TEMPERATURE AND HUMIDITY EFFECTS ON LOUDSPEAKER CONE PERFORMANCE

by

JOEL ASHER FONER

Submitted in partial fulfillment of the requirements for the degree of BACHELOR OF SCIENCE at the Massachusetts Institute of Technology June 1981

© Joel Asher Foner 1981

Signature of Author

Joel A. Foner
Department of Materials Science and Engineering official submission due date: May 8, 1981

Certified by

David K. Roylance
Thesis Supervisor

Accepted by

John B. Vander Sande
Chairman, Departmental Committee on Undergraduate Students

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.
ABSTRACT

TEMPERATURE AND HUMIDITY EFFECTS ON LOUDSPEAKER CONE PERFORMANCE

by

JOEL ASHER FONER

Submitted to the Department of Materials Science and Engineering on May 8, 1981, in partial fulfillment of the requirements for the degree of Bachelor of Science.

Viscoelastic measurements were carried out on formed paper and polypropylene speaker cone materials using an Instron tensile tester and a Rheovibron dynamic viscoelastometer under various conditions of temperature and humidity. The paper cones showed little sensitivity to temperature and considerable sensitivity to humidity variation. A characteristic parameter of fibrous polymers is identified, the glass transition humidity. Polypropylene cones showed limited response to temperature and no response to humidity variation.

Acoustical frequency response plots were obtained from assembled loudspeakers using paper and polypropylene cones under conditions from 70°F., 36% relative humidity to 90°F., 95% relative humidity. Strong correlations were found between the modulus, mass density, and loss tangent of the cone materials and the position and intensity of the frequency response aberrations due to cone resonances.

Thesis Supervisor: David K. Roylance

Title: Associate Professor

of Materials Engineering
ACKNOWLEDGEMENTS

The author would like to thank Teledyne Acoustic Research, Inc. for sponsoring this project through considerable materials and equipment support, and their engineering department for invaluable advice throughout the development of this research. Additional materials were provided by Boston Acoustics, Inc., Infinity Systems, Inc., and Analog and Digital Systems, Inc. The author would also like to thank John Miller of Infinity Systems, Inc. for his support of this project and Professor David K. Roylance for his interest and help in the preparation of this thesis.
TABLE OF CONTENTS

TITLE PAGE 1
ABSTRACT 2
ACKNOWLEDGEMENTS 3
TABLE OF CONTENTS 4
LIST OF FIGURES 5
I. INTRODUCTION 6
II. POLYMER VISCOELASTICITY 9
III. EXPERIMENTAL PROCEDURES 13
IV. EXPERIMENTAL RESULTS 16
V. DISCUSSION AND RECOMMENDATIONS FOR FUTURE WORK 19
REFERENCES 32
APPENDIX I - Frequency Response Data 33
APPENDIX II - Tabulated Data 49
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>General Moving Coil Loudspeaker Design</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Spring and Dashpot Viscoelastic Models</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Shift Factor Correlations</td>
<td>24</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Dehumidification Mass Loss versus Time for Untreated and Treated Paper Cones</td>
<td>25</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Static Modulus versus Moisture Content for Untreated and Treated Paper Cones</td>
<td>26</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Static Modulus versus Temperature for Polypropylene Cone</td>
<td>27</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Frequency versus Time After Removal From Chamber - First Antiresonance Dip</td>
<td>28</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Frequency versus Time After Removal From Chamber - Second Resonance Peak</td>
<td>29</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Loss Tangent versus Humidity for Paper Cones</td>
<td>30</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Loss Tangent versus Temperature for Paper and Polypropylene Cones</td>
<td>31</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The conical diaphragm, moving coil loudspeaker has been the most often employed transducer design since the inception of electrically powered sound reproduction systems. The goal of an acoustic transducer is to convert an electrical signal into a movement of the adjacent air molecules which corresponds exactly in frequency, amplitude, and phase to the original signal. These local pressure variations then propagate as pressure waves which, in the ideal case, are indistinguishable from those produced by the recorded event. Figure 1 shows the general features of this class of loudspeakers.

Most analyses of speaker cone performance have assumed totally rigid materials. This assumption had to be made because of the numerical complexity involved in analyzing a flexible, damped cone driven from a truncated end. Because of this analytic simplification, the speaker designer's choice of cone materials has usually been guided by trial and error, guesswork, and some luck. Pressed paper is the most commonly used cone material, often felted on one or both sides. Paper has many desirable characteristics including low cost, high stiffness in some of its available forms, and easy adhesion to typical surrounds and voice coil former materials.

Cone loudspeakers only exhibit piston-like behavior over a narrow region of their range of acoustic output. Above this frequency range of ideal behavior standing waves develop on the cone. These standing waves can reinforce or reduce the output of the speaker at a given frequency depending on their
positions on the cone surface. Peaks and dips in the loudspeaker's frequency response result from these resonances above the piston range. This series of peaks is superimposed, in the case of a low or mid-frequency driver, on the response characteristic of the next higher frequency range driver. In two-driver designs the transition region between the woofer, or low driver, and the tweeter, or high driver, is usually between 1,000 and 3,000 Hz (cycles per second).

The response peaks and dips for most woofers used in such systems also occur in this range, which contains the fundamental frequencies of many instruments and much of the energy of the human voice. The ear is most sensitive to level variations in this midrange region, so any shifts in the midrange response become readily noticeable.

Frankort (1) published an analytic treatment of loudspeaker cone behavior. Computer-aided finite element analysis was employed to correlate the cones' resonant behavior with material parameters such as modulus, loss tangent, and cone density. Takeo Shindo et al (2) developed an extended numerical analysis of loudspeaker behavior, also using the finite element approach. Several cone geometries were considered, as well as the influences of the voice coil and surround on acoustic output.

Speaker designers have realized for some time that paper cones change their behavior significantly in differing humidity environments. Some loudspeakers have been designed using other materials such as bextrene or polypropylene to combat humidity sensitivity. These materials, on the other hand, vary their
behavior with temperature. To my knowledge, direct correlations between environmentally induced cone variations and performance shifts have not been investigated. The determination of these correlations is the subject of this research.
II. POLYMER VISCOELASTICITY

Polymer viscoelasticity is characterized by several time-dependent phenomena. Polymers will continue elongating under a fixed load, or creep, with time. Under constant strain, the resultant internal stresses relax out at least partially with time. The dynamic behavior of polymers is more complex. Because of its time-dependent behavior, a polymer sample subjected to a sinusoidally oscillating strain absorbs some of the imparted energy by viscous heating. The stress in the sample lags the strain by some constant angle ϕ (for a fixed strain amplitude, frequency, humidity, and temperature), whose magnitude corresponds to the amount of viscoelastic damping the material provides. Under most conditions, polymers exhibit varying proportions of elastic and viscous behavior.

Paper is a polymer constructed of hydrogen-bonded cellulose fibers. Unlike other polymers, paper changes its level of crosslinking greatly with varying moisture content. As the moisture content is increased and fiber-to-fiber bonds are weakened, the paper's stiffness decreases and its viscous damping increases. Under high moisture conditions the paper can sustain less and less load until it finally dissociates. Paper shows little change in damping from radical temperature changes. McElroy (3) found a 30% change in modulus through a temperature range of -120°C. to +50°C., which is also not a sharp transition.

Other polymers such as polypropylene absorb very little water, but show similar mechanical changes with increased temperature. The glass transition temperature, T_g, marks the

the transition from glassy, brittle, low-temperature behavior to the more fluid viscous high-temperature behavior. Most polymers exhibit a narrower transition region than paper and several orders of magnitude of modulus shift with temperature. In the transition region, the viscous damping reaches a maximum. Because of this relationship, in order to obtain the highest damping from a material it must be used in its region of highest modulus sensitivity to temperature.

Several simple spring and dashpot models are used to idealize the viscoelastic behavior of polymers. The Maxwell model, a series combination of a spring and dashpot, is shown in Figure 2a. This model is most useful in describing stress relaxation. The Voigt model of Figure 2b is a parallel combination of these elements. A three-parameter model, as in Figure 2c, approximates a "standard linear solid" (4). Under dynamic loading, i.e. time varying, there is a phase lag between any applied stress and its resulting strain. In this case the mechanical behavior of the polymer can be described by a complex modulus which consists of a real component (E') and an imaginary component (E''). This vector relationship is usually expressed as:

\[\tan \delta = \frac{E''}{E'} \]

where \(\delta \) is the loss angle or internal loss factor, \(E' \) is the storage modulus, and \(E'' \) is the imaginary modulus.

The three-parameter model predicts a correlation between the loss angle and storage modulus, and the characteristic
relaxation time (5):

\[\tan \phi = A \frac{\omega \tau}{1 + \omega^2 \tau^2} \quad \text{and} \quad E' = E_0 - (E_0 - E_r) \frac{1}{1 + \omega^2 \tau^2} \]

where \(A \) is a modulus-dependent constant, \(\tau \) is the characteristic relaxation time, and \(E_0 \) and \(E_r \) are the unrelaxed and relaxed moduli, respectively.

Thermally activated processes usually follow an exponential rate law such as:

\[\tau = \tau_0 \exp \left(\frac{H}{kT} \right) \]

from which we see that the loss angle and storage modulus should show an exponential dependence on temperature. In the case of papers, moisture added lowers the chain mobility activation energy, providing a similar effect as that of temperature on other polymers.

Predictions of generalized polymer behavior can be made from these models. The loss angle goes through a maximum at \(\omega \tau = 1 \). The storage modulus will start at its relaxed (glassy) value and as the temperature or humidity is raised it will undergo a transition to its high temperature or humidity value. This transition’s inflection point will also be at \(\omega \tau = 1 \). Similar behavior will result as the loading rate or dynamic frequency are decreased.

These results show that equivalences between the effects of environmental and use factors may be made. These correlations are illustrated graphically in Figure 3. Probably the most famous correlation of this sort was produced by Williams, Landel, and Ferry, and is known as the WLF shifting equation (6):

\[\log_{10} \left(\frac{\eta}{\eta_f} \right) = -17.44 \frac{(T - T_g)}{51.6 + (T - T_g)} = -17.44 \frac{\Delta T}{51.6 + \Delta T} \]
where η is the viscosity at T_g.

This equation shows a clear time-temperature dependence for polymers. From this a correlation factor, $\log a_t$, can be found to relate each pair of factors, including humidity, temperature, and loading rate or frequency.
III. EXPERIMENTAL PROCEDURES

The samples used in this project were cut from paper and polypropylene loudspeaker cones. The samples used in static modulus and complex modulus measurements were cut as radial sections from the preformed speaker cones.

A standard humidification environment of 95% relative humidity and 90°F. was established for the acoustical tests. The room environment throughout these experiments was monitored and found to be 36 ± 1 % relative humidity and 70 ± 2°F.

Dehumidification curves were established for complete cones after a 24 hour equilibration in the humidity chamber. Upon removal they were weighed, and again repeatedly after intervals of drying in the room environment. Reference masses were taken 24 hours after removal. The same procedure was followed for the cones' surrounds. The cones used in this experiment initially had a damping bead of PVA at the inner edge of the surround. This bead was removed, since it absorbed considerable amounts of water and turned milky on humidification. To isolate the effects of cone absorption, all of the experimentation was done with cones and assembled drivers whose surround beads and dust caps were removed.

The speakers used in this project were of nominal eight inch diameter (low-mid frequency units typically used for two-driver bookshelf speakers) with foam surrounds. Some ten inch cones were obtained at first, but were not used because of their much slower water absorption and description rates.
An attempt was made to use one paper sample to determine the static modulus' humidity dependence. A comparison of the initial modulus (before humidification) and that of the cycled and dried out sample showed an error of several orders of magnitude. Although small strains were used, cyclic loading rendered this type of experiment invalid.

Next radial sections were cut from the treated and untreated paper cone stocks, and weighed. They were then humidified by holding in front of the vent of a cool-vapor humidifier for ten seconds on each side. After partial dehumidification, the samples were weighed and subjected to a tensile test on an Instron tensile tester. Two samples were placed in a dessicator to dehumidify them below room moisture level.

Several polypropylene samples were cut. A ring stand supported a thermometer and cone sample above a hot plate. After temperature equilibration each sample was removed and tested as quickly as possible. This crude method gave at least subjectively useful results.

More sectioned paper cone samples were humidified as before and tested in a Rheovibron direct reading viscoelastometer. This apparatus reads directly the loss tangent of a dynamically loaded sample under low tension. Paper samples were measured at room temperature and varying moisture levels. Paper and polypropylene samples were measured at room humidity and several temperatures using the attached oven assembly. Oven temperature was monitored with a digital thermometer.
Speakers were assembled identically except for the cone material. Reference swept sine wave frequency response curves were taken as references in a half-space anechoic chamber. After the drivers were put into the humidity chamber, they were allowed to equilibrate for a day. Each was measured "as removed", and this time noted as T_o. The units were measured occasionally as they dehumidified in the room environment. An Acoustic Research AR-18 speaker box was used for a standard mounting for testing. One clear polypropylene unit had to be mounted on a baffle board since it was only available in a different frame configuration.

Humidification curves showed no water absorption by the polypropylene. Mechanical measurements showed the papers to be insensitive to temperature shifts in this experiment. By establishing these independences, any shifts in the response of the polypropylene cone can be attributed to the $20^\circ F$ temperature change, and any shifts in the response of the paper cone to the 59% relative humidity change.
IV. EXPERIMENTAL RESULTS

Dehumidification curves were obtained for an untreated paper cone and one which had been treated with a dip-applied plasticizer. These curves are shown in Figure 4. Further work was done with the treated cone, since it represents a commercially used material. Two polypropylene samples were investigated. One was black, probably from a slight carbon-black filler, and dimpled on both surfaces. The other was clear and minimally filled.

A plot of the static modulus versus moisture content is shown in Figure 5. The earlier dehumidification curves showed a 6% water absorbed from an ambient humidity shift of 36% to 95%. Figure 5 shows that in this range the modulus of the paper changes by 30%.

Figure 6 shows the dependence of the polypropylene samples' modulus on temperature. The slope of this curve is of the expected sign, but I expect that its value to be low due to poor sample heat control.

The frequencies at which peaks and dips in the measured acoustical response occurred were recorded for the first several resonances and antiresonances. Reading the location of the first peak was difficult because of its width and asymmetry. The first dip and the second peak were clearly identifiable, and their positions after removal from the chamber are plotted in Figures 7 and 8.
These plots show a distinct transition at $t=10$ minutes for both the untreated and treated cones. This time corresponds to a 3% higher moisture content than at room equilibrium. By assuming a linear relation between mass percent water absorbed and ambient humidity, these transition times can be converted to equivalent ambient humidities. The initial moisture content of the cones on removal from the chamber was 6% for the untreated cone and 5% for the treated cone. By direct calculation, the transition humidity, or R.H., is 65% relative humidity for the untreated cone and 71% relative humidity for the treated cone.

Frankort (7) presented the equation below relating the first theoretical resonant frequency with the modulus and density of the cone material:

$$f_{r \alpha} = \frac{c \cos \alpha}{2\pi R_b} \quad \text{where} \quad c = \left(\frac{E}{\rho}\right)^{1/2}$$

and α is the cone apex angle, R_b is the resonant radius and $f_{r \alpha}$ is the resonant frequency.

These relations predict that shifting the modulus and/or density of a material will change the peak frequency by an amount directly proportional to $(E/\rho)^{1/2}$. Interpolating from Figure 4 yields the shift in these parameters directly. This proportionality predicts a peak frequency decrease of 32% with a moisture change equivalent to a humidity change from 36% to 95% relative humidity. The actual shift for the papers of Figure 8 was 38%, in good agreement with this prediction. Similar agreement is shown with the paper cones' first dip frequency.

The polypropylene shift is vastly underestimated, probably
due to the differences between the apparent and real tensile testing temperatures allowed by the heating method used.

Figure 9 shows the variation of the paper's loss tangent with humidity. The samples exhibited the expected increase in loss tangent, indicating increased internal damping with increased moisture.

Figure 10 is a plot of loss tangent versus temperature for paper and polypropylene samples between 40°C and 80°C. The papers showed very little variation over this range. The polypropylene data indicates a double inflection in the plot similar to that reported for several polymeric materials by McCrum (8), Saito (9), and Reddish (10). Extrapolation of these points to a similar curve is indicated in this figure.
V. DISCUSSION AND SUGGESTIONS FOR FUTURE WORK

A characteristic shape was noticed for the first response peak of the paper cones at room temperature and humidity. The peak has three "steps" leading up the lower frequency end of the resonance, whereas the high side seems to be unaffected. Locally stiffer cone segments, or even fiber bundle segments under higher tension would resonate at higher frequencies than the bulk, and low stiffness abnormalities would produce the reverse effect. More likely this asymmetric behavior is indicative of local regions of high density contaminants or higher density pulp. This lack of homogeneity and sample-to-sample consistency has been a major impetus for designs using other polymers. The polypropylene cones studied do not show this behavior.

The results of this study show that paper-coned loudspeakers shift their frequency response significantly with changes in ambient humidity with fast equilibration rates. The response of paper to moisture content suggests the adoption of a new characteristic parameter for fibrous polymers, the glass transition relative humidity or R.H.$_g$. Similar to the glass transition temperature, the R.H.$_g$ indicates the humidity level at which the polymer shifts from stiff, glasslike behavior to more fluid, viscous behavior.

The plasticizing treatment used on the paper cones increases the R.H.$_g$ from 65% to 71% for the samples tested. A reduction in the area of exposed fibers after treatment may cause this
effect. As support for this theory, the treated cones absorbed 5% water as opposed to 6% water for the untreated cones after similar length channel equilibration.

Over the range of temperatures and humidities tested, which includes most of the normal operating environments for home speakers in this country, polypropylene is a much more mechanically stable material than paper. Extrapolation of the polypropylene curves indicate a transition temperature of about 110°F.

The variability of paper's properties with humidity allow it to be used as a powerful design tool. This characteristic provides the ability to adjust the cone's modulus and loss tangent in a single assembled speaker in order to get the desired combination of frequency bandwidth and freedom from cone resonance induced response anomalies. Once the desired response is obtained, the material may be tested under a similar environment. The knowledge of the modulus, loss tangent, and density of the cone would allow the design of a polymer or polymer alloy material which would provide the same response without humidity sensitivity. Once designed, such a cone could give tighter conformation to design specifications on a unit-to-unit basis.

The peak frequency shift curves could also be used to determine the drying time for conventional paper cones which are subjected to a dip treatment. As Frankort(11) suggested, the dependence of the peak frequencies on $(E/\rho)^{1/2}$ is verified for the papers used in this study.

The considerable peak shift of paper cones with humidity
suggests that it is not a wise choice to use heavily equalized speaker designs with paper coned drivers, since the equalization would probably accentuate such a peak shift.

The drivers used in this study were "stripped" of several elements which could also alter driver performance in varying environments. The PVA surround bead used on many drivers is highly absorptive and the effects of humidity on it and the driver's response should be investigated. Humidification of paper dust caps may also affect loudspeaker performance, although this effect may be small compared to that of cone absorption.

Further work on the effects of humidity on papers could result in quantification of a time-humidity correlation factor as the WLF equation provides for time-temperature dependence. Investigation of the voice coil former temperature at the cone junction could provide information on which polymers would be acceptable for extended high output applications such as cone materials for public address and concert sound reinforcement systems. Hopefully, these correlations of loudspeaker cone resonances with readily measurable properties will allow more controlled selection and design of cone materials.
FIGURE 1

CUT-AWAY SIDE VIEW

1 - LOUDSPEAKER CONE
2 - SURROUND OR SKIVER
3 - PVA DAMPING BEAD (SOME DESIGNS)
4 - FRAME OR BASKET - Assembly mainframe.
5 - VOICE COIL LEAD CONTACTS
6 - MAGNET
7 - POLE PIECE AND SUPPORT
8 - VOICE COIL WINDINGS
9 - VOICE COIL FORMER
10 - DUST CAP
11 - SPIDER - Holds voice coil aligned in gap.

GENERAL MOVING COIL LOUDSPEAKER DESIGN
(NOT TO SCALE)
FIGURE 2

(a) Maxwell Model

(b) Voigt Model

(c) Standard Linear Solid Model

SPRING AND DASHPOT VISCOELASTIC MODELS
FIGURE 3

SHIFT FACTOR CORRELATIONS
DEHUMIDIFICATION MASS LOSS VS. TIME FOR UNTREATED AND TREATED PAPER CONES

\[\Delta = \text{TREATED CONE} \]
\[\circ = \text{UNTREATED CONE} \]
FIGURE 5

\[\Delta \% \text{ (mass absorbed/desorbed) water} \]

STATIC MODULUS VS. MOISTURE CONTENT
STATIC MODULUS VS. TEMPERATURE FOR
POLYPROPYLENE CONE
FIGURE 8

FREQUENCY VS. TIME AFTER REMOVAL FROM CHAMBER
-SECOND RESONANCE PEAK

- - - - - = UNTREATED CONE DRIVER
- - - - O = TREATED CONE DRIVER
- - - - A = POLYPROPYLENE CONE DRIVER

τ_{R2} (Hz)

LOG TIME (MIN.)
FIGURE 9

X = MEASURED AT 110 Hz.
O = MEASURED AT 3.5 Hz.

LOSS TANGENT VS. HUMIDITY FOR PAPER CONES
FIGURE 10

LOSS TANGENT VS. TEMPERATURE FOR PAPER AND POLYPROPYLENE CONES
REFERENCES

SOURCES CONSULTED

APPENDIX 2 - TABULATED DATA

TABLE 1 - STATIC MODULUS OF HUMIDIFIED PAPER

*All samples were cut to a cross-sectional area of $7 \times 10^{-6} \text{m}^2$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\Delta%$(mass)</th>
<th>Y/X</th>
<th>X-Head(mm/min)</th>
<th>Chart(mm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>.4/1.0</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>+35</td>
<td>.4/4.3</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>+12</td>
<td>.4/2.8</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>+83</td>
<td>.4/8.1</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>-1.0</td>
<td>.4/.85</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>-3.0</td>
<td>.4/.85</td>
<td>0.5</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE 2 - STATIC MODULUS OF HEATED POLYPROPYLENE

*All samples were cut to a cross-sectional area of $7 \times 10^{-6} \text{m}^2$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temp. ($^\circ$C.)</th>
<th>Y/X</th>
<th>X-Head(mm/min)</th>
<th>Chart(mm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>.4/1.00</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>.4/.90</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>.4/2.8</td>
<td>0.5</td>
<td>200</td>
</tr>
</tbody>
</table>

TABLE 3 - LOSS TANGENT FOR HUMIDIFIED PAPER

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\Delta%$(mass)</th>
<th>f(Hz)</th>
<th>$\tan\delta$</th>
<th>A.F.</th>
<th>D.F.</th>
<th>$\tan\delta$</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>110</td>
<td>.074</td>
<td>30</td>
<td>52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>35</td>
<td>.074</td>
<td>30</td>
<td>41</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>11</td>
<td>.040</td>
<td>30</td>
<td>70</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3.5</td>
<td>.033</td>
<td>30</td>
<td>52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>110</td>
<td>.138</td>
<td>30</td>
<td>85</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>35</td>
<td>.075</td>
<td>30</td>
<td>90</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>11</td>
<td>.090</td>
<td>30</td>
<td>97</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>3.5</td>
<td>.070</td>
<td>30</td>
<td>87</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>110</td>
<td>.190</td>
<td>30</td>
<td>130</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>111</td>
<td>35</td>
<td>.120</td>
<td>30</td>
<td>190</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>114</td>
<td>11</td>
<td>.108</td>
<td>30</td>
<td>157</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>124</td>
<td>3.5</td>
<td>.095</td>
<td>30</td>
<td>195</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4 - LOSS TANGENT FOR HEATED PAPER AND POLYPROPYLENE

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temp ($^\circ$C.)</th>
<th>$\tan\delta$</th>
<th>f(Hz)</th>
<th>A.F.</th>
<th>D.F.</th>
<th>$\tan\delta$</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1</td>
<td>40</td>
<td>.038</td>
<td>110</td>
<td>30</td>
<td>71</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>.042</td>
<td>110</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>.044</td>
<td>110</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>.042</td>
<td>110</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Temp (°C)</td>
<td>tanδ</td>
<td>f(Hz)</td>
<td>A.F.</td>
<td>D.F.</td>
<td>tanδ</td>
<td>Range</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Poly. 1</td>
<td>40</td>
<td>0.048</td>
<td>110</td>
<td>30</td>
<td>79</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.042</td>
<td>110</td>
<td>30</td>
<td>80</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>0.057</td>
<td>110</td>
<td>30</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>0.059</td>
<td>110</td>
<td>30</td>
<td>140</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>