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ABSTRACT

The subject of this work is a community of vehicles trying to to navi-
gate relatively to one another by means of mutual passive rangings.

The solution that has been adopted so far, is analyzed. Sufficient
conditions for exponential stability are found, proved and discussed. The
discussion is complemented with a few simulations.

An alternative concept of relative navigation by means of passive
rangings is then proposed. It is shown that this concept decouples the
filters of the navigating community from one another (thereby relaxing the
stability conditions) and allows every member of the community to use all
the rangings that are taken.

Finaliy, a method that allows to reconstruct the centralized optimal
estimate in a decentralized way is proposed. This method can be applied to
the problem of relative navigation aided by passive rangings, yielding
another alternative concept, which is discussed and compared with the
others.
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CHAPTER 1
INTRODUCTION

1.1 The concept of relative navigation by means of passive rangings.

A passive ranging is a measurement of the distance between the user
and some other object, which the user obtains without sending any signal.
Such a measurement can be obtained if the object spontaneously emits a
signal, and if the user knows the time at which the signal was emitted. If
this is the case, all the user has to do to obtain the distance is record
the signal's time of arrival, subtract the time of broadcast, and multiply
by the signal propagation speed.

A community of vehicles can perform relative navigation by means of
passive rangings, if it has a Time Division Multiple Access (TDMA) com-
munication facility and some computational capability. The operatiop of a
TDMA network requires all members of the network to have a clock, and the
clocks to be at least roughly synchronized. Let it be agreed that every
member send a special message, each in its turn, at prearranged times.

Then a1l other members can use the time of arrival of this message to find
their distance from the source of the meﬁsage, according to the simple
algorithm described in the previous paragraph. The value found for the
distance, however, will be corrupted by a systematic error due to the phase
difference between the source's and the receiver's clocks. This systematic
error can be modeled. The raw value of distance (henceforth called simply
the "ranging") can be used to estimate both the distance between source and

receiver and the phase difference between their clocks. The 1atfer will be
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used to ensure a better synchronization. The former will be used to
establish the position of the members in a relative coordinate grid.

What is meant here by a relative coordinate grid, is a coordinate grid
that is insensitive to rigid translations and rotations of the whole com-
munity. Such movements leave all mutual distances unchanged, and cannot,
therefore, be observed by means of mutual rangings alone. Similarly, one
must define community time, that is, time measured with respect to an ori-
gin that is insensitive to an equal phase shift of all clocks of the com-
munity. The problem of defining such a relative position and time coor-

dinate system will be touched on in Section 2.6.

1.2 Integration of rangings with other kinds of measurement.

Rangings can also be used in conjunction with measurements of a dif-
ferent kind, in particular with measurements of absolute (i.e., either
Earth-fixed or inertial) coordinates. In this case the definition of
"relative" coordinates may be changed appropriately, since rigid motions of
the community become observable. Suppose all members of the community have
dead reckoners, and rangings are used to estimate the dead reckoners'
errors (a typical app]jcation). Then the relative coordinate grid may be
one that is insensitive to a rigid translation or rotation of all the dead
reckoner errors of the community. Such a grid will be slowly moving, due
to the dead reckoners' drift.

The use of a relative coordinate system (along with the absolute one)
is advisable even in the case of mixed measurements. In absolute
coordinates, the effect of rangings is partly to correlate estimation

errors, rather than reduce their value. Besides, there are cases where the
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knowledge of relative coordinates is valuable in itself, as the next sec-

tion will describe.

1.3 Usefulness of relative navigation

The concept of navigation outlined in Section 1.1, alone or integrated
with other facilities, is practically useful in any situations. Namely,
whenever the knowledge of a member's relative position in the community is
either more valuable or more precise than the knowledge of its absolute
position.

This formula includes a variety of both civil and military aeronautical

scenarios; in particular

(i) crowded terminal areas or flight routes, where the danger of

collision is high;

(i1) missions requiring the cooperation of several aircraft, or of
aircraft and ships (rendezvous, air refueling, formation flying,
etc.);

(iii) whenever high-precision absolute positioning systems (such as
GPS) are available to some aircraft, but not to many others;
in this case ré]ative positioning is used to provide good absolute
positioning; relative coordinates do not have to be intéoduced.

Item (i) is mainly civil; item (i1) mainly military. Item (iii) can
be both; the airplanes, to which GPS precision is passed on, may be either
small civil craft that cannot afford GPS, or military units in a jammed
zone. |

There may even exist a few situations where relative positioning is

considered only a by-product, and the desirable effect is the good synchro-
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nization of the clocks, which would otherwise require more expensive

apparatus.

1.4 Past and present applications

The inherent ability of a TDMA network to perform both relative navi-
gation and synchronization by means of passive rangings was recognized
early; however, only navigation was attempted at first, with synchroniza-
tion ensured by other means. Passive synchronization was tried only later.

The earliest application of passive rangings for position finding was
probably a collision avoidance system, developed by McDonnel Douglas in
1965 for the flight testing of high performance aircraft. In this system,
time of arrival was used only to infer range and range rate. Clock
synchronization was achieved by means of an interrogaterespond procedure
(usually called round-trip timing). The estimates of range and range rate
were used to detect collision danger situations.

In the early seventies the Navy sponsored Singer, the Kearfott
Division, to develop an experimental Integrated Tactical Navigation System
for which see Stow (1) and Danik (2). ITNS used both rangings and inertial
dead reckoners. Its main objective was to establish the feasibiiity of
navigation in purely relative coordinates, with no surveyed reference
point. One or mere master members established the relative grid. A1l mem-
bers reported their position in relative coordinates; range was calculated
from times of arrival and compared with its inertially predicted value;
inertial corrections were then applied. Synchronization, however, was
still achieved by means of roqnd-trip timings. ITNS flight tests gave good

results. Early trials were marred by an oversight: the relative grid's
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origin had been defined but its azimuth had not; this resulted, predict-
ably, in rotational instability. The problem was detected and corrected.

At about the same time, the Mitre Corporation, sponsored by the Air
Force, was trying for the first time the concept described in Section 1.1:
fully passive synchronization, as well as navigation. The results of the
of the Position Location Reporting And Control of Tactical Aircraft program
are summarized by Westbrook and Snodgrass (3). PLRACTA included simula-
tions and f1i§ht tests, with two aircraft and a few ground-fixed surveyed
stations as members of the community. The inclusion of these surveyed sta-
_tions eliminated the problem of defining a relative coordinate grid. Each
member estimated its own relevant variables (including position and clock
phase) and exchanged position messages with the others. A disappointing
result, predicted by similations and confirmed by flight tests, was that
unrestricted ranging between members produced instability. Further simula-
tion work led to recommending the use of a source selection rule, by which
rangings could be accepted or refused. The rule was based on the com-
parison of source's and receiver's computed error covariances (a case of
what will be called “covariance-based hierarchy" later in this work). Also
recommended was the introduction of infrequent round-trip timings for
synchronization. After these changes, the simulation results were judged
satisfactory.

The experience gained with experimental programs PLRACTA and ITNS is
being vsed now in the JTIDS-RelNav program. JTIDS, short for Joint
Tactical Information Distribution System, is a spread-spectrum TDMA com-
munication facility, considered jamproof and meant to provide a data

1ink between military units in tactical situations. An introduction to the
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JTIDS concépt and a description of a terminal's hardware are given by
Del1'Imagine (4). A few years ago 1t was decided JTIDS should include a
Rel(ative) Nav(igation) capability, and JTIDS-RelNav terminals are befng
built atgthe present time.

TheidTIDSmRe1Nav corcept, as described for instance by Fried (5),
relies helvi]y on PLRACTA and ITNS experience. Like ITNS, it integrates
rangings Jith Tnertizl data and uses a relative coordinate system (as well
as an absolute one). Like PLRACTA, clock errors are modeled too, and syn-
chronization can be achieved passively, in principle. However, as recom-
mended by PLRACTA reports, also round-trip timings are used by a few mem-
bers whenever the computed covariance of clock error crosses a threshold.
Members are divided into "primary users", which perform round-trip timings,
and "secondary users", which usually do not. Also in view of PLRACTA
findings, a covariance-based hierarchy is enforced within each class of
members. Each member estimates its own relevant variables {the errors of
fts inertial navigator and of its clock) in absolute coordinates, and the
origfn and azimuth of the relative grid. Relative position is found by
difference. An attempt to keep into account the errors of other members is

made: the ranging innovations are weighed with the reported position and

time accuracy of the ranging's source.

1.5 Review of the state of the art

A state of the art in the subject of relative navigation by means of
passive rangings has been reached, as a result of PLRACTA, ITNS, and
several papers that appeared in the last decade. Its main features are

reviewed in this section.
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It is recognized that a relative Spétial grid and relative time can be
defined consistently. Early problems were satisfactorily sclved ana
several alternative ways of defining the relative coordinates are now
known; see Section 2.6 for a survey of them.

It 1s alsn recognized that passive rangings give the members of a
TDMA network the ability of both finding their relative positions and
synchronizing- their clocks on a community time. Some uncertainty exists
about the way to use the data as to achieve a stable estimation process.
The present trend is to evade the problem, by resorting to active synchro-
"nization (round-trip timings) whenever instability threatens.

It has always been implicitly assumed that each member of the com-
munity should model its own ré1evant variables, not those of the other
members. Another implicit assumption is that every member should use the
rangingslit takes, without sharing their value to the community at large.
A centralized filter, modeling the relevant variables of all member$, and
using all the measurements is considered impractical, because of the large
size of the state space. Intermediate solutions have not been proposed.
The accepted way for a member's filter to keep into account the effect of
other members' errofs consists on weighing the innovations with the
reported accuracy of the source of the ranging.

It was found that source selection logic (that is, a logic deciding
which rangings are to be used and which are to be rejected) plays an impor-
tant role in community performance. Several alternatives were described
and evaluated by Rome (6), Rome and Stambaugh (7), Greenberg and Rome (8).
There is a consensus that unrestricted ranging between any two members

leads to instability. Beside the PLRACTA results, simulations of this
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effect are reported in Refs. (7) and (8). On the other hand, 1f‘a
covariance-based hierarchy is enforced, opinfons are mixed. References (3)
and (5) report stability, while Ref. (8) reports instability in some cases.

A11 the previous results were reached in an empirical way, using simu-
lations. There is pessimism about the possibility of an analytical inves-
tigation. Reference {8) pronounces "pencil and paper analysis" and “"opti-
mization in the mathematical sense" to be "virtually impossible" (p. 336).

An exception to this pessimism has appeared lately. Kerr (9) recog-
nized that our problem is a particular case of decentralized estimation,
and examined the extant body of 1iterature on that subject to find a solu-
tion that could fit our case. A few theoretical contributions on decen-
tralized estimation that the present writer thinks noteworthy, will be
briefly mentioned in the next section.

1.6 Our problem as a case of decentralized estimation. Review of some
known results

Decentralized estimation differs from its centralized counterpart in
the fact that the total body of information (the incoming measurements and
the memory of past measurements and estimates) is not generally availabie.
When an estimate is to be taken, only a certain subset of the total infor-
mation can be used towards its computation.

Our problem is a case of decentralized estimation for two different
reasons:

(1) rangings are supposed to be known only to the member of the com-
munity that takes them;

(i1) members are supposed to model only a part of the state space;

14~




therefore, they do not store all the nonredundant information contained in
the rangings.

The first difficulty can be removed if the members agree to share
their rangings to the whole community; the penalty is an increase in the
size of messages. The second difficulty could be removed, with a filter
modeling all state variables; this is not considered feasible, at the pre-
sent state of the art in electronics.

A complete and satisfactory theory of decentralized estimation does
not exist. What solutions are known are either suboptimal or concerning
very particular cases.

Kerr (9) reviewed some of the§e solutions and found two of them to be
applicable to our problem. They are the Surely Locally Unbiased filter
proposed by Sanders et al (10) and the Sequentially Partitioned Algorithm,
proposed by Shah (11). The application of both methods to our problem (for
which see Ref. (9)) consists in the state-of-the art filter of Section 1.5,
with attribution of a weight to the accuracy of the sources of rangings.
A1l these methods add is a way of calculating these weights.

Speyer (12) and Willsky et al. (13) propose decentralized methods that
reconstruct the centralized optimum estimate.

- Speyer's method requires all members to have a fullsize filter,
modeling all the relevant sate variables. They must also have an auxiliary
vector, of the same size as the complete state vector; it is data-dependent
and must be updated on line. Each member knows only a part of the
measurements, but it can reconstruct the optimal centralized estimate by
1inearly combining the estimates and the auxiliary vectors of all members

(which must be shared to the community).
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Willsky's method, which is an elaboration of Speyer's, allows every
member to have an incomplete or aggregate state vector, provided certain
conditions are satisfied; in particular, a member's state vector must not
drop any state variable that is used to complete the expected value of that
member's measurements. There is only one auxiliary vector, which has the
same size as the complete state vector, is not data-dependent, and must be
updated by a central processor provided with knowledge of all members’
covariance matrices. The central processor must also know all the local
estimates, and obtains the centralized optimal estimate by l1inearly com-
bining them and the auxiliary vector.

Neither Speyer's nor Wilisky's method is applicable to our case.
Speyer's does not reduce the amount of computations (increases it, in
effect, since every member must update a full-sized state vector and matrix
and an equally large auxiliary vector and matrix). Willsky's requires a
central processor with large computational capability. Both methods re-
quire a large amount of information to be shared by the local estimators to
the community: all local estimates, all local covariance matrices (which,
in our problem, depend on the community's geometry and must be computed on
line), and, in Speyer's case, auxiliary vectors as well.

A more detailed description of Speyer's and Willsky's methods as they
could by applied to our problem will be provided in Chapter 7. These
methods have provided some inspiration for the method that will be
described in Chapter 7.

1.7 Scope and plan of this work

The present work has two aims. The first is to analyze and discuss

the state-of-the art solution that was described in Section 1.5 and

-16-




is being applied to JTIDS-ReiNav. The second is to propose alternative
solutions. The state-of-the art solution consists in having each member
model only its own relevant state variables. There is uncertitude as to
whether a community so arranged can perform a stable estimation process
without requiring the help of occasional (or perhaps frequent) active clock
synchronication; also, as to the best way of organizing the community in
matter of source selection. Such communities will be called "ownstate"
communities in the remainder of this work. They will be analytically
described in Chapter 2. In Chapter 3 it will be proved that one class of
them is, indeed, stable under certain observability conditions, and without
the help of round-trip timings. In Chapter 5 simulations will be
presented, using models derived in Chapter 4.

An alternative solution will be presented in Chapters 6. Chapter 7
will present a method by the use of which the community can‘cooperative1y
recdnstruct the optimal centralized estimates, without some of the incon-
veniences of Speyer's and Willsky's methods. Chapter 8 contains the

conclusions.






CHAPTER 2

OWNSTATE FILTER COMMUNITIES

2.1 Introduction

The problem of navigation by means of rangings involves a large number
of relevant state variables neatly divided into uncoupled subsets. The
physical attributes of one given member of the network (its position,
velocity, the phase of its clock, etc.) evolve independently from similar
variables of all other members. On the other hand, every observation,
i.e., ranging, strongly couples variables belonging to two different
members, the source and the reéeiver of the signal.

Under these conditions, an optimal estimator would have to include the
relevant variables of at least all active members of the network in its
state vector and could use all rangings taken by all members. This is
impractical at the present (1981) state-of-the-art electronics. The rele-
vant variables of each member are at least fifteen; even a small community
of four active stations would need a 60-state filter, with a 60 x 60 error
covariance matrix to update at every ranging (every 2 or 3 sec. at most,
typically oftener than that). Therefore a suboptimal solution is
necessary.

The simplest idea that may come to one's mind is to have each member
estimate only its own states and incorporate only its own rangings. This
is what this writer chose to call an ownstate filter community (the name is
not étandard). The remainder of this chapter will be used to set up a

mathematical model for such a process, and describe a few alternative ways
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of organizing it. A motivation for doing so is that almost only ownstate
filters have been proposed or considered so far for applications; the
system that is being implemented now for JTIDS-RelNav is also, substan-

tially, an ownstate filter community.

2.2 A mathematical model of passive rangings

Consider a three-dimensional Cartesian coordinate grid x,y,z; let t be

the time, in units so chosen that the speed of light is 1. Let
5} 6 IxT, ¥, 2, e (2.1)
be a vector containing the coordinates of member i and the time. Let

218t 5, 5, Ay

be the best estimate of 5? available to member 1; s the phase of member

i's clock. Let

Koy -g -

be the estimation error (this will always be the sign convention).

Say an active member, labelled j and called "source," is supposed to
send a p(osition)-message at a scheduled time tsch' Member j will send it
when it believes the scheduled time to have come; the estimated time of

broadcast will be according to schedule:

~§
Tob = Ysch

but the actual t.o.b. will be instead:

J . ~J
tb = tsen * T

-20=



Consider now another member, labelled i and called "receiver;" let d1j
be the distance between receiver and source. The p-message will reach

member i at the actual time of arrival:
T _d ij _ ij ., =J
toa = top T4 Tt tdT 4

but, at that time, the phase of the receiver's clock will be:

+qid e gl

One must also consider that the arrival of the p-message will be recorded
by member i with a certain stochastic error v‘; the recorded t.o.a. will

be:

toon * PRS2 - I

The ranging piJ is found by subtracting the scheduled t.o.b.:

AN E S I-L P (2.2)

One sees that a passive ranging contains not only a stochastic error v‘,
but 21so a systematic error due to the phase difference between the clocks.

The expected value of the ranging is:

oV = a9 - (T2 iz e gt R (2.3)
The innovation, defined as: |
ij _ 511

44
Sp J - p

must be a linear function of errors and noise, in order to fit into a

-21=



Linear Quadratic Gaussian estimation process. The common practice

(extended Kalman filter) is to use a first order approximation:

A Ai '\ 1
o) = Bl gy« L gty + 222 )
(2.4)
- (-3
Defining thé geometry vector:
a1 ~J a1 _a§ *1 *J '
11 X -
L I R | (2.5)
one can rewrite Eq. (2.4) simply as:
spld = nH (& - &)+ (2.6)

which shows that the errors of receiver and source have an antisymmetrical
effect on the innovation.

It is useful to notice that gfj and g?i are linearly independent from
each other; two opposite passive rangings, taken at the same time, are two
independent measurements. If a processor knows them both, it can separate

the distance and the clock phase difference:

ol & 32 = a4 (v V2 (2.7)

(pij - pji)/z EJ - ?i + (v‘-vj)/z

So, two opposite passive rangings are equivalent to one active (or round-

trip) ranging and one round-trip timing.



Another remark that will be useful later is thatl_tl"jl = /2,

This result is due to the spatial components of h being the direction cosi-
nes of the line of sight, while the time component always equals -1.

Lemma. Three coplanar (but not coincident) lines of sight give rise
to three independent rangings. However, adding other coplanar lines of
sight does not increase the number of independent rangings.

Proof. Say €1, &, are two line-of-sight cosine vectors‘, and
€3 = agy + Be, is a third one on the same plane. Obviously:
| 2

|21|2=1,|9_2 = 1 and:

1=|£3|2=a2+32+2a33i32 H

&3 not coinciding with & implies a # 0 &3 not coinciding with &

implies s #0 e not coinciding with [ implies 9—19-2'1 # 0.

Together they imply:
2 [}
1 - (a#B)” = ZaB(El_e_a -1)#0

that is: atg # + 1 .

The three geometry vectors, arranged in a matrix, are:

-e-l’ -1 31’ -1
& - 1 equivalent to: &y - 1
ae +8e,, - 1 | 0, (a+g-1)

and the matrix has rank 3, since a+g#l.

Now add another coplanar 1ine-of-sight vector:

£4 78 * 08



The four geometry vectors, arranged in a matrix, are:

_e_lo'l _e_lo'l
€,y =1 e,y =1
=2 equivalent to: 2
ag, +8e,, - 1 0, (ats-1)
e tée,, - 1 | 0, (y+s-1)

Obviously, the rank is still 3, Q.E.D.

2.3 Generalities about ownstate filters

Now that passive rangings have been described, ownstate filters can be
defined more precisely. One can see from Eq. (2.6) what the trouble with
them is. The ranging.pij, taken by member i, should have an innovation
depending on member i's errors. Instead, Gpij also depends on g?, which
are errors of member j's state variables; member i does not check or update
the estimate of such variables. Unless one is willing to do additional
caiculations to keep track of them, there is no way to handle the term

st
7gf3 X" except as an additional uncertainty in the ranging, 1ike the addi-

tive measurement noise vi.

Suppose the covariance of measurement noise is:

el e ((vh?

Then the receiver i will model in its filter a measurement noise covariance

r1¥Fi, where 7ﬁ is the weight attributed to the uncertainty of the source

J. In an ownstate community, this weight is calculated only on the basis

of information received from the source. If member j has an estimate of

the covariance of x5:



NlE(ffw (2.8)

and includes pd (or some truncated version of it) in its p-message, then a
.~
receiving member i can calculate the covariance of the term -h}j 5? in Eq.

(2.6) and let:

v o= pld'pdpld | (2.9)

The estimated position coordinates of the source J, 7, 23, must be
included in the p-message as well, because receivers need them for the com-
putation of the expected ranging, Eq. (2.3), and the geometry vector, Eq.
(2.5). Again, in an ownstate éommunity. receivers have to accept the
source's estimates of those variables without question.

The definition of an ownstate filter community can now be given.

Its features are:

(i) each member estimates only the variables that physically belong to

itself, and performs no other recursive computation;

(i1) each active member sends p-messages containing (a) its estimated
position and (b) the estimated error covariance Pj of a vector
that includes its position and its clock phase (or abbreviated
information to that effect);

(§11) each member incorporates only the rangings it takes, and does not
share them to the community;

(iv) a term'?d, being some function of Pj, is added to the measurement
noise variance, in order to weigh‘the uncertainty of the source.

Item (iv) is very questionable from a conceptual standpoint. The
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variance of the innovation, from Eq. (2.6), is

e(sp)?) = 01 E@zy w4 pM e b

el oM e @I+ &3 Y (2.10)

The filter gains may well be chosen in such a way as to handle the first
and third terms; 1f’?ﬂ, from Eq. (2.9), 1s added to the noise variance,
then the second term is accounted for as well (at least if Pj evaluates
E(g?i?') correctly); but the fourth term, the cross-covariance of source's
and receiver's errors, cannot be recovered.

Yet, there is no reason to think that this cross-covariance will be
negligible. On the contrary, the collaborative nature of an ownstate com-
munity will keep it high. Suppose for an instant that, when member j
broadcasts, its errors are uncorrelated with those of all the other
members. After the receivers have incorporated their ranging to j, their
errors will be correlated with those of member j, and, consequently, with
one another. If any of the receivers is an active member, it will, when
its turn comes, be the source of a p-message, and it will be ranged to by
other former receivers of member j's message, possibly by j itself.
Besides, when member j broadcasts again in the next round, its new errors
will be correlated with its old errors, and, therefore, with the errors of
the receivers which have used its old message. In conclusion, the incor-

poration of a ranging is done correctly only the first time.

2.4 Mathematical model of an ownstate filter

Consider a community, whose members are trying to estimate their rela-

tive position. Suppose no rangings other than passive ones are used.
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However, any or all members are allowed to have a dead reckoning facility.
Suppose the state vectors estimated by each member are not coupled, and
evolve in time linearly. A superscript identifies the member, a subscript

the discrete time. Assume the state vector of member i obeys:

i_ i i
X = ¥pXao1 t ¥, (2.11)

The input is stochastic, Gaussian, unbiased, and has a covariance

E(wiw"-') = Q1 § 6 (2.12)
——m n nm ik
A passive ranging of i to j at time n is given by:

p:j - f (5; - 52) + v:j (2.13)

where f(.) is the distance-and-clock-phase function. It is assumed that

i ij

the coordinate grid of x and 5? is cartesian. The input v'© is

stochastic, Gaussian, unbiased, and:
5 key _ i3
E(v” v ) = T Spm Sik (2.14)
The second superscript (typically j) identifies the source of the ranging,

and can be dispensed with, since it is a function of the discrete time

(i.e., of the subscript):
j=s(n , 2=s(m (2.15)

where s(.) is the (integer scalar) schedule function, saying which member

broadcasts at which time. The innovation is, to the first order:
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sod = n;j‘ (5;_- 53) + V;J (2.16)
with
nid g df (2.17)

A minus sign after the subscript indicates the estimate or the error before
the incorporation of the ranging taken at that particular time.

One possible case is when the members have no dead reckoner. In this
case, 5? may include relative position and clock time only; if it is so,
then the displacement and clock shift from t , to t must be entirely

attributed to the stochastic input Wi consequently: wl

=1 for all n and
i; h will be given by Eq. (2.5).

A case that shall often be discussed supposes the presence of a dead
reckoner, but also supposes its output to be corrupted only by a random-
walk error. The state may include only the position errors and the clock

phase error (the latter, too, is modeled as a random walk); again, wi =1,

n
and h is given by Eq. (2.5).
In a more typical case, all members will have a dead reckoner, say

an INS. The state x1

will include all variables that are necessary to make
the dead reckoner's, the clock's and the altimeter's errors Markovian. The
one-step transition matrix Y; will have a complicated form, and the
geometrical vector h will be an extension of the form given by Eq. (2.5).

The filter of typical member i is:
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S IS

X, ‘l’n Xn.1 (2.18)
af _ ai i . 13

A=zl vkt s | (2.19)

Either no assumptions will be made on how the gains k are computed, or else
they will be supposed to be, as in a Kalman filter, the solution of a

recursive Riccati equation:

]
Pl =l bl vl e gl (2.20)
. . [ Y - s o s .
5{1\3 - p:‘_t_\:‘j / (nj‘j p;_h;J +7 +rd) (2.21)
: ]
P:l = (I - E:\J!.':\j ) p:‘- (2.22)

If one remembers that, generally:

E((ep9)?) # nidpl pid 4 13 4 51 (2.23)

(see Eq. (2.10) for the correct expression), one cannot expect these
Kalman gains to be optimal in any sense, nor Pi to be equal to the estima-
tion error covariance. Some of the results that follow are independent
from the choice of the gains, others require them to be Kalman.

The difference equations for the estimation error will now be derived.
They will be necessary in the next two chapters. No assumption will be
made on the gains, but linearity will be supposed; that is, approximate Eq.
(2.16) will be considered correct and the dependency of h on the .estimates

" (Eq. (2.17)) will not be considered. Plugging it into Eq. (2.19) one gets:
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a1 _ 4 1§,.13' =1 =3 i 13
Ry = Eoo *ke'het G Xp) + Ke? v (2.24)

and subtracting this from 5; gives the error variation when a ranging is

incorporated:

.

- 3V (2.25)

A patdy g4 aldgd
Ky = -0 o ¢ AR - Ky

-0

For brevity's sake, it was defined:

iJ 1§,.13" :
An 4 Kpohe™ | (2.26)

The propagation of the estimation error between rangings is found

subtracting Eq. (2.18) from Eq. (2.11):

I i
" T (2.27)

Combining eqs. (2.25) and (2.27), and noticing that

(the broadcaster makes no measurement incorporation) one finds:

=1 _ qafdy W15 1§ 2J PR E I A R B
Xo = (1-ART) ¥p Xp o Ag” X (I-A7) W g K™ v 7y (2.28)

This is the difference equation for the estimation error. It provides a

starting point for next chapter's analysis of stability.

2.5 Community organization: (a) coordinate setting.

The organization of a community of ownstate filters must provide for

the definition of the relative coordinate grid. Most of the choices
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have no effect on the analysis that will follow. This section will only
explain briefly what is necessary to make this work self-contained.

It is obvious from Eq. (2.2) that only differences of coordinates and
of clock phases are measured. Absolute time and geodesic position are
unobservable, if only relative rangings are used. The following quantities
must be defined in some way:

(i) the origin of community time, in absolute time;

(1) the origin of the relative spatial coordinate grid, in absolute
coordinates;
(iii) the orientation angle(s) of the relative coordinate grid, in
absolute coordinates.
It is convenient to fix the thifd relative axis coincident with the local
vertical of the origin, so that only one azimuth angle is needed for (iii).

Each of these three items can, separately, be defined either:

(a) by one single member, or (b) by the combined effort of the community.
The sufficient conditions for stability proved in the next chapter include
explicitly the requirement that items (i) and (ii) be fixed by one single
member.

The member that fixes the time origin is called time master; the one

that fixes the spatial grid origin is called navigation controller. The

spatial grid azimuth can be fixed by the orientation of the inertial system
of the navigatioh controller; or else, it can be fixed by a position com-
parison between the navigation controller and another member, which is

called the end-of-baseline.

Further options concern how the chosen member will fix its allotted

indeterminacy. The options are two; the indeterminacy can be fixed:
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(1) by the physical position of the chosen member; or (2) by the instan-
taneous zero of i1ts auxiliary dead reckoner. For instance, take the
navigation controller. Under option (1) its relative position is always
defined as (0, 0, 0), with deterministic certainty. Under option (2) its
relative position is whatever its auxiliary dead reckoner indicates, and
that value is defined as deterministically correct. In both cases, the
essential thing is that the error of the chosen member is defined to be
zero. Therefore error and stability analysis are insensitive to whether
option (1) or (2) is used. In all what follows, this problem is ignored
completely, but, of course, the choice Has a great practical effect. If no
auxiliary dead reckoner is present, only option (1) is available, and that
is quite bad, in the aircraft case, because the relative grid will be
moving rapidly. If dead reckoners are provided, then it is opportune to
choose option (2), under thch the relative grid will only be slowly
drifting.

2.6 Community organization: (b) source selection

It will be shown in the next chapters that source selection is a
most important feature that sets different organizations apart. The
problem is to decide who is allowed to range to whom. A great many
variations on this theme are possible; here they are grouped in three
categories. The reader must be warned that most of the terms introduced by
Rome and several co-authors in Refs. (6), (7), (8) are not used here; the
adjective “democratic" is used, but in a different sense.

1. Democratic organization

'In this case there is no source selection at all. Everybody,

including masters and controllers, is allowed to range to everybody else.
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2. Fixed-rank hierarchy

In this case each member has a rank, which is attributed beforehand
and never changed during the mission. Every member ranges to those which
have a rank superior to its own. It does not range to other members of
equal or inferior rank. The lowest-rank members are passive; they need not
. send p-messages because nobody would accept them anyway.

3. Covariance-based hierarchy

In this case members do not have a fixed rank. Every time a p-message
is received, the receiver compares the supposed accuracy of its own esti-
mates (in terms of position, orientation, clock time or whatever) with the
reported accuracy of the source's estimates. If the latter are better than
the former, the p-message is aécepted, the ranging finalized and incorpo-
rated. If otherwise, nothing happens.

Many variations of this kind of hierarchy are possible, depending on
precisely what quantity's accuracy is compared. However, the only eval-
uation a member has of its error covariance is contained in its P matrix.
What will be compared is always some function of Pi with the same function
of P (which is included in the p-message).

A combination of fixed-rank and covariance-based hierarchy is being
implemented now for JTIDS-RelNav. Members are divided into masters,
"primary users" and "secondary users", and these ranks are fixed. Within
primary and secondary users a covariance-based hierarchy is enforced.

This outline of possible organizations concludes the description of

ownstate communities.






CHAPTER 3

STABILITY THEORY OF AN OWNSTATE COMMUNITY

3.1 Introduction

This chapter will address the problem of the stability of an ownstate
community in an analytical way, without relying on simulation results.

A recursiQe estimation algorithm may be considered as a dynamic system
whose state is the estimation error, and whose input is the noise. Leaving
precise definitions to the next section, it is obvious that some kind of
stability is a necessary requircaent, since the very purpose of the process
is to bring and keep the estimation error down to acceptable levels, inde-
pendent of its initial value, which may be arbitrarily large. The history
of JTIDS-RelNav studies has been largely influenced by concerns about
stability, but most insights have been obtained by means of simu1atipns;
analytical results are rare. |

There is a widespread opinion among JTIDS-RelNav authors that the
democratic organization is unstable, see e.g. Westbrook and Snodgrass (3),
because of simulation and flight test results to this effect for PLRACTA.
This opinion was instrumental in causing the present implementation of
JTIDS-RelNav to have a covariance-based hierarchy, instead of a democratic
organization. However, there is uneasiness about this choice as well. The
results of Rome and Stambaugh (7) and Greenberg and Rome (8) raised doubts
about a covariance-based hierarchy, although Fried (5) had contrary
opinion. More recently Kerr and Chin (14) echbed the uneasiness and pro-

posed algorithms that could give more assurance of stability.
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Although many of these opinions are well grouncded, yet, this work will
prove that there is one organization of ownstate filters that is stable.

It is the one that was called a fixed-rank hierarchy, in Chapter 2. Most

of the remainder of this chapter is devoted to the proof of its stability

under sufficient conditions, and to an analysis of these conditions.

3.2 Definitions of Stability

This section contains a reminder of the accepted definitions of stabil-
ity that are relevant éo our case. They stem mostly from Lyapunov, and
are summarized in Kalman and Bertram (15).

Consider a free, or unforced, discrete-time dynamic system, whose state

x obeys the difference equation

The presence of a subscript indicates functional dependence on discrete
time, e.g., x means x(t ). Given an initial state a at discrete time m,

Eq. (3-1) will have a solution:
x, = ¢(n; a, m . (3-2)

¢ is called a trajectory of the free system. It always exists, since it
can be found from Eq. (3-1) by induction; it is unique if £ (.) is
single-valued, as we shall suppose; it satisfies Eq. (3-1) and the initiai

condition, that is:
¢(n; a, m) = £ (¢(n-1; a, m))

¢(m; a, m) = a



An equilibrium state e is defined by:

e=f (e or: e = ¢(n; e, m

for all n and m. One at least must be supposed to exist, since what is
going to be addressed is precisely the stability of an equilibrium state.

Uniformity may be present or not. Definitions and lemmas will usually
come in pairs, one for the uniform and one for the nonuniform case. The
remarks between brackets will refer to the uniform case.

In the following analysis, the operator "norm" will be left undefined.
The Euclidean norm operator will be used in proofs and specific calcu-
lations; the proofs, however, will have general validity, whenever only
topological properties are conéerned. A1l normings of a finite-dimensional
vector space define equivalent topologies (see, e.g., Loomis and Sternberg
(16) p.208).

Definition 1. An equilibrium state e of a free discrete-time dynami-

cal system is called [uniformly] stable in the sense of Lyapunov if, for

any given & > 0 and any given time m [for any §>0 and all m>M] there exists
aels,m>0 [5(6)501 such that|a - e| < ¢ fmplies| ¢(n; a, m) -e]< 8
for al1 n > m.

The intuitive meaning of Def. 1 is that, if the state is initially
close enough to the equilibrium value, it will stay as close to it as one
wishes. This may be a satisfactory kind of stability in some cases, but
usually one will wish the state to converge to equilibrium independently of
the initial value. This more restrictive condition is defined as follows.

Definition 2. An equilibrium state e of a free discrete-time dynami-

cal system is [uniformly] asymptotically stable if:
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(1) it is [uniformly] stable, according to Def. 1;
(i1) there exists at least one ¢ > 0 with this property: for any given

§ > 0 and time m [for any 6>0 and all m>M] there exists an integer N(&§,m)>0
[N(s) >0] such that|a - e|< ¢ implies|¢(n; a, m) -e|< s for all
n>m+N.

Definition 2 states that there is a (generally finite) region of
stability. This restriction is removed in the next definition, which con-
cerns not one particular equilibrium state, but the system at large.

Definition 3. A free discrete-time dynamical system is [uniformly]

asymptotically stable in the large if:

(i) it has an equilibrium state e, which is [uniformly] stable
according to Def. 1; |
(ii) for any givene > 0, 6§ > 0 and time m there exists an integer
N(e,6,m) >0 [N( e, 8§) >0 ] such that|a - e| < e implies
| o(n; a, m) —-e|< 6 for all n > m + N [and for all m greater than
some M];
[(ii{) all trajectories are uniformly bounded; that is, for any given >0
there exists a g(t)>0 such that|a - e| < © implies
| $(n; a, m)-e | < g for all n > ml.
If uniformity is not desired, Def. 3 (iii) can be dispensed with. The
arbitrariness of ¢ is what makes Def. 3 different from Def. 2. As a con-
sequence of Def. 3, all trajectories will converge to e and there cannot be
another equilibrium state.
Let us now go back to Def. 2 and specialize it in a different
direction, namely, impose a condition on how fast the state converges to

equilibrium.
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Definition 4. An equilibrium state e of a free discrete-time dynami-

cal system is exponentially stable if there exists a constant g > 0 and,

for some values of e, a &(e)>0, such that | a - gj < ¢ implies
| ¢(n; a, m)-e | < & exp (-g(n-m)) for all n >m, and for at least one m
(therefore, as it would be easy to see, for a1l m greater than that: there
is a built-in uniformity).

0f course, one can also define exponential stability in the large, by
saying that Def. 4 must hold for all values of e.

A11 the previous definitions concern a free system. Instead, if an

input u is present, the system will be described by an equation of this
type:

x, = ( ) (3.4)

=n Xp-1* Yn
The solutions of Eq. (3-4), called forced trajectories, will depend on

the whole time-history of u. Given the input as a certain function of time:
u =g(n) (3.5)

and an initial state a at discrete time m, one can find the forced trajec-

tories by induction:

Xo = ¢g(n; a, m (3.6)

‘but the form of function gg(.) depends on the form of g(.).

If one keeps g(.) constant, i.e., considers only trajectories forced
by one particular input history, one can then generalize all the previous
definitions, with the following changes. Instead of considering the dif-
ference between the free trajectory starting from an arbitrary point a,

and the equilibrium state, one will consider the difference between two
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forced trajectories starting from any two arbitrary points a and b. In
Defs. 1 to 4 one has to change:
la-el into [a-b]
(3.7)
| ¢(n; a, m) ~e| into |¢g(n; a, m) - ¢g(n; b, m) |

and appropriately reword the statements. This generalization is useful in

case the system is l1inear (as it will be shown).

3.3 Stability of linear systems.

This section contains the statements and proofs of a few lemmas about
the stability of linear systems. They build up a basis for next section's
theorem. The lemmas range from most elementary to possibly original. The
fact that a linear estimation process is being considered, provides the
motivation for analyzing 1inear systems.

A free linear system is described by
X =Y x (3.8)

The free trajectory starting from X, =2 is:

¢(n; a, m) = ¢(n, m) a | (3.9)
with
n
¢(n, m) = kl;ilyn , for mo>m (3.10)
¢(n,n) = I

The case n < m 1s of no interest here, and may be left undefined. There
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always exists an equilibrium state e = O, (in most cases this is the only
equilibrium state).
The same system, forced by an input Uns is described by an expression

of this type:

X, = ¥p X tug (3.11)

The forced trajectories are given by

¢ (ns a, m = ¢(n, m) a + E o(n, klu, (3.12)
k=m+1
as it can be easily seen by induction from Eq. (3.11).
Lemma 1: A linear system.has the same stability properties when free
and when forced by any input.
Proof. Consider two trajectories starting from a and b at the same

time m and forced by the same input us from Eq. (3.12):
¢ (ni 3, m) = ¢ (n; b, m) = &(n, m)(a - b) (3.13)

The difference between a free trajectory starting from a and the null

equilibrium state e = 0 is, from Eq. (3.9):
¢(n; a, m) - e =2o(n, mia -e) (3.14)

Comparison of (3.13) with (3.14) shows that the substitutions (3.7) do not
alter the truth of a statement, Q.E.D.

Lemma 2. If a linear system is [uniformly] stabie in the sense of
Lyapunov, the norms of its transition matrices | ¢ (n,m) | are bounded uni-

formly in n [and uniformly in m].
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Lemma 2-a. If a linear system is [uniformly] asymptotically stable,
the norms of its transition matrices | ¢ (n,m) | converge to zero [uniformly
in m). That is, for any given >0 and any given m, there exists N(t,m)
[for any given >0 and all mM, there exists N(t)] such that n> m + N
implies | ¢(n,m) | < .

Proof. For lemma 2: take any & > 0, find () according to Def. 1.
Take all a suchk that|a| = e; then al1 b 4 a/e will cover the unit circle.

From Def. 1 and e.q. (3.14), for n > m: |eé(n,m)a|< & or, equivalently:
a'e'(n,m) o(n,m) a < &2
b'¢'(n,m) ¢(n,m) b < 82/

Remember that the Euclidean norm of a matrix A has the property:

|Alz =020 (x'A'AX)

where U4 { x| x'x = 1} is the unit circle. Therefore, | ¢(n,m) |2 < 62/e2;
§/e(s), with any &, provides an upper bound; it is uniform in m if e does
not depend on m, Q.E.D.

For lemma 2-a: take any ¢ and any &, find N(e,8) according to
Def. 2. Then take all a with |g_|= e and repeat the same argument used above.
It will be found that|#(n,m)|< &/ for n > m + N, [and for all m].

Let 6/ & v, N(e,8) & N(t), Q.E.D.

Lemma 3. If the equilibrium state e = 0 of a linear system is [uni-
formly] asymptotically stable, then the system is [uniformly] asymp-
totically stable in the large.

Proof. Def. 2(i) translates into Def. 3(i). From (3.14) one sees

that | ¢(nja,m) - eland |a - e| are proportional. If: |a-e|<e
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implies | ¢(n;a,m)-e | < & under suitable conditions, then: |a -e| <ce
implies | ¢(n;a,m)-e | < c& under the same conditions, for all c > 0.
Therefore Def. 2(ii) becomes Def. 3(ii). Def. 3(iii) remains to be proved.
Take ¢ > 0 and & > O arbitrarily; find N(§), according to Def. 2. Then,

for n >m+ N:
|¢(n;_a_,m) -el<s
whereas, for m < n < m + N:
| ¢(n;a,m} -el=]elnm al <|otnm|.la | <se

where s is an upper bound for | ¢ (n,m) |, according to lemma 2. Therefore
max {s;, 8§} is an upper bound for the trajectory for all n > m, and it is a
uniform bound if s does not depend on m, Q.E.D.

Lemmas 1 to 3 are very well known. The next one is also known, but
it is seldom stated explicitly. It goes as follows.

Lemma 4. For a linear system, uniform asymptotic stability and expo-
nential stability are equivalent.

Proof. That exponential stability implies uniform asymptotic stabil-
ity is obvious enough. I shall prove only the converse. Using lemma 2-a
find N (1/2), such that| ¢(n,m)| < 12 for n > m + N and for all m greater

than a certain value M. Then find:

ol demn le(m ]2 (omN

a is finite because | #(i,m)| 1is bounded above by lemma 2, and Z(i'm)/N<2.
Take now n and m arbitrarily (but with n > m > M); find the integer k
such that : k <fB < k+1 ; therefore: m < n-kN< mtN. Then:
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| ¢(n;a,m) - e|=|e(n,m.af=
=| #(n,n-N). ¢(n-N,n-2N) .... @(n-(k-1)N,n-kN).
. ¢(n-kN,m).a | <
<| e(n,n-N) | .| o(n-N,n-2N) | ... | @(n-(k-1)N,n-kN) | .

| o(n-kN,m) |.lalc<

~r

2% a(n-k,m | . | 2| =
2 g (n-mI/N (kNN g nnm) | | a ] <

(MmN o a

Define §(e) = a*c ; define 8 = (In 2)/N ; B is independent of e , as

required. Then|a| <e will imply:

| ¢(n;a,m) - e] < ln-m/N o ge8(n-m) Q.E.D.

As a corollary to lemma 4, one can add that | #(n,m) | is exponen-
tially convergent to zero. The proof is contained in the proof of lemma 4,

It is apparent that the analysis of stability is particularly easy in
the case of linear systems. There always is an equilibrium state e = 0; if
that is asymptotically stable, then the system is asymptotically stable in
the large, both when free and when forced by any input; moreover, if there
is uniformity, then the stability is exponential. One more basic lemma is
known about linear systems; namely, when they are uniformly asymptotically
stable, a bounded input gives rise to a bounded state trajectory (and

therefore to a bounded output, if there is any). This lemma will not be
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proved hefe (see Kalman and Bertram, loc. cit.). Instead, a stricter
statement will be proved; it is the key to next section's theorem, and it
is possibly original, or, at least, independently found.

Lemma 5. In a uniformly asymptotically stable linear system, an input
that exponentially converges to zero gives rise to a state trajectory that
exponentially converges tc zero.

Proof. Suppose | Ek' cce ™k M £orall k >m. From Eq. (3.12):
| x| =1¢,(nam]|=

n
={e(n,ma+ J elnkly |<
T k=m+l =k

n
<lotnm|.lal+ I Jetnk) | ]y <
k=m+l

n
¢ o e-Bn-m) lal+ § o-B(nk) _ -t(k-m)
k=m+1

because of the hypothesis and of lemma 4 (corollary). Take y = min {B,t};

then:

¢ o Y(n-m) _

-y(n-m)l al+ E «

| oy (niam | <ae
k=m+1

= o ¢7Y(nm) (lal+ (n-m)c).

The proof will be complete if one shows that this last expression is less
than se P it s possibly a function of | a| , but p independent from
it.



And, indeed, take any p with O<p<y and take

ac . .
8> 355 exp(-1+] aj (y - p)/c);

the function:

y(n)2 (la]+ cn) exp ((p=y) n)

C

has, elementarily, a maximum y°® = 5

exp (-1 +|a| (y-p)/c)
Therefore:

|¢u(n;g,m)| <a(|al|+ (n-mc) exp (-y(n-m)) =

a exp (-p(n-m)).y(n-m)<

n

a exp (-p(n-m)).y® < & exp(-p(n-m)) Q.E.D.

3.4 Proof of the Stability of a fixed-rank hierarchical organization.

This section states and proves sufficient conditions for the stability
of an ownstate filter community.
Consider a community like the one defined in sections 2-3 and 2-4;
the state of typical member 1 propagates linearly:
i

=yl
X ‘Pn

X ol (3.15)

-1 7 ¥y

and the estimator is linear, so that the estimation error follows

equation (2.28):

4 _ praddy of 2
X (I An ) ¥ Xo.

X, + A3 ald gt (3.16)

1

with the matrix A defined as

ij . A5, 13"
ad = kdn (3.17)



"and the symbols have the same meaning as in Chapter 2. No hypotheses are
made now on how the gains k are computed. They may be solutions of the
recursive Riccati equation (2.20-22) or they may be computed in any other
way.

The difference 52? between two trajectories of gf subject to the same

sample of noise, but sfarting from different initial conditions, follows

the equation: -

=1 _ (roatd ~1 1§ .~
8X, (1 An ) Vn 65n-1 + An 65n (3.18)

A11 stability concepts refer to this difference. According to Lemma 1, Eq.
(3.18) should be the homogeneous part of Eq. (3.16). The input 62? does
not vanish, however. One must aggregate alil gf into one vector i, Then
the equation for 63_wi11 be homogeneous. In other words, the evolution of
the community error cannot be split up among the single members.

Theorem 1. A community, like the one just described, performs ;n

exponentially stable estimation process if:

(i) each member is attributed a constant rank, and allowed to range
only to other members whose rank is superior to its own;

(i) there 1§ only one first-rank member, which is also time master and
navigation controller;

(iii) the filtering process of each member, considered separately, is

exponentially stable, provided all other members have zero errors
(this property will be called one-by-one stability);

(iv) the matrices Al are bounded from above in the norm.

Hypothesis (i) defines what was called a fixed-rank hierarchy.
Hypothesis (ii) requires the only first-rank member (which will be labelled 1)
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to have zero relative position and clock errors by definition. However
the state vectors x, are composed, a passive ranging is sensitive only to
relative position and clock errors of the source; thus, when member 1 is

the source, it will be:

hil.il =0 for all n and all i # 1
- =n .

Hypothesis (iii) requires a careful definition. If all other members
member i ranges to happen to have no relative position or clock errors,

then

ij':3 -
nl'K) =0

and Eqs. (3.16), (3.18) become:

i vt 21 4 (poatdyt o 3 i

xo = (I-ASMp X ot (I-A 7w, - ko= vy (3.19)
i _ roaddyed sz

ox, = (I-A 7)Y, 8x 4 (3.20)

Hypothesis (i) requires Egs. (3.19), (3.20) to describe an exponentially
stable process (forced and free, respectively).

Hypothesis (iv) is no additional burden, in practice, since every
reasonable estimator that satisfies hypothesis (iii) will have bounded
gains as well. However, if the matrices wi have favoiable properties, one
can invent pathological non-Kalman gains such that | (I-Aij)wii decays
exponentially, and yetl Aij lgrows unboundedly. That is why hypothesis
(iv) has to be claimed separately.

Proof. Consider Eq. (3.18) separately for each member i; the second

term on the r.h.s. ts then considered an input to an exponentialiy stable

-48-



system, by hypothesis (i1i). Forget the master, which does nof even need a
filter if only relative navigation is performed. Consider a second-rank
member, labelled 2. Because of hypothesis (i), it ranges only to the
master; because of hypothesis (ii) 1ts Eq. (3.18) becomes:

22 or a2l ) 2 =2
6%0 = (I-AC ) ¥ X0 (3.21)

Because of hypothesis (iii), | Gg?l decays exponentially.
Consider now a third-rank member, labelled 3, which ranges to all
second-rank members and to the master. When the master is ranged to, the

equation is:

=3 (oadlyy3 33
O%y (1 An )wn *%n-1

‘with no input, by hypothesis (ii). When a generic second-rank member,
labelled 2, is ranged to, the equation is
32 .2

=3 _ (13213 £33
6x, = (I-AZ)y 6k ) + AT 8x (3.22)

Since | A32| is bounded by hypothesis (iv), and | 65?' has just been

proved to be exponentially decaying, then also | A3262?| <| A32| . aizl

is exponentially decaying. The input to member 3 is an interspersion of
zeroes (from the master) and exponentially decaying functions (one from
each second-rank member). Then the input is globally exponentially
decaying, being bounded above by the least steep rafe of decay among the
component functions; it has been tacitly assumed that the members of second

rank, and of any rank, and in total, are a finfte number. Now Lemma 5

applies; since the input decays exponentially, the state 62? a1s6 does.
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Suppose now all members down to the (k-1)th rank have been proved to
have exponentially decaying 62?. The input to any k-th-rank member is
made of interspersed exponentially decaying functions and zeroes (from the
master). By the same argument used for the third ranks, we conclude that
62? decays exponentially. By induction, this is valid for all members,
Q.E.D. |

One can see that the proof is quite simple and nothing but an applica-
tion of Lemma 5. However, there is a subtle point that might escape.
Namely, one should resist the temptation of using the following argument.
Since every member ranges only to those other members that do not range
back to it, then in Eq. (3.16) g? does not depend on gf ; therefore two
trajectories of gf , starting at different values, but with all things else

equal, will also have the same %3

; their difference obeys the homogeneous

equation:

=i - proaddyed cai
ox, = (I-A°)Y éx. o

and Bij decays exponentially by hypothesis (iii).

This argument has an appealing simplicity and uses only hypotheses (i)
and (iii), but it is not a sufficient proof. It only tells what happens to
two trajectories of gf initiated by two different values of gf itself; it
does not tell what happens to two trajectories of gf initiated by two dif-

ferent values of ij

» when j has a rank superior to i. In order to

complete the proof one needs hypotheses (ii) and (iv), and Lemma 5.

3.5 Stability properties of a linear filter with Kalman gains
It was shown in the previous section that a fixed-rank community with

a master is exponentially stable if the members' filters are exponentially

-50-



stable one by one. The nexft task is to show that one-by-one stability
exists. One good way to ensure that is to have all members use Kalman
gains; but this is not sufficient unless other conditions are met.
Consequently, this section presents a reminder of known theorems about the
stability of Kalman filters, and elaborates on them what will come useful
later.

Consider a discrete-time linear system on which linear observations

are taken:

X ¥ X +w
- ~n-1 =-n (3.23)

Yo = Mo¥a T Yy

Suppose the inputs w , v are stochastic, Gaussian, uncorrelated with each

other and with the following statistics:

E(!n) =0 ; E{ww ) = Qnamn ;
. (3.24)
E(v,) =0 E(vov) =R &
Suppose the state is reconstructed by a minimum variance filter:
Xh- " ¥n¥n-1
Xp = (=KMo DX * Kody (3.25)
]
Poe = ¥oPn1 B0 * Oy
- ' ' -1
Ky = Poo M (MP M+ R)
P = (I-KM )P
n nn n-
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Then, the estimation error obeys the equation:

X, = (I'KnMn)wnﬁn-l + (I-KnMn)g_vﬂ - Ky (3.26)

and the meaning of P is:

~ o

P, = E(X %) - (3.27)

Following Kalman (17) the information matrix from discrete time m to
discrete time n > m is defined as follows:

it 1 oM (mgmirct M, 71(n,k) (3.28)

k=m+1 K7k

where ¢ is the transition matrix of system (3.23) and is given by Eq.

(3.10). Likewise, the controllability matrix fromm to n > m is defined

as:

c (n,m)2 g ¢(n,k)Qk¢'(n,k) (3.29)
k=m+1

The system (3.23), (3.24) is called completely observable [controllable]

fromm to n if z (n,m)[ ¢ (n,m)] is positive definite. It is called uni-

formly completely observable [controllable] if, for some values of the

positive integer N, there exist real numbers «(N),B8(N) with 8>a>0, such

that
al <1 (mN,m) < Bl  [al < ¢ (mN,m) < gI] (3.30)

for all m>0.
The intuitive meaning of the controllability matrix can be seen by

imagining the system (3.23), (3.24) without any observation (or with

-52-



totally inconclusive observations: R = =), Then the error covariance is,

by induction:
Pn = Q(n,m)Pm¢'(n,m) + ¢(n,m) (3.31)

If the state X is completely known (i.e., Pm =0 ), then Pn = ¢(n,m).
The controllability matrix quantifies the ability of the stochastic input
to bring the error from zero to a finite variance, in absence of
observations; in other words, (¢ measures the ability of w to control the
state in a stochastic sense.

Similarly, if one supposes that the system (3.23), (3.24) has no input

(Q = 0) then the inverse of the error covariance is

prl = oM (numpp e nym) + 1 (n,m) (3.32)

This result is reached by substituting the last of Egs. (3.25) with the
equivalent equation:
5 RS B |

P>=P "+ M R
n n- nn n

then proceeding by induction. If the state is totally unknown at time
m, i.e., P;l =0, then P;l = I(n,m). The information matrix quantifies
the ability of the observations to reduce the error covariance from infin-
ity to a finite value, that is, to reconstruct the state, in a stochastic
sense.

Sufficient conditions for the uniform asymptotic (exponential, by

Lemma 4) stability of the filter (3.25) are given by the following

proposition.
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Theorem 2. The process (3.26) is uniformly asymptotically stable if
the system (3.23), (3.24) is uniformly completely observable and uniforily
completely controllable (Deyst and Price (18)).

For a proof, see the original authors, but notice also the corrections
introduced by McGarty (19). The first step of the proof consists in

showing that Pn is bounded uniformly from above and below:

al < Pn < bl , with O<a<b (3.33)

1 s a Lyapunov

0 -~ ' -
This intermediate result is then used to show that 5n Pn X,

function, and thus complete the proof. .Here it will be used instead, to
prove the following statement.

Theorem 3. Under the same hypotheses of theorem 2, and if Mn has full
rank, the matrix norm | KnMnI is uniformly bounded from above.

Proof. Please remember the following definitions, where y is an
arbitrary nonzero vectdr, H an arbitrary matrix, A and B are symmetric

matrices:

(1) lylé (y'y

i 4 su L
(ii) |H|8 ZP T

(1i1) A > B is equivalent to y'Ay > y'By

in particular: A % al is equivalent to ZfAZ.E alyl?

Since M has full rank, y = 0 is equivalent to M'y = 0; therefore M'y can

be used, instead of y, as the arbitrary vector in def. (ii1). From P > al
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one gets
y'MPM'y > a|M'y |2

Since R>0 by definition, then y'Ry > 0, and:
y'(MPM'+R)y > a|M'y |2 . Then:

2

2 5 = sup LM_'..Y__ sup _Y' (MPM'+R)y
| M ' a AAE a < y ' X-I >
Iy || (wpmr 4R}y |
< Sup ylllz YL < | MPM'+R |

From 0 < P < bl one gets: P2< b2I, Using def. (iii) with M'y as the

arbitrary vector:
X'MPZM'l <|My|2 b2 ; by def. (i), this is equivaient to: | PM'y | <

<|M'y|b . Then, because of def. (ii):

. '
L b=|M|b

t 1 = Sup
o] st

A1l the previous results are then used to establish the following chain of

inequalities:

| KM, =| P M (MP MR M|<

nnn

-1
<|Pn_Mn| |Mnn N Rn|v .|Mn|<

-1
| <M ]ob. (M (2. a7 M|

| kM |<b/a, QED.



Theorem 3 substantiates what was claimed in the previous section,
namely, that hypotheses (iii) and (iv) would usually be satisfied
together.

Let us now reword the Deyst-Price theorem in the following way:

Theorem 2-a. Consider the system defined by Equ. (3.23) but with no

hypotheses about w and v. Take sequences Qn’ Rn that satisfy Eq. (3.30)
but are otherwise arbitrary. Build the estimator (3.25) with them. Then
the estimation error (3.26) is uniformly asymptotically stable.

This rewording excludes Egqs. (3.24), i.e., makes the actual statistics
of the input independent by those used.in the model. In this case, the
estimator (3.25) is not optimal; the matrix P computed by Egs. (3.25) is
not the error covariance (for the actual error covariance see Battin
(20) p. 334 ff. and Jazwinski (21) p. 244 ff.) and the actual error
covariance is not minimum,

Proof of the equivalence of theorems 2 and 2-a. Take the error
(3.26) under the hypotheses of theorem 2. Change the statistics of LA and
v, SO that Eqs. (3.24) are satisfied by some previously arbitrarily chosen
Qn’ Rn . What is changed in Eq. (3.26) is simply the statistics of the
input (I - KnMn)!n - Kn!n' By Lemma 1, the stability of a linear system
does not depend on the input's time history, much less on its statistics.
Therefore the conclusion of theorem 2 is still true, Q.E.O.

This equivalence justifies the common practice of overestimating the
noise variance in order to get better fi]ter properties. The argument,

however, cannot be extended to system models that differ from reality in

any feature other than noise statistics.



3.6 Sufficient conditions for one-by-one stability: observability

analysis and flight path strategy

The results of the previous section will now be applied to our
problem. If the filter of each member has Kalman gains, Eqs. (2.20) to
(2.22), then the problem of one-by-one exponential stability is equivalent
to that of the exponential stability of a Kalman filter. If one defines
the one-by-one controllability and information matrices of the typical
member i as:

dam) = 1 o'(nk)g o' (n,k) (3.34)

n
)
k=m+1

' (n,m) =k_§+1(®i(n,k));lﬁﬂij n3T (el (n, k) (e ld + T ) (3.35)

then the conditions:
a1 <c T(meNym) < 8.1 5 vl <1 V(meN,m) < §,1 (3. 36)

are sufficient to insure hypotheses (iii) and (iv) of theorem 1, by
virtue of theorems 2-a and 3, respectively.

Further discussion requires hypotheses on the matrices i. As said in
Section 2.4, if one knows no details about the auxiliary dead reckoners and
the clocks, and just supposes that their errors are random walks, then one
may set . I. The same is true if there are no dead reckoners at all.
Since it is not opportune to be bound to deteiled hypotheses about the dead
reckoners (or the clocks) this approximation shall be adopted in the

following discussion,

The one-by-one controllability matrix becomes:
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i mN
¢ (mtN,m) = Qk (3.37)
k=m+1
Since Q1 is largely arbitrary (remember theorem 2-a) there is no difficulty
in satisfying the uniform controllability condition. It is sufficient to
make Q1 uniformly bounded from above and below: iI < Q; < 1.I, for all n.
The information matrix becomes:
' (mN,m) = z ’Jh” /(r'3+rk ) (3. 38)
k m+1
There is no problem in bounding the measurement noise covariance and the
source uncertainty weight; the value of numerators, instead, can be fixed

at will only if the members agree beforehand on a flight path strategy.

The information matrix appears to be a sum of N dyadic matrices:

~
i

E .v_k.xk (3.39)

with:

II!>

h”k/(r‘J + r;lik) 12 (3. 40)

Yy

It is known that such a sum is always positive semidefinite, but positive

A . 3
definite if and only if the set {xi’YZ""‘*XN} spans the linear space B
in which it is defined. The proof is simple. If the set spans the space,
it is never possible to find a nonzero vector z that is orthogonal to all
Y+ Therefore gka £0 forall z#0, ¢ B> and at least one k and:

. N
R N Y
'rz= Ll 2y
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is always > 0. Viceversa, if the set does not span Rs, it is always
possible to find a nonzero z e R® such that z'y, =0 for all k. Therefore
2' 'z = 0, Q.E.D.

Thus, complete observability is assured if an integer N exists such
that in every N consecutive rangings there are s independent ones. In
order to have uniformity, one must bound I1 from above and below. The
upper bound is no problem, since |h|= /2. The lower hound is ensured by
making the linear independence uniform.

In ‘our case s = 4, and one must remember the lemma of Sec. 2.2 about

the independence of geometry vectors. So one reaches the following:

Flight Path Condition. There must exist an integer N such that every

set of N consecutive rangings contains four different lines of sight that
are not on the same plane, nor become in time indefinitely close to the
same plane.

One consequence is that a member which goes unboundedly far away from
the rest of the community has no uniform observability, because all its
lines of sight grow closer and closer together. Another consequence is
that observability of the vertical coordinate will always be poor, since
all members are typically close to the same horizontal plane.

If one takes that for granted and only wants to insure observability
of the horizontal position and time (for altitude there wiil be altimeters,
anyway), then s = 3, and the observability condition is as follows.

Two-dimensional Flight Path Condition. There must exist an integer N

such that every set of N consecutive rangings contains three different

‘ lines of sight, which must not become in time indefinitely close.
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A third consequence bears only on a fixed-rank hierarchical community
with a master (the kind of community where one-by-one stability of all mem-
bers has been proved sufficient for general stability). Since there is
only one first rank member, and the second ranks range only to it, they
will get just one independent l1ine of sight, unless they move around with
respect to the master (or the master moves around with respect to them). A
static configuration has no observability; and, therefore, no proven stabi-
lity.

A11 the previous conclusions are valid if the errors of the dead
reckoners and the clocks are featureless random walks. If this restriction
is removed, then the ownstate vectors 5ﬁ must also include sufficient
states to make the errors Markovian, and the Wi matrices will not equal the
identity. This change increases the number s of necessary independent
observations; but not necessarily the number of independent geometry
vectors, as it will now be shown.

The information matrix, Eq. (3.35), is still a sum of dyadic matrices,
and can be expressed by Eq. (3.39) if one lets:

¥ = @ (mhme))Hpd (el T )k (3.41)

m+K k)

Even if two successive rangings are not independent:

iJ = pid
hm+k+1 Dm+k

still, Y4 MYy be not proportional to Yt

- =1j 1R 177}
Yea1 = Ymeke1 % ('m+k * ovk) /(’m+k+1 * m+k+1)
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since wm+k+1 # I. This happens because the state variables are correlated
in time. In theory, if the transition matrix had the opportune properties,
it is even possible that any set of s consecutive rangings could give
observability. This will not happen in our case, however. In practice,
one will have to rely on the flight path condition to achieve observability
of position coordinates and clock time. After that is achieved, one can
count on time éorrelation to achieve observability of all other state
variables, since they are, typically, derivatives (or functions of

derivatives) of position and clock time.

3.7 Summary of results

It has been shown in this4chapter that a fixed-rank hierarchical com-
munity of ownstate filters, with a master, is exponentially stable if the
members' filters are stable one by one and have bounded gains.

It i1s known that one-by-one stability and gain boundedness are ‘insured
by uniform complete observability and controllability. These properties,
in turn, depend, substantially, only on the satisfaction of the flight path
condition (apart from the usual precautions in modeling the noise
covariance).

It can be concluded that a fixed-rank community, whose flight paths
satisfy the condition of Section 3.5, will certainly be exponentially
stable. Fixed rank hierarchy can be obtained from the present implemen-
tation of JTIDS-RelNav by just modifying (simplifying, actually) the source
selection logic. The flight path condition requires, essentially, that at
least the master, or at least the second-rank members, must be moving

around.
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CHAPTER 4
TIME-DOMAIN COVARIANCE AND STABILITY ANALYSES

4,1 Introduction

In this chapter difference equations are derived, that are useful for
the time-domain analysses of error covariance and error stability in an
ownstate community. They will be used in next chapter's simulations.

First, the difference for the error covariance will be derived.
Although derived specifically for the errors of an ownstate community,
these equations have a somewhat more general validity. With an appropriate
generalization of the symbols, they could apply to any set of linearly con-
nected linear systems driven by a stocchastic input. Then, there will be a
discussion of how to make stability properties evident in the time domain;
it will be shown that the time-domain test for stability is formally
equivalent to a covariance simulation. This property is valid for all

linear systems.

4.2 Equations for covariance analysis

The estimation error of the i-th member of an ownstate community was

found, in Chapter 2, to obey these difference equations:

R i
Koo = ¥ X5 v 4, (4.1)
-1 _ ijy =i ij =3 1§ . i]
Xo = (A 2+ A x0 -kpY vd (4.2)
with:
1 _ 43 13
An” = k" hy (4.3)
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Equation (4.2) shows the mutual connection of the errors. These equations
are valid to the first order only; they derive from Eq. (2.15), which trun-
cates the Taylor expansion of the innovation at the first order; this
linearization is made everywhere in this work.

Define the covariance of the estimation error of member 1i:

e gsi 2
Un 8 E (x X ) (4.4)

and the cross-covariance of the errors of members i and k:

: 1
itk e (xf £k (4. 5)

ki!

ik U"" . The propagation between rangings is, from Eqgs.

and notice that U
(2.27), (2.12):

ik _ i ik k' i
Un- =¥ Un-l v+ Qn 6ik (4.6)
in particular, for i=k:
TR LTLL L) (4.7)

n n n-1"n n

At time tn’ the broadcaster is member j, given by Eq. (2.15). Assuming i
and k are members which do accept its p-message and incorporate, re-

spectively, the rangings q:j and psj, then from Eqs. (2.25), (2.14):

ik _ ij ik kj ij ij k3!
Un - (I'l\'n ) Un- (I'% )+ (I'An ) Un- I\\ +
15 Jk ;v oK 15 J3 Rki' , JAd i3 i
+ A, Ug- (I-A7)* + A Ug- At kky e Sy (4.8)
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If either i or k does not incorpaorate a ranging at time tn (because it
refuses the p-message from the broadcaster, or because it happens to be

the broadcaster itself), then, of course, its error remains unchanged:

1o ~k _ =k
X, = X,_ and/or x. = x._

The same expression can be obtained in Eq. (2.25) by formally letting
Ejj = 0 and, consequently Aij = 0. Therefore, Eq. (4.8) is still valid
provided one attributes a zero gain to ranging incorporations that do not
take place.

The system of equations (4.6), (4.8) presents the recursive calcula-
tion of the actual error convenience of an ownstate community. These
equations will be used in the simulation of Chapter 5 to calculate the per- .
formance of alternate organizations. Besides, inspection of these equations
provides further insights into the limitations of ownstate communjties.

In the particular case i = k, Eq. (4.8) becomes
ii _ ijy i ijvs ijy 13"
o= (A U (1-A) 1A ) uIATD

ij ,di i3y 1 (33 413" i3 13"
+ A U (I'An ) An’ Vs Apm ¥ L

ij

F (4.9)
If one supposes that bcth member i and the source of its ranging, member j,
had correct ¢. .iuations of their error covariance before the message

incorporation, that is:

ol _ i

J 2 3
n- n- °* Pn-; Un-

that the gains are Kalman and that the weight ?ﬁj is computed with Eq. (2.9),

then it is easy to see that:
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uit < pt 4 raald) o1 AT L a1 0T () (4.10)
n n n- n n n- n

i1 i

One can see that U = P° if there is a nonzero cross-covariance
U1j between i's and j's errors. The error covariance goes wrong at every
incorporation of a message from a source whose error is correlated.

Now take Eq. (4.8) again and suppose that there was no prior

correlation between the errors of members i, k and the source j:

ik _ 4 _ ki
vt =ud =y -0

Then Eq. (4.8) becomes:

ik _ A13 Jd3 akd'
Un = An Un_ An (4.11)
and Uik = 0 if W = 0. A nonzero cross~-covariance arises when two un-

correlated members range to the same uncorrelated source, if the source has
any errors. If, later member k becomes the broadcaster, and member i
takes a ranging to it, this cros-covariance will corrupt Pi according to
Eq. (4.10).

Thus the remark at the end of Section 2.3 is quantitatively explained.
From Eqs. (4.10) and (4.11) one sees that the neglected cross-covariance may
be of the same order of magnitude as the auto-covariance. The evaluation of

U11 through P1 might well, therefore, be grossly mistaken.

4.3 A method for testing stability in the time domain

It is not straightforward to infer the stability properties of a

system from its time-domain simulations. The definitions of stability
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(Section 3.2) concern either the difference between any two forced trajec-
tories (with equal but arbitrary input) or the differénce between any free
trajectory and an equilibrium state. Neither of them is visible in a
single case simulation. In general, in order to verify the stability
definitions, one should

(1) simulate all possible inputs;

(ii) simulate all possible initial conditions.

Both difficulties can be circumvented, in the linear case. It was
shown (Temma 1 of Section 3.3) that the difference between two forced tra-
jectories (with equal but arbitrary input) behaves like a free trajectory.
This eliminates the necessity of testing all inputs: only the unforced

case is needed. Consider then the unforced linear system:
=¥ X (4.12)
its trajectory starting at X, = a is given by:

n

elnsa, m) = T ¥, a
i=m+1

If {gl, Ups eeos 94} is a basis of the linear space where the system's

state is defined, then:

E
a = a. u.
j=1 J =

and Eq. (4.13) becomes:

L n
(n; a, m) =f ¥ a, ¥, u,\=
£ 2 jzl R
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2
= .21 a ¢ (n; Ui m) (4.14)
J=

Therefore, one needs only to test & free trajectories, starting from a
basis of the state space. A1l other free trajectories will be linéar
combinations of them.

These £ test trajectories reveal the stability properties of the
Tinear system. If all of them converge to zero [exponentially] then the
system is [uniformly] asymptotically stable. If all are bounded, the
system is stable in the sense of Lyapunov. The reader can verify these
statements by comparing them with the definitions given in Section 3.2,

On the contrary, simulations with nonzero input can be misleading. A
bounded output, for instanﬁe, is no guarantee of asymptotic stability. If
the system is asymptotically stable, a bounded input does give a bounded

trajectory, but the converse is not generally true.

4.4 Formal equivalence of covariance analysis and stability test

The & time-domain tests for stability can actually be reduced to only
one test, using the equations for covariance analysis (Section 4,2).
Although covariance analysis supposes a stochastic ensemble of trajec-
tories, and the stability test, instead, only a finite number of tra-
jectories, with deterministic initial conditions, yet there is a formal
similarity that will now be shown.

Consider a linear stochastic discrete-time system:
2z =B 2z A (4.15)

“n  “n “n-

with the usual hypotheses on X The covariance of the state follows:
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with

ne>

[ A 1
Un E(z, z') , Qn AE (w w')
The unforced system follows:

(4.17)

Suppose {Uy, Ups oees ue} is a basis of the space 8% where the state is
defined, and call gn(gk) the free trajectory started by zZ, = Y. Aggregate

into matrices:

L, = [5,,(51), 2, (Up)s oees gn(ge)]

ZO = [E.l’ 9_2, see y _u_e]

ne>

From eq. (4.11) and letting Sn 7.7, :

nn

n n Sn-1 B, 3 So = Z0 Z, (4.18)

which is identical with the covariance equation (4.16) in case the input

ik

covariance Q is zero. Call zn

the i-th element of zﬂ(g*). Then:

2 ik _ik ii
E |gn(gk)| = E } 2, 2, 0= ; s, =trs (4.19)

Therefore, tr Sn provides an excellent test for stability. If it

converges to zero [exponentially] then the system is [uniformly] asymp-

totically stable. Besides, Sn can be found with the same algorithm that
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computes the covariance Un’ by letting Qn = 0 and the initial U0 equal to
any symmetrical positive definite matrix.
In the case of an ownstate community the state z is the aggregate

error of all members:

] ]
z - B g’"] (4. 20)
and the S matrix is:
U11 UIZ . U1m
5 = p2l g2z 2o (4. 21)
Uml Um2 . Umm
— ~n

whose partitions Uik follow equation (4.8), with Qin=0. The error space,
however, is not exactly equal to the one where eq. (4.20) is defined,
because a few errors are constrained to be zero in order to 2liminate the
indeterminacies of the relative coordinate grid. For the initial Uo ore
can choose the identity matrix with zeroes instead of ones in the approp-
riate diagonal places (e.g. in the simulations of chapter 5: corresponding
to all erroré of member 1 and to the North error of member 2).

Plots showing either the trace of Sn or the square root of one of its
diagonal elements, will be presented in the next chapter. The meaning of

the former has been shown. The meaning of the latter is:
11,1/2 1ky2,1/2
(s1h/2 - 0z / (4. 20)

that is, the root sum square value of a given error, summed over the set

of independent unitary initial conditions.
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This chapter has presented the equations for the error covariance
in an ownstate community; it has also shown that the equations for the
covariance of a linear system can be interpreted as a test for stabil-
1ty as well. Both results will be used in the simulations presented

in the next chapter.
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CHAPTER 5

SIMULATIONS OF OWNSTATE COMMUNITIES

5.1 Introduction

This chapter has the purpose of complementing the analysis of Chapters
2 and 3 with the presentation of a few simulations. They will be used to
i1lustrate some of the analytical results about fixed-rank hierarchies, and
to show a comparison with the two other kinds of organization (democracy
and covariance-based hierarchy). The simulafions are based on a simplified
model and must not be interpreted as a validationvof the analytical
results, but rather as an illustration of them. In order to make the simu-

lations more significant, the equations derived in Chapter 4 will be

used.
At the end of the chapter, conclusions will be drawn about the feasi-

bility of ownstate communities.

5.2 Simulation. features

The truth model of the simulations featured a community of four mem-
bers in a two-dimensional Cartesian coordfnate grid. Earth curvature was
neglected, and so was the altitude dimension (for whose estimation mutual
rangings are expected to be of 1ittle effect in many applications). The
members were supposed to havereach a dead reckoner and a passive ranging
facility, including a clock. No particular modeling hypotheses were made
about this hardware; the dead reckoners' indicated positions and the
clocks' indicated times were supposed to be corrupted by random—ﬁalk

errors.




The typical ownstate vector x1 had three elements: the East and North

errors of member 1's dead reckoner and the phase error of its clock, in
that order. The discrete-time difference equation was eq. (2.11) with
i

vn = 1. The driving noise covariance was given the value:

o': =((10 m)2/sec)1 (at, sec) (5.1)

where Atn is the interval between discrete times n-1 and n. There are
exceptions to eq. (5.1) which will be discussed below. The signal propaga-
tion speed was modeled as constantly equal to the speed of light in a
vacuum. Clock errors were quoted in range-equivalent units. 1In these
units 1 m is equivalent to 3.3 nanosec.

In order to avoid unpleasant nonlinear effects, the geometry vector
was computed as:
j J

h1d x!- ’.‘J, y'- Yy,
- diJ diJ

-1 (5.2)

where x, y, d are actual coordinates and distance. In practice, this
feature cannot be realized; the members will compute the geometry vectors
using their own ani the source's best estimates of position,

The measurement noise variance was:

- (10 m? (5. 3)

and the source uncertainty weight ?:j was computed with eq. (2.9).

The initial error covariance was given the value:

A km)? 1 | (5. 4)




Again, see below for exceptions. In runs where a sample of error was
simulated, its initial values were plus or minus 1 or 2 Km.

The four members were supposed to broadcast at intervals of at = 3
‘sec, and in order of their numbering (first member 1, then member 2, then
3, then 4, then 1 again, and so on). Consequently, the schedule function,

eq. (2.15), was:
J = n mod 4 (5.5)

The indeterminacies of the relative coordinate grid were eliminated by
choosing member 1 as both time master and navigation controller, and member
2 as end-of-baseline. For this purpose, all the errors of member 1 and the
North error of member 2 were sef identically to zero. That is to say, the

following exceptions to eqs. (5.1) and (5.4) were made:

1
Qn = Po =0 (5.;6)
2 . 2
Qh = diag (100 At, 0, 100 At) m (5.7)
(with At in seconds)
P2 = dtag (1, 0, 1) Kkn? (5. 8)

Besides modeling the operation of the ownstate filters, the simulation
also computed the actual covariance of the error. This was done, in accor-
dance with the analysis of sect. 4.2, with eqs. (4.6), (4.8). The reader
will soon see how much the actual error covariance may differ from the

filter-computed one, which follows egs. (2.20) to (2.22).
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The plots that follow show:
(i) a sample of error, labelled e;
(11) plus and minus the filter-computed standard deviation of the
error, labelled L
(iii) plus and minus the actual standard deviation of the error,
labelled gy

Abscissae are in seconds. The ordinate unit is 1 Km for position errors

and 1 Km range equivalent (about 3.3 usec) for clock phase errors.

5.3 Simulations of a static community with a fixed-rank hierarchy

The first point to be shown is the effect of the flight path
condition, sect. 3.6. In a two-dimensional problem, and in view of the
lemma of sect. 2.2, that condition becomes: there must exist an integér N
such that every set of N consecutive rangings contains three different
lines of sight, which do not become in time indefinitely close.

An obvious way of not meeting this condition is to have 4 fixed-rank
community with no relative motion. Such is the case presented in fig.
(5.1) to (5.3). The geometrical arrangement consists of four stations
sitting at the corners of a 20 Km square (1ike in the initial geometry bf
fig. (5.11)). The ranks are distributed as follows. Member 1, master and
controller, has first rank (as required by hyp. (ii) of theorem 1, sect.
3.4); member 2, end-of-baseline, has second rank; both members 3 and 4 have
third rank.

The figures, plotting the errors of members 2, 3 and 4 respectively,
bring clearly forth the consequences of the lack of observability. Member
2 ranges only to the master. The master has no errors; therefore member

2's filter model is correct, and its computed and actual error covariances
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Figure 5.1(b). Static community. Fixed-rank hierarchy. Clock error of member 2.
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agree. The first ranging correlates almost completely its East and clock
errors. The following rangings, all taken along the same line of sight as
the first, could, at most, improve this correlation, but cannot separate
the East and clock errors. Actually, since the measurement noise is pretty
small, there is no noticeable improvement after the first ranging.

Members 3 and 4, too, get from the master almost all the information
they can get in their first ranging to it. In addition, they also range to
member 2, and here an interesting effect shows. Member 2 has nonzero
errors. Members 3 and 4 interpret them as a measurement noise. The
filters of members 3 and 4 average this supposed noise and, therefore,
their computed covariance goes down at every ranging to member 2, until a
steady state is reached. Nhat.hapbens really is that only the first
ranging of member 3 to member 2 is beneficial; the following ones increase
the actual error covariance. As for member 4, not even its first ranging
to member 2 is beneficial; the actual error covariance increases at every

ranging.

5.4 Static communities with other organizations

A democratic community and a covariance-based hierarchical community
werc simulated under the same conditions as in sect. 5.3.

The democratic community, it must be remarked, does have one-by-one
observability, since every member ranges to the other three but this does
not guarantee community observability or stability. Figures 5.4 to 5.6,
representing the error of member's 2, 3 and 4 show large oscillations,
with increasing amplitude and a period of about 420 sec (or 35 rounds of
broadcast); 9, Tollows the oscillations of the error sample faithfully

(with doubled frequency, of course). The filters are unaware of the
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oscillatory pattern and exhibit instead, a steadily decreasing computed
covariance. This is the kind of behavior other authors have reported for
the errors of a democratic organization.

A covariance-based hierarchical community is an interesting case,
because one does not know, a priori, which rangings will be accepted and
which will be refused, anu, therefore, whether there will be one-by-one
observability or not. The source selection logic used in the simulation
consisted in comparing the trace of the receiver's error covariance matrix

with the trace of the source's. The ranging was incorporated if:
i J
tr Pn > tr Pn

i and j being the indices of receiver and source, respectively.

Figure 5.7 plots the East error of member 2 for the first 5 minutes.
Member 2 usually refuses rangings other than to the master, and has,
therefore, no observability. Alterations of this pattern occur occa-
sionally at t = 45 sec, 129 sec and 225 sec, when member 2 agrees to range
to member 3; the first of these rangings is beneficial, the others make the
error worse. Between these occasional rank reversals, the behavior is
quite similar to that of a fixed-rank hierarchy (fig. 51).

Now look at fig. 5.8, which plots the same error over a duration of 15
minutes. The sbarse rank reversals (i.e. member 2's ranging to members 3
or 4) give rise to an unmistakably oscillatory pattern thét looks 1ike the
one of fig. 5.4 (democratic organization).

Oscillatory behavior‘is also evident in the case of members 3 and 4,
who;e errors are plotted in fig. 5.9 and 5.10, respectively. Member 4
usuaily ranges to member 3 (and to the others); member 3 ranges to mem-

ber 4, infrequently (every 40 or 50 seconds).
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5.5 Dynamic communities

It was remarked in sect. 3.6 that motion will give one-by-one obser-
vability to a fixed-rank community. In particular, there is observability
if either the master or ali the second ranks move around. The simulation
discussed in this section had member 2 (the only one of second rank) moving
back and forth, as shown in fig. 5.11, at a little above the speed of
sound. The remainder was 1ike in sect. 5.2,

In a fixed-rank community (figures 5.12, 5.13, 5.14, showing the
‘errors of members 2, 3 and 4) the presence of observability causes a marked
improvement. Error covariance goes down to a steady state (modulated by
the 300 sec back-and-forth motion of member 2). When the separation of the
three components of the error occurs it is marked by the sudden decrease of
the error covariance from an initial-condition dependent value to a steady-
state value,

Member 2 (who only ranges to member 1) experiences this change when
the angular velocity of its line of sight to member 1 is greatest (at about
180 sec). Member 4 (who ranges to members 1 and 2) soon benefits from the
improved accuracy of its rangings to member 2, Member 3's accuracy also
shows some improvement in this same time period, but the steady state is
reached later, at about 330 sec, when the angular velocity of its line 6f
sight to member 2 is greatest.

This case has present the sufficient conditions for community
stability: fixed rank hierarchy and one-by-one observability and
controllability. The simulation results do show a stable behaviour.

A democratic community, under the same conditions, shows, instead,
still an uhstable oscillatory behavior. The errors of members 2, 3 and 4,

plotted in fig. 5,15, 5,16 and 5.17, show this pattern. The waveform is
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Figure 5.12(a). Dynamic community. Fixed-rank hierarchy. East error of member 2.
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Figure 5.13(c). Dynamic community. Fixed-rank hierarchy. Clock error of member 3.
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odd and may result from the modulation of a proper oscillation by the
1/300 Hertz geometry change.

A covariance-based community (errors in fig. 5.18, 5.19, 5.20) behaves
much 1ike its fixed-rank counterpart. Member 2 seldom ranges to anybody
eéise than the master, and the disturbances aroused by these rank reversals
die out quickly (unlike the static case). Their insurgence and decay is
clearly visible, because rangings to a non-master cause 7, to be different
from O Member 3 usually ranges only to members 1 and 2; member 4 ranges
to everybody. Thus, the community behaves almost as if it had a fixed-rank
hierarchy, with one member per rank.

These plots exemplify a kind of behavior quite different from the one
observed in sect. 5.4 for the same organization, and indicéte that both

the partisans and the opponents of covariance-based hierarchies might be

right.

5.6 Time-Domain tests for stability

An illustration of the proven stability of a fixed-rank community
satisfying the flight path condition, was obtained by running the same case
of sect. 5.5, with member 2 flying back and forth. A different feature was
introduced, however; member 4 was given the fourth rank, allowing it to
range to member 3 (which still had the third rank). The test derived in
section 4.4 was used.

Figure 5.21 shows tr Sn' As expected, it converges to zero faster
than an exponential function. This convergence is not monotonic; in
particular, there is a large increase at about t = 300 sec. The explana-

tion of this behavior is found by Tooking at the three following figures.
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Figures 5.22, 5.23, 5.24 refer, respectively, to member 2's clock
error, member 3's North error and member 4's East error. These errors have
been selected as particularly representative each of one member's behavior.
The root sum square value of the unforced error (summed over a set of
linearly independent unity initial conditions) is labelled O The filter-
computed error standard deviation o is also shown, so that the reader may
see what the filter activity is; 9, is not expected to go to zero.

Member 2's g decreases monotonically; member 3's has a peak; member
4's has many peaks. The reader is asked to remember that a monotonically
decreasing input to an exponentially stable linear system gives rise to a
response with a peaked transient (see, for instance, the proof of lemma 5
in sect. 3.3). Consider, besides, that the input tc a member's estimation
errors are the errors of the members it ranges to (eq. (3.18)). Member 2
ranges only to the master, which has no errors; the unforced decay of
member 2's errors is monotonical. Member 3 ranges to the master and'to
member 2; its errors are expected to be the sum of a monotonically decaying
function (the unforced response) and a function with a peaked transient
(the response to member 2's errors). This is exactly what fig. 5.23 shows.
Member 4, finally, ranges to members 1, 2 and 3. Its transient will be
complicated, with a peak as a response to member 2's monotonical error, and
many secondary peaks as a response to member 3's peaked error. All this is
punctually verified in fig. 5.24.

This property probably indicates the necessity of a trade-off. On one
hand it is advisable to hierarchise a community with as many ranks as
possible, in order to increase the number of accepted rangings, and to

reduce the probability of some members having to depend only on far-away
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sources. On the other hand the error transient gets worse and worse as one
goes down the hierarchical ladder.

The same test was applied to a democratic community, with identical
geometry. Figure 5.25 shows tr Sn; The pattern is unmistakably that of an
unstable oscillation, with a 1/300 Hertz component (the back-and-forth
motion of member 2) and a proper frequency component. Mo need to show the
several o¢s which only repeat the same pattern.

A covariance-based community under the same conditions proved, in
sect. 5.5, to behave much like a fixed-rank hierarchy. This is confirmed
by the stability test. Figure 5.26 shows tr Sn. The increase is larger
and more jagged, the secondary peaks are more visible, but otherwise it
resembles fig. 5.21. The same is true for the several e which are not

shown.

5.7 Conclusions about ownstate filter communities

The behavior of an ownstate filter community has proved to be criti-
cally determined by its source-selection logic. Therefore, there will be
separat. conclusions for the three main kinds of organization.

(a) Fixed-rank hierarchy

This organization has been proved exponentially stable under mild
observability and controllability conditions, which are insured by the pre-
sence of motion. The'simulations shown in this chapter confirmed and
illustrated the analytical results.

(b) Democracy

The general opinion is that a democratic organization is inherently

unstable. Simulations and flight tests for PLRACTA, simulations for JTIDS
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by several authors, and the simulations by the present writer, all support
this opinion.

The stability tests presented here have not the same cogency of an
analytic proof. However, begging the question of theoretical instability,
it can be said that a democr;tic organization has an unacceptable behavior,
which looks unstable over operative durations.

(¢) Covariance-based hierarchy

This organization looks particularly impervious to analysis, since one
does not know what the pattern of source selections will be; it surely
varies from case to case. In both examples simulated here, the members
settled down spontaneously into a one-member-per-rank hierarchy, with only
rare reversals of this pattern.A This may be sheer chance, of course, and
other cases may, instead, verify Rome and Stambaugh's conjecture.

These authors speculated in Ref. ( ) that a covariance-based
hierarchy would, in the long run, behave like a democracy: They argued
.that the computed error covariances of most members, including masters,
would in time drop down to the same level; after that, the source selection
Togic would no more enforce a hierarchy and rank reversals would happen
continuously.

An either-or discussion can be attempted. A covariance-based
organization may

i) either have frequent closed-loop rangings;

(i1) or it may approximate a fixed-rank hierarchy with only rare rank
reversals.

In the first case the behavior approximates that of a democracy, and

shares the same negative judgment. The second case can-be analyzed as a
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fixed-rank hierarchy into which perturbations are introduced now and then.
Consequently, two subcases are possible:

(i1-a) either the approximated fixed-rank hierarchy has a strong
asymptotic stability; in this case (exemplified in the dynamic example of
sect. 5.5) the perturbations will die out and the génera1 behavior will be
like a fixed-rank hierarchy's, but possibly with a longer transient;

(ii-b) or the approximated fixed-rank hierarchy will have a weak
asymptotic stability, or none at all; in this case the perturbations will
not die out soon enough, and their combined effect will create a general
pattern like a democracy's, although on a longer time-scale (this is preci-
sely the case of the static example of sect. 5.4).

There will be intermediate cases between these extremes. The probable
conclusion is that a covariance-based hierarchy will behave, at
its worst, like a democracy, and, at its best, like a fixed-rank hierarchy.

(d) General conclusions

The only kind of organization that provenly satisfies the basic
requirement for a filter's feasibility (i.e. is asymptotically stable), is
a fixed-rank hierarchy with a master.

As for covariance-based hierar;hy, it is Tikely that it will behave
quite similarly to a fixed-rank hierarchy, if there is strong one-by-one
observability. When this is the case, covariance-based hierarchy has the
advantage of being able to adapt automatically the ranks to the situation.
However, all rank reversals will introduce perturbations, which, if they do
not die out soon, may add up and produce instability. Choosing covariance-
based over fixed-rank hierarchy involves a risk and requires a value

judgement.
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CHAPTER 6
MEASUREMENT-SHARING COMMUNITIES WITH UNCOUPLED FILTERS

6.1 Introduction

It was announced in Chapter 1 that, besides analyzing ownstate
communities, this work would present alternative solutions. One such
alternative so]ution js described in this chapter.

The main features of the proposed solution are:

(i) every member shares its measurements to the community;
(ii) the members' filters are uncoupled with one another;

(iii) every member's filter models a reduced state vector, which
includes not only its own states, but also some of the other
members' states; namely, their positions and clock phases.

Sections 6.2, 6.3 and 6.4 present reasons for adopting, respectively,
these three features. Section 6.5 presents the filter equations. T@e
remaining sections go into a few practical details, giving examples of

state vector composition and message contents, scheduling and length.

6.2 Advantages of measurement sharing

Sharing measurements is costly in terms of communication requirements,
but it involves remarkable advantages.

A filter which knows all the rangings that are taken in the community
has observability even in a static geometry (apart from a few exceptions).
Consider that, if m is the number of members, m(m-1) rangings are taken
during every round of broadcasts. The unknown variables the rangings are
supposed to determine are four per member (clock phase and three-dimensional

position) minus the seven that are unobservable (rigid translations and rigid
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rotations of the whole community, an equal phase shift of all clocks). It

easy to verify that:
m (m-1) > 4m-7 (6.1)

for all m. If one considers a planar case, which implies three unknowns

per member and four unobservables, one finds, instead:
m (m-1} > 3m-4 (6.2)

the equality being valid for m = 2. In both cases the number of rangings
equals or exceeds the rnumber of unknowns. Apart from a few exceptional
geometries (e.g., all members on the same plane, for the three-dimensional
case; all members on a line, for the planar case) the rangings taken during
a round of broadcasts will be sufficient to make positions and clock phases
observable, whether there is motion or not.

An illustration of the effects of increased observability is provided
by Fig. 6.1 to 6.4, They result from the simulation of an optimal central-
jzed filter, which knows all the measurements as soon as they are taken, an
models all state variables. The other features of the simulation are like

in the static case of Chapter 5 (see Sections 5.2 and 5.3). Figure 6.1

is

d

shows the errors of member 2, and is to be compared with Fig. 5.1, 5.4, 5.8

(i1lustrating the same errors in the three kinds of ownstate community

organizations). A low-valued steady state is reached immediately after the

first 12 sec round. The other figures, 6.2 to 6.4, show the errors of mem-

bers 2, 3 and 4 on a more detailed scale. The dynamic case of Chapter 5

was also simulated; the results are almost identical. Figure 6.5 shows the

errors of member 2 and should be compared with figures 5.12, 5.15, and 5.18.
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6.3 The use of uncoupled filters

The subjects of this section are: wunder what conditions ranging-

aided navigation can be performed by uncoupléd filters, and what the

advantages are.

i

Calling £ the error state vector of the i-th filter of a set, its

being uncoupled from the others is expressed by

. h
Gr Gopo g oy, (6.3)

where gﬁ and xﬁ have the usual meanings (driving noise and measurement

noise, respectively). Equation (6.3) states that there must be no

i £J

dependency of € on £, for j#i . Since the estimates are

functions of the measurement innovations, this means that the innovations

T and the noise, but not of £J . Ranging inno-

must be functions of &
vations (see Eq. (2.4)) are functions of position and clock phase of both
source and receiver. The consequence is that, if a member's filter has to

be uncoupled from the others, it must model positions and clock phases of

all possible sources and receivers, that is, of all members.

The possible advantages of having uncoupled filters come from the fact
that they can be analyzed one by one. The theory of an isolated filter is
better known than that of set of coupled filters. Sufficient conditions for
stability are given by the Deyst and Price theorem; other properties are also
well known,

The ownstate community is an example of the consequences of filter

coupling. Equation (2.28) showed that the error of a ranging source is an

input to the difference equation for the error of the receiver, This
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coupling causes the long transient of hierarchical communities and (very
1ikely) the instability of democratic communities. In a community whose

filters are uncoupled, instead, hierarchy is not necessary for stability.

6.4 Advantages of retaining all measured variables

The filters proposed in this chapter drop all the state variables of
other members, except those that are directly measured by the rangings.
One advantage of retaining those variables appeared in the last section;
namely, it allows every member's filter to be uncoupled from the others.
But there is another advantage, which will be shown in this section.

A Kalman filter whose state vector (otherwise shortened with respect
to reality) retains all the méasured variables, is equivalent to a filter
with a complete model, as far as measurement incorporation is concerned.
Its only fall from optimality consists in incorrect propagation between
measurements. This proposition will be better explained and proved
presently.

Consider a linear system with linear or linearized measurements:

= . ! =
X =¥ x Mo E(ww ') =068 (6.4)
Spp, = Mnln- tv, i E (v ') = Rnanm (6.5)

and suppose a filter estimates only the shortened state vector:

E = Sx (6.6)

The projection matrix S has either the form

s = [10] (6.7)
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or can be derived from this expression by permuting columns. If one supposes
that all measured variables are retained, the filter must be able to describe

the innovations as functions of £

Sp, = Hng-n-l A (6.8)
Comparison of £qs. (6.5), (6.6) and (6.8) gives:

M= HS (6.9)

Call P and X the computed covariance matrices of the optimal and shortened
filters, respectively.

Lemma., If the shortened fi]ter's estimate and covariance matrix are
optimal before a measurement incorporation, they are optimal after it; that

is,

if:

o
I
%
x

-
>
n

sp. S (6.10)

then:

by
"
)
>
-
><
"

Sp s (6.11)

Proof. Plug Eqs. (6.9) and (6.10) into the measurement incorporation

equations of a Kalman filter:

"~

s . . -1 _
By =&+ XL W (H X HUR )T gp =
~ -1
= gt Ty =
Sx _+ SPn_S Hn(HnSPn_S Hn+Rn) 8p

-N n
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=S

ot ' ' -1 =
X, + P MY (MP MR )T o

n*nn-n n n

-Sln

-1
= - [ ' =
X=X <X HI(H X HeoRO)TH X

' iyt -1 (-
(H SP_S'HU4R )°H SP__S

= ' 1
-SPn_S SPn_S Hn nSPn-

= - ] ] -1 l=
S(P =P MI(M P MR )TM P )S
=Sp S*
n
Q. E.D.

The estimate and covariance matrix of the shortened filter fall away
from their optimal values in their propagation between measurements. The
shortened filter uses SYS' as transition matrix. Supposing that _g and X

were optimal before the propagation:

»~

En-1 T %41 b X
they become:

.A - 1 - A - A
=SSy T SYRSTSXy g F S¥ Xy T XKy

kewo
3
i
I

><
i

' '3 (-
= Sy S'X SY'S' + QS

1
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= ' IQyuic! N '
SYnS SP_ .S SWnS + SQnS #

n-1

] ]
#SY P wns +5Q,S

-1 | SP".— S:

The deviation from optimality «comes from the presence of the matrix

S'S = [ég] post-multiplying V¥ .
In order to reduce this effect, an established engineering practice is to

propagate the error covariance matrix with the following equation:

Xn- = oan 1¢ + SQ S' + Q (6.12)

where f% is an equivalent noise covariance meant to compensate for the

lost terms and ¢ is an appropriate approximation of S¥S'.

6.5 Equations for the shortened filter

The features of a filter with shortened model have'already been
explained and motivated in Sections 6.1 to 6.4. It remains to summarize its
equations for our case,

The necessary symbols will now be introduced. Call 5? the ownstate of

member i. Partition it as follows:

eyt (6.13)

where the partition gﬁ is defined in such a way that a ranging of i to j is

a function only of gﬁ and g?; the innovation is:

i '~ J'=i ij
an hJ _g_n 2 v (6.14)

-159-



The ownstate difference equation is:

el vl (6.15)

which can be partitioned into:

(6.16)

The driving noise covariance and the measurement noise covariance are:

i3y o aid

E (Enﬁm ) = U ¢nm (6.17)
ij okl ]

E (vn Vi ) = P 8 nmS ik (6.18)

A noise covariance matrix for the whole community can be defined as:

i )
Q11 . le
Qn s 1... oo (6.19)
le . Qmm
= dn

Likewise, a global measurement noise covariance matrix is:

_ i3 P 1 +1, ] i
Rn = diag (rnJ, cee s rg ’J, 0, r: J, cee rnJ) (6.20)

j being the member that broadcasts at time tn.
Now the filter equations can be given. The state of member i's filter

is:

s | ] ] 21! . ' '
g [L‘ 2, e 2 MY _z_"‘] (6.21)
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The propagation between measurements follows the equations:

NI

2o=elel (6.22)
IR R

K=ol o' s s+ (6.23)

where S is the projection matrix, defined 1ike in Section 6.4, 5: is the

equivalent noise covariance, and:
ia i
o A diag (v ,LI, ... , I) (6.24)
The incorporation of all rangings taken at time tn, whose innovations can
be aggregated into one vector:
i3 i1, i+1,3 _ .
so, = [oo'd, o, 63 1Y 6, Ll ey (6.25)

follows the usual extended Kalman filter equations:

21 ai i

_§n = _§_n_ + Knd_gn (6. 26)
Koox W oy v e R (6.27)
n n-n nn-n n ‘
i_ i,14,1

Xn = (I-Kan)X n- (6.28)

The measurement matrix H' is defined implicitly by:

i 1j mj
sp, = HE + vy oee o VRO (6.29)

and is composed by the geometry vectors h and g of Eq. (6.14) as well as

by null partitions.
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6.6 Example of performance of a shortened filter

The practice of dropping state variables from the filter model, and
compensating for their absense with an equivalent driving noise covariance,
is well established. It is known that, in many cases, if the equivalent
noise covariance is opportunely chosen, w{th regard to the dynamics of the
dropped variables and to the duration of the mission, the shortened-state
filter performs almost as well as an optimal one.

Two simulations are plotted in Fig. 6.6 to 6.9 which illustrate the
success of this approach in our application.

The truth model of these simulations included four members with the
same geometry as in the static case of Chapter 5; horizontal position
errors and clock phases were modeled, and their first derivatives
(horizontal velocity and clock frequency errors) were modeled as well. The
indicated velocities and frequencies (from dead reckoners and clocks,
respectively) were corrupted by a random-walk noise, with incremental

variance:

°3 = (3-10'5 Km/sec)2

over the At = 3 sec interval between measurements. This level of noise is
meant to provide a crude model of the effect of the Schuler oscillation on
the velocity errors of an inertial system; clock frequency noise was chosen
at the same level for simplicity. Positions and clock phases were modeled to
be the correct integrals of indicated velocities and clock frequencies, with
no additional noise. The relative coordinates were defined like in the simu-
lations of Chapter 5. As a consequence, there was no driving noise for the

rates of the states which are zero by definition.
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Centralized optimal filter including rate states.
East velocity error of member 2.
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Rangings were corrupted by an additive noise with variance:
r= (10'2Km)2

Two filter models were simulated. The first was a centralized filter,
modeling all member's state variables and provided with immediate knowledge
of all rangings. The filter noise model matched the truth model. Initial
errors had variances of (1 km)2 for positions and clock phases,

(0.5 m/sec)2 for velocities and clock frequencies. The values of the ini-
tial errors were chosen pseudorandomly, according to the variances given
above.

The second filter model included four different filters, one
per member. Each member modeled all its own variables and the position
errors and clock phases of the others, but not their velocity or clock fre-
quency errors, The unmodeled increase of position errors and clock phases,
due to the dropped velocity and frequency errors, was compensated by ‘attri-

buting them a random-walk error with incremental variance:
of = (10'4Km2/sec) (at sec)

The standard deviation of the position error due to a random walk of such
intensity matches the one produced by the initial velocity error at t = 400
sec. These shortened-model filters also had knowledge of all rangings as
soon as they were taken,
The parformance of the shortened-model filters was very similar to

that of the optimal filter. Figures 6.6 and 6.7 show the performance of the
optimal filter. Figure 6.6 contains the East errors of members 2,3 and 4;
Fiqure 6.7 contains the Eaét velocity errors of the same "..wers. Figures

6.8 and 6.9 show the performance of the shurtened-modei filters; they
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contain, respectively, the East errors and the East velocity errors of mem-
bers 2, 3 and 4. In these plots the estimator is the same member whose
variable is estimated. The plots also show plus and minus the computed
standard deviations; they are in good agreement with the errors.

This example is not meant as a validation of the estimation concept
proposed in this chapter. A validation would require a more complicated
truth model, including all the relevant variables; besides, the delay with
which measurements are received and incorporated would have to be modeled
as well. Such simulations would be necessary, if the proposed concept were

adopted for some application, but they are beyond the scope of this work.

6.7 Example of state vector composition

This section contains an example of how the ownstate vector gf and its
partitions gj and xj might be composed. This question must be touched on,
because it is essential for the feasibility of the solution proposed in
this chapter, that si may have not too large a size. This implies, in turn,
that 5? must have a much smaller size than xj.

The vector 5}, for the application that has been discussed, would
typically include the errors of member i's dead reckoner, clock and
altimeter. Under each of these categories, enough variables must be
included to model adequately the dynamics of all major sources of error.
For instance, an inertial dead reckoner may require the modeling of posi-
tion errors, velocity errors, attitude ("platform") errors, and gyro
drifts; three of each kind gives a total of twelve variables. A clock
model requires at least two variables (phase and frequency errors). One

variable is usually enough for the altimeter error.
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There is a delay of one round of broadcasts between real time and filter
updates. That length of time is usually a constant of the TDMA network, and
does not depend on the number of members. For JTIDS, for example, it is of

the order of magnitude of 12 sec.

6.9 Contents of the p-messages

This section examines in detail what'the messages must contain. The
reader will recall that the aim of the arrangement proposed in this chapter
is to enable every member to incorporate all the rangings that are taken,
and to do so without coupling its filter with the other filters. Knowledge
of all rangings is ensured by having each member include in its message all
those it took since its last broadcast. In order to give every member the
ability of computing the expected values of the rangings, it may be
necessary to include other information as well. In order not to have any
member use other members' estimates (i.e., in order to avoid filter
coupling), one must be careful about choosing this additional information.
These are the subjects on which this section elaborates.

In case navigation is performed only by means of rangings, without dead
reckoners, no in formation needs to be exchanged other than the rangings'
values. Every member estimates the position and clock.phase of every other
member. Therefore, every member can compute the expected value of all
rangings using nothing but its own estimates.

In the more typical case in which rangings are integrated with dead
reckonings, the situation is different. What every member estimates is not
the othe; members' positions, but the position errors of their dead
reckoners. A member can compute the expected value of rangings only if it

knows some of the output of the other members' dead reckoners.
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A detailed discussion is made easier by the introduction of a few
symbols. Call Eﬁ a vector including member i's position, in relative
coordinates, and commnity time. Then define:

5} the actual value of the vector just defined;

jf the value indicated by member i's dead reckoner and clock;

Ei%_j‘:ﬁ the dead reckoner and clock errors; it is the same Ef defined
in Section 6.5;
39K nember k's estimate of gj; it is a portion °f.§F;
gf’k member k's error in estimating z'; it is a portion of Ek;

g"k§§f+§j’k the best estimate of 5} available to member k.

a1,i

One must remember that, usually, z *' is zero. The updates are added

directly to gﬁ, by appropriately resetting one's dead reckoner and clock.
The expected value of the ranging p;J, as computed by member k, is a

function of é;:k and §g:k. These two must be functions only of member k's

estimates. Combining the two expressions:

“1,k - ""1 “1,k . “i’k - _'1 Ai’k
Bn- T FIo b Bl TR Yl
one finds:
i,k _ ai,k —i - | A1,k aiLk
Ll gl g g) (22" -2z.2)) (6.30)

The third term on the right-hand side can be calculated by propagating the

filter states gf’k. The second term
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AT (6.31)
m:st be provided by member i. Notice that, although both terms on the
r.h.s. of Eq. (6.31) depend on member i's estimation error, their dif-
ference does not;:Z;_ is the dead reckoner's indication before the new
correction is applied. Filter coupling is thus avoided.

Consequently, the contents of member i's message must be:
(i) the values of the rangings it took since its last broadcast;

(ii) for each time interval between events, the displacement AE;

indicated by the dead reckoner before corrections were applied,

The 42; defined above includes a clock component as well, but in this
case it is more convenient to broadcast the resetting of the clock, rather
than the elapsed clock time. The elapsed clock time equals the scheduled
interval between events (which is known to all members) minus the latest
clock resetting.

The presence of a practical fnconvenience could require a change in
the nature of item (ii). If member k should miss a message from member i,
it would lose nof only the latest rangings taken by member i but also the
dead-reckoned value of its displacement. Member k's filter would then be
stuck with a large estimation error, from which it might be unable to
recover. The inconvenience is obviated if member i broadcasts not &Zz

but its running sum:
n
i

—i
(Eh) uncor 2 zzl 45& (6. 32)
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The "uncorrected" dead-reckoned position defined by Eq. (6.32) is what the
dead reckoner would indicate if it had never been reset. Upon receiving
it, member k can find the difference between its present value and the most
recent value known to itself. In this way, no large estimation error is

introduced, even if one or more messages in a row are missed.

6.10 Evaluation of the size of a p-message and comparison with tne ownstate

case.

This section will try to evaluate the length in bits of a typical
p-message, both for the community described in this chapter and for an
ownstate community.

The numbers of bits necessary for the transmission of a given datum
are symbolized as follows:

c for the clock resetting;

p for the vector (Zi)uncor or 4;1 (without clock component); :

r for a ranging;

q for the position-and-cliock-phase partition of a covariance

matrix.
With these symbols, the length of a p-message, according to the analy-

ses of this sectinn and of Section 2.3, is, for an ownstate community:

2 =p +q (6.33)
and, for the community of uncoupled filters defined in this chapter:

2, = (p+c)m + r (m-1) | (6.34)

where m is the number of members.

The values of p, q, r will be now estimated. For a ranging, supposing
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a LSB (Least Significant Bit) value of 1'm and a MR (Maximum Range) of 100
Km, one obtains r = 17,

For the clock resetting, assuming a LSB of 1/512 mile (range equavalent)
and a MR of 1 mil~, we obtain ¢ - 10,

For horizontal relative position, taking the LSB to be 1/512 of a mile
and the MR to be 1024 miles, one needs 20 bits per each coordinate
Altitude, assuming a LSB of 25 feet and a MR of 50,000 feet, requires 11
bits. The total is p = 51,

The covariance matrix partition has size 4x4, with 10 independent
elements. It may be assumed that a half byte per element is enough. This
gives q = 40.

The following table gives the message lengths for the solution pro-
posed in this chapter, in function of the number of members:

m: 3 4 5 6 7 8 9

L 217 295 373 451 529 607 695
For comparison, an ownstate community has:

29 = 91 .

The comparison shows that this chapter's proposal involves considerably
Tonger p-messages than an ownstate community, but still their length is not
forbidding if the community is not a large one.

Consider, for instance, the JTIDS application. According to ref. (4),
every round of JTIDS broadcasts contains 1536 time slots, whose capacity is
545 bits each, for a total of 837, 12b bits. Of course, only a fraction of
this channel capacity may be used for navigation purposes. Still, a nine-
member community would require only 6165 bits, or less than 1% of the total

capacity. This seems quite feasible,
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6.11 Conclusions

A measurement-sharing community of uncoupled filters promises quite a
better performance than an ownstate community. The expectatioh of a better
performance is justified by its advantages in terms of observability and
filter decoupling.

The fact that every member can use all the rangings gives observa-
bility even in a static geometry. Motion is not necessery, and a satis-
factory estimate is reached sooner than in an ownstate community.

Filter decoupling also affords advantages. Community stability is no
more an issue. No hierarchical source selection has to be introduced. The
members' filters are only required to be stable one by one, and, if any of
them are not stable, the others are not affected.

The performance of each filter seems to be close to optimality, in spite
of the incompleteness of the model. However, this result must be confirmed
(or qualified) with more realistic simulations than the one shown in
Section 6. 6.

The price to be paid is a larger size of the filters' state vectors
and of the p-messages. Both sizes increase linearly with the size of the
community, whereas they are constant in the ownstate case. It is possible
that, for many applications, there may be a certain critical community

size, beyond which the concept proposed in this chapter becomes unfeasible.
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CHAPTER 7
THE COOPERATIVE OPTIMAL FILTER

7.1 Introduction

The "cooperative optimal filter" introduced in this chapter is a
decentralized estimation algorithm whose results are identical to those of
a centralized optimal filter. The centralized optimal estimates are
reconstructed‘by several processors working cooperatively and exchanging
information,

This method can be applied to the probiem of navigation aided by passive
rangings. The decentralized processors are identified each with a member of
the community. The required exchange of data is performed partly by means of
the usual p-messages, which also serve for ranging, partly by means of addi-
tional messages.

The plan of this chapter is as follows. Section 7.2 contains a review
of other methods that allow to decentralizedly reconstruct the centfa]ized
optimal estimates. It will be shown that their application field and that of
the method proposed here are complementary. Sections 7.3 to 7.5 describe the
cooperative optimal filter. Sections 7.6 and 7.7 describe how it could be
applied to our problem; in particular, a possible time schedule is proposed,
and the amount of data to be exchanged is evaluated. Conclusions are drawn
in the last section,

7.2 Other methods of decentralized reconstruction of the centralized

optimal estimates

The methods described in this section are those proposed by Speyer

(12) and by Willsky et al. (13). They will be taken out of the éontext
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for which they were proposed, and described in a way suitable for ap-
plication to an estimation problem similar to ours. However, most of the
original notation will be retained.

Spoeyer's method is described first. Consider a linear system:

= . "y =
-)—(n-Anln-l+En ’ E(E-v-vm) Qn'snm

with measurements partitioned among several local processors; processor

i knows:

. 1.3y 2 pf
i E(v.vY) Rnanméij

Each processor is supposed to have a complete model of the state vector X3
the Kalman filter based on this model is updated with the measurement subset
gﬁ, obtaining a suboptimal estimate 5}. Besides, each processor must also
have a data-dependent auxiliary vector gf, of the same size as x, which is
updated with the following equations:

i= i i i-ui ‘:i \
-ﬂn Fnhn-l * Gn (En ”nAnﬁn-l’

-
|

. -1
- Pn (Anpn-lAn * Qn) An

1 -1 i -1, -1
B Pn (Anpn-lAh * Qn) Anpn-l(Pn-l) An T

9
[

i -1
'Pn(AnPn-lAa * Qn)

where P and P' are respectively the centralized error covariance matrix
(supposing the incorporation of all measurements) and the error covariance

matrix of local processor i (supposing the incorporation of gﬁ only); they
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1 and the auxi-

known to all processors. Supposing the suboptimal estimateslg
liary vectorsﬂ1 are known for all i, Speyer shows that the centralized opti-

mal estimate can be obtained from:

A v fy-1 A i
En T % [Pn (Pp) Xp * 0l
Speyer's method is not suited for our case because the amount of com-
putations every processor must perform is probably than it would be with a

1 and ﬁﬁ must be updated with matrix

centralized optimal filter; both X
operations, and they are of the same size as the centralized optimal estimate
jg Besides, the amount of data exchange is also large; in our case, P and
Pi must be computed on line, and, therefore, processor i must share Pi to the
community, along with_i_1 and'ni. In our case, it makes more sense to share
the measurements and let each member compute the centralized optimal solution
by itself.

Willsky's method is an extension of Speyer's, but a few new features
are introduced. It will be described for the continuous-time case, as it

is done in Ref. (43 ). The local processors are allowed to have shortened

or aggregate models of the system. The true model is:
k(t) = A(t)x(t) + ds/dt ; E(ds(t) d8'(t)) = Q(t) dt &(t-1)
and the model used by processor i is:
)t) = afe)xi () + aslrae 5 € (al(t)ae’ (o)) = of(t)at s(t-v)
The measurement subset available to processor i can be described as a func-

tion of the true model:
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2y = clit)xce) + aylrat

or as a function of the local model:

vty = whexte) + aytrae

with
E (dy (t)dyd' (x)) = RI(t) dt 6(t-1) 64

Each processor has a Kalman filter patterned after its local model. The
centralized optimal estimate can be recovered under the following condi-
tion. It must be possible to find matrices Mi such that:

ct = yini
(Notice the similarity of this condition with the one given in Section 6.4,
Eq. (6.9), for the decoupling of the members' filters.) If the condition

is satisfied, any member that wishes to do so can reconstruct the optimal

estimates, by computing on-1ine the auxiliary vector £ (which has the same

size as the true-model state x) with these equations:

E o= Fe+ X
i
Fo=A-Jecterl)- 2!
i
k' = et (p1) 7" (pT) T -l (pT) 4wl eaTeale o)1

- PA'MT(pT)m opyie (piy-l

~-188-




P and P1 have the same meaning as in Speyer's method. If £ 1s computed and
all the local estimates 2} are shared to the community, the optimal

centralized estimate can be found from:

Reg+ ) 6’5", 6l enlt (pl)l

If applied to our cese, Willsky's method would be less burdensome than
Speyer's, The local model state vector_51 may be considerably shorter than
the complete state vector x; but still, a vector £ of the same size of x
must be updated and the error covariance matrices must be computed and
shared. The conclusions are the same as for Speyer's method.

The unsuitability of these methods to our problem is no disparagement
of their value. The, were conceived with different applications in mind.
Namely, cases where computational ability is unlimited, but the measure-
ments taken by each local processor cannot be shared to the community. Our
case has opposite features. Measurement sharing, although costly, can be
done, whereas the recursive updating of the complete state vector (or of an
equally large auxiliary vector) is not considered feasible.

The method that will be described in the next three sections assumes
unlimited ability to exchange data, but seeks to reduce the amount of com-
putations each local processor has to perform. Its applications should be

complementary to those of Speyer's and Willsky's methods.

7.3 Cooperative optimal filter: (a) generalities

This section and the following two will describe an original method of
reconstructing the centralized optimal (i.e., Kalman) estimate by several

processors working cooperatively. Each processor has full knowledge of the
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latest measurements, but 1imited memory and computational ability. In
particular, no processor has a full-sized state vector and error covariance
matrix, nor any full-sized auxiliary vector or matrix. Unlike the methods
quoted in the previous section, this method accepts an increased amount of
communication among the processors for the sake of reduced computations 1in
each of them. However, unlike Speyer's and Willsky's methods, it cannot be
applied to all systems.

The kind of system to which the method does apply will now be
described. Consider a linear discrete-time system driven by a stochastic

Gaussian unbiased input:

=y +w o E( (7.1)

W ') = Q.6
X n 2p-1 T ¥, ¥l ! = Wl

Suppose the single-step transition matrices have a block-diagonal structure:

s 1 2 m
¥ = diag (?h, ¥ seees wn) (7.2)

so that the state vector can be split up into m subvectors that evolve

without coupling:

] ] ] .
x' = [11 , 3(_2 »eeees X1 ] (7.3)
i_ i i i .
Lﬂ = ‘yn 5"-1 +£n ’ 1 = 1’2’ coe y m (7.4)
The gﬁ will be called ownstate vectors, for consistency with Chapters 2 to

4, Partition each ownstate vector further as follows:
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(7.5)

L
1=

call the gf coupled subsets, the xﬁ uncoupled subsets, and suppose each
scalar measurement is a function only of the coupled subsets of two dif-

ferent ownstate vectors:

iy ;s iy
aan = f(z,, 2)) + an (7.6)

so that the innovation is, to the first order:

ij _ 13" =i LN RS R B
Spp” =Ryt zp * g, 2 TV (7.7)
with

pld o 2ff -] E (7.8)

PP [P R azd | 22 = 3d

“n | n " &n “n|{=n S

i _ ad i _ ad

AR L4

The term vij is stochastic, with the usual hypotheses and notations. This
completes the description,

This kind of system fits well the case of dead-reckoned navigation
aided by rangings. The ownstates are made up of the errors of the dead
reckoner, the clock, the altimeter, etc. of each aircraft. They evolve
uncoupledly, and only a subset of them (position and clock phase errors)
are coupled by the measurements (rangings). .

Now other symbols will be introduced. The Error Covariance
Matrix (ECM) of a supposed centralized optimum estimator:
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<
np
m
—~

P11 P12 .
p21 P22 .
P =
n
Pml sz LN

o oikoa b ik ki _
with P " 2 E (5n X ) and Pn = P

ik’
n

Each block is further partitioned as follows:

ik Zik V1k

n

n =N °n
ik o g (31 k' )
Vn 2E (En In ) ’

ke e (gl %)
Vk'l' Q E (2:] ~k'

Besides, another partitioning will be used:

ik _ =1k aik
Pn'tﬁsp]n

obviously with:

r— —
71k
=ik .
P, 4 i ;
1

5ik

ne>

-192-

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)



The general structure of the cooperative filter will now be described.
There are supposed to be m decentralized estimators; eacn of them knows:
(1) sufficient data to compute all partitions of the transition
matrix ¥;
(i1) all the latest measurements and sufficient data to compute their
expected values; or, equivalently, all the latest innovations.
Here "latest" means "not incorporated yet." Although all processors have
full access to the incoming information, they are decentralized, because
each remembers a different portion of it. Namely, each processor updates
a different state vector. The typical processor i has the following

reduced state:

1 1 ] ] 3 ] ]
Ei é [_X_i ’ Zl 3 ooy zi-l Iy 21+1 9 eeey -EmJ (7014)

—n — — —

which includes all the i-th ownst-te, but only the coupled subsets of the

other ownstates. Processor i records and updates a main ECM:

rpi 3i1 -ﬁi,i-l T,—i,i+1 —P-im
(3 ' 3 -
Tﬂl z11 . .21,1-1 Z1,1+1 . Zlm
' ) o .0.. .... LN %:.].’m
Xi s E (-i ~i‘) _ Tﬁ,i-l z1-1,1 L Z1-1,1-1 Z1-1,i+1 4
n N -n ' . * .
34,1+1 z1+1,1 .. Z1+1,1-1 Z1+1,1+1 .. Zi+1,m
—. ' -
im Zml .. Zm,i 1 Zm,1+1 . Zmm
| _n
(7.15)
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and, moreover, a set of auxiliary ECM's:

ik _ o o=1 sk .
Py = E (%, 5 ) with k = 1,2,..., (7.16)

Figure 7.1 gives a graphic representation of the relationship of pro-
cessor i's main end auxiliary ECM's to the centralized ECM. The figure
also shows the ECM of an ownstate community member.

In the cooperative optimal filter, instead, the estimates and ECM's of
every processor are at all times portions of their centralized optimal

counterparts. In symbols:

_ ol i_
£, =S x ; Xn =S P S (7.17)
It is left to the reader to find the expression of s! and verify that
Sy .
s' s' = diag (I, 0, eeer, 1,0, 1, 1, I, O, ...., I, 0) (7.18)

where the diagonal blocks of Eq. (5.18) correspond to a partition of x

into:

i ] ’ [ [} [} (N | N [} ] ] ] [}
X' = [51 ’ Z} e, zj-l , 1?-1 ’ Zi , 18 ’ Z1+1 , 2?+1 e, ET , Z? In
L%
(7.19)

Equation (7.18) will be used later.

7.4 Cooperative optimal filter: (b) propagation between measurements
It will be shown in this section how it is possible to propagate the
estimates and the main auxiliary ECM's of every processor in such a way

that they still are, after the propagation, subsets of their centralized
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Figure 7.1. Error Cevariance Matrices of member 1 in a commu-
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counterparts. It will be found that no processor can do that by itself,
and a certain amount of information must be exchanged.

The centralized filter propagation between discrete times n - 1 and n is:

(7.20)

>
3
3
]
—

¢ P (7.21)

P n a1 ¥n O
Partitioning x into ownstate vectors, and P and Q accordingly, one obtains,

for i,k = 1,2 ..., m:

2= ‘":: 3:1-1 . (7.22)
ik i ik L k' ik
Poe = ¥ Prly ¥+ Q (7.23)

Further partioning into coupled and uncoupled subsets gives:

Yoo =Cpipyt00 8 (7. 25)
R AR A SRR N T P
L R AN A i I
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A R A DR
having partitioned Q1k as follows:
: o™ oY,
Rearranging Egs. (7.26) to (7.29) in accordance with Eq. (7.13):
R IR O 1 -
AN INE (AN S T (i Q;ﬁ]' (7.31)

Consider now the propagation algorithm of member i; if one neglects the

cross-correlation of_g1 with the omitted states, one might try:

i a
in- = n én-l (7. 32)
i _ 1 d it i i!
Xn- = Qn Xn_1 °n + S QnS (7.33)
where 01 is the projection of ¥ on the shortened space:
T _ i it i 1 i-1 i+l m
d)n - S . \yn S - diag (\l’n; An, L I An » An A, eoce o An)
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This algorithm is insufficient. The partitions of_i1 and X' are propagated

by it in the following way (with k, 2 £ 1):

L ELEEL
L A
~k _ .k 2k
2y = Ry Zn-1
i _ 1 pit i ii
Pn- wn Pn~-1 wn ¥ Qn

=ik _ ,i ik k' ik' k-,
Pn- Yn Pn-1 An * I:Qz ’ Qv ]n

ke _ ,k sk& L2 kL

n- = A T A Qg

Comparison with Eqs. (7.22) to (7.31) shows that only gﬁ and P11, the
ownstate and its autocovariance, are propagated correctly.

Now the advantage of updating the auxiliary ECM's appears. If one

uses this algorithm:

ik ik k' i ik k' ik! ik’ S+,
Poe = ¥n Pac1 Cn *+¥p Posy Dp * Q0L Q) ]n (7.34)
0 5l gl i pim gm
?n n-l L N ] Tn n-l n
i _ i ,d i! i i! 1' 11" i
xn- = ¢ Xn-l oy ¥ S Qns + B, pn-l Y

(7. 3;)



comparison with Eqs. (5.23) to (5.31) shows that the auxiliary ECM's pik are

propagated correctly, and the main ECM Xi is propagated correctly except in

ke

the lower right hand corner (partitions Z°~, with k, 2 = 1).

The correctly propagated value of these partitions (as well as the

correct value of 2}, if it is desired) must be supplied by the other

ke
n-

help the others likewise. The third transmission requirement is then for

members. Member k will broadcast Z_ =~ with 2 =1, 2, ..., m. Member 1 must

member i to include in its p messages:

714

(iii-a) the latest propagated values of , with 2 =1, 2, ..., m

See the previous section for requirements (i) and (ii).

7.5 Cooperative optimal filter: (c) measurement incorporation.

It has been supposed that the measurements have the form given by

Eq. (7.6). In our case pzj is the ranging of member % to member j, and it
is supposed that, after some delay, member i (possibly i.f 2) will come to
know the innovation szj. It wili now be shown how szj is incorporated
into member i's estimates and ECM's. For simplicity of notation's sake,
the values before the incorporation will have the subscript n- and those
after the incorporation the subscript n; one must remember, though, that
more than one scalar measurement is taken at time tn; s0, the values with
subscript n must then take the subscript n- and be the subject of another
incorporation, and so on, down to exhaustion of the measurements.

The innovation equals, to the first order:

+ vﬁj (7. 36)
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with:

N ]
oC Y (LY LI . A TR gt 0) ... 0] (7.37)

—-n — v

=)

_ﬂzJ and 5%3 being in the places occupied by.gf and g? in the partition of x

according to Eq. (7.19). The optimum centralized incorporation would give:

ox 0% -lgn_ o e S B 5o (7. 38)

Po ™ Pre = Po &) (i3 p bl a oMy Y (7. 39)
Likewise, for processor i:

sord = 143" T (7.40)

with:
. .1 .t oy
™ A, 0 e L o gl 0, e, 01 (a1
2j [ . 2 J. s
h™ and g™~ being in the places occupied by z© and z° in the partition of

g! according to Eq. (7.14). It is obvious that:

i,23 i 2]
-C-n'J=5-°-nJ (7.42)

The incorporation by processor i, using Kalman gains, is:

ai 1,85 (. i,83" 1,85 Liv-1 . 2j '
8&n = Xn- & ! (En’ ’ o= En T rnJ) 6"nJ (7.43)
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. i T 1,83 1,03 1 1,8 £3\-1 _i,83" i
Xne = %o €07 (e, Xe Cp" 0+ )T e X (7.44)

It will now be shown that this incorporation is correct. That is, if Ei
and Xi were the appropriate projections of_g and P before the incorporation,
they remain such after the incorporation. This is a particular case of
a lemma that has been proved in Chapter 6, but it is just as simple to prove

it directly.

Proof: Suppose: ﬁ;_ - s gn- x;_ = sipn_ s)

and introduce these expressions into Eqs. (7.43), (7.44), together with
Eq. (7.42):

sel = s it o8 [agtit i i'ei 2 2j\-1 _ 2j
s Pn- S S < (gn S S Pn_S S gty 8p

N it i i lJ i zJ 2j ) -1
X S Pn_S - S P S S <;% S S P S S + r :) .

23" ' it
- S S S Pn_ S

From Eqs. (7.18) and (7.37) one sees that:

he1 23 _ 2]
S8 g gy

This result, and comparison with Eqs. (7.38), (7.39) give:

i i

qgn =S q;ﬂ sy X =SP S

Q. E. D.
It remains to see how the auxiliary ECM's can incorporate a measurement.

Introducing Eq. (7.38) into Eq. (7.39), cne finds:
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P =P -leggn . P (80 ) (7.45)

. .
pactllp Ay 4 (7.46)
Then, by taking -the appropriate partition of Eq. (7.45):

ik 2k Mok 25,-2
Pn = Pn_ - xSy, . P (6p77) (7.47)

Member i can compute p. because Eq. (7.46) is equivalent to:

_ o d,2] i,23" Lj
Py Xl &ty (7.48)

(the proof is contained in what was proved above); 52? is also known
correctly (as just proved) and the innovation is known by hypothesis. The

only missing term in Eq. (7.47) is 6§k.

The term qi# (the updates of the uncoupled subset of member k's
ownstate) must be supplied by member k. Likewise, member i must supply the
other members with its own sii. This is possible, because 6&? is a projection
of q;i, which can be computed correctly by member i (as just proved) by
means of Eq. (7.43) without help from the others.

Consequently, the last transmission requirement is for the p-message of
member i to contain:

( iii-b ) the updates qi? of its uncoupled subset x} made at all the

"latest" measurement incorporations.
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Numerical problems may make it ad&isuble to broadcast some equivalent
information. For instance, Qiﬁ/ép might be broadcast instead of qi

Here "latest" means the measurements that have been already incor-
porated into the main ECM, but not yet into the auxiliary ECM's. Item
(iii-b) alternates with item (iii-a), for which see Section 7.4. The
latter is required during the propagation phase, between measurement
incorporations; the former is required during the measurement incorporation
phase. Items (1) and (i1) (see Section 7.3) are required all the time.

The phasing of all this information transfer may be slightly dif-
ferent in different problems. As far as our problem is concerned, a

possible time schedule is described in the next section,

7.6 Phasing of the cooperative optimal filter in the case of relative

navigation

This section and the next one discuss the application of the cooperative
optimal filter to our case. In particular, this section deals with the
phasing of the required information transfer.

The broadcast schedule and content definition requires more attention
for our problem than it might for different problems, because of the dual
role of p-messages. Namely, the same p-message can both convey information
- from the source to all receivers, and serve as physical support for the
rangings of all receivers to the source. If the cooperative optimal filter
is adopted, this dual role cannot be retained by all the messages. Some of
them have to serve only for information transfer, and their time of arrival
cannot be used,

The operation of the cooperative optimal filter may be summarized as

follows. It was seen in Section 7.3 that every member has a main ECM Xi,
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partitioned by Eq. (7.16) into submatrices of the form Pi‘, 5qk, 7k2) and a
set of auxiliary matrices P k. It was shown in Section 7.4 that the sub-

ks cannot be propagated correctly by member i; they must be

matrices Z
supplied by other members. As for measurement incorporation, Section 7.5
showed that the main ECM Xi can incorporate rangings correctly, but the auxil-
iary ECM's require help from other members.

Fiqures 7.2 and 7.3 will help to describe the time schedule of a three
member community, and can be generalized to larger numbers of members.
Figure 7.2 shows one round of broadcasts. Black circles symbolize broadcasts
whose time of arrival is taken by the receivers and used for rangings. The
contents of their messages are written in the boxes. Open circles indicate
broadcasts made only for information exchange. Apart from the increased °
number of broadcasts, the schedule is similar to that of Fig. 6.10. There is
a one-round lag between real time and filter update. The messages used for
ranging contain all rangings taken lately and enough data to compute the
single-step transition matrices (items (i) and (ii) of Section 7.3).

“igure 7.3 shows the interval between tn+1 and tn+2 in more detail. The
messages used only for information exchange have their contents spelled out
in the boxes; they contain, alternatively, item (iii-a) or item (iii-b), for
which see Sections 7.4 and 7.5. At time tn+1 all the rangings taken up to
time tn_1 have been shared to the community. Propagation of the matrices
from tn_2 to tn-l may begin. Every member i propagates all submatrices of
its ECM except Zkz (with k,2 # i) using Eqs. (7.34), (7.35). Then the

'missing submatrices are shared, and propagation of Xi.is completed. Then
measurement incorporation begins. Every member i incorborates the two

rangings taken at time tn-l into its main ECM using Eq. (7.44) repeatedly,
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and finds two sets of estimate updates using Eq. (7.43). The qi portions of
these updates are shared to the community. After that, every member can use
them to update its auxiliary ECM's, using Eq. (7.47) repeatedly. At time
tn+2’ when the next broadcast for ranging purposes in scheduled, the filter
is updated up to tn-l'

In general, if the community has m members, the contents of p-messages
are as follows. Item (i) includes data for m single-step transition
matrices; item (ii) includes m-1 rangings; item (iii-a) incliudes m sub-

matrices and item (iii-b) includ.s =-1 update vectors.

7.7 Evaluation of the size of p-messages

This section contains an evaluation of the number of bits that must be
transmitted by each member during a round of broadcasts. It parallels what
was done in Section 6.10, and uses the symbols q, r defined there.

Additional symbols are:

t number of bits for a transition matrix;

u - number of bits for an update vector.

During a round of broadcasts, the message containing items (i) and (ii)
is broadcast once by every member. The messages contajning item (iii-a) are
broadcast m times by every member, and so are those containing item (iii-b).
Item (i) requires mt bits; item (ii) requires (m-1)r bits; item (iii-a)
requires mq bits and item (iii-b) requires (m-1)u bits.

Therefore, the number of bits per round to be sent by any member is:

2. = n? (q+u) + m(t+r-u) - r
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Notice that 2C is proportional to the square of the number of members; com-
pare with zu’ which is linear in m, and zo, which is constant (see Section
6.10).

In order to attribute 1ikely values to the symbols q, t, r and u,
sevéra] considerations have been made, which will not be reported in detail.
The reader can substitute more appropriate values, if he wishes. For qand r
the values of Section 6.10 have been adopted: 40 bits and 17 bits,
respectively. For the update vector, 11 elements of 13 bits each, giving a
total of 143 bits for u. As for the transition matrix ?i, only the elements
due to the dead reckoner have to be computed on line. The data necessary for
such computation (see Widnall and Grundy (22) p. 26 ff) and the bits attri-
buted to them are as follows: létitude and longitude (24 bits each), alti-
tude (11 bits), three components of the accelerometer output (10 bits each’,
tﬂree compcnents of platform angular velocity (8 bits each). The total is t
= 113. Notice that latitude, longitude and altitude are also necessary for
the computation of the expected time of arrival and of the geometry vector.

Using these values for q, r, t, u, the value of gc for several sizes of
the community is:

m: 3 4 5 6 7 8 9
L. 1591 2859 4493 6493 8859 11591 14689

Comparison with Section 6,10 shows that zc is at least one order of magnitude
~greater than zu. It also shows that a nine-member community would require a

total of 132, 201 bits per round, or 17% of the whole JTIDS capicity.

7.8 Conclusions

This chapter has presented, under the name of "cooperative optimal
filter," a method of decentralized reconstruction of the centralized optimal

estimate. Although this method may find a variety of other applications, it
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was conceived specially for the problem of rangingQaided navigation, and some
details of its application to this problem were discussed in Sections 7.6 and
7.7,

The output of a cooperative optimal filter is identical to that of a
centralized optimal filter, apart from a time lag. Therefore, its advantages '
over a community of ownstate filters, in terms of stability and accuracy,
cannot be neglected. Its advantaces over the solution proposed in Chapter 6
are, instead, probably not great. It is reasonable to expect that the per-
formance of the community of uncoupled filters proposed in Chapter 6 will not
be too far from optimality.

A disadvantage of the cooperative optimal filter is the large amount of
data sharing required from the members. Section 7.7 tried tc give a quan-
titative assessment, and it was found that the number of bits each member
must send per round of broadcasts grows with the square of the number of
members,

Another disadvantage is the vulnerability, resulting from the rigidly
collaborative nature of the process. The successful performance of the
cooperative optimal filter depends on the uninterrupted exchange of data.
Temporary or permanent disabling of a single member's radio link would put a
serious strain on the community.

- The relative importance of advantages and disadvantages is a value
judgment, and must be left to prospective users. However, th writer's
: opinion is that the concept proposed in Chapter é has nost of the advantages
of and less disadvantages than the cooperative optimal filter, and should be

preferred to it in most cases.
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CHAPTER 8
CONCLUSIONS

8.1 Overview of the results

The purposes of this work were two: to analyze the concept that has so
far been adopted for relative navigation aided by passive rangings, and to
propose alternative concepts. A few positive results were obtained in both
areas of 1nveséigation.

A community performing ranging-aided navigation in the accepted fashion
(for which the name of "ownstate" community was coined) was the subject of
Chapters 2 to 5, Equations describing its performance were derived (Chapters
2 and 4); it was proved analytically that the community estimation process is
expontially stap]e, if the community is organized in an appropriate way and
certain observability and controllability conditions are met (Chapter 3).

Simulations [Chapter 5) confirmed this result and gave further insights.

An alternative concept was proposed in Chapter 6. This concept requires
greater amounts of computation and data sharing but it promises a better
performance. It should be evaluated with realistic simulations.

An original method of decentralized reconstruction of the centralized
optimal estimates was proposed in Chapter 7. It is applicable to a certain
class of problems, wider than and including the one investigated in this
work. If a community performs relative navigation by means of this method,
everyone of its members will obtain a portion of the same estimates that a
centralized optimal processor would obtain, This solution is costly in
terms of amount of data to share, and rather vulnerable to structural

perturbations.
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A1l these results, which are described in greater detail in the
following sections, suppose the use of purely passive synchronization. The

help of round-trip timings has never been invoked.

8.2 Conclusions about ownstate communities.

The word “"ownstate" was coined to describe the arrangement by which
every member of the community estimates only its own physical attributes, to
the exclusion of those of other members. This is the main feature of the
concept adopted so far for relative naviagation aided by passive rangings.

It was known that source selection logic is crucial in determining the
performance of an ownstate community. The terms used in this work for com-
munities with different kinds of source selection are: democracy (no source

selection, every member ranges to everyone else), covariance-based hierarchy

(a member ranges to those members which report a better accuracy than its

own), fixed-rank hierarchy (a member ranges to those which have a higher pre-

arranged rank, regardless of the accuracy of their estimates). Democratic
communities were known to show an unstable behavior; it was thought thaf the
introduction of a covariance-based hierarchy was sufficient to make the com-
munity stable (on this point the opinions were not unanimous; see Section
3.1). The results of this work partly support and partly qualify these
opinions. Namely, stability could be proved for a fixed-rank hierarchy, not
for a covariance-based one,

The mechanism that couples together the filters of an ownstate community
was identified (Eq. (2.27)). With that insight, it was possible to prove

analytically that a fixed-rank hierarchy can be exponentially stable. The

same conditions that are sufficient for one-by-one stability of each filter
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of the community (supposing it received only absolutely correct information
from the others) were proved to be sufficient also for the stability of the
community as a whole. Such conditions are yiven, for each filter, by the
Deyst and Price theorem; they are secured by the presence of relative motion
in the community, (according to the requirements discussed in Section 3.6).

The widespread opinion, that a covariance-based hierarchy is stable,
could be confirmed only with qualifications. It seems that a covariance-based
hierarchy behaves in many cases almost like a fixed-rank hierarchy. That is,
source selection only rarely allows a closed-loop pattern of rangings (e.q.,
member a ranges to member b, which ranges to c, which ranges to a).
Supposing this to happen covariance-based hierarchy can be as stable as
fixed-rank hierarchy, and has fhe advantage of having adaptive ranks.
However, it is uncertain how often this is the case. Choosing a covariance-
based hierarchy over a fixed-rank one involves an element of risk and
requires a value judgment,

Democratic communities received only brief attention. Simulations of
their behavior tend to confirm the report that they are unstable. The
coupling mechanism identified by Eq. (2.27), which results, for a democratic

community, in multiple feedback, could explain this effect.

8.3 An alternative concept: measurement-sharing community with uncoupled

filters.

An alternative concept was proposed in Chapter 6. It was suggested that
.the filter state vector of every member should include not only that member's
significant variables, but also a few of the other members' variables.
Namely, it should include all other members' positions (or positfon errors)

and clock phases. Furthermore, it was suggested that measurements should be
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shared. It was shown that this arrangement presents two advantages over the
“ownstate" concept.

One advantage is that the filters will be decoupled from one another.
Positions and clock phases of source and receiver are the only arguments of a
ranging. If a member estimates all other members' positions and clock phases
(as well as its own) it can compute the expected value of all rangings using
only its own estimates; its estimation error, then, will not depend on any-
body else's estimation error. Filter decoupling allows separate analysis and’
independent performance of each filter of the community; source selection is
no longer necessary for stability. |

The other advantage is that any member can compute the expected value of
another member's rangings. Therefore, it can incorporate all rangings that
are taken by the community, if it knows their values. In order to exploit
this advantage, it was suggested that every member should share its rangings
to the community. In this way, every member will have a centralized filter,
which is provided with knowledge of all measurements, and is suboptimal only
because some of the lower-order derivatives are not modeled. It is known
that the performance of such a filter is, in many cases, not far from
optimality, if the noise model is well chosen. A simulation indicated that
this is likely to happen for our case as well.

The use of this concept involves greater computational burden and
greater data exchange than an ownstate community does. Neither of these
inconveniences seems forbidding, if the size of the community is small,

The advantages, in terms of better performance, are probably remarkable;
but the expectation of a performance close to optimality should be verified

with more realistic simulations than this work could offer.
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In any case, it is important to have stated that a viable alternative to

the ownstate concept exists.

8.4 Another alternative concept: the cooperative optimal filter.

Under the name of "cooperative optimal filter" Chapter 7 presented a
method of reconstructing the centralized optimal estimates by the cooperative
work of several decentralized processors. The method applies to all systems
which can be partitioned into a set of subsystems that are dynamically
uncoupled, but pairwise coupled by measurements, This class includes a
ranging-aided navigation community.

When applied to our problem, this method involves some more computations
than the concept of Section 8.3, and a much larger amount of data to share;
this amount grows with the cube of the size of the community. The filter
models of each member include the_same variables as those of a measurement-
sharing community of uncoupled suboptimal filters; in addition, the recursive
computation of a few auxiliary matfices is required. Measurements must be
shared, and so must many other data, including, at every step, portions of
the estimate updates and of the propagated error covariance matrix.

Weaknesses of this method are the large amount of data sharing and the
vulnerability to structural perturbations. The latter results from the fact
that every update of the error covariance matrix must be accomplished with
the help of all members. A member cannot be left alone, nor can the com-
munity easily do without it.

The advantage of this method consists in producing the centralized opti-
mal estimates, without any member having the computational burden of a

centralized optimal filter.
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A comparison of the two concepts proposed as alternatives to the one
adopted so far one (uncoupled suboptimal filters, Chapter 6, and cooperative
optimal filter, Chapter 7) seems rather in favor of the former. The former
has less data exchange, uncoupled filters that allow any member to operéte
independently from the others, and, probably, an output not too far from
optimality.

It must be pointed out, however, that the method of Chapter 7 may find
other applications. Other available methods of decentraiized reconstruction
of the centralized optimal estimates assume unlimited computational
capability, but no possibility of sharing measurements. This method, instead,
assumes limited computational capability and the possibility of sharing
measurement and other on-line data. It could, therefore, find applications

without being in competition with the other methods.

8.5 Suggestions for further research.

Since this work was mainly analytical, a good amount of simulation
work remains to be done. Some of it has been already pcinted out. Namely,
it was -suggested that the approach proposed in Chapter € (measurement-sharing
uncoupled filters) should be validated with realistic simulations; it was
also suggested that simulations could tell more about the cases in which it
is safe to use a covariance-based hierarchical ownstate community, rather
than one with fixed ranks. It can be added now that one could try to retain
the advantage of covariance-based hierarchy (that is, adaptive ranks) while
minimizing the occurrence of rank reversals. For instance, it could be
established that a member can range to another only if the other reports a

better accuracy for several times in a row, or if the difference between the
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computed error covariances exceeds a certain threshold. Such source selec-
tion logics can be conveniently evaluated through simulations.

Besides, it is possible that the results of this work suggest analytical
developments in a seemingly unrelated area. An essential feature of the
problem that was investigated here is the presence of a set of subsystems
that are dynamically uncoupled, but can be measured only relative to one
another, Such'a feature may not be unique to our problem. The respective
advantages and disadvantages of the three approaches considered in this work
(ownstate filters, uncoupled suboptimal filters, cooperative optimal filter)
would probably be different, when applied to a different problem. One of
them could turn out to be particularly advantageous and to deserve an
appropriate extension or generalization.

The reader may also remember that the proof of the exponential stability
of a suitably hierarchized ownstate community was obtained in an unconven-
tional way. Exponential stability was supposed in each isolated subsystem
(i.e., in each member's filter when ranging to errorless sources); then the
previously provaed property, that an exponentially decaying input gives an
exponentially decaying output, was applied. The same device could be useful
in establishing the stability of hierarchical layer-structured estimation and
control systems, which have an important role in large-scale systems theory.

If any of these suggestions is carried on, it will surely be
welcomed by the present writer, who chooses the expression of such a

wish to be the conclusion of this work.
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