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ABSTRACT

A distributed database (DDB) consists of redundant copies of data files
geographically distributed on a computer network. This thesis develops
a performance model of a DDB. This model can be used to compare the
performance (i.e. response time, utilization, etc.) of different concurrency
control algorithms.

We started by developing a network of queues model of a communication
subnetwork. We have originally attempted to employ Jackson's Model
but have concluded that Jackson's Model is inadequate for our purposes.
The Independent Queues Model that we developed in this thesis makes somewhat
stronger assumptions than Jackson's Model, but has more flexibility and
approximates better a real communication subnetwork.

We found that in a general DDB, concurrency control algorithms could
not be modelled accurately without taking into consideration the particular
query processing strategy used. We have therefore developed two new query
processing strategies: the MST and the MDT Algorithms. These two algorithms
are easy to analyze and to implement.

We next modelled the competition among different transactions in the
DDB for the services of the database management system. Probabilitic argu-
ments were used to determine the probability of conflicts between different
database transactions and the delay due to conflicts.

Thesis Supervisor: Dr. Wilbur B. Davenport, Jr.
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CHAPTER 1

INTRODUCTION

This report describes a program of research to develop a perform-

ance model of a distributed database (DDB). The field of DDB is

relatively new and growing rapidly. Numerous algorithms have been

proposed for data retrieval, update synchronization and file allocation.

This thesis develops a tool that will enable one to compare the perform-

ance (i.e., response time, throughput, utilization, etc.) of the -

different algorithms, and to propose better, more efficient solutions.

The approach will be to approximate the communication subnetwork

by a Network of Queues Model. Probabilistic arguments will be used to

specialize the model to accomodate the characteristics of a DDB.

1.1. Definitions

A database is a collection of operational data used by the application

systems of some particular enterprise. The Database Management System (DMS)

is the special software designed to provide each application with its own

view of the common data, to implement operations for retrieval and update,

and to resolve conflicts between concurrent users. The development of

computer communication networks introduced the concept of the distributed

database which is a database whose physical copies of data (often redundant)

are distributed on a computer network. The Distributed Database Management

System (DDMS) permits a collection of data relevant to a particular

enterprise to be managed on a network of geographically dispersed computers

(computer sites). Fig. 1.1 shows the basic architecture of a DDB. An

arbitrary network of computer sites is connected by communication links.

Attached to each computer site are the data files, sensors and terminals
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through which users can access the data.

1.2 Advantages and Disadvantages of DDB

Some enterprises, such as military Command, Control and Communications

systems are distributed in nature; since command posts and sensory gathering

points are geographically dispersed, users are necessarily dispersed. For

example, the Navy has remote sensors and databases distributed all over

the world. Other potential users are airline reservation systems, and

electronic fund transfer systems. A typical user will be an enterprise

which maintains operations at several geographically dispersed sites, and

whose activities necessitate inter-site communication of data.

Distributed databases also offer the following advantages when

compared to centralized databases:

(1) Improved throughput - the availability of multiple computers means

that throughput can be increased via parallel processing.

(2) Sharing - geographically dispersed data and equipment can be shared.

(3) Modular expansion - distributed database systems can be expanded by

the addition of new nodes (database sites) to the network.

For distributed databases with redundant copies of data, there are

additional advantages:

(1) Improved reliability/survivability - through redundancy of data.

(2) Improved response time - by storing data in locations where it is

frequently read. Communication delay is reduced since files which

are under heavy demand in several geographically dispersed locations

can be stored redundantly. However, more redundant copies also means

increased delay during writes.

There are two major implementation problems associated with distributed
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databases. The first problem is that communication channels between

sites are often very slow compared to the storage devices at the local

computer sites. For example, the ARPANET can move data at about 25 Kbps

(kilobits/sec) while standard disks can move data at about 1 Mbps

(megabits/sec), a 40-fold increase in rate. Besides, networks have

relatively long access times, corresponding to the propagation delay for

one message to go from one computer site to another. (This propagation

delay is about 0.1 sec. for the ARPANET.) The other problem is that

communication channels and computer sites are susceptible to failures,

giving rise to networks that may have constantly changing topologies.

1.3 Key Technical Problems

It is noted that some of the problems associated with distributed

databases are the same as those for the non-distributed (centralized)

database and can therefore use the same solutions. Such problems include*:

choosing a good data model, designing a schema, etc. However, mainly

because of the two implementation problems associated with the distributed

database, the following problems require significantly different approaches:

(1) data retrieval (or query processing) - a query accessing data stored

at different sites requires that data must be moved around in the

network. The communication delay, and hence the response time, depends

strongly on the choice of a particular data storage and transfer

strategy.

(2) update synchronization ( or concurrency control) in centralized

databases, locking is the standard method used to maintain consistency

* The reader is referred to [DATE77I for a definition of these terms.
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among redundant copies of data. The distributed nature of the data

in DDB means that setting locks produces long message delays.

(3) reliability/survivability - the network introduces new components

(communication links, computers) where failure can occur, and hence

the associated problems" of failure detection and failure recovery.

(4) physical database design (file allocation) - the problem of how

many copies of each data file to maintain and where to locate them.

The use of additional redundant copies generally means reduced

communication delay associated with data retrieval. Unfortunately,

it also means increased delay associated with update synchronization.

The problem is difficult not only because of varying file request

rates due to the users, but also because of the dynamic nature of

the network topology. Nodes may be lost due to computer and communi-

cation link failures or a particular node moving out of range of the

communication medium. The topology, and hence the associated file

allocation, changes again when new nodes are added to the network

due to computer and link recovery.

1.4 Performance Modelling

1.4.1 Need for a Performance Model

Our literature research has led us to conclude that a good model of

a distributed database system is essential to research in this area.

Such a model will enable us to compare the performance of the different

algorithms proposed. It can also help identify the decisive factors of

system performance and consequently determine the direction one should

take in further research on improvement.
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Such models should be flexible enough to allow for the testing

and comparison of alternative synchronization and query processing

algorithms.

One possible approach to performance modeling is to develop a

simulation model. However, simulation models are generally expensive.

Besides, a simulation model only gives results for one particular

configuration of the problem, as defined by a specific set of parameters,

and does not provide as much insight as analytic models on the relation-

ship between the results and the parameters. We shall therefore concen-

trate on developing an analytic model.

1.4.2 Review of Research

While the literature on DDB abounds in concurrency control and

query processing algorithms, there is very little work done on comparing

the performance of the different proposals. Bernstein and Goodman

[BG80] analyzed the performance of principal concurrency control methods

in qualitative terms. The analysis considers four cost factors: commu-

nication overhead, local processing overhead, transaction restarts and

transaction blocking. The assumption is that the dominant cost component

is number of messages. Thus distance between database sites, topology

of network and queueing effects are completely ignored. A quantitative

comparison is described in the thesis of Garcia-Molina [GARC79]. He

compared several variants of the centralized locking algorithm with

Thomas's Distributed Voting Algorithm [THOM79] and the Ring Algorithm

of Ellis [ELLIT77]. The major assumptions are (1) a fully redundant

database, and (2) the transmission delay between each pair of sites is



constant. The first assumption requires that the whole database is fully

replicated at each node. This is necessary because Garcia-Molina did

not want to model query processing, which would have been necessary for a

general (not fully redundant)database . The second assumption means

that the topology, message volume and queueing effects of the communi-

cation subnetwork are ignored.

1.5 Outline of Thesis

The goal of this research is to develop a performance model of a

DDB. In particular, the model will be used to compare the performance

of different concurrency control algorithms. In Chapter 2 we describe

some well-known concurrency control algorithms. In chapter 3, we

develop the communication subnetwork model, which is an important compon-

ent of our DDB model, described in Chapter 4. Chapter 5 starts with a

review of existing query processing algorithms. We have found them hard

to analyze and have developed two new query processing algorithms that

are easy to analyze. In Chapter 6, we introduce the conflict model,

which allows us to calculate such important parameters as the probability

of conflict and the delay due to conflicts. Chapter 7 consists of four

numerical examples. They are based on the same communication subnetwork

so that comparisons can be made between different concurrency control

algorithms. We conclude in Chapter 8 with a discussion of our results

and suggestions for further research.

- m ISMINJIMMMMM
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CHAPTER 2

CONCURRENCY CONTROL

This chapter is devoted to concurrency control, with two objectives:

to define the notion of correctness of a concurrency control method and

to describe existing concurrency control algorithms. Although the

literature abounds in concurrency control methods, they can be divided

into two major approaches, namely, two-phase locking and timestamp

ordering. These will be discussed in sections 2.3 and 2.4. First we

shall describe the concurrency control problem.

2.1 The Concurrency Control Problem

In a database system, data items are related in certain ways.

These relationships can be thought of as assertions about the data

items. Consider two data items x and y; examples of assertions are:

x = y, x > 0. The database system is said to be consistent when its

data items satisfy all its assertions, or consistency constraints.

Assume that the basic unit of user computation is the transaction.

A transaction executes in three steps, each of which is assumed indivisible:

(1) Read - the transaction reads some data into a local workspace.

(2) Computation is performed on the workspace

(3) Write - some values in the workspace are written back into the

database.

If user requests are not coordinated, the execution of steps in

different transactions from different users may be interleaved in any

order. Assume that each transaction preserves the consistency of the

database when executed alone. The execution of many interleaved trans-
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actions may bring a consistent database into an inconsistent one

(see [EGLT76], [GRAY78I , [BG80]). For example, suppose the present value

of x is 10 and two transactions T1 and T2 execute the following program:

increase x by 1. If T1 and T2 are executed one after another, the new

value of x is 12. However, if they are executed in the following inter-

leaved order:

(1) T, reads x = 10

(2) T2 reads x = 10

(3) T1 increases x by 1, x = 11

(4) T2 increases x by 1, x = 11

then the new value of x is 11 which is incorrect. Other examples of con-

currency anamolies can be found in [EGLT76], [GRAY78]. It is the task

of the concurrency control mechanism of the database system to safeguard

database consistencv.

2.2 Serializability

The notion of correctness in this thesis is that of serializability.

A set of transactions executes serially if each transaction executes its

write step before the next transaction executes its read step. That is,

the transactions are not interleaved. A serial execution of transactions

by assumption
preserves database consistency since each transaction A maps the original

consistent database to another consistent database. A sequence of

interleaved transactions is serializable if it produces the same final state

as a serial execution of those same transactions. Since a serial execu-

tion preserves consistency, a serializable execution also preserves

consistency.



Serializability is an appealing correctness criteria, since it can

be guaranteed without having the database system know the precise

computation performed by each transaction. It needs only know the portions

of the database read and written by each transactions. (see, e.g. [BSW79],

[KP79]). Other criteria of correctness bave been proposed (see, e.g.

[GLPT75]), but serializability is the most popular among researchers

in the area. ( [EGLT76],[RSL78],[BSW79], etc.)

2.3 Two-Phase Locking

2.3.1 Specification

In two-phase locking, every data item has a lock associated with it.

At any time, no more than one transaction can hold the lock on a data

item. If a transaction requests locks on all feeded data items before

starting and releases the locks after completion,serializability is

preserved. "Two-phase" refers to the requirement that locks will be

obtained in two phases, a growing phase and a shrinking phase. It is

important that once a transaction has released a lock, it will not obtain

any more locks. The point in time at the end of the growing phase is

called the locked point[BSW79] . The serializability of two-phase locking

is induced by the locked points. Several authors have proved that

two-phase locking guarantees serializability ( [BSW79], [EGLT76]).

One major drawback of two-phase locking algorithms is the possibility

of deadlocks. Deadlocks occur when two transactions are waiting for

each other to release locks on some data items. (see section 2.4). There

are different versions of two-phase locking algorithms. The two major

methods are described in the next sections. The solution of the deadlock
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problem is quite different for different methods.

2.3.2 Distributed Two-Phase Locking

Locks on data items are managed by a scheduler or lock manager. In

the basic implementation, or Distributed Two-Phase Locking, the schedulers

are distributed with the data. At each database site, there is a schedu-

ler, responsible for the data items at that site.

A transaction reading a data item X can send a read request to any

site containing a copy of X and request the lock on X from the scheduler

at that site. On the other hand, a transaction updating a data item has

to send write messages to all sites having a copy of X and request

locks from the schedulers at all of those sites*.

This approach is more efficient than the Centralized Two-Phase

Locking Algorithm (described in the next section) in that there is no

central node to serve as a potential bottleneck since the schedulers are

distributed with the data. However, the distribution of the schedulers

means that deadlock detection is infeasible. For example, transaction A

may be waiting for Transaction B to release its locks at node 1, while

transaction B may be waiting for Transaction A at node 2. There are

no deadlocks locally at nodes 1 and 2. However, the system has a deadlock

and will not be able to detect it unless locking information is communi-

cated from node to node. This communication will put a heavy burden on

the communication subnetwork. Therefore deadlock detection is infeasible,

and more complex solutions to the deadlock problem must be used.

*One way of handling redundant data is to assume that redundant copies of

a data item X are distinct data items X1 , X2 ,... X . Reads can be processed
atibnat any of the copies, while writes must be implemented at all copies.
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2.3.3 Centralized Two-Phase Locking

There are many variations on the basic implementation, one of

which is Centralized Locking[AD76]. In this case, the scheduler is located

at one site, the central node. Before accessing data at any site, locks

must be obtained at the Central Node.

This approach has the advantage of central control and relatively

easy deadlock resolution (which will be discussed in the next section).

However, the creation of the central node means that all transactions

have to go through this node, thereby producing a potential bottleneck.

Besides, when the central node fails, the system cannot function anymore.

Various remedies are proposed, including the use of multiple central

nodes to solve the bottleneck problem and the use of redundant central

nodes to solve the reliability problem.

2.4 Deadlocks

In two-phase locking, a transaction is asked to wait when the data

item it accesses is locked by some other transactions. If this waiting

is uncontrolled, a deadlock may result. For example, if transaction A

is waiting for transaction B to release its locks while transaction B

is waiting for transaction A to release its locks, then neither transaction

can complete because they cannot get all the data items required, neither

transaction releases its locks and there is a deadlock. A deadlock is

best illustrated by a waits-for graph[KC74], which is constructed as

follows: For all pairs of transactions A and B, an edge is drawn from

transaction A to transaction B if A is waiting for a lock currently owned

by B. There will be a deadlock in the system iff the waits-for graph

contains a cycle. To solve the deadlock problem, we can employ either

deadlock detection or deadlock prevention.
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2.4.1 Deadlock Detection

In deadlock detection, transactions are allowed to wait for locked

items in an uncontrolled manner. Periodically, a deadlock detector

constructs the waits-for graph of the system and determines whether there

are any deadlocks by searching for cycles in that graph. If a cycle is

found, one of the transactions in the cycle is restarted. Hopefully,

enough information will be available to allow one to choose the

cycle-breaking transaction intelligently, so that the amount of resources

wasted is minimum. Unless all locking information is available at one

node, as in the Centralized Locking Algorithm, deadlock detection is not

practical because of the communication of locking information that is

necessary.

2.4,2 Deadlock Prevention

In deadlock prevention, transactions ai-e alloWed tb wait for locked

items in a controlled manner to eliminate the possibility of deadlocks.

ordered Queues

One way to prevent deadlocks is to require that all transactions

request locks in some universally specified order, i.e. wait for X first,

then Y, etc. This has the special property that transactions never have

to be restarted.

Prioritized Transactions

Another method to prevent deadlocks is to assign priority to each

transaction and to require that when transaction conflict,only higher

priority transactions can wait for lower priority transactions, or vice

versa. Consider the waits-for graph of such a system. Every edge-in the
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graph is in priority order, i.e. T1-+ T2+ *-. + T.. A cycle is a path

from a node to itself and since it is impossible to have a transaction

which has lower priority than itself, no cycles can occur, and the

system is deadlock free.

One convenient way to assign priority is to use timestamps, the

older the timestamp the higher the priority. Two methods are proposed

by Rosenkrantz, et. al.[RSL78]. Suppose T. tries to wait for T.:
1 J

(1) Wait-die System

If T. has higher priority, it is allowed to wait; if T. has lower

priority, it is restarted.

When T. is restarted, it releases all resources that it has

previously locked. The database management system then resubmits

lock requests for T.. To prevent cyclic restarts, i.e. being

restarted over and over again, T retains its original timestamp.

(2) Wound-wait System

If T. has higher priority, T. is wounded and T. waits until the

wound takes effect; if T. has lower priority, it is allowed to wait.

When a transaction T. is wounded, it sends wound messages to
I

all sites where T. is being processed. If the transaction has

not initiated termination, i.e. the write phase of the two-phase

commit*, then the transaction is restarted. Otherwise, the trans-

action is allowed to finish because in this case there is no danger

of deadlock.

* See section 4.3 for a description of the two-phase commit algorithm.
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In the wait-die system, younger transactions are restarted when they

conflict with older transactions, while in the wound-wait system, the younger

transactions are allowed to wait. Younger transactions arrive into the

system later than older transactions, and hence are likely to arrive at a

given node later too. Therefore, the majority of conflicts in the system

is of the type: younger transactions waiting for older ones. Hence, under

wait-die, most transactions will be restarted, while under wound-wait, most

transactions are allowed to wait. Since waiting presumable consumes less

resources than restarting, wound-wait seems more efficient than wait-die.

2.5 Timestamp Ordering

2.5.1 Specification

In timestamp ordering, each transaction is assinged a timestamp.

This timestamp is guranteed to be globally unique by ensuring that no

new timestamp will be assigned at the same site until the clock has ticked,

and by appending the site number to the low order bits of the timestamp.

The timestamp is attached to all read and write operations issued on behalf

of that transaction. Each data item has a timestamp equal to that of the

last write operation. The database management system is required to process

the transactions in timestamp order. This is accomplished by transaction

restarts and transaction blocking. Suppose a transaction sends a RR

(request to read message) with timestamp TS to site a to read data

item X (with timestamp TS2) If TS < TS2 , the transaction must be restarted

and resubmitted with a new (and bigger) timestamp. If TS < TS2, the RR

must wait until all write operations with timestamps less than TS1 have been
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processed. Therefore, the RR must wait for the arrival of all write operation

(with timestamp TS ) such that TS3 > TS2. Since this write operation may

never arrive, the wait may be infinite. To alleviate this problem, the

database system has to generate periodically null-write messages, i.e. write

messages with only a timestamp but no new value for the data item, from each

site.

It can be shown that timestamp ordering guarantees serializability

[BG80] and the serialization order is the timestamp order.

2.5.2 SDD-l

SDD-1 ([BG80, [BGR80]) is a specialized version of a timestamp

ordering (T/0) synchronization algorithm. The basic T/O algorithm seeks

to guarantee serializability by re-ordering transactions so that they

will be processed in timestamp order. The algorithm is applied to all

transactions, regardless of whether conflicts do indeed exist. SDD-i tries

to improve on the basic T/O algorithm by incorporating two new features:

(1) transaction classes - a transaction class is defined by its readset

and its writeset. Conflicts between transactions can be determined

by conflicts between their respective classes.

(2) conflict graph - conflicts between classes can be analyzed during

database design. It is determined that four protocols (pl,P2,P3,P4)

with varying costs of synchronization, are sufficient to guarantee

serializability.

In defining transaction classes, transactions that arrive at different

TM's will be designated as different transaction classes, even if their readsets

and writesets are the same. Moreover, SDD-1 assumes that messages between
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each pair of sites will be sent and arrive at their destinations in timestamp

order.

The basic architecture of SDD-l is shown in Fig. 2.1. It consists

of Transaction Modules (TM's) and Data Modules (DM's). The TM supervises

transaction executions while the DM manages the data at the local site.

TM's and DM's may be located together at the same computer site or reside

at different sites.

The algorithm is best illustrated by an example (Fig. 2.2). Suppose

a transaction i arrives at TM . To process this transaction, TM follows

the following steps:

(1) Look in class table and -find the class of i, say i.

(2) Determine the conflicting transaction classes j, k, etc., and the

required synchronization protocols.

(3) Query Processing : TM devises a query processing strategy to read

data at the DM's and produce the result at TM . Suppose the strategy

requires reading a data item at DM , then TM sends a RR (request to

read) message to DM with a Read Condition <TS., (j, k, ... )>. The

read condition identifies the conflicting classes J, k, etc. and the

timestamp of i (TS.). When the read message arrives at DMa, the

synchronization protocol dictates that it must be processed after all

write messages from conflicting classes (i.e. j, k, etc.) with timestamps

less than TS., but before those write messages with timestamps greater

than TS. . Hence, if the read message (with timestamp TS. ) arrives at

DM later than a write message (with timestamp TS ) generated from another
ata w

TM, where TS > TS. , then the read message cannot satisfy the required
w 1
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synchronization protocol and must be rejected and transaction i restarted

by TM with a later timestamp. Note that any other read messages on

behalf of transaction i have to be resubmitted with this new timestamp.

The scenario described above, namely messages arriving at DM in reverse

order to their timestamps, is possible because of different transmission

delays on different communication channels. If the read message is not

rejected, then it must wait until its read condition is satisfied, i.e.

it must wait for the arrival of a write message or a nullwrite message

with timestamp greater than TS. from all conflicting transaction classes.

These write messages must then wait for the read to take place before

they can be implemented.

(4) Write: TM sends RW (request to write) messages to all DM's containing

data items that have to be updated. A RW consists of the new value of

the data item and a timestamp equal to that of transaction i. All write

messages can be implemented as soon as they are received at the DM's. The

rule is as follows: If the timestamp of the RW is smaller than that of

the stored data item it tries to write, the RW is ignored. Otherwise, the

value and timestamp of the stored data item will be updated, after pending

reads, if any,are processed. This is known as the Thomas Write Rule

[THOM79], Nullwrites are treated differently from RW's in that they do

not update the timestamp of the data item.

2.6 Other Concurrency Control Algorithms

Our discussion of concurrency control algorithms will not be complete

wihout at least a brief descripiton of Thomas' Majority Consensus Algorithm

[THOM79] and Ellis' Ring Algorithm [ELL177]. These two algorithms are
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among the earliest algorithms proposed for concurrency control. However,

they are devised for fully redundant databases and can be shown to be

rather inefficient ([BGSO]). Therefore, we shall not attempt to model

them.

2.6.1 Thomas' Majority Consensus Algorithm

Thomas devised an algorithm for fully redundant databases. Reads are

processed at the site where the transaction originates. A proposed write, or

pdate is passed from site to site. Each site will vote yes, no or

pass on the update. When a majority of sites have voted yes, the update

is installed. Voting has therefore effectively replaced locking. The

locked point, using two-phase lock terminology, is reached when the site

originating the update has received a majority of yes votes.

This algorithm is impractical since it assumes a fully redundant

database. Even for fully redundant databases, it is inefficient since

conflicts between transactions must be solved by restarts in contrast

to locking and timestamp ordering algorithms which can also resolve

conflicts by transaction blocking (i.e. waiting for locks to be released

or read conditions to be satisfied.)

2.6.2 Ellis' Ring Algorithm

In Ellis' Algorithm, the database is fully redundant and the commu-

nication subnetwork is configured as a ring. To effect an update, a

transaction moves successively from site to site on the ring, obtaining

a lock on the entire database at each site. This means that all transactions

must be executed serially, and no parallel processing is possible. Hence,

the algorithm is inefficient.



CHAPTER 3

COMMUNICATION SUBNETWORK MODEL

Since the distributed database is managed on a communication network,

and we can think of transactions (i.e., queries and updates) as competing

among themselves for the available resources of the network, it seems

natural to model the communication network by a network of queues. We

We have attempted to employ Jackson's Oueueing Networks since, provided

Jackson's assumptions are satisfied, the resulting model is very

powerful. However, we have found that Jackson's model is inadequate

for our purposes. In this chapter, we introduce Jackson's model,

describe how it can be used to model a communication subnetwork and

point out its inadequacies. We then propose a new "independent queues"

model of a communication subnetwork. This model is adopted in this

thesis for the analysis of communication delay and is described in

section 3.3

3.1 Jackson's Network of Queues

3.1.1 Basic Model

The model introduced in Jackson[JACK57) is an arbitrary network

of queues, consisting of N nodes where the ith node consists of m.

exponential servers, a first-come-first-served queue discipline and

unlimited queueing capacity. The external input stream to node i is

Poisson with rate y., and these external input streams are assumed

to be independent. The service times at node i are independent and

have a common exponential distribution with parameter p , and are

also independent of the customer arrivals at node i. A customer leaving

node i is immediately and independently routed to node j with probability
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N
p.., and he departs the system with probability q.i=-v=p .. if we denote

] i . I

the total arrival rate (including external and internal arrivals) to node

i by A, we see that the following equations must be satisfied:

N

A. = y. + A <p.. i ,,.N(3.1).
1 1 j-l j i =1,2,.. .N

Let the state variables for this N-node system consist of the

vector (ki,k2, . .. kN), where k. is the number of customers (including

those in service) at the ith node, and the equilibrium probability

associated with this state be denoted by p(k rk2 ... kN). Similarly,

let the marginal probability of finding k. customers at the ith node

be p.(k.). Jackson showed that, provided the utilization is less than

one at each node, i.e.,

p. = A./(m.p.) < 1 i = 1,2,...N
1 1 1 1

then the joint distribution for all nodes factor into the product of

each of the marginal distributions, i.e.,

p(kk2,...k pl(kl)p 2 (k2 .pN(kN

and p.(k.) is given as the solution of the classical M/M/m system,

i.e., k
k.

(k.) s p.(0)(MrP.) / k.! 0 0< k.< m(.
p.k = k m.(3.2)Sk. rM.

S1
p.(0) (pr) 1(mi.) / m. m. < k. <
1 1

This says that whenever an equilibrium condition exists, each node

in the network behaves as if it were an independent M/M/m queue with

Poisson input, although in general the total input (including internal

transfers) at each node is not Poisson.
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3.1.2 General Model

Since Jackson first published his basic model in 1957, there have

been numerous extensions proposed. The most general results have been

obtained by Baskett et al. [BCMP75] .Their model consists of N nodes and

L classes of customers. Customers travel through the network according

to transition probabilities

P = P (next node is j, next class is si
,r;j,s current node is i and current customer class is r)

where i, j = 1,...N; r, s = 1,...L.

The system can be closed for certain classes of customers and open

for others. If the system is closed for customers of class r, then the

number of such customers within the system is fixed at a constant

number k(r). In an open network, the total arrival rate to the network

is Poisson with mean rate dependent on the total number of customers in

the network. An arrival enters node i in class r with a fixed probability

(state independent) of q. .

There are also four kinds of service nodes:

Type 1 Node : The service discipline is first-come-first-served (FCFS)

with a single server; all customers have the same, negative exponential
rate

service time distribution withAL(j) where j is the number of customers

at the node.

Type 2 Node: There is a single server at the node, the service discipline

is processor sharing (i.e. whena there are i customers in the node, each

is receiving service at a rate of 1/n times total service tate), and each

class of customer may have a distinct service time distribution. The

service time distributions have rational Laplace transforms.
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Type 3 Node: The number of servers in the service center is greater

than or equal to the maximum number of customers, and each class of

customer may have a distinct service time distribution. The service

time distribution have rational Laplace transforms.

Type 4 Node: The queueing discipline is preemptive-resume last-come-

first-served(LCFS) with a single server. Each customer class may have

a distinct service time distribution which must have a rational Laplace

transform.

Note that any distribution can be approximated by a distribution

with rational Laplace transforms.[KLEI75I.

The traffic equations for this general Jackson Model are:

e. = q. + YeirPirj 1. N(3.3)e s =q s +.eir Pi,r;j,s(3)
i,r s=

where e. is the arrival rate of class s customers to the jth node.
Js

The states of the system involve a rather complex description

giving locations of customers, their class and their stage of attained

service. Baskett et al.[BCMP75] proved that the equilibrium probabilities

are given by

P(S = (x,x2'...xN)) = Cd(S)f(x1)f 2(x )...f NxN

where the state vector S = (x1 ,....x ) consists of components x. (which are
N1

vectors themselves) that represent the conditions prevailing at node i;

this representation depends upon the node type. C is a normalizing

constant, d(S) is a function of the total number of customers in the

system, and each f. is a function that depends on the type of node i.

To simplify the results, one aggregates the system state into

S = (y ,y ,...y ) where y-= (n. ,..n. ) and n. is the number of customers
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of class r in service center i. Let n. be the total number of customers

at service center i and let 1/p. be the mean service time of a class r

customer at service center i, the equilibrium probabilities are given

by

P(S = (y y2 ' .. ,)) = Cd(S) g()...)gN N

L n. n.
where g. (y.) = n!{ IT (1/n. I)(e. )1r}(l/_I.) for Type 1 nodes,

1 1 1 i ir ir 1
r=1

L n.

g. (y.) = n.!H (1/n. !)(e. /p )ir for Type 2 or 4 nodes,
1 1 1 i ir ir zir

r= 1

L n.

g.(y.)= H(/nir !)(e /p. )ir for Type 3 nodes.
r=l

This result is remarkable not only because of the product form

exhibited, but also because of the fact that general service time

distribution(with rational Laplace transforms) for the different classes

of customers yield the same result as exponential service time distributions,

since only the mean service rate is included in the results. (See Equation

3.4))

Further simplification, by aggregating over all classes, reveals

that for node type 1,2 and 4 the equilibrium distribution for the number

of customers at each node is the same as the distribution in an M/M/l

system while for node type 3, the corresponding distribution is that of

an M/G/w system.

3.2 Use of Jackson's Model for Communication Subnetwork

We would like to model a store-and-forward network such as the

ARPANET. There are different types of messages with different lengths.

__ w OR W WPON I
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3.2.1 Model Description

Suppose we want to model a communication subnetwork by Jackson's

Basic Model. The modeling process can best be illustrated by an example.

Consider the simple network shown in Figure 3.1, which contains

three computer sites connected by directed communication links. Messages

(which can be update, query, file transfer, or acknowledgement messages)

enter the different nodes destined for other nodes. The quantity Y.. is
1j

the rate of arrival of messages at node i destined for node j. C.. is
1J

the capacity of the channel from i to j. If we assume that the message

arrival is Poisson, that the message lengths are exponentially distributed

with mean 1/p, and that the independence assumption holds, i.e., each

time a message enters a new channel, a new length is chosen independently

from the exponential pdf, we can then model this network by the basic

Jackson's model. Each channel corresponds to a node in Jackson's model*.

channel serves
It is further assumed that eachgmessages (customers) in a FCFS queue

discipline with unlimited queueing capacity and an exponential service

time 1/viC. where C. is the capacity of the channel. A message leaving

channel i is immediately routed to channel j with probability p.., and
1]

departs the system with probability q.. Figure 3.2 shows this simple

three-computer-site example again (with the paths taken by the different

messages indicated by dotted lines ) and its equivalent Jackson's model

(Fig.3.2(b)). Consider channel C1 2 : both y12 and y13 messages use this

channel, but once they reach computer site 2, the y1 2 messages, correspond-

*Although it may be more natural to associate communication centers with

nodes, we have found that this is a misleading interpretation. We shall
always concentrate on what is providing the service. In Jackson's model,

it is the nodes; in a communication network, it is the channels.
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ing to a fraction y1 2/(Y 1 2 + y1 3 ) of the total messages passing through

channel C2 leaves the system while the rest is transferred to channel C23

Similarly, we can find the routing probabilities for the other channels.

3.2.2 Assumptions

It is noted that in order to use the basic Jackson's model, it is

necessary to make the following assumptions, which approximate reality

with varying degrees of success:

(1) Poisson message arrivals

(2) One class of message with exponentially distributed message lengths

(3) Stationarity and Independence of the Stochastic Processes (1) and

(2)

(4) First -come-first-serve queueing discipline

(5) Independence of service times at different communication channels.

(6) Random routing of messages, irrespective of message destinations.

(7) Unlimited queueing capacity at each node.

(8) Noiseless channels and perfectly reliable nodes and channels.

How well does Jackson's model approximate the communication subnetwork

of interest ?

The author is not aware of any empirical studies to justify assumptions

(1) to (3) for a communication network. However, certain data obtained

by Molina [MOLI27] for telephone traffic correspond well to these assumptions.

Assumption (2) is unrealistic. Since we are interested in the

communication subnetwork of a DDB, there will be qifferent classes of

messages with different lengths. At the very least, we would like to

file transfers and short messages such as
distinguish between long messages such as lock requests and lock grant

messages. The basic Jackson's model only allows one class of message.
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The general Jackson's model does allow different classes of messages for

queueing disciplines other than FCFS. However, in a store-and-forward

network, the queueing discipline is best described as FCFS.

Assumption (4) is relaxed in the general Jackson's model, and

other queueing disciplines as described in section 3.1.2 are allowed.

In particular, one can model statistical multiplexing by Type 2 service

node (processor sharing) and some preemption strategies by Type 4 service

node.

Assumption (5) was first introduced by Kleinrock IKLEI64] . In

Jackson's model the service time at each node is an independent random

variable, while in Kleinrock's model, as in our communication network

model, the service time for a given message on channel i depends on the

message length b and the capacity C. of the channel, i.e. b/C.. The

service times at different channels are therefore not independent.

Besides, there is a dependency between the interarrival times and

lengths of adjacent messages as they travel within the network. (See, for

example, Equation (3.4) in Kleinrock [KLEI64]). To alleviate this

problem Kleinrock introduced the Independence Assumption:

Each time a message is received at a node within a network, a

new length b is chosen independently from the pdf:

p (b ) = pe b >0

Kleinrock has treated this assumption extensively in [KLEI64] which

includes a computer simulation model and argued that so long as there

are multiple channels coming into and leaving a communication node, this

assumption is reasonable.
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Assumption (6) says that once a message has finished transmission

at channel i, it will be routed to channel j with a certain probability

p. .,irrespective of its distination. This assumption is invalid for

most networks we are interested in, and it is another reason why we

believe Jackson's model is inadequate. Consider, for example, the

ARPANET, where messages are routed in the network over different

channels according to their destinations.

Assumption (7) is unrealistic for networks with limited buffer

space such as the ARPANET. However, with the development of cheaper

and smaller core memories, buffer space can be practically unlimited

in the near future.

Assumption (8) is realistic if one assumes that there is a layer

of software, superimposed on the communication subnetwcyrk, which is

responsible for detecting errors in transmission (e.g. using the cyclic

redundancy check) and for retransmission of noisy messages. Of course,

in this case the service time has to be adjusted to reflect the increased

volume of traffic due to retransmissions.

It is mainly because of Assumptions (2), (5) and (6) that we have

decided that Jackson's model is inadequate in modelling a communication

subnetwork. In the next section, we shall propose a new Independent

Queues Model that will alleviate these difficulties.

3.3 Independent Queues Model of Communication Subnetwork

3.3.1 Model Description

The model is based on the Independent Queues Assumption*:

*This assumption is suggested by Prof. Robert Gallager.
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Consider a communication subnetwork with N channels. Suppose the

total arrival rate of messages to channel i is A.X. A . includes both
1 1

the external arrival rate of messages at channel i which is Poisson and

the internal transfer from other channels to channel i according to some

routing strategies. Let p(k ,k2,...kN) be the equilibrium joint pmf of

the number of messages at the different channels, and pi(k.) be the

equilibrium marginal pmf of the number of messages at channel i under

Poisson input rate A., then, provided the utilization at each channel

is less than one, it is assumed that

p(k ,k2 ,...kN ) = p1(k)p (k2...P N(kN

In particular, if the message lengths are exponential, the Independent

Queues Assumption says that, in equilibrium, channel i behaves as if

it were an independent M/M/l queue with Poisson input rate A..

The Independence Queues Model allows us to calculate the message

delay for the network very easily. The average message delay Ti on

channel i is 1/(piC.-A.)* where C. is the capacity of channel i, A is

the total arrival rate of messages to channel i, and 1/1A is the average

length of messages.

Consider the average number of messages (both in queue and in

service) in channel i in equilibrium, n.. Applying Little's Formula

[LITT61] , this is just AT.. Applying Little's Formula again for the

whole network and denote the average number of messages in the whole

network by n, we have

yT = n = n.= A.T.

i .~

*Average service time for M/M/l queue with arrival rate A. and service
rate iC. .
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where Y = sum of external arrival rates to network, T = average message

delay for the whole network, then

11
T.= - C.(3.5)

y .pC. - A .
1 1 :

Note that the derivation of Equ. (3. 5) does not require the service

times at the different channels to be independent. The only requirement

is that the service time at each channel i can be approximated as a

function of the input traffic A..

Our model ignores the propagation delay for the energy of a bit to

travel from one end of a channel to the other. Even though the speed of

propagation is a significant fraction of the speed of light, the propa-

gation time may be significant if the path is long. In addition, there

is the additional delay introduced during local processing at each of

the channels. Let P., K. be the propagation and local processing delays
1 1

associated with the ith channel, then our average message delay given

above must be rewritten as:

T . ( P. + K. + 1 (3.6)
Y.-PC. - A.

1 :i. 1

3.3.2 Assumptions

The Independent Queues Model of a communication subnetwork requires

the following assumptions:

(1) Poisson message arrivals.

(2) First-come-first-served queueing discipline.

(3) Independent Queues Assumption.

(4) Unlimited queueing capacity at each node.

(5) Noiseless channels and perfectly reliable nodes and channels.
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Assumptions (1),(2),(4) and (5) are also necessary for Jackson's

model. These assumptions have been discussed in section 3.2.2 and will

not be repeated here. Assumption (3), like Kleinrock's Independence

Assumption, is hard to justify. The rationale for this assumption is

that it makes the problem analytically tractable and seems to give

reasonable results. While this assumption seems to be stronger than

the Independence Assumption, it affords us more flexibility. For

example, we can now model general message length distributions. Indtead

of independent M/M/l queues, we then obtain independent M/G/l queues.

We can also model different classes of messages using the M/G/l queues.

In addition, we can model more accurately the routing of messages in

the network.

3.4 End-to-end Transmission Delay

A key parameter in our DDB model is the end-to-end delay which is

the elapsed time from the trans.mission of a message at its source to

the delivery of the message at its destination.

Since messages typically preserve their length as they traverse

the system, the interarrival and service sequences at each communication

channel, and the service times at successive communication channels

are dependent. The distribution of the end-to-end delay is thus mathe-

matically intractable. A number of results concerning this delay are

presented by Calo in [CALo80I. These include : ordering relations for

the successive waiting times in the channel; waiting time properties

under extreme conditions; and simple bounds for systems with uniformly

bounded service processes. However, these results are not useful to us



in the DDB model. In fact, even if we make the Independent Queues

Assumption, the distribution of end-to-end delay still eludes us.

Recall that if we make the Independent Queues Assumption, the number of

messanes, and hence the service time, at all channels are independent in

equilibrium. This means that at a particular time, say t, the service

times at all channels are independent. However, when a message is

traversing the system fram one channel to another, it will be receiving

service at successive channels at different times. The service time of

a particular message at successive channels are thus dependent. It is

this dependence that makes the analysis difficult.

In order to analyze the end-to-end delay, approximations are made.

3.4.1 Exponential End-to-End Delay

Assume that the end-to-end delay is exponential. This will be

true if the delay at one channel dominates the total delay. Since an

exponential distribution is completely characterized by its expected

value, once we find the expected value of the end-to-end delay, we have

determined the distribution.

Consider a communication subnetwork with N nodes and M channels.

Denote the channel from node k to node k by the tuple(k, Q), where

k,9, =1,....N. Let C denote the set of all channel tuples, i.e.

C = {(k,Z)I k,Q = 1,...N).

Let Dk = service time at channel (k,Q),

T.. = end-to-end delay from node i to node j,

.. = Poisson arrival rate of messages at node i destined for node j,

f.. (k) = fraction of i-j traffic passing through node k,
13
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g (k,Z) = fractiori of i-j traffic passing through channel (k,t),
'3

$..(k,Q) = routing variable, fraction of i-j traffic at node k

that is routed on channel (k,z),

0 < $. . (k, 9) < 1, . . (k,Iz) = 1 for all k

L.. = average number of i-j messages in the network,
1]

L.. (k,z) = average number of i-j messages at channel (k,2).
1]

Little's Formula[LITT61] gives

A. .T. . = L. = L. (k,Z) = A. .... (k,Z)D
ij (k,ZE:eC (k,Z)EC'313 k

A. .f. .(k)4$. .(k,t)D
(k,)C a ik

Hence, T. = f. .(k)$. (k,z)D (3.7)
ii (k, A) FEC 1 3

N
where f. .(k) = f .. (z)$.. (,k) (3.8)

If the routing is loop-free, for each origin-destination pair (i,j),

Equ.(3.8) can be solved recursively for f..(k), k = 1,...N. Therefore,
13

the average end-to-end delay for all nodal pairs can be found using

Equ.(3.7) and (3.8).

3.4.2 Normal End-to-end Delay

Another approximation is to assume that the end-to-end delay is

normal. Since each T.. is the sum of the service times over several

channels, by invoking the Central Limit Theorem, the approximation will

be good provided the path corresponding to T.. includes many hops:,

Note that in section 3.4.1, the derivation does not require that

the service time at the different channels be independent. In the following

derivation, however, we assume that the service times at different channels
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are independent. The notations used are the same as that in section 3.4.1.

e
in addition, let T., (t) be the pdf of Tj, T . (s) be the Laplace transform

1] ij i

of T.,(t), Dk(t) be the pdf of Dkz, and D (s) be its Laplace Transform.

Dir + T . with probability 4.. (i,r)
Now, T. . = ir rj ]

'j ID.. with probability 4. . (ij)
'3

N
ee. ,j e(sTherefore, T. (s) = 4). (i,r)D (s)Te.(S) + .(i,j) i. (s)

13 r-l Jj zir rj 13 i

r/'j
N

= 4. .(i,r)D, (s)Te.(s) + 4 .(i,j)D. .(s)[l - T..(s)]
r=l1 ] ir rj 13ij 13 3

N
ee .eT. .(s) = 4). (i,r)D? (s)T . (s) (3.9)

r=l 1 ir rj

since it is assumed that T.. = 0.

In particular, if the total message arrival rate at channel(k,Z) is

XkWthe capacity is Ck, and the message length is exponential with mean

1/p, then the total service time at channel(k,Q) is exponential with mean

1/\kZ where k C kV. Therefore, Di, (s)=v ir /(s+vir) and Equ. (3.9)

becomes:

N v.
e. ir eT. . (s) = . i(,r) r Te .(s) (3.10)ir=l 1 s + v. r

E(T..) = T .(s)1 gives
ij ds ijjs=0

N
E(T. .) = Y 4). . (i.,r) [E(T .) + 1/v. ] (3.11)

13 rr
a 

e
E(T..) = 2 T..(s) gives'3 ds iy s=O

N
E(TK.) = X 4..(i,r)[E(T

2 .) + 2E(T .)/V. + 2/v ] (3.12)1 r=1 3 rrj rj ir ir

If the routing variables 4).. (k,l) correspond to loop-free routing



of the messages (see [GALL77), then we can find T . (s) easily. Using
ij

e
Equ. (3.10), we solve for T .(s) for all r such that (r,j)EC, then we

rj
e e

solve for T (s) for all k such that (k,r)EC, etc., until we find T,.(s).
kr ij

Similarly, we can solve for E(T..) and E(T.) easily.
1] 13

If the routing is not loop-free, then Equ. (3.10) can be re-written

in matrix form:

Qe(s) = Pe(s)Q (s) (3.13)

e e e
where Q (s) is an N by N square matrix with elements T..(s), and P (s)

is an N by N square matrix with elements . .(i,r) v. /(s + v. ).
13 ir i

Hence Q (s) = [I -Pe(s)] .

3.5 Attempt to Model Message Broadcasts

In a communication network, it is sometimes necessary to broadcast

messages from one node to other nodes in the network. After a node

receives a broadcast message, copies of this message will be sent to its

neighbours. In section 3.2, we have already pointed out some of the

inadequacies of Jackson's Queues in modelling a communication network.

In this section we shall discuss another inadequacy. We shall show that

message broadcasts cannot be modelled by Jackson's Queues.

In Jackson's model, under equilibrium conditions, each individual

queue in a network of queues is independent of other queues. We can

consider a system of queue.s , where after being served at one queue, a

customer (or message in commuication network context) splits into two

and obtains service at two different queues.

In Fig.3.3, nodes 1, 2 and 3 are three queues with exponential

service times. Messages arrive at nodes 1 and 2 independently in a

Poisson manner. After being served at node 1, each message splits into
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X2

Figure 3.3 Attempt to generalize Jackson's results to

Message Broadcasts
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two and is transferred to nodes 2 and 3. The question is : Are the

queues at node 2 and node 3 independent ? We assume that the service rate

at each node isti and is independent of the kind of customer. Provided

the queues are not saturated, Burke's Theorem [BURK56] says that the

customers leave node 1 in a Poisson Process. The total arrivals at node 2

is then Poisson with rate A1 + 2 . We assume that any customer departing

from node 2 after service has a probability 12/(l + A2) of going to node 3

and a probability Al/(Al + 12) of leaving the system. This is an approxi-

mation because type 1 customers(those entering the system at node 1),

after being served at node 2, will leave the system for sure, while type 2

customers will go to node 3. To be more exact in our formulation of the

problem, we shall have to know the ordering of the type 1 and type 2

customers in queue. This will give rise to very complicated balance

equations.

We now attempt to find the compound pmf of m and n, the number of

customers at node 2 and node 3 respectively. Let N(t) be a vector repre-

senting the number of customers at nodes 2 and 3 at time t. From a

straightforward consideration of the ways in which the system can reach

state (m,n) in a small time increment h, it turns out that:

P[N(t+h) = (m,n) = P[N(t) = (m,n)](l - A1h - A2h - ph - ph)

+ P[N(t) = (m -1,n - 1)]A h + P[N(t) = (m-l,n)]A h
1 2

+ P[N(t) = (m+l,n)]X1 v 2

+ P[N(t) = (m+l,n-l)]X2 2/(X +A2

+ P[N(t) = (m,n+1)]p

such that )YP[N(t) = (m,n)] = 1 for all t.
mn
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By moving the first term on the right to the left hand side and
-ial

dividing by h, we get a differentgequation in N(t). Setting N(t) = 0
dt

for equilibrium conditions, we get:

P = (m,n)] (A1 + A2 + 2p ) = P[N = (m-l,n-l)]A1 + PIN =(m-l,n)]X

+ PIN = (m+1,n) ]A//( 1+A2

+ P[1 = (m+l,n-l)]A p/(A1+ A2

+ P[N = (m,n+l)]p

such that P = (m,n)] = 1
mn

In addition, we must satisfy the boundary condition:

P[fN =(oo)flA1 A2 ) = P[t =(l,)]Ap/(A+A 2) + PN = (0,l)]p

Suppose the compound pmf has a product form, i.e. P[N = (m,n)]= Y mXn

then the equilibrium balance equation gives:

2 2 2YX(A + 2p ) = A1 + xA2 + Y XA1 /A + Y A2p/A + YX p (3.14)

while the boundary condition gives:

A = YAXJP/A + Xp (3.15)

Solving Equ. (3.14) and (3.15) simultaneously, we get a quadratic in X:

X 2[XkP2 + 2 2 2 2 
X 2 XP-X2XP-X2 p - 22 2 V +X3 P+X3 X2 2 1 2 2 A 2  22A1 2 1 2

Solving this quadratic for X, we found that depending on the values

of the parameters A1 , A2 1p,we might get imaginary roots for X, and hence

imaginary roots for Y. Hence the assumption that P[N (m,n)]= YmXn is

incorrect, and the compound pmf does not exhibit product form.

Thus Jackson's Queues cannot model message broadcasts. However,

using our Independent Queues Model, message broadcasts can be modelled

easily. Since we assume that the queueing processes at different channels

are independent in equilibrium, and the service time at each channel is
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only a function of the total input traffic at that channel. This input

traffic may consist of external message arrivals, internal transfers

according to some routing strategy and broadcasted messages.
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CHAPTER 4

DISTRIBUTED DATABASE MODEL

In this chapter, we are going to describe the DDB model. In section 3.3,

we modelled the competition among messages (generated by transactions)

for the services of the communication channels. In this chapter, we are

also going to model the competition for the services of the local DBMS

at each computer site. Thus, in order for a transaction to complete

successfully, it not only has to wait for the services of the different

communication channels, but also the service of the database management

system. This service includes setting locks, reading and writing data

items, etc.

Fig. 4.1 shows the basic architecture of a DDB. Database sites

are connected to each other via a communication subnetwork. At each

database site is a computer running one or both of the software modules:

Transaction Module (TM) and Data Module (DM). The TM supervises user

interactions with the database while the DM manages the data at each site.

We propose a 5-step approach to model the performance of concurrency

control algorithms. This is summarized in Fig.4.2. We shall now describe

these five steps in more detail.

4.1 Input Data

Given a DDB managed on an arbitrary communication network, we have

to determine the following:

(1) topology of the network, i.e. the connectivity and capacity of links

between computer sites.

(2) locations of all copies of files.
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Figure 4.1 Basic Architecture of a DDB
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(3) transaction classes defined by their readsets and writesets.

(4) update request rates of the different transaction classes.

4.2 Transaction Processing Model

Consider a trans. T arriving at database site i and processed by

TM . Suppose the read set of T consists of data items X,Y and its

writeset consists of data items U, V where U = f(X,Y), V = g(X,Y).

This update will be performed in two steps, a query processing step and

a write step.

(1) Query Processing - TM will choose one copy of data item X and Y

and devise a query processing strategy that will produce the result

at database site i.

(2) Write - The new values of U and V will be written into the database.

This is accomplished by the two-phase commit algorithm:

(i) Pre-commits - TM sends new values of U and V to all DM's having

copies of U and V, respectively. The DM's then copy the new

values to secure storage and acknowledge receipt.

(ii)Commits - After all DM's have acknowledged, TM sends commit

messages, requesting the DM's to copy the new values of U and

V from -secure storage into the database.

Since the network is not perfectly reliable, if TM asks the DM's

to copy the new values of U and V into the database in one step, it is

possible that some copies of U and V have received the updates while

other copies have not. This will result in database inconsistency.

Two-phase commit is an attempt to prevent such inconsistencies. It is

by no means the standard solution. However, it seems to be very popular
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among researchers in DDB. (See for example, [BG80] , [GRAY78].)

Step(l) of the Trans. Processing Model, namely Query Processing, is

a very hard problem. Since the database is redundant, there are different

DM's a transaction can access when it wants to read a certain data item.

The TM at the database site where the transaction originates is responsible

for choosing the best (in terms of an objective function such as minimization

of response time) DM to access. In the case of transactions that access

multiple files, the TM must devise a strategy to solve the query.

As is mentioned in section 1.4.2 previous researchers get around the

query processing problem by assuming a fully redundant database, in which

case all queries will be addressed to the local site and incur zero

communication delay. We do not believe this is a realistic assumption,

and are confronted with the problem of modelling query processing. In

particular, since our major thrust is the performance comparisons of con-

currency control algorithms, we need a query processing model that is

simple while at the same time not too unrealistic. This is the object of

the next chapter.

Using our trans.processing model, we can determine, for each

particular transaction, the file transfers, read requests and update

messages that are necessary. This information, together with the transaction

arrival rates and the file locations, etc., let us generate estimates for

f., the arrival rate of messages at site i destined for site j.

4.3 Communication Subnetwork Model

Using the message flow requirements between database sites, f , and

the newtork topology as input to a routing strategy, such as Gallager's
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Minimum Delay Routing Strategy [GALL77], we can determine the total traffic

on each channel of the network. We can then find the average service

time, utilization and throughput at each channel.

4.4 Conflict Model

This is an important component of the DDB Model and will be discussed

in more detail in Chapter 6. Briefly, it allows us to find the probability

of conflict between different transactions and the cost of these conflicts.

4.5 Performance Measures

We emphasize the performance measure most visible to the users,

namely response time, which is the sum of local processing delay at the

database sites, transmission delay and delay due to conflicts.



-59-

CHAPTER 5

QUERY PROCESSING

Accessing data distributed at different computer sites necessites

transmission over communication links. An advantage of the distributed

system is the ability to process and transmit data in parallel at

separate points in the network. Since the delay due to communications

is substantial, the DBMS must devise an efficient arrangement of local

data processing and data transmissions in order to process distributed

queries.

5.1 Review of Existing Query Processing Algorithms

There are very few reports of work on distributed query processing.

Wong proposed an algorithm that is being implemented in SDD-l [WONG77].

Hevner and Yao [HY79], proposed a simple algorithm for a special class

of queries. These two approaches will be discussed in more detail in

the next sections. More recently, Chiu [CHIU79] has devised a dynamic

programming solution for certain queries called tree queries. Since the

applicability of his method is extremely restricted, we shall not discuss

it.

5.1.1 Relational Data Model

In this section, we shall describe the relational data model ([CODD70],

[DATE77]), which is the model assumed in both Wong's Algorithm [WONG77]

and Hevner and Yao's Algorithm [HY79).

A data model is a class of data structures. All information maintained



in the database is organized as data structures that are instances of

this class.

Given n sets Dl, D2 ,...D, a relation R is a subset of their Cartesian

.product , i. e. R D 1 x D2 x .. . x D n ,and D1 .. .D are called the domains

of the relation. A database relation is a time-varying subset of the

Cartesian product, i.e. R(t) C D x D x ... X D . The relational model1 2 n

of a DDB assumes that the unit of data distribution is a relation. In

each database site, there are one or more relations. A database query

performs the operations restriction, projection, join and semi-join in

order to retrieve data. (See [CODD70], [WONG77], CHIU79]). A restriction

of R selects rows of R that satisfy specified data conditions, e.g. DI > 100.

A projection of R is formed by deleting some of the domains. For example,

R [DD2]is a projection of R consisting of the first two domains. Consider

*
two relations R(A,B) and S(C,D). The 0-join of R on A and S on C is

R[A3C]S E {rIls: reR and sES and r[A]6S[B])}, where rils E (a,b,c,d) if

r = (a,b) and s = (c,d); and 0 e <, 4, >, >, =, }

For example:

R S

SHIPID SHIPNAME SHIPID TONNAGE

1 Kiev 4 40

2 JFK 2 50

3 QE2 3 60

1 30

R[SHIPID = SHIPID]S

1 Kiev 1 30

2 JFK 2 50

13 1 QE2 1 3 -1 60

* R(A,B) denotes a relation with only two domains A and B.



-61-

The =-join can also be written R M S. Let R(A,b) and S(b,C) be
A C

two relations, then the semi-join RBCS = RgMBS[AB] ,i.e. RMS is the

join of R and S projected back onto R.

5.1.2 Wong's Algorithm

Wong makes the following assumptions:

(1) Consider subsets of the DDB called "materializations" such that

each consists of exactly one copy of each portion of the database.

Each materialization is a distributed but non-redundant version of

the database. Data retrieval will be performed on one materialization.

(2) Only fragments of a relation, i.e. restrictions, projections, or a

combination of them are moved from one site to another.

(3) We are indifferent as to where the final result is produced, so long

as it is produced at a single site.

(4) The communication cost as a function of data volume and links is

known.

(5) The costs of local operations, i.e. projection, restriction, and join

are known.

(6) The sizes of resulting fragments after local operations are known.

The algorithm is as follows:

(1) Perform all local operations that are possible. Choose one site to

move all fragments to . Denote the set of moves by M ={m1 ,m2 ,...m}n

where each mk, k = 1,...m, is of the form "move fragment x from node i

to node j".

(2) Replace M by two sets of moves M and M2, that are to be executed

sequentially with local processing between them. This is represented
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graphically as follows: M

M1/\M 2

where it is understood that the left leaf(M1 ) precedes the right(M2 )

with local processing in between. The criteria for splitting a node N

into (N1 ,N 2) are:

(i) the combined cost of (N1,N2 ) is less than N alone, and

(ii) the pair (NN2) is minimum in cost among all pairs satisfying i).

It is possible that we can continue to split the nodes using the above

criteria and in general end up with a binary tree where the leaf nodes

represent all the moves that are to be undertaken. The moves within

one leaf can be made in parallel,and the leaves are executed sequentially

from left toright.

(3) The algorithm stops when no further node splitting is possible.

Note that Wong's Algorithm is a greedy algorithm. It looks for immediate

gains and will give us a local optimum but not necessarily a global one.

5.1.3 Hevner and Yao's Algorithm

The following assumptions are made:

(1) & (2) same assumptions as Wong's algorithm.

(3) The result is to be produced at the node where the query originates.

(4) The communication cost between any two nodes is defined as a linear

function C(X) = c0 + c1 X where X is the amount of data transmitted, and

c0 and c1 are constants. In other words, the topology of the network

and the queueing effects are ignored. The cost is measured in units

of time.

(5) The costs of local operations, i.e. projections, restrictions, etc.

are negligible compared to the communication costs.

(6) It is assumed that after initial local processing, each relation (or file)
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accessed in the query contains only one domain - the common joining

domain. When file i, of size S. is processed with file j, the resulting

file has size Sp.* where p., the selectivity parameter of file j is
1 J J

between 0 and 1. The selectivity parameter is cumulative, and if file i

is processed with both file j and file k, the resulting file will have

size S P pk*

The data transmission containing the transmission of relation i, R.,

to the result node is called the schedule of R.. Define schedule response

time r. as the time from the start of the transmission until R. (or a

processed version of it ) is received at the result node. Define minimal

schedule response time min r .where the minimization ranges over all

possible schedules. The response time of a query retrieval strategy r is

defined as r = max r. where m is the number of relations in the query, and
.4~ 11,< i <MI

total time t is defined as the sum of all transmission costs for the strategy.

Hevner and Yao proposed two algorithms: a parallel strategy to

minimize r and a serial strategy to minimize t.

The parallel strategy uses the initial feasible solution of sending

each relation directly to the result node as a starting strategy. It then

searches for cost beneficial data transmissions by trying to join small

relations to large relations. The strategy is described as follows:

(1) Relations R. are ordered so that S < S < ... <S
1 1- 2 - -m

(2) Repeat steps (3) to (4) for i = 1 to m.

(3) Find the minimal schedule response time t.. All relations R . where

j < i are checked for potential data transmission to R. and the

transmission that produces the greatest reduction in r. is integrated

into the strategy. For the data transmission from R . to R., the
1 1

* While Hevner and Yao[HY79] did not state it, the implicit assumption

is that S.p. = S.p..
1] J 1
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accumulated selectivity is P since all relations R , 1 < k < j
k=1k k R

can be transmitted to R. in parallel with R with no increase in response

time. Hence

r. = min.{ E. + C(S. p )
1J<i 'k=lk

(4) Update S,, r..
1 1

The serial strategy consists of the following:

(1) Order R. such that S < S < < s
1 1- 2 - ' - m

(2) Send each file, starting with Ri, to the next bigger file in a serial

order, i.e. R - R + ... + R R , where R is the file at the1 2 m r r

result node.

There are two cases :to consider. In Case 1, R is included in its proper
r

order in the transmission pattern: R1 - R2 + ... R + ... -+ R M- R . In1 2r m r

Case 2,'Rr is not included in its proper order, P1 R+ ...R- l Rr+l

+ P - R . It is shown [HY79] that one of these cases has minimal total
m r

time.

5.2 The Minimum Spanning Tree Algorithm

In this section we shall describe the query processing algorithm

employed in our DDB model, namely the Minimum Spanning Tree (MST)

Algorithm. The assumptions of the algorithm are as follows:

(1) The result is to be produced where the query originates, i.e. the

requesting node.

(2) The costs of local operations are negligible compared to the

communication costs.

(3) The communication cost as a function of data volume and links is

known.



-65-

(4) All files accessed by the query have the same size.

(5) The selectivity parameter of all files is one. Therefore, when two

or more files are processed together, the resulting file has the

same size as one of the original files.

Assumptions (3), (4) and (5) imply that the cost of a query processing

strategy is a function of the communication links employed in the strategy,

irrespective of the volume of traffic on these links.

In addition, we are restricting all file processing to be performed

at the result node or at the nodes where the file copies accessed by the

query are located. This restriction is necessary in order for the MST

Algorithm to be optimal. If file processing can be performed at any node

in the communication subnetwork, then in order to find the optimal strategy,

we have to solve a Steiner Problem, which is a much harder optimization

problem than the MST. This will be discussed in more detail in the next

section.

The MST Algorithm finds the optimal query processing strategy that

minimizes the total communication costs. Recall the communication sub-

network model described in section 3.3. The average delay T for all

messages in the network is given by Equ.(3.5):

T=- , where the summation is taken over the set of all channels.

'C.

Hence, = = the incremental delay for all messages in
3(Ai/p)y(C.-XA./y)

2l 1

the network per unit increase in flow at channel i, provided the increase

in flow is small compared to the existing traffic at the channel. If we

let (/) be the communication costs on channel i, the MST Algorithm

will output a strategy that minimizes T . The cost of a strategy is
1 1

proportional to ~ because of unit file size. Therefore, the MST strategy
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will minimize the incremental delay for all messages in the network due

to a particular query. Obviously, other communication costs can be used.

There are two cases to consider: non-redundant files and redundant

files.

5.2.1 Non-redundant Files

In this case, each file accessed by the query has only one copy

maintained in the database.

Define a directed tree as a directed graph without a circuit, for

which the outdegree of every node is unity: the outdegree of the root

node being zero. Note that our definition of a directed tree is

different from the usual definition (see,e.g. [CHRI75] ) in that our

directed links point towards the root node, rather than outwards from

the root node.

We next describe the MST Algorithms for non-redundant files. There

are two algorithms: (1) the MSTl Algorithm restricts all file processing

at the node set N, where N is the set of nodes consisting of the result

node R and the nodes where the file copies accessed by the query are

located, (2) the MST2 Algorithm allows file processing at all nodes.

The MST1 Algorithm

(1) Using the communication costs on the links of the communication sub-

network as input to a Shortest Path Algorithm, find the shortest

paths between every pair of nodes in N. In general, the shortest

path from node i to node j will have different length from the node

j to node i path.

(2) Construct a fully connected directed graph G with node set N, and
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links weights equal to the shortest path lengths between nodal

pairs as calculated in Step (1).

(3) Find the minimum weight directed spanning tree of G using mode R as

the root node of the tree.

(4) Each file is moved to the result node R using the directed path

dictated by the MST. When two paths intersect, the two corresponding

files are processed together, resulting in one file.

The algorithm is best illustrated by an example. Consider the

six-node communication network shown in Fig.5.1(a). A query originating

at node 1 accesses files X,Y and Z at nodes 2,3 and 4 respectively. The

MST1 Algorithm says that we shall first find the shortest paths between

every pair of nodes in the set of nodes {l,2,3,4}. We then construct a

fully connected graph with node set {1,2,3,41 and link weights equal

to the shortest path lengths (See Fig.5.1(b)). The MST consists of

the directed links (3,4), (4,2) and (2,1) (See Fig.5.1(c)). This means

that file Y should be sent to node 4, to be processed with file Z. The

resulting file is then sent to node 2, to be processed with file X, and

the final result is then sent to node 1.

The correctness of the MSTl Algorithm is based on the following

theorem.

Theorem 5.1 Under the assumptions of the MST1 Algorithm, each query

processing strategy is dominated by (i.e. more costly than) a spanning

tree strategy with node R, the result node, as the root node.

Proof: The specification that R is the root node is necessary since we

want the result produced at R. Consider a fully connected directed
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graph G with node set N, i.e. the set of nodes consisting of R and the

nodes where the files are located. Every query strategy corresponds to

a subgraph of G. If the strategy does not correspond to a tree, some

node iCN will have an outdegree greater than one, say two. This means

that the file located at node i will be sent out twice through two

different links. This is obviously inferior to just sending the file

through one of the two links.

O.E.D.

The MST1 Algorithm is optimal since the MST is the least costly

among all spanning trees.

The MST2 Algorithm

(1) Using the communication costs on the communication links as the

weights of the links, find a minimum weight tree that spans the node

set N, with node R as the root of the tree.

(2) Each file is moved to the result node R using the directed path dictated

by this minimum weight tree. When two paths intersect, the two

corresponding files are processed together, resulting in one file.

Step(l) of the MST2 Algorithm corresponds to finding a solution

to the Steiner Problem, i.e. finding a minimum weight tree that spans

a subset of the nodes of a graph. The Steiner Problem is a much harder

problem than the MST Problem. Therefore, in this thesis, we shall

employ the MST1 Algorithm, i.e. restricting all file processing to the

node set N.

5.2.2 Redundant Files

In this case, each file accessed by the query may have one or more
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copies maintained in the database.

By inventing artifical file nodes and artifical links of weight W

connecting each file node with its copy locations, the MST Algorithm

that we have developed for the non-redundant case can be extended to be

used for the redundant case.

Consider Fig.5.2, where we have a request accessing two files X

and Y. There are copies of X at nodes 2 and 3, and copies of Y at nodes 4

and 5. Note that we have created directed artifical arcs (X,2),(X,3),

(Y,4) and (Y,5) with weights W. The direction of the artifical arcs for

file X(orY) ensures that only one of them will be included in the optimal

strategy. This is necessary since only one of the copies of X(or Y)

will be accessed. The weight W can be chosen to be zero, or may be assigned

to be different for different artifical links, to reflect the different

costs of accessing a file at different copy locations.

A strategy to satisfy a query originating at node 1 and accessing

files X and Y will be represented by a tree spanning node 1 and the

artifical nodes X and Y, but not necessarily spanning the whole node set.

The optimal strategy corresponds to the minimum weight tree of this type,

i.e. a Steiner Tree.

In general, if node i is the requesting node and files X,Y, .. .Z

are accessed in the query, then the optimal strategy corresponds to

finding the minimum weight tree spanning the node set U, where

U = {i,X,Y,...Z}.

The Steiner Problem can be solved by solving a number of MST's. For

example, if we want to solve the Steiner Problem for the node set U in

a graph with node set V, then we have to solve MST for all subgraphs of
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V that contain U[HAKI71] . Unfortunately, the number of subgraphs is large.

However, because of the special structure of the query processing problem,

only some of these subgraphs will correspond to query processing strategies.

Consider the example shown in Fig.5.2; all we need to consider is the four

subgraphs shown in Fig.5.3.

In general, if we have m files and n copies of each file, the number

m
of subgraphs to consider is nm.

This artifical file node and artificial link technique can be used

to generalize Wong's Algorithm [WONG77] to redundant databases. Hevner

and Yao's Algorithm [HY79],on the other handscannot be generalized easily,

since they assumed the same communication costs between each pair of nodes

and do not allow us to differentiate the costs of accessing different

copies.

5.3 The Minimum Distance Tree Algorithm

The assumptions of the Minimum Distance Tree (MDT) Algorithm are the

same as that of the MST Algorithm and are listed in section 5.2. While

the MST Algorithm minimizes the total communication costs, the MDT

Algorithm minimizes the maximum of the communication costs for sending

each file to the requesting node. In particular, if we designate the

transmission delays on the communication channels as the communication

costs, the MDT Algorithm will find the query processing strategy corresponding

to minimum response time.

The MDT Algorithm

(1) Construct a directed graph H of the communication subnetwork. The

nodes of H are the nodes of the communication subnetwork and the links
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Figure 5.3 The Four Subgraphs to be Considered in the
MST Solution of the Steiner Algorithm
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of H are the communication channels with weights equal to the commu-

nication costs of the channels.

(2) Create artifical file nodes for all files accessed by the query, and

create artifical links of zero weight connecting each file node and

its copy loctions. These artifical links should be directed outwards

from the file nodes.

(3). Find the shortest directed paths from all file nodes to the requesting

node. These shortest paths correspond to the paths taken for each

individual file to reach the requesting node.

Note that the MDT Algorithm is the same for both redundant and

non-redundant databases. In addition, since we are only interested in

finding the shortest path for a file to reach the requesting node, the

restriction that all file processing must be performed at the node set N

can be removed. (Recall that N consists of the result node and the nodes

containing copies of the files accessed by the query).

An example of the MDT Algorithm is shown in Fig. 5.1(a), in which

-es
a query originating at node 1 accessa files X,Y and Z at nodes 2,3 and 4

respectively. The shortest paths from nodes 2,3 and 4 to node 1 are as

shown in Fig. 5.1(d). These are the paths taken by the files to reach

the result node. The MDT Algorithm is based on the following theorem.

Theorem 5.2 : Under the assumptions of the MDT Algorithm, the MDT

Algorithm will minimize the response time.

Proof: Consider a query accessing files 1,2,.. .n. The response time, by

definition, is max. F., where F. = time it takes a file i to reach the

requesting node. Therefore, to minimize the response time, we have to

min.( max F.). The MDT Algorithm accomplishes this by minimizing each
i I

F., 1 i n.

Q.E.D.
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In general, solutions that minimize response times are not unique.

So long as the path taken by the file corresponding to -the maximum

communication delay is unchanged, the paths taken by the other files can

be varied without affecting the response time.

5.4 Comparison of Query Processing Algorithms

Wong's algorithm attempts to solve the most general query processing

problem, where (1) files have different sizes, and selectivity parameters

are arbitrary and (2) the communication subnetwork is completely general.

Unfortunately, this general problem is very difficult and Wong's attempt

only resulted in a heuristic giving local optimum.

Hevner and Yao looked at a simpler problem, relaxing requirement(2)

by assuming that the communication cost between each pair of nodes depends

linearly on the volume of data moved.

The MST Algorithm and MDT Algorithm described in this thesis relax

requirement (1) by assuming same size files and selectivity parameters

of value one. These algorithms are easy to implement and to analyze.

Note that the MST Algorithm is significantly different from previous

work. That it is different from Hevner and Yao's algorithm is obvious,

but is it also different from Wong's Algorithm if we relax requirement(l)

in implementing Wong's algorithm? The answer is yes. Intuitively, Wong's

a
algorithm does not guarantee global optimum which the MST Algorithm does,

so they cannot be the same. Fig. 5.4 contains a simple counterexample,

in which a query tries to access files X,Y and Z. Wong's Algorithm says

that the first proposed solution is to send each file directly to the

result node (Step 1 in Fig.5.4). We then try to replace this set of moves
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Figure 5.4 Non-equivalence of Wong's Algorithm and the MST Algorithm
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by two sets of moves that are less costly than the present set of moves.

In this case, we see that it is better to move file Y from node 3 to node 2

first, to be processed with file X, and then send the result to node 1.

The move of file Z from node 4 to node 1 remains unchanged (step 2 in Fig.5.4).

At this point, no improvement can be made. Wong's Algorithm requires a

cost of 5 units, while the MST Algorithm only costs 4 units.

The MST Algorithm and the MDT Algorithm also enjoy the following

advantages:

(1) We retain the traditional layering approach, i.e. separating the

database from the underlying communication subnetwork. The latter

will provide the input for our algorithms: the link costs in the

MST and the MDT Algorithms.

(2) The minimum spanning tree problem and the shortest path problem in

a directed graph are well understood and there exists efficient

algorithms for their solutions.

(3) Under the assumptions we make, the MST and the MDT Algorithm will

solve the problem optimally. Other query processing algorithms, for

example, Wong's algorithm, only achieve a local optimum. In addition,

Wong's algorithm only guarantees that the solution to the query will

be available at one site, and is indifferent as to which site it is.

The two algorithms proposed in this thesis, on the other hand,

guarantee that the result will be at the requesting node.

(4) The MST and MDT algorithms can be easily generalized to accomodate

redundant file copies. While Wong's Algorithm can also be generalized

using the same technique, Hevner and Yao's Algorithm cannot be general-

ized easily.

(5) The two algorithms proposed are easy to analyze.
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CHAPTER 6

CONFLICT MODELS

In this chapter we shall describe in detail how to model the conflicts

between transactions under various concurrency control algorithms. In

particular, we shall calculate the probability of conflicts and the delay

due to conflicts for Two-phase Locking Algorithms and for Timestamp

Ordering Algorithms. The performance of locking algorithms depends very

much on the algorithm used to solve the deadlock problem. In section

6.2.1, we analyzed the Ordered Queues Algorithm for deadlock prevention.

In section 6.2.2, we analyzed the Prioritized Transactions Algorithm.

In section 6.2.3, we calculated the probability of deadlocks when trans-

actions are allowed to wait for each other in an uncontrolled manner, which

is the case under Deadlock Detection. Section 6.3 is devoted to SDD-1, a

timestamp ordering algorithm.

6.1 Model Assumptions

The following assumptions are made in this chapter:

(I) transaction arrivals are Poison and divided into transaction classes

defined by readsets and writesets.

(2) topology of network and location of copies of files are given.

(3) there are two message types, a short type with mean 1/p1 such as lock

requests, requests to read files, etc; and a long message type with

mean 1/p 2 such as file transfers, pre-commits, etc. Both types of

messages are assumed to have exponentially distributed lengths. Suppose

the short and long messages constitute a fraction y 1and y2 of the

total number of messages. We also make the approximation that the
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1 1 YIY2length of all messages is still exponential with mean _ = 2+ - )
.P Y 14Y2 1 P2

(4) Transactions will be processed according to the Transaction Processing

which
Model consists of two steps: a query processing step and a write step.

In the query processing step, the MST1 Algorithm will be used to

produce the result of the query at the request node. In the write

step, the request node will initiate the two-phase commit algorithm to

all nodes containing a copy of the files in the writeset.

(5) Approximate the end-to-end transmission delay of the communication

subnetwork as exponential.

(6) One important parameter in locking algorithms is the locking granularity

i.e. the size of the unit of the database which is individually locked.

Using simulation models, Ries and Stonebraker tRS77] showed that under

a wide variety of conditions. , coarse granularity gives shorter response

times. Therefore, in our performance models, coarse granularity is

assumed. In particular, the numerical examples in Chapter 7 assume

that whole files are individually locked. This not only simplifies

the performance model, but also the data collection necessary to

execute the model.

(7) Requests for locks are served in a FCFS manner and the capacity of

the queue is infinite.

(8) Two transactions conflict when they try to access the same data item

and at least one of them is a write request.

6.2 Two-Phase Locking

When two transactions conflict under the locking algorithm, one of

them is made .to wait until the other releases its locks. This waiting
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incurs delay on the transaction and can be modelled as a queue. Consider,

for example, a file X with redundant copies X1 , X2 and X3 In the Centralized

Locking Algorithm, there is one lock manager for file X and it is located

at the central node. All transactions trying to access file X must request

a lock on X form this lock manager. In the Distributed Locking Algorithm,

there will be three lock managers, one for each redundant copy. Each of

these lock managers will be located at the same node as the file copy it

manages. A transaction accessing X., i = 1,2,3, will request a lock on

X . from the lock manager of X .. Other files in the database will be managed

by their respective lock managers, and each lock manager can be modelled

as a queue. The service time at each queue corresponds to the length of

time a transaction will hold a lock on the file.

6.2.1 Ordered Queues for Deadlock Prevention

One way to prevent deadlocks is to require transactions to request

locks in some universally specified order, i.e. wait for file X first, then

Y, then Z, etc. Therefore, the transaction has to obtain service at a

network of queues. (See Fig. 6.1). The arrival rate of the different

transaction classes to the lock managers will let us calculate the external

arrival rates and the routing probabilities for this network of queues. For

example, consider two transaction classes with arrival rates A and A3'

The first class of transaction accesses both files X and Y, while the second

class accesses files X and Z. The total external arrival rate to queue X

is A1 + A3. After obtaining service at queue X, with probability X1/(1+3

the request will go to queue Y, and with probability A 3/(A -X3), it will

go to queue Z.
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Figure 6.1 Ordered Oueues for Deadlock Prevention Modelled
as a Queueing Network
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The service time at each of the queue in this network of queues, say

queue X, corresponds to the time a transaction i accessing file X will

hold the lock on X. This service time is the sum of :

(1) transmission delay from lock manager to request node (lock grant),

(2) distributed processing,

(3) transmission delay from request node to lock manager (lock release).

The average service time must be weighted by the arrival rate of

the different transaction classes. Thus if the service time due to class 1

transactions T1 is S1 and that due to class 2 transaction T2 is S2, then

the average service time will be (A S +X2S )/(x +2 ) where A ,A are the1 12 2 1 2 l'2

arrival rates of T and T2 respectively.

Our problem is complicated by the fact that a transaction will hold

all locks granted until it has finished service. This means that while it

is waiting for lock Y, for example, while already holding lock X, all other

transactions waiting for lock X will be blocked.

We now make the additional approximation that not only do transactions

have to request locks in a specific order, they also have to get served in

that order. For example, if transaction i wants to read X and Y, it is

required to get a lock on file X, after which it will read X. Then it will

get a lock on file Y, and then read Y. This is an approximation because

in a real database system, in order to permit more concurrency, as soon as

transaction i gets the lock on X, it will often start queueing for the lock

on Y.

This approximation is necessary to simplify the model. If we further

assume that lock requests arrive in a Poisson manner and service time for

each lock request is exponential, the Ordered Queues Algorithm can be approxi-
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mated as a Markov Chain. Consider, for example, a two file system shown

in Fig. 6.2(a).

There are three possible kinds of lock requests:

(1) lock X then Y: rate

(2) lock X only : rate A2

(3) lock Y only : rate A3

Let (m n) denote a state of the system, where n is the number of lock

requests both in queue and in service at Y, and m is the number of lock

requests at X; m = b. indicates that lock X is blocked and that there is

i requests waiting in queue.

The service rates at X and Y are p and p respectively.
1 2

The state transition diagram is shown in Fig. 6.2(b). Consider the

state (1 0), i.e. one request at queue X, queue Y empty. If a type l(rate A

or type 2(rate A2) request arrives, with rate A+A2, we get to the state

(2 0). If a type 3 request arrives, we get to state (1 1). If the request

at queue X is a type 1 request, after it get served at queue X, it will

go to queue Y, while still holding the lock on X, i.e. we get to the state

(b 01) . Thus, eyen for two fiiesf the 'model beconyesavery complex.

An alternative approach is to approximate the network of queues by a

series of M/G/l queues, each corresponding to the transactions waiting for

the lock on one particular file.

Consider, for example, a three-file system with lock request rates

[A , (,Y)], [ 2, (YZ)], [A3, (X,Z)] and. - , (Z)]. (See. Fig.6.l).

Let bX, by, bZ be the in-service time for locking files X, Y, Z

individually, i.e. not including delay due to blocking. Let aX, ay, aZ be

the in-service time for locking files X, Y, 'Z when the files must be locked

in the order i + Y + Z, i.e. including delay due to blocking. Let W , Wy
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Figure 6.2 Markov Chain Model of Ordered Queues Algorithm for Two Files
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Wz denote the queueing time and S , Sy, Sz denote the total service time.

i.e. queueing plus in-service time, corresponding to the in-service time

of ax, a. aZ respectively.

a z= bz since requests accessing file Z will not be blocked.

j bwith probability X 1/(A1+X2 )
a=
y + SZ with probability X2 /(X 1+X2

since a fraction X 2/(X +X) of the lock requests at queue Y will release

its locks on Y only after they get served at queue Z.

Similarly, a bI Sy with prob. X1/(XI+X 3

b 
x+ S with prob. X3 /(X1+X3

We can find f (s) , f (s), f (s) by using the Pollaczek-Khinchin
SX S S

transform equation [KLEI75] ,i.e.

T T s(l -PZ
f(s) =f(s) T((6.1)

s- Z+ Z

T T s(l -P)
f (s) = fa(s) T

S Y aY s - y + x fa(s)
Y

T T T T
where f b(s) fT(s) X /( 2 +Ab + f (s) f (s) A /(X +X

a y by 1 1 2 b y Sz 2 12

T T s(l -PX
f (s) =f (s)
SX aX s -A +A fT(s)

X X ax

where fT(s) = fT(s) f (s) A A/(X+ + f'(s)'fA+A(s) 33'
ax bx Sy 1 3 bx Sz 3 13

and A =A1 + A3' Y=A + A2' Z 2 + +A 4' X X X 'a

Y 3 Yy ay,PZ 2 Z aXZ'



After finding the s-transforms, which must be solved in the order

T T T
f (s), fT (s), fT (s), we can then find the expected total service time of
S SY SX

any transaction. For example, the transaction that acesses files X and Y

has an average service time of S X + SY.

Note that the strategy adopted to handle the lock requests from different

transactions, say (X,Z) and (Z) transactions, are important. For example,

we may give priority to (X,Z) transactions at queue Z, since the (X,Z)

transactions hold up more resources. The model we have developed assumes

that all requests -at queue Z are handled in a FCFS manner. Mathematical

models for other queueing disciplines can be developed, although they will

probably be more complex.

6.2.2 Prioritized Transactions for Deadlock Prevention

We shall now analyze the wait-die and the wound-wait system for deadlock

prevention described in 2.4.2.

Suppose two conflicting transaction classes i and j arrive at sites i

and j with Poisson rate X. and A. respectively, and try to obtain a lock

on the same data item X at site c. (See Fig.6.3). We would like to find

the probability of transaction restarts and the delays associated with them.

Wait-die

Consider a transaction T. in transaction class i. T. will be restarted

if it tries to wait for a conflicting transaction which has higher priority.

In other words, T. will be restarted if a conflicting transaction T. with
:1-I

smaller timestamp (and hence higher priority) than that of T. arrives at

site c before T. does, and is still in service when T. arrives. This

scenario is depicted in Fig. 6.4(a). T>, is the transmission delay between
Ic
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site i and site c, and is exponentially distributed, S. is the service time
J

of T. at site c. This includes the queueing time for data item X plus the
J

time T. holds the lock on X. Point A represents the time at which the most
3

recent transaction T. arrives at node j. AB therefore represents the length
3

of time one has to go backwards in time until one sees T.. Since T. arrives
3 3

in a Poisson manner, AB is exponentially distributed with mean 1/..

Hence, P = P(T. is restarted by T. at node c)
R

= P(t. < a. + t. < t. + S.) (3c j ic 3c 3
Equ. (6.2) can be evaluated given a distribution for S. To simplify

mathematics, we further assume that S. is exponentially distributed v
3

mean i/s..

There are two cases to consider: (1) a. < t. (See Fig.6.4(a)),
j ]c

(2) a. > t. (See Fig.6.4(b)).

Now P(t. < a. + t. < t. + S Ia. < t.
jc j ic 3c j 3 3c

= P(t. - a.< t. < t. -a.+ S. a.< t. )
jc j ic jc j 3 3 jc

= P(t. <Ct. < t. + S.) since (t. -a. a. <t. ) Pt. *
jc ic jc j jc 3 3 jc

= P(t. > t. )P(S. > t. -t. I t. > t,ic 3c j ic jc ic 3c

=P (t.C > t.3C)P(S.I > t. ) since (t. - t.3c t . > t.3) t.iic jc j ic ic jc ic jc ic

-1jc . ic

1 ic PC ic j

and, P(t. < a. + t. < t. + S. a. > t.jc 3 ic 3c j j 3c

= P(O < a. - t. + t. < S. a. > t.
J 3c ic J j Jc

= P(O < a. + t. <.S.) since (a.-t. a. > t. )%r a.
3 ic j 3 3c 3 jc 3

3 ic
P(S.3> a.)P(S. > t. / -= _D__ - ic

j ymj ic X.+s.sp. + s.
J 3 ic j

*x y means random variables x and y have the same distribution.

6.2)

the

with
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x. pi. I. pI. . ii.

Hence, P(T. is restarted) =c iC + JC J iC

1 V.+i. V. +1J. V.L+s. X.+v. V+s. p.+s.
SJ c 1ic +3 C 1ic +s 3 c X +SJPic +s

icv'j -i.
LC JC (+ ) (6.3)

X.+p 11.+s. 1 . + y. .+s.
J Ic ic J ic Jc J J

Note that we have simplified the problem, for even if T. is not restarted

by the most recent conflicting transaction T., it may be possible that it
I

is restarted by T.',the transaction that arrives at node j before T.(see

Fig.6.5) or other previous transactions arriving at node j. The probability

of these rejections can be calculated in a similar manner. However, since

these probabilities are usually very small, we make the assumption that

P(T. restarted by T.' or previous conflicting transactions 1 T. not restarted
1 I

by T.) = 0.
J

When a transaction T. is restarted, a lock reject message is sent to

the request node which must then terminate the current transaction (in

a distributed locking algorithm, this means sending abort messages to all

nodes where it has requested locks) and resubmit a new lock request. Since

the resubmitted request will retain the original timestamp, it is possible

that the new request will conflict with the transaction that kills it before

and be killed again (See Fig. 6.6(a)).

Hence, P = P(rejection again)

= P(round trip delay to request node plus abort time
< remaining service time of T.)

I

= P(t . + t. + AT < S.) since S. is exponential.
ci ic 3 3

AT, the abort time, corresponds to the delay associated with sending abort

messages to all nodes where T. has requested locks and waiting for their

acknowledgements. In particular, if AT is exponential with mean l/Pa, then

p . p . v
p ci ic a (6.4)

PA .+s P. +s. P +5.
ci j ic j a j
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The probability of this happening yet again is the same because of

the self-renewing property of the exponential distribution.

For each transaction T.,
0o

E(number of rejections) (1-P) . O+P (1-P iP (See Fig.6.6 (b)
R R RA' . RA

PR0 P (-.
R(1R- P 2

RA

PR PA)

The additional delay due to each rejection = tci +

Wound-wait

Consider a transaction T., it will be wounded by a
J

T. if T. has higher priority and tries to wait for T..
1ap 1nJ

happens.

(6.5)

t. + AT.
xc

conflicting transaction

Fig. 6.7 shows what

Therefore, P(T. is wounded) = P
J W

= P(T. is wounded by T. the most recent
J

conflicting transaction having timestamp

earlier than T.)

= P( a. + t. < t. < a. + t. + S.)
3 3c Ic 1 jc j

P( a. + t. < t.
1 jc ic

P(t. < a. + t. + S. a. + t. < t.ic 3c 1 3c ic

P( a. + t. < t.
1 jc xc

P(t.i - a.i -t.j < S. I a.I + t.3 < t. c)
xc 1 jc j a. jc xc

X. p. p
1 jc ic

A.+. p +p. J.~ +s.
ixic jc ic ic j (6.6)

Note that we are again ignoring the possibility that T. may be wounded

by previous transactions, i.e. those having earlier timestamps than T.. Formally,

we are. assuming that P(T. wounded by previous transactionsiT. not wounded by T.)
J J

= 0.
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T. arrives at j
T.jarrives at C and enters queue
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aW. = wasted service time due
tic 7 to T. being wounded

T. arrives T. arrives at C
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Figure 6.7 Probability T. is wounded by T under Wound-wait
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Now, we make the additional assumption that all wounded transactions

are eventually restarted, i. e. when a wound message arrives, the transaction

has not reached the commit phase of the two-phase commit. In this case,

the wounded transaction will be resubmitted, with the original timestamp.

In wound-wait, in contrast to wait-die, even if the resubmitted transaction

conflicts with the transaction that wounds it, it will not be wounded again.

This is because the resubmitted transaction is now the requestor and, having

lower priority, it is allowed to wait.

For each transaction T., E(number of restarts) = P (See Equ. (6.6)).
3 W

The additional delay due to each wound (See Fig.6.7)

=t .+t. + W.
cj 3c J

= t . + t. + (t. - a. - t. < t. < a. + t. + S
cj jc ic j c a +tc ic aI c +

= t . + t. + min(t. , S.) (6.7)
c3 3c ic 3

Given t. - a. - t. > 0, t. - a. - t. has the same distribution as
ic i jc ic i jc

t. . W. is thus an exponential restricted to be less than S., another
ic J 3

exponential. The derivation in Appendix I shows that W. has the same
3

distribution as min(t. , S.).
ic j

Note that in using prioritized transaction for deadlock detection, a

transaction can start queueing for all files that it wants to access simul-

taneously, in contrast to the case of ordered queues where it has to wait

for file X first, then Y, then Z, etc. Suppose a transaction has to lock

both files X and Y, then the time it has to wait until both locks are

granted, provided the lock requests are not rejected, is given by D = max. (w X w )

where wX, wy are the queueing time at queues X and Y respectively.

In particular, if the service time (not including queueing) at the queues



-96-

are exponential with means 1/yX and l/ Y, respectively, then E(D) is found

to be- l-) + l - a(lQ > 9 in Appendix II, where
TIX (-PX PY (-Y ) 11X (-PX +PY PY

PX X X, and p = \X/Y 1.

Similarly,if a transaction has to request locks on files W, X,...Z,

then D = max.(wW,wXr.....wZ) and again E(D) is given by an expression derived

in Appendix II.

6.2.3 Probability of Deadlocks

Another way to solve the deadlock problem is deadlock detection. As

is mentioned previously (section 2.4.1), this is practical only for Centralized

Locking Algorithms. Periodically, the deadlock detector, which is located

at the central node, will construct the waits-for graph and determine if

there are any deadlocks. When a deadlock is detected, one of the transactions

is restarted to break the deadlock.

Therefore, one important parameter in our conflict model is the probability

of deadlocks. For each transaction, we must find (1) the probability that

it will be involved in a deadlock with other transactions, and (2) the expected

delay due to this deadlock.

In the following analysis, we shall consider deadlocks involving only

two transactions. In addition, we make the following assumptions:

(1) The Transaction Processing Model says that transactions will be processed

in two steps: a query processing step, and a write step. Thus, when

a transaction T arrives at the central node, it will request locks on

all files in its readset. It is assumed that T starts queueing at all

files in its readset simultaneously. T next performs query processing,
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after which it will request locks on all files in its writeset. Again

T will start queueing at all files in its writeset simultaneously.

(2) The elapsed time between when T requests locks on its readset and

writeset is assumed to be exponentially distributed.

Consider Fig. 6.8(a) in which two classes of transactions try to obtain

locks from the central node. Class 1 transactions have a readset consisting

of file X and a writeset consisting of file Y while class 2 transactions

have file Y as the readset and file X as the writeset, thereby creating a

potential deadlock. There are two cases to consider: (1) Class 1 transaction

arrives at the central node first, and (2) Class 2 transaction arrives first.

Suppose a Class 1 transaction T arrives first (Fig. 6.8(b)), with

probability AX/(A+12). According to the Transaction Processing Model,1 1 2

when T arrives at the central node, it will request to lock its readset,

namely file X.Upon obtaining the lock on X, it will perform query processing,

which in this case corresponds to reading file X. Then it will request a

lock on file Y, its writeset. The time between when T1 requests locks on

X and Y is represented by AB in Fig.6.8(b).

Any Class 2 transaction T arriving after time A will try to access2

file Y and must wait until T1 is completed. In addition, if T2 arrives at

time C before T requests the lock on file Y, i.e. during the period represented1

by AB in Fig.6.8(b), then when T1 wants to access file Y, it must wait for

T2. A deadlock is created and the probability of deadlock, PDL, is given by:

P = P(AC < AB) =A2  (A2 +p1 ) (6.8)
DL 2. 2 1

where 1/p1 = E(AB) and AB is exponentially distributed.

The deadlock detector at the central node constructs the waits-for

graph periodically and takes time BD (Fig. 6.8(b)) to detect the deadlock.



Central
Node

(a) Two conflicting classes of transactions arrive at central node

T 1 arrives and

requests lock on X requests lock on Y

time between request for
- locks on readsets and -

writesets

-4 I

A
interarrival

time

C B

deadlock is
created

t D
deadlock is
detected

T 2 arrives and
requests lock
on Y

(b) A deadlock is created

Figure 6.8 Probability of Deadlocks
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If the waits-for graph is constructed every S seconds, say, then E(BD)

= S/2 seconds. After the deadlock is detected, the deadlock detector will

break the deadlock by restarting one of the deadlocked transactions. In

this case, in order to minimize wasted resources, it will restart T2 since

T2 has barely started while T has already finished its query processing

step. Therefore, given T arrives first, expected delay for T due to

deadlock = E(BD) = S/2, while expected delay for T2 due to deadlock

= E(CB) + E(BD) = E(AB - AC J AB > AC) + E(BD) = E(AB) + E(BD) = l/ + S/2.

The symmetric situation of T arriving at the central node first2

(with probability X2/(X 1+X ) is completely analogous. Thus, given T2 arrives

first, P(deadlock) = XI/(X 1+2) where 1/P2 is the expected elaped time

between when T2 requests locks on its readset and its writeset. For T

E(delay due to deadlock) = S/2.

Hence, P(deadlock between TI and T2

1P(deadlock T arrives first) P(T arrives first)

+ P(deadlock T2 arrives first) P(T2 arrives first)

P(Td arrives first, deadlock occurs)

+ E (delay for T 11 T 2 arrives first , deadlock occurs).

P (T 2 arrives first, deadlock occurs)

SA N N N

2 2 12 X

2 X + X 2 X X(6.90)

21 12 1 2 1 2 .
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Similarly, E(delay due to deadlock for T )2

=5 2 1 1 S 1 2
X1+X2 P 2 1 2 X1+X2 x2+P1  (6.11)

Note that under the assumptions of our deadlock model listed at the

beginning of this section, a read only transaction (i.e. a transaction with

an empty writeset) will not enter into a deadlock with another transaction.

Consider two transactions T1 and T2 , in which T1 has non-empty readset and

writeset and T2 has empty writeset. Suppose T1 arrives first and queues

at all files in its readset. After a certain time T arrives. Since two
2

read requests do not'conflict, T can be completed without having to wait

for T1 to complete. Suppose T2 arrives first. Again T2 does not have to

wait for T1 . Therefore, no deadlock is possible.

A write only transaction (i.e. a transaction with empty readset).may

eneter into a deadlock with another transaction. Consider two transactions

T1 and T2 , in which T1 has readset (X) and writeset (Y) and T2 has an empty

readset, and writeset (X,Y). Suppose T1 arrives first and locks X. After

a time T2 arrives, it joins the queue for file X and locks file Y. When

T performs the write step, it cannot access file Y and must wait for T2 .

A deadlock is thereby created. On the other hand, if T2 arrives first,

then it does not have to wait for T1 and no deadlock is possible.

6.3 Timestamp Ordering (SDD-l)

The conflict model of SDD-l attempts to determine two important

parameters : (l)p,, the possibility that a read message will be rejected

because of an obsolete (or reversed) timestamp, and (2) given that a read

message is not rejected, the time W it has to wait before the read condition
a:

is satisfied and it can be processed.



6.3.1 Probability of Read Rejection

Consider the simplest case of two TM's shown in Fig. 6.9. Transactions

i arrive at TM with Poisson rate A while conflicting transactions i arrive

at TM with rate A . Assume that, upon reaching TM and TM , i and i
S S a S a 5

take respectively time ta and t to get to DM . These times include both

the queueing and transmission times at the respective channels. Suppose

we choose an arbitrary i , and consider the time we have to wait until we

see the next arrival of an i at TM . Call this waiting time a . Due to

the memoryless property of Poisson processes, we note that a is exponential

with rate A . An inspection of Fig. 6.9(b) gives us the following expression

for pa:

S= P (i will arrive at DM later than i given that i enters the

database system at TM before i e ters the system at TMa55

P(t > a + t

= P(a < t - t

Case 1: Suppose that t and t are constants,
a t

- 5(t - t)
a 5te - e if ta >t

then p = -la

10 otherwise

Case 2: the lengths of messages ia and i are exponentially distributed with

mean 1/p. and 1/p .

In this case, the analysis of Case 1 is still applicable, except that

t - t is not a constant anymore.
a S

Recall that if y is the total service time (queueing plus service) fo

an M/M/l queue, then
-(ii - A)y0

fy(yO) = (p -A) e yO > 0

whereX is the arrival rate and p is the service rate. Therefore ta and t

r
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Xa X/

TM 0  TM/3

tt'

DM 0

(a) Conflicting Transactions arriving at DM

i arrives at TMa Iaarrives at DM 0

ta eTM
apF*TLIME

0 a. t

arrives i arrives
/3at TM at DMa

(b) Example of Read Rejection

Figure 6.9 Probability of Read Rejection
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are exponential with rates p -Aa and X -Arespectively. Moreover, the pdf

of T = ta- t,, given that t > t will be given by.

-(p -X )Ta a o
fT (TO) =W a-Xa) e T > 0

due to the memoryless property of Poisson processes.

Therefore, p = P(t > t ) P(t-t > a, It> t)

_ ____a__a-_X

Case 3: General Case - More than two TM's, messages with exponential lengths.

Let G = {f,y,...} be the set of subscripts of those TM's that send

messages to DMa which conflict with message i . Consider the TM pairs

(TMa, TM ) ,(TM ,TM ),... in a similar fashion to the analysis in Case 2.

The probability of rejection due to each TMg, gEG, can be found as above.

Since- the arrival of messages at the TM's are independent,

Pa = PU(i will be read rejected)

= 1 - P(i will not be read rejected)

= 1 - H P(i will not be read rejected by messages from TM )
gEG

p -A A
=1-1 [ 1- 9 9 9

p -A -+p -A A +p -AgeG g g a a g a a

6.3.2 Delay due to conflicts

What is the read delay given that a read message is not rejected?

Case 1: Two TM's, exponential message lengths.

An inspection of Fig. 6.10 gives

W =(a + t - tala,+ t >t)a S S a5 5 - a

(a-t ) +t if a > t

t - (t- as) if a < t < a + t6 a 656- a - 5 5
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i arrives at i. arrives
TMCI at DMC

ta Wa
TIME

i arrives i arrives
at TM Pat DM0

Figure 6.10 Finding W , the Delay due to Conflicting Transactions
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as6 + t with probability (p -Xa )/(A +p -A )
Theefre Wa a S a a (6.13)

a with prob. A/(OA+P- A )

since a -t % a if a > tand t- (t-a) %t if t - a > b and
13 s s s a 6 a 5 >oan

t - t- a

Hence, f Cx) = a a fx)+fx) x > 0
W X +p-A U A-I-p-A t-
a S a a a a S

where u = a + t .

p-A
E(W ) = aa E(a + t) + E(t)

a A +p -A S p-6 a a -5 a a

= E(t ) + E X )

13 A"p-A 13
= I + p A(6.14)

a 

+ -

Case 2: If we have more than two TM's, then we must wait until the arrival

of all -conflicting writes with bigger timestamp than i

Therefore, W = max. ( a + t - t a + t > tX)
a g g g a g g- a

where G ={5,y ,...} = set of subscripts of all TM's that send messages

conflicting with i to Dm , a is the interarrival time of messages at TM
a a g g

and t is the time these messages take to get to DM .

Let x = (a + t - t Ja + t > t ), then W = max.( x )
g g g ag g - a a g g

Let v a + t . Since a and t are independent,
g g g g

AA -Ax XAAX -XX
12 1 1 2 2

f()=e + e x >O
v 2 1 1~2

where A = A , and A = p - A
1 g 2 g g

a + t with probability (p -A )/(A +p -A)
Nox g g a a g a a

g9 twith probability A /(A +Pa-A)
g g g a6

(See Equ. 6.13))
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a a 1 2 1 1
Therefore, f (x) = c_ e +

g g a a 2 X 2 11

9 Xe
+ X+pX-X 2

x) a a 2 1
F (x) =P( x < x) =(1 -e
x X 9 +p -X a-Xl
g g a a 2x1

+ ( a a 1 +
gX a a 1-2 g+a

S 
2x

x2

x > 0

-2x
)(1 -e 2 x >O

a

Now, F (x) = P(W < x)
W a
a

= P( max. x < x)

= II(x <x)
geG

Hence, fW x) = F x), and E(W ) = f C - FW (x)) dx.W dx W a Waa a

Since F x) is known for all geG, the last two expressions can be
x
g

evaluated.

6.3.3 Optimal Read Conditions

In deriving p a and W in the last two sections, we have assumed that

the timestamp in the read condition, call it TS, is the same as the time

when the transaction arrives at TM (TS.). Note that this is true only
a 1

for transactions running under protocol P3. For messages running under

protocols P1 and P2, the timestamp in the read condition can be chosen

arbitrarily by the TM, the only requirement being that all RR messages sent

from the same TM on behalf of a transaction have the same read condition.

In particular, TM can choose TS0= TS. + x, or TS = TS. - x, where x

is an arbitrary constant. In [BSR80], the builders of SDD-1 point out that

the choice of this read condition timestamp is an important parameter that

must be finetuned since the efficiency of the system depends on it. Too
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la arrivesat TMa a arrives at DMa

to

TIME

T

rrives at DMa

S TS 0 t/
i a

i arrives at TM/3 /9

(a) Case 1: TS TS.+x

i0 arrives at TM0 ia arrives at DMa

TS,
toa

TSi
TIME

xt
Pl 9arrives at DMa

p j i/3arrives at TMP

(b) Case 2: TS = TS - x

Figure 6.11 Probability of Rejection and Delay due to
Conflicts given Arbitrary Read Conditions

v

I
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small a read condition timestamp will lead to a lot of RR messages being

read rejected, while too large a read condition timestamp will incur an

excessive Wa' the waiting time until a conflicting write message with time-

stamp greater than TS0 arrives. We now formulate an optimization problem

to determine the best value of TS under various situations. This approach

will probably be better than trying to arrive at a good TS by trial and
0

error. We shall consider the case of two conflicting TM's only. The result

can be extended to the general case of many conflicting TM's, in a fashion

similar to that described in the last section.

Case 1: TS = TS. + x
0 1

Inspection of Fig. 6.11(a) gives

P = P(a arrives at DM after i i has timestamp greater than TS)

P(ta > + t a > x)

W = (a + t - t a > x, a + t > t)

a > x assures that the timestamp of i > TS .
6 65- 0

p can be rewritten as:

p = P(a <TI a 5 > x) where T = t - t

a is the remaining time one has to wait until the arrival of i at TM,

given that one enters the system at a random time. For a Poisson process,

this remaining time due to random incidence is still exponential with the

same parameter N .
-- A (a-x)

Therefore, f 1 > (ala>x) = X e a > x

-X (a-x) -x 5T A
For T > x, P =f e da = 1 - e e

x (6..15)

For T < x, pa= 0
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Since T is a random variable, we have to integrate Equ. (6.15) over

the pdf of T. Now

where Ax

Therefore, =
AX (7. -)___

/ + ) f or sTx

0 for Tr<X
We next determine P(T > x) = P(ta >t5 + x).

Consider the joint pdf space of ta and t5 (Fig. 6.12).

Let P = - AX, I2 = then1 a a 2 -
P(t > t + x) = shaded area

7" f f(c""t

From Equ. (6. 16) ,

therefore 1O

Equ. (6.17) says that Pa decreases with increasing values of x, which

is in tuitively correct.

We next calculate Wa, as follows:

- (a - 1{e, )+-t 6: L dt Uo )tIe Vc /3

ifa4 a C

(6.17)

73
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tt+x

0

F \914q1e 6.12 Probability ta> t



-111-

W( a,~ + if % s~t) 4 Van13 <>

+0 + a~>>P% a>x

/ +4+ t<x
Now a-

Therefore, E x
A/3 A/)74 1

Case 2: TSO = TSi - x

Inspection of Fig. 6.11(b) gives

p = P(t + x > a + t

W =(a + t - t - x<a + t > t + x)

Note that .any i that arrives at the system at a time after TS will

have a timestamp bigger than the read condition of ia. Moreover, due to

the memoryless property of Poisson processes a is still exponential with

mean 1/X

pacan be rewritten as: =. PaT + r X) were T =

e -/2(f+x 4or T+X

othi PrwIS; .

Now T, being the difference of two exponentials, has a pdf as shown

in Fig. 6.13.

Hence, E(e -- T

+ fe Vertm

tA t. f xiA 1r+c+ //J (6.19)

)x

1/3
>,
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_$1M2 ?To
J+2e

f (To)
MIP2 - TO

pdf of T, the difference of two exponentials

Imp-

Figure 6. 13
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and, P( T+X$)=I-P( T+x <o)

-P( T<-X)

... f4 /1/4 . aTa T

- 1 - e ,. I IA/( + 6)(6.20)

Hecc p = ( - - e-A/3 PrT) 1>,,0) (6.21)

w ke V E( - T anid P (T+,x ;>Q) av-e g ivey% by (6.11 ) amA (6.2o)

K/v a { 4
vvcoc3

>p < +x)

if &s :, tg x

if 3

Henice, PU'y >-'C)

pD+ E(ap) P(ap>t+x

4 )E+ E~pP(% x )

14 I -X/3/ (1 + 1 1)

+ ' / ,+ A 3

t =a-1

4o ae 70

for 0

A/X/ ( A

) (6.2

For both Case 1 and Case 2,

E(delay of a random read message) rp I D+E (W")J + (1 - p )E(W ) (6.23)ot aa

=E&1

= E(

Now { (?,)

2)

\a (+ + cp-t-x tp+

L1-3(+ X +13+

E( w )

kAf-r.

Z A? -%
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where D is the penalty due to a read rejection. The expected delay

can thus be minimized, for given valuesof D,X A ,p ,p , by varying x.

6.3.4 Optimal Time to Send Nullwrites

A read message with read condition (TS ,(j,-k,...)> arriving at DM

must wait for the arrival of write messages from conflicting classes

(j,k...) with timestamp greater than TS . If no conflicting write message

comes into the system, there will be an excessive wait. One proposal to

remedy this problem is to have TM's send nullwrite messages periodically.

Consider a database system in which nullwrites will be sent whenever

the time since the last write message is greater than S. The interarrival

time of write message (both regular writes and nullwrites) will now be

{c~Q (2DO = A3 A /33a,.1 1 e -N/3S5 osa<. SS,(6.24)

ie. an exponential constrained to be less than S.

Consider an instant of time when a read message has just arrived at

TM . The time a , we have to wait until the arrival of a conflicting

write message at TM A is not of the form given in (6.24), but rather has

a pdf given by random incidence equations (See [DRAK67])

Now, P( Qjs, -~){ x ic .1e

I5

anot( a( -,%(3]0j3 I

x. (_X(1 -



-115-

By inspection of Fig. 6.9(b) and Fig. 6.10, in which a must be

replaced by al, we get:

Now, +PLt+3 ajP-VY)-

Let A=

P( aj z4-t ) J=f0 I Axjc~ n)/A doL
=1-4BO

X13SC)(6.z-7)
A /A 1 QN-Pte, is

P(a '<

Hehc-e

E(WAoc)

Wow)

C- (WC,)

tot) =I- P(at' t fL ) A4h'( LIL>+3 / I /-

{rom Ec(.(6-zC) Fk AzS/(ti Aa) (6.z~

(Vt3 &otJ &3'+f43 > O)

EO ) +oE P

=//x-Al-Y2A

+ (] _(2)

Substituting these values of p and E (W&) into Equ. (6.23) for the

expected delay of a random read message, we can minimize the expected delay

by choosing an appropriate value for S.

In Appendix III, we have developed expressions for p and E(W&) when

there are more than two conflicting transaction classes.

We can also derive expressions for p and E(W&) for cases where TS

= TS + x and TS = TS - x, as we did in section 6.3.3. However, for
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exponential interarrival time constrained to be less than S, these express-

ions become extremely complex. Therefore, they are not included in this

thesis.
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CHAPTER 7

NUMERICAL EXAMPLES

We shall now demonstrate how to model various concurrency control

algorithms. Four examples will be given: (1) Centralized Locking Algorithm

with Deadlock Detection, (2) Distributed Locking Algorithm with Ordered

Queues for Deadlock Prevention, (3) Distributed Locking with Prioritized

Transactions for Deadlock Prevention, and (4) SDD-1.

Fig. 7.1 shows the example distributed database that we are going

to use this chapter. It consists of a communication subnetwork with

five nodes. For each communication channel, all of which are directed,

we have indicated its capacity, the existing message flow (i.e. not

counting anticipated distributed database traffic) and the existing

transmission delay. There are three files X, Y and Z with redundant

copies. The location of the redundant copies are as indicated by

the artificial file node and the artificial links. There are also five

classes of transactions and their arrival rates are as indicated.

Recall that our DDB Model consists of five steps. The input data

contained in Fig.7.1 will be collected in Step 1. Step 2 is the Trans-

action Processing Model, which consists of the Query Processing Step

and the Write Step. Using existing delay figures on the communication

channels as input to the MST1 Query Processing Algorithm, we found

which nodes a particular transaction will access to read a file. For

example, class 1 transactions, with readset (X,Y), will read file X at

node 1 and file Y at node 4. The transactions must also write on all

copies of files in their writesets. The nodes accessed by different

transactions for reads and writes are summarized in Fig.7.2. Using

this information, we can estimate the additional traffic generated on
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Figure 7.1 Example Distributed Database
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Node j

Transaction 1 2 3 4 5

-- reads X reads Y

writes Z writes Y writes Y,Z

reads X reads Z

2

reads Z reads Y

3

reads Z

4

writes X writes X writes X

5

writes X writes X writes Z writes Xy writes Y,Z

Transaction i reads (or writes) files at node j.

Figure 7.2 Nodes Acessed by Different Classes of Transactions according

to the Transaction Processing Model
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each communication channel by a particular transaction under different

concurrency control algorithms.

In Step 3 we calculate the transmission delay at each communication

channel, given the additional database traffic. The additional traffic

and hence the resultant delays on the channels will be different under

different concurrency control algorithms. This will be discussed in

more detail for each example. We distinguish between short messages

with average length 1/k = .1 Kbit and long messages with mean length

of 1/vt2 = 1 Kbit. Short messages include lock requests, lock releases,

lock grants, read requests, commits, and acknowledgement messages. Long

messages include file transfers and pre-commits. Each communication

channel is modelled as an M/M/l FCFS queue with mean service time = 1/p

1 - 1 2
(_ + -- ) where y1 , Y are the arrival rates of the short and

'1+'2 1 21 P2

long messages respectively.

In Step 4, we estimate the probability of conflicts and the delay

due to conflict. Conflict models for the four concurrency control algorithms

were developed in Chapter 6.

In Step 5 we calculate the response time which is a sum of the query

processing delay, the write delay and the delay due to conflicts.

7.1 Centralized Two-Phase Locking

Suppose Computer site 1 is chosen as the central node. (See Fig.7.1).

All transactions have to request locks from this node.

We now consider the message flow generated by the DDB management

system on behalf of the transactions. Fig.7.3 summarizes the sequence

of events corresponding to the processing of each transaction under
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Centralized Two-Phase Locking:

(1) transaction sends requests to central node to lock files in the readset:.

(2) wait for read locks at central node,

(3) central node sends lock grant message to request node,

(4) query processing, result produced at request node,

(5) transaction sends request to central node to lock files in the writeset,

(6) wait for write locks at central node,

(7) central node sends lock grant message to request node,

(8) request node sends pre-commit messages to copies of files written on,

(9) copies send acknowledgement messages to request node,

(10) request node sends commit messages to copies and lock release message

to central node.

For example, consider transactions arriving at node 4.

Message descriotion channels traversed message type

X4 read lock request from nodes 4 to 1 C43 , C31 short

4 read lock grant from 1 to 4 C12 , C24 short

query processing: read request to 5 C 45  short

file Z transferred
from 5 to 4 C54 long

4 write lock request from 4 to 1 C 43 , C31  short

14 write lock grant from 1 to 4 C] 2 , C24  short

14 pre-commit messages to all copies of C43 C3 1 , C1 2  long
X

4 acknowledgement messages C12, 2 4  short

1 commit messages to all copies of X C 4 3 , C3 1 C 12  short

A4 lock release from 4 to 1 C43 , C31  short

Similar considerations for the other transactions give the additional



transaction obtains obtains sends commit
arrives read locks write locks and lock release

time between request time write
for locks on readset locks held
and writeset

time read
locks held

transaction
response time

Key: req. node sends read lock req. to central node

queues for read locks at central node

central node sends lock grant to req. node

query processing,result produced at req. node

req. node sends write lock req. to central node

queues for write lock at central node

central node sends lock grant to req. node

req. node sends pre-commits to copies written on

copies send acknowledcement to req. node

req. node sends lock release to central node

Figure 7.3 Chronological Events corresponding to Transaction Processing under

Centralized Two-rphase Locking
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message flow requirements generated by the database management system. We

can then calculate the expected message delay on each of the communication

channels. For example, for channel C1 3 , we have X1 + A2 + A3 + A5 = .8

additional short messages per second, and A = .3 additional long messages

per second. Assuming that the existing message traffic of 60 kbit per

second on C1 3 , i.e. not including the DDB traffic, are all long messages,

then the total number of messages on channel C21 is 60 + .8 + .3 + 61.1

message per second, with an average message length of (60.3 xlK + .8 x.lK)/61.1

.988 Kbits. The expected queueing delay* = 61.1/(.988 K(100) - 61.1)

x (.988 K(100)) = 16.4 msec. and the total delay (queueing plus service)

for short and long messages are 17.4 msec. and 26.4 msec. respectively.

Similar calculations are performed for the other channels and the

result is summarized in Fig. 7.4.

We now calculate the length of time each transaction holds a lock, i.e.

from the time the central node sends out the lock grant message to the

time it receives a lock release message from the request node. Let us

denote the transmission delay on channel (i,j) for long and short messages

by r.. and s.. respectively.

Consider Class i transactions, the length of time they hold write

locks, denoted WL., is the sum of (see Fig.7.3):

(1) transmission delay of write lock grant from central node to node i,

(2) delay due to node i sending pre-commits to copies and waiting.for

acknowledgement from oopies, and

(3) transmission delay of lock release from node i to central node.

The length of time they hold read locks, denoted RL., is the sum
1-

of (see Fig. 7.3):

*For M/M/l queues, queueing delay = A/pi(p-A) where A is the arrival rate

and p is the service rate.
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Channels Additional Total Traffic Expected Expected Total Delay

Database Traffic Queueing (Queueing plus service)

short long short long Delay short msg. long msg.

C., message message message msg. S.. r..

C12 2A1+2 + A1+A2+ 1.6 50.8 12.0 msec 13.0 msec 22.0 msec

4+5 4 5

C21 3X2 0 .6 50.0 10.6 11.6 20.6

C 2+ +3 A .8 60.3 16.4 17.4 26.4
13 1 2 3 1

+X55

C A31 1+2X3+ A 2+ + 1.7 50.8 26.9 28.2 39.4

5 4 5

C 21+'A A +A 1.3 30.5 40.4 42.4 60.4
24 1'4 1 5

+2 X
5

C 4 3  4 A + .4 50.9 29.7 31.0 43.0
43 4 1 4

C A45 X1 4 -5 0 .6 40.0 36.9 38.6 53.6

C A -A +A A .6 30.3 34.5 36.5 54.5
35 1 3 5 1

C 0 0 0 60. 0 53.3 54.6 66.3
52

C A +3A A +A .9 55.3 42.9 44.2 56.2
53 1 5 3 5

C5 4 0 A 0 40.1 81.0 83.0 121.0

Figure 7. 4 Additional traffic generated by DDB Management System

under Centralized Locking and resultant transmission

delays on the channels.
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(1) transmission delay of read lock grant from central node to node i,

(2) query processing delay,

(3) transmission delay of write lock request from node i to central node,

(4) queueing delay for write locks, and

(5) WL.

Hence, WL = s11 + max.(r12 + r +s +s31, r 13 + r35 + s53 + s31) +S11

E(W )=E (s11) + E[max.(r12 + r +S3 + s31,

r13 + r35 + s53 + s31 )] + E(s11

Smax.[E(r12 + r +s4 + s )3
E(r13 + r35 + s53 +s31)] + 0 = 153.3 msec

and, RL = s11 + (s12 + s + r + r)31 + s1 + Q(Z) + WTL

E(RL ) = 291.1 msec + Q(Z)

where Q(I) = queueing delay for file I, I = X,Y,Z, at the central node. It

is not necessary to request a lock on file Y again since the transaction

already owns a lock on file Y.

Similarly, for Class 2 transactions:

E(WL2) = 0 since Class 2 transactions have empty writesets

RL2  s12 + (s21 + s13 + r31 + r12) + s21

E(RL2) = 115 msec.

For Class 3 transactions:

E(WL ) = 0
3

RL = s13 + (s35 + r)53 + s31

E(RL3) 138.3 msec.

For Class 4 transactions:

WL4 = ( 12 + s24) + max.(r43 + r 31 + r12 + s24, r43 + r31 1+S12 + s24

+ (s43 + s31)
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E (WL4) = 261.4 msec.

RL 4 = (s2+s24) + (s45+r54) + (s43+s31) + Q(X) + WL4

E(RL4) = 535.6 msec + Q(X)

For Class 5 transactions:

WL5 = (s13+s35) + max. (r53+s35, r53 +r 313+1+s35r

r52+s21+s13+s35, r54+s45) + (s53+S31

E(WL5) = 285.9msec.

The length of time a lock is held depends on which transaction owns the

lock and whether it is a write lock or a read lock. Therefore, to find the

average time a lock is held, one must weight the respective lock-holding

times corresponding to.different transactions by their arrival rates.

Therefore, average length of time lock on file X is held = b

= CX( L + A 2RL + x4WL 4 + 5WL 5 1 + 2 + A + A ) x 215.2 msec. + .375Q(z)

Similarly, average length of time lock on file Y is held = b
y

= (A1P 1 + X 3RL3 + AIWL1 + x 5WL5 )/(2X 1 + x 3 + A5 ) 227.0 msec. + .333Q(Z)

and, b = A2 a 2 3 3 + 41 + +1WL + 5L )/C1 + 2+ A3 +X4+X5

- 215.1 msec. + .lllQ(X)

bxv bY and bZ correspond to the average service time of the queues to lock

file X, Y and Z respectively. If we assume these service times to be expo-

nential, then the service rate of the three queues are p.= 1/b,?pY = 1/by

and ja = 1/b . The arrival rates of the lock requests are
Z Z

= A 1 + A 2 + A3 + A4 + A5 =.9
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A A
Now, Q(X) = x = x x

x (- x x 1Xx bx

2
x (.2152 + .3759(Z))=x

1 - A (.2152 + .375Q(Z)) (7.1)

b2
Q(Z)Z = ZbZ

'PZ PZ .Z 1XZ b Z

- 2
AZ(.2151 + .111Q(X))

1-AZ (.2151 + .111Q(X)) (7.2)

Equ. (7.1) and (7.2) can be solved simultaneously to obtain values

for 9(X) and 9(Z). An interative solution technique follows:

Initialize ; Q(X) = Q(Z) = 0

Do until ; Q(X) is close to 9(X)'

Q(Z) is close to Q(Z)'

- 2
A (.2152 + .375Q(Z))

Begin: Q(X)' = X

1 - A (.2152 + .375Q(Z))

2

(Z)'= A (.2151 + .1119(X))

1 - AZ (.2151 + .1119(X))

Q(X) = Q(X)'

Q(Z) = Q(Z)'

end; (7.3)

In this case, it is found, after three iterations, that

9(X) = .0547 sec.

Q(Z) = .0549 sec.

Therefore, p = 4.24, py = 4.08, pZ = 4.52 and the utilization of the

three queues are p = A /P = .189, p = A /pY = .221, and p A = .199
XrXtYsYtZ Z Z

respectively.
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We must next calculate the expected additional delay due to deadlocks.

Suppose the deadlock detector constructs the waits-for graph every one

second, i.e. on the average it takes 1/2 second to detect a deadlock.

Fig. 7.5 shows the readsets and writesets of the five Classes of

transactions in our example and the potential deadlocks. To simplify the

model, we are ignoring deadlocks that involve more than two transactions.

In addition, as is mentioned in 6.24, Class 2 and Class 3 transactions, with

empty writesets, will not enter into a deadlock with other transactions.

Therefore, in our example, there are three pairs of transactions that can

create deadlocks. Consider the Class 1 and Class 4 pair. Suppose T1

arrives first. A deadlock situation is shown in Fig. 7.6(a). AB corresponds

to the time between the arrival of request to lock the readset and the request

to lock the writeset.

Inspection of Fig. 7.3 gives

AB = queueing delay for read locks + time read locks held - time write

locks held - queueing delay for write locks

= Q(X,Y) + RL - WL1 - (Z)

where Q(X,Y) = max. queueing delay at queues X and Y

and Q(X,Y) = PX + Py - PXPY (see Appendix II)

yX(lapX) 1y (1-Py) PX(1-px) +PY (-p )

= .118 sec.

Hence, E(AB) = .118 sec. + .2911 sec. - .1533 sec. = .2558 sec.

The symmetric situation of a Class 4 transaction arriving first and

deadlocked with a Class 1 transaction which arrives later is shown in

Fig. 7.6(b).
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Class Readset Writeset

1 X,Y Y,z

2 X , Z

3 YZ potential
deadlocks

5 X,Y,Z

Figure 7.5 Potential Deadlocks for Example DDB
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T 1 arrives,

joins queues to
lock read set: (X,Y)

time be

lock (X

joins queues to
lock write set: (Y ,Z)

tween request to

,Y) and Z

I -

A C

interarrival time

of T

B

T arrives,

joins queues to
lock read set:Z

(a) T I arrives before T

T arrives,

joins queue
to lock Z

T4 joins queue

to lock X

time between request to

lock Z and X

V U

interarrival time
- -- - - - -

of T l

T arrives,

joins queues to
lock X and Y

(b) T4 arrives before T

Figure 7.6 Finding Probability of Deadlocks

A' B'I 'C c



-131-

A'B' = Q(Z) + RL - WL4 - Q(X)

E(A'B') = .0549 sec. + .5356 sec. - .2614 sec. = .3291 sec.

Let DD.. = expected delay for T. due to possible deadlock between
1J 1

T. and T..

From Equ. (6.10) and (6.11) respectively, we find

1 .3 .1 1 .1 .3DD 1.=.1 - + (39= . 3.028 sec.14 2 .3+1 .1+1/.2558 (.3291+ -) .3+. 3+3291

and DD 1 = .027 sec.

Similarly,we can calculate the expected delay due to the other two

potential deadlocks.

1 .3 .2
DD15 = 2 .3+.2 .2+1/.2558

1 3 .2
DD = (.2558+ -) ' .2 = .0221 sec.51 2 .3+.2 .2+1/.2558

1 .1 .2
45 2 .l+.2 .2+1/.3291 .0103 sec.

1I 1 .2DD = (.3291+ .-9- = .0171 sec.
54 2 .1+.2 .2+1/.3291

(Note that there is no possibility of deadlock when the Class 5 tran-

saction, which has empty readset, arrives first).

We can now calculate the response time for the different transaction

classes. For Class i transactions, average response time under Centralized

Locking, RCL = lock request transmission time + queueing time for locks

+ time locks held - lock release transmission time + expected delay due to

deadlock (See Fig. 7.3)

Therefore, RCL = s + Q(X,Y) + RL1 - s + DD + DD1 11 1 11 14 15

= 0 + .11 sec. + (.2911+.0549)sec. - 0 + .028 sec.

+ .0146 sec. = .507 sec.

RCL2= 21 + Q(X,Z) + RL2- s = .0116 sec. + .1045 sec. + .115sec.

-. 0116 sec. = .220 sec.
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RCL = s + Q(YZ) + RL - s = .0282 sec. + .118 sec. + .1383 sec.
3 31 3 31

- .0282 sec. = .256 sec.

RCL4 = 543 + s31 +9(Z) + RL4  -43-s 31 +DD 4 1 + DD4 5

.031 sec. + .0282 sec. + .0549 sec. + (.5356+.0547) sec.

- .013 sec. - .0282 sec. + .027 sec. + .103 sec. = .775 sec.

RCL = s + s + Q(X,Y,Z) + WL - - s + DD + DD
5 53 31 5 53 31 51 54

= .0442 sec. + .0282 sec. + .162 sec. + .2859 sec.

- .0442 sec. - .0282 sec. + .0221 sec. + .0171 sec. = .506 sec.
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7.2 Distributed Two-Phase Locking with Ordered Queues for Deadlock Prevention

In Distributed Locking, there is no central node, and a transaction

requests lock at the node where the data item is located. Compared to

Centralized Locking, this algorithm is superior in that (1) there is no

central node which is the bottleneck in Centralized Locking, and (2) less

messages will be generated since read lock request and read request messages

can be combined into one read message. (This is not possible in Centralized

Locking since the central node might be different from the node where one

wants to read a file copy.) The major drawback of Distributed Locking is

that deadlock detection is no longer feasible.

Consider the example shown in Fig. 7.1. Suppose Ordered Queues is used

to prevent deadlocks, i.e. all transactions are required to request locks

in a specific order, say lock file X first, then file Y and then file Z.

This means that when a transaction wants to access files at different nodes,

say file X at node 1 and file Y at node 4, it must send the lock requests

in serial order, i.e. request lock X first, and, after receiving the lock

grant from node 1, request lock Y. If it wants to access files located at

the same node, say files Y and Z at node 5, it can send the lock requests

simultaneously as one message. However, at node 5, it must wait for Y first,

then Z. Fig. 7.2 shows the nodes accessed by the different classes of tran-

sactions to read and write data. Let RN. be the set of nodes that Class i

transactions access to read, and WN. be the set of nodes that Class i tran-

sactions access to write. We now consider the message flow generated by

the DDB management system under Distributed Locking on behalf of the tran-

sactions. Fig. 7.7 summarizes the sequence of events corresponding to the

processing of Class k transactions:



transaction
arrives

sends commit
and lock release

R

obtains read locks

repeat R for
for each node
accessed
by read req.

W

obtains write locks

0 )I
repeat W by
each node
accessed by
pre-commit

time write
locks held

time read
locks held

transaction
response time

req. node sends read req. to node i,iERN

queues for read lock at node i

sends file from node i to req. node

req. node sends pre-commit to node j,jE WN

queues for write lock at node j

node j sends acknowledqement to req. node

req. node sends lock release to nodes i and

Figure 7.7 Chronological events corresponding to Transaction Processing under

Distributed Two-phase Locking with Ordered Queues for Deadlock Prevention
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(A) For each node isERNk, repeat the following in serial order, i.e. send

read messages to file X first, then Y, then Z:

(1) send read requests to node i, the read lock request is piggy-backed

with this read request.

(2) queue for read locks at node i

(3) node i sends lock grant to request node and initiates file transfer

(B) For each node jEWNk, repeat the following in serial order:

(1) send pre-commits to node j. The write lock request is piggy-backed

with the pre-commit.

(2) queue for write lock at node j.

(3) node j sends acknowledgement messages to request node.

(C) The request node sends commit and lock release messages to all file copies

in the writeset, and lock release messages to copies read by the tran-

saction.

The additional traffic generated by the DDB management system on behalf

of the transactions can be estimated, and the transmission delay for long

and short messages can be calculated. The procedure is described in detail

in section 7.1 and will not be repeated here. Fig. 7.8 summarizes the results

of these calculations.

We next calculate the length of time each transaction holds a lock.

Let RL. be the length of time a Class i transaction holds a read lock on

file W at node j, WLi. . be the time it holds a write lock, and Q.(W) be the
iW3 J

queueing time for file W at node j, then for Class 1 transactions: (See

Fig. 7.7 and Fig. 7.8)

WL = s + s , WL = 24.87 + 17.23 = 42.10 msec.
lZ3 31 13 lZ3
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Channels Additional Total Traffic Expected Expected Total Delay

Database Traffic Queueing (Queueing plus service)

short long short long Delay short msg. long msg.

C.. message message message msg. s. r.

C1 2  2X +X X X X 41.0 50.6 l1.26msec 12.26 msec 21.26 msec
12 1 3 1 2 41

+3X

C2 X + X .5 50.2 10.57 11.57 20.57
21 2 5 5

C1 3  1 +2 +5 1 .7 60.3 16.23 17.23 26.23

C31 2 +X +4 .9 50.3 23.62 24.87 36.11

+2A

C24 2 +3 1 .8 30.3 35.89 37.89 55.89

+4

C4 2 4++A .2 51.0 29.11 30.44 42.44
43 4 1 3 4

C45 1 4 5 1 .6 40.3 37.73 39.40 54.40

C3 5  A+2XA0 .7 30.0 34.30 36.30 54.30

C52 0 A5 0 60.2 54.23 55.57 67.57

CA53 X 5 .3 55.2 38.86 40.19 52.19

C54 0 A +5 0 40.3 83.09 85.09 103.09

Figure 7.8 Additional traffic generated by DDB management system

under Distributed Locking with Ordered Queues for Deadlock

Detection and resultant transmission delays on the channels.
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WLY5 =WLlZ5 = (s52 + s21) + r13 + Q3 (Z) + WL Z3 - s3 +(s13 +s35

WL WLZ =171.77 msec. + Q(
lY5 1Z5 3

L Y4 (s 43+ s31 + (r1 3 + r3 5  + Q5 (Y,Z) + WL 1Y5 -(s13+ s)35 + (s43+s31

=1309.39 msec. + Q3%(Z) + Q 5 (YZ)

RL Y4  (r4 3+ r31 +WLY4

RL Y 4 =387.94 msec. +Q3(Z) + Q5(Y,Z)

RLX = r + (s12+ s24+9 4 (Y) + RL

RLixi = 438.09 msec. + 04(M + Q3(Z) + Q5(YZ)

Similarly, for Class 2 transactions,

RL2 Z3 = (r3 1+ r12 'RL 2Z3 = 57.37 msec.

RL2 X2 =r2 2 + Q3 (Z) + RL2 Z3

RL 2X2  57.37 msec. + 03 (Z)

For Class 3 transactions,

RL3Z3 = r 3=0

RL3Y4 = r43 + Q3 (Z) + RL3Z3

R 3Y4 = 42.44 msec. + 3(Z

Class 4 transactions are slightly different. Since the writeset contains

file X and the readset contains file Z, to maintain the serial order of

locking file X first, then Y and then Z, it is necessary to send lock X

messages before sending read Z requests. (Recall that w:e normally send

write lock requests piggy-backed with pre-commit messages). Therefore, for

Class A transactions only, the sequence of events becomes:



-138-

(1) send write lock requests to all copies of file X

(2) send read request to node 5 to read Z

(3) send pre-commits (without lock requests) to all copies of file X

(4) copies send acknowledgement to node 4

(5) send commits and lock releases

Hence, RL4 = r5 4 + (r + r 31 + r2) + (s + s2) + (s + s +
4Z5 5 43 3 12 12 24 43 31

RL4Z5 320.62 msec.

WL4X1 12 + s24) + s45 +Q 5 (Z) + RL4Z5

= 410.17 msec. + Qr(Z)
4XI

WL4X2

WL4X2

'12

= 24 + s24 4S + Q5(Z) + RL4Z5

= 435.80 msec. + o5(Z)

WL 4X4 = s4 4 + s +4 4  5(Z) + RL4Z5

WL4X4 = 320.62 msec. + Q5 (Z)

For Class 5 transactions,

WL =S +s
5Z3 35 53

WL = 76.49 msec.
5Z3

WL5Z5

WL5Z5

WL5X4

5X4

=88.49

= WL Y4

= 5Y4 W

= s + r3 +0 (Z) + s + s
55 53 "3 35 55

msec. + Q3(Z)

= 5 + r + 0(YZ) + WL - s5 + s5
45 55 5 5Z5 55 4.5

- 167.29 msec. + Q3 (Z) yz

WL5X1 = (s13 + s35) + r54 + Q4 (XY) + 6L5X4 45 + (s13 + s35)

5
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WL 5X= 338.04 msec. + 93 (Z) + Q5 (YZ) +Q4XY)

WL5X2=s 21 + s13 + s35) + r54 + Q 4 (XY) + WL5X4

WL5X2 =361.18 msec. + 03 (Z) + Q5(Y,Z) + Q4 ,(XY)

- 45 + (s21 + s13 + s35

The length of time a lock is held depends on which transaction owns

the lock. Therefore, to find the average length of time a lock is held at

each node, we must weight the respective lock-holding times corresponding

to different transactions by their arrival rates.

Let b be the average length of time lock on file W is held at node
W]

j. This corresponds to the in-service time of a transaction holding a lock

on file W at node j, without accounting for delay due to blocking. ( See

section 6.2.1

b =(XRL + XWL + WL ) /( + + )
Xl 1 1xi 4 4X1 5 5X1 1 4 5

= 400.09 msec. + .50 (Y) + .83393 (Z) + .1667Q 5 (Z) + .333Q4(X,Y)

+ .83395 (Y,Z)

b =(X Pt + A WL + A WL )/ A+ A+A
X2 2 2X2 4 4X2 5 5X2 2 4 5

= 254.58 msec. + .8Q3 (Z) + .2Q 5 (Z) + .4Q(YZ) + .4Q4 ,Y)

b =(XWL +ARL +ARL +AWL ) /( + A + + )
Z3 1 lZ3 2 2Z3 3 3Z3 5 5Z3 1 2 3-5

= 49.26 msec.

b =(AWL + AWL ) P/A A
X4 4 4X4 5 5X4 4 5

= 218.40 msec. + .105(Z) + .2Q3(Z) + .2Q(YZ)
*5 .35

b =(A Pt + Awt + A Pt + ;AWL ) (/2(2A +A+A
Y4 1 1Y4 1 1Y4 3 3Y4 5 5Y4 1 3 5

= 506.78 msec. + 03(Z) + .8889Q(YZ)3 5
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bY5 1 WlY5 5WL5Y5 1 + 5

= 138.46 msec. + 03(Z)

z5 1 lZ5 4 4Z5 5 5Z5 1 4 5

168.82 msec. + .8333Q3(Z)

In our example, it is noted that nodes 1, 2 and 3 contains only one

file each. Therefore, the in-service times at these nodes are given by

bxi, bX2 and bZ3 . However, at nodes 4 and 5, there are two files each.

When a transaction accesses these files, the locks must be requested in

serial order. Thus the in-service time of locking file W at node j when

the serial locking order is observed, denoted by a , must be calculated

as described in 6.2.2. For example, at node 5, aZ 5 =buZ5, but aY 5 = b Y5+

SYi.e. the in-service time at the queue for file Y plus the total

service time at the queue for file Z. The queueing network (described in

6.2.2) corresponding to node 5 is shown in Fig. 7.9(a).

Let N . and - M be the arrival and service rates of lock requests for
Mj Mj

file M at node j, wMj be the average queueing time, SMj be the averaqe

total service time in the queue to lock file M at node j. Consider node 3,

IZ 3 =1/bZ3 = 20.30

Z33

0 (Z) ==..00202 sec.
3 PZ3 (v 3 - xZ) 20.30(20.30 - .8)

Consider node 5, bY5 = 138.46 msec. + Q3(Z)

= .14048 sec.

aZ = b = 168.82 msec. + .8333Q (Z) = .1705 sec.
Z5 Z5 3



-141-

.5 .1

11Y5 Z5

XY5 =5

Z5 =.5+.1 =.6

--- EXTERNAL ARRIVALS

ROUTING PROBABILITIES

(a) Queueing network at node 5

.3 .7

I I

Y4

X43

xY4 3

XY4 =.3(*)+.7=.9
.- - EXTERNAL ARRIVALS

ROUTING PROBABILITIES

(b) Queueing network at node 4

Figure 7.9 Queueing Network Models for Nodes 4 and 5 in Example DDB
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S -. = 1899 sec.
Z5 11 - 1/.1705- .6

Z5 Z5

Q5 (Z) = w-Z5=S Z5 aZ5 = (.1899 - .1705) sec. = .0194 sec.

aY5= bY5 + SZ5 = .14048 sec. + .1899 sec. = .33038 sec.

Assuming that the service time is still exponential,

P Y5= 1/aY = 2.996, and

-5 YY5

S(Y)[5 .5 = .06537 sec.
5 Y5 ( - 'A ) 2.996(2.996 - .5)Y5 YS Yb

Q5 (Y,Z) ,the queueing time for both files Y and Z,

= Q5(Y) + Q 5(Z) = .08477 sec. since requests for files Y and Z

must be queued serially.

Consider node 4, b = 218.40 msec. + .lQ(Z) + .2Q(Z) + .2Q(YZ)
X4 5 3 '5

= .2377 sec.

aY4 = b = 506.78 msec. + Q3(Z) + .88895(YZ)

= .5842 sec.

1 1S = = = 1.2317 sec.
Y4 1/.5842 - .9

Y4 Y4

Q 4 (y) wY 4  S4 - a 4 = .6475 sec.

1 2
a = - b + - (b + S ) = 1.0588 sec.

X4 3 X4 3 X4 Y4

Assuming that the service time is still exponential,

1 =1/a = 94447, and

XX4 .3

Q(X) = X4  .3 4929 sec.
4 y (PX - x 4 ) .94447(.94447 - .3)

Q (X,Y) = 0 4X) + 0 (Y) = 1.140 sec.
4 n 44

Consider node 1, b>~1 = 1.179 sec.
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Therefore, 91 (X) xl= 2.85 sec.
1pl (i- XlAxPxi x i

Consider node 2, b = .7500 sec.

X2
Therefore, Q X) = X2 .4500 sec.2 y(p - A ).405cVX2 X2 X2

We can now calculate the response time of the different transaction

classes. For Class i transactions, average response time under Distributed

Locking with Ordered Queues for Deadlock Prevention, RDLOQ. = read request

transmission time + queueing time for locks at first node accessed + time

locks held - lock release transmission time queueing time for locks at

first node accessed + time locks held. ( See Fig. 7.7

Therefore, RDLOQ1  9(X) + RL

- 2.85 sec. + 1.172 sec. = 4.02 sec.

RDLOO2 =Q2 (X) + RL2X2

= .45 sec. + .05939 sec. = .509 sec.

RDLOQ = 04 (Y) + RL
3 ~4 3Y4

= .6475 sec. + .04446 sec. = .692 sec.

RDLOQ4 = E[max(Q (x) + W4Xl 'Q2 (X) + WL4X2 94 (X) + WL4X4

~ (X) + WL = 2.85 sec. + .4296 sec. = 3.28 sec.
1 4X1

RDLOQ5 = E[max(Q1 (X) + WL5X' Q2 (X) + WL5X2 ' Q4 (XY) + WL5X4

1Q(X) + WL5X1 = 2.85 sec. + 1.56 sec. = 4.41 sec.



-144-

7.3 Distributed Two-Phase Lock with Prioritized Transactions for Deadlock
Prevention

In this example, Prioritized Transactions will be used to prevent

deadlocks. This is more efficient than the Ordered Queues scheme in that

more concurrency is possible. Whereas in the Ordered Queues scheme, locks

have to be obtained in serial order, one after another, in the Prioritized

Transactions scheme they can be obtained simultaneously. The tradeoff,

however, is that for Prioritized Transactions, it is sometimes necessary to

restart some transactions.

Fig. 7.10 summarizes the sequence of events corresponding to the

processing of Class k transactions:

(A) For each node iERNk messages, the following is repeated:

(1) send read request to node i, lock request is piggy-backed with this

read request.

(2) queue for read lock at node i

(3) node sends lock grant to request node and initiates file transfer.

Note that the nodes will be accessed simultaneously and the delay associated

with query processing is max R. (See Fig. 7.10), where R. is the delay
icRNk

associated with accessing node i.

(B) For each node jWNk, the following is repeated:

(1) send pre-commit to node j. The write lock request is piggy-backed

with it.

(2) queue for write lock at node j

(3) node j sends acknowledgement to request node.

Again, all copies will be accessed simultaneously and the delay associated

with pre-commit is max W. (See Fig.7.10), where W. is the delay associated
j SWNk

with accessing node j.



transaction
arrives

R.

max R.
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time writ
locks hel
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transaction
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sends read request to node i from req. node, i E RN
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sends file from node i to req. node

sends pre-commit to node j from req. node,jeWN

queues for write lock at node j
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Figure 7.10 Chronological Events corresponding to Transaction Processing under Distributed

Two-phase Locking with Prioritized Transactions for Deadlock Prevention
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(C) The request node sends commit and lock release messages.

The volume of messages generated in the communication subnetwork is

similar to that described in section 7.2. It is therefore assumed that the

average delays on the communication channels are the same. (See Fig.7.8)

We next calculate the length of time each transaction holds a lock.

Let RL. . be the length of time a class i transaction holds a read lock
1w]

on file W at node j, WLiwj be the time it holds a write lock, Q.(W) be the

queueing time for file W at node j, MW. = max W. be the delay associated
' jSWN. J

with pre-commit for Class i transactions, and MR. = max R. be the delay
I jeRN. ]

associated with query processing for Class i transactions, then for Class 1

transactions: (see Fig.7.10)

WL = delay due to pre-commit + lock release transmission time - pre-commit
1Z3

- queueing time for write lock

MW +r - (Z)
1 + 13 13 Q3

RE =lZ3 - Q3 (Z) - 9 msec.

WL 1 = MW 1 + s-3r -35 l3 r 3 5 -Q 5 (Y)

W1l = MW - 'Q(Y) - 27 msec.
1Y5 1 5

WLlZ5 1 +" 13 + s35 r13 -r35 - Q5 (Z)

WlZ5 1 5(Z) - 27 msec.

WL Y4= MW1 5+12 +5S24 - r1 2 -r 2 4 - Q-4 (Y)

WL = MW1 - 4 (Y) - 27 msec.
1Y4 1 4

RL Y4= delay due to query processing + delay due to pre-commit lock release

transmission time - read request transmission time - queueing delay

for read lock
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Therefore, RL 4 = MR1 + MW1 + (s12 + s ) - (s12 + s -24 4(Y)

RL =MR1

RL =MR
IXI I

For Class 2

RL 2Z3=MR

RL2Z3 2MR2

RL 2X2=MR2

For Class 3

RL3Z3 MR3

RL 3Y 4 MR 3

RL =MR3

For Class 4

WL 4X4 W4

WI 4X1 mR4

W4X1 w4

WL 4X2 w4

WL 4X2 W4

RL4Z5 =MR4

RL =MR

For Class 5

WL 5Z3 MW

+ m1 - Q4(Y)

1 A 1
+ MW - 0 (X)

1 U

transactions:

1(s +1S13)-(s 21 + s13 3 (Z)

- Q (Z)

2 (X)

transactions:

Q 3 (Z)

+ (s + s )(s + S )-(Y)
35 54 35 54 4

- Q4 (Y)

transactions:

Q4 (X)

+ (s4 + s 1) - (r4 - r3 ) 10(X)(43 s31 (r43 r31 01U

Q (X) -23.24 msec.

(s45 +s52)-(r 4 5 - r52  -Q 2 (

Q 2 (X) - 27 msec.

+ MW4 + S45 -s45 95 (Z)

+ MW - 0 (Z)
4 '-5

transactions:

+ s 5 3 - r 5 3 -3(Z)
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WL5Z3  MW5 -9 3 (Z) - 12 msec.

WL 5Z5 MW -Q5(Z)

W5Z5 5 5
=L5Y MW 5 - Q5 C(Y)

WLsX4 =MW 5 + S54 - r5 4 - Q4(X

WLX4 = MW5 - 94 (X) - 18 msec.

WL =MW +s54 -r 5 4 - 0(Y)
5Y4 5 5 4 ~

WL5Y4 =MW 5 -Q4(Y) - 18 msec.

WL = MW + (s + s ) + (r + r ) - 1(X)
5X1 5 53 31 53 31 1

WL = MW - 0 CX) - 23.24 msec

WLX=M 5 -

WL5X2 5 + s52 - r52 - Q 2CX

WL5X2 MW5  Q2 (X) - 12 msec.

We next find the length of time a lock is held at the different nodes.

Let bw. be the average length of time lock on file W is held at node j.
W3

b = (A RL + A WL + A WL ) / (A + A + A
Xl 1 lXl 4 4X1 5 SXl 1 4 5

= .5MR1 + .5MW1 + .1667MW + .333MW5 - Q1 X) - 11.62 msec.

X2 2 2X2 4 4X2 5 5X2 2 4 5

= .4MR2 + .2MW4 + .4MW 5 - Q 2 (X) - 10.2 msec.

Z3 1 lZ3 2 2Z3 3 3Z3 5 5Z3 1 2 3+5

= .375MW 1 + .25MR 2 + .125MR 3 + .25W5 -Q 3 (Z) - 6.375 msec.

b = (A WL + A WL ) / (A + A
X4 4 4X4 5 5X4 4 5
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= .333MW4 + .667MW5 -Q 4 (X) - 12 msec.

b = (X RL + X WL + X RL + X WL ) / (2 + X + X
Y4 1 1Y4 1 lY4 3 3Y4 5 5Y4 1 3 5

= .333MR + .667MW + .111MR + .222MW - Q (Y) - 13 msec.
1 1 3 5 4

b = (X WL + A )WL (X + A)
Y5 1 lY5 5 5Y5 1 5

= .6MW + .4MW5- 05(Y) - 16.2 msec.

bZ5 1WLlZ5 4 4Z5 + X5WL5Z3 1 4 5

= .5MW + .1667MR + .1667MW + .333MW - 0 (Z) - 13.5 msec.
1 4 4 5 ~5

Therefore, we have seven equations in seven unknowns, namely Q C),

X)2 93(Z) , 04 (X) , 4(Y) , Q5(Y) and Q5(Z) . ( Note that bw. is related

to .(W) by the equation

- A Wib
Q. (W) = - =) - 1 - A b where X. is the lock request rate for file

i p ) Wibi Wi

W at node i. ) Of course, we have to determine MR., MW., i = 1,...,5 first.

For example, MR = max (QOCX), s12 + s24 + 4(Y) + r43 + r31

MR1 max (Q,(X),Q4(Y) + 128.7 msec.)

Expressions for MR1, MR2 etc. are difficult to obtain in closed

form. Therefore, we make the additional assumption that the delay. corres-

ponding to accessing each node, i.e. the transmission time plus queueing

time for locks, is exponentially distributed. Since the expected value of

the maximum of several exponentials have been derived in Appendix IV, we

can find closed form expressions for MR,, MR2 , etc. For example,

MR1  (CX) + Q 4 (Y) + 1/( 1/Q1(X) + 1/o4 (Y)).

After substituting these expressions of MR., MW. into Equations (7.4),

1 1

we can solve them simultaneously, using an iterative procedure.
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The procedure converges after

following:

b = .421 sec.

bX2 = .173 sec.

b Z3= .226 sec.

b = .194 sec.

b 4 = .355 sec.

bY5 = .256 sec.

bZ5 = .278 sec.

sec.

sec.

sec.

sec.

sec.

sec.

sec.

sec.

sec.

sec.

MR 2 .171

MW = .407

RL .Y4 = 752

W 1Z3 = .340

RL2z3 = .113

RL 4 .474
4Z5

WL 4X = .322
4X4

WL 5X4= .278

WL = .249
5Z3

six iterations and outputs the

Q1(X)

Q 2 (X)

Q3 (Z)

o (X)"4

Q4 (Y)

Q5 (Y)

Q5 (Z)

sec.

sec.

= .134 sec.

= .164 sec.

= .0579 sec.

= .0119 sec.

= .166 sec.

= .0375 sec.

= .0557 sec.

MR3

4 4

sec.

sec.

sec.

sec.

sec.

sec.

sec.

= .423 sec.

= .334 sec.

WL =
1Y4

L lZ5

RL 3Y4 =

WL =
4X1

WL =15x1

WL5Y4

WL5z5

MR =

MR4 =

MW5 =

RLllPLixi

WL Y5

RL2X2

RL 3 Z3

WL 4 X2

WL5X2

WL 5x5Y5i

.511

.196

.308

S. 784

.343

= .007

= .365

= .143

.132

= .271

.214

.324

.365

.198

.172

.124

.252

sec.

sec.

sec.

sec.

sec.

sec.

sec.
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We next calculate the probability a transaction will be restarted

under the wound-wait deadlock prevention scheme. It can be shown that for

this particular example, wound-wait induces fewer restarts than wait-die.

Since two transactions conflict if at least one of them is a write trans-

action, there are three distinct cases to consider: (1) a Class i trans-

action T. owns a read lock on a data item X at node r and a Class j trans-

action T, tries to get a write lock on X at the same node, (2) T. owns a
J1

write lock on Y at node w and a Class k transaction T tries to get a read

lock on Y at node w, and (3) T. owns a write lock on Y at node w and a

Class m transaction T tries to get a write lock on Y at node w.
m

Recall that under wound-wait, every transaction is given a timestamp

its priority ) when it enters the system, and a transaction will be

restarted if a conflicting transaction with higher priority (older time-

stamp ) is forced to wait for it to release a lock.

Inspection of Fig. 7.10 lets us construct the three scenarios cor-

responding to transaction restarts. (See Fig. 7.11 (a), (b), (c).) Let

a. be the interarrival time of T.. In Case 1 (Fig. 7.11(a)), T. will be

restarted if a conflicting T . with older timestamp arrives at node r

'-tfore
after T. does. There PR., = P(T. restarted by T. at node r)

1 1jr 1

= P( AB < AD < AC

= P( AB < AD )P( AD < AC AB < AD

= P( AB < AD )P( AD - AB < AC AB AB < AD )

= P( AB < AD )P( AD - AB < BC AD AB > 0)

We now make the additional assumptions that AD and BC are exponentially

distributed, then
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most recent T i arrives T. enters queue X lock X
T. arrives at node i at node r released3
at node j

sends read req. queues for lock X holds lock X

a. tir r (x) RLiXr

AR M D

query processing sends pre-commit
for T .

C

T. arrives
3

at node r

(a) Case 1 T. restarted because of read-write conflict

: recent T. arrives T. enters queue Y lock Y
irrives 11released

at node i at node w
tode k

query processing sends queues for holds
I delay for T. pre-commit lock Y lock Y

ak'MR. t. Q(Y) WL.k11w w Yw

tkW B

sends read request

D
Tk arrives

at node w

C

(b) Case 2 T . restarted because of write-read conflict

most recent
T arrives
m

at node m

Vaa

Al

T. arrives T. enters queue Y lock
1 1 rele

at node i at node w

query processing sends queues for holds

delay for T. pre-commit lock Y lock Y

MRti w.(Y) WLMRI '

MR

query processing for Tm
mn

B D

sends read request

y

ased

T arrives

at node w

(c) Case 3 T. restarted because of write-write conflict

Figure 7.11 Finding Probability and Delay of Transaction Restarts

most
T a
k

at r

41
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PR,. = P( MR. + r. > a. ) P( MR. + r. > s.
1ir j 3r j j jr ir

P( Q (X) + RL > MR. + r. ) (7.5)
r iXr j jr

W. . = E( delay for T. due to rejection by T. at node r
ijr

= time wasted in processing the aborted transaction + transmission

delay from node r to node i to report the abortion

E(s. ) + E( BD AB < AD < AC ) + E (s .)
ir ri

=E(s. ) + E~s .) + BC BD 1BD < BC)

E(s. ) + E(s .) + E( min.( BD, BC
ir r

See Appendix I for a derivation of E( BD BD < BC ) = E( min.( BD, BC ) ).

Hence, W.. = E(s. ) + E(s .) + E( min.(r. + MR., Q (X) + RL. ) ) (7.6)
i3r ir ri jr j r ixr

In Case 2 (Fig. 7.11(b)), PRikw = P( T. rejected by T at nodew)

= P( AB < AD < AC ) P(s > a ) P(s > MR.) P(s > r. )
kw k kw 1 kw 1w

P(O (Y) + WL. > s ) (7.7)

yw kw

and Wik = E( delay for T, due to rejection by T at node w

= E(s .).+ E(MR.) + E(s. ) + E( min.(sk Q(Y) WL. )) (7.8)
Wi 1 1W k iyw

In Case 3 (Fig. 7.11(c)), PR. = P( T. rejected by T at node w
irnw 1

= P( AB < AD < AC ) = P(MR + s > a ) P(MR + s > MR.)-
m mw m m mw I

P(MR + s >t. P(O (Y) + yWLw > MR + t ) (7.9)
m mw iw+-W Wyw m mw

and W. = E( delay for T. due to rejection by T at node w
imw 1m

- E(s .) + E(MR.) + E(r. ) + E( min.(MR + s ,
wi iW M mw

0 (Y) + WL. )) (7.10)
-W iyw
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We can now calculate the probability of restart for each transaction

class. Consider Class 1 transactions T

P = P( T is restarted

= 1 - P( T1 not restarted

= 1 - .L T P( T not restarted by T. at node a)
iIl a 1

since (1) the probability a transaction is restarted at the same node by

different transactions are independent, and (2) the probability a trans-

action is restarted at different nodes by the same transaction ( or by

different transactions ) are independent.

Fig. 7.2 shows at which nodes the transaction classes conflict. For

example, T1 and T2 conflict at node 3. Equ.(7.7) gives

PR 123 P(s23 > a2) P(s23 > MR ) P(s23 > r3 )PCQ3(Z) + WLlZ3 > s23

2  . 1.957 v1 3

A +p l .957 +w v + y
2 23 23 13 1P23

where v.. = 1/E(s.), v.. = 1/E(r,.), and it
1J iJ 1J

Q3 (Z) + WLlZ3 are exponentially distributed.

W 123 = E(s31) + MR1 + E(s13) + E(s23) = .609

Similarly, we can find the probability a

be rejected by a Class j transaction at node

and the expected delay due to the rejection.

P. = P( T. is restarted
1 1

1123
= 

2300042v2 + 2.513 '
23

is assumed that MR and

Equ. (7.8) gives

sec.

Class i transaction will

k (i,j,k = 1,2,3,4,5)

=1 -. l. P( T. not restarted by T. at node k

k=1,1,5

W. = E( delay for T. due to rejection ) = ,. PR

k=l,..y,5

ijk ijk
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The following values of P. and W. were calculated:
I 1

P = .0483, W = .0102 sec.

P2 .0540, W2 = .0092 sec.

P =.1325, W =.0421 sec.
3 3

P =.0081, W4 = .0307 sec.

P5 = .2171, W5 = .0607 sec.

The average response time of the 5 Classes of transactions can now

be calculated. For Class i transactions, average response time under

Distributed Locking with Prioritized Transactions for Deadlock Prevention,

RDLPT. MR. + MW. + delay due to rejection
1 1 1

MR. + MW. P.W. ( see Fig. 7.10

Hence, RDLPT, = .918 sec,

RDLPT2 = .171 sec.

RDLPT3 = 429 sec.

RDLPT4 = ,530 sec.

RDLPT5 = .321 sec.
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7.4 SDD-l

In this example, we shall calculate the response time for the five classes

of transactions under the SDD-l Concurrency Control Algorithm. We are using

the same notations as in section 7.1 and making the same assumpitons.

The volume of messages generated by SDD-l is similar to that described

in section 7.2. It is therefore assumed that the average delays on the

communication channels are the same (as shown in Fig. 7.8).

Let s. , r. . denote respectively the average delay of a short and a

long message between nodes i and j. Since transmission delays are assumed

to be exponentially distributed, the parameters of the exponential distribu-

tion corresponding to short and long messages, are given by u = 1/s..

and v.1. = /r.

Let us first construct the conflict graph for our five classes of

transactions. The conflict graph (See Fig. 7.12) consists of nodes representing

the readsets and writesets of the transaction classes, The links on the

graph indicate potential conflict between the transactions. Therefore, two

nodes are connected if at least one of them is a writeset and they have at

least one file in common.

In SDD-l [BSR80], the conflict graph is analyzed during database

design and synchronization protocols are devised to maintain serializability.

It is found that three protocols Pl, P2, and P3 are necessary. A fourth

protocol P4, is sometimes invoked to improve on the efficiency of the other

three protocols. The SDD-l protocol selection rules (Fig.7.13) state which

prototcols should be invoked by which transactions.
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Transactionl1 2 3 4 5
class

Readset XY XZ YZ Z 4

Writeset YZ XYZ

Figure 7.12 Conflict Graph for Transaction Classes
in SDD-1 Example
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r

0 Wi

(a) Transactions in class i must
obey P1 with respect to
transactions in class j.

r

(c) Transactions in
P3 with respect
class j

r

Wi 0 W k

(b) Transactions in class i must
obey P2 with respect to
transactions in classes j and k

S

WI

class i must obey
to transactions in

Figure 7.13 SDD-1 Protocol Selection Rules (Adapted from LBSR80])

4
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SDD-l Protocol Selection Rules (adapted from [DSRSO])

iij
(1) For all classes i and j such that (r , w ) is in the conflict graph,

transactions in i must obey protocol Pl with respect to transactions

in j(see Fig.7.13(a).

(2) For each cycle in the conflict graph the following hold:

i j i k
(a) for all distinct classes i, j, k, if edges (r , w ) and (r , W )

lie on the cycle, then transactions in i must obey P2 with respect

to transactions in j and k (see Fig.7.l3(b): and

i i i j
(b) for all distinct classes i and j such that (r , w ) and (r , w

lie on the cycle, then transactions in i must obey P3 with respect

to transactions in j (see Fig.7.13(c)).

Briefly, these protocols serve the following purposes:

P1 Prevents read messages from one transaction that conflict with write

messages from another transaction from being processed in different

relative orders at different DMs.

P2 Prevents a read message from seeing write messages from two other

transactions in reverse timestamp order.

P3 Prevents two transactions that read each other's output from both

reading before either writes, i.e., prevents a classical race condition.

According to the SDD-l protocol selection rules, and the conflict

graph (Fig.7.12), it is necessary that:

Class 1 transaction runs P3 against Class 5 transactions

Class 2 transaction runs P2 against Classes I and 5

Class 3 transaction runs P2 against Classes 1 and 5

Class 4 transaction runs P2 against Classes 1 and 5

Class 5 transaction runs P3 against Class 5
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The last two requirements are equivalent to:

Class 4 runs P2 against Class 1, and Class 4 runs P3 against class 5.

An inspection of Fig. 7.2 shows at which nodes these protocols are to

be executed for each transaction.

Consider a Class 1 transaction T . It is running P3 against Class 5

transactions T5 Thus when T tries to read file Y at node 4, where T5

is writing file Y, the protocol is invoked. The timestamp of T1 must be

smaller than that of file Y, in order for T not to be rejected.

k
Let P.. = P(T. rejected by T. at node k),

1J 1

k
W. . = time T. has to wait at node k until its read condition

against T. is satisfied
)

k
D.. = delay of T. due to read rejection by T. at node k.

P. = P(T, is rejected)
1 1

W. = delay of T. corresponding to query processing

D. = delay of T. due to read rejection

4
Therefore, P = P15 since T1 only needs run the synchronization protocol

4
against T5 at node 4. Equ. (6.12) gives P, = P5 = P(s14 > a5 + r54

5 54______
X 5 u=v 5 4 + -. 00325, where a = interarrival time of Class 5

,5 +14 v54+ 14

transactions at node 5. (Recall that we assume read messages are short and

4
write messages are long). Each rejection incurs additional delay =D = D 5115

round-trip delay from node 1 to node 4 = s4 + s4l = .105sec. If not rejected,

T1 must wait at node 4 until its read condition is satisfied. Equ. (6.14)

4 1 1l4  1
gives this expected wait as E(W ) = + . = 5.05 sec. This

15 V 54 u1 4+X5 5



-161-

wait can be reduced if node 5 send periodic nullwrites.

Suppose node 5 send nullwrites whenever the time since the last write

4
message is greater than 1 second, then Equ. (6.28) and (6.29) give P1 -=P4

4
= .0334 and E(W15) = .3974 sec.

Let RSDD. be the response time of transaction under SDDl, then

RSDD, = E(delay due to read rejection) + query processing delay

+ write delay

= (s14 + s )/(l - P ) + s + E(W ) + r41 + max. (r2 + r + s + S331

+ s53 + s3 ) .724 sec.

where 1/(l - P1) is the expected number of rejections.

We next consider Class 2 transactions T2. T2 runs P2 against Classes

1 and 5. An inspection of Fig. 7.2 shows that T2 runs P2 against T at node

3, P2 against T5 at node 2 and P2 against T5 at node 3. Using Equ. (6.28) and

3 3
(6.29), we find P = .03128 and E(W ) = .3317 sec.

3
Similarly, P2 5 = .02099

3
E (W2) =. 361 sec ,25

25

P = 0
25

.2
E(W ) = .395 sec.

Therefore, from Equ. (III.1), P = 1 - P(T2 not rejected)

3 3 2= 1 -Wl-P 3)(l - P )(lH - P2
21 25 25

= .052

D = E(delay due to rejection)
2 3 - 3 - -

P (s +s ) + P Cs s)
21 21 12 25 23 32

3 3
21 + P25

= .041 sec.
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If T2 is not rejected, then the delay corresponding to query processing,

W2 is given by Equ. (III.2) as follows:

3 3 2
W2 = max. S23 + max( W2 1 ,W)25 + r32, s22+25+r22

Therefore E(W2 ) max. s + max(E(W 3 ),E(W ) + r S + E(W 2 + r

= .447 sec.

Hence, RSDD2 = D2 /(l - P 2) + E(W)2 =.490 sec.

Consider Class 3 transactions T3. T3 runs P2 against T and T5 at node

3 and P2 against T and T5 at node 4.

P3 = P(T3 rejected)

3 4 3 4
= 1 - (l - P31 Hi ~ P31 (1 ~ P35 35

= 1 - (1 - 0) (1 - .0910) (1 - 0) (1 - .0636) = .149

D = E(delay due to rejection)

4 - - 4-P (s +s ) + P (s +5S
= 31 34 43 35 34 3S44 +5 = .105 sec.

4 443
P + P
31 35

If T3 is not rejected, then the delay corresponding to query processing

W3 is given by

W = max. S33 +max(W3 3W ) + r3 s4+max(W34,W34) +r3[3 31F 35 33' 534+ 3135 r4 3 j
m 3  35 - - 4 4 -

E(W max + max(E( ), E ( ) + r , s + max(E(W3),E(W + r 4

= .499 sec.

Hence, RSDD = D /( - P3) + E(W3) = .622 sec.

Consider Class 4 transactions T . T4 runs P2 against T at nodes 1 and

5, P3 against T5 at node 5.
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P4 = P (T rejected)

i P1 )(l 5 )(1 P5
= 1- (1 - P1) (1 -P) (1 -P4

41 41 45)

= 1 - (1 - .1131) (1 - .0267) (1 - .0804) = .206

D4= E(delay due to rejection)

1- - 5- - S -

4 1 11 + p4 1 (s45+s54 4 5 (s4 5 + 54
1 5 5

41 41 45

.116 sec.

If T4 is not rejected, then the expected delay corresponding to query

processing

1 5 5
E(WM) max. {s + E(W ) + r1 4 , s + max(E(W 5),E(W4 ) + r4}= .542 sec.

4 41 41 14 45 41 45 54

Hence, RSDD4 = D /(1 - P ) + E(W ) + r4 + r3+ r12 + s 24 .826 sec.

Class 5 transactions do not have to observe any of the protocols,

therefore

RSDD5 = write delay

=max.(r53+s3 5 ,r 53+r3 1+s13+s3 5 ,r +s21+s13+s,35,r54+s45

= .143 sec.
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7.5 Discussion of Numerical Examples

The results for the

summarized as follows:

four examples described in sections 7.1 - 7.4 are

Response times of

transaction class

*

Concurrency All
Control Algorithm 1 2 3 4 5 Classes

1. Centralized
Two-phase .507 .220 .256 .775 .487 .441
Locking

2. Distributed

Locking Ordered 4.02 .509 .692 3.28 4.41 2.874
Queues for Deadlock
Prevention

3. Distributed Locking
Prioritized Tran- .918 .171 .429 .530 .321 .522
sactions for Dead-
lock Prevention

4. SDD-l .724 .490 .622 .826 .143 .543

Although we have used an arbitrary example to compare the different

algorithms and any conclusions drawn based on these results may not apply

in general, it does seem obvious that Algorithm 2 gives the worst response

times. This is mainly because of the requirement that files have to be

locked in a specific order. This requirement does not allow much concurrency.

The numerical results do not let us distinguish the performance of

Algorithm 1, 3 and 4. Which algorithm is better depends on the network

topology and such database parameters as arrival rates of transactions, size

*The response time for all classes is a weighted average (by transaction

class arrival rate) of the response time for each individual class.
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of writesets, readsets, etc. For example, if the transaction arrival rates

increase, Algorithm 1 will give longer response times since the central

node becomes a bottleneck. This does not happen in this example.

In general, we believe that the more concurrency an algorithm allows,

the smaller its average response time. Thus, we would expect SDD-l and

Distributed Locking to give better response times than Centralized Locking.
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CHAPTER 8

CONCLUSIONS

8.1 Conclusions

In this thesis, we have developed a performance model of a distributed

database system, which can be used as a tool to compare the performance

of different concurrency control algorithms.

We started by developing a network of queues model of the communication

subnetwork. We have originally attempted to employ Jackson's Model but

have concluded that Jackson's Model is inadequate for our purposes. The

Independent Queues Model that we employed in this thesis makes somewhat

stronger assumptions than Jackson's Model, but has more flexibility and

approximates better a real communication subnetwork. Modelling the

communication subnetwork accurately is important because one of the major

costs of operating a DDB is the communication delay.

We found that in a general DDB, concurrency control algorithms could

not be modelled accurately without taking into consideration the particular

query processing strategy employed. Previous authors have gotten around

the problem by assuming a fully redundant database. We found this assump-

tion unacceptable and therefore attempted to develop a new query processing

strategy that is easy to analyze. Our efforts resulted in the MST and

the MDT Algorithms which are not only easy to analyze but also easy to

implement.

Having modelled the conflicts among different transactions in the

DDB for the resources of the communication subnetwork by the Independent

Queues Model, we then developed conflict models to analyze the conflict

among transactions for the resources of the database management system.

A different conflict model must be developed for each concurrency control
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algorithm. Fortunately, although the literature is full of concurrency

control methods, most are variations fo two major approaches, namely

two-phase locking and timestamp ordering. Four different conflict

models were developed: Centralized Two-Phase Locking with Deadlock

Detection, Distributed Two-Phase Locking with Ordered Queues for Deadlock

Prevention, Distributed Two-Phase Locking with Prioritized Transactions

for Deadlock Prevention, and SDD-l.

Four numerical examples using a common communication subnetwork

were used to demonstrate how our performance model could be used to

analyze these four concurrency control algorithms.

One would hope that at the end of a study such as this, one can

draw some conclusions as to which concurrency control algorithm is the

best. Unfortunately, the most general conclusion we can draw is that

which algorithm is better depends very much on the particular communication

subnetwork and the DDB system.

8.2 Further Research

In this thesis we have touched upon many different aspects of a DDB

Management system. Due to time constraints, we have not been., able to

study all the different problems in as much depth as we would like to.

There are a number of open problems, listed below are some suggestions

for further research:

(1) Our study realizes that communication links and computers are not

perfectly reliable and incorporates some of the features database

systems used to guard against such failures, such as two-phase

commit. However, we did not analyze the impact of such failures
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in terms of extra delay.

(2) Our conflict models assume exponential end-to-end transmission delays.

New conflict models using other distribution of end-to-end delays

can be developed in a similar fashion.

(3) We believe that the MST and MDT Algorithms for query processing are

easy to analyze and to implement. However, they suffer from very

strict assumptions. Maybe the two algorithms can be extended by

relaxing some of these assumptions.

(4) The MST and MDT Algorithms, because of their unrealistic assumptions,

are actually heuristics, as is Wong's Algorithm [WONG77]. It should

be interesting to compare them.

(5) One important part of model development that we have not studied in

this thesis is that of model validation., Unfortunately, since there

are no operating commerical systems, the only way to validate our

performance model is by simulation, which is expensive.
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Appendix I Finding the pdf of x, given x < y where x, y are exponential

random variables.

-X x
Let f (x ) = e1

x 0 1

f (y ) = -x
yEoA 2

Event A :x < y

x >0
0 -

y > 0

-A1x - 2 yo

fY(i iX2e ee eP(A)f (x0,y0A)-1 0

if (x' ) in A

if (x ,y0 ) not in A

Therefore, f XA(x0IA) = ': f xyA(xoY A)dy
0 ~ 9 0

-x -A2yo

dy
x 0 /X + X2

-(X + 2 

2 x0

= kA t A1 2

which is the same as the pdf of min.(x,y).

x > 0
0 -
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Appendix II Finding the maximum of queueing times at several M/M/l queues

Let w. be the waiting time at queue i with arrival rates A., service

rate pi, utilization p. = A./ p., and x = max w., then
1 1 1 1

N

F (x ) = P(x < x ) = H
x 0 - 0 L~ P(w. < x )

-vi. (l-p.)x
=I C(l - p .e 1 0)

d -P.-(1-P. ) x
f (x) = F (xP) = e pP..x)ex 0 dx x o P11 p

0
H i

-J.(Cl-p .)x2
- p. e j

x > 0
0 -

E (X) = f(1 - F (x )) dx
0

For the special case that x2 = max(w w2) , we have1'2

E(x 2) = [i - (1 -
-P1(1-p )x 0

1
Cl2 dx

-122(1 2x

= [P2 e + p,
0

P (l-P)x
e

-C(P (1-p)+P (l-P))2 2 12lo 0
- pI1p2 e ndx0

p 2P

p 2 (1P2 -P1 ( -P

plp 2

p 2(1-p ) + 1 (1-p)

In general, if xk = max(w1 ,w2 ' wk), we see that

k

E (x ) =
k i.l

k
p. p p

- :
p~~- (1--P ) .1 1 i=1 j /i y lJ(l-pQ)

Zij

k p p p

i=l j/i i/i j p (1-p )
m=i, ,Y mI

p1
1  p.)

i 1
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Appendix III SDDl: General Case

In this Appendix, we derive the probability of read rejection and expected

wait until read condition is satisfied when there are more than two conflict-

ing transaction classes.

Let T., T., ..' T denote transactions,

I, J, ... L denote nodes,

N(i), N(j) ...N(Z) denote the originating node of transactions

i, j, ... z

a.' interarrival time of T. at N(i)

t = transmission delay between nodes I and J

L
P.. = P(T. rejected by T. at node L)

L
W.. = (period of time T. has to wait at node L for its read condition
131

to be satisfied when it is running protocol P3 against T.
3

T. is not read rejected)

Suppose T. is running protocol P3 against T., jEG(J) at node J, T , kEG(K)

at node K, . . .Tm, mEG(M) at node M. G(J) denotes the set of transactions

that T. conflicts with at node J.

P(T. is rejected) = 1 - P(T. not rejected)

= 1 - 11 P(T . not rejected at node a)
a= ,J,...L

=1- 11 . 1(-P ) (III.)
a=I,J,...L SEG(a)

(Query Processing Delay T. not rejected)

= (Wait for all read conditions to be satisfies T. not rej.)

= max (t + max (W. ) + t ) (111.2)
N(i)a 'S cff(i)=I,J,,..LSG(a)

L Lwhere P.. and E(W..) are given by Equ.(6.28) and (6.29) respectively.
1J ij
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L-et .e
Lept A = 1- e ( P.+),

J
-V.s -p. s

J iV . - e (p. + X .- V e )
B----' iL iL j j

A p. ( 11 + A.)iL iL j

L
then P.. = P( t. > a.' + t.

IJ iL j jL

= p. B/ (p-i +py.jL iL jL

L~ 
-

and E (W. .+) = 1/. + ( 1/ A. - X.S2e / 2A ) 1 - BJIJ jL j J

Xw -- qiuspni wl
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the
Appendix IV Finding Aexpected value of the maximum of several exponentials.

Let y.'s be N exponentials with means l/t. We first find the pdf

of xk = max (y.)
i=lk k k

F (x)
= P(x < x) =.)e

Xk--P =1 k --x)=1

f (x) = d F (x)
x -- xk

k dx k

Hence, E(xk

k

= X.e
i=l

-1~ -2k.x
TI . (1 --e
/il

(1 - F (x))dx -T r (1 - e )jdx
=f co=f k

k k

i=l A. i=l j/i N.I-.. i ji /i j~+ .+. ' '
1i1 j li .

() k

This is similar to the derivation in Appendix II and will not be

repeated here.
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