Sets and Their 3Sizes

by
Fredric Ms Katz

SeBes Massachusetts Institute of Technology
(1971)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OQF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 1981

(© Fredric M. Katzs 1981
The author hereby grants to MeleTe permission to

reproduce and distribute copies of this thesis
document in whole or in parte

Signature of Author _

T Depar?ﬁzﬂzha?-Philosophy
April 74 1981

Certified by .

T George Boolos

Thesis Supervisor

George Boolos
Chairperson

MASSACH&‘PES INSTITUTE

OF TECHNOLOGY

MAY 15 1981
LIBRARIES

Accepted b - e — e s
P y S



Abstract

Cantor's theory of cardinality violates common sensee It
sayses for examples that all infinite sets of integers are
the same sizee This thesis criticizes the arguments for
Cantor's theory and presents an alternative.

The alternative is based on a general theorys called "CS"
(for "“Class Size")e CS consists of all sentences in the
first-order language with a subset predicate and a
less—than predicate which are true in all interpretations
of that language whose domain is a finite power sete Thusy
CS says that less-than is a linear ordering with highest
and lowest members and that every set is larger than any of
its proper subsetse. Because the language of CS is so
restrictedes CS will have infinite interpretationse. In
particulars the notion of one-one correspondence cannot be
expressed in this languages So Cantor's definition of
similarity will not be in CSes even though it is true for
all finite setse.

We show that CS is decidable but not finitely axiomatizable
by characterizing the complete extensions of CSe CS has
"finite completions"y which are true only in finite modelsy
and "infinite completions'y which are true only in infinite
modelse AN infinite completion is determined by a set of
"remainder principles"s which says for each natural number
ny how many atoms remain when the universe is partitioned
into n disjoints subsets of the same sizee.

Wwe show that any infinite completion of CS has a model over
the power set of the natural numbers which satisfies an
additional axiome OUTPACING:

If initial segments of A cventually become smaller
than the corresponding initial segments of Bs then A
is smaller than B.

Models which satisfy OUTPACING seem to accord with common
intuitions about set sizee In particulars they agree with
the ordering suggested by the notion of asymptotic densitye
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A Note to the Reader

le The notations used in this thesis are summarized in the

appendixe

2. The appendix also lists some model theoretic notions

and facts used in the texte

3 There is an index in the back which covers models,

theoriess statementssy predicatess and languagese

4« The "findings" in this thesis are mostly contained in
the first three chapters and the last; chapters « and 5 are
devoted to the proof of a completeness theoreme The last
section of chapter 5 also contains some interesting

corollaries of the completeness theorem and its lemmase.



1 INTRODUCTION

lel THE PROBLEM

This paper proposes a theory of set size which is based on
intuitionsy naive and otherwisee The theory goes beyond
intuitionse as theories willy so it needs both
justification and defensee I spend very little time
justifying the theory; it is so clearly true that anyone
who comes to the matter without prejudice will accept ite
I spend a 1ot of time defending the theory because no one

who comes to the matter comes without prejudicee.

The prejudice stems from Cantor's theory of set sizey which
is as old as sets themselves and so widely held as to be
worthy of the names "the standard theory"e Cantor's theory

consists of just two principles:

ONE-ONE: Two sets are the same sizZze just in case there

is a one-one correspondence between theme

CANTOR<: A sets xs is smaller than a sets ye just in
case x is the same size as some subset of yy but

not the same size as y itself.

A "one-one correspondence" between two sets is a relation
which pairs each member of either set with exactly one

member of the othere For examples the upper-case letters



of the alphabet can be paired with the lower-case letters:

ABCDEFGHI JKLMNOPQRSTUVHXYZ

abcdefghi jkImnopgqrstuvwxyz

sos the standard theory sayssy the set of upper-case letters
is the same size as the set of lower-case letterse. Fine

and goode

The staridard theory also says that the set of even numbers
is the same size as the set of integerss since these two

sets can also be paired off one-to-one:

eee 9 =Ny oee9 =29 =19 D¢ le 29 e0e 9 No oee

eee 92Ny oeee =4y =29 09 29 G4y eeae 92N9 oo

Similarlyy the standard theory says that the set of
positive even integers is the same size as the set of prime
numbers: pair the n-th prime with the n-th positive even
integere In both of these casess common sense chokes on

the standard theorye.

In the first cases common sense holds that the set of
integers is larger than the set of even integerse The
integers contain all of the even integers and then some.

So it's just good common sense to believe there are more of

the former than the lattere This is just to say that
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common sense seems to follow

SUBSET: If one set properly includes anothers then

the first is larger than the seconde.

even into the infinites where it comes up against the

standard theorye.

Common sense can make decisions without help from SUBSET.
Though the set of primes is not contained in the set of
even integersy it is still clear to common sense that the
former is smaller than the lattere One out of every two
integers is eveny while prime numbers are few and far
betweenes No doubte to use this reasonings you need a
little number theory in addition to common sense; buty
given the number theorys it®s the only conclusion common

sense allowse.

The theory proposaead here accommodates these bits of common
sense reasoninge It maintains SUBSET and a "few and far
between" principle and much else besidese To state this
theorye I use three two-place predicates: '<'y *'=?', and

>, If *A*' and 'B* name setss then

*A € 3% 1s read as 'A is smaller than B,

‘A B* is read as 'A is the same size as B'.

*A > B* is read as *A is larger than B'.



11

Incidentallys we will assume throughout this thesis that
the following schemata are equivalentsy item by iteme to the
readings of the three predicates given aboves assuming that

A is the set of ALPHAS and B is the set of BETAS:

A) There are fewer ALFHAS than BETAS.
There are just as many ALPHAS as BETAS.

There are more ALPHAS than BETAS.

B) The number of ALPHAS is less than the number
of BETAS.
The number of ALPHAS is the same as the number
of 3ETAS,
The number of ALPHAS is greater than the number

of BETAS.
ands finallys

C) The size of A is smaller than the size of B
A and B are (or "have") the same sizee

The size of A is larger than the size of Be

Regarding this last groupsy we emphasizZze that we are not
arguing that there "“really are" such things as set sizes»,
nor that there "aren''t really" such thingse Statements

about "sizes"™ can be translated in familiar and iong-winded
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ways into statements about setss though we won't bother to

do SsoOe

I have identified the standard theorys Cantor®®sy with two
principles about set sizee The term *size'sy howevers is
rarely used in connection with Cantor®'s theory; so it might
be wondered whether the standard theory is really so
standarde In stating ONE-ONE and CANTOk<s Cantor used the
terms *power® and °*cardinal number' rather than 'size'. In
the literature the term *cardinal number® (sometimes just
*number?®) is used most frequentlye. If someone introduces
*cardinal number® as a defined predicate or as part of a
contextual definition {eege "We say two sets have ‘the
same cardinal number iff e«ee'")s there is no point in

discussing whether that person is right about sizee.

Though Cantor's theory is usually taken as a theory of set
sizee it can also be taken as "just" a theory of one-one
correspondencese More specificallys saying that two sets
are "similar" iff they are in one-one correspondence can
either be taken as a claim about size or be regarded as a
mere definition. Vhether or not "similarity" is
coextensive with "being the same size"y the definition is
worth makinge The relation picked out is well studied and
well worth the studye The technical brilliance of the
theory attests to this: it has given us the transfinite

hierarchys the continuum problemsy and much elseo. In



additions the theory has consequences which don'ty prima
facies seem to have anything to do with size or similarity;
the existence of transcendental numbers comes to minde All
of this is to say that the interest in one-one
correspondence has not been sustained solely by its
identification with the notion of size. Hences denying
that they are the same does not endanger the theory of

one-one correspondencess per See

But most mathematicians and philosophers don®'t use
‘cardinal number* as a mere abbreviatione They use the
term in just the way that we use ®size' and slide freely
amonag (A)s (B)e and (C)e This is truee in particulary of
Cantory who offered ONE-ONE as a theory; indeeds he of fered

an argument for this theorye.
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162 CANTOR:S ARGUMENT

Cantor bases his argument for ONE-ONE on the idea that the
size of 3 setys its cardinal numbers depends on neither the

particular elements it contains nor on how those elements

are ordered:

(1):
The cardinal numbers CARD(M}s of a3 set M (is the
general concept which) arises from M when we make

abstraction of the nature of its elements and of the

order in which they are givene (Cantore pe86)e

But to say that the cardinal number of a set doesn't depend
on certain things is not to say what the cardinal number
ise Neither does it insure that two sets have the same
cardinal number just in case they are in one-to-one
correspondencees To flesh out this notion of "double
abstraction®”, Cantor reduces it to a second abstraction
operators one which works on the elements of sets rather

than the sets themselves:

Every elementy me if we abstract from its nature

becomes 3 "unit" ecee (Cantore pe86)e

And sos concludes Cantor:

The cardinal numbery CARD(M) is a set composed of units
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(which has existence in our minds as an intellectual

image or projection of Ms) (Cantors peB86)
According to Jourdaine Cantor

distinguished very sharply between an aggregate and a
cardinal number that belongs to it: "Is not an
aggregate an object outside uss whereas its cardinal
number is an abstract picture of it {n gur mind."

(Cantore pe80)

1 have parenthesized the expressions above where (antor
describes cardinal numnbers as mental entitiese
Neverthelesses I can only make sense of his arguments
insofar as he treats cardinal numbers as sets: he refers to
them as "definite aggregates"s supposes that they have
elementss and employs mappings between cardinal numbers and

other setse

The following three statements seem to express Cantor's

intent:
lel CARD(M) = (y: Ex(x € M & y = ABST(x)) }
le2 (X)(Ey)(y = A3ST(x) & UNIT(y))

le3 (M)(y)(y € card(M) =>» UNIT(y))

"ABST(x)"™ is tc be read as "the result of abstracting from
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the element x", “"UNIT(x)" as ®x is a unit"s and "CARD(M)™

as "“"the cardinal number of MY,

So (lel) gives a definition of cardinal numbere in terms of
the operation of abstractiune from which Cantor proves both

ONE-ONEa and ONE-ONEbe.

ONE-ONEa: CORR(MsN) -3 CARD(M) = CARD(N)

ONE-ONEb: CARD(M) = CARD(M) =3 CORR(MyN)

ONE-ONEa is trues says Cantory because

the cardinal number CARD(M) remains unaltered if in the
place of one or many or even all elements m of M other

things are substitutede (ps 88)

and soy if f is a one-one mapping from M onto N+ then in

replacing each elementey me of M with f (m)

M transforms into N without change of cardinal number.

(pe88)

In its weakest formy the principle Cantor cites says that
if a single element of M is replaced by an arbitrary
element not in M then the cardinal number of the set will

remain the samees 7That iSs
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(le4) (@ € M & ~(b € M)
EN=({x: (x EME x ¥ a) ! (x=0Db)})

-> CARD(M) = CARD(N)

The reasoning here is clear: so far as the cardinal number
of a set is concerneds one element is much the same as
anothere It is not the elements of a sety but only their
abstractionss that enter into the cardinal number of a sete.
But abstractions of elements are just units; so one is much

the same 3S anothere.

ONE-ONEbD is truey Cantor sayss because

eee CARD(M) growss so to speaks out of M in such a way
that from every element m of M a special unit of
CARD(M) arisess Thus we can say that CORR(MeCARD(M))e

(pedB)

Sos Since a set is similar to its cardinal numbers and
similarity is an equivalence relationy two sets with the
same cardinal number are similare Unless each element of a
set abstracts to a “special"y ie€e distinctsy unite the
correspondence from M to its cardinal number will be
many-one and not one-onee. A weak version of this principle

is:

(leS) If M = (aeb} and @ # be then
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CARD(M) = {ABST(3)+ABST(b)} and ABST(a) ¥ ABST(b)e

These two arquments do one another ine (le4) says that
replacing an element of a set with any element not in the
set does not affect the cardinality. Bute by the

definition of CARD(M) (lel)s this means that

(le6) (x)(y)(ABST(x) = ABST(y))

Fore consider an arbitrary pair of elementsy a3 and be Let
M = {a} and let N = {b}e Sos the conditions of (le4) are
met and CARD(M) = CARD(N)e But CARD(M) = (ABST(a)} and

CARD(N) = {ABST(b)}s by (lel)e Generalizing this argument

yields (leb)e

So Cantor®s arqument for ONE-ONEa only works by assigning
all non-empty sets the same, one-membereds cardinal numbere.

But this contradicts ONE-ONEb.

Converselys the argument that a set is similar to its

cardinal number relies on (leS)y which entails

(le7) (x)(y)(x # y => ABST(x) # ABST(y) )

assuming only that any two objects can constitute a sete.

But if the abstractions of any two elements are distincty

then no two sets have the same cardinal number as defined
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by (lel)s contra ONE-ONEa.

There is no way to repair Cantor®s argqument. Racher than
leading to a justification of ONE-ONEs Cantor's definition
of cardinal number is sufficient to refute the principlee

The negation of (leb) is:

(leB) ExEy(ABST(x) # ABST(vy))

So one of (le6) and (le8) must be truee We have shown that
(le6) contradicts ONE-ONFbe Similarlyse (leB8) contradicts
ONE-ONEa: if a and b have distinct abstractionsy then {a}
and {b} have distinct cardinal numberses (ABST(a)} and
{ABST(b)}s despite the fact that they are in one-one
correspondencee SoOe ONE-ONE is false whether (le6) or its

negations (leB)y isS truee.
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1.3 CANTOR AND THE LOGICISTS.

Though both Frege and Russell accepted Cantor's theory of
cardinalitys neither accepted Cantor's argumente. Frege
spends an entire chapter of the Grundlagen mocking
mathematicians from Euclid to Schroder for defining numbers
as sets of "units". He neatly summarizes the difficulty

with such views:

If we try to produce the number by putting together
different distinct objectss the result is an
agglomeration in which the objects remain still in
possession of precisely those properties which serve to
distinquish them from one anothery and that is not the
numberes But if we try to do it in the other ways by
putting together identicalse the result runs
perpetually together into one and we never reach a

pluralityeee

The word *unit® is admirably adapted to conceal the
difficultysee HWe start by calling the things to be
numbered "units" without detracting from their
diversity; then subsequently the concept of putting
together (or collectinge or unitings or annexinge or
whatever we choose to call it) transforms itself into
arithmetical additiony while the concept word *unit®

changes unperceived into the proper name *one'e(ppe.

50-51)
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These misgivings about units don't prevent Frege from
basing his definition of *number® and his entire reduction
of arithmetic on Cantor®'s notion of one-one correspondencee.
"This opinion+" says Freges "that numerical equality or
identity must be defined in terms of one-one correlationy
seems in recent years to have gained widespread acceptance
among matnematicians" (ppe73-T4)e Frege cites Schrodery

Kossake and Cantore

Russell displays similar caution about Cantor's arqument

(see Principles of Mathematicses pe305) and similar

enthusiasm for his theory (see the quote at the beginning

of chapter 2+ for examples)

2f coursey Frege and Russell "“cleaned up" Cantor's
presentation of the theorye Russelly for examples notes

that Cantor®s statement (1) is not a "true definition" and

merely presupposes that every colliection has some such
property as that indicated -- a propertys that is to
sayes independent of its terms and of their order;
dependings we might feel tempted to adds only upon

their numbere (Ibide ppe 304-305)

So Russeily and similarly Freges relied upon the principle

of abstraction to obtain a "formal definition" of cardinal
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numberss in contrast to Cantors who had "taken" number "“to
be a primitive idea"™ and had to rely on "the primitive

proposition that every collection has a numbere" (Ibid)

Sos while some people regard Cantor®s ONE-ONE as " just" a
definition and others embrace it as a theorys the logicists
have it both ways: adding ONE-ONE as a "formal definition"
to set theory (ore as they would have its l10gic) they have
no obligation to defend it and can steer clear of peculiar
arguments about "units'"; at the same times they can advance

it as a great lesson for simple common sensee.

The loqgicists® adoption of Cantor®s theory of cardinality
needs no great explanation: it "came with" set theory and»
to a larqge extenty motivated set theory and determined its
research problemse But there are two specific reasons that
they should have seized upon ONE-ONE and CANTOR<Ke Firste
they both have the form of definitionss no matter how they
are intendedes So the notion of cardinality is "born

reduced".

Seconds Cantor's theory clears the way for other
reductionse Supposes for examples you wish to reduce
ordered pairs to setse. Welly you have to identify each
ordered pair with a set and define the "relevant"
properties of and relations among ordered pairs in terms of

properties and relations among setse One of the relations
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that has to be maintained iss of courses identity: so each
ordered pair must be identified with a distinct sete In
additions the relative sizes of sets of ordered pairs
should be preserved under translatione Bute if ONE-ONE is
the correct theory of sizes then this second condition
follows from the firste since the existence of one-one

correspondences will be preserved under 3 one to one

mappinge
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le4 AIMS AND OUTLINE

It would be naive to suppose that people’s faith in
Cantor's theory would be shaken either by refuting specific
arquments for ONE-ONE or by associating the acceptance of
that theory with a discredited philosophy of mathematicse
Such points may be interestings but in the absence of an

alternative theory of sizes they are less than convincinge

This dissertation presents such an alternatives Chapter 2
canvasses common sense intuitions for some basic principles
about set sizee C(hapter 3 reorganizes those principles
into a tidy set of axiomssy offers an account of where the
intuitions come from (vize known facts about finite sets)o
and mines this source for additional principles to
incorporate in our theorye Chapters 4 and 5 prove that the
tneory so obtained is "complete"s in the sense that it
embraces all facts about finite sets of a certain kind
(ieee expressible in a particular language)e Finally,
chapter 6 elaborates additional principles that concern
only sets of natural numbers and demonstrates that these
additional principlesy together with the theory in chapter

3 are satisfiable in the domain of sets of natural numberse
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2 THE GENERAL THEORY

®*The possibility that whole and part may have the
same number of terms isy it must be confessed,
shocking to common Sense <ee COommon senses
thereforey is here in a very sorry plight; it must
choose between the paradox of Zeno and the paradox of
Cantore I do not propose to help ite Since I
consider thaty in the face of the proofss it ought to

commit suicide in despaire"™ (Russelly Be Principles

of Mathematicgo Pe358)

Is common sense confused about set sizes as Russell saysy
or is there a way of elaborating on common sense to get a
plausible and reasonably adequate theory of cardinality? To
be "plausible"s a theory should at least avoid principles
and consequences which violate common sensee. To be
"reasonably adequate®"™y a theory has to go beyond bare
intuitions: it should not rest with trivialities and it
should answer as many questions about set size as possibley
though it needn®t be complete. Plausibility and adequacy
are conflicting demands: the first says that there should
not be too many principles (no false onesy consistency)s

the second that there should not be too few principlese

In the Introductions I argued that a coherent theory of



cardinality has to contain some principles that refer to
the kinds of objects in setss pace Cantore In this
chapters howeveres I want to see how far one can go without
such principless ieee how much you can say about the
gmaller—than relgtjion without using predicates (other than
the identity predicate) which relate the members of the
sets being comparede I shall begin by stating a number of
principles and explaining why they are included in the

general theorye
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261 THE THEORY CORE

Firste there is the SUBSET principle:

SUBSET: If x is a proper subset of ys then x is smaller

than ye

The reason for including SUBSET should be obviouse What
has prompted the search for an alternative to the standard
theory of cardinality is the conflict between ONE~ONE and
SUBSET. wao it is often said that common sense supports
both of these principles and that it is in doing so that
common sense is confusede From this it is supposed to
follow that common sense cannot be relied upones SO we
should opt for ONE-ONEsy with the technical attractions that

it providese

8ut there's a3 difference in the way that common sense
supports these two principleses There is no doubt that you
can lead an unsuspecting person to agree to ONE-ONE by
focusing their attention on forks and knivess husbands and
wivesy and so forth: ieee on finite setse With carefully
chosen examplesy say the odds and the evensy you might even
convince someone that ONE-ONE is true for infinite setsy
tooe Nowy I don't think that such guile is need to lead
someone to agree to SUBSET, but that's not what my argument
depends one The argument hinges on a suggestion about how

to resolve cases where mathematical intuitions seem to
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conflicte The suggestion'is to see what happens with
particular cases on which the principles conflict pefore
you've lead someone to agree to either of the general

statementse.

Soe if you want to find out what common sense really thinks
about SUBSET and ONE~ONEes you would present people with
pairs of infinite setss where one was a proper subset of
the othere I've actually tried thise in an unscientific
ways and what I've gottens by and largey is what I
expected: support for the subset principlee ("By and
large" because many people think that all infinite sets

have the same size: "Infinity"e.)

Naturallyy I wouldn't venture that this sort of techniques
asking peoplee is any way to find out which of SUBSET and
ONE-ONE is gtruees People®s intuitions about mathematics are
notoriously unrelijables Nnot to mention inconstant. Of
course harping on this fact might engender some unwarranted
skepticism about mathematicse What I am suggesting is that
there might be a rational way of studying mathematical
intuitions and that we should at least explore this
possibility before proclaiming common sense to be

hopelessly confused on mathematical matterse

Sos SUBSETs all by itselfy, seems to be a plausible

alternative to Cantor®'s theorys though it surely isn't
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enoughe Given just this principles it’s possible that one
set is smaller than another just in case it is a proper
subset of the othere It's clear that we need some
additional principless All of the following seem worthy
(where "“x < y" is to be read as "x is smaller than y"

"x = y" as "x is the same size as y"s and "x > y" as

“x is larger than y"e The Appendix gives a full account of

the notations used throughout this thesise)

Theory 2elel QUASI-LOGICAL
ASYML: X ¢y =» ~y < x
ASYM>: X >y =» ~y > x
TRANSC: (x < yty<c<z)=->»x<z
TRANS>: (x >y Gy >2z) =>»x >2

INDISC=: x = y =>» INDISC(xsy)

SYM=: X

REF=: x
TRANS=: (x = y€y=12)=->x =2
DEF>: X >y €=>» y < x
where
INDISC(xey) abbreviates

(Z2)((2 < x €-» 2 < y) & (x € 2 €->» y < 2))

We shall call the principles listed above "quasi-logical
principles" because it is tempting to defend them as
logical truthse Consider the first principles for exampies

in unregimented English:
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ASYMC: If x is smaller than ys then y is not smaller

than xe
This sentence can be regarded as an instance of the schema:

ASYM{F}: If x is F-er than ys then y is not F-er than

Xe

where °F* js to be replaced by an adjective from which
comparatives can be formeds eege *tall?y *short®y *happy'e
‘pretty®s but not ‘unique®y or *brick'e It appears that
every instance of this schema is trues SO it could be
maintained that each instance is true in virtue of its

forme that each is a logical truthe

The other principles might be defended in the same waye
thouah the schema for INDISC= would have to be restricted
to triples of corresponding ccecmparativese for example: 'is

smaller than'y 'is larger than'y 'is the same size as®e

But using such observations to support these principles
would be problematic for two reasonse Firste it would
require taking positions on many questions about logical
form and grammatical form which would take us far afield
andy possiblys antagonize first-order iogicians. Secondy

there are some instances of the schemata that make for
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embarrassing counterexamples: "further east than® (in 3
round world). and “earlier than" (ine I°m toldy a possible

world)e

Soe it might be that casting the principles above as
instances of the appropriate schemata would only explain
why they are part of common sensee What remains clear is
that a theory of cardinality which openly denied any of
these principles would be implausible: it would be
ridiculed by common sense and mathematical sophisticstes
alikee 1 can just barely imagine proposing a theory whichy
for fear of inconsistencys withheld judgment on on or more
of these principlese But to do so without good reason
would be counterproductivee It seems that if a case could
be made that these statementse taken togethery are
inconsistent with SUBSET, that would be good reason to say
that there is no reasonably adequate alternative to
Cantor's theorye Since my goal is to counter such a
conclusions it seems that the proper strategy is to include
such seemingly obvious truths and to show that the
resulting theory is consistente So the strategy here is
not to adduce principles and argue for the truth of eache
This would be impossibles given that most of the principles
are logically contingente Insteads the idea is tn canonize
what common sense holds to be true about cardinality and to

show that the result is consistent and reasonably adequatee.
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So long as we restrict ourselves to SUBSET and the
quasi-logical principless consistency is no probleme After
ally what do the quasi-logical principles say? Only that
smaller-than is a partial orderingy that larger-than is the
converse partial orderings that the same _size ag is an
equivalence relations and that sets of the same size are
indiscernible under the partial orderingse Sos if we are
given any domain of setse finite or infinites we get a
model for our theory by assigning to °'°<' the relation of
being a proper subset ofs assigning to *>' the relation of
properly includings and assigning to ®*=' the identity
relatione Since common sense knows that different sets can
have the same sizes there must be some additional

principles to be extracted from common sensee

We shall now consider some principles which cannot be

regarded as quasi-logicale.

Firstey there is TRICHOTOMY,

TRICH: x <y ; x Ty | y < x

which says that any two sets are comparable in sizee While
a theory of set size which excluded TRICH might escape
ridicules it would surely be regarded with suspicione.
Indeedy if the principles of common sense were incompatible

with TRICHs this would undoubtedly be used to discredit
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Seconde there is the "“representation principle”,
REPC: x <y =->» (Ex*)(x® = x & x* ¢ vy) .

which says that if a sete x9 i5 smaller than anothers Yy

then x is the same size as some proper subset of ye NoOw

this is a principle which common sense has no particular

feelings aboute Analoqous statements about physical

ob jects are neither intuitive nor very clearly truee For
examples (1) doesn’t stand a chance of being regarded as

true

(1) If one table is smaller than anothers then the
first is the same size as some proper part of the

seconde

if 'part® is taken to mean 'leg Oor top Of rim Or ece'e

Even if common sense can be persuaded to take particles of
tables and arbitrary fusions of such as parts of tabless no
one should condemn its residual caution about (l)e If REPK
is trues then I think that that's an interesting and

special fact about sets.

REPC was originally included in this theory for "technical"

reasons which will emerge; it makes it easier to reduce the



set of axioms already presented and it provides a basis for
several principles not yet presenteds REP< may be open to
doubte but it is not a principle that Cantorians could
complain aboute for it is entailed by Cantor®s definition

of %(C*:

CANTORC: x < y €=>» ~(x = y) € (Ex*)(x* = x & x* c vy)

Note that if CANTOR<C is regarded as a principle instead of
2 definitions then it is entailed by the principles we have

already mentioned:

If x < yo then =~(x = y)o by INDISC= and ASYM<. By
REP<y some proper subset of ys say x*y must be the same
Size as xe But x' < yo by SUBSET; so x < ye by

INDISC-.

There are more principles to comes but before proceeding,
I1°d Yike to take stock of what we already havee Firste 1
want to reduce all of the principles mentioned above to a
tidy set of axiomse Seconds I want to estimate how far

we've gonee.

The entire set of principle already adopted are equivalent
to the followings which will be referred to as "the core

theory".
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Theory 2ele2. CORE
SUBSET: x c vy =» x < y
DEF>: X >y €->» y < x
DEF=: x T y €-> INDISC(xsy)

REPKC: x <y =->» (Ex*)(x*" = x & x* ¢ vy}

J

IRREFC: (x < x)

TRICH: x <y | x =y | vy <x

The only axiom in CORE that has not already been
introduced is DEF=y which is logically equivalent to

the conjunction of INDISC= and its converses =INDISC:

INDISC=: x = y =3 INDISC(xey)

SINDISC: INDISC(xey) =>» x = y

SINDISC says that if two sets fajil to be the same sizes
then their being different in size is attributable to
the existence of some set which is either smaller than
one but not smaller than the other or larger than one

but not larger than the othere
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Theorem 2ele3e

Let T = QUASI-LOGICAL;SUBSET;TRICH;REPC,

Then CORE = T.

Proof:

(a) T |- CORE

(b)

We only need to show that =INDISC is entailed
by Te Suppose =~(x = y)e SO0 x €y or y € xo¢ by
TRICHe But -~(x € x) and ~(y < y)es by IRREF,
CORE |- T

(i) TRANS<Ce If y < 24 there is a y*' such that
y* = y and y* ¢ 2y by REPCe If x < yo then x <
y' because y' = yy by DEF=e S0 there is an x°
such that x* = x and x* € y'e SO x' c z¢ ands

by SUBSETy x* < ze But then x < 2 by DEF=,

(ii) ASYM<, If x < y and y < xy then x < x¢ by

TRANS<Cy contra IRREF<C.

(iii) TRANS>e ASYM>y and IRREF> follow frcm the

corresponding principles for °<' and DEF>.

(iv) INDISC=, SYM=, TRANS=, and REF* are

logical consequences of DEF=.

is consistente In facty there are two kinds of

models which satisfy CORE.
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() A is a finite class model with basig x iff

(i) A = P(x) for some finite set xe
(ii) AI=acb iff a3 is a proper subset of be
(iii) A 1= a < b iff cd(a) < cd(b)e.

(b) A is a finite set model iff

(i) A = {x ¢ x is @ finite subset of Y} for
some infinite Y,
(ii) A |= acb iff a is a proper subset of be

(iii) A 1= a < b iff cd(a) < cd(b)e

Note that models can be specified by stipulating the
smaller-than relation since larger-than and ghe same
size ag are defined in terms of gmaller-thag.

Fact 2ele5

(a) If A is a finite class modele A |= CORE.

(b) If A is a finite set models A |= CORE.
Proof: In both casess the finite cardinalities
determine a quasi-linear ordering of the sets in
which any set is higher than any of its proper

subsetse

The normal ordering of finite sets by size ise in facte
the only one that satisfies CORE. By adding TRICH we

have ruled out all non-standard interpretations of *<%,



Theorem 2.1e6+ Suppose that A is a model such that
(i) If x € Ay x is finitey
(ii) If x € A and y ¢ xs then y € Ay and
(iii) A §= CORE,

Theno

(iv) A 1= x <y iff cd(x) < cd(y)e

Proof: We prove (*) for every n by inductione.

(*) If cd(a) = ne then A |= (a8 = b) iff cd(b) =

Noe

First suppose n = Oe

“If cd(a) Oy a = P

So i€ cd(b) Oy A |= (@ = b) by REF=.
If cd(b) # Os then b # Fe
So a € b ands by SUBSETy A |= (2 < D)o

Soe by INDISC=e A |# (@ = D)e

Now suppose (¥) is true for all i < ne
If cd(a) = cd(b) = n ¢+ 1lg then A |= (a3  b):
Suppose A |= (a < b)e
Sos A |= (2* = a)y for some a' c bes by REPC
But if a' ¢ be then cd(a') < n;

soy cd(a) < ne by (¥)s gontra our hypothesis



Now suppose
We claim:
8ecause

But if

choose

So
and
Thus.e

So

0
Q
-~
1]
~

"

(n+l) and A |= (3 = b)e

(n+l)e.

(a]
Q
—
o
-~

"

cd(b) > (n+l)e by inductione.

cd(b) > (n+l)o

b* ¢ be with cd(b*) = (n¢l)e.

b* € A by condition (ii)e

A |= (b* < b)y by SUBSET

A |= (b* = a)e (Ssee above)e.

A |= a < by gontrg Oour suppositione

cd(b) = (n+l)e.



2e2 ADDITION OF SET SIZES

We shall now extend CORE to get an account of addition of
set sizese Since the domains of our intended models
contain only sets and not sizes of setsy we have to
formulate our principles in terms of a three-place
predicate true of triples of sets: *SUM(xeyeZ)* is to be

read as "the size of 2z is the sum of the sizes of x end y"e.

The following principles are sufficient for a theory of

additione

Theory 2e2e¢l1 Adaition

FUNC+: Functionality of addition

(a) SUM(XeyeZ) =3 (X = x* €=> SUM(x'vsye2Z))

(b) SUM(xeyez) =->» (Y y' €->» SUM(x9y's2))

(c) SUM(xeye2) -> (2 2° €->» SUM(xeyesz'))
DISJ+: Law of addition for disjoint setse.

x /\y =@ => SUM(xsysx \/ Y)
MONQT+: Monotonicity of addition

SUM(xeye2Z) -» x < 2 | x = 2

The functionality of addition says that sets bear SUM
relations to one another by virtue of their sizes alone.
This condition must clearly be met if °*SUM' is to be read

as specified abovee.



&2

DISJ+* tries to say what function on sizes the SUM relation
captures by fixing the function on paradigm cases --
disjoint sets. But FUNC+ and DISJ+ leave open the
possibility that addition is ®cyclic®: suppose we begin
with a finite class model whose basis has n elements and
asgign to SUM those triples <xeiyez> where

cd(z) = (cd(x) + cd(y)) modulo n+l.
Both FUNC+ and DISJ+ will be satisfieds though the
interpretation of SUM does not agree with its intended

readinge MONOT+ rules out such interpretationse.

Given an interpretation of '<' over a power set there is at
most one way of interpreting SUM which satisfies ADDITION.
We shall show this by proving that ADDITION and CORE entail

DEFe+:

DEF+¢: SUM(xeys2) €->

Ex*Ey?'(x = x* € y = y* & x* /\y' = P E x* \/ y* = 2)

Soes if DEF+ is trues the extension of *SUM®' is determined

by the extension of °'<°*,

A model of CORE must satisfy an additional principleys
DISJUy if SUM is to be interpreted in a way compatible with

ADDITION.
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DISJU: (x ¥ x* & ¥y =T y* € x /\Ny=080¢Ex*/\y'=40)

(X \/ V) T (X" \/ Y"')e

(Note: The proofs in this chapter will use boolean
principles freelyys despite the fact that we haven't yet

introduced theme)

Theorem 2e¢2¢2¢ CORE + ADDITIGN |- DISJU Proof:
Suppose x = x',

Y = v

X /Ny = P

and x* /\ y*' = Q2.
Then SUM{xy ys x \/ Yy)
and SUM(x'ey®ex® \/ yY°)y by DISJ+
SO SUM(x'eye x \/ y)e by FUNCe(a)
56 SUM(x*sy®ex \/ y)o by FUNC+(D)

SO (x \/ y) T (x® \/ y*)s by FUNC+(C).

We shall now use this fact to show that if the minimal
conditions on addition are to be satisfied in a model of

COREs then SUM has to be definable by DEF+e.
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Theorem 22«3« CORE ¢ ADDITION |- DEFe.
Prooff
€-o Assuming that the matrix of the right hand
side of DEF+ is satisfied,
then SUM(x'ey®o2)e by DISJ+
so SUM(xy y'vz); by FUNC+(a)
SO SUM(xe yy Z)e by FUNC+ (D).
-»e Suppose SUM(xeys2)
so x € Z or x ¥ Zy9 by MONOT+.
But if x
let x* = 2
ard y*' = @;
then SUM(x%ey®s2)s by DISJe
50 SUM(xy y®s2Z)e by FUNCe(a)
SO y' ¥ yo9 by FUNC+(D)o
and if x < 2z
pick x* ¢ 2
with x* = xe by REP<.

let y* = z - x*

but y°* ys as beforee
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Theory 2e¢2e¢4e« EXCOREy "the extended core"y is

CORE \/ ADDITION

Fact 2.2.5. The following are consequences of EXCORE:

(a) (x /\ vyl = x /\ y2 = P & yl = y2)

-» x \/ yl x \/ y2

(b) (x1 /\ yl = x2 /\ y2

@E xl = x2¢& yl < y2)

-» x1 \/ yl < x2 \/ y2

(c) (x /\ vyl x /\ y2 = gt yl < y2)
=>» x \/ yl < x \/ y2
(d) (x ¢c 2 & yc 2z & x < y) ( RC<

=>» (2 = y) < (z - x)

(e) (x c 2 & ycz bt x=yy)) ( RC
=>» (2 - y) = (z - x)

(f) x <y => (Ey*)(y' =yt xcy"')

(g) x y =>» (x = (x /\ y)) = (y = (x /\ Y})

(h) x <y => (x = (x /\y)) <(y = (x/\Y))

The proofs are elementarye
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3 A FORMAL THEORY OF CLASS SIZE

In the preceding chapters we searched for principies that
accord with pre-Cantorian ideas about sizes of sets. We
produced several such principless constituting EXCOREs and
found two kinds of interpretations which satisfied these
principlese In one cases the domains of the
interpretations were power sets of finite sets; in the
other case the Jdomains consisted of all finite subsets of a
given infinite sete Insofar as both kinds of
interpretation had the quantifiers ranging over finite
setss we may say that they demonstrate that EXCORE is true

when it is construed as being about finite setse.

Our goale of courses is to show that the general theory of
set size we present can be maintained for infinite sets as
well as for finite setse We shall show this by
constructing a model for the general theory whose domain is
the power set of the natural numberse But the ability to
construct such a a model is interesting only to the extent
that the general theory which it satisfies is reasonably
adequatees Supposes for exampies that we offered as a
general theory of size the axioms of CORE other than REP<.
Call this theory *T®e So T just says that smaller-than is
a quasi-linear ordering which extends the partial ordering
given by the proper subset relatione Since any partial

ordering can be extended to a quasi-linear orderings T has



3 model over P(N)s But unless we have a guarantee that the
model constructed will satisfyy says DISJUy the existence
of the model does not rule out the possibility that T is
incompatible with DISJUe For a particular principles Ps in
this case DISJUy we may take one of three tacks: (1) add ¢
to Ty obtaining T'y and show that T' has a model over P(N);
(2) show that ¢ is inconsistent with T and argue that T is
somehow more fundamental or more intuitive than ¢g; (3)
acquiesce in ignorance of whether T and ¢ are compatible
and argue that if they are incompatible then T should be

maintained anywaye

Selowsy we deal with DISJU as in (l)s since DISJU is in
EXCOREe Cantor's principle ONE-ONE is dealt with as in
case (2)e It seems futile to try to rule out the need to
resort to the third approach for any cases at alls but we
can reduce this need to the extent that we include in our
general theorys Ty as many plausible statements as

possiblee

Of courses we can't construct T by taking all statements
which are true for finite sets; nct only is ONE-ONE such a

statements but using the nction of all statements true for

finite sets presupposes that we have some idea of the range

of %all statements®e To avoid the problems involved in
speaking of "all statements"s we might instead settle for

"311 statements in L"y where L is some judiciously chosen
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languagee To avoid ONE-ONE, L must fall short of the full

expressive power of the language of set theorye.

Considers nowse the axioms in EXCOREe Other than size
relationse these axioms involve only boolean operations and
inclusion relations among setse They do not use the
notions of "ordered pair™es “relation"s or "function". 1In
shorte the only set theory implicit in these axioms is
boolean algebras or a sort of "Venn diagram set theory".
This is not to say that the axioms do not apply to
relationse functionse or other sets of ordered pairses but

only that they do not refer to these sorts of objects as

suche

In the next sections we define a language just strong
enough to express EXCOREe We then construct a theory by
taking all statements in this lanquage which are true over
all finite power setse By drawing statements only from
this relatively weak languages we arrive at a theory which
can be satisfied over infinite power setse But since we
include in the theory 211 statements of the language which
are true over any finite power sets we know that no
statement in that language can arise as something which
ought to be true over infinite power sets but might be

incompatible with our theorye

There remains the possibility that we could follow the same
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strategy with a more expressive languages though it would
have to remain le.s expressive than the full language of
set theorye In facts we shall indicate in the final
chapter that such a language can be obtained by including a
notion of the product of set sizese This in turn opens the
possibility of a succession of richer languages and a
corresponding succession of stronger theories of size. At
this pointe the possible existence of any such hierarchy is
sheer speculation; we mention it only to emphasize that no
claim is made here that we have the strongest possible

general theory of set sizee.

3.1 CS - THE THEORY OF CLASS SIZE

The theories discussed in this paper will be formulated
within first order predicate logic with identitye. To
specify *he language in which a3 theory is expresseds thens
we need only list the individual constantss predicatess and
operation symbols of the language and stipulate the ganke
or number of argument placess for each predicate and each

operation symbole

Definition 3elel

(a) L(C)es the lanquage of classesy is the first

order language with individual constants @ and I,
the one-place predicate ATOMs the two place
predicate ce and the two-place operation symbols =e

/\ ¢ and \/ ¢



(b) L(<)es ghe lanquage of size is the first order

language with the one-place predicate UNITs the

two-place predicates < and =y and the three place

predicate SUM,

(c) L(C<)s the language of class sizes is the first

order language containing all and only the non-

logical constants in L(C) and L(<)e.

Following the strategy outlined abovesy we define the theory

of class size in terms of interpretations of L(C<) over

finite power setse.

Definition 3ele?2

(a) If L(C) c Ly then A is a ;;andard

jnterpretation of L iff

(i) A = P(x) for some set xy and
(ii) A assigns the usual interpretations to all

constants of L(C)e thus:

A(l) = xo
A(R) = Po
A |= (3 cb) iff ac be

(b) If A is a standard interpretations and A =

P(x)e then x is the basis of As B(A).



Definition 3e¢le3 A is a8 standard finite interpretation

of L(C<) iff

(i) A is a standard interpretation of L(C()-

(ii) A has a finite basiss and

(iii) A |= (a8 < b) iff cd(a) < cd(b)
A |I= (a = b) iff cd(a) = cd(b)
A |= UNIT(a) iff cd(a) =1

Definition 3ele4 CSe the theory of class sizeys is the

set of all sentences of L(C<) which are true in all

finite standard interpretations of L(C<)e.

By drawing only on principles which can be stated in L(C)
we have at least ruled out the most obvious danger of
paradoxe That is to says since the notion of one-to-one
correspondence cannot be expressed in this languages
Cantor®s principle ONE-ONE will not be inciuded in the
theory CSe even though it is true over any finite power

sete

Since CS has arbitrarily large finite modelsy it has
infinite models. It isn't obvious that CS has standard
infinite modelsy in which the universe is an infinite power

sete In chapter 6 we show that such models do existe

The present chapter is devoted to getting 2 clearer picture

of the theory CSe Section 2 develops a set of axiomss CAy
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for CSe Section 3 outlines the proof that CA does indeed
axiomatize CSe This proof is presented in chapter 5S¢ after

a slight detour in chapter %e.



302 CA - AXIOMS FOR CS
Here we shall develop a set of axiomsy CAy for the theory

CSe This wiil be done in several stagese

3e201 BA - Axijoms for atomic boolean algebrae

we'll begin with the obviouse Since all of the universes
of the interpretations mentioned in the definition of CS
are power setse they must be atomic boolean algebras ands

sOe must satisfy BA:

Definition 3«.2ele¢ BA is the theory consisting of the
following axioms:
Xx\/y=y\/x

x /Ny =y /\x

x \/ (y \/ 2) (x \/ v) \/ 2

x /\ (y /\ 2) (x /\ v) /\ 2

x /\ {y \/ 2) (x /\ ¥) \/ (y /\ 2)

x \/ (7 /\ 2) (x \/ vy) /\ (y \/ 2Z)

]

I

x /\ (I = x)

x \/ (I - x)

X Cvy €->» (x \/vy) =yé&xyy

ATOM(x) €=>» (y)(y c x €=> y = JJ)

x # 9 -> (Ey)(ATOM(y) & (y ¢ x { y = x) )
Remarke These axioms are adapted from (Monke Defe.
93y pe 14l and Defe 9428y pelSl)e Though we refer
to this theory simply as BAy note that atomicity is

includede.
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BA is clearly not a complete axiomatization of CSe since BA
doesn®t involve any size notionse But BA does entail all
sentences in CS which do not themselves involve size
notionse To show this we need to draw on some established
facts about the complete extensions of BA (in the language
L(C))e The key idea here is that complete extensions of BA
can be obtained either by stipulating the finite number of
atoms in a3 model or by saying that theve are infinitely

many atomse

Definition 3e2¢2¢ For n > 1o
(a) ATLEAST{n} is a sentence which says that there are
at least n atoms:
EXloeoeEXeN(ATOM(X1l) £ eee £ ATOM(Xxan)
€ (€ {(xei /\ Xej =P) 2 0 <1 < j<£n}))
(b) EXACTLY{Nn} is a sentence which says that there are
exactly n atoms:
ATLEAST{n} & ~ATLEAST{n+l}
(c) INF is a set of sentences which is satisfied in all
and only infinite models of BA:
INF = {ATLEAST(n} 2 n > 1}
(d) BA{n) = BA; EXACTLY{n]}

(e) BAI = BA \/ INF



Fact 3¢243

(a) For n > 1y BA(Nn} is categorical (Monky
Cor 9432+ Dpel152)

(b) For n > 1ls BA{Nn} is completee (Immediate from
(a))e.

(c) For n > 1e any n-atom .. 1c boolean algebra is
isomorphic to any finite standard interpr.tation of
L(C) with an n-element basise (Monks Prope 9¢30y
PelSl)e

(d) BAl is complete. (Monke Theorem 2le34y pe 360)o

(e) BAI and the theories BA[(n}y n > 1y are the only

completes consistent extensions of BA.

Fact 3e2e4e If BAl |- g then ¢ is true in some finite
model of BA.
Proof:
BA \/ INF |- g
By compactnesss thens there is a k such that
BA \/ (ATLEAST{n} = 1 < n < k} |- ¢
So g is true in any atomic boolean algebra with

more than k atomse.



Theorem 3e¢2e5¢ If CS |~ g and g € L(C)e then BA |- g
Proof:
If BA |# g¢ then -~¢g is true in some atomic boolean
algebras Ae If A is finitey then A is isomorphic
to some finite standard interpretation A' of L({C)e.
But then =~¢ is trﬁe in A*y sO @ is not true in A’

and ¢g is not in CSe

If A is infinites then ~¢g is consistent with BAIl.
But BAI is completes so BAIl |- ~ge By 3e2:4¢ =g is
true in some finite model A of BA. Hences ~¢g is
true in some finite standard interpretation of L(C)

ande againe ¢ is not in CSe.



Here we just gather the principles presentec above as

EXCOREe.

Definition 3e2¢6e SIZE consists of the following
axioms:

SUBSET: x c ¥y =>» x <y

DEF>: X >y €->» y < x

DEF=: X T y €->» INDISC(xey)

REPC: x <y =>» (Ex*)(x* = x & x* ¢c vy)

IRREFC: =~ (x < x)

TRICH: x <y § x Sy ! vy < x

DEF+: SUM(xeyez) <€->

Ex'Ey*( x ¥ x* £ y = y' &€ x* /\ y* =0
L x* \/ y*' =2)
DISJU: (x = x* &y = y* € x /\y=0¢€x"/\y'=D)
=> (X \/ Yy) =T (x* \/ y")e

DEF1: UNIT(x) €-» ATOM(x)
Combining the principles of boolean algebra and the size
principlesy we obtain our first serious attempt at a

general theory of set size.

Definition 3.2.7« BASIC = BA \/ SIZE
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Basic is not a compliete axiomatization of CSe In this
section we shall exhibit an infinite number of principles
which need to be added to BASIC in order to axiomatize CSe.
When we are done we will have an effective set of

sentencesy CA (for Class-Sizey Axiomatic)e though we will

not prove that CA = CS until chapter 5.

To show that the new principles really do need to be addeds
we'll need some non-standard models of BASIC. These models
will be similar in that (1) their universes will be subsets
of P(N)es (2) their atoms will be the singletons in P(N)»
and (3) all boolean symbols will receive their usual
interpretationse The models willy howevers include
different subsets of N and will also assign different size

orderings to the these setse.

In chapter 6+ these models of BASIC will reappear as
submodels of various standard models of CS over P(N)e So¢
in addition to the immediate purpose of establishing
independence resultse these models provide a glimpse of how

sets of natural numbers are ordered by size.
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Every finite standard interpretations Ay of L(C<C) satisfies

exactly one of the tollowing:

EVEN: (Ex)(Ey)(x = y E x /\ Yy =0 €& x \/y=1)
ODD: ExEyE2fx T y &€ x /\y =X /\N 2 =y /\NZ =29

€ ATOM(2) &€ x \/ v \/ 2

I)

A |= EVEN if cd(B(A)) is even and A |= ODD if cd(B(A)) is
odde S0 CS |- (EVEN ; ODD). But BASIC |# (EVEN ! 0DD)e
Consider the model F whose universe consists of all and

only the finite and cofinite subsets of Ns where (for a and

b in F):

Im
1]

(8 < b) iff
(i) a and b are finite and cd(a) < cd(b)s or
(ii) a and b are cofinite and cd(N-a) > cd(N-b)s cr

(1iii) a8 is finite and b is infinitee

F is a model of BASICe But neither EVEN nor 0ODD is true in
Fe for any two sets that are the same size are either both
finites in which case their union is also finites or both

cofinites in which case they cannot be disjointe

So (EVEN | 0ODD) is in CSe but not entailed by BASIC. As
you might suspects this is just the tip of the iceberg of
principles missing from an axiomatization of CSe.

Informallys we can extend F to a model that satisfies EVEN



by including the set of even numbers and the set of odd
numbers and making them the same size. To round out the
result to a model of BASICs we 21s0o need to include all
sets which are "near" the set of evens or the set of oddse
ieee those that differ from the evens or odds by a finite
sete With these additions mades the new model will be
closed under boolean operations and will satisfy BAe« There
is a (unique) way of ordering these added sets by less-
than that will satisfy BASIC: rank them according to the
size and direction of their finite difference from the odds
or the evense SOy we can construct an infinite model of

BASIC; (EVEN ' 0DD)e

But this model will still not satisfy CSs as we can see by
generalizing the argument abovee. (EVEN | 0ODD) says that
the universe is "roughly divisible" by two: EVEN says that
the universe is divisible by two without remainder; 0ODD
says that there is a remainder of a single atome We can
construct a similar statement that says the universe is
Yroughly divisible" by three == with remainder O¢ ly Or 2.
As with (EVEN ! 0ODD)es this statement will be in CS; but it
will be satisfied by neither our original model nor the
model as amendede Againe we can extend the model and again
we can produce a statement of CS which is false in the

resulting model.

We shall now formalize this line of reasoninge.
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Definition 3e¢2.8¢ If 0 < m < ny

(a) MOD(nesm} is the sentence

(b)

EXI...EK.“EY!...Y.I’D (
(‘TOM(K!) € eee & ATUM(XQI’I)

£ ( € {Xei /\ Xoj

"
]
.
o
IA
-
A
[,
IA

n} )
&€ (& (yei /\ Ve

& (ATOM(yl) £ eee & ATOM(Y.I’“)

(1]
2

1<i<jgmy)

S

€ (X1 \/ eee \/ xXen) /\ (Y1l \/ eoe yem) P

I)

€ (X1 \/ eee \/ Xen) \/ (Yl \/ eee yem)
MOD{nsm} scys that the universe can be partitioned
into n sets of the same size and m remaining atomse
DIV{n} is the sentence’
MOD[NsOf ! ee= ! MOD{nen-=1}s
which says that the universe can be roughly divided
into n sets of the same size with fewer than n atoms

remaininge

Fact 3¢2¢9¢ If 0 < m < n and A is a finite standard

interpretation of L(C<)s then

(a) A = MOD{nem} iff cd(B(A)) = m mod ne

(b)

A = DIV(n}e.

(c) CS |- DIV{n}.



Theorem 342410« BASIC ¥ CSe

Proof:
If n > 1¢ BASIC (¥ DIV{(n}e The model F defined
above satisfies BASIC but not DIV{n}es for any n
finite sets have a finite union and any two

cofinite sets overlape Sos BASIC |# CSy by 3e2e9cCe

We could consider adding all DIV{n} sentences to BASIC in
the hope that this would yield a complete set of axioms for
CSe I did consider thiss but it doesn’t worke To
demonstrate thises we need some independence results for

sets of DIV sentences.

Definition 3.2.11

(a) DIV(J) = { DIV(n} : n € J}

(b) BOIV(J) BASIC \/ DIV(J)

(c) BOIV(y) BOIV({j})

Remark: “DIV" appears on the right hand side of (a) as
the name of the schematic function defined in 3«2e8be
(a) defines a functionsy whose name is "DIV"y from sets

of natural numbers to theoriese

Nur independence results will be obtained by constructing
models of BASIC which satisfy specific sets of DIV
sentenceses To build such models from subsets of Ne we
shall include sets which can be regarded as fractional

portions of N.



Definition 3e2el12e For n > Oy

(a) x is an n-congruence class iff x = {n¢tk + m }

for some me 0 < m < no

(b) x is an p-quyasi-congruence class iff x is the

union of finitely many n-congruence classese

(c) x is a congruence class iff x is an n-congruence

class for some ne.

(d) x is a ggasiwcongrueggg ¢lass) iff x is an n-quasi-
congruence class for some ne.

(e) QC(n) = {x 2 x is an n-quasi-congruence class]}

(f) OC = \/ {QC(n) : O < n}

Examples:

(a) The set of evensy {2k}es and the set of oddss
{2k+1l}s are both 2-congruence classese

(b) {3k ¢+ 2} is a 3-congruence classe.

(c) N is a l-congruence class;

(d) N is an n-quasi-congruence class for every n > 0:

N = ({nk ¢+ O} \/ eee \/ §nk + (n-1)}
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Fact 3e2.13

(3a) If x € QC(n) and y € QC(n)e then (x \/ y) €
QC(n)e

(b) If x € QC(n)e then (N - x) € QC(Nn)e.

Proof:

{3) Suppose

X Al \/ ece \/ 3¢k and

Y bl \/ eee \/ boj

Then
(2 \/ y) = 3l \/ eee \/ @ek \/ Dl \/ eee bej
(b) Note that N itself is the union of n n-congruence
classese If x is the union of m of these classesy
then (N - x) union of the remaining (n-m) n-congru-

ence classeses

Definition 3+2e¢l4e x iS near yo NEAR(Xoy)es iff (x - y)

and (y - x) are both finite.

Fact 3e2e15. x is near y iff there exist finite sets

wl and w2 such that x = (y \/ wl) = w2e.

Proof:
(->») Let wl = (x = y) and let w2 = (y - x)
(€-) Suppose x = (y \/ wl) - w2e Then (x - y) ¢ wl and

(y = x) ¢ w2¢ sO0 (x = y) and (y - x) are finitee.



Fact 3e2e16e If x1 ¢ x ¢ x2¢ x1 is near yy and x2 is
near ys then x is near ye
Proof:
Since X € xX2¢ (X = y) C (X2 = ¥)o
But (x2 - y) is finites so (x - y) is finitee.
Since x1 ¢ xeo (y = x) € (y = xl)e

But (y - x1) is finites so (y - x) is finite.

Fact 3e2¢17e« NEAR is an equivalence relatione.
Proof:
(3) x is near xy since x = x = Py which is finitee.
(b) If x is near ye then y is near xe. Immediatee.
(c) Suppose x is near y and y is near Ze Note that
(z - x) = ({(z/\y)=x)\/ ((z=¥) = Xx)e
But (z - y) - x is finite because (z - y) is finiteys
and ((z /\ y) - x) is finite because
((z /\ y) = x) c (y - x)s which is finitee.

So the unione (2 - x) is finitee.

Similarly,
(x = 2) = ((x /\y) = 2) \/ ((x=y) = 2Z)
where ((x /\ y) - 2) ¢ (y - 2)
and ((x = y) = 2) € (x = Y)e
So (x = 2) is also finitees

Hence X iS near Ze.
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Fact 3.2.18.

(a) If x1 is near x2y then (x1l \/ y) is near (x2 \/ Y)e

(b) If x1 is near x2 and yl is near y2y then (xl \/ vl)
is near (x2 \/ y2)e.

(c) If x is near ys then (N - x) is near (N - y)e

Proof:
(a) (x1 \/ y) = (x2 \/ y) ¢ x1'= x2
and (x2 \/ y) = (x1 \/ y) ¢ x2 - xle
Since x1 is near x2s (x1 - x2) and (x2 - xl) are
finitee Hencey any subsets of these sets are also
;inite.
(b) By (a}e (x1 \/ yl) is near (x2 \/ yl)
and (x2 \/ yl) is near (x2 \/ y2)e

So (x1 \/ yl) is near (x2 \/ y2)s by transe.

(c) (N - x) = (N -Yy) (y - x) and

(N = y) = (N - x) (x = y)e
So if x and y are near each othery so are their

complementse.

We can now define the domains of the models we'll be usinge

Definition 3e¢2e19.
(a) ?2(n) = {y ¢ y is near an n-quasi-congruence
class)e

{(b) @ = \/ {Q(n) ¢ n > 0}
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\
Examples
(a) Q(1) = {y ¢ yc Nand y is finite or cofinite}
(b) Q(c) = {y : yc Nand y is finitesy cofinitey near

{2n}e or near {2n + 1}}e SO Q(2) is the domain of the

model constructed above to satisfy DIV{2}.

Refore we construct models of SIZE over these domains we
will show that if n > 0y then Q(n) forms an atomic boolean

algebra under the usual set-theoretic operationse

Fact 3e2020e If A is a class of sets such that

(i) \/ A € A,

(ii) if x € Ay then {( \/ A - x) € Ay and

(iii) if x € A and y € Ay then (x \/ y) € A,
then A forms a boolean algebra under the usual
set-theoretic operationssy where *I' is interpreted as

Ae (See Monksy Defe 9ele pelédl and Corr Fe4y pels?)
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Theorem 3.2.21e FoOr any ne Q{n) is an atomic boolean

algebra under the usual set-theoretic operationse

Proof:
First we show that Q(n) is a boolean algebra by veri-
fying each of the conditions in Fact 3e2420.
{3a) \/s Q(n) = No since N € Q(n) and if x € Q(n)s x C No&
(b) If x € Q(n)e then (N-x) € Q(n):
Suppose y € QC(n)
and x isS near ye
So (N - y) € QC(n)s by 3e¢2613D
and (N - x) is near (N - y)s by 3.2.18be
So (N - x) € S(n)e
(c) Supposé x € 2(n)
and y € Q(n)e.
Then x is near x'
and x* € QC(n)es for some x‘%e
And y is near y°'
and y* € QC(n)es for some y'e
dut then (x* \/ y') € CC(n)es by 3e2.138a
and (x \/ y) is near (x* \/ y') by 3.2.180¢

So (x \/ y) € QC(n)e.

Thuse N(n) is a boolean algebra. Moreovers every
singleton is in Q(n}s since all singletons are near

Pe SO Q(n) is an atomic boolean algebrae.



we shall now define a size function on all sets which are
near quasi-congruence classese The sizes assigned to sets
are ordered pairse The first member is a3 rational between
0 and 1 which represents the density of the sete. The
second member is an integer which represents the finite
(possibly negative) deviation of a set from "average" sets
of the same densitye Firsty we define the ordering and
arithmetic for these sizes with the intention of inducing
the size ordering and SUM relation for sets from the

assignment of sizes to setse

Definition 3s2e22e¢
(a) A size is an ordered pair <Psd>¢ where B is a

rational and @ is an integere.

(b) If €1 = <Pl+U1> and 82 = <P2+32> are sizess then
(i) 81 < 82 iff Pl < P2 or (Pl = P2 and Tl < T2)e.

(ii) 681 +« 82 = <Pl ¢ P2y Tl + TJ2>.

Only some of these sizes will actually be assigned to setse.
Specificallys a size will be assigned to a set only if 0 <
P < le Moreovery if p = Oy the @ 2 0 and P = 1y then T <

Oe

OQur intention in assigning sizes to sets is as follows:
Suppose x is near an n-quasi-congruence class x'y SO x* is

the union of k < n n-congruence classess The set x* has
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density k/n and this is the valuesy Po assigned to xe« The 3
value assigned to x is the finite number of elements added
to or removed from x* to obtain xe The definitions and
facts belcw formalize this intention and demonstrate that

the assignment of sizes to sets is well-definede.

Fact 3e2.23
(a) If x € QCy y € QCy and x # ye then x isS not near y
(ie2e NO two quasi-congruence classes are near each
others)
(b) Any set is near at most one quasi-congruence classe
Proof:
(a) Let n be the least number such that
x € QC(n) and y € QC(n)e

So each is a union of n-congruence classes:

X Xel \/ ees \/ Xek

Y.l \/ eec \/ Y.‘o

and vy
Suppose a € (x - y)
Then @ € xeie for some i
but -~(a3a € yej)y for any ye
SO Xei # yejs for any je
SO Xei € (X = y)o
SO0 (X - y) is infinites since xei is infinites
Similarlyy if @ € (y - x)y then (y - x) is infinitee.
(b) If x were near two quasi-congruence classess the two
would have to be near each others since NEAR is an

is transitivees But this is impossible by (a)e.
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Notices howevery that a set can be in Q(n) and in Q(m) even

if n # me because a given quasi-congruence class may be in

QC(n) and QC(m)e.

Definition 3e2e¢24e If x is near a quasi-congruence

classe then:

(a) C(x) = the quasi=-congruence class nNnear xe
(b) Dl(x) = x = C(x)e
(c) D2(x) = C(x) - xe

Note that Dl(x) and D02(x) are finite and that

x = (C{x) \/ Dl(x)) = D2(x)e

Definition 3e¢2e¢25¢. If x € QCy then

(a) 3(x) the least n such that x € QC(n)e.

(b) B(x) the least k such that x is the union of k
d(x)-congruence classes (leees the unique k such
that x is the disjoint union of k J(x)-congruence

classes)e

Examples:

(a) If x = {(2n ¢ 1}y 3(x) = 2 and B(x) = le.
(b) If x = f4n ¢« 1} \/ {4n + 2}y 8(x) = &4¢ B(x) = 2o
(c) If x = g4n ¢ 1} \/ {(4n + 3}y 3(x) = 2y B(x) = 1y

since x = [(2n + 1l}e.
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Definition 3.2¢26. If x € Q¢ then

(a) P(x) = B(C(x))/3(C(x))
(b) J(x) = cd(Dl(x)) - cd(D2(x))
(c) 8(x) = <P(x)oT(x)>

We canes a3t lasty define the models to be used in our

independence proofe.

Definition 3¢2¢27¢ For n > 0y Q(Nn) is the interpreta-
tion A of L(C<) such that
(i) A = Q(n)e

(ii) Boolean symbols receive their usual interpretationy

(iii) A |= x <y iff 8(x) < B8(y)s
(iv) A |= x = vy iff 8(x) = 8(y)s
(v) A |= UNIT(x) 1ff 8(x) = <0eldy

(vi) A 1= SUM(xsye2z) iff O(x) ¢ O(y) = 6(x)e

To show that the models Q(n) satisfy BASIC we will need the

following facts about congruence classese.

Fact 3e2.28
(a) If x = fa*=n + b} and a2 = a%*ce then

x = \/ { (a2%n + (i%¥a ¢« b)} 2 0 < i < c}
(b) If x € QC(n)e 3and m = k*ny then x € QC(m)e.
(c) If x € QC and y € QCy there is an n such that

x € AC(n) and y € QC(n)e
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(a) If k € f(a2%n + (i%a + D)} for some iy

A

0< i

k =

So k €

Ce theny for some nly

(32%n]l ¢+ i*a ¢ b)

axcknl + i*a + b

a®{c*nl ¢+ j) + »

Xe

If k € xo»

Let n2 be

az2¥n
Let k*
Since k
az2¥n2
K

So k*

But k

So k

(b) By (a)y

<

there is an nl such that k = a%*nl ¢ be
the greatest n such that

Ke

k - a2¥*nle.

b mod a and

0 mod av

b mod a.

a*i + by where 0 < i < ce

az2z¥n2 + k*

a2*¥n2 ¢+ a%¥i ¢ be

{a2%n + (i%a + D)}

each n-congruence class is a finite union

dis joint m-congruence classese

(c) Suppose x € QC(nl) and y € QC(n2)e.

Thens by (b)s both x and y are € CC(nl*n2).

of



Theorem 3¢2¢29e.
By 3e2e2)0 Q(n)
= BASICe.

Tinear ordering

ordering and IRREFy

The < - relation of Q(n)

T4

For any n > Q0es Q(Nn) |= BASIC.e Proof:

is an atomic boolean algebra; so Q(n)

is induced from the

of sizes; so it is a quasi-linear

TRICHy and DEF= are satisfiede AsS

for the remaining axioms:

(a) SUBSET:

Suppose x € y:

If C(x)
then pP(x)
and
where
So d(x)

But

if C(x)

then C(x)

So P(x)

In either cases 8(x) < 8(y) so Q(n)

(b) REPKC:
Suppose Q(n)
so 8(x)
and 8(y)
and either kl <
or kl =
We want tc
Q(n)
and x' ¢

If k1l =

at least one of these

C(y)
P(y)

Dl(x) ¢ Dl(y) and D2(y) ¢ D2(x)

inclusions is propere

< d(y)e

7 C(y)

c C(y)

< Ply)e

= x < ye
1= x <y

= <kl/ne.dl>

= <k2/nyd2>

k2

k2 and dl < d2e.

such that

find some x°?

k2 > Oy then y must be infinite;
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so x' can be obtained by removing (d2 - dl)
atoms from ye

If k1 = k2 = Oy then 0 < dl < d2;

sOs againe x*' can be obtained by removing
(d2 - dl) atoms from vye.

I1f k2 > k1 > 0y then let yl be the union of
k1l n-congruence classes contained in C(y)e.
So (y - yl) is finite and (yl - y) 1is
infinitee Let y2 = yl - (yl = y) = yl /\ ye
So 8(y2) = <kl/ne =-d3> where d3 = cd(yl-y)
Finallys let d4 = d3 ¢ dl and x' = y2 \/ y3»
where y3 ¢ (yl - y) and cd(y3) = dé4.

If k1 = 0y then x is finitee So if k2 > 0 (y is
infinite)s there is no probleme If k2 = Gy
then dl < d2; so y is finite but has more
members than xe So let x' be some proper
subset of y with dl memberse

(c) DISJU: It is sufficient to show that if x and y are
disjointe then 8(x \/ y} = 6(x) ¢ 8(y)e We
need the following three facts:
(i) C(x \/ y) = C(x) \/ C{y) (see Fact 302418Db)
(ii) Dl(x \/ y) = (Dl(x) \/ Dl(y)) = (C(:) \/ C(y))
(If a € x \/ y but a not € C(x \/ y)s+ then
a € DlI(x) or a € Dl(y);: any element of Dl(x)
is also in Dl(x \/ y)s unless it is in C(y):
any element of Dl(y) is in Ol(x \/ Y)¢ unless

it is in C(x)e)
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(iii) D2(x \/ y) = (D2(x) \/ D2(y)) - (Dl(x) \/ Dl(y))
(Note that if x € Qv y € Q and x /\ y = D
then C(x) /\ C(y) = @; otherwise C(x) and C(y)
have an infinite intersectiocne
Hencey if a € C{x \/ y) - (x \/ Yy)
then a € C(x) - X9 1e€e A € D2(x)
or 3 € C(y) = yy ie€o 3 € D2(y)e

And if a € D2(x)es then a € D2(x \/ Yy)

unless a € Dl(y)

And if a € D2(y)s then a € D2(x \/ vy)

unless 3 € Dl(x).

From (ii) we obtain (iia):
(i1a) cd(Dl(x \/ y)) = cd(Dl(x) \/ Dl(y))
= cd((01(x) \/ Dl(y) /\ (C(x) \/ C(y)))
and from (iii) we obtain (iiia):
(iii3) cd(D2(x \/ y)) = cd(D2(x) \/ D2(y))
- cd((D1(x) \/ Dl(y) /\ (32(x) \/ D2(y)))
But Dl(x) and Dl(y) are disjointy Since x and y are

disjoints so

(iv) cd(Dl(x) \/ Dl(y)) cd(Dl(x)) ¢ cd(Dl(y))

dl(x) + Bl(y)
And since D2(x) ¢ C(x)e

and D2(y) c C(y)e

and C(x) /\ C(y) = @

and D2(x) /\ D2(y) = P

we may conclude:



(v) cd(D2(x) \/ D2(y)) = B2(x) + d2(y)

Soo

l(x \/ y) - B2(x \/ vY)

(dl(x) ¢ Tl(y)) = (Q2(x) + A2(y))

(B1(x) - T2(x)) + (Tl(y) - B2(y))

a(x) +« d(y)
And B(x \/ y) = B(x) * P(y)s Dy (i)
So 8(x \/ y) = 6(x) + 8(y)

(d) DEFe:

Suppose Q(n) |= SUM(xeyez)

So 8(z) = O(x) + 8(y)e
Clearly 8(x) £ 8(2)
Assume 8(x) = 8(z)
then 8(y) = <0.0>

so y = @ and the consequent of DEF+ is
satisfied (let x' = zy y*' = @)
Assume B8(x) < 8(2)
Then JA(n) |= x' = x

and x* ¢ 2y for some x'e since Q(n) {= REP<.

Let y°* Z - x'e
So x* and y* are disjoint sets whose union is z
We claim 8(y) = 8(y*) (so Q(n) |=y = y*):
For O(x*) + O(y*) = 8(z)+ by DISJU.

But 9(x*') = €(x)

So 8(y*) 8(z) - 8(x)
= 8(y) ("Cancelling®” is valid for

sizes because it is valid for
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rationals and integerse)
Converselys

If ©(2) = 8(x*) + 8(y*')

and €(x*) e(x)

and 6(y*) 8(y)

then 8(x) = 8(x) ¢« 8(y)
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Theorem 3.2¢30e FOr n > 0y Q(n) = DIV{m}

Proof:

iff mine

(€-) For each iy 0 € i < ne let Aei = [n¥k * ije.

SON=\/[Aoi=0_<_i<nlo

If i # jo Aei /\ Aej = @ and
Q(N) 1= Aei T Aeje
since B(Aei) = B(Aej) = <1/ny0de
Letting p = n/me group the n sets Aei
m collections with p members in each:
Bleeeoeos Beme
Letting bej = \/ Bej for 1 < j < my
bej € Q(n) and
@(bej) = <p/ne0> = <1/my 0>

Furthermores bel \/ ece \/ bDem = No

(=») 8(N) = <140>.

into

Hencee if m disjoint sets of the same size

Ne they must each have size <1/ms0>e

But if x € Q(n)e then 8(x) = <a/nsb>¢ for

integral a and be So b = 0 and a = m/ne.

Definition 3e2e¢31le If J # @ and J is finites

the least common multiple of Je V(J)o

is the

exhaust

then

least k which is divisible by every member of Je.

Remarke V(J) always exists since the product of all

members of J is divisible by each member of J.

Usuallyy the product is greater than V(J).
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Corollary 3e2e32. If J is finites then

(a) If BDIV(n) |- DIVim}es then m | ne.

(b) 1f BDIV(J) |- OIV{m}e then m | V(J)e.

(c) There are only finitely many m for which
BOIV(J) |- DIVim}e.

Proofe

(a) If m J ne then Q(n) 1= BDIV(n);-~DIV{m}.

(b) Q(9(J)) 1= BDIV(J) since it satisfies DIV{j}
for each j € Js by (a)e But if m Jy V(J)» then
Q(V(J)) 1# DIV{m}.

(c) Only finitely many m divide V(J)s so by (D)o

BDIV(J) entails only finitely many DIV(m}e.

we are now ready to show that 30IV{n} |¥ CS by finding a
sentence in CS which entails infinitely many DIV sentencese
Such sentences can be produced by generalizing the notion
of divisibility to all sets instead of applying it only to

the universea

Definition 3233
(a) If 0 < Ny then Times{n}(xsy) is the formula:
ExOeeeXen (xO0 = P & xXen = y &
€ {SUM(xe(i=-1)exexei) : 1 < i < n} )
So Times{n}(xsy) says that y is the same size
as the disjoint union of n setsy each the same

Size as Xe

(b) If 0 < m < ny then Mod(noem}(2Z) is the formula:



ExEyEVEW(Times{n}(xov)
£ UNIT(y)
€ Times{m}(yow)
&€ SUM(veweZ) )
So Mod(nem}(2) says that z can be partitioned
into n sets of the same size and m atomse
(c) Div{n}(2) is the formuls
MOd{NeOJ(Z) ! ees ! MOD({nen-1}(2)
(d) Adgdiv{n} is the sentence

(x)Divi{n}(x)

Remarke We have taken this opportunity to formulate
the divisibility predicates purely in terms of size
predicatese Notice that in the presence of BASIC,

MOD{nem} = Mod{nem}(I)

Fact 3e2e34e CS |- ADIV{Nn}s for every ne
Proof: Every set in every finite standard
interpretation is a finite seto and all finite sets

roughly divisible by every ne

are
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Fact 3¢2¢35. BASIC;ADIV{n} (-2
(a) ADIV{n%%m}s for all my
(b) DIV{n}e and

(c) OIV{n*%m}s for all me

Proof:
(a) By induction on m: if m = le then n¥*¥*m = ne SO
ADIV{n} |- ADIV{n%xm}e. If T |- ADIV{n*2k}s A |= Ty and

x € Ay then x can be partitioned into n*#*k sets of the
same size and i atomss where i < n%**ke Each non-atomic
set in the partition can be further partitioned into n
sets of the same size and j atomss where j < ne Thusy
we have partitioned x into (n%*k)*n sets of the same
size and ((n¥*k)%*j + i) atomse But (n*Xk)*n = n¥¥(k+l)

ands since i < nt%¥k and j < ne (n¥Fk)%¥j ¢ i < n¥*(kel)e

Hence A |= ADIV{n**(ke+l)}.

(b) Obviouse.

(c) Immediate from (a) and (b)e



Theorem 3e¢2¢36¢ BDIV(N) # ADIV{n} for any n > loe

Preoof:

If BDIV(N) |- ADIV{n})s then by compactness there is a
finite set J such that BDIV(J) |~ ADIV(nje But then
BDIV(J) |- DIV{n*%k} for every ke by fact 3<2.35ce But
this contradicts the fact that 8D0IV(J) entails only

finitely many DIV{n} sentences (Fact 3e2e32)e

Soy even if we add all of the Dlv-sentences to BASICe we
are left with a theory weaker than CSe Since this weakness
has arisen in the case of ADIV sentencess it is reasonable

to attempt an axiomatization of CS as follows:
Definition 3e2¢37 CA = BASIC \/ (ADIV{n} = n > 0}
The remainder of this chapter and the next two are devoted

to showing that CA iss indeedy a complete set of axioms for

CSe
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3.3 REMARKS ON SHOWING THAT CA = CSe.

We know that CS |- CA and we want to show that CA = CSy
ieee that CA |- CSe To do sos it will be sufficient to
show that every consistenty compliete extention of CA 1S

consistent with CS:

Fact 3e3ele
(a} (Lindenbaum®s lemma) Every consistent theory has a
consistentsy complete extensione (See Monky Theorem

1le¢13, DOZOO)Q

(b) If every consistenty c0mplete'extension of T2 is

consistent with Tle then T2 |- Tl.

Proof of b:

Suppose Tl |- @y T2 (7 #ge¢ Then T = T2i-¢ is
consistents T has a consistenty complete extension,
T*y by Lindenbaum®s lemmaes Since T2 ¢ Te T* is also a
consistent complete extension of T2 But T* is not

consistent with Tl

Definition 3e3e2e T' is a completion of T iff T' is a

completey consistent extension of Te

To prove that every completion of CA is consistent with CS,

we define two kinds of completions of a theorye.
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Definition 3e¢3e3a

(@) T* is a finite completion of T iff T' is true in

some finite model of Te

(b) T* is an jinfinite completion of T iff T* is true in

some infinite model of Te.

Fact 3e3e4e If T® is a completion of Ty and BA c T
then (T*' is a finite completion of T iff T? is not an
infinite completion of T)e
Proof:
(-»)e Suppose A is a finite model and A |= T', Since
T* is completey
T* |- EXACTLY{n)}es where n is the number of atoms in
Ae SO T* |- -ATLEAST{n+1l} and has no infinite
modelse
(€=-)e T* |- ATLEAST{Nn} for every ne so 7' has no

finite modelse.

Fact 3e3.5

(a) Every finite completion of CA is equivalent to
CASEXACTLY([(Nnges fOr some no

(b) Every finite completion of CA is consistent with CSe

Proof:

(a) CA )= SASIC ands by theorem 2eleb6s BASIC is
categorical in every finite powere.

(b) The models As of CA;EXACTLY{n} is a standard

finite interpretatione So A |= CSe
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Definition 3¢3e6

(a) CAIl CA \/ INF

(b) CSI CS \/ INF

Sos to show that every completion of CA is consistent with
CSe we may now concentrate on showing that every completion

of CAI is consistent with (CSI.

Whate thene are the completions of CAI? Recall that CA
entails OIV{n} for every n > 0y where DIV{n} is

MOD{NeO} ! eee ¢ MID{nyn-1}
So any completions Ty of CAI has to "solve" the disjunction
DIV{n} for each n == that ises T has to entail one of the
disjunctse The main result of this chapter is that we can
complete CAI by specifyinge for each ne the number cf atoms
remaining when the universe is divided into n disjoint

subsets of the same sizee

Definition 3e¢3e7

(a) f:N+ ==> N is a gemainder function iff

0 € f(n) < n for all n € Dom(f)e (Henceforth,

*f' ranges over remainder functionse)
(b) f is total iff Dom(f) = Ne¢; otherwise f is partiale.
(c) f is finite iff Dom(f) is finitee

(d) n is a8 solution for f iff for any i € Dom(f),

n = f(i) mod ie

(e) f is gongruous iff for any i and j € Com(f),
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gcd(i.j) I (fli)=f(j))i otherwise f is incongruous.

(f) The remainder theory specified by fe RT(f)e is

{MOD(nem} : f(n) = m}e.

(g) If T is a theorye T(f) = T \/ RT(f)e

It will be shown in chapter S that if f is totaly CAI(f) is
complete and that these are the only complete extensions of
CAle In this sections we will show that CAI(f) is

consistent just in case CSI(f) is consistente

Fact 3e3e8

(a) If f is finitey then f has a solution iff f is
congruous iff f has infinitely many solutionse
(See Griffine Theorem S-11ly po 80e)

(by f is congruous iff every finite restriction of f
is congruouse

(c) There are congruous f without any solutionse. (Let
f(p) = p-1 for all primes pe Any solution would

have to be larger than every primes)

Theorem 3e3.9

(a) If f is finites then CS(f) is consistent iff
f is congruouse

(by CS(fY is consistent iff f is congruouse.

(c) CSI(f) is consistent iff f is congruouse
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Proof:

(a) (—)f Let ¢ = & {RT(f)}e Since CSi¢ is consistenty
there is some n such that Fen |= ge So n is @
solution of f ands hences f is congruous by 3.3.8a.
(€-) If f is congruouss f has a solutions no
So Fen |= CSige

(b) (->) For every finite restrictiony gy of fe CS(Qg)
is consistents By (a)s each such g is congruouse
Hence f is congruous by 3e3e.8be
(€-) Every finite restrictions gy of f is congruouse.
So CS(g) is consistents by (2)e By compactnesss
theny CS(f) is consistente.

(c) (=) If CSI(f) is consistenty so is CS(f)e Sov
by (b)e f is congruouse
(€-) By compactnessy it is sufficient to show that
every finite subtheoryes Te of CSI(f) 1s consistente.
But if T is such a theorys then

T ¢ CS(g) \/ (ATLEAST(i}: i < n}
for some n and some finite restrictiony gy Of fe
Since f is congruousy g is as welley by 3e348h,
So g has arbitrarily large solutions and CS(g)
has finite models large enough to satisfy Te

Hencey T 1S5 consistente

We now want to prove a similar theorem for CAy oOur proposed
axiomatization of CSe To do thises we must first establish

that certain sentences are theorems of CA.
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Lemma 3¢3¢10s If Nnimy O < g < Ny and p = q mod ne then
CA |- MOD{(mep} =-» MOD{neq}e
Proof: Suppose A (= CA;MOD{mep}s k1l = m/ne and
P = n¥k2 ¢+ qe SO B(A) can be partitioned into m
sets of the same size
b(lel)y eeo 9 D(len)y bD(29l)s eee s b(klyn)
and p atoms
A(loel)y eae 9 a(k29Nn)y Cely eees CeQ

For 1 < i £ ny let

Bei = \/ {b(joen) 1 < j Lkl} v/

1 € j < k2)

\/ {a(jen)
Since A |= OISJUe A |= Bei = Bejo for all i and j
between 1 and ne Furthermore,
B(A) = \/ {Beiz 1 € i £ N} \/ Cel \/ eae \/ Ceq

So A |= MOD{ne+Qq}e.

Lemma 3e¢3elle If O < p < q < my then
CA |- MOD{mep} =>» -~MOD(meq}e

Proof: SupposeA |= (MOD(msp} € MOD{meq}):

!
-

Then A 13 x1 \/ eoe \/ Xem \/ al \/ eee \/ aep

1]
-

and A |= yl \/ eee \/ Yem \/ Dl \/ ees \/ beq
where the a's and b's are atoms and the x*s (y's)

are disjoint sets of the same size (in A)e

Let X = X1 \/ eee \/ Xem
Y = Yl \/ esee \/ Yem
A = a3l \/ eee \/ Q0ep
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B = bl \/ ece \/ Dep
B' = bDeptl \/ eee \/ begq
We claim that yl < xle For if yl = xles then

(X \/ A) = (Y \/ B) and if x1 < yls then

(X \/ A) € (Y \/ B)y by DISJU; neither is possible
since (Y \/ B) ¢ I = (X \/ A)e SO yei < xei for

1 i < me Since A |= REP<y there is a proper
subset y'si Oof xei which is the same size as yseie

Let Zei = Xei = y'ei

Y* Y'el \/ eee \/ Yy'em

2 Zel \/ eee \/ Zem

Soe Y? \/ Z =X =1 - A
and Y* \/ B® = ] - Be.
But A = By since each is the dis jeint union of p
atomse -‘Thus (I - A) = (I - B)s by RC=y so
(Y* \/ Z) = (Y \/ B*')Ye But Y' = Yy since for
each component of Y there is a component of Y!'
of the same sizee S0 Z = B's by RC=e

But 2 must be larger than B*'y for B®' is the
union of fewer than m atoms while Z is the union
of m non-empty setse SO the original supposition

entails a contradictione
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Theorem 3e3.1l2
(a) If f is finites then CA(f) is consistent iff f is
CONgruouse.
(b) CA(f) is consistent iff f is congruouse.
(c) CAI(f) is consistent iff f is congruouse
Proot:
(a) (€-) Follows from 3e3e9a since CA(f) c CS(f)e.
(->») Supposing that f is incongruouses there exist
iv je and k such that k = gcd(iej)e kKJ(f(i)=F(j))e
We will show that
(=) CA |- ~(MOD{ief (i)} €& MOD(jef(j)})
from which it follows that CA(f) is inconsistente.
Let p and q be such that
0 < peg < ky

f(i)

p mod ke and

f(J)

q mod Ke
By lemma 3+3.10¢y we have
(1) CA |- (MOD{ief(i)} -> MOD{(kep})e and
(2) CA |= (MOD(jef(j)} => MOD(keq})
since kii and kjlje Since kf(f(i)=-f(j))ey p # qe SO
lemma 3e3.11 yields
(3) CA |- (MOD{kep} - -MOD{ksQq})e
Finallysy from (l)y (2) and (3)es we may conclude (%)

(b) and (c) follow from (a) 8s in 3.3.9%.



Corollary 3e3e13e CAI(f) is consistent iff CSI(f) is

consistente

Proof: Immediate from 3e3e¢9C and 3e3el22cCes

It might help to review our strateqy before presenting the

difficult parts of the proof that CA = CS. The main

objective is (l)e which follows from (2) by 3e3elbe

(1) Ca - CS

(2) Every completion of CA is consistent with CSe

We already know that the finite completions of CA are
consistent with CS (see 3¢3¢5c) and that if CAI(f) is
consistenty the CSI(f) is also consistent (see 3e¢3.13)e

(2) is a consequence of (3)e.

(3) If T is a completion of CAIy then T = CAI(f) for

some totale congruous fe

To establish (3)s it is sufficient to prove («) because

every completion of CAl entails CAI(f) for some total fe.

(4) If f is total and congruouse CAI(f) is complete.

So

To prove (4)y we invoke the prime model test: if T is model

complete and T has a prime modely then T is complete (see

Ae3e3)e So (4) follows from (5) and (6).
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(5) If f is total and congruoussy then CAI(f) has a prime
model.

(6) For any fe CAI(f) is model complete.

Finallysy since any extension of a model complete theory is
also model complete (see Ae3eTa)e we can infer (&) from

(7)e

(7) CAI is model completee.

So (1) follows from (5) and (7).

The proof outlined here will be carried out in chapter Se.
Sut first we consider a3 simpler theorye PSIZEs which deals
only with sizes of sets and ignores boolean relationse
Chapter 4 formulates PSIZ2E and establishes that it is model
completes a result we need for showing that CAIl is model

completee
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4 THE PURE THEGORY OF CLASS SIZES

CS is about sets; it makes claims about sets in terms of
their boolean relations and their size relationse In this
chaptersy we identify a theory PCS (the pure theory of class
sizes)s which is not about setss but only about sizes of
setse "Sizes"s herey are equivalence classes of sets
having the same sizee PCS is formulated in the language of

size relationse L(<)e

PCS is worth examining in its own righty for if "number
theory" is taken to mean the theory of cardinal numbersy
then PCS is our version of number theorye. But our main
reason for introducing PCS is to aid the proof that CA is
model completees FoOr this reasons we will give only a

sketchy treatment of PCS itself.

Section 1 defines PCS and develops a set of axiomssy PCAy
for PCSy as follows: for each models As of BASIC: we define
a “size-model"s, S(A)s whose domain consists of equivalence
cilasses drawn from A under the same-size relation; PCS is
the set of statements true in S(A) for any standard finite
models Ae PCA consists of a theorys PSIZEs which holds in
S(A) whenever A |= BASIC and a set of divisibility

principlese

Using some results about model theory in section 2y Section



3 establishes that PCA is model completes the main result
of this chapter and the only result needed for subsequent
proofse This is done by reducing PCA to the theory 2Zgme
whose models are Z-groups taken modulo some specific

elemente.

Finallys, section 4 indicates how PCA could be shown to
axiomatize PCSe The method is the same as that outlined in

chapter 3 to show that CA = CSe.
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4ol SIZE-MODELS AND THE PURE THEORY OF CLASS-SIZES

Definition 4elele Suppose A |= BASICe Theny
(a) If x is a member of Ay then J(xeA) (5 the size
of x in A:
G(xsA) = {y: A |= x = y)
(b) S(A)e the size model for A is the interpreta-
tion of L(<) whose domain is (J(xeA): x € A} where
1) S(A) |= B(xeA) = B(yrA) iff A |= x = yy

2) S(A) 1= B(xeA) < B(ysA) iff A |= x < yo

3) S(A) = SUM(B(xeA)s T(yeA)e B(29A))
iff A |= SUM(xe ys Z)s and
4) S(A) 1= UNIT(B(xeA)) iff A |= ATOM(x)

(c) We shall use "!" as a one-place operator to be
read as "the complementary size of":

S(A) 1= (y = x!) iff S(A) 1= SUM(xsyel)

Notice that these interpretations are well defined because
the predicates are satisfied by elements of A in virtue of
their sizese For exampley if A |= SUM(xeyszZ) and

A 1= (2 = w)e then A |= SUM(Xeyosw)e



Definition 4cle2e PCSe the pure theory of class gsizege

consists of all sentences of L(K) which are true in the
size model of every finite standard interpretation of

L(C<)e

Definition 4ele3e PSIZE consists of the following
axioms:

Order axioms:

IRREF -~ (x < %)
TRANS (x < y) € (y € 2) = (x < 2)
UNIQ= X Ty €= x =y
MIN P < x
MAX x <1
TRICH x <y : xTyiy«<x
Unit axioms: UNIT(x) €-» (y < x €-> y = 0)

(Ex) UNIT(x)

Sum axioms:

IDENT SUM(xePox)
COMM SUM(xXeye2Z) €=> SUM(yoxe2)
MONOT SUM(xleyeZl) £ SUM(x2ey922)
-» {xl € x2 €->» 21 < 22)
ASSCC SUM(xeyewl) €& SUM(WleZow) & SUM(yeZew?l)
=>» SUM(xew2ew)
EXIST+ (E2)SUM(xeylez) & y2 < yl
-» (EZ)SUM(xey2s2)
EXIST- x < 2 =» (Ey)SUM(xvyysZ)

cCOoMmP SUM(xextel})
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Fact 4ele4e If A |= BASICs then S(A) |= PSIZE

PSIZE fails to axiomatize PCS for the same reason that

BASIC fails to axiomatize CS: the lack of divisibility

principlese We offer PCA as an axiomatic version of PCS:

Definition 4eleb6e PCA = PSIZE \/ (ADIV{n}: n > O}e

Fact 4ele7e If A I= CAy then §(&) |= PCAe

If A is a finite standard interpretation of BASIC with n
atomss then the elements of S(A) can be regarded as the
sequence

Os le eces n
with the usual orderinges where

S(A) |= UNIT(x) iff x =1
and

S(A) |= SUM(isjek) iff (i¢j) = k < n
Once n is fixedy this is the only interpretation allowed by
the axioms PSIZEe Notices in particulare that MONOT+ is

needed to rule out the interpretation in which SUM(is jsk)

is satisfied just in case (i*+j) = k mod (n+l)e.
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be2 SOME MODEL THEORY.

We shall use theorem 4e¢2¢1a to show that PCAI is model
complete and we shall use theorem &4e¢2.1b to shows in

chapter S5s that CAI is model complete.

Theorem 4e2ele

(3) (Monk) If T satisfies (¥)s then T is model complete.

(¥) If A |=Te B |= Ty A

10

By and C is a
finitely generated submodel of By then there
is an isomorphismy fe of C into A such that

if x € C /\ Ay then f{x) = xe

(b) If T is model complete and L{T) nas no function
symbolsy then T satisfies (%)

Proof:

(3) See Monks pe359.

(b) If L(T) has no function symbolsy then any finitely
generated structure over L(T) is finitee So sup-
pose C contains ale eeey aen (from A) and ble eee
bem (from (8 - A))e Let gl be the diagram of C
and obtain g2 from gl by substituting the vari-
able *x.i' for each constant ae.i and the variable
'yei® for each constant beie Finallyy obtain @3
prepending to #2 an existential quantifier for

each yeie SO g3 is a primitive formula.
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B 1= @g3(3lveecevraen)s so A does alsos by fact Ae3e5de.
Sos to obtain the desired isomorphisine map the a.i's
into themselves and map the bei®s into a sequence of
elements of A which can stand in for the existen-

tially quantified variables of ¢g3.

We shall refer to (¥) of 4«21 as "Monk®s condition®" and to

the mappinge fe as a "Monk mappinge."

We use Monk's theorem in chapter 5 to infer the model
completeness ¢f the theory CA from that of PCA. But the
model completeness of PCA is established by a method given
below to infer the model-completeness of one theory from

the model-completeness of anothers along with fact 4«22

Fact 4<2.2e

(a) If Tl is model complete and T2 |- Tle then T2 is
also model completee.

(b) If T is model complete in Ly and L®* is an expansion
of L by adjoining new individual constantsy then T

is model complete in L' (Monks pe 355).

Definition 4e2e3e¢ Suppose L1 and L2 are first order

languages and L12 = L1 - L2e A (simple) translation of

Ll into L2 is a functions Ty which:
(1) assigns to the universal quantifier a

(quantifier-free) formulaes T:As of L2 with exactly
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one free variabley

(2) assigns to each n-place predicatey Py in L12 a
(quantifier free) formulay ¥:Py of L2 with exactly
n~free variabless and

(3) assigns to each n-place function symboly Oy in
L12 a (quantifier free) formulay, T:0y of L2 with

exactly (n+l) free variablese.

Definition 4e2e4e If T is a translation of L1 into L2«
then ¥ extends to all formulae of L1 as follows:

(a) Predicates and function symbols of L2 are translated
into themselvese.

(b) T:(gl | @2)

T:pl | E:g2

(b) ¥:(gl | @2) T:gl | Y:p2

T (-g) = ~(T:9p)

T ((x)¥) (x)(E:A(x) =-> ¢)

T:(Exg) Ex(T:A(x) & @)
Pefinition 4¢2e5¢ If ¥ is a “ranslation of L1 into L2»
(a) The "functional assumptions of T" are the sentences:
(X1)eeo(Xen)( T:A(X1) & eee & ET:A(Xen) -->
(Eyl)( ®:A(yl) & (y2)( T:A(y2) -=>
(T20(Xle eoey XNoy2) €-=>yl = y2))
where 0O is a function symbol of L1 but not L2
(b) The "existential assumption of" ¥ js:

Ex T:A(x)
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The functional assumptions of a translation say that the
formulas which translate function symbols yield unique
values within the relevant part of the domain when given
values in the relevant part of the domaine The relevant
part of the domaines heres is the set of elements which
satisfy tha interpretation of the universal quantifiere
The existential assumption of a translation says that that
subdomain is non-emptye Notice that the existential and
functional assumptions of a translation are sentences of

L2

A translation is a mapping from symbols to formulaes but it
inducess in an obvious wayes a mapping from interpretations

of L2 into interpretations of L1:

Definition 4e2e6e If T is a translation from L1 into
L2 and B is an interpretation of L2 which satisfies the
existential and functional assumptions of Ty then T(8)
is the interpretations Ae of L1 such that:
(a) The domain of A is the set of elements of 8
which satisfy T:A,
() A interprets all predicates and
function-symbols common to L1 and L2 in the same
way that B doess and
(c) A interprets all predicates and function

symbols in L12 in accordance with the translations
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assigned by ¥y that is:

A 1= P(x) iff B |= ¥:P(x)

I»

1= (y = O(x)) iff B |= T:0(xsy)

Finallys, we c¢an formulate a condition on theories that
allows us to infer the model completeness of one from the

model completeness of the other:

Definition 4e¢2e7o
(a) If T is a translation from L(Tl) to L(T2)e then T1

is T-reducible to T2 iff for every model A of Tl there

is a model B of T¢ such that A = ¥T(B)e

(b) Tl is (simply) reducible to T2 iff there is a

(simple) translatione Ty for which Tl is T-reducible to

T2 (c) Tl is uniformly €-reducible to T2 iff for any

models Al and Bly where Al |= Tle Bl |= Tle and Al ¢
Bls there exist models A2 and B2y such that A2 |= T2
B2 |= T2+ A2 c B2+ Al = ¥(A2) and Bl = E(B2).

Lemma 4¢2e8¢ Suppose that Tl is ¥T-reducible to T2
and that Al = T(A2)e. Theny for any primitive
formulas ¢ge of L1 and any sequences Xy € Al

Al = p(x) iff A2 1= T:ig(x)

Proof:

Suppose
g(x) = Eyleceyen g*(x)

where g* is a conjunction of atomic formulae and
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negations of atomic formulaee.
Then Al 1= g(x)
iff Al |= Eyleeeoyen g*(Xoyloeoesyen)
iff Al |= g*(Xebleeceesben) (bei € Al)
iff A2 |= E:g°(Xebleeecsben)
iff A2 1= Eyleaoyen(E:A(yl) € eee & ¥:A(yen)
£ T:@'(Xoylonoasyen) )

iff A2 |= T:g(x)

Theorem 4e¢2¢9¢ If T2 is model completey ¥ is a simple
transliation from L(T2) to L(Tl)e and Tl is uniformly
¥-reducible to T2y then Tl is also model complete.

Proof: By Ae3e¢5d it is enough to show that given models
Al and Bl of Tle where Al ¢ Bl and a primitive
formulay ¢

if Bl 1= g(x) for x € Ay

then Al |= g(x)e
Since Tl is uniformly T-reducible to T2y there
are models of T2, A2 c B2 where Al = ¥ (A2)
and Bl = T(B2)e.
since Bl |= @g(x)s by assumption
B2 |= T:g(x)e by lemma 4e2e8e
So A2 |= T:g(x)e since T2 is model complete,

and Al (= g(x)s by Temma 4e2e8.
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We shall now define several theoriesys all more or less
familiary which will serve as stepping stones in

showing that our theory of size is model complete.

Definition 4e<2.10.
(a) The theory of abelian groups with identity has
the following axioms:

(1) x ¢ (y ¢+ 2) = (x + y) ¢+ 2

(2) x ¢+ y =y ¢+ x

(3) x « O X

(4) (Ey)(x + y = 0)
(b) The theory of cancellable abelian semigroups
with identity consists of (l)e (2)0 énd (3) above
and:

(4°) x ¢+ ¥y = X ¢ 2 ==> y = 2

(c) The axioms of simple order are:

x yty<z-->x <2z
x <yt y<x =-=-»x =y
x £ x

x Ly ivy<x

(d) The theory of Z-groupss 2gs has the following
axioms:
(1) The axioms for abelian groups with
identitye (2) The axioms for simple ordery
(3) vy £2 ==>» x ¢+ y < x * 2y
(4) 1 is the least element greater than Osand

(5) (X)(Ey)(ny = X ! eee | Ny = x + (N = 1))
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for each positive ne where "ny" stands for
"ytensoty" (N times)e
(e) The theory of N-semigroups has the following
axioms:
(1) The axioms for cancellable abelian
semi-groups with identity,
(2) - (5): as for 2ge and
(6) 0 < xa
(f) The theory of Z-groups modulo I consists of the
following axioms:
(1)e(2)e(4)e and (5): as for 2gv
(3) (y £ 28 x £ x ¢ 2) ==> x ¢y < x + 2y
(6) 0 < x
(7) x <1

(The theory of Z-groups is taken from Chang and

Keislery pPe29l)e

Fact 4e2.11e
(3) Zg is the complete theory of <Ze+¢909le<= >
{Chang and Keislers pe291)e.

(b) Zg is model complete (Robinson and Zakon)e

Theorem 4¢2e12¢
(a) The theory of N-semigroups is model complete.
(b) The theory of Z-~groups modulo I is model

completee.
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Proof:

(a) Every abelian semigroup with cancellation can
be isomorphically embedded in an abelian group (see
Kuroshe ppes4-48)e It is clear from the
construction in Kurosh that if the semigroup is
ordereds the abelian group in which it is embedded
may 3lso be ordered and that the elements of the
semigroup will be the positive elements of the
groupe Moreovers the (rough) divisibility of the
elements in the semigroup will also be carried over

to the groupe

Consequentlys the theory of N-semigroups is
uniformly reducible to the the theory of Z-groups
by the translation:

T:A = *0 < x°*
Since the latter is model completes SO iSs the

formers by 4e2e9e

(b) Firsty consider the theory of N-semigroups in
the language which containsy besides the constant
symbols in the original theorys an individual
constantes Is The theory of N-semigroups is

model-complete in this languages by 4e2e2be

We claim that the theory of Z-groups wodulo I is

uniformly reducible to this new theory by the
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foliowing translation:

T:A = 'x < I

Tie = Y(xey = 2) | (xey = I+2)°
(The construction: given a model of Zgms stack up
omega-many copies of the models assigning
interpretations in the obvious waye Need to show
that the result is an N-semigroup and that the
original model is isomorphic to the first copy of

itselfq)

In the next sections we use theorem 4¢.2.%9¢ to show that
the theory PSIZE is model completes by reducing it to
the theory of Z-groups mod I in chapter 5+ we use
Monk's theorem to show that the theory CA is model

completee.
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4e3 PCA IS MODEL COMPLETE.

To show that PCA is model completes we shall reduce it to
lgmy the theory of Z-groups with addition taken modulo some
constant (see 4e2e.ll)e The model completeness of PCA then
follows from the model completeness of Zgm (fact 4.2.12)
and theorem 4<2¢%9. Specificallys we shall show that every
model of PCA is the T-image of a model of Zgms where T is

the following translation:

Definition 4e3.le Let T be the translation from
L(PSIZE) tc L(Zgm) where:

(a) T:A = *x = x*

(b) T:SUM(xeyeZ) = °x ¢+ vy = 2 & x £ 2°

{c) TIUNIT(x) = *x = 1"

(d) €:x! = *x ¢+ y

)

(e) T:(x < y) = *x

A

y £ x 7y’

(f) T:2 = *x = 0O°*

Given a modely Ay Of PCAy we can construct a models By of

Zgm directly:
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Definition 4e3.2. If A |= PSIZEy then 2Zgm(A) is the

SEE——

interpretations By of L(2Zgm) in which:

(a) B = A

(b)y 8 1= x <y iff A= (x <y | x =y)
(c) B(I) = A(I)

(d) B(O) = A(D)

A |= SUM(xeye2z)
or A |= EaEwW(UNIT(3) € SUM(x!eylew) & SUM(weaez!))
(F) B 1= (x = 1) iff A |= UNIT(x)

(It is obvious that A = T (Zgm(A))e)

Fact 433 establishes that (e) gives a functional
interpretation of *+*'s This is what 4e3¢3j sayse Theorem
4308 establishes that B8 |= Zgme on the basis of the
intervening facts: 4e3.3 deals with the model A of PSIZE;
4e3¢4 deals with the corresponding models Zgm(A); 4e3e6

verifies some connections between A and Zgm(A)e.
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Fact 4e3+3¢ The following are theorems of PSIZE.

(*Sm(xey)* abbreviates *(Ez)SUM(xeyez)®e)

(@) UNIQUE-e:

SUM(xeyezl) & SUM(xeyez2) ->» 21 z2

(b) UNIQUE-:

SUM(xeylez) E& SUM(xsey2e2) ->» yl = y2
(c) ASSOC2:

SUM{xeyswl) £ SUM(wleZew) ->

(Ew2) (SUM(ye2ew2) & SUM(Xew2ewW))

(g) x'! = x
(e) x < y €-> y! < x!
(f) x <yt y<y! =->»x < x!
(g) Sm(xey) | Sm(xley!?)
(hl) SUM(xeysz) =3 SUM(2%eyex!)
(h2) SUM(xeye2) => SUM(xe2'!ey!)
(1) SUM(xeyeZl) €& SUM(xley!e22!) => (21 = 22! = 1)
(j) (E2Z1)SUM(xeyezl) €->

~(E3EwEZ22) (UNIT(a) & SUM(x!eylew) & SUM(weae22!))
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Proof: COMM is used freely in these proofss without

citatione

be

Coe

de

e-J,

Suppose
and

So

so

so
Suppose
and

So

so
Suppose
and

But

and

so

so

so

We know
and

So
Suppose
Assume
But

SO

but

SUM(xeye2zl)

SUM(xeyez2)

Z1l < 22 iff 22 < 21 iff x < xo by MONOT+
21 ¥ 224 by IRREF and TRICH

21

22+ by UNIQUE=.

SUM(xeyle2z)

SUM(xey292)

yl < y2 iff y2 < yl iff z < ze by MONOT+
yl = y2s by IRREFe TRICHs and UNIQUE=.
SUM(xeyewl)

SUM(wloezZyw)

SUM(Psysy)es by IDENT

@ < x¢ by MIN

y £ wle by MONOT+ and (b)
(Ew2)SUM{yezew2)e by EXISTe
SUM(xew2ew)e by ASSOC.

SUM(xextsI)

SUM{x!!ex?9el)e by COMP

x = x!'s by UNIQUE=-.

x <y

x! = y!

SUM(yey!el)e by COMP

SUM(yoex!eT)

SUM(xex!9eI)e by COMP
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SO X ys by UNIQUE-
out this contradicts IRREF
SO ~(x?! = y!)
Assume x! < y!
But SUM(yey!sI)s by COMP
SO (Ewl)SUM(yex!ewl)e by EXIST+
and wl < 1+ by MONQOTe
A1so (Ew2)SUM(xex!ew2)o by EXIST+y since x < y
and w2 < wle by MONOT+
so w2 < I+ by TRANS
and w2 = 19 by UNIQUE+
but this contradicts IRREF
SO0 ~(x! < y!)e.
Hence y! < x!s by TRICH.
€-., Immediate from (->»)s given (d)e.
feo Suppose x < y
and y < y!
So y! < x'y by (e)
so x < x'y by TRANS
ge We know SUM(xex!seI)e by COMP
so if y < x!
then (Ez)SUM(xeyezZ)e by EXIST+
SO Sm(xey)
and if x! <y
then y! < x!!y by (e)
so y! < xy by (d)

SO Sm(y!ex!)e by EXISTe
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and
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j=%e Suppose
So if
then
but
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SUM(xeye2z)

SUM(ZeZz!'el)e by COMP
SUM(yesZtew)

SUM(xswelI) for some we by (c)
w = x!9 by COMP and UNIQUE-
SUM({yezlex!)

SUM(z%eyex!)e by COMM,
SUM(xeye2z)
SUM(yexezZ)s by COMM
SUM(z'exey!)e by (hl)
SUM(xyZ'ey?)es by COMM,.
SUM(xeyezl)
SUM(xteytlez2?)
SUM(Zl!eyex!)se by (h1l)
SUM(ysy'!el)e by COMP
SUM(z1!eIez2!)e by ASSOC

SUM(Pelel)e by IDENT

P < z1! iff 1 < 22'9 by MONCT+
Z1! = @+ by MAX and MIN

22! = I+ by UNIQUE+

2zl = 22! = 1.

SUM(xeyezl)

SUM(xteytow)

w =21 = 1¢ by (i)
SUM(I+Pel)s by IDENT
SUM(weae22!)

@ <a iff I < z2'% by MONOT
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SO @ = as by MAX and MIN
so =~UNIT(a)
€-o Suppose -~Sm(xey)
then SUM(x!yylew)e fOr some we by (g)

But if w = I

then x! y!!
and y! = x!!'y by COMP and UNIQUE-
so SUM(xeyew)e by (d)
but this contradicts our original assumption
so w < Te by MAX.
Hence SUM(wew'!oel)
and w! 7 9
So 3 £ w!y for any atoms a

and Sm(wya)e by EXIST+

s0 SUM(weae22) for some 22

In addition to the theorems of PSIZE listed in 4s.3e3¢ we
require a battery of tedious facts about the model B. he
shall state these in terms of a modelsy B*y an expansion of
both A and Bs which interprets two additional operatorss as

follows:
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Definition 4e3e40e Given a modely Ay of PSIZE and B =
Igm(A)s B* is the expansion of B induced by the
definitions in 4«3.2 together with (a) and (b):

(a)§*|=y=-x iffg':xdlyzo

(b) Q* 1= z X -y iff gt 1= 2 = (x + (-y))
Claim: For each x in B there is a unique y such that
B |=x +y=0:

Proof:

If x = 0y then B |= x ¢y =0 iff y Oe

->« If B |=0+y =0

Pas
=g
1)
o]
>

|= SUM(FsyeP)e by Gele2ey
since ~(Ea)(Ew)(UNIT(a) & SUM(Pleylew)
£ SUM(weae2!) )
(since P!y ieee I9 would have to be < 2!)
tut A |= SUM(PePeP)e by IDENT
sOo y = Oy by UNIQUE-.
€-+ Obviouse
If x > Oy there is a unique y which satisfies:
(*¥) SUM(x!easy)e where UNIT(a)
since there is a3 unique unit and A |= UNIQUE+

But

@
)
x
L
~<
n
o

iff A= (%)

->. If B

w

I
x
+*

<
n

o

then A |= SUM(x!eylow) & SUM(wsae0!)

since Ae surelys doesn't |= SUM(xeye0)

but 0!

I

SO w = a'e by COMP and UNIQUE-
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SO A |= SUM(x!ey!sa!)

SO A |= SUM(x!sasy)e by 4e3.3d and h2e.
€-o If A |= (%)
then A |= SUM(x!sy!eal!)e by 4e3.3h2
and A |= SUM(a!sas0!)e by COMP
SO B |= x ¢+ y = 0s by 4e3s2e

Given that we have functional interpretations of *e+?¢
and unary *-*', (b) also yields a functional

interpretatione.)

Fact 4¢3¢5¢ The following statements hold in B*:

(a) =(x+y) = =-x ¢+ -y
(b) =(x-y) = y-x
(c) (x+y)-y = x

x

(d) =(-x) =

(e) x # 0 & x <y =>» -y < =x

Proof: Cmittede.
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Fact 4e3e6e B* satisfies the following:
(a) Sm({asb) €-> SUM(asbea+b)
(b) ¢ < b €=->» SUM(cesb-cCsb)
(c) SUM(asbec) &€ 0 ¢ b =->» SUM(aes-Cce-Db)
SUM(asbec) &€ 0 < @ =>» SUM(-cebe-a)
(d)y -Sm(asb) -> Sm(-as-b) ! b = -3
Proof:
a->e Suppose Sm(aeb)
so SUM(asbew) for some w
SO (a+b) = we by the definition of °*+°*
so SUM(asbeat+tb)
€-« Obviouse
b->»e Suppose c £ b
then SUM(ceweb)s fOr some wy by EXIST-

so b = (c+w)s by (a) and UNIQUE+

SO (S-C) (C+w)~cC

so (b-c) we by 4e2e5C
S0 SUM(ceb=ceb)
€-+ Suppose SUM(ceb-csb)
but SUM(ces0ec) by IDENT

so O

IA

(b-c) €-» b < ce by MONOT and UNIQUE+
so b £ ce by MIN

c->e Suppose SUM(aebec)
and 0 < b

then ¢ = (a+b) by (a) and UNIQUE+

so (c-b) (a+b)-b

so (c-b) ds by 4e3e5¢C
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=-b = a=ce by

SUM(ae=Co-b)

a o]
Sm(aes-c) by 1

a # 0y

4e3e5C

if Sm(as=c)o

DENT

by (a)

a < Co
-Cc €< =-av

-c £ a! (
Sm(asal)s

Sm(ae=C)o

by 4e3e5e
see 4o0344)
by IDENT

by EXISTe+,

since 0 < by by MONOT and UNIQUE+

(The second form follows immediately by COMM)

d->». Suppose -Sm(asb)

but b (a¢b)-as by 4e3e5cC

so -~SUM(as(a+tb)-asa+b)y by (a)

so ~(a £ a*b)s by (b)

so (a+b) < as by TRICH
so if (a+b) # O
then —-a < -(a+b)e by 4e3.5e
SO -3 < -a ¢+ =by by 4e3e50
sOo SUM(-as(-a ¢ -b) - (-a)es =-a + -b)y by (b)
but (-a ¢ =-b) - (=-a) = -bs by 4e¢3.5C
SO SUM(-as-bs-a + =b)
SO Sm(-ae-b)
and if (a+b) = O

then b -a
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We can now show that B |= Zgme The only real difficulty
arises in verifying that addition is associativee We need

the following lemma.

Lemma 4e3e7e g 12 (¥F)e
(*) (a¢c) ¢+ (b-c) = (a+b)
Proof: ne shall establish (%) for successively more

general casese

Case le Sm(aeb) and ¢ < b
We know SUM(b-CesCeb)e by 4e3e6h
and SUM(bsasatb)y by 4e3e62
50 Ew(SUM(Ceaew) E& SUM(b-coewsa+b)) by ASSOC2

SO W = C+*ay by 4e3e63 and UNICUE+

and a+b (b-c) ¢+ (c+a)y for the same reasons

SO a+b (a+c) ¢+ (b=C)e
Case 2« Sm(asb) and Sm(asc)
If ¢ < be case 1 applies directlye.
So assume b < ce.
then a+c = (a+*b) + (c-b)s by case 1
SO (a+c) - (c-b) = (a*b)s by 4e3e5cC
SO (a+c) + (-(c=b)) = a+bs by 4e3e4b

SO (a+c) *+ (b-c) = (a+b)s by 4e3.5b

Case 3¢ Sm(aeb)

If Sm(aec)y case 2 appliese
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-~Sm(asc)
b < cy by EXIST+
SUM(becCc=becC)s by 4e3e6b

0 < c-by

SUM(bs-Ce-(C-b))es by 4e3.

SUM(be-ceb-Cc)s by 4e3.5b
SUM(-cebeb=-c)

Sm(-3e+-C)

C = =3¢ by 4e3e¢6dy since
Sm(-ay=C)

SUM(-a9¢=Coe(-a) ¢ (-C))o

by IDENT and MONOT+

6¢c

~Sm(aecC)e

by Laeleba

SUM(=39=Ce=(a¢C))es by 4e3e5a

0 € -3
SUM(=(=-(a+C))e-Co—=(-3))

SUM(a+ce-Cra)y by 4e3.5d

(3b) obtainse
SUM(a+*ce=Coa) (3b)
SUM(-cesbeb-C) (3a)

SUM(asbea¢h)

by 4e3ebC

since Sm(asbh)

SUM(a+ceb-Ccea+b)e by ASSOC

(asc) ¢+ (b-c) =

(2+b)s by 4e3.6a

(3a)

(3b)
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Case 4« Whenever,
Suppose -~Sm(asb)e for otherwise case 3 anpliese.
Either Sm(-as-b)

or b = -3, by 4e3¢6d

Assume b -3e

Then a¢b = 0

and b-c (-a)-c

(=a)+(-c)

=(a¢c)

So (a+b) ¢+ (b-c) (a+c) + ~-(a+c)

=0

(athb)e.

Assume Sm(-3a+-b)e.

Then -3 + =b (=@ ¢+ =c) ¢+ (-b - =C)e¢ by case 3

so =(atb) -(a+c) ¢+ -(b-C)e by 4e3.5a

-((a*c) + (b-c))e by &4e3.523

so a+b =(a¢c) ¢+ (b-c)y by 4e3.5d.

Theorem 4e3¢8¢ B |= Zgme
Proofe The only axiom for abelian groups that needs
further verification is associativitye We prove this

using lemma 4e¢3.7:

x ¢ (y+2z) (x ¢ y) + ((y*2) - y)s by 4e3e7

(x ¢ y) ¢ 2o by 4e3e¢5cC

The ordering axioms of Zgm are satisfied in B because B
uses the same ordering as As A satisfies PSIZEy and

PSIZE includes the same ordering axiomse Similarlys B
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satisfies axioms (iv)e (vi)e and (vii) of IZIgm because A

satisfies MINy MAXy and the UNIT axjoms of PSIZE.

Axiom (iii) of Zgm is:

y 2 & x £ x+2 =>» x+y < x*2z

If 2 |= x € x+2y then A |= SUM(xsZex+2)

So if 8 |=y < ze then A |= SUM(xsyoxey)s ty EXIST+

and

1»

|= x¢y < x+2y by MONOT

SO

[o )

|= xty € X¢Zeo
Finallys the divisibility of elements in B required by
axiom (v) of Zgm is guaranteed by the fact that A

satisfies the divisibility principles of PCA.

Soe+ we have shown that PCA js T-reducible to Zgme The
reduction is obviously uniformy since each model A of PCA
has the same domain as its Zgm-modele So we may conclude

that PCA is model completee.

Theorem 44349,

(a) PCA is model completee.

(b) PCA satisfies Monk®'s conditione
Proof:

(a) Apply theorem 4¢2.9.

(b) Immediate from (a) and 4e2elbe
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bGets REMARKS ON PROVING THAT PCA = P(CSe.

To prove that PCA = PCSe we could follow the method
outlined at the end of chapter 3 for showing that CA = CSe.
that is to say: we already know that PCS |- PCAs so we need

only prove (1)« which follows from (2) by 3e3elbe

(1) PCA |- PCS

(2) Every completion of PCA is consistent with PCSe

But (2) is equivalent to the conjunction of (2a) and (2b)e

(23a) Every finite completion of PCA is consistent with

PCSe

(2b) Every infinite completion of PCA is consistent

with PCSe

The finite completions of PCA are just the !categoricalj)
theories PCASEXACTLY(n}e But PCASEXACTLY{Nn} is true in
S(A)sy where A is the finite standard interpretation of
L(C<) containing n atomse SO0y the finite completions of
PCA are consistent with PCSe (Formallyy we would have to

redefine "EXACTLY" in terms of units rather than atomse)

Letting PCAI = PCA + INFs we see that (2b) is a consequence

of (3a) and (3b)e.
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(3a) If PCAI(f) is consistents then PCSI(f) is

consistente

(3b) If T is a completion of PCAIy then T = PCAI(f),

for some fa

To prove (3a)s we would have to prove analogues of 3e¢3.9
through 3+3.13 for PCA and PCSe This seens
straightforwards but tediouse The trick is to show that
enough axioms about size relations have been incorporated

in PCA to establish the entailments among MOD statementse.

To prove (3b)e it is sufficient to demonstrate (4)s because

every completion of PCAI entails PCAI(f) for some total f:
() If f is totaly then PCAI(f) is complete.
But PCA is model completes so only (5) remains to be showne

{5) If f is total and congruouss then PCAI(f) has a

prime model.

We won't construct prime models for the extensions of PCAIl.
It's apparent that the size models of the prime models for
CAI(f) would do nicelyes Alternativelys the construction

could be duplicated in this simpler casee
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Sel CA IS MODEL COMPLETE.
We shall show that CA is model complete by showing that it
satisfies Monk®s criterion (see 4e¢3e¢l)e SO+ given

assumption Selely we want to prove 5S5ele2:

Assumption Selele A |= CAy B |= CAy A c By and C is a

finitely generated substructure of Be

Theorem Sele2. There is an isomorphic embeddinge

f: C ==> Ay where f(x) = x if x is in C /\ A.

We will use the Monk mappings that exist for PCA as a guiade
in constructing Monk mappings for CAe. The existence of
Monk mappings for PCA tells us that we can find elements
with the right sizese DISJU and REPC then allow us to find
elerents with those same sizes that fit together in the

right waye

Strictly speakinge S(A) is not a submodel of S(B)s So we
cannot apply Monk's theorem directlye But, let

S(XeB) = the submodel of S(B) whose domain is

(B(xsB): x € X}

Thens clearly,

S(A) = S(A+B) ¢ S(B)» and

S(C) T S{CeB)e a finitely generated submodel of S(B)
Monk's theorem applies directly to S(AsB)s S(B) and S(CeB)y

s0 we may conclude Sesle3:
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Fact 5ele3e There is an isomorphic embeddinge
g: S(C) ==> S(A)s where g(B(xsB)) = T(x9A) for all

x in C /\ Ae.

That is to saye the sizes of elements in C can be embedded
in the sizes of elements of Ae It remains to be shown that
the elements of C themselves can be mapped into A by a
functione fe which preserves boolean relations as well as

sjize relationse

Notice that C is a finitey and hence atomice boolean
algebras though its "atoms" need not be atoms of B indeed,
if B is infinites there must be some atoms of C which are
not atoms of B since the union of all atoms of C is the

basis of Be

Definition Sele4e d is 3 molecule iff d € C /\ A and

no proper subset of d € C /\ Ae.

Notice that C /\ A is a boolean algebra whose basis is the
same as the basis of Ce So every atom of C is included in
some molecule. The embeddinge fe has to map each molecule
into itself. Moreovery f has to be determined by its
values on the atoms of Ce since f must preserve unionse In
facte the atoms of C can be partitioned among the

moleculese So¢ if
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d = bel \/ eee \/ ben
where d is @ molecule and belveses ben are the atoms of C
contained in dy then d must also be the (disjoint) union of
f(bl)secesf(ben)s If this condition is satisfiedy then f
will preserve boolean relationse Of coursey f must also

select images with appropriate sizese

Proof of Selele Given a molecules de let bly eees boen
be all atoms of C contained in de For each beis let
Cei be some member of g(8(beisB))e These elements will
be elements of Aes since g yields sizes in Ay whose
members are in Ae These elements have the right sizess
as we will show belows but they are in the wronyg
placese We have no guarantee that they are contained
in the molecuiey de SO we still have to show that
there are disjoint elements of Ae 3le eecy aene whose
union is d and ~hose sizes are the same as bls ecev

bensy respectively. Welly,

d = bl \/ eee \/ ben

so C 1= SUM(blyeeesbenyd) because C |= DISJU

so S(C) 1= SUM(B(bleB)reecesT(bensB)eB(dsB))

SO §(ﬁ’ I= SUM(Q(U(DIOQ))Ooooog(U(bonog))’g(U(dvg)))
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SO A 1= SUM(ClyeecerCensd)
since each csi is in g(8(beish))
and d is in g(8(deB)) = T(drA)
so the existence of ale eees aene as aboves are

guaranteed because A |= DEFe.

Nowe let f(bei) = aei for each bei in the molecule de
Repeating this procedure for each molecule yields a
value of f for each atom of Ce Finallys if x € C is
non-atomice then

X = bl \/ eee \/ beky where each bei is atomic
So let

f(x) = f(bL) \/ esee \/ f(bek)

We claim that f satisfies all the requirements of
theorem S5.1.2: Boolean relations are preserved by f
because the function is determined by its values on the
atoms of C; f maps elements of C /\ A into themselves
because the set of atoms contained in each of these
molecules is mapped into a disjoint collection of
elements of A whose union is the same molecule; Ssos we
need only show that f preserves size relationse To do

SOe we invoke lemma S5e¢le59 belowe

(a) C I= x <y iff A |= f(x) < f(y)
(b) €C 1= x =y iff A |= f(x) = f(y)
(c) C 1= SUM(xeys2z) iff A = SUM(Ff(x)ef(y)ef(2))
(d) T 1= UNIT(x) iff Aj= UNIT(f(x))
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Proof of (a):(The others are similare)
CI=x <y iff 5(B) I= 8B(xeB) < B(ye8)
iff S(A) 1= 9(B(xeB)) < g(B(yeB))
iff S(A) 1= B(f(xvA)) < B(f(ysA))s by Sele5
iff A = f(x) < f(y)
Soy we may conclude

Theorem Sele6e CA is model complete.

Lemma S5¢1¢5 For all x in Cy

B(F(x)eA) = g(3(x+3))
Proof: Suppose

X = bl \/ eee \/ benys
where each dei is an atom of Ce
Soe B |= SUM(Dly eeee bene x)o since B |= DISJU
$0 S{B)I= SUM(B(bDleB)s eees B(beneB)s B(xe3))
SO S(A) 1= SUM(Q(3(bLleB))s eees g(B(DenesB))e g(B(xeB)))
but for atomic be f(b) was chosen so that

g(3(b+8)) = B(f(b)rA)
S0 S(A)|= SUM(B(f(bL)esA)s eces B(F(ben)oA)s g(B(xeB8)))
but A |= SUM(f(bl)e eees F(ben)s F(x))o
since A j= DISJU

S0 S(A)1= SUM(B(F(DLl)sA)s eeer B(f(ben)sA)s B(F(x)oA)))
buty sums are unique in S(A)o

SOy g(B(xeB)) = B(f(x)eA)
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Se2 PRIME MODELS FOR CAI(F)e

For each totals congruous remainder functiones fe we want to
find a prime models Q(f)s for CAI(f)e A1) of these prime
models can be defined over the classe Q¢ of sets near
quasi-congruence classes (see section 3e.2)e Of courses for
different remainder functionse we have to assign different
size relations over Q. Section Se2.1 defines the
structures Q{f) and verifies that each satisfies the
respective thecry CAI(f); section 5.2.2 definesy for each
model! of CAI(f)s a submodely or "shell"; section S5e2.3
shows that Q(f) is isomorphi- to the shell of any model of

CAI(f)e

The construction here is just a more elaborate version of
the construction of Q in chapter 3 (see 3.2¢19)e Tre old
models Q¢ turns out to be Q(f)s where f(n) = 0 for aill n.
As in the case of Qs the models Q(f) and their copies in
arbitrary models of CAI are the unions of chains of smaller

modelse

The sizes assigned to elements of Q to induce Q(f) for a
totale congruous remainder function f are more elaborate
than those used in the definition of Q (see 3.2.22)9y but

they are employed in substantially the same way:
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Definition Se2ele
(3) A size is an ordered paire <P¢8>y of rational
numberse
(b) If O1 = <Pl+31l> and 62 = <Pledl>y then
i) 81 < 82 iff Bl < P2 or
(Pl = P2 and 4l < q2)
ii) 61 « 82 = <Pl + P2y Tl + 2>

(cfe 3e2e22)

To assign sizes for Q(f) we rely on the representation of
sets in Q which is defined in 3¢2¢24¢ Q(f)e unlike Qo
assigns different sizes to the n-congruence classes for a

given n:

Definition 542420 If f is total and congruouss then
(3) if x = {n*k ¢+ i}s then

O (fox)

<l/ne 1/n> if i <€ f(n)

and 8(fex)

<1/ne (1/n) - 1> if f(n) < i
(b) if x € QC(n)y so x is the dis joint union
Xel \/ eee \/ Xek
of n-congruence classess then
B(foex) = O(foxel) ¢+ cee *+ B(foxek)e
(c) if x € Ay so x can be represented as
(C(x) \/ Dl(x)) - D2(x)
as in 3e2+244y then

8(fox) = B(FeC(x)) ¢ <0scd(Di(x)) - cd(D2(x))>
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Intuitivelys 311 n-congruence classes are assigned sizes
<1/n+T>» but T is no longer O in all casesy as in Qe
Insteady the first f(n) n-congruence classes are each one
atom larger than the remaining (n - f(n)) n-congruence

classese

The desired models of CAI may now be defined:

Definition 5e2¢3. 1If f is total and congruouse then

Q(f) is the modele Ae with domain Q in which

1= (x = y) iff @(fex) = €(foy)

I>

A 1= (x < y) iff O(fox) < O(foy)
A |= SUMIxeyez) iff O(Fez) = O(Ffox) + 8(foy)

(Cfe 3e2e27)

To verify that the structure Jd(f) is indeed a model of
CAI(f)s for total and congruous fes we exhibit each such

model as the union of a chain of models.

Definition 5¢2e¢4e¢ If f is total and congruouss then

Q(fen) is the submodel of Q(f) whose domain is Q(n)

Fact Su2e5¢ If f iz total and congruous and n > 0y then
Q(fen) |= BASIC.
Proof: The proof can be obtained from the proof of

theorem 3.2.29 by substituting:
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'Q(fen)® for *Q(n)°*,
'8(foex)® for *O(x)sy
'B(fex)®* for °B(x)°*s

and *J(fex)* for *'TJ(x)°’.

The following notion is helpful in understanding our

constructionse

Definition 5¢2¢6¢ Suppose A |= BASICy x € Ay and

0 < m<ne Then an (nem)-partition of x in A is a

sequence xleeeeoesXeny where
(1) ae If 0 C i € j < m¢ then xei = xejo
be If m C i € j € ne then xei = xejo
Ce IfF D Ci <M< j< ne then SUM(xe jeasxai)
for any atome ae
(2) If 0 i € j € ne then xei /\ XxXej = Py and
(3) x = X1 \/ eee \/ Xxen
In other wordse x is partitioned among n infinites
pairwise disjoints sets which are roughly the same
size: each of the first m is one atom larger than each
of the remaining (n-m)e If O < i < my xei is called a

"charmed n-factor of x"; for i > me Xei isS 3@ "common

n-factor of x".

The sequence {Q(fsn)} does not constitute a chain of
modelse For examples Q(fe3) is not an extension of Q(fe2)e

But this sequence does harbor a chain of models:
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Fact S5e2¢7¢ If n < my then Q(fen!) c Q(fem?!)e.

Proof: It will be clearery as well as easiery to
establish this by example than by formal proofe.
Letting n = 2 and m = 3y we want to show that the
2-congruence classes have the same size relations in
Q(fs6) as they do in Q(Ffe2)y for any fe The other
elements of Q(f+2) will then fall into places since
siZe relations are determined by the representation of

3 sety xo9 3s C(x)s Dl(x)e and D2(x)e

Suppose that f(2) = Os sOo that

Q(fe2) 1= {2k} = (2k + 1}
Since f is congruouse f(6) = O¢ 2y Or e If f(6) = O
then all of the 6-congruence classess are common. If
f(6) = 2+ then |_6k|] and |_6k ¢+ 1_| are the only
charmed 3-congruence clasese If f(6) = 49 then all of
the 3-congruence classes are charmed except

{6n ¢ 4} and {(6n + S}.

In any cases {2n} will include the same number of
charmed 3-congruence classes as {2n + 1}y so

Q(Feb) |= §2k} = {2k + 1}

Supposes howevers that f(2) =le so that
Q(fe2) |I= (2n) is one atom larger than {(2n + 1}

Herees f(6) = l9 39 or 59 since f is congruouse In any
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cases [ 2r_) contains exactly one more charmed
3-congruence class than {2n ¢ 1l}e so
Q(f+6) |= (2n} is one atom larger than {2n + 1}

So it goes in general.

Fact 5¢2¢7 allows us to regard Q(f) as the union of a chain

of models:

Fact Se2.8e. If f is total and congruouss then

Q(f) = \/ ( Q(fen?) = n > 0}

Fact 5e¢2¢%. If f is total and congruouse then
(a) Q(f) = BASIC

(b) Q(f) 1= ADIVik}e for k > O

(c) Q(F) 1= MAD(nef(n)ks for n > Q

(d) Q(f) 1= CAI(f)

(a) BASIC is a3 universal-existential theory; 30 it is
preserved under unions of chains (see Ae2e5)e
(b) Each n-congruence class can be partitioned into
k (n¥k)-congruence classese
(c) Clearlyy Q(foen) 1= MOD[(nef(N)}e
But MOD{nsf(n)} is an existential sentence.
SO it is preserved under extensionse.

(d) Immediate from (a)s (b)e and (C)e
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5e2.2 Shells of modelse
To embed the model Q(f) into an arbitrary modely As oOf
CAI(f)e we must find a "smallest" submodely By of A which
satisfies CAl. Clearlys the basis of Ay call it x0y must
be included in Be since the symbol *I* must refer to the
same set in the submodel as it does in the model. But if
the basis of A is in B and B |= CAIs then B must contain
two disjoint sets of roughly the same size whose union is
the basis of Ae Pick such a pairy xl1 and x2¢ to include in
Be (wWwhether these are exactly the same size or differ by

an atom is determined by whether A |= MOD{2+0} or A |=

MOD({2v1}e)

B must also satisfy ADIV(3}. We can aim for this by
placing in B three disjoint setss xlle x12¢ and x13,s whose
union is x1 and another three disjoint setss x21s x22y and
x23¢ whose union is x2e« The existence of such sets is
assured because A |= ADIV{3}e Againes the exact size
relations among these sets will be determined by which
MOD-principles are satisfied in Ae Notice that by insuring
that x1 and x2 are divisible by threes we also guarantee
that x0 is divisible by three: the three unions

x11 \/ x21l¢ x12 \/ x22¢ x31 \/ x32

#i1l be roughly the same size and exhaust xOe.

We can continue this process indefiniteiyy dividing each

set introduced at stage n into (n+l) roughly equal subsets
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at stage (n¢l)e This will produce an infinite tree,
bearing setse The deeper a node is in this trees the
smaller the set it bears and the greater the number of

successors among which this set will be partitioned.

This great tree of sets will not form a boolean algebras
for it will not be closed under finite unionse A boolean
aigebra could be obtained by including both the node-sets
and their finite unionss but this would still not be an
atomic boolean algebraes which is what we are looking fore
We can't correct for this problem by including in B all
atoms of A: A may have uncountably many atoms while By if
it is to be a prime models must be countable. wWe leave the

solution of this problem to the formal construction belowe

The formal proof will proceed as follows: Firsty we adefine
a trees iees a3 set of nodeses on which we shall hang both
the components of the successive partitions described above
and the atoms which will find their way into the submodel
being constructede. Secondsy we present the construction
whiche given 3 model A of CAI(f)es assigns a "node-set" A(P)
and a "node-atom",y a(P)s to each nodey Pe Third, we define
the shell of A as the submodel of A generated by the
collection of node sets and node atomse In the next
subsections we show that the shell of A is isomorphic to

0(f)e
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Firste the tree:

Definition 5¢2¢10.

(3a) A pode is a finite sequence <Nly eees Nokdy
where k > 0 and for all i < ko nei < ie
(The letters P and R will be used as variables
ranging over nodesSe)

(b) If P = <nle eee9 Nek>y then
le The length (or depth) of Py |P|e is ko
2. If 1 € i € ke then P(i) = neis and
3e P'm = <Nly eeece Nkey md

(c) P extends R iff |P| > |R| and

if 1 <i € |Rjs then P(i) = R(i)

(d) P O-extendg R iff P extends R and

if |R| < i < |P|y then P(i) = O

Nodes can be regarded as the vertices of an infinite tree
in which <0> is the root and P dominates R iff R extends P
Notice that the number of immediate descendants of a node

grows as the depth of the node increasese.

We shall now assign a set to each node by repeatedly
partitioning the basis of Ae At the same time we shall

assign an atom to each nodee.



Construction 5e2e¢lle Suppose A |= CAI(f)e For each

nodes Py we define A(P)s an infinite element of As and

a(P)s an atomic element of Aes as follows;: note that

this construction makes arbitrary choices at a number

of points:

(3)

(b)

(c)

Let A(<O>) be the basis of As and
let a(<0>) be any atom of A .

Suppose A(P) and a(P) have been chosene

Let m {P1 and let

k

(f((mel) ) = F(m2)) / (m?)
(kecall that f must be congruous if CAI(f) heas
a models so k is an integere Nows lTet

A(P*0)s eeos A(P'm)
be an (m¢lek)=-partition of A(P) if A(P) is common or
an (melykel)-partition of A(P) if A(P) is charmed.
Fact 5¢2.12 gqguarantees that such partitions existe
In either cases choose A(P'0) so that it contains
a(P)e This is always possible because A(P) contains
a(P). -
Let a(P'0) = a(P)
If 0 < i < my let a(P'i) be any atomic subset

of A(P'i)e.

The sets A(P) will be referred to as "node-sets" and

the atoms a(P) as "node-atoms"e.
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Fact Se2e¢12« Suppose A |= CAI(f)e n > Oy m > O¢ and
k = f(n¥tm) - f(n))/ne Then

(a) x has an (mek)=-partition iff A |= Mod{mekf(x)ys

(b) every common n-factor of A has an (mek)=-partitionys

(c) every charmed n-factor of A has an (mekel)-
partitione |

Proof:

(a) Obviouse

{(b)e (c)e If (b) holdse then so does (c)e since each
charmed n-factor is one atom larger than each com-

mon n=factore

Furthermores (b) and (c) must hold for some ky
since all common (charmed) n-factors are the same
size and satisfy the same Mod(mek} predicatee.

Sos Ssuppose that each common n—-factor has k charmed

m-factors and (m-k) common m factorse

By (a)s A has f(n) charmed n-factors and (n-=f(n))
common n-factorse Partitioning each of the n-fac-
tors into m subsets of roughly the same size

yields an (n#*m)-partition of A; the charmed m-fac-
tors of the n-factors of A are the charmed (n%*m)-
factors of A and the common m-factors of the n-fac-

tors of A are the common (n*m)-factors of A

Each of the common n-factors has k charmed m-=factors
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and each of the charmed n-factors has (k+l) éharmed
m-factorse In alle thensy there are
(n = f(n))*k ¢ F(n)%(kel)y
iece Ntk + f(n)e

charmed m-factors among the n-factors of A.

Bute by (a8) agains there are f(n*m) charmed (n¥*m)~-
factors of Ae SO
f(n¥m) = n*k + f(n)

and k = (f(n%m) - f(n))/ne
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The following list of facts are provided mainliy to help the
reader understand this construction. All of them can de

established by induction on the depth of nodese.

Fact 5.2.13.

(3) A(P) c A(R) iff R extends P or P = R,

(b) If A(P) = A(R)y then P = R

(c) There are n! nodes (and hence node-sets) of
depth ne

(d) If i # jo then A(P'i) s\ A(P'j) = O

(e) Any two node sets of the same depth are
disjointe

(f) Each node-set is the disjoint union of its
immediate descendantse.

(g) Each node-set is the (disjoint) union of all
of its descendants of a given depthe

(h) a(P) ¢ A(R) iff P extends Re.

(i) a(P) = a(R) iff P = R or one of P and R O-extends
the other.

(J) Every node-set contains infinitely wany node-atomse

(k) For any ne the node-sets of depth n form an

(ntef(n?!))-partition of the basis of A.
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Proof of (k):

For each ny let (%) be the claim that

(*) the node-sets of depth n form an

(ntef(nt))-partition of the basis of Ae.

If n = 1y then n! = 1y f(n!) = 0;: A(KO>) = the
basis of Ae SO (%*) holds because any set is a <l1y0>-

partition of itself.

Assume that (*) holds for ne Then (*) also holds
for (n+l): each node set of depth n has (n+l)
immediate descendantsy SO there are (n!)x(n+¢l) =

(n+*l1)! node sets of depth (n+l)e.

Furthermorey f(n!) of the n-factors are charmed
and (n?! = f(n!)) are.common. By fact 5e<2.12¢ each
charmed n-factor has an (n+¢lsk+¢l)-partition and
each common n=factor has an (n¢lsk)-partition,
where

k = (f(ntx(nel)) = f(nl))/(n?)

(substituting *n!* for *n® and *(n¢l)* for *m*).

Sos there are
(kel)=f(n!) charmed (n¢l)-factors from the
charmed n-factors

and k¥(n! - f(n!)) charmed (n+l)-factors from
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the common n-factorse

In alle thene the number of charmed n-factors is:

(k+1)=f(n?!) + k¥(n! - f(n!))

k=f(nt) + fF(n!) + k&E(n?!) - kxfF(n?)
= f(n!) ¢+ k&(n!?)
= f(n!) ¢ f((n!)®(n+l)) - F(n?)

= F((n1)%(nel))

f((ﬂ*l,!,o

Soe the (n+¢l) factors of the n-factors of the basis
form an ((n+l)!e f((n+l)?!))-partition of the basise

That is tc saye (*) holds for (n+¢l)e.
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Given a collection of node-setsy A(P)s and node-atoms,

a(P)s from a models Ay of CAI(f)e we can now construct a

submodels By of A which is isomorphic to Q(f)e.

Definition 5e.2«14e¢ Suppose f is total and congruousy
A |= CAI(f) and {A(P)esa(P) = P is a node} are
3 collection of node sets and node atoms of A
produced by construction 5e2e.lle Then the
submodel of A generated by (A(P)+a(P)} is a

shell of A.

For the remainder of this chapteres we will regard as fixed:

f

a totals congruous remainder function,

A - a model of CAI(f).

{A(P)}s (2(P)]} a collection of node sets and
node atoms produced by 5e2.11
and B - the shell of A generated from

(A(P)s a(P)]}

To show that B is isomorphic to Q(f)es we need a sharper
characterizaticn of the elements of Be Recall that each
memberes x9 of Q can be represented as:

(C(x) \/ Dl(x)) - D2(x)
where C(x) is a quasi-congruence class and Dls D2 are
finite setse We may ra2quire that:

Dl(x) /\ C(x) = Dl(x) /\ D2(x) = @
and that D2(x) ¢ C(x)
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ande if we do sos the representation is unique (see

302e24)e

We can obtain a similar rexresentation for elements of B:
the node sets play the role of (some of) the congruence
ctasses; finite unions of node sets correspond to the
quasi-congruence classes; finite sets of node- atoms

correspond to the finite subsets in Q.

Definition 5e¢2el5.

(a) x is a guasi-nodal set of A iff it is the union
of finitely many node sets (iff it is the union
of finitely many node sets at a given level).

(b) x is a finite A-set iff it is a finite set of

node atomse
(c) If x € Aoy y € Ay then x is A-near vy iff

both (x-y) and (y-x) are finite A-setse.

(Cf. 302014 - 3.2-18)

Still following in the footsteps of chapter 3y we can
characterize B as the collection of sets A-near quasi-nodal
setse Analogues of 3.2.15 through 3218 obtain for

A-nearnesse.

Fact 5¢2.16.
(a) x € B iff x is A-near some quasi-nodal set of A.

(b) B is an atomic boolean algebra whose atoms are the
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node atomses a(P)e

If x € Be then x has a unique representation as
(C(x) \/ Dl(x)) = D2(x)s

where C(x) is a quasi-nodal set disjoint from Dl(x)

and including D2(x)es both of which are finite A-

setse

Proof:

(a)

(b)
(c)

(-») B is generated from node sets and node atoms
via the boolean operations \/ ¢ /\ ¢ and -y each of
which preserves A-nearness to quasi-nodal setse.
(€-) B must contain finite unions of node-sets as
well as A-finite sets; so it must also contain

sets obtained by adding or removing A-finite sets
from quasi-nodal setse.

The proof parallels that of theorem 3+2.21 exactlye
Let C(x) be the quasi-nodal set which is A-near xe
(cfe 3e2e23); let Dl(x) = (x = C(x)): and let

D2(x) = (C(x) - x) (cfe 3e2c24)e
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Se2¢3 The embeddingse

To embed Q(f) into As we first describe Q in terms of node
sets and node atomse In effecty we are performing the
construction 5212 on Q(f)s but with two differences:
firsty we are stipulating which (nem)-partitions to use at
each level; seconds we are selecting node atoms so that
every singleton in Q is the node atom for some nodee. By
satisfying this latter conditions we can be assured that

the shell of Q(f) will be Q(f) itself.

Definition 5¢2¢17. Suppose P is a node. Then
(a) If (P} = ke then
Q(P) = ( (k!)®n ¢ sum{P(i)*(i-1)! = 1 < i < k} }

(b) The depth of Q(P) = |Ple

Examples:

(a) Q(<O0>) = (n}e

(b) Q(<0e¢1>) {2n+l}.

(c) Q(<0+0>) = [2n}e

(d) Q(<0ys140>) = {6n¢l}e

lbﬂ"j'o

(e) Q(<0ele2>)

[6“"0.0

(f) Q(<0+092>)

Definition 5.2.18.

the least n € Q(P)e

(a) I(P)

(b) q(P) (I(P)}.
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Fact 5e2¢19.

(a) If P = <Nleecesnekd>y then
I(P) = sum { ((i-1)!)®*¥nei 2 1 < i € k}
(by I(P) = I(R) iff P = Ry P O-extends R

or R O-extends Pe.
(c) For every ne there's a P such that n = I(P)e
(d) For every ny there are infinitely many P such
that n = I(P).
(e) For every ny there's a P such that n = I(R})

iff R = P or R O-extends P

Fact 5¢2¢20.

(a) At each depthy ne the I(P) take on all and only
values less than n!'.

(h) If I(P) = ky then all nodes along the left-most
branch descending from P also have value ke
These are the only nodes below P with value ke

(c) Indeedy every natural number will be the value of
all and only those nodes along the left-most

branch descending from some nodee.

Soes though for a given n there will be infinitely many
nodes P such that I(P) = ny we can associate with each
natural number a shortest (ieee shallowest) node for which

I(P) = ne
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Definition 5e2+¢21e X(n) = the shortest P such that

1(P)

Ne

Fact 5.2.22.

(a) I(X(n)) = n

(b) P extends X(I{(P))

(c) X(i(R(n))) = X(n)

(d) R(I(P)) = P iff P = <0> or P(IP})) 7 O.
(ieee @ nodes Py will be the highest node with a
certain value just in case P is not the leftmost

immediate descendant of its parente)

Note: Each of the points listed in Fact 52«13 hold
for the sets Q(P) and q(P)e That is to say.
the Q(P) can be regarded as node sets and the
q(P) as node atoms for any model Q(f)e Noticey

especiallyy that 5213k holdse

We may finally define the embedding of Q(f) into A:

Fact S5e2e23¢ If x € Q¢ there is A unique y € B
such that:
(P)(q(P) ¢ x €=> a(P) c v)
Proof: \
If there is any such ye there is at most ones by

fact 5¢2416¢ To show that there is such a ys sup-

pose first that x € QCe SO there is some n
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such that:

X = X1 \/ eee \/ Xek
where each xei is an (n!)-congruence class and
hence a node-set in Q(f). So

X = Q(Pl) \/ eee \/ Q(Pek)e

Nowe let
Yy = A(P1l) \/ eee \/ A(Pek)e
So y € B and:
a(P) c x
iff a(P) ¢ Q(Pei) for some i
iff P extends Pe.is fOr some is by 5e2.13h
iff a(P) ¢ A(Pei) for some i
iff A(P) C ye
If x is not a quasi-congruence classs then
x = (x* \/ D1(x)) = D2(~)»
where x* is a guasi-congruence classe So¢ let
y*' be the element of B corresponding to x*y as
described abovey and tlet
y = (y* \/ {a(P) = q(P) ¢ D1l(x)})

- {a(P) : q(P) c D2(x)})e.

Definicion 5e2e¢24e If x € QU9 let g(x) be the y € B
such that:
(P)(a(P) ¢ vy €= q(P) ¢ x)

We shall call g the nodal embedding of Q into

Ao



Fact 5e2¢25.
(3) If x € Q¢ then

g(x) = (g(C(x)) \/ g(Dl(x))) - g(D2(x))
(b) g is one-onee.
(c) g maps Q onto 8.
Proof:
(3) Immediate from the proof of Se2¢23e.
(b) Suppose g(x) =y = g(x*)e Then

(P)(q(P) ¢ x «=> a(P) ¢ y €-> q(P) ¢c x*)

But every integer is I(P)e fOr some Pe sOo x = x'e

(c) Obviouse
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Theorem 5.2+.26¢ If g is the nodal embedding of Q into
Ae then g i3 an isomorphism of Q(f) onto Be.
Proof:
(1) Q(f) 1= (x ¢ v)
iff (P)(q(P) c x => q(P) ¢ vy)
iff (P)(a(P) ¢ g(x) =>» a(P) c g(y))s by 5.2.24
iff B i= (g(x) ¢ g(y))e by 5¢2.16.
(2) g can be shown to preserve @+ Iy unionsy inter-
sectionse relative complementss and proper subsets
as in (l)e.
(3) Q(f) 1= (x T y)
iff 8(fex) = 8(foy)
iff nc(xen) = (cd(Dl(x)) - cd(D2(x)))
= nc(yen) - (cd(Dl(y)) - cd(D2(y)))
where nc(zyn) = the number of charmed
node sets of level n contained in C(2)
and n = the least k such that x and y are
both unions of node sets of depth ke
iff nc(g(x)en) - (cd(g(Dl(x)) - cd(g(D2(x)))
= nc(g(x)en) = {cd(g(Dl(x)) = cd(g(D2(x)))
since Q(P) is charmed iff A(P) is charmed

and g preserves boolean relations

iff A 1= (g{x)

g(y))

iff B |= (g(x) ¥ g(y))s since B ¢ A
(4) Q(f) 1= (x < y)
iff Q(f) I= (x = x* & x* c y) for some x' € Q

since Q(f) |= REPL
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A 1= (g({x) = g(x*) &t g(x*) c g(y))e by 243
A 1= (g(x) <€ g(y))s since A |= SUBSET, INDISC=
B 1= (g(x) < g(y))e since B c A
1= SUM(Xeye2)
Q(f) 1= (x* \/ y* = 2 & x T x* Ly =y
&€ x* /\ y' = @) for some x*y y* € Q

since Q(f) |= DEF+

fto

1= (g(x*) \/ g(y*) = g(x) & a(x) = g(x")

€ g(y) = g(y*) & g(x") /\ g(y’) = P)s Dy 243
A 1= (a(x*) \/ g(y*) = g(x) & g(x) = g(x*)

£ gly) = g(y') €& g(x°) /\ g(y*) = P)

I= SUM(g(x)eg(y)eg(2Zz))e since A |= DEFe

1>

[o)

1= SUM(g(x)e+g(y)eg(z))e since B c A

Sos each model of CAI(f) has a submodel isomorphic to Q(f)s

and we may conclude:

Corrolary 5¢2.27. If f is total and congruouss then

CAI(f) has a prime modele.
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Se3 SUMMARY

We can now draw our final conclusions about CAe CSe and

their completionse

Theorem 5¢3¢1le If f is a totale congruous remainder

functions then CAI(f) is complete and consistente

Proof:
CAI(f) is consistent because f is congruousy by
3¢3012ce Since CAI(f) is model complietey by Seleby
and has a prime models by 5¢2¢27¢ the prime model

testey Aele3y appliese So CAI(f) is completee.

Corollary 5¢3¢2 If T is a completion of CAI,s then T =

CAI(f) for some congruous fe

Proof:
For each n > Oy T |- MOD(nsi} for exactly one is O
€ i < n: Since T is completes T |- MOD(nei} or T |-
~MOD{nsi} for each such ie But if T |- ( ~MOD{n«0}
€ eee & ~MOD{nen-1} )e then T is inconsistenty
since T |- CAl and CAI |- DIV{n)e. Hence T |-

MOD{nsi} for at least one ivy 0 < i < ne

But suppose T |- MOD{nsi} and T |- MOD{nej}+ where
0 <i # j <ne Againe T would be inconsistenty for

CA |- MOD{nyi} =>» ~ MOD{nvj} (see lemma 3e3.ll).



158

Sos let f(n) = m iff T |- MOD{nem)}e Then T |-

CAI(f) ands since CAI(f) is completey CAI(f) |- Te

Corollary S5e¢3.3.
(3) Every completion of CA is consistent with CSe.

(b) CA = CS.

Proof:
(a) Follows from 53¢2 and 3¢3e13.

(b) Follows from (a) and 3e3elbsy given that CS |- CAe.

Theorem 5¢3e¢4e
(a) For n > Oy CS;;EXACTLY{n} is decidable.

(b) CS is decidablee.

Proof:

(a) CSIEXACTLY(n} |- ¢ iff Fen |= go
But Fen is a finite modele.

(b) To determine whether CS |- g¢ alternate between
generating theorems of CA and testing whether

f.n |= =g

Theorem Se3e5ea
(a) CSI has 2%%=W completionse
(b) For total fs CSI(f) is decidable iff f is

decidablee.



159

Proof:
(a) There are 2%%W remainder functions whose domain
is the set of prime numberse Each such function is
congruousy SO each corresponds to a consistent
extension of CSI. By Lindenbaum®'s lemma each of
these extensions has a consistent and complete

extensione.

(b=->») If f is decidabley then CAI(f) is recursively
enumerables But CAI(f) is completes SO it is

decidablee.

(b€-) To calculate f(n)s see which sentence

HOD{nem} is 1n CSI(f)e

Theorem 5436« There is no sentence ¢ such that

T = CA;p is consistent and T only has infinite models.

Proof: If ¢ is true only in infinite models of CAy then

~g is true in all finite models of CAy 50 ~g € (5« But

CA = CSy so CAj¢g is inconsistente.

Theorem S5¢3¢7« CS is not finitely axiomatizablee

Proof: Suppose CS |- g Sco CA |- ¢ ande by

compactnesss (BASIC \/ T) |- ¢ for some finite set of
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ADIV principlesy T = (ADIV(Nn} ¢ n € J}e Let K = {(n :

every prime factor of n is a member of J}e.

Let A be a model whose domaine Aes is \/ {Q(k) : k € K}
in which size relations are determined in accordance
with the size function 8 defined in 3«2.26« We claim
the following without proof:

(1) A |= BASIC

(2) A |= ADIV(j} for all j € Je.

(3) A |# ADIV{k} for any k € Ke
By (1) and (2) A j= (BASIC \/ T)e so A |= ¢ge But by

(3)' _& 17 CSe. Hence ¢ |# CSe
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6 SETS OF NATURAL NUMBERS

-—— — -—— - -

CS has finite standard models since it consists of
sentences true in all such modelse CS has infinite models
Q(n) and Q(f)e In this chapter we will show that CS has

infinite standard models over P(N)e.

An ordering of P(N) that satisfies CS will not necessarily
appear reasonablee. For exampley some such orderings say
that there are fewer even numbers than there are prime
numbers (see belows 6e2e¢l13)e To rule out such anomaliess
we introduce a principles OUTPACINGy in section l.
OUTPACING mentions the natural ordering of N and applies
only to subsets of Ne. Section 2 establishes that OUTPACING
can be satisfied jointly with any consistent extension of
CS is a model whose domain is P{N)e So CS; OUTPACING does

not fix the size relations over P(N).
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6.1 THE OUTPACING PRINCIPLE.

Throughout this chapters *x* and °'y®* will range over P(N)o

Definition 6eslele x gutpaces y iff

(En)(m)(m > n =>» x{m} > y {m})

That is to says x outpaces y just in case: given any
sufficiently large initial segment of Ny the restriction of
x to that initial segment is larger than the corresponding
restriction of ye Notice that the size comparison between
the two restricted sets will always agree with the
comparison of their normal cardinalities since all initial

segments of N are finitee.

We employ this notion to state a sufficient condition for

one set of natural numbers to be larger than another:

OUTPACING: If x outpaces ys then x > yoa

The general motivation behind this principle should be
familiare wWe extrapolate from well-understood finite cases
to puzziing infinite caseses But we should also emphasize,
againy that this extrapolation cannot be done in any
straightforwards mechanical way without risking
contradiction. We cannots for examples strengthen the

conditional to a biconditionaly thus:
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(1) x >y iff x outpaces y

This revised principle conflicts with CSe for gutpacing is
not a3 quasi-linear orderinge For examples neither {2n} nor
{2n+1} outpaces the other since each initial segment
{Ovseecev2n+l} of N contains n evens and n oddse B3ut the two
are discernible under outpacinge since {2n}j outpaces (2n+2}
while {2n+¢l1} does note There is another point that
underlines the need for care in extrapolating from finite

cases to infinite cases: we cannot just use (2):

(2) Ife given any finite subset z of Ny x restricted to

zZ is larger than y restricted to z+ then x > ye

Though (2) is trues its antecedent is only satified when y

is a proper subset of xe

Sos there are many statements that assert of infinite cases
what is true of finite caseses Some of these conflict with
one anothere. Others are too weak to be helpfule It is
doubtful whether there is any mechanical way to decide
which of these statements are truee. The best we can do is
propose plausible theoriesy determine whether they are

consistents and see how far they goe.
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Definition 6ele0e A is an gutpacing_wodel iff

A = P(N)s

I»

t= BASICy and

A 1= OUTPACING.

(There is a slight difficulty in saying that an
interpretation of L{C<) "satisfies OUTPACING"s Since
OUTPACING involves the gmaller-than relation over Ny it
cannot be expressed in L(C<)e We shall finesse this
problem by regarding OUTPACING as the (very large) set of
sentences

{b<

]

t a8 outpaces bj}e

Fact 6elele Every outpacing model satisfies the
following:

(a) {2n} > {3n}

(b) (3n} > (&4n} > (5N} > eee

(c) If kK > Os then {k=n} > [n¥%x2)

Proof:

(a) {2n) has at least (k-1)/2 members less than or
equal to ke for any given ke ({(3n} has at most
(k/3) ¢ 1 such memberse If k > 44 then
(k=1)/2 > (k/3) + le

(b) Similar to (a)e

(c) Note that if m = k*%2y both [k¥*n} and (n**%*2}
have exactly k members < me FoOr m > k*(ke¢l)e N{m})

will have more members in {(k*n} than in (n*%2}.
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Theorem 6ele2¢ Every outpacing models satisfies

(a) {2n} 2 {2n+1}

(b) f2nel} > {2n+2)

(c) If (2n} > {2n+l}e then {2n+1l} = {2n+2}.
Proof:
(a) By TRICHes it is sufficient to show that (2n} is not
smaller than {2n¢l}e If it weres thens by REPCy there
is a y such that y = (2n} and y ¢ {2n+1l}. But any
proper subset of (2n+¢l} is outpaced bys and hence
smaller thans {2n}: Let k be the least odd number not
in ye Then (2n} leads y at (k+¢l) and y never catches
upe SO there is no y such that {2n} = y c {2n¢l}.
(b) Similar to proof of (a)e.
(c) Note that {2n} = (2n+2} \/ {0} and that BASIC |-
(#)e

(*) (y c x & 2 <y & ATOM(2*) € z ¢ x

€ x =2\/ 2') ->»y = zo

Letting x = (2n}e vy = {2n+l}e Z = (2n+2} and applying

(%)e {2n+1} = {2n¢2}.

The two alternatives left open in 6e.le2 correspond to the
possibilities that N may be odd or even: if (2n} = (2n+¢l},
then N is even; if [2n+l} = (2n+2}s then N is odde In
section 6.2 we show that both of these possibilities can be
realized in standard models over P(N)e Heres we generalize

6e1e2 to similar casesy including other congruence classese
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Definition 6ele3e <xoy> is an glternating pair iff x

and y are infinite and for all i > 0y x(i) < y(i) <

K(i‘l)o

Fact 6ele4e If <xvy> is an alternating pairs then in
any outpacing model:

X =T yor x>y = (x - x(1))e
Proof: The argument for 6e.le¢2 applies here since the
only facts about {(2n} and {2n¢l} used hold by virtue of

these sets forming an alternating paire

Theorem 6615,
(a) If 6 < i é j € ke then <{k#*n ¢ ije{k*n ¢ j}> is an
alternating paire
(b) For a given k > Oy let Aei = {k*n ¢+ i} for each i <
ke Then there is a pe 0 < p £ k such that
(i) If i € j < pe then Aei = Aejo
(ii) If p # ke AeO = Aep \/ {0}y and
(iii) If p € i < ke then Aei = Aupe
(See example below)e.
Prcof:
(3) Aei(n) = k&¥n ¢ ie Aej(N) = k¥n ¢ jo Aei(n ¢ 1) =

k23 ¢ i ¢ ky and i € j € k ¢ ie

(b) If AeO > Aei fOor some ie let p be the least such i;

otherwise let p = ke
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(i) For 0 < i € pe <AOvA.i> is an alternating jair
SO A0 > Asi or AD = Aci by 6ele4a But A0 < A.i by
the selection of pe 50 AD ¥ Aesie (i) follows by

TRANS‘.

(ii) Immediaote from 6eleé4 cince CAeD9Aep> is an

alternating pair and Ae0 > Aepe

(iii) AeO > Aep 2 Aei if i 2 Pe SO AeO > Acie

Hence Aei = A0 - {0} = Aepe SO Aei = Aepe

Example: Let k = 49 SO Aai = fé4n+i} for i = Oele2s3.

Then one of the following situations obtains:

(1) AeO = Ael T Ae2 = Ae3 > {4ns4)
(2) AeD > Ael = Ae2 = Aeld = {(4n+4}
(3) AeD = Al D> A2 = Ae3 = (4an+4)
(4) Ae0 T Adl T Aa2 > Ae3 = (4ne4)
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6e2 MODELS OF CS AND OUTPACING.
In this sectiony we construct models of £S over P(N) that

satisfy OUTPACING.

Outpacing models will be constructed cut of finite models
of CS by a technique which is very much like the
"ultraproduct construction" common in model theorys though

the apjlication here demands some important differencese.

Dafinition 6e2ele

(a) L(N) is the first order language which results from
adding to L(C<)s as individual constantses a name for
each subset of N.

(b) Aen is the finite standard interpretation of L(N)
over P(N{n}) in which

Aen(a) = a /\ N{(n} = afn} for each a c Ne

Cefinition 6e2¢2e¢ (Cfe Monksy Defe 186159 pe3lB8) If X
is a set and F ¢ P(X)s then
(a) F has the finjte jntersectijon property iff the
intersection of any finite subset of F is non-emptye.
(b) Fis a fijlter over X iff
(i) F 790
(ii) If a € F and a ¢ by then b € Fy and
(iii) If a € F and b € Fe then a /\ b € F.
(cV F is an yltrafilter over X iff

(i) F is a filter over X,
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(ii) X € Fy and
(iii) if Y ¢ Xo then Y € F Oor (X - Y) € Fe
(d) An ultrafilters Fy over X is prijncipal iff
there is some x € F such that F = (a ¢ X : x € a};

otherwise F is non-principale.

Fact 6o0le3e
(3a) A non-principal ultrafilter contains no finite

setse (See Bell and Slomsonsy Chebsy lemma le3y pel08)a

b) A non-principal ultrafilter over X contains all

ccfinite subsets of Xe

(c) If F c P(X) and F has the finite intersection
propertys then there is an ultrafilter over X which

includes Fe (See Monks Prope 18e¢18¢ pe3l9)e

(d) If Y ¢ X and Y is infinites then there is a

non-principal ultrafilter over X which contains Ye.

Definition 6e2e¢4e If F is an ultrafilter over Ny then
A(F) is the interpretation of L(C<) in which
(i) A(F) = P(N)
(ii) A(F) 1= a < b iff (k : a(k} < b{k})} € Fy and
similarly for other sjze predicatese

(iii) Boolean symbols receive the usual interpretatione



Our main result is that if Ff is non-principals then A(F) is

an outpacing modele.

Theorem 6+2¢5¢ If F is a non-principal ultrafilter over

(a)

N and A = A(F)s then
If t is 3 term of L(N)es then

Aok (t) = A(t) /\ Aek = A(t){n}

(b) If ¢ is a quantifier free formula of L({N)» ;hen
Al=¢g iff (k: Aek |= g} € F

(c) If g is a universal formula of L(N) and
Adk |= g for every ky then A |= ge

(d) A |= REP<.

(e) A |= BASIC.

(f) A 1= ADIV{n}s fOr every ne

Proof:

(a)

(b)

By induction on the structure of t:
(1) If t is a constantey t = 3 for a c Ne
S0 Al.k(t) = alk}) by 6e2elbe

(2) If ¢ = *t]l \/ t2°%,

Aek(t) Aek(tl) \/ Aek(t2)

(A(tl) /\ Aek) \/ (A(t2) /\ Ask)

(A(tl) \/ A(t2)) /\ Ak

The proofs for intersections and relative comple-
ments are similare

By induction on the structure of ¢g:

(1) If ¢ = *ac b’y then A |= ¢ iff a c be

If a c by then there is a k € b but not € ae.
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So if n > ky af{n} ¢ bfnj. Hences

{n: Aen |= g} is cofinite andy by 4e2e3bs in Fe

Converselys if {n: a{n} c b{n}} € Fy then it is
infinitee SO there cannot be a k in a but not
in b; otherwise af{n} would not be included in
b{n} for any n greater than ke SO0 @ c be Buty
clearly a # by so @ is a proper subset of be
(2) If ¢ = %a = b'y then
Al=¢ iff a=ob
iff a{n} = bf{n} for all n
iff (n: Aen |= g} = N
iff (n: Aen |= a = b} € F
since if Aen |# *a = b'y and k > ny
then Ask |# *a = b'e.
(3) A l= (a<b) iff {k: Aek |= (3 < D)} € Fo
(immediate from 6e2e4bs)
(4) If p is non-atomice
A |= (@l & g2) iff A |= gl and A |= @2
iff (k: Aek |= g1} € F
and (k: A.k = g2} € F

iff {k: Aek |= (Pl € g2) € F

A |= =~gl iff not(A |= ¢1)
iff {k: Aek |= ¢#l) is not in F
iff (k: Aek |= ~pl) € F

since F is an ultrafiltero



(c)

(d)

(e)

1+2

Suppose Aek [= (X)@(x)e for-all k

then

>
°

k |= g(a)y for all ay for all k

SO

I»
[ ]
x

1= #(a)e for al) ke for all a

SO I= g(a)s for all ay by (b)

I»

SO

I>»

1= (x)g(x)

Suppose A |= (a < b)e

We want to construct a's a subset of be for
which A |= (a8 = a').

Let K

(k: afk} < b{k})}: so K € Fe

Let K

{klveesookeoiveoe}s where the kei's are
in strictly increasing ordere
Let a0 = 92
3e(i*l) = aei \/ {the n greatest members of

blke(i*tl)} which are not in aei}e
where n = cd(af{ke(i*tl)}) - cd(3ei)

let a' = \/ (3.i}

Then a' ¢ by since each ae.i draws its new

members from be

Claim: If k € Ky then a*{k} = a(k}e

Hence: A |= a' = a3y since they are the same size

over some set which contains Ky and iss thuse in Fe

Immediate from (c) and (d): BASIC is equivalent to

a set of universal sentencessy together with ATOM

and REP<Ce (A |= ATOM because it contains all

singletons of natural numberse.)

(f) Given n > Oy xe an infinite subset of Ny and i < ny

let xei = {x(k*n ¢ i = 1): k € N}
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Soe the n setsy xeiy partition xe Furthermores these
form an "alternating n-tuple®y in the manner of the
congruence classes modulo n (see theorem 6eleS)e

SOeo as in 6.1e5¢y these sets are approximately equal

in size and A |= Div{n}(x)e

Corollary 6e2¢6. If F is a3 non-principal ultrafilter

over Ns then

(a) A(F) |)= CAl, and
(b) A(F) 1= CSI
Proof:

(a) Immediate from 6e20e5€e and 6e2¢5fFe

(b) Immediate from (3) and Se3e3be

Perhaps a remark is in order: The proof of 6e2¢6 is modeled
on the usual "“ultraproduct construction"y but isn't quite
the samee In the usual construction (see Bell and
Slomsonsppe87-92)y a model is built by first taking the
product of all the factors (in this cases the Aek)s which
results in a domain whose elements are functions from the
index-set (N¢ here) to elements of the factorse These
functions are then gathered together into equivalence
classes (by virtue of agreeing "almost everywhere"y ie€e

on some member of the filter) and the reduced ultraproduct
is defined by interpreting the language over these
equivalence classese The model so constructeds which we'll

call "Pr(A.k)/F"y has the handy property that it satisfies
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any formula which is satisfied by "almost all" factorses and
certainly any formula which is satisfied in all of the
factorse This is handy becausees given that each of the A.k
|= CSe we can immediately conclude that Pr(A.k)/F also

satisfies CSe

Unfortunatelys Pr(Aek)/F isn't the model we wanted: for its
elements are not subsets of Ns but equivalence classes of
functions from N to finite subsets of Ne There iss indeed,
a "natural mapping" from subsets of N to such elementses and
this mapping would allow us to identify a model over P(N)
as a submodel of Pr(A<k)/F; but only a submodel. Sos had
we constructed the reduced ultraproductsy we would have then
been able to infer that the part of that model which held
our interest satisried all universal formulas of CS; we
still would have had to resort to special means to show

that the non-universal formulas were likewise satisfiede.

Fortunatelys these special means were available; the only
non-universal axioms of CAI could be verified in the
constructed model! more or less directlyes and the
completeness proof of the last chapters allowed us to infer
that all formulas true in all of the factors are true in

the model A(F)s after alle.

Notice thate given any Fy there will be many cases where

A(F) = a < b even though b doesn't outpace aes This will
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happen whenever (k : Aek |= afk} < b{k}} € F but isn't
cofinitee Consider a familiar example: Let a = {2n+l} and
let b = {2n}e Then af(k} < bk} iff k € §2n}s for if we
count the even numbers and the odd numbers up to some even
numbers there will always be one more even and if we count
up to some odd numbers there will be the same number of
evens and oddse {2n}) is neither finite nor cofinites so it
fhay or may not be in Fe If {2n}) € Fe then A(F) |= ({2n¢+1}

< {2n}))e Otherwise {2n+l} € Fs so A(F) |= (12n} = {(2n+l]})e

The construction of a3 model A(F) from any non-principal
ultrafiltery Fy suggests that there are many outpacing
models unless different ultrafilters yield the same modele.

“e will first show that this qualification is not needede.

Theorem 6e2e7e If F1l and F2 are distinct non-principal
ultrafilters over Ne¢ then A(Fl) # A(F2)e (Proof

belowe)

To show thise we will show that the presence of a set in an
ultrafilter makes a directe "personalized" contributién to
the model A(F)e Putting this in another ways there is a
set of decisions that must be made in constructing an
outpacing model; each decision may go either ways though
the decisions are not independent of one anothere.
Furthermores each decision is made for a model A(F) by the

presence or absence of a particular set in Fe
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Definition 6e2eB8e If x ¢ No then x¢ = {i¢l : i € X}e

A pair of sets <xex+> can sometimes be an alternating paires

tut this is not always the casee.

Fact 6e2e9e <xex*¢> is an alternating pair iff x is
infinite and there is no n € x such that (n+l) € xo

ie€e NO two consecutive numbers are in xe

Neverthelesssy pairs <xex+> are like alternating pairs in

the following way:

Lemma 662010 If x is infinitesy x1 = (x = x*)e x2 =
(x¢+ = x)9 F is a non-principal ultrafilters and A =
A(F)s then

(a) <x1lex2> is an alternating paire

(b) A = (x = x¢) or A |= (x > x* T (x = x(1)) )e.

(c) A 1= (x > x¢+) iff x € Fo
Proof:
(a) Let a run of x be a maximal consecutive subset of
Xe (SO {2n} has only one-membered runss while (N -
{l0n}) has only nine-membered runse) SO xl{n) is the
first element in the nth run of x and x2(n) is the
first element after the nth run of xe

(b) We know from (3) that x2 = xl or x2 = (xl1 = x1(1))e
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But the disjoint union of (x /\ x¢) with x1 or x2»
respectivelyy yields x or x+e SO0 (b) follows from
DISJUe. (c) We need only prove (%)s which we shall do
(*) cd(x{n}) > cd(x+{n}) iff n € x
informally: xin} first becomes greater than x+{n} where
n = x(1) since x(1l) is not € x+ because {x(l) - 1) not
C xe¢ Throughout the first run of xy x retains its
leads losing this lead at the least ny n not € x (for
(n=1) € x¢ so n € x+t)e This pattern repeats during

successive runs of xe

We can now prove our theoreme.

Proof of 6e2e¢7s MWithout 10ss of generalitys we can

suppose there is a sete x¢ such that x € F1 and x not €

n
x

*
L]

F2e By 6e2e10Cy A(Fl) |= x > x¢+ and A(F2) = x

Theorem 6¢2.7 allows us to improve upon some previous
resultse For examples we can show that either of the
alternatives in 6e2.10b can be obtained for any alternating

paire

Theorem 6¢2elle

(a) If neither x nor y outpaces the others then there
is an ultrafiltery Fy such that A(F) |= x = yoe

(b) If <xey> is an alternating paires then there is an

ultrafiltery Fo such that A(F) = x > ye
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Proof:

(a) Let J = {k ¢ cd(xfk}) = cd(y{k}) }e Since neither
X nor y outpaces the othere J is infinitee By 6e¢2e¢3dy
let F be a3 non-principal ultrafilter which contains Je

Then A(F) I= x = ye

(b) If <xysy> is an alternating paires so is <ye(x -
x(l))>e Soy by (a) there is an F such that A(F) |= (y

= (x = x(1l)) )e But then A(F) |= (x > y)e

Theorem 6¢2¢12¢ Every infinite completion of CS has an

outpacing model,

Proof: Recall that every infinite completion of CS is
equivalent to CSI(f) for some total and congruous

remainder functione fe (See 3e642)

Given such an fs let Gek = (k&n ¢ f(k) ¢+ 1)} for each k
> Oe MNote that (¥) holds for each k:
(¥) Gek = {n 2 Aen |= MODt{kef(k)}}

Let G = (Gek : k > O}e

The intersection of any finite subsety Hey Of G is
infinitee If H is a finite subset of Ges then H = (Gek
:t k € J}o where J is some finite subset of N+e SO H =

{(nel 2 if k € Jo then n = f(k) mod k}e But f is
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congruouss so the restriction of f to the finite domain

J has infinitely many solutions {(see 3e.3.8a)e

Since the intersection of any finite subset of G is
infinites there is a3 non-principal ultrafilter F such
that G ¢ Fe By (¥)e A(F) (= MOD({kof(k)}y so A(F) |=

CSI(f)e

On the basis of 6e.2.11 we noted that there are even and odd
outpacing models; we can now extend that observation to
mcduli other than 2. More specificallyes note that all of
the possibilities listed in 6e¢le5 for the relative sizes of
the k-congruence classes ares in facts, obtainable in

outpacing modelse.

This section has explored the existence and variety of
outpacing modelse Three comments are in order before we

turn to the common structure of outpacing modelse.

Firste even if T is an infinite completion of CSy there is
no unique outpacing model which satisfies Te This would be
true only if fixing the relative sizes of congruence
classes determined whether x = x+ or x > x+ for every x ¢ N
(see 6e2410c)e That 31l such choices are not determined by
a remainder theory can be seen intuitivelys perhapse by

considering x = {(n%*%2}: Any finite set of congruences has

infinitely many solutions that are squares and infinitely
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many that aren®t; so whether x € F is an independent
choice« Note also that there are only (2%*%W) remainder
functions while there are 2%%(2%%*W) non-principal
ultrafilters over Ny each yielding a different outpacing

model (see Bell and Slomsony Cheby Theorem le5)e

Seconds it is not clear whether every outpacing model can
be obtained by the construction of 6e2e4e Lemma 6e2.10¢C
may suggest that any outpacing modeles Ay is A(F) for F =
FeA = {x 2 A |= x > x+}y but it shoulon'te To establish

that A = A(FeA)s both (1) and (2) are necessarye

(1) If A is an outpacing modely then FeA is a
non-principal ultrafiltere.

(2) If Foﬁ = F.-B_' then A = go

I have not been able to prove (1) or (2)e If (1) is falses
then clearly A # A(FoA)e But even if (1) is trues two
outpacing models may agree about all pairs <xex+> but
disagree elsewheree At most one of them is obtainable by

our constructione So (1) and (2) are open problemse

Finallys, though it's probably extraneous to show that

OUTPACING is independentes we will do soe

Theorem 6.2¢13¢ There are standard models of CS over

P(N) which do not satisfy OUTPACING.



181

Proof: Suppose that X is a linear ordering of Ne under
which N forms an W sequencees Then we could define x
<-outpaces ye¢ thus:
En(m)(n ¥ m =->» cd({k 2 k € x € k T m}) > cd(f{k : k
€yt kT a}) )
and OUTPACINGXy thus:
If x T-gutpaces ys then x > ye
Modifying 6¢2+4y we could produce standard models of CS
over P{N) which satisfy OUTPACINGX and these won'ts in

generaly satisfy OUTPACING.

Supposey for exampley that X is the ordering:

P(l)e Q(l)e eeev pP{k)e Q(Kk)veeee
where p is the set of primes and q is its complemente
In any GUTPACINGX modely p and q will be nearly the
same sizey and the evens and odds are in outpacing
modelse But the evens are much smaller than gy 50 p >

{2n)} and OQUTPACING is false in DUTPACING> modelse.
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6e3 DENSITY AND SIZE

When number theorists talk about the sizes of sets of
natural numbersy they don't content themselves with
speaking of the (Cantorian) cardinalities of these setse
Since they often want to compare iﬁfinite subsets of Ny

they need a more discriminating notione

One notion they use is "asymptotic density"e The
aysmptotic density of a sets x¢ Of Natural numbers is the
limity if there is ones of cd(x{n})/n as n growse For
exampley the asymptotic density of (2n} is 1/2« From now
ony we shall use the term "density" instead of Yasymptotic

density"e.

In this sectiony we compare the ordering of P(N) given by

density to the orderings given by CS and OUTPACINGe.

Definition 6e¢3ele
(a) fr(xei) = cd(x{i})/is the fraction of numbers less
than or equal to i that are members of xe

(b) If x ¢ y # Ps then p(xey)s the density of x jn ye

is the limity if it existse of
frixei)/friysi)
as | goes from y(l) to infinitye That isy
P(xesy) = r iff (d)(d > 0 ==>» (En)(i)(i > n =-=->
-d < fr(xei)/fr(ysi) < d) )

(c) The density of xs p(x)s is the density of x in Ny
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if x has a density in N.

(d) If x c y # @y then x gonverges in ys cvg(xev)e iff
x has a density in y; otherwise x djverges jn vy
dvg(xsy)e (e) x gonvergess cvg(x)e iff x converges in

N; x diverges iff x diverges in Ne

Fact 6¢3.2e
(a) If x is finitey p(x) = O
(b) If x is cofinites p(x) =1
(c) p({en}) = 172
p(lanis(2n)) = 1/2
p(lan|) = 1/4
(d) If cvg(xey) and cvg(ye2)e then cvg(xe2)

and p(xeZ) = p(xey)?*p(ye2)

Fact 6e3e3c
(3) There are divergent setse
(b) If O € r < ly there is 3 set with density re

(c) If O < r

IA

1 and y is infinitey then there is a set

with density r in ye

Proof:

(3) Let x = (i: (En)(l0%%2n < i < 10%%(2n¢l)}»

sc x contains all numbers between 0 and 9y between 100
and 999+ between 10000 and 99999y and so forthe If n >
lo Fr(xel0%%2n) < ol and fr(xel0%%(2n¢l)) > «9« So

fr(xek) cannot have a limit.
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(b) Suppose r is givene Construct the set x as

follows:
x0 = ¢
Xe(i®l) = xei if cd(xei)/(i*l) > r
(xei)s(i*l) if cd(xei)/(i*l) < r
x = \/ (xei}

(c) Modify the construction for (b) in the obvious

waySe

Theorem 6e¢3c4e Suppose that both x and y converge in

2e Thens if p(xe2Z) < p(yeZ)s y Outpaces xe

Proof:
Let b = (p(ys2Z) - p(x+2))/3
nl = the least n such that for all i > ny
-b < (fr(xei)/fr(2+i)) - p(xez) < b
n2 = the least n such that for all i > ny

-b < (fr(yv2i)/fr(zei)) - p(ys2z) < b
Thene for any i > (nl ¢+ n2),
fr(xel)/fr(zei) < p(xe2) + b
and fr(yei)/fr(zei) > p(yez) - b
But p(xez2) ¢+ b < p(yez) = by
s0 f(xei)/F(zei) < fF(yoi)/fF(Z0i)
so fFixei) < f(yri)

so cd(xfi}) < cd(y(il})e
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We can use the relation between density and outpacing to
draw conclusions about densities that have nothing to do

with outpacings as in theorem 6¢3¢5.

Theorem 6¢3e5e If p(xezl) < p(yezl) and both x and y
converge in 22+ then p(xe22) < pl(yerz2)e

Proof: Since p(xs21l) < p(yeszl)e y outpaces xe But if
P(xvz22) > p(ye*22)s then x outpaces ys so p(xe22) £

P(ye2z2)e.

Notice that we cannot strengthen the consequent of 6e3e5 to
say that p(xez22) < p(ye22): let 21 be the set of primess
let x contain every third member of 2zls and let y be (zl -
x)e Then p(xe2l) = 1/3 and p(ye2l) = 2/39 but p(xeN) =

pl(yeN) = 0o

Theorem 6e3e4 impliies that in any outpacing modely sets
with distinct densities will have distinct sizese Even if
two sets have the same densitys they will differ in size if
they have different densities in some common sete SO0y from
facts 6e¢3¢3(b) and (c)e we can begin to appreciate how

precise an ordering outpacing models provide:

Fact 6e3ebe If A is an outpacing model,y then
(a) there are uncountably many sizes of sets in Ay and
(b) if 0 < r < i1s then even among sets with density ro

there are uncountably many sizes in Ae
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Proof:
(a) follows immediately from fact 6e3e¢3b and theorem
6e3e4e (D) Let x be an infinite set with density ro
let y be an infinite subset of xs where p(ysx) = Oy and
let z = (x - y)e There are uncountably many subsets of
y with aistinct densities in ys though p(ylex) = 0¢ for
any yl ¢ ye
Supposes nows that yl c vy
y2 ¢ ys and
Plylsy) < ply2ry)e
Then A |= yl < y2¢ by be3e¢4

so A 1= (2 \/ yl) < (2 \/ y2)s by DISJU

But p(z \/ vyl) P(z \/ y2) = p(x)s since 2 was
obtained by removing from x a3 set with density O

relative to xe
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It*s tempting to infer from these results that the
extremely fine ordering of sets by size (ore rathery
any such ordering which is realized in an outpacing
model) is both a refinement and a completion of the
ordering suggested by density: a refinement because
it preserves all differences in size which are
captured by the notion of densitys a completion
because all sets are located in a singles linear

ordering of sizese.

Sut the situation is really not so cleare It is
evident that the size-ordering over P(N) in any
outpacing mode! is a refinement of the ordering by
cardinality: if x has a smaller cardinal number than
y* then x is smaller than ys though two sets with the
same cardinal number may have different sizese. We
can regard the cardinality of a set in P(N) as
determined by its sizes though different sizes may
yield the same cardinal numbere. We shall express
this fact by saying thats at least when we focus on
P(N)y cardinality is a function of size. (Note: it
is not at all clear that this is true in any power

sete)

Nows we want to know whether the density of a set is

a function of its sizee It turns out that a negative
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answer is compatible with our theory (CS and
OUTPACING)y while an affirmative answer may or may
not be consistente Firsty we will give a more
precise formulation of this problem; secondsy we will
show that a negative answer is consistent; finally,
we'll discuss the consistency of an affirmative
answere In passings we'll explain why this is called

“the convexity probleme"

Consider (1) and (la):
(1) If x = y and p(x) = ry then p(y) = re
(la) If x = y and p(x) = r and cvg(y)s then p(y)
Z re
(la) is an immediate consequence of theorem 6e3e4o
For if y convergess there is some r2 = p(y); if r <
r2e then x < y and if r2 < re then y < x; but y = xv

SO r2 = re

Sos the questionable part of (1) can be expressed as
(2):

(2) If x = y and x convergess then y convergese.
Theorem 6+3e4 insures that (1) if and only if (2)e
Recalling that sets may have the same density even if
they differ in sizey we may consider two additional

formulations:



(3)
(1)

(3) If p(x)

P(x)e

(4) If p(x)
convergese
and (4) are

and (2) are

Fact GeleTe

Proof:

(-») Suppose
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p(y) and x < z < yy then p(2Z) =

p(y) and x < z < yy then 2

equivalent for the same reasons that

equivalente.

An outpacing model satisfies (1) just

in case it satisfies (3)e.

X = y and p(x) = roa

If x = F or x = Ny then y = xe SO pP(Yy) = p(x)

To appl

and x2¢

y (3)e we need to find two setsy xl

such that

Pi(xl) = p(x2) = r = p(x)

and

xl

<y<X20

Assuming that x # @ and x # Ne let

xl
and

x2
Then

x1
and

xl

= x = {a)e for some a3 € x

Xxibe foOor some b not q Xe

< x < x2y by SUBSET

<y < x2y by INDISC=.

Since adaing or removing a single element has
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no effect on the density of a setys
p(xl) = p(x) = p(x2)e.
So¢ by (3)e p(y) = re
(€-) Suppose x < y < z and p(x) = p(2)e.
By REP<y there are two setss x' and y's where

x* ¢ y* c 2 X = x%, y < y°

Since x = x*' and p(x) p(z)y (1) guarantees
that p(x*) = p(z)e But then p(z - x*'} = 0Oy
SO p(z - y*') = 0e But y* = 2 = (z - y")»

sO p(y'} = p(Z)e Sos by (1) ply) = p(2)e

The question at hand is called the "convexity
problem" because of the formulation in (3)e In
geometryos a figure is convex ify given any two points
in the figures any point between them (ie.ee on the
line segment from one to the other) is also in the
figurees Applying this notion in the obvious way to
the size orderings (3) says that the class of sets
having a given density is convexe By theorems 6e3e4

and 6e3eTe (1) (2)e and (4) say the same thinge
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We regret that all we know about (3) is that it may

be false:

Theorem 6.3+8. The negation of (1) is satisfied in
some outpacing model.
Proof: Let x be a set with density r and let vy
be a divergent set which neither outpacesy
nor is outpaced bys xe Let K be
{ n: x{n} = y{n} }
K is infinites so K is a member of some
non-principal ultrafiltery Fo
A(F) I= (x = y)e so (1) is false in A(F)e.
Open problem: Is (1) consistent with CS and OUT-

PACING?



192

APPENDIX

Aol NOTATION

The formal theories discussed in this thesis are theories

with standard formalizations in the sense of (Tarskis pe5S)e
That iss they are formalized in first-order predicate logic
with identity and function symbolse The following notation

is used for the predicate calculus:

¢ - and
! = or
-» = ifeecthen
€-» - {if and only if

~ = not

identical
# = not identical
(Ex) - there is an x

(x) - for all x

Conjunctions and dis junctions of sets of sentences are
represented by

ooo¢ - = '}

L (¢
and ! (P ¢ eeep = = -}

Herey as elsewherey we don't bother to use corner- quotesSe

Subscripts on variables appear on the lines rather than
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below ity thus
Xle X29 ooe
Where confusion might arises in particular where the
subscripts are not numeralss a dot is usede thus
Xele Xele¢e Xeis Xen
Double subscripts are displayed in parentheses":

Xx(lel)e x(Nnek)

A first order language is determined by its non-logica)
constant symbolise in the usual waye These may be
predicatesy individual constantse or function symbolse. We
shall specify languagess in the style of Chang and Keislery
as @ set of constant symbolse In most caseses the ranks of
the symbols will accord with their familiar uses and we

will not bother to stipulate theme

We use parentheses in the conventional manner to indicate
the argument places of predicatese SO
SUM(xeys2)

is a three-place predicate.

A "schematic function” is a function whose range is a set
of formulaee. DIVy for example (See 3e¢208)9¢ is such a
functione DIV maps natural numbers into sentencese. The
arguments of such functions are indicated within square
bracketse SoOe fOr any ny

DIV{n}
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refers to a particular DIV sentence: the one with n

dis junctse

Similarlys MOD is a 2-argument schematic function and for
every pair of natural numberss n and me there is a MQOD

sentences MCD{nem}e

Schematic functions may al1so have predicates as valuese In
this cases the notation for schematic functions and the
notation for predicate arguments are combinede For
exampley Div is such a function andy for any ny

Div{n}(x)

is a l-place Div predicatee.
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For first-order languages with boolean operations and
predicatesy we use the following notation:
1 - the universe
@ - the null element
x \/ y = the union of x and y
Xx /\ Yy - the intersection of x and y
x Cy - x is @ subset of y
x Cy = x is a proper subset of y
x -y = the relative complement of ye in x
These symbols are also used for set-theoretic relationsy
outside of first-order lanquagese In additions we use the

following:

x €y - x is a member of y
P(x) - the power set of x
{x: F(x)} = the set of x which are F
\/ X - the union of all members of x
J\ X - the intersection of all members of x
xia - the union of x and (a} (grom Enderton)

<XlyecegXend> - the n-tuple whose ieth member is xei

N - the set of natural numbers: {Qelvcee}
N+ - N - (0}
4 - the set of integers

17} - the smallest infinite cardinal

2E*%H - 2 to the W
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Aele3 Arithmetic
For arithmetice we use the following: ("i" through "n"
range over the natvral numbers and "“I%, "“J"y and "K" range

over sets of natural numberss unless otherwise specifiede.)

ie] - i plus j

i-j - i minus j

1%] - i times j

%% - i to the j-th power

i! - i factorial

il gy - i divides j

gcd(iej) - the greatest common divisor of i and j
n=mmod j - n is congruent to m modulo j

For sets of natural numberses we use the following
notations:

{eeenNeece}l = (h: (EN)(k = eeeNese)}
For example,

f2n} = the set of even numbers

{n%x%3} = the set of cubes
When more than one variable appears within the bracketsy
one is designated (by underlining) as that which

corresponds to 'n' abovee Thusy

{i*n + j} the set of k congruent to j mod ie but

{i*n + j} the set of numbers > i*n
Finally,
x{k} = {i: i € x and 0 £ i £ k}

and x{i) = the i-th element of xo
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Upper case greek letters are not usede. Lower case greek

letters are approximated

) )

(o] a o m o @

o

ohi
theta
sigma
alpha
beta
delta
tau
nu
chi
omega

rho

in the following ways:



198

Ae?2 MODEL THEORY
This section lists the model-theoretic notions and results
assumed in the text and presents our notation for these

notionse.

An interpretations Ae of a first order languages Lo

consists of a domaine Ay and a function which assigns to
each individual constant of L a member of A; to each
n-place predicate of Ly 3 set of n-tuples over A; and to
each n-argument function symbol of Ls an n-ary function
defined over all n-tuples of A and yielding values in Ae
We use underlineds upper case letters to denote models and
the same letterss without underlinings to denote the

domains of those modelses

We assume the notion of "satisfaction'" as defined in (Chang
and Keislers section le3) and use
A |= ¢ for "A satisfies g" or "g i1s true in A"

We assume familiarity with the following notions:

Ae2ele Familiar notions (models)
(a) A is a submodel of B; A c B

(b) B is an extension of A; A c 8

(c) the submodel of B generated by Xs where X is a
subset of B
(d) A is jsomorphjg to B; A ¥ B

(e) f is an jsomorphic embedding of A into B
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(f) 2 is an glementary_extension of A

(g) (Aei} is a ghain of models;

(h) A = \/ {Aesi};: the union of a chain of models

Ae2.2. Familiar notions (theories)
(a) A theory 15 a set of first-order sentences

(t) The lanjuaae c¢cf theory T; L{(T)

(c) Y proves g;: T |- @
Tl proves T2; T1 |- T2

(d) T is complete

(e) T is consistent

(f) T is gé&ggorical
(g) Tl is equivalent to T2; Tl = T2

Ae2¢3. Well known facts
(a) If T |- ¢+ ther some finite subset of T oroves
Oe (Compactness)
() If T is complete and T:;p is consistentse then T
1= @

(c) If T is cateqoricaly then T is complete.

Aele4se Fairly familiar notions
(a) T is existential iff it is equivalent to a set
of prenex sentencess none of which have universal
quantifierses (b) T is gniversal 1ff it is
equivalent to a set of prenex sentencess none of
which have existential quantifierse

(c) T is universal-existential iff it is equivalent
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to a set of sentences in prenex forme each of which
has all of its universal quantifiers preceding all
of its existential quantifierss

(d) ¢ is & primitive formula iff ¢ is an

existential formula in prenex form whose matrix is
3 conjunction of atomic formulas and negations of

atomic formulase

Ae2e5e Fairly familiar facts

(3) If T is existentialy A |= Ty and A ¢ By then B
| = Te
(b) If T is universal and A {= Ts then any submodel

of A also satisfies Te
(c) If T 1s universal existential and A.i |= Ty for

all i > 0y then \/ {(Aei} |= To
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Ae3 MODEL COMPLETENESS
This section presents the definition of and basic results
concerning model completeness so that we don't have to

pause over them in chapters 4 and S
There are several ways of showing that a theory is
complete; we use only onee« The method we use is based on

A« Robinson®'s notion of "model completeness".

Definition Ae3ele T is model complete iff T is

consistent and for any two models A and B of T A c B

iff A is an elementary submodel of B (Monks pe355)e.

A model complete theory isn't necessarily completes unless

the theory has a prime model:

Definition Ae3e2. A is a prime model of T if A is a
model! of T and A can be embedded in any model of T
(Monke pe359).

Fact Ae¢3e3e If T is model complete and T has a prime

model,s then T is completes

To show that a theory is model complete we relyy directly
or indirectlys on a theorem of Monk®s (see 4e2e13)s which
in turn is based on some often-cited equivalences for model

completeness:
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Definition Ac3e4e

(a) The A-expansion of L is the result of adding to L

a8 constant for each element of A,
(b) The diagram of A is the set of atomic sentences
and negations of atomic sentences of the A-expan-

sion of the language of A which are true in A.

Fact Ae3e5. The following are equivalent:

(a) T is model complete.

(b) For every model A of T and every A-expansion L*' of

Ly T ¢+ (L* - diagram of A) is completee.

(c) If A and B are models of Ty A c By ¢ is a universal
formulae x is in Ay and A |= ¢@g(x)e then B |= g(x)e

(d) If A and B are models of Ty A c By ¢4 is a primitive
formulas x is in Ay and B |= g(x)e then A |= @(x)e.

(Monks pe356)
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