

tion required explicit enumeration of the products because the

Tanimoto similarity of the final product analogs is not additive with

respect to the building block similarities. We can see in the overlapping

histograms that as building block analogs are constrained to be more

similar to the original building blocks, we focus the enumerated chemi-

cal space around compounds with high structural similarity to the origi-

nal product.

5 | APPLICATION OF MULTISTEP
REACTION-BASED ENUMERATION TO HIT
EXPANSION

To illustrate how we envision integrating synthesis planning and

molecular discovery, we applied our computational pipeline to the

identification of molecules that score highly according to an “oracle”
model for c-Jun N-terminal kinase 3 (JNK3) inhibition.39,40 Our auto-

mated workflow follows five modular stages: a preliminary screen of

a diverse chemical dataset to identify the top “hit” molecules, syn-

thesis planning with ASKCOS, route selection based on predicted

diversifiability, combinatorial enumeration of analogs, and finally, a

screen of the analog space to identify novel hits (Figure 4A).

The oracle model is a random forest classifier trained on experimen-

tal bioactivity data from the ExCAPE-DB database.39,41 Molecules are

input as ECFP6 fingerprints.42 The model output score represents the

model's confidence that the molecule is active as an inhibitor against

JNK3. We choose this model as it can be applied in a high throughput

manner to approximate experimental measures of bioactivity, but the

workflow is compatible with any quantitative scoring approach.
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We began by screening a dataset of 249,455 drug-like molecules

randomly sampled from the ZINC database (ZINC250k43). We evalu-

ated each molecule using the JNK3 oracle model and identified the

top hits by score (Figure 4B). We elected to proceed with only the top

hit (12), though the approach could be easily extended to arbitrarily

many candidates.
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We queried the ASKCOS tree-builder tool for synthesis routes to

12. A total of 144 plans were returned. Paths that contained regioselec-

tivity concerns when run in the forward direction were automatically

flagged and removed, leaving 130 routes. The total number of accessi-

ble analogs with a molecular weight ≤600 g/mol from each route was

estimated using our convolution-based approach with different simi-

larity thresholds on the building blocks ranging from 0 to 0.9; building

blocks were further filtered based on substructures that would lead to

problematic features in the product using Brenk filters.44 This analysis

led us to select a similarity threshold of 0.3 which corresponds to an

enumerated product space of ≤8�106 molecules (Figure 4C), which

corresponded to the approximate size cutoff we had set for this pro-

ject based on the available compute power and the time and memory

required to enumerate and score the molecules with the oracle model.

The route predicted to yield the greatest number of analogs satisfy-

ing the molecular weight cutoff was selected as the input for the product

analog enumeration (Figure 4D(i)). This route proceeds through a rela-

tively uncommon, though not unprecedented, coupling between aniline

(15) and a derivatized 2-methylthiopyrimidine (14a).45,46 We compared

the estimated diversifiability of this computer-generated route with a

manually defined synthetic route that proceeds via a nucleophilic aro-

matic substitution followed by a Suzuki coupling (Figure 4D(ii)), with the

same product molecular weight and building block Tanimoto similarity fil-

ters applied to both routes. We find that the route proposed by ASKCOS

is estimated to lead to a chemical space approximately 100 times greater

than the chemical space from the manually defined route. Given that

two of the building blocks (13 and 15) are identical between the routes,

the result can be attributed to the fact that there are 84 matches in

the building block database for 14a and none for 14b with a Tanimoto

similarity ≥0:3 to the respective molecule. It follows that the enumer-

ated space from the computer-generated route is a strict superset of

the space that can be enumerated from the manually defined route,

so we proceed with the computer generated route. Whether the

larger chemical space or a smaller more chemically tractable chemical

space is preferred will ultimately depend on the constraints of a spe-

cific discovery project, and can be decided by the user.

The enumeration was performed with “on-the-fly” filtering

in addition to a similarity threshold of 0.3. As combinations of

building blocks were selected for enumeration, common additive

drug-likeness properties (TPSA, number of rotatable bonds, MW,

number of hydrogen-bond donors, number of hydrogen-bond accep-

tors, calculated logP) were computed for each building block and

summed, adding a correction factor to account for leaving groups.

This approximates properties of the product analog at negligible com-

putational cost prior to enumeration. Cutoffs were set to be slightly

more permissive than the criteria for oral bioavailability proposed by

Lipinski et al.34 and Veber et al.35: TPSA ≤150, number of rotatable

bonds ≤10, number of hydrogen acceptors ≤11, number of hydrogen

donors ≤6, and logP ≤6. All combinations that were predicted to sat-

isfy cutoffs set for each property were explicitly enumerated, yielding

6,488,129 compounds. This approach ensures that all enumerated

molecules fall within the desired ranges for the target properties. Such

filters could only be applied for properties that are additive with

respect to building blocks, precluding their application to properties

such as structural similarity to the original product. On-the-fly filtering

was made efficient by caching computed properties for each building

block to avoid redundant calculations.

To gain a qualitative understanding of how the enumerated chemi-

cal space compared to the original chemical space of the ZINC250K

dataset, we projected a random subset of 50,000 molecules from each

set (Figure 4E) into two dimensions. Each molecule was encoded as a

2048-bit Morgan fingerprint and embedded by fitting a UMAP47 model

to the molecules of the ZINC250K dataset and applying it to both sets

of molecules. The distribution of enumerated chemical analogs clusters

around the seed molecule used to perform the enumeration in chemical

space. This supports the premise that reaction-based enumeration

enables a local search around a molecule.

Further, the enumerated space is significantly enriched for mole-

cules scored more highly by the oracle model compared to the

ZINC250K space (Figure 4F; note the log scale), supporting the pre-

mise that a local search is useful in optimizing a candidate hit mole-

cule. The enumeration produced a total of 4377 compounds with

scores greater than that of the seed molecule. The top-scored mole-

cules show relatively subtle modifications from the original product

molecule (Figure 4G, Figure S2). Molecules that are too similar to the

original product do not show an improved score, and molecules that

are too dissimilar to the original product likewise do not show an

improved score; empirically, we find that the compounds in the enu-

merated set that achieve the best scores have Tanimoto similarities

between 0.4 and 0.6.

Five of the highest scoring molecules are shown in Figure 4H. Of

the 4377 compounds with improved scores, all but three were assem-

bled using the original methylthiopyrimidine (14a) building block,

despite the fact that there were 84 analogs for this building block in

the full set of enumerated molecules. The 4-(1H-pyrazol-1-yl)aniline

building block was used as an analog of aniline (15) to generate 316 of

the improved compounds, including 9 out of the top 10. These pat-

terns of enrichment aid in elucidating an interpretable structure activ-

ity relationship where the subsequent optimization could potentially

be performed in the space of building blocks.

6 | LIMITATIONS

The molecular discovery workflow presented in this article illustrates

how implicit enumeration can inform the selection of synthetic routes

for an explicit enumeration. While we rely on the number of accessi-

ble molecules as a metric to select synthetic routes, larger analog

spaces do not necessarily contain a larger number of higher-scoring

molecules. Route diversifiability serves as a useful parameter to rank

potential synthetic routes in the absence of additional information,

but incorporating more complex functions of building block properties

will improve the process of route selection.

Further, we acknowledge that the synthetic routes and the reac-

tion templates used to estimate route diversifiability and perform

combinatorial enumerations are imperfect. Relying on algorithmically
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defined reaction templates to assess reaction feasibility likely overes-

timates route diversifiability. Defining more expressive reaction tem-

plates that also describe incompatible molecular patterns to avoid in

queried building blocks could mitigate this issue. However, determin-

ing the appropriate amount of chemical context to include in reaction

templates would necessitate additional reaction data for the proposed

transformation or manual curation,48 limiting the number of routes

that could be evaluated. With well-curated reaction templates, for

robust 1- and 2-step chemical couplings, Enamine has reported an

experimental success rate of approximately 80%3 for the synthesis of

combinatorially generated compounds. We expect that this represents

the upper limit on the fraction of a diverse enumerated chemical

space that is truly synthesizable. Incorporating data-driven reaction

prediction models remains a promising future direction for further

promoting the synthesizability of the enumerated space.

7 | CONCLUSION

Synthetic strategies can have downstream effects in influencing the

chemical space explored in a molecular discovery project. In this arti-

cle, we introduced computational tools to rapidly estimate the size

(“diversifiability”) and property distributions of the chemical space

that is synthetically tractable given a synthetic route and set of build-

ing blocks with no explicit enumeration of molecules. We demon-

strated how these analyses can help rank proposed synthetic routes

as well as quantify the impacts of applying building block filters or

changing building block libraries. We incorporated the tools into a hit-

expansion workflow to select a synthetic route for route-based enu-

meration and inform the application of filters to focus the enumerated

space. Using a surrogate model for bioactivity to score candidate mol-

ecules, we identified over 4000 molecules hypothesized to be accessi-

ble using the same synthetic route with improved scores compared to

the input hit molecule. The workflows developed herein are available

as open source code to encourage their application to experimental

molecular optimization workflows where synthetic pathway selection

and analog design should be coupled.
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