A REAL TIME INK CORRECTION MODULE FOR HELIO ENGRAVING PROCESS

by

SUDHINDRA NATH MISHRA
B. Sc. Engg., Ranchi University, India

(1968)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FCR THE
DEGREE OF

MASTER OF SCIENCE
at the
@ MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1981

Signature of AULhOr.....ciiieiiierieieenecsonsscssoseccssananessns
Department of Electrical En§g. and Computer Sc., January 22,1981

Certified by.. ammwswerii .o AT it aealefescrcnsccnetoccaccacons cese
Accepted bL.-‘; A AN T T R 1 = LT © SRR ceccssanns
' Chairman, Department Committee
MA ARC*ﬁXEgﬁwn
CHNOLOGY
MAY 6 198]

LIBRARIES -1-

A REAL_TIME INK CORRECTION MODULE FOR HELTO_ENGRAVING PROCESS
by
SUDHINDRA NATH MISHRA

submitted to the department of Electrical Engineering and Com-
puter Science on January 22,1981, in partial fulfillment of
the requirements for the degree of Master of Scierce.

ABSTRACT

A Computer aided Color Image Proceccing <cystem for a
rotogravure engraving machine, called Helio Klischograph, is
currently under development. The color processing would con-
sist of two phates viz. Color Tranclation Process and Helio-
Engraving Process. Color trancslation is more conveniently
dore in terms of ICI values, using a TV display, rather than
ink or dye dencsitiecs. Significant <storage efficiency 1ic¢
obtained it the trancslated image is reprecsented 1in
luminance_chrominance space. The trancformation between ICI
values and luminance_chrominance representation 1is con-
veniently provided by simple linear transformation using a 3X3
matrix. However, the trancformation between the ICI values
and the ink dencsities is non_linear, necessitating a piecewise
linear approximation approach. A procedure using
gub_resolution correction lookup table is proposed for the
computation of ink densities from the 1ICI values. The
correction table is determined empirically by matching
ink_patches to the ICI values.

Storage economy demands that the computation of
ink densities from ICI valves must be done in real time, while
Helio Klischograph is engraving rotogravure cylinders. For
this real time computation, a high speed digital processor is
required. ~A specially architectured microprogrammable machine
was developed to fulfill this need. The real time processor is
managed by a resident microcomputer through software, yielding
a highly flexible and computationally powerful system, called
Ink Correction Module. ICM also features high speed interpro-
cessor communication with PDP-11 minicomputer family. A well
structured top down design approach was used for both hardware
and software. —

Thesis Supervisor: William F. Schreiber
Title: Professor of Electrical Engineering

-2-

Acknowl edgement

I sincerely wish to express my gratitude to all those who
helped me during the course of this project.

My deepest thanks go to Prcfessor William F. Schreiber,
for his generous support, patient encouragement and constant
guidance. He has opened a new field of knowledge for me.

I also thank Professor Donald E. Troxel for his support
and guidance.

Thanks are also due to my student colleague Gary Neben,
who helped me with the construction of the HHKD module. Spe-
cial thanks to Rich Daemon with whom I had many useful discus-
sions.

I also wish to express the pleasure of working in an
ideal environment provided by the CIPG Laboratory.

Most of all, I appreciate the participation of my wife
Neelu, who sat in front of my computer terminal for long hours
and handled the entire texti_proceesing of this dissertation.
Her love, understanding and companionship were even more valu-
able.

Last but not the least, I must acknowledge the contribu-
tion of my two lovely children Rajesh and Shivani, who pro-
vided me the entertainment I needed most after long hours of

work.

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables

List of Appendices

Chapter 1 Introduction
1.1 Printing by Rotogravure
1.2 The Helio_K"ischograph
1.3 Automated Engraving of Gravure cylinders
1.4 The Problem

1.5 The Solution

Chapter 2 Color_Correction by Computer Power
2.1 Notion of Correct Color Rendition
2.2 Color Correction via Interactive Editing
2.3 Choice of Color Space
2.4 Printing of Color Images
2.5 Limitations of Real Inks
-4

Page

M

12

14
15
17
18
19
21

24
25
26
28
31
33

2.6 A Strategy for Ink Correction
2.7 Empirical Determination of ICTs

2.8 An Ink Correction Algorithm

Chapter 3 Engraving System Overview

3.1 ICM Interface Specification

Chapter 4 1ICM System Architecture
4.1 Hardware Architecture

4.2 Software Architecture

Chapter 5 Hardware Organisation
5.1 Real Time Processor(RTP)
5.1.1 Block Diagram Description
5.1.2 Apparatus Description
5.1.2.1 Data Interface
5.1.2.2 Microprogram Controller
5.1.2.3 Microprogram Memory
5.1.2.4 Register Array and Bus Control
5.1.2.5 Bus_Mask and Miscellaneous
5.1.2.6 Arithmetic and Logic Executive

5.1.2.7 Ink_Correction Table

5.1.3 Microinstruction Format
5.1.4 Functional Description
5.1.5 Hardware Constraints on Programming
5.1.5.1 MAC Transaction
5.1.5.2 Branch Instruction
5=

36

39
41

52
54

63
63
71

75
75
75
80
80
81
83
84
84
85
87

89
90
91
91
91

5.1.5.3
5.1.5.

5.1.5.5
5.1.5.6
5.1.5.7
5.1.5.8

Conditional Branch on Overflow
Non linear Operation

Hardware Masking
Ink_Correction Table Look up
Input/Output

Interruption

5.2 ICM Manager (MGR)

5.2.1 Block Diagram Description

5.2.2 Apparatus Description

5.2.2.1 MPU, Memory and RTP Interface

5.2.2.2 Host_Processor Interface

5.2.2.3 Hand_Held Keyboard Display Module

5.2.3 Functional Description

5.2.4 Programming and Hardware Constraints

5.2.4.1
5.2.4.2
5.2.4.3

8255 Port Configuration
RTP Memory Accessing
HHKD Module Accessing

Chapter 6 Software Organisation

6.1 ICM Monitor

6.1.1 Command Process Library

6.1.2 Subroutine Library

6.1.3 Tables and Messages

6.1.4 Exception Handling

6.2 ICM Supervisor

6.2.1 Initialization Sequence

-6-

92
92
93
93
93
93

9u
9y
96
96
99
101

105
105
106
106
107

108
108
109
110
110

110

111
in

Chapte
7.1
7.2
7.3

7.4

6.2.2
6.2.3

o oo oo oo o

6.2.4
6.2.5

no

o

Keyboard/hex display Monitor(KHDMON)

Interrupt Handling

.3.1 RST7 Service Routine

.3.2 RST5.5 Service Routine
.3.3 RST6.5 Service Routine
.3.4 RST7.5 Service Routine

.3.5 TRAP Service Routine

RTP Operate Routines

RTP Diagnostic Routines

ICM Support Software

6.3.1

Intel Hex Formatter (INHEX)

6.3.2 Hex_to Binary Converter (XZ2BN)

6.3.3

r 7

RTP Micro Assembler (MICRASS)

User's View

Operation via Host_Processor

Operation via HHKD Module

ICM Data_Bases

7.3.1
7.3.2

Ink Correction Microprogram Library

Ink_Correction Tables

Program Development Environments

7."‘.1

Microprogramming for RTP

7.4.2 Programming ICM Manager

7.4.3 Programming Host_Processor

Chapter 8 Diagnostics

121
122

123

123
127

127
127
127
128

129
129
134
135
135
136

136
137
137
138

140

—

RAM Diagnostics

.2 Manager Single Stepping
.3 Manager Break Point Runs
RTP Single Stepping

.5 RTP Vectoring

.6 RTP Breakpoint Runs

o OO o™ oo W o o
=

.7 Diagnostics with Test Board
8.7.1 Machine _dependent Diagnostics
8.7.1.1 Diagnostic Routine DIGO
8.7.1.2 Diagnostic Routine DIG1
8.7.1.3 Diagnostic Routine DIG?2

8.7.1.4 Diagnostic Routine DIG3
8.7.2 Application_dependent Diagnostics

8.7.2.1 Diagnostic Routine DIGY

8.7.2.2 Diagnostic Routine DIGS

8.7.2.3 Diagnostic Routine DIG6

8.7.2.4 Diagnostic Routine DIG7
Chapter 9 Benchmarking and Performance Evaluation
Chapter 10 Future Expansion & Other Applications
Chapter 11 Conclusion

BIBLIOGRAPHY

APPENDICES

140
142
143
144
144
146
146
147
147
147
147
148

148
148
148
149
149

150

151

153

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

-—

10
1
12
13

14
15
16
17
18
19

LIST OF FIGURES

(a) Relationship between linear and

Non_linear Color Correction

(b) 3 dimensional Ink Correction Space

Algorithmm for Minimization of Errors

Ink Correction Algorithm
- Signal Flow Graph

Spectral Density Functions of 'Ideal’
Block Dyes; (a)Yellow (b)Magenta (c)Cyan

Spectral Density Functions of 'Non Ideal’
Block Dyes; (a)Yellow (b)Magenta (c)Cyan

Non linear Mapping Function (MUCR)
for Under_Color_Removal

Block Diagram of Hélio Engraving System
ICM Inter face
Interface Time Diagram

Explanation of ICM Status Bits
Inter_connection of ICM

Block Diagram of Ink Correction Module

Two_level Pipelined Microprogram
Control Architecture

Memory Address Map of ICM Manager
I/0 Address Map of ICM Manager
ICM System Unit Layout
Signal Map of ICM Backplane
Block Diagram of Real Time Processor
Block Diagram of ICM Manager

-9-

Page
38

38
40

42

uy

45

u7
53
55
56
60
62
64

67
69
70
76
17
78
95

Figure 20 Board Layout of HHKD Module 102

Figure 21 Key Layout of HHKD Module 102

-10-

Table

Table
Table

Table

LIST OF TABLES

Distribution of Data_Bits in
Ink Correction Table

RTP Inter face Signals List
Connector J1-Pin Assigmment

Connector J2-Pin Assignment

Page
88

98
100

A.

LIST OF APPENDICES

Ink Correction Algorithm

Macro-Flow Chart for Computing
Black Ink Density

Macro-Flow _Chart for Computing
Color Ink Density

Micro-Flow _Chart for Computing
Black Ink Density

Micro-Flow Chart for Computing
Color Ink Density

Photographic View of ICM

Real time Processor Time Diagrams

Data Transfer Transaction

Non linear Mapping Transaction

Rotate or Shift Transaction

ALU Transaction

MAC Transaction

RTP's Micro instruction Format
Source Listing of Ink Correction Monitor ICMON
Source Listing of ICM Supervisor ICMS.8080
Intel's Hex_Format

Source Listing of INHEX.C
Source Listing of X2BN.C

Microprogram DIGO in Hex

Microprogram DIG1 in Hex

Microprogram DIG2 in Hex

-12-

J.4 Microprogram DIG3 in Hex
J.5 Microprogram DIGH4 in Hex
J.6 Microprogram DIG5 in Hex
J.7 Microprogram DIG6 in Hex
J.8 Microprogram DIG7 in Hex
K. RTP Instruction Set Summary

L. Microprogram mpgm.ylw in MICRASS Language

CHAPTER 1

Introduction

Two methods are predominantly used for printing images in
the graphic arts industry. "Intaglio" is the generic name
given to processes in which scratches (depressions) in sur-
faces, most often metal, are filled with ink which 1is then
transferred to paper by pressing the latter against the sur-
face with a soft pad. Usually the entire object is first
inked and the surface wiped clean. Wood biock printing, the
other method, 1is in a sense opposite of engraving, in which,
material is removed from the block where no ink is to be
printed instead of vice versa. The relief surface is inked
and the image transferred in much the same manner.

Both, relief printing (now called letterpress) and Inta-
glio (now "gravure" or "Rotogravure"), have undergone centu-
ries of improvements and refinements to arrive at the current
state of technology. But the 1Intaglio plates have been
inherently capable of better detail, since an 1inked 1line
corresponds to a depression (scratch) rather than a ridge. In
particular, the ability to make very thin lines made it possi-
ble to simulate shadings of tone by regulating line spacing.

A significant step in both types of plate making was the
discovery that material could be removed by acid etching.
With the advent of photographic techniques in late 19th cen-
tury, the acid etching method (now called "photolithography")
could produce remarkable results chiefly due to accurate con-
trol on "masking" provided by use of photo_resist and optical

-14-

imaging. However, "engraving" (implying material removal by
mechanical means such as by a cutting tool, as opposed to
material removal by chemical means as implied by the term
"etching") survived as an extremely potent and viable method
for Intaglio plate making chiefly due to 1its simplicity,
cleanliness, cost of production and scope for future develop-
ment. While the traditional forms of Intaglio are still used
for art prints, the modern mechanised form has become of great
commercial importance. This process, often called photogra-
vure or rotogravure, i§flby some accounts, the fastest growing

form of printing [12].

1.1. Printing by Rotogravure

Rotogravure printing is carried out on high_speed,
web fed rotary presses (12). The printing surface is in the
form of a cylinder, generally copper and often very large,
having an array of small etched or engraved cells, typically
150 to 200 per inch. The cylinder is rotated in a bath of 1ink
and is wiped clean by a "doctor blade" as the surface emerges.
Paper is then fed against the cylindrical surface, picking wup
the ink from ¢the cells. The ink density of every cell on
paper depends upon the quantity of ink transferred from the
corresponding cell on gravure cylinder and thus depends upon
its geometry. By modulating the cell_ size on gravure surface,

it is then possible to modulate the ink density of correspond-

-15-

ing dot on paper, thus forming a half tone 1image. The big

advantage of this process is that it can be used to make mil-
lions of impressions with very accurate metering of ink.
Since the paper does not come in contact with the inside walls
of the cell, they do not wear out. The surface of the
cylinder, which does wear down, may be repeatedly replated
with chromium. Also, the accurate ink transfer which is vir-
tually independent of speed, makes this process very suitable
for color printing.

The color pages are printed by overlaying multiple
images, one in each primary color ink, so that their combina-
tion achieves the desired result. The primary color inks used
in the printing industry are Yellow, Cyan (also called
Precess_Blue) and Magenta (also called Process_Red).
Al though, in principle, it should be possible to generate any
arbitrary color (within the 1limitations of 1ink's g amut
ofcourse) by combining only these three primary colors, in
practice, however, a Black printer (also called the "Key") s
often included for reasons discussed in section 2.4. The etch-
ing or engraving of cells in the gravure cylinder implies that
the printed image is nscreened". This reduces the sharpness
of the print. The presence of screen is not very objection-
able due to a number of reasons and with a proper choice,

highly acceptable results are obtained.

=16~

1.2. The Helio Klischograph

The Helio_Klischograph {1], made by Hell, engraves the
cells 1in gravure cylinders by means of a battery of diamond
styli which operate at 3600 to 4000 cells per second. For a
typical cylinder eight feet 1long and forty three inches in
circumference and capable of printing thirty two mag azine
pages, eight styli are spaced along the cylinder. Each moves
in and out, cutting four pages as the cylinder rotates,
engraving the entire cylinder in about an hour. Because of
the geometry of the Helio, only diamond_shaped cells can be
cut. As a result, it is not possible for the cell shape to
conform to type stroke boundaries as well as it does in etched
cylinder. However, this s compensated for by the cleanli-
ness, speed and consistency of the process. Moreover, it has
been found that by coding "type" and “)lineart" areas dif-
ferently than tone [2], highly acceptable results are pro-
duced.

Specially prepared 1images called "Cronapaques" are
mounted on a scanning drum which rotates in synchronism with
the cylinder to be engraved. Optical sensors mounted on the
scanning drum provide the video information to the diamond
stylus engraving heads. In order to distinguish between "dro-
pout" which must occur for the white portion of the type or
lineart, the minimum density of the continuous_tone material
pust be accurately controlled. This necessitates a large

number of photographic steps (between five and ten) that

-17-

must be accomplished 1in order to produce Cronapaques to be
mounted on the scanning drum. These photographic steps con-
tribute singnificantly to both the time and cost of the pro-
duction of gravure cylinders. Inevitably, some loss of quality
is incurred because of the large number of photographic steps
involved in the current technology. These considerations
motivated the development of a computer_ based automated

engraving system.

1.3. Automated Engraving of Gravure Cylinders

A computer_based system for automated engraving of gra-
vure cylinders [2) has been developed and is now being used in
normal production environment. Either fully composed pages or
individual page components are scanned and stored on a large
disk. In the case of fully composed pages, an operator uses a
TV_display to segment the page_image into line and tone areas.
The image is then coded by a software process and is ready for
subsequent engraving. Prior to the scanning of page com-
ponents, the cperator uses a tablet in order to demark both
cropping 1locations and to specify the locations of the com-
ponents on the final page image. The scanned components are
then assembled and coded by a single software process. The
encoding process reduces the data storage requirement by a
factor of two without any apparent loss of quality. Data is

retrieved from disk storage, buffered, decoded, transmitted to

18«

a special formatter, and used to drive the Helio_Klischograph,
which engraves the cylinder. Completely arbitrary imposition
(the arrangement of pages on the gravure cylinder) 1is accom-
plished at the time of engraving. Provision is made for the
arbitrary intermixture of comuter processed pages and conven-
tional engraving by means of Cronapaques mounted on the com-
panion scanning machine. Use of computer essentially elem-
inates the photographic steps required in the preparation of
input copy as well as permits retouching and makeover due to
more precise toneﬁscale control. In addition the engraving
set_up time 1is significantly reduced due to the diminishing
use of Cronapaques.

However, the present system does not provide any color
prccessing through computer power, thus the quality of the
printed image suffers from the 1limitations of the present
technology. The work presented in this dissertation is aimed
at channeling the computational power and reliability of a
modern generation digital processor, to obtain enhancement in

quality of color reproduction.

1.4. The Problem

The basic requirement of the data processing system for
rotogravure color printing is that it be capable of receiving
input from some type of color scanner, recording the data on

mass-storage media (often magnetic disks), and eventually gen-

-19-

erating real time data streams, while the Helio_Klischograph

engraves multiple cyliniers as required for four_color print-
ing. Input images are typically scanned in as Red, Green and
Blue separations. The engraving system requires that the input
color_vector be mapped into a corresponding vector in the
ink_density space. Since the 1inks are not perfectly tran-
sparent and also have complex mixing properties, this mapping
turns out to be of a non_linear nature.

A simplistic approach for the engraving phase data pro-
cessing could be to precompute the output images corresponding
to Yellow, Cyan, Magenta and Black inks and have those stored
on the disk, so that when actual engraving commences, the
appropriate image could be retrieved and be used to generate
the real time data streams for engraving. But, this approach
has a serious drawback. The input color_space being a
3_dimensional space, the requirement of storage for a colored
image in the input domain would be atleast three times as much
as a monochrome image (unless data is compressed using some
clever coding scheme). Worse still, if the images were to Dbe
stored in the output domain, the output color_space being a
4 dimensional space, the storage requirement for the same
image would now be four times as much. A typical monochrome
image of a cylinder requires approximately 100 million bytes
of data. Hence, storage efficiency would be seriously Jjeop-
ardized if this approach were to be taken. An alternative
approach is to compute the output images in real_time during

the engraving_phase.

-20-

Like many facsimile systems, the Helio, once started,
must be supplied with a real time data stream. The actual
engraving takes approximately one hour with a data rate of
86.4 kilobytes/second. This imposes an upper bound of 11.5
microsecs on the processing time for the computation of
ink _densities from every R G_B sample corresponding to a

"pel"(picture element).

1.5. The Solution

The real_time data processing requirement of engraving
phase demands that a high performance digital processor must
be employed to compute the ink density data streams needed to
drive the Helio. In the interest of flexibility, it was
decided to use a programmable machine so that 1Ink Correction
algorithm, being in software, could be altered in future, if
necessary. Also, since the Ink Correction look up tables are
to be derived on the basis of experimental matching (described
in section 2.7), it was foreseen that these data sets would be
massaged over a number of trials for obtaining higher accura-
cies. These two basic requirements ruled out the use of a
random_logic type hardwired processor. The application
environment appeared to be quite suitable for commercially
available microprocessor_type architecture and suggested a
leading off_the_shelf microprocessor as a good fit. Conse-

quently, a variety of contemporary high end microprocessors

-21=-

were investigated, the choice eventually converging to Intel's
8086, mainly because of its powerful arithmetic instructions
and efficient table lookup capablities. However, the investi-
gation showed that the thruput of a single MPU was much too
low for the real time operation. Presence of some parellelism
in the Ink Correction algorithm suggested multiple processor
architecture to suppport parellel processing on independent
data elements. Pipelined computation through sequential shar-
ing of tasks on multiple MPU as well as serial parellel grid
organisation of MPUs were also considered . However, the
serial parellel grid organisation of MPUs, necessary for gen-
erating the required thruput, turned out to be highly arbi-
trary as well as extremely inefficient and uneconomical. This
was to be expected because the commercial microprocessors are
not designed for such signal_processing appl ications, their
architectures being optimized for entirely different con-
siderations. The basic deficiencies (from the viewpoint of
this appl ication) in the architecture of these microprocessors
were found to be the following;

1. Too few data registers, entailing high overhead of

memory references.
2. 1/0 via accunul ator, entailing high I/0 overhead.
3. Highly sequential operation (zero or 1little con-
current processing).

The result of this investigation made it evident that a spe-
cially architectured processor, suitable for high_speed compu-

tation, was required to be designed to meet the needs of this

-2l=

application. The desirable characteristics of such a machine
are as follows;
1. Special architecture supporting high degree of con-
current processing.
2. Bipolar TTL technology supporting high speed system
clock.
3. Powerful arithmetic processing capablities.
4, Large number of data registers.
5. Microprogrammable, tc provide optimum performance as
well as flexibility.
from
6. Immediate data operandlinstruction_stream, suitable
for co_efficients.
7. RAM for holding Ink_Correction Tables.
8. Powerful/fast Microprogram sequencer.
9. Intelligent system manager, for house_keeping func-
tions.
10. Communication with a large host Computer such as
PDP-11, to facilitate software development.
To meet these objectives, the Ink Correction Module(ICM)

was designed and implemented.

CHAPTER 2

Coler-Correction by Computer Power

The current techniques used by the printing industry, to
obtain high quality color reproduction, are difficult and
expensive. The degradation in quality of printed image is
largely due to the loss of color fidelity with respect to the
criginal copy (assuming that the colors in the original copy
were satisfactory). This loss occurs due to a variety of rea-
sons, predominant among which are the physical characteristics
of the printing 1inks, which impose a bound on the range of
colors that can be produced by mixing these inks. The 1inks
mix physically in a complex manner (an accurate model for this
behaviour is still a topic of current research) causing the
mapping of input colors into output ink densities to be a com-
plicated problem. Also, original image itself may have colors
which are less than satisfactory, making preprocessing of
colors highly desirable. Hence, to enhance the quality of
color reproduction, color_correction must be done at appropri-
ate stages of image processing. The current technology
attempts to do some color_correction (described in section
2.5), but can only do so very imprecisely owing to the limi-
tations of the tools used. Undoubtedly, if these tools could
be changed to more powerful and sophisticated ones, correc-
tions would be more accurate resulting in better quality of
color reproduction. A digital computer as a tool for

color_correction, would yield tremendous enhancement in qual-

-24-

ity besides many other advantages.

2.1. Notion of Correct Color Rendition

If the original copy were perfect and if the system could
reproduce all possible original colors, then exact reproduc-
tion would be preferred in most cases. Neither condition 1is
true. Originals may not be perfect, and, more significantly,
the gamut cf the printing inks is much less than the gamut of
possible input colors.” Also, once the translation between
input colors (of a perfect copy) and attainable output colors
is established, actually achieving it is the most important
and most difficult goal of any color systems [12]. Further,
in some <cases, it may be desirable to change the original
color of an object, to accentuate another object in the image,
or for special effects. It seems then that the notion of
correct color is essentially tied to aesthetic choices. The
color processing system, therefore, must provide the capabil=-
ity to change colors in an image arbitrarily, so that an
operator, viewing it on a TV_display, can interactively deter-
mine the correct color. We are then essentially faced with
two types of color_correction. One type of correction is con-
cerned with the aesthetic choices involved in deciding what
the output colors should be, either for perfect copy to be
reproduced as well as possible, or imperfect copy which is to

be altered in some way. The other type of correction is con-

=25=

cerned with providing compensation for the 1inadequancies of
printing inks in order to achieve the desired colors. As sug-
gested by Schreiber [12]), an important desirable feature of
the coler_processing system would be to deal with these two
aspects of color_correction entirely independently of each

other.

2.2, Color Correction via Interactive Editing

Schreiber et. al. have proposed a TV_based interactive
color correction system to produce high quality printed images
(12). The central element in this color_correction system 1is
the TV, since all the data from the input copy are converted
to additive ICI values for the TV display, and then recon-
verted into 1ink densities for output. The part of the system
which allows instantaneous viewing of the input copy or the
output press print is known as the Color Translation Module.
The CTM is a hardwired digital image processing system which
has an interface to the host computer (PDP 11/34) as well as
the TV display. With some help from computer an input copy
from mass storage (if the input has been scanned in earlier
and stored there) can be displayed on the TV via the Color
Translation Module. A special operator's console attached to
the CTM provides extensive color editing facilities. For exam-
pPle, the operator could change the color balance of the image

in terms of either hue or saturation or both, separately for

-26-

the highlights, midtones and/or the shadows. This helps to
get rid of any unwanted color bias that the image may have
acquired earlier. Alternatively, a color bias may be intro-
duced for special effects. CTM also provides for selective
color correction, in which, the seven principle colors
Magenta, Blue, Cyan, Green, Yellow, Orange and Red can be
selectively enhanced or attenuated in terms of either hue or
saturation or both. For special color correction, CTM pro-
vides a color domain filter to be defired by the operator, so
that an object in the image may be isolated on the basis of
its hue and saturation and its color manipulated as desired.
Since the gamut of the TV is larger than the gamut of printing
inks, it 1is possibe that an operator may attempt to set a
color which is not printable. But when that 1is done, CTM
gives a warning.

An essential component of CT™ is the gradation module,
which provides the capability of tone scale transformation.
Since tone_scale transformation is of primary importance to
picture quality, special attention is paid to the control of
this attribute. Any aesthetic tone_scale manipul ations can be
done by the operator interactively, separately for the
highlights, the midtones and the shadows. The tone_scale com-
pensations required to account for the physical characteris-
tics of the particular choices of paper and ink, as well as,
slow changes 1in stylus characteristics, are provided dynami-
cally by the computer. The result of these tone_scale

transformations 1is that the desired overall transfer charac-

=27=

teristic is obtained.

Thus, the output from the Color Translation Module is the
final image which has been compensated for its original deffi-
ciencies to the satisfaction of the operator. This 1image |is
then stored on the disk in a coded form, to be retrieved dur-
ing the engraving phase. The image processing associated with
mapping of colors from this form to printing ink densities is
carried out on the engraving_phase data processing system

described in chapter 3.

2.3. Choice of Color-Space

A colored image may be viewed as the combination of three
images, one correspondeng to each primary color. Typically, in
color_processing systems employing electronic scanners, t he se
triple images are generated by scanning in Red, Green and Blue
separations. An image, thus, may be acquired in the R G B
color_space. Historically, much of color science has been
stud ied using R G B color space, because spectral
red_green_blue components:;atural white light provided a con-
venient primary system. Hence, R_G_B primary system became
the standard basis for representing color images. Another
reason for the popularity of R G_B system is due to TV tech-
nology, since TV tubes have phosphors which also emit 1light in

the red_green blue spectral regions,

However, from the view point of color processing or

-28-

storage, R_G_ B color space is not an appropriate choice. The
reason for this is that each of red, green, blue primary has
Some luminance associated with 1it, which implies that the
colors in the image (color in strict Sense meaning chromati-
city as defined by hue and Saturation only) could not be
changed without affecting brightness (luminance). Such a res-
triction not only makes color manipulation extremely compli-
cated but also destroys any possibility of data_compression.
Hence, an essential requirement of the color_space to be used
for color_correction as well as storage is that it must be a
luminance_chrominance Space. Fortunately, it is possible to
Create such an arbitrary system by performing a simple rota-
tion of axes on the R_G B color space. The result of such a
rotation is that the luminance of a stimulus is confined to
One_axis whereas its chromaticity is defined in the plane per-
pendicul ar to luminance_axis. NTSC Television broadcasting
system essentially operates on this principle. A convenient
luminance_chrominance Space, suitable for color processing,

may be defined by the following transformation matrix;

&R (1 1.40625 0 17
B | 1 0 1.84375 c2
b - - - -

Separating the luminance from the chromaticity of a

Stimulus yields a 1ot of benefit. For example, in order to

-29-

change the chromaticity only of a stimulus, the 2_dimensional
C1_C2 vector may be manipulated, leaving the luminance com-
ponent completely unchanged. Obviously, such a representation
system lends 1itself well to color processing. Another big
advantage of this representation is that it enables data
compression in several ways. It has been shown that the lumi-
nance component can be coded with fewer than 8_bits normally
required for acceptable picture quality [(8]. However, the
main concern of the color system 1is to obtain some data
compression on the chromaticity component, since the luminance
component is just the equivalent of the grey scale image of a
monochrome system and does not demand additional bandwidth
relative to a monochrome system. To obtain data_compression on
chromaticity components, advantage is taken of the well known
fact that the human eye has a much 1lower spatial acuity to
chrominance information than 1uninahce. Hence, chromaticity
components may be coded at sub_resolution (typically
one_fourth that of luminance component) without any apparent
loss in picture quality. If chromaticity components are coded
at one_fourth subresolution, only 50% more bandwidth 1is
required to accomodate a color page as compared to a mono-
chrome page. In terms of storage, this data compression yields
very significant economy, since normally, four times as much
storage would be required for the color page as that for the

monochrome page.

-30-

2.4. Printing of Color Images

There are basically two different ways to produce color
by mixing primaries. In "additive" system, as the name
implies, the resultant light energy at each wavelength is the
sum of that of the components. For example, the TV tube works
on this principle. In subtractive mixing, which might more
appropriately be called multiplicative, the transmittance at
each wavelength (of a transparency, for example) is the pro-
duct of the transmittance of the several components. Each com-
ponent may be thought to subtract out certain colors. Photo-
graphic transparencies are almost perfectly subtractive,
halftone prints are hybrids (additive where the dots are side
by side, subtractive when the dots are superimposed), while
gravure printing is more nearly Subtractive, since the dots
are not so well defined. Since a wide gamut of colors can be
made by additive mixing of bright red, green and blue 1lights,
it 1is obvious that an equal gamut could be produced subtrac-
tively if each ink or dye controlled the amount of reflected
light 1in only one of the three wavelength bands- blue, green
or red. An ink which was perfectly transparent to the green
and red bands, but, when 1laid down in varying densities,
absorbed more or less blue, would look colorless at low den-
sity and saturated yellow at high density. Typical yellow inks
behave very nearly this way. An ink which was completely tran-
sparent to the blue and green bands, but absorbed more or less

red, would look colorless at low density and bright blue green

-31-

at high density. The technical name for such an ink 1is cyan.
The third ink should transmit red and blue perfectly and
absorb only more or less of green. 1t should range from color-
less to bright purple, its technic al name being Magenta. The
real inks, however, do absorb in the undesired bands also and

thus cause limitations which are discussed in the section 2.5.

Yellow, Cyan and Magenta are the three primary color inks
invariably wused 1in the printing industry. Even though, in
theory, it should be possible to reproduce any color image
using only the three inks mentioned above, in practice, how-
ever, a Black printer is almost always used additionally tor
the following reasons;

1. Since printing inks absorb a different proportion of
light at each wavelength, specifying their density
requires some convention. A useful measure is
Equivalent Neutral Densit y(END) which is the density
of the neutral Grey which results when the amount of
color ink in question 1is mixed with appropriate
amounts of the other two. This END concept makes it
clear that in the case of a non_neutral color where
all three inks are to be used, equivalent results
should be obtainable by reducing the three color inks
by a certain amount and substituting some amount of
black. Naturally, the reduction can not be more than
the lowest END of the three inks. This procedure,

called Under Color Removal (UCR) is used because it

-32-

saves expensive color inks and also because it minim-
izes the effect of misregistration by putting more of
the imagery into one separation.

2. Even without UCR, picture quality is improved with
the use of a small amount of black imagery, called a
"skeleton black printer". This 1is because maximum
amounts of the three inks, as formulated to give good
performance in highlights and midtones, can not
achieve high enough density in shadows.

Different rasters (arrangements of cells) are normally
used in four_color printing to minimi ze moire®' effects [2,12].
The black printer (key) and magenta are engraved in an
elongated raster which consists of 95 cells per inch around
the circumference of the cylinder with a pitch of 253.1 lines
per inch. A compressed raster consisting of 128 cells per inch
circumferentially, with a line pitch of 166.5 per inch, 1is
used for cyan and yellow. As there are four pages around the
cylinder, the elongated raster consists of 1024 cells per line
for each page and is thus a natural choice for the disk
storage format for all the four separations. Yellow and cyan
pages are therefore required to be interpolated during engrav-

ing.

2.5. Limitations of Real Inks

Even were the dot structure obliterated, gravure would

-33-

still not be perfectly subtractive because the inks are not
completely transparent and because there are physical interac-
tions among the 1inks as they are laid down. For this reason
the precise color actually produced by given amounts of the
real 1inks can only be determined experimentally. A very
important difference between additive and subtractive mixing
is that the result of an additive mixture depends only on the
appearance of the primaries. In subtractive mixing, however,
two primaries which appear identical under white light, may
mix very differently. This particular property of subtractive
mixing accounts for the fact that look alike printing inks may
behave very differently on the press, thus underscoring the
importance of empirical determination of the mixing results.
It should also be noted that the 4{llumination of a colored
surface by colored light (by definition, "white" light is
equal energy at all wavelengths) is subtractive. For example,
colors which match under incandescent 1light may noﬁ match
under fluorescent light.

Further, the real inks absorb light outside the optimum
wavelength band, thus imposing further limitations. For exam-
ple, the real cyan inks, also called blue or process blue by
printers, generally absorb quite a lot of green and some blue,
in addition to red. This makes them look bluer and darker than
true cyan. Similarly, real magenta inks absorb quite a lot of
blue, making them look redder, plus some red, making them look
darker. This unwanted absorptions of the real inks outside

the optimum wavelength bands reduces the gamut of colors which

-3l-

can be reproduced by mixing them. 1ln particular, bright
saturated greens and bright saturated blues are generally not
attainable. In addition, the need to achieve a neutral grey
scale requires different contrasts of the three color 1images.
If nowever, each of the printing ink densities was simply made
equal to the corresponding original dye density, but adjusted
in contrast so as to achieve a neutral Grey scale, very poor
color reproduction would result. The color contrast and
saturation would be greatly reduced. To lessen these effects
a photographic process called masking 1is wused as follows;
When the magenta 1ink is printed in order to reproduce the
green_light contrast of the original, a lower contrast second
image also gets laid lown which modulates the blue light of
the output image. This unwanted blue image can be neutral ized
at the cost of raising the overall contrast of blue light by
reducing the density of the yellow ink, which is supposed to
modulate the blue light, by an amount proportional to the con-
trast of the magenta 1ink. Since each of ‘the three inks
incorrectly absorbs in two other bands, it theoretically
requires six masks to cancel all six unwanted absorptions,
plus three more to undo the contrast-reduction effect of the
masks on the main images. Because of the high cost of masking
process, the practice in the current technology is to use only
two or three masks for color correction, while contrast con-
trol is often achieved by varying development [12].
Complicated as this procedure seems, it still is not suf-

ficient if best reproduction is desired throughout the tone

-35-

‘'scale. Seperate masking in highlights and shadows may also be
desirable. Using the photographic masking techniques, only
operators with very long experience and a high degree of skill
are able to cope with the complexity of the process. Undoubt-
edly, the absorption of printing ink- °'. the other two bands
can be undone much more precisely through the powerful arith-

metic capabilities of a digital computer.

2.6. A Strategy for Ink Correction

The computation of ink densities essentially involves
mapping a 3_d1mensiona1 RGB (Red, Green, Blue) vector into a
4 dimensional YCMK (Yellow, Cyan, Magenta, Black or "Key")
vector. In principle, this mapping can be achieved directly
by using a lookup table. However, if 3_bit resolution is used
for the input R_G B vector as well as the output Y C M K vec-
tor (Earlier experiments have shown that 8-bit resolution |is
the minimum for acceptable picture quality), the lookup table
would be larger than 64 megabytes in size. Such a 1lookup
table is clearly not desirable. A more pragmatic approach,
therefore, would be to use a much smaller look up table to
store corrections at much reduced resolution and then use some
clever interpolation scheme. Because the printing inks exhi-
bit complex mixing behaviour described earlier, the correc-
tions would have to be determined empirically by actually

printing ink patches in incremental steps of density and

-36-

matching them to TV R_G_B values. The number of colors for
which exact corrections are avallable depends upon the size of
\the lookup table. This lookup table, called Ink Correction
'Iable, may be viewed as a 3_dimensional grid, as shown in fig-
ure 1 (b), in which the exact corrections are available at the
intersection points as a result of matching. But since the
cells in the grid are large relative to actual resolution,
some interpolation scheme must be used for all intermediate
values. The accuracy to which the intermediate values may be
corrected depends upoen the non_linearity of the correction
space and the type of interpolation function used. A reason-
able approximation to the intermediate values of corrections
may be computed using linear interpolation, which, although
computationally non_trivial, does not involve any complicated
arithmetic. In order to keep the color matching experiments
within reasonable 1limits and the size of the Ink Correction
Table manageable, 1t was decided that a table with 512 entries
would be used., This allows a resolution of eight levels in
each dimension of the correction space. The 1Ink Correction
Table, therefore, has to be accessed by a 9-bit address (3-
b%ts in each dimension), and has exact value of corrections

stored for 512 colors corresponding to the same number of ink

patches.

T=F+T

F e Covveckion fer the
sleviation flom ULintare ‘.‘
between Godress amt

Condents .

T=Y,C, O M

FisuRE 1 Ca) RELATIONSHIP BETWEEN LINEAR
AND NONMN-LINEAR COLOR CORRECTION

F(net,mid, led)

¥ (meim, #,‘)

’F(ﬂm.t) F(nei,m,L)

o '} msun& Ld.) 3.DIMENSIONAL INK

QORR¢ CTION SPACE

2.7. Empirical Determination of ICTs

It is important to minimize the size of the entries in
the ICTs, so that data sizes in 1ICTs are reduced saving
storage space as well as simplify computation. In order to do
this, input variables are operated upon by an algorithm which
results in nearly linear relationship between the table
addresses and 1its contents. Then, corrections to the output
are stored in the table rather than the output itself. Since
the corrections are much smalier relatively, the table size is
reduced for the same order of accuracy. In addition if the
axes of the input color space were rotated so as to nearly
align with that of the output color space, many of the entries
would become very small. Figure 2 depicts the algorithmic
process for minimizing the table entries, the output variables
thus generated are approximations Y, T, M to the output ink
densities Y, C, M.

The matching experiments required for empirical determi-
nation of table entries are described by Schreiber and Ber-
 ber1an X 3,4,5;6,7 J. In these experiments, a book of ink
pétches, printed in 8 equidistant steps of densities in all

fonr colérs, is used to match the ICI values of the TV colors.

| The book does not contain the combination with the Black at

~density=1.0, which obviously does not require matching.

foHencé; the‘ book contains 56 pages of 64 patches each. How-

| fﬁé,jever. because of under_color_removal effect, a number (upto

‘f these 1nk patches will match each triad of ICI values.

Ca T TR TR -

— _.I NN SRR ' B d . m - 1-|._|||! _

_ . ! 1 0.Hi ‘

SI0JI¥ JO UOTEBZTWIUTWH JOF WYITIOSTY 2 eandtd

T T -
| " daxooT
B [PR S _ er L -
W <—— “az+ af+ ax=N i STqERL < d01d
: ' LTeoUTT U0
_ _ 1oy
|
.— —-—
_ , an HooT
2 < mau.+ua.u+mnwnw aTqey < NaEdd
_ _ |
. auTT uo
. TEaUTT UoN
|
1
— -—
| -dfl yooT
1 < YqdPauitiqu=z |« aTqel —< qay
I “ Uq |
! aUTT uo
T _ | ol
[| .
€ XTHIVW MVANTT
e e e e e — 4 952 30T I+#I

o H
c6z * 95z Z°T @

But, for a given degreé of UCR, only 512 patches will actually
correspond to the matched data. Once the matching is done,
VY;EJE may be computed corresponding to ICI vaues from TV, thus
yielding the base value of correction for every point in the
correction space (i.e.every address of the Ink Correction
Table). The other entries of ICT, viz. first and second for-
ward differences as defined in section 2.8, are derived from
the base corrections. The reason for precomputing these

differences, is simply a space_time trade_ off.

2.8. An Ink Correction Algorithm

Figure 3 depicts the flow graph fdr the Ink Correction
algorithm. The Red_Green_Blue values corresponding to a pic-
ture element are to be first converted to ideal dye densities
by a non_linear operator. This non_linear mapping is loga-
rithmic in nature because the relationship between transmit-
tance and dye density, given by the Lambert Beer Law (9], is

as follows;

Where T(M\) is the transmittance function;

d, the dye density or concentration and

D(A), the spectral density function of a umit con-
centration of dye. |

In the qigital processing domain, the actual operator

*’»,j used is given by the following equation;

41

HAVHO MOT4 TYNOIS — WHLIXO09TY NOILD3IH2a0D JNI ¢ 3anaud

TR
. ~070> ~¥3aGNL |
H<—— —— In— 204 ONIddé [S §w2hinw

mNOq
35 "1 - yoioyy 31996 =8

SS9t

HAEINIT ~NONM

iz

— XK
K

Mz.u.»w \V.A/\ i

0Mlu.k | \,\/ T k
L<{+ .. V>A <
N

| w - A | X

Iyl NOILIFH0I MUNI

FORMAT
8PLITTER
\h
\, e
8l
Q
(7

]
2 nv&w,]

FORMAT
SPLITTER,

FORMAT
, SPLTTER

Given‘

< §z,Ds} 255,

= (%\0%)' (l;zszs5>

where
RI’ is the ideal block dye density corresponding to
input I;

I, is one of R, G or B ICI values.
Both I and QI are expressed as decimal equivalent of
§_bit binary words.

The spectral density functions of the ideal block dyes
appear as shown in figure 4. A linezr transformation must
then be performed on the ideal dye densities DR"DG"Dﬁ to yield
approximations Y C M to the desired printing ink densities
Y C M., The triad TLE_E'may also be viewed as non_ideal block
dyes having spectral density functions which overlap in other
two bands as shown in figure 5.

Mathematically, this transformation is as follows;

l—q - 1' -y
| Cl= B qs
] D
L - _ o’ = 8 -

The effect of B-matrix may be viewed as to porform a

“'ro»tatildn on the input vector DR DG D3 so that T’_E__TG approxima-

"”,;ﬂv tion 13 as nearly aligned to output Y C_M as possible. The

emperically determined by Berberian [3], which

(el
S
[
[72]
o
w Q84
Q
400 800 600 700
(a)
LO
>
-
o
=
w 0.5
Q
e e
400 §00 - 600 700
(b)
1.0-
>
-
n
> 0.5+
o
o
o ——— o
400 500 600 700

WAVELENGTH (NM)
(e)

Figure4- Spectral Density Functions of ideal
Block Dyes: (a) yellow, (b) magenta,

(c) cyan.
-44-

1.0
-
b
o
205
ud
(=)
L. ‘P
400 500 600 700
{a)
.0
>
-
o
<0.5
73]
(o]
T T T 4“‘
400 500 600 700
(b)
1.0
>
-
(/)
=
2091
Q
450 560 abo 780
WAVELENGTH (NM)
(¢)
Figure § - Spectral Density Functions of 'Non-lIdeal'

Block Dyes:(a) yellow, (b) magenta,

(c) cyan.
- 45—

minimizes the maximum errors in this manner is as follows;

2.06 -0.6309 -0.1228 |

BI

-1.28 2-2 "003

0.21 -0.4046 0.6992

- L

The same matrix, properly scaled and quantized for

representation on 8-bit data path [10], appears as follows;

1.8671875 -0.5703125 -0.109375 |
B= |-1.15625 1.9921875 -0.2734375

0.1875 0.3671875 0.6328125

Once the approximations are known, the key (UCR com-
ponent) may be determined as follows; The algorithm for com-
puting the key (Black ink density) is essentially a two_step
procedure., The first step involves determination of the least
of Y T M, because the UCR can never be larger than the 1least
of these three as explained in section 2.4. In the second
step, the key is computed as a non _linear function of the
least value determined in step 1, as proposed by Schreiber [6].

For flexibility and convenience, a lookup table 1is used
for the function depicted in figure 6. 3

To compute the color ink densities Y C M, 3 dimensional
linear interpolation must be carried out using the Ink Correc-
tion Table. The corrections are stored in ICT in a rather

clever manner. This method, proposed by Schreiber, is based

- ~46-

= ACTUAL |
USED |

A

= i.o
TMIN

~
>

Tuy = MINIMUM OF § 7,E,7 ¢

K = DENSITY OF BLACK INK

FIGURE 6 NON-LINEAR MAPPING FUNCTION
(MUCR) FOR UNDER-COLOR_REMOVAL

upon the apriori knowledge of the relationship between the
linear (ideal) and non_linear(real) ink corrections, shown in
figure 1 (a). Since the deviations of the corrections from
linearity is smz2l1 compared to its absolute value, significant
storage efficiency is obtained by storing the deviations from
linearity rather than the value of correction itselfl The
absolute value of correction can then be generated simply by
summing the deviation to the linear approximation, which, in
this instahce, is the input variable itself. Figure 1 (b)
depicts one cell of the 3_dimensional grid normally associated
with the ink correction space. Since ICT has 512 entries, it
may be viewed to be consisting of 512 such cells, 8 in each
direction of Y, C & M. Further, since the ink density space
is highly non_ﬁ;ar as well as assymmetrical,

three different Ink Correction tables must be used for each
Y, C & M output. Our objective is to compute Y C_M, which are
3-bit binary numbers, as a function of the three inputs T;E;ﬁ,
also 8_bit binary numbers. The three most_significant bits of
Y T W readily point to the particular cell in which the object
ink density vélue_ must lie. But, to obvain 8_bit precision
along each dimension, the output variables Y C_M
must be interpolated from the 5 lower_order bits of inputs
¥ T W (within the cell). Each cell thus, may be viewed as
being divided into 32-parts along each axis. Since, the
values of base corrections T (one of Y 'é'__ﬁ) are kinown (from
ICT) t‘or all 8 corner-points ot‘ the cubic cell, it is possible
to linaarly 1nterpolate uitm.n the cell using 5 Jlower order

bits from each of Y, T, M to obtain the 8 bit value of the
output ink densities. Buckley has presented a detailed discus-
sion on 3 dimensional linear interpolation [11].
Mathematically, 3__dimensiorial linear interpolation may be
viewed as the computation of Taylor's series expansion on
input variables [-Y']e ,[.C-]e ,[ﬁ]c(which are the 5 1lower order
bits of Y_E_ﬁ) using pre_determined co_efficients (from Ink

Correction Table) according to the following equations;

<
L[}

Y + Y(n,m,1) + [Y]y &Yy + [Clg &Y, + [Mlg &Yy +
- ”~ - - o~
[Ylg [Tl BYye + [Clg [Mlg &Yg i+

- o ~ - - o ~
[Mlg [Ylg &Yy, + [Ylg [Cly [Mlg &Yy,

- o - “ -
¢ =T+ Clnm,1) + [Ty &Cy + [Clg &Cy + [M1g &T,, +

(T1g [Tlg aTy, + [Ty Yy AT, |+

- - o - - - &F
(Mg (Tlg ACuy + (T1g (Tlg (Mlg ACy,e,m
M =M+ Mn,m,l) + [Ylg AMy + [Cly AMg + [Mlg AMM +

-— L ~ - _— ~
[Ylg [Clg AM...’c+ [Clg [M]'AMQ,"+

- ~ - - "~
(Mg (Tig &M,y + [Y1g [Clg (Wi AMy e m
Where, referring to figure 1{(b), the forward differences
are defined as follows;

o ~ ~
AYy = Y(n+1,m,1) - Y(n,m,l)

8% = Yn,mer,) - Yom,1)

~

A?;' Y(n,m,1+1) - ?’(n,m,l)

-4 9~

>
(@]
<

0o
'

g
O
£ L 4
"

o
aMy

[d
Al

™
LM~|=

~
C{n+1,m,1)

)
= C(n,m+1,1)

[
C(n,m,l+1)
~
M(n+1,m,1)
"~
M(n,m+1,1)

~
M(n,m,1+1)

~
C(n,m,l)
E?n,m,l)
~
C(n,m,1)
Min,m,1)
~
M{(n,m,1)

~
M(n,m,1)

The second order differences are defined as follows;

~ ~
AYY.C = Y(n+1,n+1,1)

o~
AY‘:’M

~
= Y(n,me1,1+1)

»n ~
AY“‘,= Y(n+1,m,1+1)

~ r
Ac§g= C(n+1,m+1,1)

>
T
]

‘N ~
Mo = M(n,me1,141)

~
r'\
M"aY

L4
= C(n,m+1,1+1)
o~
C(n+1,m,1+1)

~
= M(n+1,m+1,1)

= ‘ﬁ(nﬂ,m,lﬂ)

?(n+1,m,l)
~
Y(n,m+1,1)
~
Y(n+1,m,1)
~
C(n+1,m,1)
(s d
C(n,m+1,1)
A
C(n+1,m,1)
~
M(n+1,m,1)
~
M(n,m+1,1)

q(n+1,m,1)

~N
Y(n,m+1,1)
(o'l
Y(n,m,1+1)
o
Y(n,m,1+1)
Vald
C(n,m+1,1)
(.4
C(n,m,1+1)
C(n,m,1+1)
M(n,me1,1)

o
M(n,m,1+1)

+

+

+

?Qn,m,l)
o~
Y(n,m,1)
~N~
Y(n,m,l)
~
C(n,m,l)
N
C(n,m,1)
n
C(n,m,1)
AS
M(n,m,l)

N
M(n,m,1)

~ ~
M(n,m,l+1) + M(n,m,l)

The third order difference is defined as follows;

=50=

R R E
R ¥

o
(AN R

~ P o~
AY‘,.C.Mz Y(n+1,m+1,1+1) = ¥Y(n,m+1,1+1) + ?(nﬂ,m,l) - ﬂf(n,m,l)

n [l
- ?(n+1,m+1,l) + Y(n,m+1,1) - Y{n+1,m,1+1) +

’; (“Om, ¢+‘-)

o~ (a4 ~N A/ PV
Ac\,m= C(n+1,m+1,1+41) = C(n,m+1,1+1) + C(n+1,m,1) - C(n,m,1)
[t) -
~ N P
- C(n+1,m+1,1) + C(n,m+1,1) - C(as+1,m,1+1) +
~
c(“.m;l"-)
M ¥4 NI ~ ~
AMY:c,,..: M(n+1,m+1,1+1) - M{n,m+1,1+%) + M{n+1,m,1) - M(n,m,1)

- Td(n+1,m+1,l) + ’ﬁ(n,m+1,l) - Aﬁ(n+1,m,l+1) +
M (n,m, l+1)

In the above equations, ICT supplies the base_corrections
"i"(n,m,l) as well as all the first and second forward differ-
ences. The third order term, being insignificantly small, may
be ignored. Also, equation (1) thru (3) above are valid only
for 3_cclor system. Since, under_color_removal is used in the

proposed system, the terms ?, 5, M in the right_hand expres-

sions may be replaced by Y', C', M' respectively such that (“f

- Y, (C- C'), (M - M') together constitute the key or the
UCR_component. This implies that the entries in ICT take into
account the effect of under_color_removal.

Appendix A presents Macro_ and Micro_Flow charts for the
Ink Correction algorithm in respect of the key and one of the

coler ink_d ensities.

-51-

et W

n e e

CHAPTER 3

Engraving System Overview

Figure 7 outlines the organisation of the HeliqﬁEngraving
system. The coded disk based data resulting from the Celor
Translation Process is retrieved by the Channel Processof and
fed to Multi channel Data Converters. Data Converter decodes
the input data for continuous_tone/lineart areas and generates
elongated/compressed rasters . The Data Converter has a
tone_scale memory, which provides company translation of the
signal as well as compensation for stylus_wear. The data for-
mat for the cclor page is two luminance lines of 1024 Dbytes
each followed by half as many bytes of chrominance informa-
tion. The luminance is to be coded as one byte per cell for
the contone area and two half bytes (nibbles) per cell for
lineart. The chrominance information will consist of C1 in
the low (even numbered) byte and C2 in the high (odd numbered)
byte. The chrominance information will be stored at a
sub_resolution of 4 cells per sample.

The Color Data Formatter (CDF) receives the data from
MCDCs and expands the sub_resolution chrominance signals to
full resolution and outputs 1_C1_C2 signals over 3 parallel
channels as real_time data_streams. A hardwired module con-
verts 1_C1_C2 signal into R_G_B. ICM transforms the R G_B
signal into Y C MK ink densities and outputs one of these at
a time. The ICM output goes to another tone_scale memory,

the funcbion of unieh is to linearize the entire data_processing

-52-

Mt @ A3

W e i G . —

PDP-11/34 ___ UNTBUS —j>
(N L

i ! HELTO

L 300 MBYTE e HANNEL INTERBUS
L ROCESSOR

! DISK PRoges LINK

S T < rwemms >

l MeDe -1 MeDe-2 l 96 K-WoRD
| BUFFER MEM
cg' ABUS-{ ;l\ABUS-Z
| &=t
(00
Hl COLOR DATA
|§ FORMATTER
b-Cy- c,T-R.c.nf ; E P H
CONVERTER % L HELTO
l (o]
/ I F
' N O les KLISEM.
T fe SS 9L R
INK E 2‘4 O GRAPH
de% CORRECTI E T
L.
MODULE k E
I
HEAD CORRECTION
TS M

FIGURE 7 BLOCK DIAGRAM oF HELTO.ENGRAVING SYSTEM

chain. The output of TSM goes to ECR_Interpolator followed by
the Helio Formatter. The ECR Interpolator interpolates yellow
and cyan pages from elongated to compressed raster. While,
Helio Formatter provides the necessary interface to the
Helio_Klischograph. ICM has a transparent mode which is used
for monochrome sep®rations as well aé the initialization
phase. Real time processing by ICM is synchronous with the
System Clock. ICM has a UNIBUS interface to communicate with

the hest PDP-11 Computer.

3.1. Interface Specification

Figure 8 illustrates the interface information in respect
of the 1Ink Correction Module. All data inputs to ICM are
sourced within the Color Data Formatter (CDF) and converted to
R G B data_stream by a hardwired module. The control and
status signals are provided directly by CDF. The system clock
is echoed by CDF as per the time relationship shown in fig 9,

All signals are TTL. Data transfers through ICHM are
always synchronized with the system clock. Description of the

input/output signals are as follows;

DATA1in:(Pin# MSB 16,14,12,10,8,6,4,2 LSB/ CONN#J 1)

During the initialization phase, this input carries the
data for internal registers in the Helio Formatter. The ICM
mode of operation is such that the output is same as the

-54-

Rord D

>-A>»9

An{<4>23IVO0ON

/\

/ \
snﬁﬁs——JL—r
RoatAa —t—af INK | 2. 7k
8 DENSITY '
G-DATA —F+=——> A ARDEC- DATA
B.DATA —+2 & TTON
CDFRDY L, —————» f—— DERDYL
INITELK —> MODULE
SYscLk T >
CHADDR i _—
SPARE ¥ © o
-< ByTeP”
o INITL
- 8TARTL
- PGBDRY
- PHASEP3
- E
- IDTACLK
- REFCLK
- 45_ SPARE)
"

FIGURE 8 IcCM INTERFACE

JOAMe+IT @~ O

N0« OV IM -~ 24

I | A e

-

_rl SWP ——

v |
' L |
r<— Sw's-lokend —) N ,
_ | | { “
. \ B
() | LS)
BN v i -1.,._ I owy“
|
(| !
) iy
™ 7 azivA az1vA) C: CIIVA ._g
} Ji 4 4 { .
B WL TTwa CE317) xX_
s
\ &3
) AN
J NOUWNRSII L
NouYNIWYaL (G~ T T e o3
Twyon * A

33ISNYuL 2A3iSID3d 2A3LLVWI0S

INTERFACE TIME DIAGRAM

FIGURE 9

input. CDF must ensure that this data port is used during the

initialization phase.

During the engraving phase, this input carries "Red"
channel data
converted from 1l-C1-C2 by the hardwired module. In other
modes, this channel may be used fdr engraving monochrome
images or color images directly from R G B
separations type data.Status bits specify what ICM must do
with this data.

DATA2in:(Pin# MSB 48,46,44,42,40,38,36,34 LSB/ CONN#J3)
This input is active only during the engraving phase and
only if the ‘process' mode 1is operating. It carries the

"GREEN" channel data of the R_G_B input.

DATA3in:(Pin# MSB 30,28,26,20,18, 16 LSB/CONN#J3)
‘This is identical to DATA2in. except that it carries the
"BLUE" channel signal of the R G_B input. |

DATAout: (Pin# MSB 16,14,12,10,8,6,4,2 LSB/CONN#J2)
This is the output from ICM.

CHADDRin: (Pin# MSB 28,26,24,22 LSB/CONN# J1)

Channel Address input. Since ICM does not use Channel
Address signal, this is simply connected through, to the out-
put.

CHADDRout: (Pin# MSB 28,26,24,22 LSB/CONN#J2)
Channel Address output. CA bits are relayed by ICM to
the ECR Interpolator without any delay.

=-57=-

SYSCLKin: (Pin# 20 /CONN# J1)

The System Clock is echoed by the Coler Data Fermatter in

response to the BYTEP" signal. Timings are shown in figure ®.

SYSCLKocut: (Pin# 20 /CONN# J2}
The System Clock is relayed by ICM to the suceeding unit

without any delay.

INITCLK: (Pin# 3 /CONN# J3)

During the PROCMODE, CDF generates INITCLK, a single
pulse, immediately after the first data bytes are fetched and
outputs to ICM. Effectively, this causes data bytes to be fed
to ICM one clock ahead and thus permits pipelining of data
through ICM, allowing a maximum of 11.5 microsec data-

processing time for the ICM.

CDFRDYL: (Pin# 18 /CONN# J1)
This signal asserts that the CDF and the system preceding

it are ready for the engraving phase.

DCRDYL: (Pin# 18 /CONN# J1)

CDFRDYL is ANDed with ICMRDY to produce the DCRDYL signal
and thus ensures that the time required for any preparétory
operation by ICM is provided and engraving does not begin

until all functional modules are properly initialized.

STATUS:(Pin# MSB 13,12,11,10,9,8,7,6 LSB/CONN# J3)
Status bits are set in the CDF and are interpreted by ICM
as shown in figure 10. The ¢two LSBs represent the color

presently being engraved. The next 4 bits selectively control
-58-

Tt WA P Rime hir ol 7 RS

whether engraving of any particular color should be
suppressed. The two MSBs decide the operating mode.

Op-mode *00' is a real_time NOP mode. In this mode the
engraving process is not active and therefore, the time may be
used by ICM to execute any diagnostic procedures or any other
house_keeping function, in commnication with the
host_computer. During "01' op_mode, ICM simply outputs the
data presented to it at DATA1in port. In this mode, ICM is
transparent to the system and hence this mode should be wused
for engraving black or sepdrations type images, as well as for
initialization. ‘10' op mode, is the real_time processing
mode 1in which ICM executes the microprogrammed Ink_Correction
algorithm on the input data, generating the value of

ink_density.
SPAREin:{(Pin# 30,32,34,36,38,40 /CONN# J1)
SPAREout:(Pin# 30,32,34,36,38,40 /CONN# J2)

UNIBUS INTERFACE: (DEC STD. Backplane A & B)

This provides the interface between the host PDP-11 Com-
puter and the ICM. The Unibus is interfaced through the sys-
tem manager of ICM, which is Intel's 8085 MPU based microcom-
puter. Extensive software is installed in the manager to pro-

vide a variety of functions.

The physical interconnection of vanous functional modules
of the engraving_phase data processing system is depicted in

figure 11. As shown, one 3_M cable, bypassing ICM, connects

-59-

YR Ea Ay

57156, S5 54) S5 s 51| 5| == STATUS BYTE

X X X X X X 0 0 ==— COLOR MODE= BLACK

X X X ® X

X

(o]

i

0

<—COLOR MODE = YELLOW
~<—COLOR MODE = CYAN

~<— COLOR MODE =MAGENTA

<€ INHIBIT BLACK
~¢—INHIBIT YELLOW
~«€«—]INHIBY T CYAN

<—TNHIBIT MAGENTA

- OP.MODE = NOP
=t OPR. MODE = PROCESS

-<— SPARE

FIGURE 10 ExPLANATION oF ICM STATUS BITS

-—G0—

Color Data Formatter directlv to ECR Interpolator. This cable
carries signals from ECR Interpolator viz. BYTEP'", INITL,

STARTL, PGBDRY, PHASE P3, E, IDTACLK, REFCLK and 5 SPARE

lines, which have no interaction with ICM.

-61-

3244 S
‘Y1oshs “1aQH0(q

‘BCAYID Sy g
ALSN3CT SND

NIDLINT
‘sSnivis

ECR

T

&

T

S

-]

@)
R
RW&OO*-EM
0y
BN

Z

I

dyas 10433

'TONE SEALE MEMORY

pa® Op - We

INK
CORRECTION

MODULE

“A109.0T € 3°£d ISR “AdaEYd € 11dYLs CTLINT €, d3LAd

¢ viva-q
\\ * C-F‘Q..U ‘f

;.m.uou Q9 ~lig

u/f

wis‘1aqa 44D
ISAS ¢ dAQwHD

K. q‘-.tﬂ K- KN

Jop Op ~-NE

o)

DATA
FORMATTER

COLOR

Jaoeo o - Wg

5

J

Figure i1 SYSTEM INTERCONNECTION OFICM

CHAPTER 4

ICM System Architecture

The focus of ICM system architecture is a high_speed micropro-
grammable processor, intended to serve as the work horse for
all the real time number crunching associated with the Ink
Correction algorithm. A Block diagran presented in Fig. 12
depicts the major components of the system which is broadly
partitioned into two functionally independent sub_systems
viz.(i) The Real Time Processor(RTP) and (ii) The System
Manager (MGR). Since, the real time processor must not be bur-
dened with the houce keeping functions which are also to be
performed, an alternative must be provided to shoulder this
responsibility. A microprocessor_based system manager is just

parfect for the Jjob. Accordingly, the manager was designed

around an Intel 8085.

4.1. Hardware Architecture

The architecture of the real time processor is based on

the notion of supporting as much concurrent processing in a
sequential machine as a reasonable amount of hardware would
permit. Concurrency is derived through both parellel process-
‘T%ﬁg as well as by overlapping (pipelining). Bipolar Schottky

Ltechnology was the inevitable choice for implementation. The

processor 1is organised around a high_speed dual_data_bus

-63-

) OBUS-B

Y OBUS-A

WOI 10 WvYOVICT ¥o01d €7 330914

™ a4icx0a

ATHNOI

201L23A _

LN ktm.nzu

lINnn
TOALNOQD
A405S3002d

e——————1

—OIACYITD

¢ 3c023CT
SNLYLS

ﬁ SnLyLs

A

_—
- HIDUNYIN
- > W3LisAs
J79 VL
N
-93240D
m HNI
[} i
¥ 7
3AILND3IXT
21207
. o 21901
OT1 INHLIAY HONYAE

I

NYINIT NON
K3
S¥31S1934

LINIT

SATLS[oF &L
MYy INID

ALvO
4NdL N0
¥ 4
SY3ILSIDI

o/1

} b———omosae

RALN

> Haino
K— €

ﬁ ° Yiva
ﬁ A Ladng

I

b V-SNngl

Vv

i

-5 €-5n8X

— G4-—

structure, which facilitates two bus transactions during one
microcycle, effectively nearly doubling the thruput. The
greatest benefit from such a data _path is ofcourse derived
when a double operand transaction (which happens most of the
time) occurs, since no overhead is incurred in fetching the
operands sequentially which 1is characteristic of machines
organised around a single dats bus. However, the gain in
efficiency would not be as much if a large number of
single operand transactions are enqued and both data buses do
not get loaded every microcycle owing to data_interdependency.
From the viewpoint of real_time processing, this is perfectly
acceptable because thruput is the prime consideration rather
than efficiency. Further, in a number_ crunching applicatiorn,
most of the time double operand operations are executed. Fast
and power ful arithmetic is provided by designing a
multiple element executive, which includes a high speed
Multiplier_Accumul ator, a high_ speed ALU and a
shifter_rotator. Non_linear operations are mapped through use
of lookup tables. Eight high speed dual port bidirectional
registers are provided for holding partial results, whereas 2
sets of 3 wunidirectional registers support I/0 activity. A
dedicated Data Interface matches all host system_timing
requirements. For sequencing, a fast and powerful micropro-
gram controller viz. AM2910 was chosen to operate at a system
clock of 6.25 MHz thereby yielding a microinstruction cycle
time of 160 nanoseconds. To obtain maximum concurrency,

two_level pipelined microprogram control architecture 1is

-65-

implemented as shown in figure 13. In a pipeline architec-
ture, the fetch of the next micro_instruction is overlapped,
while the current micro_instruction is still beirg executed.
Two_level pipelined architecture actually entails three stages
of pipelining, one in each signal path, and is thus known as
Instruction Address_Data based control architecture. It is
called two level pipelined because the programmer has to keep
track of events that would occur two microinstructions later,
and therefore, microprogramming in this architecture is much
more difficult than other architectures. On the other hanrd,
the two_level pipelined architecture 1is undoubtedly the
fastest of all standard microprogram control architectures.
The Manager is primarily responsible for house_keeping
functions such as power_up initialization, downloading
microprogram and Ink Correction table into RTP, communication
with host processor (PDP-11), diagnostics and program develop-
ment support. The manager 1is a microcomputer, based on
Intel's 8085 MPU, with UKbytes each of program memory (PROM)
and local data memory (RAM) . Additionally, manager's MPU can
access 2Kbytes each of RTP's microprogram memory and the
Ink Correction table (both modules are implemented with Bipo-
lar RAM) which are mapped in the top half of manager's memory
address space. RTP's microprogram memory and the
Ink Correction table are 1in some sense dual_port memories,
which, in offline mode, can be read or written by the
manager's MPU. But, during the real_time mode, these memory

segments become Yead-only and are only accessible to RTP.

-66-

Am 2310 <

—3 T MIC ROPROGRAN,
CONT RPOLLER

? lm

PIPELINE
REGISTER#{

+- —< cLocK

A+4

Y

ADDR

MICROPROGRAM
MEMORY

DATA

I(A+4)

PIPELINE 4 |
REGISTER# 2

I(A)

- ALU

ls(A)

STATUS
REGISTER

D>

s (A-1)

FIGURE {3 Two.LEVEL PIPELINED MICROPROGRAM
CONTROL ARCHITECTURE

- 67-

Figure 14 depicts the memory address map of the manager.

Manager has a simple Interrupt structure as follows;

1. INTR: Hardware Interrupt or Restart 7 is wused for
recovery from hang up in unused memory address space.

2. TRAP: is non_maskable and is used for recovery from
hang up by host processor.

3. RST7.5: is used for indicating color mode status
changes. These mode bits are input from Color Data
Formatter. Any change in color mode requires down-
loading of appropriate microprogram and ICT.

4. RST6.5: is used to implement the Unibus 1Interface.
Every time the host processor writes a word in the
command_port of the interface, this interrupt is
raised.

5. RST5.5: is wused for single step feature of the
manager and basically provides a trap after every
instruction.

Figure 15 depicts the I/0 address map of the manager.
Evidently, it currently supports only three types of I/0
interfaces. Two of these Interfaces are implemented using two
each of Parellel Peripheral Interface chips (Intel's 8255A-5).
One of the Interface provides communication betwesen the
manager and the RTP by means of 3 input and 3 output undirec-
tional ports. The other provides communication between the
manager and the. host processor by means of 2 bidirectional
ports, 2 unidirectional ports, and 2 control ports to support

operation of the bidirectional ports. The only other I/0

-68-

FFFFH

» RTP ACCESSIBLE

! MANAGER'S CONTROL —.

BLOCK
(32 BYTES)
MULTIPLE FOS b Dbt
| MAPPING svsw:s(m
R S ’ TAC
QFFFH | uy S
Q@80OH _ _ _ N/
Q7FFH i
G000H i
SFPFH [Ink corrRECTION TABLEY)|
B7FFH .
BoooN MICROPROGRAM MEMORY,//.
7EFFH ‘
|
|
N :
4
| ,
SPARE , '
i : 4x EPROMs 2708s
N
' r / E1
! Ly
| .
: f f i E?
i
;o E3
2000H4 L/ "
AFFFY AGER'
MANAGER S RAM / E4
joooH
OFFFH
ICM SUPERVISOR /
0000H

FIGURE 44 TICM MANAGERS MEMORY RDDRESS MAD

e WAIToT
gin WAITIN
Dot ARMSTS
sonl TRACK
F
15?5% { HOST_ProcessOR
i’c':!?i{; INTERFACE ,
et 1
:s’-{ RTP INTERFACE
75, L
7FH
. HHKD MoDULE
|
ooH |

FIGURE 15 TCM ManAGER's T/o ADDRESS MAP

70

interface currently supported by the manager is the Programm-
able Keyboard/display controller chip (Intel's 8259), which is
used to communicate with a hand_held keyboard/display module.
This HHKD module, in combination with the operating software,
provides the functionality of a 1low _cost development system
such as SDK_85, in addition to providing many other functions.
Since the operating environment of the RTP is completely under
its software control, the manager lends itself to being a very

powerful and flexible debugging/maintenance tool.

4.2. Software Architecture

Current research in engraving phase color
processing requires the Irk Correction Module to have the
flexibility of a development tool. Therefore, the system must
be architectured to provide as much functionality through
software as possible. Designing the real time processor as a
microprogrammable machine and allowingt microprocessor (the
manager) the ability to load/modify its control memory under
software control, yields exactly the desired architecture.
This approach essentially requires a smart software system to
live in the manager.‘ Some of the desirable characteristics of
such a software system are as follows;
1. Must have stand alone capability (the ability to live
by 1itse1f) in order to support essential functional-

ity even in the absence of other modules.

2. Should provide power_up initialization.

-T1-

3. Should provide access to an operator through a
keyboard/display module.

4, Should be able to communicate with other software
systems operating on the host processor (PDP 11).

5. Should provide memory diagnostics

6. Should provide management and diagnostics of the
Real_Time Processor.

7. Should provide a simple program development environ-
ment for B8085-code in the style of Intel's low cost
development system SDK-85.

8. Should be well structured to provide easy future
eixpansion.

The software system ICM Supervisor ICMS.8080 (suffixed
8080 to meet the requirements of UNIX cross assembler MICAL,
which is designed for 8080)
was created to meet the needs of ICM system manager. While
ICMS.8080 provides extensive operator interaction through HHKD
module (handheld keyboard and display module), the primary
user interface is through a software system ICMON (Ink Correc-
tion Monitor) operating on the Host Processor. It was desir-
able to do so because a console terminal, attached to
host_processor, is a centralised user interface in the exist-
ing system. Another important reason for this architecture is
that the ICM data_bases would eventually live in the file sys-
tem (secondary storage) of the host processor and a software
package would anyway be required in the host system to down-

load the program/data objects into ICM.

-T2

Accordingly, ICMON is designed as a command Interpreter,
which, in communication with ICMS, performs the following
function in response to commands typed on the console termi-
nal;

1. Read from and write to Terminal Console.

2. Transfer arbitrary 1length records between the
host_ processor and the ICM manager in either direc-
tion.

3. Activate a variety of actions in the Real time opera-
tion.

4. Read ICM status.

5. Fetch information on error condition.

6. Perform diagnostics on RTP.

7. Provide miscellaneous utility such as memory dump,
load memory from console as well as paper tape etc.

The software development associated with ICM requires
programming in MACRO-11 (PDP-11 assembly language), 8085-
assembly language as well as special assembly 1anguage or
machine language correspondilg to the Real time processor. To
support these program development and debugging activities, a
number of utilities must be provided on the system.

Following utility programs were created in addition to
many already supported by CIPG's UNIX system.

1. Intel Hex Code Formatter

2. Hex_to_Binary Converter

3. Micro_assembler for RTP

In view of the difficulty of microprogramming a two_level

-73-

pipeline_architectured machine, it was considered desirable to
create a micro assembler for RTP so that microprogramming
could be done in symbolic 1language. MICRASS, RTP's

microassembler, is currently under development by another stu-

dent.

Tl

CHAPTER 5

Hardware Organisation

Hardware of ICM is organised as a set of 9 wire wrapped
boards, 6 quads and 3 duals which plug into a DEC_style 9 slot
system unit as depicted in figure 16. Slots A and B of the
system unit back plane are wired across as UNIBYS. ICM system
manager is implemented using just one quad plus one dual board
(bard#T7AB) whereas the rest of the boards constitute the
Real time Processor. Figure 17 depicts the signal information
map of the ICM backplane. Appendix B presents a photographic
view of the actual hardware. All the logic diagrams of ICM

are filed wunder corresponding board numbers in the ICM docu-

mentation.

5.1. Real Time Processor

The RTP consists of 5 quad and 2 dual_boards as described

below;

5.1.1. Block Diagram Description Figure 18 gives the

block diagram, depicting the organisation of the Real Time
Processor. The processor constitutes of the following
mcdules;

1. Data Inerface

2. Microprogram Controller

3. Microprogram Memory

75~

VIEW FROmM PIN SIDE

A B ¢ D E F
B NSNS e/, BN ! ! '
;UNIBUS-OUT | : : | DATA INTERFACE
| !
. R] | | |
RESERVED | | _aperos coutr.
RN T |
B S 2] e Rt e
i 11
UNIBYUS INTERFACE | | SYSTEM MANAGER
|
_ _.%- UV TR T N S L — -
" S
\\L;/J | MIC ROPROGRAM MEMORY
NS R
\\‘/J_j‘ | | | I
| | ' |
b o o /’—J-—L—- - l-—.._...'- - o ww o o o
- Y | . ! | ! .
“—Q:afé ' REGISTER ARRAY & Bus-CoNTROL
B =2 = s St it niaitialt wieilin
== «
—~ | BUS-MASK & MISCELLANEOUS
AN : = :
= '\QC;;&"T s o ol i Ry
\/ \ | ARITHME TIC & LOGIC EXECUTIVE |
) .
- l 'l R R -
¥ st Tl ot Bl o ittt
| WNIBUS-IN | | | TINK CORRE CTION TABLE
R SN\ B R TSV I W :

FIGURE 16 ICM SYSTEM UNIT LAvyouUT

FiGURE 47 <IGNAL MAP Or ICM BRACKPLANE

AN IS DL 1 LRSI - (I LRI
fevacinl A ®az A :

d L
[} e] [Ty A Msvocaa] A [N svscl A evsea| A
v B - - B v W - « B v § -
ALS (s B -)
aul | aet
- RERE™ -
f ALs |[Bus B . B
2035¢ B 12109| 25050000 1 D3ng [oot $RM I pond{ 2 n3ell Tound| 1300 DaMlinnae | Dol vass| romé
soancfRionas (T30 WM 1AL (1200 L [T ORAL EORR L ETIBAL FDDS - JTVY FESYYRE. VYN EEILYECS T
TBDL LR T DBAL FDIB LB IDBAR {IDIBARNT 50AL SDSRLBIRIDEAL DD B2 B D3AL 32534 ENITDEAL | 10052 BAIBALII2E B
rosagflrosas[toensfllrnaas (038 g R roeAsheees fl1o 205 fress s Mizosas|tosg BRrnBas roegs it sirongs
ro3u4 BRIoBA4[1030¢4 BHINIA4 rDa s+ Bl1oBA4 So9s¢ B 1D3A4 (xD00¢ 5 Sz 034 (13804 BT 0824 [tagp ¢ BT UAA DBR4
1390 liz DA S [100es [l 1005|2008 120823338 ElzID2AS (XDUBS R 103AS ZDEBE BEITDEAS TOBRS NI DBAS DR RS
25836 PR1D2as |Ta3 06 [z 0346 |T30ac T D3A ¢ [7288¢ Bl T0RAS 23836 | S0 38 1D s RT3 8ac K0B86 BATSBAC RDIDG
IroesyfEIoba7 (ran Y ET 2 3AY 108 T DA 7|00y Q13047 233y G104 roagy BEr09s7 RONB Y IIDAT 10087
v iR YT B @ v il - Yy B v v B - v B - vy B - rv
Chax Bl cTiecx] erici Al CTLCINCTIC LR OTLesa Bl €U &k | CTAOAK, M 07i oL CTicLRI CTICLR| CTICAK I e TieLR|eneLk
wocih Bl wacin|wacin IR wRciy Mk SR WR e k| wicLk [WaoLlx Al wlcLk | wecix Y bl ~
A A
‘ .
[L 4 . L 4
®
E O
r ‘
“ B
J |opsAs| ndsné IR y
D « |osans| conpi B
(Y SY TSI TTEY
NpOsAs [D3ss X
w onday |ovage :
Pladans jeseas [
R (6DBAC (DS
¢ [edaay |a3087Y)
T v h 4
v
v
A B Horeate
8
¢ - - Icemy| ¥
H 8y 4
¢ e
» [g6 | 8¢
]
7|y
E x[S&RT
b BC ci-¢|er-¢
upge 81-L |ca-4
u @cts+ et-a |en-3
L ¢i1-3 [en-3
n m‘ ci-4 [C2~o4
B e1-6 [ea-
r| @ -
v ai-¢ |en-¢
v €1-7 |ea-7
‘ ‘ > Ul
3 [wirevel TUR Ty
[- - -
D|CAd | cDO uawn| RS W
Slcas |eat teneLd Wadl
FleAs R
H|Cas |CD3 5 (58785
T Che | Q4
k| cas | cps
F L]Shs |2 Ly |ome
nleay {ed? tL louros
Ncae : Ly JouTas
P[CAs : | L3 |eurps
RlCALle te |ourpe
$ L7 wesl r L8 lovrn
T - L 4 N L
v : te |evtne
v LY bursy
1]2 1] 2 1| 2
i 5 : - 9
IcT MPMEM ICMOC MPCON DINT

*HO
j, : 0«.:_ ¢ _ m(m._.tnwﬁ _ Ar1osAs

3 OMW ©53¢ SNleis
dlo : : “"..u_wm%% ﬂ“_nu

_ _m u..nt._. zoﬂ.omuu.uu NI _mwmwow memmzct_m_ :ﬂ%ﬁ

ey | TP

n N
Y -3 1 uc.z

1]

§_N 1

m.zesou *N3JS
.oo&ouu.tA,oz_tF

U

AdowIw NHADOAJOADlW

I

11

11

1

e
N
f

(1

‘93Y an113dld ¥ 43qe03d
R2i5AAKE22AAAEAK12AR 122

WE“_ _5»& ﬂu 234 _aumu 3| foaal [£9aa 3a| |[resx
| |907| |N3D| |N2O N39| |N3D| nNas| |[N2D] |N3D

1Ne 3@ N N _N1e I 1O
U U U L U U U Y |

REALLTIME PROCESSOR
- 78 —~

FICGURE {8 BLOCK DIrGRAM OF

4, Register Array & Bus Control
5. Bus Mask and Miscellaneous

6. Arithmetic and Logic exeeutive
7. Ink Correction Table

The data interface module interfaces the real time pro-
cessor to the engraving system. RTP has 3 input and 3 cutput
registers for communication with the outside world, There are
eight genenral purpose registers which can both listen and
talk to any of the two data_buses A and B. The buses them-
selves are segmented into two sections viz (i) Input section
and (ii) output section. This facilitates buffering as well
as allows hardware masking. The masks reside in registers and
can be manipulated by the microcode dynamically. The input
section of the buses are tied to I/0 registers and the general
registers, whereas, the output section 1is connected ¢to the
elements of ALE (Arithmetic and Logic Executive) and the ICT
(Ink_Correction Table). The ALE has 3 processing elements viz
(i) an 8 by 8_bit MAC (Multiplier Accumulator) (ii) A 8 bit
ALU and (iii) an 8_bit/16_bit ROSH (Rotator_Shifter). The
Ink Correction Table has 3_address registers, memory and data
buffers. ICT is alsc accessible by the manager.

The microprogram controller generates the next sequential
address for the microinstruction stream as well as provides
powerful branch and sub_routine call capabilities. Branch
addresses may be selected from 3 external sources or 2 inter-
nal sources. Branches may be conditional or unconditional as

explained 1in section 5.1.2.2 and 5.1.2.6. The microprogram

-79-

controller is driven in a two_level pipelined architecture,
clocked at 6.25 MHz. The RTP clocks, viz. WRCLK and CTLCLK
are controlled by the system manager, which also has the capa-
bility to single step the RTP. The microprogram memory is
addressed by the microprogran controller via a pipeline
registerand 1is extendable in depth. Like ICT, the micropro-
gram memory is also accessible by the manager in off line
mode. The manager views these memory segments as byte
organised and 2k deeﬁ. Whereas RTP's view of microprogram
memory 1is 256 deep by 64_bit wide and that of ICT is 512 deep
by 32 bit wide. The 32_bits data from ICT are, however, for-

matted as 7 words as explained in section 5.1.2.7.

5.1.2. Apparatus Description Following 1is a hardware

description of the various modules which constitute the

Real time Processor.

5.1.2.1. Data Interface dual board (#9), implementing

this module, carries one 50_pin and two U40_pin flat cable con-
nections for interconnecting the RTP with the rest of the
engraving phase system. The cable connections are shown in
figure 11.

All those signals, which do not have any interaction with
ICM are directly connected between the input connector and
the output connector. The "Green" and " Blue" channel data are
connected to the 1Input registers 1 and 2 (on register array
board) respectively via the backplane. The "Red" channel data

is connected to Input Register 3 (on Register Array board) via

-80-

the back plane as well as an on_board multiplexer . The
function of multiplexer 1is to provide a bypass data path in
the transparent mode. The status command from color Data For-
matter 1is loaded in the status register with every ICM clock.
The meaning of status bits is explained in figure 10. The
inhibit_bits in the status_word is compared with the
color_mode to make a decision whether the outputs should be
inhibited for the current process _cycle. If the inhibip_bit'
for a color is set and the color mode corresponds to the same
color, output .is inhibited by pushing all outputs bits to
"HIGH" corresponding to the "drop out" level.

ICM clock is generated by ORing the INITCLK with SYSCLK
and defines the start of a process cycle. The rising edge of
ICM clock loads input data in the Input registers and also
sets a flag signalling to the microprogram that new data has
arrived. When RTP finishes the computation during a
process _cycle, the microprogram keeps testing this flag bit in
a loop so that when the flag is set a new computation cycle is

initiated.

5.1.2.2. Microprogram Controller 1is implemented on a

dual_board (#8). The function of the microprogram controller
is to generate the address of the next micro_instruction.
This functionality is produced by a versatile LSI chip viz.
Am2910 in the following manner. Am 2910 takes U4 instruction
bits to decide how the next address will be selected, a
detailed description of which is presented in AMD Data Book
[26]. The D_input to Am2910 has a selection from 3 possible
-81-

Sources. MAP selects an address from the A bus, therby making
the entire architecture of RTP available for address manipul a-
tion. PL selects an address from the Immediate operand field
of micro_instruction and thus provides immediate branch capa-
bility. VECTOR selects an address vector from the system
manager and is useful for inrerrupts. By convention, location
zero in the microprogram memory always contains a JUMP_VECTOR
instruction, so that if a hardware interrupt from manager 1is
caused, JUMP_ZERO instruction is jammed into AM2910, thus
fetching a JUMP_VECTOR instruction. The next microcycle then
causes an unconditioned branch to the vector address speci-
fied by the manager. The manager may specify a 12_bit vector
address and thus cause a jump to any address in the entire Uk
address space. Whereas, the PL and MAP use a 4 bit page
address held in a page buffer register which gets concatenated
to the 8 bits from Bus A or the IDR. Thus, this mechanism
provides a pagéd_memory view of the U4k microprogram address
space offering many new possibilities. Page buffer may be
written from bus A. The output from Am 2910 is pipelined via
a set of registers. The output of the pipeline register may
be viewed as the micro_program counter since the
micro_instruction out of the memory is also pipelined. (PC)+
and the MPCI (Micro Program Controller Instruction) are
locally displayed for the sake of debugging and maintenance.
This module also generates the two RTP_wide clocks viz.
WRCLK amel CTCLK. Both clocks have exactly the same fre-
quency of 6.25 MHz, derived from a crystal controlled 25 MHz

~-82-

base clock. CTLCLK is just a 20_ns delayed version of the
WRCLK. The entire control structure of RTP (the instruction
pipeline registers) is clocked on the rising edge of CTCLK.
Whereas all data transfers occur on the rising edge of WRCLK,
20 ns delay of CTCLK thus allows ample hold_time for the
data holding devices. The clock driQers may be disabled and

single stepped by the manager by executing the fullowing

sequence;
1. SYSCLR:= LOW; enable data registers
2. RTPRUN:= LOW; kill WRCLK & CTCLK

3. CLKMOD:

HIGH; set "single step" mode

4, RTPRUN:= HIGH; single step RTP
5. RTPRUN:= LOW ;

6. CLKMOD:= LOW; reset clock mode to "RUN"

5.1.2.3. Micro Program Memory is implemented on a quad

board (#6). This memory is implemented using 16 high speed
bipolar memory chips 93422 from (fairchild). The organisa-
tion of each chip is 256x4. During the real_time mode the
memory.is addressed by the microprogram controller's pipeline
register MPADO 7 and is not accessible by manager (RTPRUN
being HIGH). 64 data bits are simultaneously available from
this | memory in this mode, which constitute a
micro_instruction. The format of the micro_instruction is
described in section 5.1.3. During off line mode (RTPRUN =
LOW), it is seen as a 2kbyte memory segmerit by the manager and
may be read or written by the 8085 MPU just as its own local

memory.

-83-

5.1.2.4. Register Array and Bus Control are implemented

on a quad board (#4). This module contains eight general
registers which are implemented wusing dual port register
chips DM 8542 N (National Semiconductors). Any of the regis-
ter could be written from any of the two buses while, simul-
taneously, any register or some other element may be output-
ting some data onto these buses. Use of these devices elem-
inate any programming constraints on how these registers may
L:zcessed during a transaction.

This module also contains the decoders (7415 4's) and the
pipeline registers (743175's) for bus_control. The decoding
logic ensures that no two devices may talk on the same bus at
the same time.

The Input/Output registers are impl emented using

TU4LS173N. As is to be expected, Input registers are

read_only, whereas, the output_registers are write only by the

microcode.

5.1.2.5. Bus Mask and Miscellaneous are implemented on a

quad board (#3) . This board contains the following items;

1. Gates, buffers and registers to implement the pro-
grammable bus masks.

2. Decoder and pipeline registers for controlling eaves-
dropping function.

3. A buffer which outputs *FF' (LIMITHI).

4. A buffer which outputs hex *00' (LIMITLO).

5. Non_linear operator LOGT.

6. Non_linear operator MUCR.

-84

Masks (arbitrary bit patterns) may be 1loaded in mask
buffers which are implemented with two TULS379, for each bus.
Depending upon the direction of buffers, data from one side of
the bus is ANDED with the MASK and output to the other side of
the bus. The eavesdropping function (which essentially means
that data can be transferred to more than one device during a
microcycle) is provided by two 3 bits field, one for each bus.
Decoders and pipeline registers provide the control signals
for the eavesdropping function. _The two buffers “FF' and '00'
provide the data for clamping results when overflows and
underflows occur in an arithmetic operation. LOGT and MUCR
look up tables are implemented by T4S471 bipolar PROMS. Both
the non_linear operators are addressed by the A bus and output
data to the B Bus. This board also has room for future expan-

sion.

5.1.2.6. Arithmetic and Logic Executive is implemented on

a quad board (#2). ALE consists of following 3 elements;
1. Rotator_Shifter (ROSH)
2. Multiplier Accumulator (MAC)
3. Arithmetic and Logic Unit (ALU)

ROSH is implemented using multipl exers and the data paths
are structured in a manner such that it can be operated in
either 8_bit “byte' mode or 16_bit “word' mode. In byte mode
contents of bus_A and contents of bus B are either shifted or
rotated, left or right, as two 8 _bit bytes and the result is
left in ROSH's output register. In word mode, the contents of
both buses are concatenated (Bus_B is more significant) and

-85-

either shifted or rotated,left or right, as 156_bit word and
the result is left in the same way. This special structure of
ROSH allows MAC operation on real numbers by providing the
ability to justify and align data properly.

The Multiplier Accumulator is a high speed bipolar LSI
chip (TDC1008J from TRW). This element provides the capabil-
ity to multiply two 8_bit numbers in parellel as well as allow
accumulation of successive procucts. MAC has a substract mode
also, in which the last cumulative product may be subtracted
from the current prduct. The output of MAC is a 19 bit
result. However, hardware is configured such that only 16_bit
results can be output to Bus A and Bus B. The higher_order
3_bits of MAC output are input to condition code Register and
can be tested for conditional branch. MAC can be set up to do
either sign magnitude or 2's complement arithmetic with
results being truncated or rounded off. WRCLK is used to
latch the inputs operands as well as the control signals to
MAC. A special clock is generated to clock the output regis-
ter as shown in the time diagram presented in appendix C.5.
In "accumulate" modes the computation threcugh MAC is pipe-
lined. Clocking of data in and out of MAC imposes certain
constraints on the programmer, which are discussed in section
5.1.5.1. The output registers of MAC may be pre_loaded wusing
pre_load registers, The program must 1load the pre load
registers first with appropriate data before executing a
pre_load micro instruction.

The ALU is constructed with 745181 ALU chips. Any mode

-86-

end instruction may be wused. However, the condition code
logic for overflow bit is designed to be valid for only a Sub-
set of operations as described in section 5.1.5.3. The condi-
tion code register (CCR) is designed in a way such that the
condition code resulting from previous arithmetic operation is
saved, Only if the current instruction specifie;ﬁ:gi a MAC

operation. Any other instruction leaves the CCR undisturbed.

This helps in multiple way branches.

5.1.2.7. Ink Correction Table is implemented on a quad

board (#1). ICT is very similar to microprogram memory in
many ways, but has a different functionality. It is essen-
tially a memory board implemented with 16 high speed bipolar
memory chips (93422 of Fairchild). The organisation of the
chip 1is 256x4. During the real time mode (RTPRUN = HIGH) the
memory is addressed by a set of Memory Address Registers
(MARs) and is not accessible by manager. 32 data bits are
simul taneously available from this memory in this mode. These
32 Dbits provide the correction data in the form of 7 elements
as shown in Table 1. All the seven elements are formatted as
8_bit bytes, properly justified, before being read on bus_A.
MARs can be written from bus B only. During off line mode
(RTPRUN=LOW) , ICT is seen as a 2k _byte memory segment by the
manager and may be written by the 8085 MPU.

-87-

BYTE | MEM 1cr |BIT | ScHEM

REF.| e, | paRAMETER | REF- | # | REF.

3 |31 1 1mem. 6 me
__3«i.?9_L_ T ICTL | 5 m5 x
3 29 1 el 4 ok z
3 28 | T' L ICTl | 3 m3 .

3w o jrem, 2 m ;

3 26 ° T ICT1 ! 1 ml &

3 25 T ICT1 | O mo | &
3 2| aTp Im2| 5 5 e &
2 23 | ATy Ierz| 4 e
2 22 | AT er2| 3 4 3

2 | 2| af cr2| 2 | n2 | 7

2 | 20 AT, IcT2 | 1 nl . =

2 19 AT, ICT2 | © no |
T2 | 18] af,, |TETA R -
2 | 17 A%, |m| 3 | p3 . £

2 | 16 | AFq |IcT3| 2 | p2

1 15 ATy, |IeT3| 1 pl |

1 1 | aTq, ICT3| 0 | pO

1 13 A?sz ICTG 4 q4

1 12 ATre, | IcTH| 3 q3

1 11 ATp,s | IcTe| 2 q2

1 | 10 | ATpg |IC| 1 al

1 5 | AT, ICT4 | © q0

1 8 | aTye |ICT5| 2 | r2

o | 7 ATye [1em5{ 1 | n1 |

0 6 ATye |ICT5| O r0 §

o | s AFem |IcT6| 2 | 82 | &

o | 4 ATe,q |ICT6| 1 | o1 | E

0o | 3 | ATe,m J1cT6) 0 | 80 | ©

0 | 2 | AT,y [IcT7] 2 [r2

0 | 1 | AT,y |IcT7| 1 tl

0 0 ‘ST“bY IcT7| O t0

T+2=Y
T+2=C

12) If T=C Then T+l=M,
(3) If T=M Then T+l=Y,

(‘Y

£

T+

_

c

TABLE 1. DISTRIBUTION OF DATA BITS IN INK

CORRECTION TABLE
-88—

5.1.3. MICRO instruction Format RTP's microinstruction is

formatted as a horizontal vertical combination. While design-
ing the intention was to format horizontally as much as possi-
ble in order to support concurrency. However, mutually
exclusive operations were grouped together and vertically
coded. Thus, 64_bit micro_instruction word is divided into 8
functional groups as follows;
1. Bus_A control 12_bits
who talks - 5 bits
who listens - 4 bits
who eavesdrops - 3 bits
2. Bus_B control 12_bits
who talks - 5 bits
who listens - 4 bits
who eavesdrops - 3 bits
3. Microprog Controller Instr. 8 _ bits
Instruction to Am 2910 - 4 bits
CCEN to Am 2910 - 1 bit
CCMUX select - 3 bits

4, Instruction to ALE 8 - bits
5. Immediate operand '8 - bits
6. Mask Enable 2 ~ bits
7. Spare 10 - bits
8. Special control 4 - bits

Appendix D presents in detail the assigmment of memory
bits and how the vertically formatted fields must be decoded

to develop all the control signals.

-89-

5.1.4. Functional Description All data transfers, between

the various elements, take place on either Bus_A or Bus_B
which constitute the dual data_bus structure. Every device,
connected to these buses, has 3 _state outputs, which remain in
high impedance state until commanded by the control structure
to source data on the buses. All data transfers on the buses
occur synchronously with RTP's system clocks, viz WRCLK
(Write Clock) and CTLCLK (Control Clock). CTLCLK has exactly
the same frequency as WRCLK (6.25 MHz derived from a crystal
oscillator of 25 MHz) but has a slight phase delay to meet the
worst case hold _time requirement for every device in the sys-
tem. The entire control structure of RTP is clocked on the
positive transition of the CTCLK whereas all the devices sink
data on the positive transition of the WRCLK. Elements, such
as general registers, which sink data selectively, are imple-
mented with devices which are gated for data sink. However,
many devices in the system (such as arithmetic processor's
output register's) are not gated and hence listen during
every microcycle. This implies that these devices will con-
tain garbage during other times (when not being used) of pro-
gram flow. However, this does not cause any problem because
the program sequence must pick the result from these devices
at the appropriate time with reference to the input. Appendix
C presents a set of time diagram illustrating various
bus_transactions. Essentially, a bus transaction is caused by
switching of control signals such that one of the device on

the bus sources the data, while the destination device sinks

-90-

it.

5.1.5. Hardware Constraints on Programming Owing to cer-

tain hardware 1limitations and/or design trade_offs, certain

constraints are imposed on the programmer as described below;

5.1.5.1. Mac Transaction Since MAC is a clocked device,

its timing must be derived in such a manner that its operation
ties up appropriately with the rest of the processor timing as
well as maximum thruput is obtained. Since the inputs must be
clocked in and at least 100 nanoseconds propagation time must
be allowed before the result can be clocked intoe the output
register, MAC operations can not be timed like other process-
ing elements and require more than one microcycle to do even a
single multiply. However, for successive MAC operations, such
as accumul ate, processing may be pipelined through MAC to
yield higher thruput. Thus, whereas 2 microcycles are neces-
sary for a multiply operation, 3 microcycles would suffice for
a multiply operation followed by multiply accumulate opera-
tien. The timing for various MAC transactions is illustrated
in appendix C.5. Therefore, from programmer's point of view,
the only constraint imposed is that every single or successive
sequence of MAC operation must be followed by a NOP instruc-

tion, before the result is obtained.

5.1.5.2. Branch Instruction As mentioned earlier, RTP has

a 2 level pipelined microprogram control architecture. This
implies that no matter what instruction the micreprogram con-

"troller may currently be executing, the next

-91-

micro_instruction, being already in the pipeline, will get to
it for execution. This is perfectly all right when instruc-
tions are being executed successively. But if a branch
instruction 1is executed, an undesirable side effect of pipe-
lining occurs. Therefore, to maintain prcper program flow, it
is necessary that each branch instruction, conditional or
unconditional must be followed by a NOP. This overhead, which
is natural 1in a pipelined architecture, is acceptable in the

interest of higher thruput resulting from pipelining.

5.1.5.3. Conditional Branch on Overflow For the sake of

simplicity, ALU's condition code 1logic was designed in a
manner such that the overflow bit is valid only for the fol-
lowing arithmetic operations;

1. A plus B

2. A minus B

3. A plus 1

4. A minus 1

5. A plus A

6. A plus A plus 1

The programmer must recognize this fact if a coenditional

branch o overflow is used.

5.1.5.4. Non.linear Operation Non_linear operations viz.

LOGT and MUCR are mapped through leok up tables which are
implemented by 74S471 PROMs. Even though these are high speed
schottky PROMs, these have a longer worst_case access time

than most other elements in the RTP. A design tade off was

-92-

made to keep the microcycle time small and allow two microcy-
cle for these non_linear operations, because such operations

are not used very frequently anyway. Therefore, the program-

mer must code two successive instructions for such operations.

5.1.5.5. Hardware Masking The Bus_Mask hardware has

already been described in section, It is necessary that a
mask be programmed by loading appropriate bit pattern in the
mask buffer, before any masking operation is done. The masks
would remain undisturbed unless overwritten by another bit

pattern.

5.1.5.6. ICT Look up In real time mode, ICT is addressed

by a set of three Memory Address Registers, each 3 bit wide.
To obtain any useful output from the Ink Correction Table, the

MAR's must be set up atleast one microcycle ahead.

5.1.5.7T. Input/Qutput The I/0 operations in RTP are

always through the Input and Output Registers. However; the
manag er may pass some data arguments through the instruction
stream in the form of immediate operands, although, such
indirect data transfers appear to be useful for diagnostic

purposes only.

5.1.5.8. Interruption The real _time Processor can be

interrupted only by the manager. The interrupt is caused by
Jamming a JUMP_ZERO instruction to the Microprogram Con-
troller. By convention, location zero in memory must contain

a JUMP_VECTOR instruction. The interrupt vector 1is supplied

-93-

by the manager and is programmable. The manager is thus able
to steer the program flow to any arbitrary segment hy causing
an interrupt. This feature, however, must be used very care-
fully because currently the RTP does not stack the PC on
interrupt and thus a return to the executing program is not
automatic. In other words, on an interrupt, RTP aborts the

current task and switches to a new task.

5.2, ICM Manager

The manager is a 8085_MPU based microcomputer. Figure 19

presents a block diagram of the system manager.

5.2.1. Block Diagram Description The system manager has

UK of program memory (PROM), UK of data memory (RAM) and sup-
ports three types of interfaces as mentioned below;

1. RTP Interface.

2. UNIBUS Interface.

3. HHKD_Medule Interface.

The rest of the manager's hardware consists of
bus_buffers, address 1latch, chip select decoding logic and
devices for implementing the interrupt circuits. +12V and -5V
power supplies required for PROMs (Intel's 2708s) are derived
from +15 and -15V Bus power supplies by on_board fixed regu-
lators. Manager may be reset frcm one of three points. (i)
on_beard reset switch, which also has a power_up reset cir-
cuit. (ii) Unibus reset 1line, and (iii) a reset switch

-9l

To RTP MEMORIES

—

ANVTIANOVE ol snaInNn
” » BoanoLum
o ’ .— .—I T T T ! -7 - ||l|||.l||l| 0”"04
' 3dow aIHH: 20V4MIANT d 1 | 130Y4A3UNT -90¥d 4SOH Tv_ ¥ Honas
I
| 6428 "_|<mm3 vSs28 V
LA K. -L. L D AT - e
YT 6 AT
Jpl 7 o Eeg
g % AL ke
7 Iﬁb
%
L, ¥ o /] .,
=LY - S
] ORI . uw
2 o R
%
¢ 2
7L

-y 7 g
L bkt s

V

L.

(ve

b3 Wux)d)

*ﬁ.osw_l vivQ —

—vnuuos word3)

ANOW I WHA90Yd.

AP

FiGURe 19 BuLOCK DIAGRAM OF ICM SYSTEM MANAGER

-95-

installed in HHKD module.
The Interrupt and restart lines are used for the follow-
ing function;
1. INTR: Trap for non_existent memory addressing
RST5.5: Single step facility of KHDMON.
RST6.5: Handshaking with ICMON

= w N

RST7.5: Monitor ICM status changes

5. TRAP: Whtch dog for UNIBUS hanging_up

$.22 ﬁtgnnm .Desevtrb‘ton
5.2.2.1. MPU, Memory and RTP interface are implimented

on a quad board. The manager's data_bus is partitioned
between memory and I/0 sgpaces. Two sets of bidirectional
data_bus fuffers, enabled either by I0/M signal or its comple-
ment, partition the address space into memory and I/0 spaces
respectively. All read and write timings of manager's MPU is
standard as per MCS_85 user's manual. All signals out of the
MPU are properly buffered. The tocp 32 K byte memory space is
used for RTP's microprogram memory and the Ink Correction
Table, even though, only U4K bytes of memory is used. The
entire 32_Kbyte address space is used to simplify chip select
decoding 1logic. A control line called RTPRUN, from the RTP
Interface, must be set “LOW' for manager's MPU to read or
write RTP's memories.
The manager's I/0 space contains four 8255s and one 8279

(off board) 1in addition to a few addresses being used to gen-
erate some special function control signals as follows;

1. TRACK(L) - Resets watchdog on Trap input.

2. ARMSTS(L)- Resets Instruction trap circuit.

-96-

3. WAITIN(L)- Synchronizes input transaction to manager.
4. WAITOT(L)- Synchronizes output transaction from
manager,

Two 8255's are used in mode ‘0' for implementing RTP
Interface as follows;

1. Port A1 (C4) - unidirectional
2. Port Bl (C4) - unidirectional
3. Port C1 (C4) - unidirectional
4. Port A2 (C2) - unidirectional
5. Port B2 (C2) - unidirectional
6. Port C2 (C2) - unidirectional

Table 2 gives an exhaustive listing of each signal and
the corresponding interface reference. ICM backpl ane
signal map, figure 13, shows how these signals are connected
to RTP.

The HHKD module Interface is implemented through a pro-
grammable keyboard _display controller which 1is 1located
off board (described in section 5.2.1.3). All signals to
8279 are buffered on_board in a manner such that if the switch
K1 is off, then all lines are tristated and +5V power supply
is cut_off. When K1 is switched ‘on', +5v supply to the HHKD
module is connected and also the tristate gates are enabled.
Also, enable control is interlocked so that if the HHKD module
is not attached the signals remain tristated This elaborate
arrangement 1s provided to protect 8279 when HHKD module is
attached without switching off the power supply.

-97-

r RTP PORT 1 RTP PORT 2 !
PORT REF.T "SAME]' Rer, | | PorT ReF.] :,:SENAL] HA:;-“?RE
T"PA0 VECTO &% % PAO IDBAO | C2 - 4
| PAY VECTl C4 - 3: | PAl IDBAL 2 - 3
' PA2 VECT2 . C4 - 2 o PA2 . IDBA2 C2 - 2
£ TPa3s VECTS G -1 E PA3 | IDBA3 :C2 -1
% Pau VECT4 Ch - 40 | 5 Toaa IDBAG | C2 - 40
. PAS VECTS G4 - 39, | PAS IDBAS | CZ - 39
PA6 VECT6 Ch - 38! | "PA6 | IDBA6 | C2 - 38
A7 VECT7 G4 - 37| I PA7 | IDBA7 icC2 - 37
PBO S0 c4 - 13} | PBO IDBBO C2 - 18 -
PB1 s1 Ch-19. Pl | IDBB1 C2 - 19
PB2 §2 . Ch - 20 { PB2 | IDBB2 C2 - 20
. 3 S3 | Ch- 21 REEEECEEEEY
& . PB4 S& | Ch-22. | EiPB4 . IDBB4 C2 - 22,
g PBS s5 [oh-23 | B PBS | IDBBS [C2 - 23 |
"rB6 $6 | o4 - 2 PB6 : IDBB6 !cC2 - 2
: PB7 Y, C4 - 25 PB7 IDBB7 |C2 - 25
; © PCO RTPRUN | C4 - 1k PCO VECT8 |C2 - 14
i PCl1 |ERROR |C& - 15 PC1 VECT9 |[C2 - 15
PC2 : SYSCLR |C4 - 16 PC2 VECT10 | C2 - 16
PC3 | RTPINT |Ch - 17 PC3 VECT11 | c2 -17
g PC4 | CLKMOD |C4 - 13 g PC4 | IGNORDTA] C2 - 13
&8 | PC5 | CARRYIN |C4 - 12 ® | PC5 | DATAHOLN C2 - 12
PC6 | REGLOAD | C4 - 11 PC6 | DATASTEH C2 - 11
PC? |RTP JMP | C4 - 10 PC7 |IORDY |C2 - 10
TABLE 2. RTP INTERFACE SIGNAL LIST

-98 -

5.2.%.2. Host Processor Interface is implemented on a

dual- board. This interface is also called the unibus Inter-
face because the host processor is always intended toc be a
PDP_11 computer. The ability to communicate with the unibus
is provided by using two 8255's each configured in mode ‘2!
and mode “0' as fcllows.

1. Port A1 (S5) Bidirectional

. Pert B1 (S5) Unidirectional input

2
3. Port C1 (85) Control port for A1
i

. Port A2 (S3) Bidirectional

Unidirectional input

5. Port B2 (S3)

6. Port C2 (S3) - Control port for A2
Configured in this manner, the two 8255's provide one
bidirectional 16_bit port and one unidirectioral 16_bit port.
The biderectional port is used for parallel data communication
while the unidirectional port serves as a command port. Port
A1 and A2 are connected to Unibus through a pair of bidirec-
tienal buffers so that the direction can be switched without
any conflicts. Both ends of the interface are protected from
beirg hung up by the other end in the following manner; If
the ICM hangs up unibus, it recovers through its own bus_time
out trap mechanism, with the software generating appropriate
warning messages. If Unibus hangs up ICM, a watch dog circuit
provides recovery, as described in section 6.2.3.5. This
interface board is physically connected to the MPU's buses
through a 26_core flat cable. Table 3 gives the pin assign-

ment for this interconnection.

-99-

[SIGNAL CONNECTOR SIGNAL
NAME | 3M | 3 NAME
col |2 1 CDo :
cD3 4 |3 Cb2 %
, cDS TN S o
. cD7 8 7 CDé
crRDLL) 10 | 9 GROUND
cwrR(L) 12 | 11 RESET
CAO 14 | 13 GROUND
10cs2€ L) 16 |15 CAl
GROUND 18 | 17 10cs3(L)
0BFAl L) 20 19 IBFA
RST7.5 22 | 21 GROUND
GROUND 2 | 23 RESETINCL)
GROUND 26 | 25 CCLK

TABLE 3. CONNECTOR J1 - PIR ASSIGNMENT

-400 -

5.2.%.3. Hand held Keyboard Display Module This module is

implemented in a modified calculator casing. A TI_30 calcula-
tor conveniently provided the keypad and the 8 digit 7_segment
LED display and a handy casing for the implementation of this
module. Photographic view of this module 1is presented 1in
appendix B. The original electronics of the calculator was
completely removed and a small wire_wrap board containing 8279
and logic gates as shown in figure 20, was installed in the
space provided for calculator's battery compartment. A U40-pin
Flat cable header was installed at the top edge of the casing
and was wired to the small board installed inside. A reset
push button switch was installed in the hole where normally
the plug of a power supply adapter would fit. The displays
were wired through a set of current limiting resistors as
shown in the logic diagram. 8279 provided almost all the
logic necessary for this interface. This approach yielded a
compact self contained keyboard and display module, which 1is
portable enough to be carried in a hand and attached, through
a flat cable, to the system bus of a 8085 MPU based microcom-
puter. Table 4 gives of pin assignments in respect of the
interconnection between the system manager and the HHKD
modul e.
Figure 21 shows how the keyboard of HHKD module is

organised. The 40 keys are partitioned into three groups:

1. Keyboard/Display monitor

2. RTP operation

3. RTP Diagnostics

-101-

INTEL

8279-5

LS433

582 [isss]

LS¢es

|

Ficure 20 CHIP LAYOUT ©F HHKI MODULE

0 | 84 | MeM [ERsT|DIG¢
‘/P 9/, | Ree |RTsT(DIGL
&/ | A |ADDR|RCLR|DIG2
g | B (STEP|VECT|DIGS
4 C | RUN |RRUN|DIG4
5 | D |NEXT [RBRK|DIGS
€ | E | BKPT|RSIN [DIG6
7 | F | CLR |RHLD |DIGY

-{02~-

Figure 24 KEY LAYOUT OF HHKD MODULE

SIGNAL CONNECTOR SIGNAL
NAME k). | k). | NAME
vce 2 1 vce
! vee 4 3 vce
; 6 5 !
: GROUND ; 7 CCLK :
GROUND 10 9 RESET |
GROUND 12 11 ceoCL) |
GROUND 14 i 13 orl) J
GROUND 16 15 c/D }
GROUND 118 17 | tocsL(l) |
GROUND 26 19 | RESETIN(L)
, cn1 22 21 | cDo
: cD3 2 23 cD2
é cD5 26, 25 Dl
i cD7 28 27 cD6
] 30 29
3 32 | 31
% | 33
36 | 35
8 | 37
GROLND RET. 40 | 39 | GROUND RgT.

TABLE 4,

CONNECTOR J2 - PIN ASSIGNMENT

-103-

The keyboard/Display monitor group contains all the hex
character keys as well as the following command keys (con-
cerned with the manager's operation only);

1. MEM - Memory

2. REG - Register

3. ADDR- Address

4, STEP- Single_Step

5. RUN

6. NEXT
7. BKPT - Breakpoint
8. CLR - Error_Reset

These command keys activate KHDMON section of ICM Super-
visor and provide the functionality of a low cost 8085_based
microcomputer development system such as SDK_85. Addition-
ally, the RTST key provides RAM diagnostics.

The RTP management section contains following command
keys;

1. RCLR - RTP System Clear
2. VECT - RTP VECTOR
3. RRUN - RTP Run
4. RBRK - RTP Breakpoint RUN
5. RSIN - RTP Single Step
6. RHLD - RTP Hold
The third section contains 8 keys for performing diagnos-

tics which are explained in detail in chapter 8.

-104-

5.2.8. Functional Description The ICM manager functions

much as a conventional microcomputer. It performs all the
services through the algorithms specified by software. The
manager should be operated by the software system called the
ICM Supervisor. The manager is initialized by the power_up or
by hitting the reset switch. During initialization all the
8255 modes for various interfaces are set as well as a number
of house keeping functions are performed as described in sec-
tion 6.2.1. The manager may be called upon to perform a ser-
vice function by invoking a command through the host processor
or by hitting a command key on the HHKD module. In this case
a prewritten routine from the program memory is executed by
the manager. Alternatively, a user may'write a program of his
own, load it in the RAM area and execute it. However, if the
latter approach is taken, great care must be exercised since
damage to hardware may be caused if the 8255_port configura-
tion is meddled with.

The hardware function of the interrupt circuits 1is
discribed in section 6.2.3, so that the description of inter-

rupt handling software becomes more understandable.

5.2 4. Programming and Hardware Constraints Since the

system is configured completely under software control, some
precautions have to be taken so that no damage may occur and

useful results are obtained.

=105~

5.2.4.1. 8255 Port Configuration The 8255 ports are con-

figured by the ICM Supervisor during the initializationr
sequence. These configurations are fixed and MUST NEVER BE
CHANGED. The hardware around 8255's expects that the ports
are configured as specified. Hence, if these port configura-
tions are changed by writing any other mode setting in the
control port, HARDWARE DAMAGE MAY RESULT. Therefore, any user
who wishes t::ﬁEs own code for the manager, MUST NEVER REFER-
ENCE I/0 ADDRESSES CHOST (A3), C2HOST (B3), CIRTP (83), C2RTP
(193), C€0279 (101). Sometime it may be desirable to twiddle
individual bits of Port C in the RTP Interface. This can only
be done by writing different bit patterns to either CIRTP or

C2RTP. If one wishes to do this, one must carefully choose

the bit patterns so that the modes are not altered.

5.2.4.2. RTP Memory Accessing As mentioned earlier, RTP

memory may be accessed by the manager only during the off line
mode (RTPRUN=LOW). 1If one attempts to write RTP memory in
real_time mode (RTPRUN_HIGH) then ERROR 4 conditior would be
set, signalling unsuccessful memory write operation. The ori-
ginal contents of the memory will, of course, remain
unc hanged.

If the manager attempts to read the RTP memory during the
real_time mode, it would obtain garbage and ne error condition
is signalled. Hence, to read or write the RTP memories, the
appropriate sequence 1is to halt the RTP first by setting
- RTPRUN=LOW and proceed thereafter.

-106-

5.2.4.3. HHKD Module Accessing HHKD module interface is

desigred in a way such that it should be possible to attach
this module while the rest of the system is sperating i.e. the
system may not be powered down Jjust for attaching this
module. Since the +5V power supply for HHKD module is derived
through the same cable, it 1is possible that the module's
on_board chips (8279, in particular, being a mos device) may
be damaged di.~ing this physical connection. For this reas on,
a switch (K1) is provided on the ICM manager board, which
disconnects the +5V supply and tristates all input signals to
HHKD module. An LED located next to this switch (K1) indi-
cates whether the switch is “off' or “on' (bright LED indi-
cates switch is ‘on'). Therefore, to 'protect HHKD module,
switch should always be put “off' before attaching its cable

to the ICM manager board.

-107~-

CHAPTER 6

Software Organisation

The software for ICM is hierarchically organised at 3
levels. At the top level, the software system is resident in
the host processor (PDP_11) and is called ICMON
(Ink_Correction Monitor), intended to provide the primary
user_interface through a termiral. The next 1level in the
hicrarchy is an extensive microcomputer software package
called ICMS.8080 (Ink Correction_Module Supervisor) and 1its
function is to operate the ICM manager. The third level con-
stitutes the actual microprograms which may be downloaded
either 1locally from manager's environment or from the host
processor's environment (File System). In additior to these,
system software is required to cupport program development at
all the three levels. Some of these support software

described in section 6.3 modules are.

6.1. ICM Monitor

ICMON is basically a command Interpreter designed as a
conversational monitor. Appendix E presents a source listing
of TCMON. All commands are processed by a library of rou-

tines. ICMON may be viewed as consisting of four major com-

ponents as described below;

-108-

6.1.1. Command Process Library

ICMON is a highly structured program. It
processes commands listed 1in its command table. When
invoked, the ICMON reads a command word (upto 4 characters
length) from the terminal, goes to process it and then returns
to fetch the next command. It continues 1in this 1loop (of
fetching a command and processing it) endlessly until an EXIT
command is given, where upon, it returns the controi to the
parent operating system (PDP_11/10 version just HALTS, since
it is designed to operate on a.bare machine). A command word
is fetched by GETCMD routine. Then, GOCMD routine makes a
linear search through a command table to find a match. If a
match is found the corresponding command process routine is
called to do the job. The command process routine eventually
return the control to GETCMD for next iteration. 1If no match
is found, an appropriate warning is printed on the terminal.

Command process routines specify the exact action to be
taken (described in the section 6.2.2). If any arguments are
required to be specified by the operator, ICMON asks for it by
name. Once all arguments are specified, the command is pro-
cessed. After the process is done, the program prints the
prompt message again, for the next command to be processed.
*HELP' command generates a listing of all currently imple-

mented commands.

-109-

6.1.2. Sub Routine Library Command Process routines

require a number of primitive functions such as READ (from
terminal), WRITE (to termiral), BN20C (convert binary number
to an octal string) etc. All such primitive functions are
performed by sub_routines, which are supported as a library.
1va! READ & WRITE sub-routines involve I/0 operations. 1I/0 on
e1PGs

APDP11/10 is not interrupt_driven. Therefore, in the current

version, devices are polled to find out whern I/0 should be

done.

6.1.3. Tables and messages ICMON maintains a table of

index for all currently implemented commands. Future expan-
sion of ICMON is extremely easy. To add a new command, a new
entry may simply be added to table and the corresponding
routine should be placed somewhere in the body of ICMON. A
number of system messages are generated. These are also
structured in a manner so that new messages can be added

easily.

6.1.4. Exception Handling In the context of ICMON, only
two tybes of exceptions may occur during operation viz. (i)
stack overflow (ii) Bus_time out. When an exception occurs
the handler routine generates appropriate warning as well as
provides recovery. At first the cause of exception is deter-
mined. If it was due to stack overflow, the processor halts
after giving a message. If not, the trap handler routine con-
cludes that a bus_time-out must have occurred and provides a

recovery from an otherwise hang up situation, after printing

-110-

apropriate warning messages.

6.2. ICM Supervisor

ICMS 1lives in the EPROMS (2708's) installed on the
manager board. rPresently 4 Kbytes (4 chips) of program memory
are sufficient to accomodate the code generated from more
than 2000 lines (excluding comments) of source code, a com-
plete listing of which is presented in appendix F. To facili-
tate easy maintenance complete edit history is maintained as
per the following convention; For any expansions added, only
the subversion number may be changed. Thus, version 1.1 will
be upward compatible with version 1.0 A change in vercsion
number denrotes a more fundamental change which may destroy
compatibility, meaning, version 2.0 may not provide all the
functiornality of version 1.19. All changes or expansions made
in the software are always entered in the edit history.

ICMS broadly consists of 5 major sections, as described

below;

6.2.1. Initialization Sequence activated by asserting

RESET (L) signal either by the automatically by RC circuit on
power up, or manually by the reset push button. The initial-
-ization routine carries out the following tasks;

1. Resets watchdog orn TRAP input.

2. Sets 8255 modes of RTP Interface.

3. Initializes RTP Interface.

4. Sets 8255 _modes of Host Processor Interface.

-111-

5. Sets 8279 mode in HHKD module.
6. Sets 8279 programmable clock.
7. Initializes system stack.
8. Initializes corntrol block.

ICMS makes use of a 32 _byte deep control block, 1located
at the top of manager's RAM space (/1000 to /1FFF), to save
all CPU's registers, program counter, stack pointer as well as
system parameters. Parameters RAMPTR, BRKA, BRKD, DSPLM and
RUNM are associated with the functioning of KHDMON section.
Whereas, RPVECT, RPBRKD, RPSTRT and STATUS relate to the
operation of real_time processor.

ERCODE contains a non_zero value in case of any error,
which is used as a key to generate the message.

After initialization is dore, the control gets
transferred to KHDMON and stays with it until an interrupt
occurs. When an interrupt occurs the control 1is transferred
to the handler routine, which eventually returns it to KHDMON,

after the interrupt has been serviced.

6.2.2. KHDMON (keyboard/Hex_Display Monitor) provides

communication with ICM manager through the HHKD module in the
following manner; It reads the keyboard‘ for a command,
processes it, displays the results and then waits for the next
key. In this manner KHDMON is able to translate a set of com-
mands from the keyboard into a series of actions. The key-
board and display are interfaced with the controller chip
8279. The pregram keeps testing 8279 flags in a lcop to find
out if there is anything in its buffer. As soon as a key 1is
-112-

depressed, the numerical value of the key gets loaded ir the
8279's FIFO and the buffer_not empty flag 1is set. The CPU
then reads the FIFO till it is empty. Once a key is read from
8279, the program determines which key was depressed. If it
was a command key, then the corresponding rocutine is
activated. The hex_keys enable arbitrary data objects to Dbe
defined and wused as arguments for the command process rou-
tines. Some of the keys serve as double function keys. The
functionality of these double function keys depends upon the
context defined by the keying sequence.

If a command key is depressed in the middle of another
process, while a hex_key is awaited, the current command is
aborted and the processing of new command begins. Upon entry,
KHDMON first initializes the system stack and then initializes
the display according to the flag stored in DSPLM (Display
Node) . Control is then transferred to GETCOM, which calls the
KEY sub routine. The KEY sub routine reads the 8279 buffer in
a loop until a key is depressed. If the buffer is not empty
the KEY sub routine returns the value of the key, which was
depressed. GETCOM compares this value with a known boundary
to determine, if the key was a command Kkey. If not, error
condition ‘2" (signalling improper key) is set and a new call
to KEY is made. GETCOM thus implements a loop, which filters
out a command key. When a command key is detected by GETCOM,
the offset into the command table is computed from the key-
value and then address of the corresponding process routine is

fetched . GETCOM saves the user's progran counter in

-113-

register_pair HL before the control is transferred to the com-
mand process routine. The capability provided by Ki{DMON,

through the various command keys, is as follows;

CADDR Routine (Activated by ADDR Key);

This command provides the ability to point to any memory
location and display its contents. When the ADDR key is
depressed, the default value of user PC and its contents are
initially displayed. However, the address may be modified by
keying hex_characters. The address scrolls left, every time
a hex character is keyed,the new key value appears (left most
character is lost). Thus a new address is specified. The
program automatically displays the contents of the memory
location being pointed to by the address field at any time.
The sequence of address modification is terminated by a new
command key. The ADDR ccmmand chains with the NEXT command to
display successive memory locations in a very convenient
manner . Since, ADDR command does not have any side effects,

meny Key
[sequences begin with this key.

CREG Routine (Activated by REG key);

This command displays the MPU's registers in the follow-
ing manner. If the preceding Kkey was a double- function
hex_key (which should have succeeded the ADDR key in order to
be recognized), the specified register name is displayed along
with its contents. The display format is as follows; the

| first four digits display the user PC. The next digit

-114-

displays the spe.ified register name and the digit following
it is always a ‘dash'. The last two digits display the con-
tents of the specified register.

This command also allows the contents of any register to
be modified by keying in hex characters. The contents chanrge
in a scroll mode as the hex Kkeys are depressed. If only one
hex_character is keyed, the significant digit of the byte is
taken to be zero by default. The sequence of contents modifi-
cation is terminated by a new command key. As in the case of
ADDR command, REG command also chains with NEXT command to

display all other registers successively in a scrolled manner.

CMEM Routine (Activated by MEM key);

This command provides two types of function as determined
by the number of hex_keys preceding this key. If a single
double function key preceded (which should have succeeded the
ADDR key in order to be recognized, this key, the
register_pair specified by the double function key is
displayed. The display format is as folloews; the contents of
the register_pair (a pointer) are displayed in the first four
digits. The next two digits display the name of the specified
register pair and the last two digits display the contents of
the memory location pointed to by the contents of the
register_pair (the pointer).

This command allows modification of the pointed memory
location in much the same manner as that dene by the REG com-

mand, as well as chains with NEXT command te display all other

-115-

register pairs successively in a scrolled manner. The regis-
ter pairs which can be displayed in this mode are namely, the
Stack Pointer, Stack Top, Register_ pair HL, Reg ister_pair BC
and Register_pair DE.

If more than one hex_key preceded the MEM key, then the
routiﬁe assumes that the last operation was address modifica-
tion and the action of this command is to modify memory con-
tents. The new contents of the memory are specified in the
same manner as that for the registers. The chaining of this
command with the NEXT command is exactly similar to the way

ADDR command is chained with NEXT.

CNEAT Routine (Activated by NEXT key);

This command 1is used for executing another command
repetititively with autoincrementing of argument. For exam-
ple, if the NEXT key follows an ADDR command, the memory
address is incremented by one and the new address is displayed
along with its contents. When the NEXT key succeeds MEM com-
mand, in memory modification mode, the address is incremented
in the same manner, thus providing a quick and easy method to
modify contents of consecutive locations in memory. In
register_pair display mode, the NEXT- key displays the five
register_pairs successively with wrap around. If the NEXT key
succeeds the REG key, then the registers are displayed succes-
sively in the sequence H, L, A, B, C, D, E, F and then wraps

around to display H again.

-116=~

cRUN‘ Routine (Activated by RUN key);

The function of this command is to execute a user program
from either a specified location in memory or from the default
address specified by wuser PC. The contents of the RUNM
(Run_Mode Flag) is switched to zero, so that the program exe-

cution occurs continuously.

CSTEP Routine (Activated by STEP key);

The action of this command is also to execute a user pro-
gram, just as RUN command does, except that the execution is
done in steps of single instructions i.e. exactly one instruc-
tion is executed when the STEP key is depressed each time.
This is possible by storirg a one flag in the RUNM switch so
that an instruction by instruction trap is set through RS3T
5.5. How the interrupt mechanism provides a =single instruc-

tion break - point, is described in section 6.2.3.2.

CBKPT Routine (Activated by BKPT key);

This command alleows =setting break point addresses and
depth for debugging purposes. The break point address is
saved in BRKA and the depth parameter in BRKD of the Control
Block. The cemmand provides for beth, examination of the
current break point address and depth setting as well as set-
ting new values of these parameters. If no address parameter
preceded (an address parameter results from ADDR key succeeded
by two eor more hex_keys) the BKPT key, this routine simply
displays the current settings as per the following format;

-117-

First four digits display the contents of BRKA, the following
two digits display the letters “bp' and the last two digits
display the contents of BRKD.

If an address parameter preceded BKPT key, then the rou-
tine concludes that a rew break point is to be set and there-
fore takes the following action. The address parameter
keyed_in earlier is taken as the new break _point address and
is stored in BRKA. The first four digits on the HHKD module
display this value. The next two digits display the letters
‘*bp' just as in other case but the 1last two digits remain
blank signalling to the operator that the program is awaiting
the depth parameter to be keyed in. When the operator does
that, the value is displayed and the iast two key valuecs are
stored in BRKD. If during this sequence, CLEAR key 1is
depressed, the breakpoint is cleared. By setting a break-
point‘fhebugging i facilitated, is described in =section

8.1.2.

CERST Routine (Activated by ERST key);

This command simply calls the ERESET subroutine, which
resets the error condition. An error condition (or state) may
result from any impreper operation. When an error occurs,
ICMS stores an error code in ERCODE of centrol Black for later
analysis. An error described in sectien 7.4). An error code
‘@' means no error. Hence, to reset error state, ERCODE is
. simply cleared. Alse, the error indication 1lamp is turned

eoff.

-118-

CLEAR command key simply returns the control to GETCOM ard
therefore has the effect of aborting the current command.

CMTEST command process routine performs RAM diagrostic
and 1is described 1in section 8.1. The group of routines
CRPHLD, CVECT, CRPRUN, CRPBRK, CRPSIN and CRPHLD control
operation of RTP and their function is described in section
6.2.4. The command process routines CDIGX provide RTP diag-
nostices and their function is described in chapter 8.

The command process routines make use of a 1large number
of sub_routines to implement primitive operations such as
reading the keboard, displaying a character, fetching a byte
of an argument etc. The functions of these sub routines are

described in the source listing of ICMS presented in appendix

6.2.3. Interrupt Handling The manager's MPU may be inter-

rupted in the foellowing five ways;
1. Restart 7 (INTR).
2. Restart 5.5 (RST5.5)
3. Restart 6.5 (RST6.5)
4. Restart 7.5 (RST7.5)
5. TRAP
These interrupts-are caused by the hardware to provide

the foellowing functiqnality;

-119-

6.2.3.1. RST7 Service Routine The hardware INTR signal is

used for a single vector which is */FF' corresponding to RST7.
This interrupt is caused when any attempt is made to address
non_existent memory. The interrupt handler routine recognizes
this as an error condition and marks it down as code 6 error.
Error indicator is turned on and error message is displayed on
the HHKD module. Finally, control is returned to GETCOM of
KHDMON, thus aborting the process which made the bad memory

reference.

6.2.3.2. RST5.5 Service Routine This interrupt signal is

used for setting an instruction by instructien trap so that a
user program may be single stepped while being debugged. The
hardware on this 1input is so organised that if unmasked, an
RST 5.5 interrupt will be raised after 2 instructions from an
ARMST5 instruction. In other words, the MPU is ready to be
interrupted after it has executed two instructiens (interrupt-
ing hardware is triggered on any M1_States), if ARMSTS5 sig-
nal, which resets the interrupting hardware, is not asserted.
Therefore, during the naermal operation, RST 5.5 is always
masked. The only time it is unmasked is when single_step com-
mand is executed. The single_step command routine first dis-
ables the interrupts and then unmasks RST 5.5. At the end of
the routine, before returning contrel to caller, the inter-
rupts are enabled and just prior to that ARMSTS 1is asserted.
The interrupting hardware is so designed that ence ARMSTS is
asserted, RST5.5 interrupt is not raised until twe instruc-
tiens 1later, thus allewing a return frem the Command Pracess

=120~

Routine. When the next instruction, in user program is exe-
cuted, an RST5.5 is raised. Upon entry, the interrupt handler
routine again sets the mask on RST5.5 and enables the inter-
rupts. This returns the =state to normal again. At this
point KHDMON is again waiting for a command key. If the STEP
key 1is depressed once again, the =same <cequence will be
repeated, causing execution of another instruction in the user

program.

6.2.3.3. RST 6.5 Service Routine RST 6.5 provides the

handshaking between ICMS and ICMON. Referring to the hardware
organisation of host- precessor interface (section 65.2.2.2),
whenever a word is writtern by the host processor in the com-
mand Port of the interface, an RST 6.5 1is raiced. ICM
manager's MPU recagnizes the interrupt, suspends lower prior-
ity activities and transfers control to this service routine.
The sevice routine fetches the command word's lower byte which
represents the numerical value of the command. This value 1is
used as an offset into the menitor table maintained by ICMS,
which is in exact correspondence with the command table of
ICMON. Hence, for every ICM related command in ICMON, there
is a corresponding service routire in ICMS, as a part of the
RST 6.5 Handler, which is responsible for appropriate action
on behalf of the ICM manager. Thus service routine #0 maps to
command #0 of ICMON and its function is to load the ICMS ver-
sien and sub_version numbers into the data port of the
~ unibus_interface.

The synchronization between the host processar and the

-121-

manager ‘s MPU, (both machines operating at significantly dif-
ferent speeds) is provided mainly by software with a 1little
help from hardware. Two hardware signals WAITIN and WAIOT are
genérated by MPU in the IO space to negate the "ready" input
if the appropriate buffer in the Host Processor Interface is
not read /written by the host processor. WAITIN synchronizes
an Input transaction to ICM manager whereas WAITOT synchron-
izes an output transaction. If the Input Buffer is net_ full,
when WAITIN 1is ascerted the READY irnput to MPU gets negated,
thereby putting the MPU to sleep until the Input buffer gets
full as a consequence of being written by the host processor.
The moment Input Buffer Full signal goes high, READY input
gets asserted and MPU awakens to fesume processing. In
exactly same manner, WAITOT synchronizes an output transac-
tion by MPU, being conditioned on Qutput Buffer Full signal.
The synchronization of the host processor is done through
software by polling status bits. IBF (Input Buffer Full) and
OBF (Output Buffer Fullnot) signals can be read by the Host
Processor as status bits from the command port. ICMON rou-
tines test thes. bits in a laap befare doing a read or write

operation te the data_port.

6.2.3.4. RST 7.5 Service Routine This interrupt facility

provides monitoring of ICM status changes caused by Color Data
Fermatter. The coding of status bits is explained in section
3.1 (figure 10). The inhibit bits S2, 83, S4 and S5
activate hardware in the data interface board toe inhibit the
correspanding celers and thus do net require any special

-122-

attention. However, if any change occurs either in the
op_mode bits (S7,S6) or the color_mode bits (S1, S0) the ICM
manager must become aware of it. Hence, hardware circuit
using four open_collector EXNOR gates, with their outputs
wired OR, detects any change in these bits. The output of
this circuit drives the RST 7.5 input, which is edge trig-
gered. Any change in these four status bits thus causes an
RST7.5 interrupt. The interrupt handler routine performs the
various house_keeping functions such as flags ICMBSY, signals
error indicating need for initializztion, as well as fetches

the new status code and stores it in the control block.

6.2.3.5. TRAP Service Routine The TRAP interrupt is used

for recovery from poscsible hang_ups by the host_processor.
Every time an I/0 1is 1initiated through the data port of
Unibus_interface, a retriggerable monestable is triggered. If
the host processor does not complete the trancsaction within a
reasonable period of time, the monostable times out setting a
flip flop which raises TRAP interrupt. The TRAP service rou-
tine notes this situation as an error conditien and marks it
down with the code */0A'. The error indication lamp is turned
on and the error message is displayed on HHKD madule before

the watchdog is reset by asserting TRACK signal.

6.2.4. RTP Operate Routines Library The operation of RTP

is controlled by the ICM manager through a set of routines
which may be activated by depressing appropriate key on the
H}HHKD maodule. Some of these routines can be invoked by ICMON

-123-

through the RST6.5 Service Routine. The group of command pro-

cess recutines which perform this service are described below;

CRPCLR Routine (Activated by RCLR key);
This command simply calls the sub routine RPCLR, which

asserts SYSCLR , clearing all the registers in RTP.

CVECT Routine (Activated by VECT key);

This command facilitates setting address vector for RTP
in an arbitrary manner. An address parameter for RTP (one
byte) is loaded in RPVECT of the Control Block either impli-
citly through the command RBRK or explicitly by the operator
accessing RPVECT just as any other ﬁemory locaticn. The
address parameter thus stored is used for vectoring the RTP.
However, some arithmetic is also performed to compute a new
address parameter in anticipation of being used for subse-
quent vectoring operations. In case of break point runs, it
is desirable to keep track of the break points. If the
break point depth is noen_zero, an offset equal to break point
depth is added to the current vector address and stored back
in RPVECT after the current address vector is set in the RTP.
Thus the new contents of RPVECT indicates simply the next
breakpoint. If the break point depth is set teo zero, then the
address parameter is decremented by one and stored back in
RPVECT. This allews the possibility to ge backwards to any
paint in the micro instruction stream by successively depress-

ing the VECT key. To go forward, the break point depth may

-124-

simply be set to ‘/01' or some other non_zero value as the
operator may desire. The two possibilities on address arith-
metic provide a complete control on setting any address vec-
tor for RTP. The RTP's microprogram address register 1is co
erced to the specified vector by the sub routine VECTOR in the
following manner; The address parameter is picked by VECTOR
sub routine from RPVECT and set as the vector address input to
RTP's microprogram controller through RTP interface. Then an
interrupt is caused to RTP. The effect of the interrupt is to
Jam a JUMP_ZERO instruction ta the micropregram controller.
By convention, a JUMP_VECTOR instruction is always stored in
location zero of the microprogram memory. Thus by =single
stepping RTP exactly three times (which is necescsary because
of two_level pipelining), the vector address is transferred to

the microprogram address register.

CRPBRK Routine (Activated by RBRK key);

This command allows examination of the current vector
address parameter (contents of RPVECT) and the break point
depth parameter (contents of RPBRKD) as well as provideg the
ability to change these parameters arbitrarily. If no address
parameter preceeds this key, the current contents of RPVECT
and RPBRKD are displayed. If an address parameter (only one
byte addresses for RTP) preceeds this key, the address parame-
ter is stored in RPVECT and is displayed. The breakpoint
~ depth field is blanked at this peint however, to signal to the
operatar that the depth parameter is being awaited to be keyed

-125-

in. When the operator respond:z, the depth parameter is stored

in RPBRKD.

CRPRUN Routine (Activated by RRUN key);

This command sets RTP in RUN mode in the following
manner; If the break point depth is set to zero, sub_routine
RPRUN is simply called to set the RUN mode (RTPRUN = HIGH)
after making sure that other control signals are properly ini-
tialized. If the break point depth is set to a non_zero
value, then the RTP is single stepped through the specified
depth by calling RPSING successively.

CRPSIN Routine (Activated by RSIN key);

This command calls RPSING to single_step RTP. The
microprogram address register as well as the contents of RTP's
Bus_A and Bus_B are displayed as per the following format;
First two digits display the microprogram address regicter
(equivalent of program counter). The next digit is blanked
followed by two digits displaying bus_A, fellowed by another
blank and then the last two digits displaying bus_B.

CRPHLD Routine (Activated by RHLD key);

This command simply calls the RPHOLD sub_routine which
halts RTP by setting the RTPRUN signal low.

-126-

6.2.5. RTP Diagnostic Routines Library A variety of diag-

nostics can be performed on RTP by a set of routines, eight of
which may be invoked from the keyboard of the HHKD modul e.
These commands are called DIGO through DIG7 and their opera-

tion is described in chapter 8.

6.3. ICM Support Software

This section describes the group of programs which are
required ICM in addition to the support provided by the local

UNIX system, to fulfil the needs of ICM.

6.3.1. Intel Hex-Formatter (INHEX)

This program formats an absolute downlead module gen-
erated by UNIX command "reldld" into Intel's Hex_Format. The
program was written in C_ language, the source copy ef which
is in the filename INHEX.C. Appendix G pnresents the INTEL's
HEX_FORMAT and the source listing of INHEX.C. The executable
code is under filename INHEX. The program operates on stan-
dard input and generates standard output. Hence pipes must be

used to read from an input file and write to an output file.

6.3.2. Hex to Binary Converter (X2BN) This pregram, also

written in C_Language, converts hex_characters into binary.
The source copy of this program is in X2BN.C, a listing eof

which is presented in Appendix H. The executable cede is in
X2BN. |

-127-

6.3.3. RTP Micro Assembler (MICRASS) This micro_acscsembler

is intended for translating assembly 1language (perhaps
mnemeonic machine language) programs into machine code for the
real _time Processor. Development of this micro_assembler has
been the aqbjective of an undergraduate thesis research by
another student, Richard F. Makiro. Although a final version
is still to be produced, a first cut version, written 1in C.

language, has alrzady been produced, demonstrating the viabil-

ity of this approach.

-128-

CHAPTER 7
USER's View

This chapter describes operator's interaction with ICM.
The primary user interface 1is through the host processor.
This 1interface 1is designed in a a way such that
non_eng ineering personnel can also communicate with ICM
easily. The HHKD medule interface is designed to be used by
engineering personnel who possess adequate knowledge of ICM

hardware as well as software.

7.1. Operation via Host Processor

The operation of ICM via host_processor 1is provided by
ICMON through the =system's console terminal. ICMON may be
invoked at the system command 1level to start communication
with ICM. The system responds by printing the header with
ICMON's version numbers and ICMS versiaen numbers, followed by
a prompt message. The ICMON's prompt message is "COMMAND:=",
indicating that the system is awaiting wuser response. The
user then communicates through a set of commands. Although, a
small set of commands are currently supported, these provide
adequate user interactiaon. More cemmands can easily simply be
added upto a total of 256. Each provides a unique function as
follows;

1. HELP Command;
In response to thiz command, ICMON prints a list
of currently supperted commands.

-129-

2.

GET Command;

This command is used to transfer an arbitrary
length record from ICM to the host processor. The
Command requires three arguments to be <cspecified by
the operator, viz. (i) Source Address (refered to
ICM) (ii) Destination Address (referred to host- pro-
cessor) and (iii) record length. The arguments must
be typed in when ICMON asks for it. All arguments
must be specified in octal. If the operator includes
any illegal character, the system rejects that argu-
ment and sets its default value, which is zero. How-
ever, if an illegal character 1is accidently typed,
the operator c¢an wundo it by continuing te type the
correct number from very start, recognizing the fact
that the program would accept only the last 6 octal
characters for a number input.

PUT Command;

This command is used to transfer an arbitrary
length record from the host processor to ICM. The
operation of this command is exactly the same as GET
command except that the data transfer occurs in the
opposite direction.

EDMP (Errar Dump) Command;
This command fetches the error code from ICM and

prints an erraor message on the cansole terminal

~cerresponding to the error code.

5. ERESET (Error Reset) Command;

-130-

This command invokes the ERESET sub-routine in
ICMS to reset the error condition. The result is
same as that caused by depressing ERST key on the
HHKD module.

RUN Command;

This command invokes RPRUN sub-routine in ICMS
to set RTP in RUN mode. The result is the same as
that caused by depressing RPRUN key on the HHKD
module.,

HOLD Command;

This command invokes RPHOLD sub-routine to halt
RTP. The result is the same as that caused by
depressing RPHOLD key on the HHKD module.

SDMP (Status Dump) Command,;

This command fetches the status byte from ICM
Contrql Block, decodes it and frints messages to
indicate the op_mode, color_mode and color_inhibit
conditions, if any.

INIT Command;

This command performs a complete initialization
of RTP from a power_up state and then sets the RTP in
RUN mode. At first, status is fetched from ICM and
decaded for color_mode. Then appropriate micropro-
gram and Ink_Correctian Table (if required) are down-
loaded in RTP threugh the ICM manager. Finally, the
RTP is set in RUN mede. Thus, this single command

brings up the system completely autoamatically and the

-131-

operator is not burdened with details.
10. DIGx (Diagnostic) Commands;

These commands perform diagnostic on ICM. DIGO
through DIGT7 cause exactly the same diagnostic opera-
tions as that caused by identically labelled command
keys on the HHKD module. The exact operation of
these 8 diagnostic commands is described 1in chapter
8. However, diagnostic operations through this
interface is not limited to only these 8 routinecs.
More of these commands (upeasily to a total of) can
be added to implement user defined diagnostics.

11. ODMP (Octal Dump) Command;

This command does not involve any interaction
with ICM. Since the system was initially debugged on
a bare machine (PDP-11/10), such utilities had to be
locally .created. As the name implies; this command
provides host_processor's memory dump in octal. It
requires two arguments viz. (i) the source addrecss
and (ii) a count of words to be dumped.

12. LOAD Command;

Like ODMP, LOAD provides another wutility func-
tion and does not involve any interaction with ICM.
Using this command a user is able to load user speci-
fied data at any 1lecatioen in the hest_processors
memory from the console terminal. This command also
takes twq arguments viz. (i) Destination Address and

(ii1) Word Count.

-132-

13. CMPR Command;

CMPR provides another utility function and does
not interact with ICM. With this command, two equal
length records in memory may be compared for equal-
ity. This command requires three arguments to be
specified viz. (i) Source Address (start address of
record 1), (ii) Destination Address (start address of
record 2) and (iii) Word Count (record 1length). In
case of equality, an appropriate message is printed.
If the contents of the memory locations did not match
during a comparision, then the source address and its
contents as well as destination address and its con-
tents are printed. Finally, the tally of compari-
sions which did not procuce a match, is printed.

14. LDPT (Lood Paper Tape) Command;

This command praqvides yet another utility func-
tian. The aqperation is similar ¢to LOAD command
except that the input comes from the paper tape
reader of the console terminal instead of keyboard of
the console terminal.

15. EXIT Command;
Thies command terminates conversation with ICMON

and returns the control to the host operating system.

-133-

7.2. Operation Via HHKD Module

The HHKD module interface provides extensive system wide
control over ICM. Since the hardware of RTP it completely
under the control of manager's software, it is possible to do
anything through this interface. The function of each command
key has already been described in chapter 6.

One approach to using this interface is to go through a
keying sequence such that the manager executes the decired
function using the built _in commands.

Another approach may be to write a progr am in
8085_executable code and 1load it in the local RAM of the ICM
manager. The control then may be transferred to this code
segment 1in the following manner; Depress ADDR key and set _up
the start address of the user program by keying_in appropriate
hex_characters. Finally, depress RUN key (not RPRUN) for exe-
cuting the user program. However, this approach 1is only
recommended for experts, who understand the details of
hardware and software design of 1ICM, since improper 1/0
addressing may cause hardware damage.

The possibilities of using this interface is innumerable.
As such, it 1is not possible to set a guideline for how this
interface should be used. Rather the functionality of each
command key has been described so that a user may derive the
desired result by working out an appropriate combination.

In order to attach the HHKD-module, the system need not
be powered down. However, the power switch must be off (indi-
cated by +5v LED not glowing) while the cable i=s physically

-134-

being attached.

7.3. ICM Data Bases

The ICM requires two sets of data bases to be supported
by the file system of the host processor. These data bases
contain the micraoprograms and the 1Ink Correction tables
required for dawnloading the RTP memories. The data bases may
be prepared in the environment of the host processor or tran-
sported from elsewhere. The following organisation is recom-
mended although user may adapt a different approach for his

owr. convenience;

7.3.1. Ink-Correction Microprogram Library. This library

contains a total of four microprograms for real_time operation
of ICM and additionally may contain any number of diagnostic
microprograms. The real time microprogram are named as fol-
laws;
1. mpgm.key
2. mpgm.ylw
3. mpgm.cyn
4. mpgm.mgn
Each of these programs can be maximally 770 (octal) words
long, although in actuality, the programs are much shorter
than that. The current version of ICMON (which was designed
for the DEBUG environment and may differ considerably in this
respect from the version finally used for the operational
environment) assumes that these microprograms are somehow

-135-

loaded in the main memory of the host praocesseor as contiguous
770 (octal) words long records.

The eight diagnostic microprograms currently supported by
the system, 1live in the program memory of the ICM manager.
However, it is foreseen that, in future, more diagnostic pro-
grams will be added to the system. Those canr also be be sup-

ported under this microprogram library.

7.3.2. Ink-Correction Table The other data base required

for real_time operation of 1ICM contains the Ink Correction
tables for the various color modes. These are named as fol-
lows;
1. ict.ylw
2. ict.cyn
3. ict.mgn
Each of these data recaords are exactly 1K words 1long.
Table 1 specifies the format in which these records must be
organised. As in the case of micro_ programs, the present
version of ICMON assumes that these records are loaded as con-

tiguous recaords in the main memory of the host_processor.

7.4, Program Development Environments

Development of software for ICM requires system support

at the following three levels;

-136-

7.4.1. Microprogramming for RTP Microprograms may be

written for RTP directly 1in hexadecimal machine language.
Every microinstruction must be eight bytes in length and con-
form to format specified in appendix D. Appendix J presents
some microprograms written in Hex machine language. A trans-
lator must then be available to translate the program from
hexadecimal to binary. The utility program X2BN, described in
section 6.3.2, provides exactly this function.

An alternative to programming in hex is to use some =sort
of a symbolic language or mnemonic machine language. Appendix
K presents a brief summary of RTP instruction set and the syn-
tax of a mnemonic machine language which should make program-
ming much easier. Appendix L presents a model microprogram
written in this mnemonic machine language. However, in order
to generate binary object code for actual downloading, a
micro_assembler is required. MICRASS, the micro_assembler for
RTP, described in section 6.3.3. provides this capability.
Although, MICRASS is currently under development [], suffi-
cient work has already been done to demonstrate the viability

of this approach.

7.4.2. Programming ICM Manager. In order to develop pro-

grams for the ICM manager, basically an assembler for 8085-
code is required to be supported by the system. The CIPG UNIX
supports a cross-assembler viz. MICAL (Microprocessor Cross-
Assembler) which génerates code for Intel's 8080 microproces-
sor. MICAL may be used for assembly of 8085 codg also because
the instructions sets of the two machines are completely

-137-

identical except that 8085 implements two more instructions
viz. RIM and SIM. To use RIM and SIM instructions in the
source program, and still be able.to use MICAL for assembly,
one easy way out is to define RIM, SIM as global symbols and
equate them to their opcodes.

The MICAL assembled code on UNIX it a relocatable object
module. However, UNIX ccnveniently supports a shell-level com-
mand “reldld' which generates absolute download modules from
relocatable object modules such as one generated by MICAL. 1If
the program is to be located in the EPROMs (2708's), then it
is required to be punched on paper tape in an appropriate for-
mat, so that it can be transported to a programming equipment.
During the cqurse of development of ICMS, the programming
equipment used was the INTELLEC MDS system installed in the
Digital System Laboratory. The MDS system supports a univer-
sal PROM programmer system on which EPROMs (type 2708's) can
be conveniently programmed. However, in order to program the
EPROMs on MDS equipment, it is necessary that programs are
punched on paper tape in Intel's hex_format (appendix G.1).
Therefere, the system must support a utility program tq con-
vert absolute download modules (output of "reldld" command) to
Intel's hex_format. The program INHEX, described in section

6.3.1.,was developed for this purpcese.

T.4.3. Programming Host Processor The program development

environment required for host_processor perhaps needs no
explanation. However, in the context of debug_environment, a

brief description of the available system support follows; The
-138~

host _processor used during ICM's debugging_ phase was a PDP-
11/10. This was a bare machine, devoid of any software except
for a bootstrap roucine in firmware. A vendor =supplied abso-
lute 1loader was available on paper tape. Earlier researchers
faced with the praoblem of using this bare machine, created a
system macro called "absload" which provides assembly ¢f
MACRO-11 source code as well as binding of the relocatable
module to the specified absolute address and finally, the
resulting code punched out on paper tape. Thus, invocation of
"absload" command on the first argument <source_filename> and
the secaond argument <absolute-address-of-program- origind>,
praoaduces a paper tape which can be directly read on PDP-11/10.
This was the approach taken to load ICMON in the PDP-11/10.
ICMON pravides a completely stand_alone operation. Hence, once
loaded and started, it provides all the wutilities necessary

for carrying out ICM related operation.

=139~

CHAPTER 8

Diagnostics

Extensive diagnostic features have been designed into the ICM
system in order to monitor the correctness of its operation as
well as detect and localize faults in case of failure, as

described below;

8.1. RAM Diagnostics

This feature provides an automatic testing of all RAM
modules (both manager's local RAM and RTR_shared RAM) with the
help of software. In case of flaky chips, it also helps to
identify the defective 1locations. A key on the HHKD module
called RTST (RAM test) invokes the CMTEST command process rou-
tine (within 1ICMS) which performs the RAM testing. 'CMTEST
requires two arguments viz. (i) start-address and (ii) End-
address. 'Thése arguments must be passed to CMTEST via the
register_pairs BC and DE. Register_pair DE should contair the
start address and the register_pair BC, the end_address.
Registers may be initialized by getting into register_display
mode, by depressing the REG key on the HHKD-module. The con-
tents of the registors may then be modified.

Every cell of the memory segment, between the two speci-
fied limits, 1is checked repetitively for correctness of read

and write operations. Basically three types of checks are

-140-

made. Every test begins at the start_address (inclusive) and
praceeds through each location successively upto the
end_address (exclusive). The procedure for testing is as fol-
lows; First the pointed location in memory is cleared and
then <checked if it indeed cleared. Next, a “1' is stored in
the LSB cell of the location and checked again. The ‘1' bit
is then shifted ta the next significant bit position, stored
and then checked once again. This procedure is continued
until the “1' shifts out of the MSB position. Finally, ‘/FF!'
(all_ores) bit pattern is stored in the current locatien and
checked once again before incrementing the pointer to the next
location for testing. When all locations are checked in this
manner, another pass 1is made to cheék if all the locations
within the defined segment contain * /FF' bit pattern. If they
do, the result of the test is taken to be successful, there-
fore, message "Good" is displayed and the test is started all
over again. If during any comparision the contents of the
memory did not match the contents of the accumulator (the data
to be =stored), further testing is halted and the address
(where the operation failed) is displayed along with its
actual contents as well as what the contents should have been.
At this point the program waits faor the operator's response.
If the operator depresses "RAMTST' key again, then the testing
is resumed from the brake paint. If any other key is
depressed, the test is started right from begining. Thus,
once invoked, this diagnostic routine keeps checking RAM in an

infinite 1loop. The only way to exit from thie routine is

\

-141-

through RESET. The program is designed in this manner so that ‘
a proper initialization of RAM is forced after this test which
may have destroyed the system stack, control Block etc.

Before the test is started, the program checks 1if the
specified test space overlays the system stack. If it does,
the system stack is relocated (at the other end of the 1local
RAM) =since the diagnostic program itself wuses the stack.
Therefore, the lowest 32 bytes of local RAM must be excluded

from the test space, if it overlays the system stack.

8.2. Manager Single-Stepping

Provision for single_stepping Prqgfam execution appears
to be an essential feature on almost any machine. ICM
manager's single -steppirg capability provides a very _wwerful
software debugging tool. In fact, it was possible to debug
parts of ICMS itself wusing the =single_step facility. A
DIP switch located on the manager board determines whether the
manager would operate in “RUN' mode or the <cingle step mode.
In single step mnode, the program executes cne instruction
every time the ‘“step' key 1is depressed. The result of
instruction executioan is visible through examination of
memory, registers, stack and other pointed locations. A |user
program (8085_code) may be loaded in manager's local RAM and

debugged in this manner.

=142~

8.3. Manager Break-Point Runs

Angther useful debugging tool provided by the system is
the ability to set breakpoints while executing manager pro-
grams. Breakpoints may be set by specifying an address (by
depressing ADDR key and following wup with appropriate hex
keys) and depressing the "BKPT" key. Another parameter
required to be set is the break point depth, which may be done
by following the "BKPT" key with appropriate hex_keys If the
breakpoint depth is set to zera, the program execution is
halted the very first time Program Counter matches the break-
point address. To resume program execution, “RUN' key may be
depressed again whereupon the next océurrance of the same
address will introduce another break_point. If the
break point depth is set ta a non_zero value, then the program
execution is halted after an equal number of occurrences of
the break _point address in the program flow. This provides an
useful capability of executing a program loop a given number
of times (by setting the break_point within the loop) Dbefore
the break paint is introduced. The introduction of breakpoint
during program execution allows examination af rggisters,
stack and as well as other memory locations thus providing the

ability to monitor the execution of a program dynamically.

-143-

8.4. RTP Single Stepping

The single_stepping of the real time processor provides
similar type of capability, although in a clightly different
manner. Since RTP executes micro instructions, there 1is no
reed for setting instruction cycle traps as irn the case of the
manager. Instead, if the central clock (WRCLK and CTLCLK) of
the RTP is controlled =such that it is pulsed a single time
when a key on the HHKD module is deprecssed, the
single_stepping capability would be obtained. This is exactly
the manner in which RTP is designed. When " RSIN' key is
depressed on the HHKD module, the 6.2 5 MHz base clock is
cut_off to the colck generator and instead the clock input is
Pulsed a single time. Since all operations within RTP is syn-
chronized to this base clock, the effect of the single clock
pulse 1is tao step through the micro instruction sequence Jjust

Qnce.

8.5. RTP Vectoring

The microprogram memory of the RTP may contain more than
one program module and it may be desirabe to select one of
these programs for execution during a giveh time . This capa-
bility is particularly attractive from the point of view of on
line diagnostics. However, to praovide this type of operation,

the manager must be able to steer the RTP to the appropriate

-144-

program cegment. ICM manager is able to do this through the
RTP_interrupt facility as described in section 5.1.5.8. The
manager puté out an appropriate address on the VECTOR port af
the RTP _Interface and then causes an interrupt to the RTP.
RTP responds by aborting its current task and diverting to the
newly =specified task. However, causing an interrupt in this
manner does not save the context of the current task, which
may be desirable in some instance. An alternative method for
task switching through a handshake protocol is provided as
described below;

A flag (RTPJMP) from the manager can be tested by RTP to
make a decision about changing over to a new task, as opposed
to being co erced into it through the ihterrupt facility. As
before, the manager places the address of the new task on the
VECTOR port, before asserting the RTPJMP flag. A bit from
RTP's micro_code is wused as a flag (RTPACK) which may be
tested by the manager. When RTP finishes execution of the
newly specified task, it asserts the acknowledge flag RTPACK
and then may return to the execution of its earlier task or
probe RTPJMP flag again to find out what must be done next.
The manager, on the otherhand may test the RTPACK flag at its
discretion, recognize that the requested task has been ser-

viced and may praoceed to specify another new task.

-145-

8.6. RTP Break-point Runs

The breakpoint run facility for RTP 1is decsigned in a
somewhat unconventional manner for the sake of simplicity. An
operator may specify a microprogram address (one byte only)
and then specify a breakpoint depth by depressing appropriate
hex-keys following the “RPBRK' key. Next the operator must
depress the "VECT' key to load the microprogram address regis-
ter with the specified address. Now, if the “RRUN' key is
depressed, RTP would execute the microprogram starting at a
address through the specified number of microcycles specified
by the depth field. If "RRUN" 1is depressed again the
micraoprogram execution resumes from the broken point but gets

suspended again after the zpecified depth.

8.7. Diagnostics with Test Board

A number of diagnostic functions can be perfaormed on RTP
with the help of a test board shown photographically in appin-
dix B. The test board is required to be plugged in the place
of the Data_Interface board (#9). The test board carries 3
sets of 8_bit dip switches for emulating the input data. One
8_bit dip switch is used for status information and two
hex_displays always display the output register OR3. Thus,
this test board provides a =simple I/0 interface for the

real_time processor. Diagnostics are performed with the help

-146-

of pre_written diagnostic routines. Currently 8 such diagnos-
tics routines are supported, which may be invoked either by
depressing keys on the HHKD module or by typing the command on
the hast-processor's console terminal. A copy of all the
diagnostic micro_routines are stored in the managerfs program
memory. When invoked, the manager downloads the correcsponding
routine into the microprogram memory of RTP and sets it in run
mode to execute the routine. The operator may set any arbi-
trary input on the test board and compare the displayed output
with a predetermined reference to establish whether RTP gen-

erates the right result.

8.7.1. Machine Dependent Diagnostics Commands DIGO, DIGH1,

DIG2 and DIG3 perform machine _dependent diagnostics in the

following manner.

8.7.1.1. Diagnostic Routine DIGO; This routine performs

testing of the ROSH element of RTP's ALE. The input from IR1
is shifted left eight times in word mode and the MSB from ROSH
is moved to OR3. Thus the displayed output same as the input.

Appendix J.1 presents the mecroprogram for DIGO in Hex.

8.7.1.2. Diagnostic Routine DIG1; This routine performs

testing of the ALU component of RTP's ALE. The input from IR1

is added to IR2 and the result is clamped for overflow before

being moved ta OR3. Appendix J.2 presents the microprogram

for DIG1 in Hex. 8.7.1.3 Diagnostijc Routine DIG23 This rou-

tine performs testing of the MAC companent of RTP's ALE. The

input from IR1 is multiplied with that of IR2 and the result
-147-

is subtracted from IRS3. The final result is moved to OK3.

Appendix J.3 presents the microprogram for DIG3 in Hex.

8.7.1.4. Diagnostic Routine DIG3 Thits routine performs
testing of real time decision making by executing an algorithm
which selects least of three numbers. The three numbers are
input from IR1, IR2, IR3 and the selected number, having the
least value, is moved to OR3. Appendix J.4 presents the

microprogram for DIG3 in Hex.

8.7.2. Application_dependent Diagnostics Commands DIGY,

DIG5, DIG6 and DIG7 perform application_dependent diagnostics.
The algorithm selected for this purpaose 1is the =same as
described in section 2.8, which is to-compute the approxima-
tions ¥, €, M and K. The inputs R,G, B are taken from the
test board via IR1, IR2 and IR3 respectively. The result is

moved to OR3 and displayed on the test board.

8.7.2.1. Diagnostic Routine DIGU; This routine performs

computation of the Yellow approximation as per the follaowing

equatian;
Y = 1.8671875 # Dg - 0.5703125 * QG - 0.109375 * pa
Appendix J.5 presents the micraoprogram for DIGY4 in Hex.

8.7.2.2. Diagnostic Routine DIG5; This routine performs

computation of the Cyan_approximation as per the following

equation;

C = -1.15625 * Dy + 1.9921875 * D_ - 0.2734375 * Dy
-148-

Appendix J.6 presents the micropraogram

for DIG 5 in Hex.

8.7.2.3. Diagnostic Routine DIG6;

This routine performs computation of the
Magenta_approximation as per the following equation;

M = % #) "

M =0.1875 ¥ Dg + 0.3671875 DCv + 0.6328125 DB

Appendix J.7 presents the microprogram for DIG6 in Hex.

8.7.2.4. Diagnostic Routine DIG7; This routine performs

computation of the UCR-Compaonent (Key) as per the following

equation;
K=0.5%7[MIN{YCHNM}]

For the sake of clarity of understanding, a <simple MUCR 1is
chosen.

Appendix J.8 presents the microprogram for DIG 7 in Hex.

-149-

CHAPTER 9

Bench Marking and Performance Evaluation

Although it may not be proper, in some sense, to compare
the perfarmance of ICM's RTP with any contemporary
off the_shelf microprocessor, yet, comparisions have to be
mode, in the absence of any other yardstick for performance
evaluation. Intel's 8086_family micropraocessor was chosen for
the comparision since that came claosest to the needs of this
application, as described in section 1.5. The bench marking
algorithm was chosen to be the 1Ink Correction algorithm.
While evaluating the performance of 8086_based system, it was
assumed that I/0 1is architectured with Parallel Interface
chips 8255As, such that maximum thruput 1is derived. It was
estimated that the time required to compute the ink densities
from R, G, B inputs corresponding to one picture_element would
be of the order of 400 microsecs, with 8086 being driven at
6.25 MHz clock frequency. To do the same Jjob the RTP takes

less than 11 mecrosecs, operating at the same clock frequency.

-150-

CHAPTER 10

Future expansiaon and other Applications

It may be desirable (for some other application), to add
a few more hardware capabilities to the real_time processor.
Provision exists for adding a hardware stack which would
enhance the capabilities of RTP significantly. Provision also
exists for adding a hardware queue, which would support convo-
lution type computation very efficiently. Board space (on
board i y calumns) as well as spare bits in micro-code
are available for these hardware additions. However, due to
lack of time, these elements could not be implemented (Imple-
mentation of these elements was given lower priority since
thece were nat essential to the ICM application).

In respect of software, it may be desirable to expand the
diagnostic sectiaon some more. It was thought that more diag-
nostics would be added by the users of the system. Another
potential area for future expansion is the ICM manager. With
very little addition of hardware, the manager's (8085's)
serial communication can be developed so that, with appropri-
ate software, the manager can directly communicate with a ter-
minal. This way, it is possible ta architecture a caompletely
stand_alone system, eleminating the need for interaction with
a host_processor (ofcourse 1in the case of this application,
the host_processor has many other functions).

Even though ICM was developed for a specific application,
it has the flavour aof a general_ purpase computing machine.
The same machine can be used for many other applicatians

-151-

requiring perhaps very little hardware change (may be in the
I1/0 area). The Real_time processor car be made to execute a
variety of tasks simply by swapping microprograms. It is the
opinion of the author that this type of wmachine can be an
excellent tool for real time speech processing or

facsimile cspeed image processing.

-152-

CHAPTER 11

Conclusions

A specially architectured microprogrammable processor,
capable of high speed computation to match engraving system
thruput, has been developed. The real time processor can com-
pute the ink densities from R, G, B ICI values within the
allocated time slice of 11.5 microsecs. The RTP is managed by
a recident 8085-MPU based microcomputer through software,
yielding a highly flexible, yet computationally powerful sys-
tem, High_speed inter processor communication with a larger
system (PDP-11 based) is provided. Presence of a microcom-
puter as the system manager provides extensive testability and
diagnostic capabilities. Both hardware and software systems
have been designed in a well structured manner yielding high
degree of modularity. The Ink-Correction module is not only
able to do the real_time image processing for the
Helio Klischograph, but can serve as a development tool for

any other real time signal -processing application as well.

-153-

BIBLIOGRAPHY

Parks, E.L., "New Generations of Ev€e2*. onic Scanning
and Engraving Equipment", Proceedings of the Techni-
cal Association of the Graphic Arts, 1973,pp. 105-
115.

Troxel, D.E. & Schreiber, W.F. et al. "Automated
Engraving of Gravure Cylinders", paper presented at
the Symposium on Digital Systems, Tenth Anniversary,
Simon Bolivar University, Venezuela, March 1980.

Berberian, H.A. "Error Reduction in a linear
Transformation Color Correction Scheme", MIT/CIPG
memo PROV-40, January 1980.

Berberian, H.A. "Determination of Look_Up_ Table
Entries for the Ink Correction Module", MIT/CIPG memo
PROV-56, July 1980.

Berberian, H.A. "Smoothing of Color Matching Data for
the Ink Correction Module", MIT/CIPG memo PROV-57,

July 1980.

Schreiber, W.F. "Look Up Table for Color Correction",
MIT/CIPG memo PROV-51, June 1980.

Schreiber, W.F. "Obtaining Look_Up_Table Data from
Smoothed Matching Data", MIT/CIPG memo PROV-54, June

1980.

Troxel, D.E. & Schreiber, W.F. et al. "Bandwidth

-l-

compression of High Quality Images", paper published
in International Conference on Communications, IEEE,
June 1980.

9. Wyszecki,G. and Stiles,W.S. "Color Science, Concepts
and Methods, Quantitative Data and Formulas", John
Wiley & sons, Inc., 1967.

10. Mishra,S.N. "Scaling and Quantization of Matrix
Co-efficients for Implementation on ICM Hardware",
MIT/CIPG memo PROV-60, August 1980.

11. Buckley, R.R. "ﬁ_dimensional Piecewise Linear
Interpolation", MIT/CIPG memo PROV-13, March 1979.
12. Schreiber, W.F. and Troxel, D.E. "Color Processing
for the Helio_Klischograph, MIT/CIPG memo, July,

1678.

13. Yule, J.A.C. "Principles of Color Reproduction",
John Wiley & sons, Inc., 1967.

14, Buckley, R.R. "Reproducing Pictures with Non-
reproducible Colors", S.M. Thesis, Department of
Electrical Engineering and Computer Science, MIT.,
1978.

15. Salisbury, A.B. "Microprogrammable Computer Archi-
tectures", American Elsevier Publishing Co., Inc.,
1976.

16. Hwang, Kai "Computer Arithmetic: Principles,
Architecture and Design", John Wiley & Sons, Inc.,
1979.

17. Klingman, Edwin E. "Microprocessor Systems Design",

-2

18.

19.

20.

21.

22.

23.
24,

250

26.

27.
28.

29.

30.

Prentice Hall, Inc., 1977.
Artwick, Bruce A. "Microcomputer Interfacing",
Prentice Hall, Inc., 1980.

Eckhouse, R.H.Jr. "Minicomputer Systems: Organiza-
tion and Programming (PDP-11)", Prentice Hall, Inc.,
1975.

Fletcher, William I., "An Engineering Approach To
Digital Design", Prentice_Hall, Inc., 1980.

Intel Corporation: MCS 85 User's Manual.

Intel Corporation: 8080/8085 Assembly Language Pro-
gramming Manual.

Intel Corporation: The 8086 Fammily User's Manual.

Intel Corporation: MCS_86 Assembly Language Re fer-
ence Manual.

Advanced Micro Devices: Build A Microcomputer

Series, 1978.

Advanced Micro Devices: The Am 2900 Family Data
Book.

Fairchild: Bipolar Memory Data Book.

National Semiconductors: TTL Data Book.

Texas Instruments: TTL Data Book, 2nd Edition.
Texas Instruments: Low Power Schottky and Advanced

Low Power Schottky Products.

RPPENDIX-A-14
MACRO- FLOW CHART FOR K

(starT)
\

INTITIALIZE

1
LOOk-UP Dg= S‘I; bog,, 25 |
\ 255
- 25¢ | I S=
Look - UP D= er. bog,, 56| [5 log, 756
2
LOOK -UP Dy = j log,, 32€ ‘
COMPUTE Y= M Dpt nD+h Dy
¢ S [m np][3%
COMPYTE C 3.Dg+-r._'[)c+-¢.1£ (& =T r ¢
\L] (%% 3P
COMPUTE M= z:D,;-r#,;pG-r,.Jh

)

LOOK-UP K=MUCR[A]

AN O'UTP"I'UT K /

NEW.-DATRH ?
YES

Go To ()

APPENDIX-A.2
MACRO-FLOWCHART FOR Y, ¢, M

(sTArRT)

Y

INITIALIZE

LOOK-UP Dg = s. log,, 226
258

LOOK-UP Dg = 5. Log,o %gf. 1 log,,256

LOOK-UP Dy = s. loy,, 23€ J

CoMPUTE C = g DR+ TDg+ ¢ Dy)

I 0 <

Y
COMPUTE Y=mDg + nDg+b Dy (

Y

COMPUTE M= 2Dp+4 Do +3-

or « =2
‘\nﬂ'"ﬂ",
I
L)
_0

Ds | _

5

SPLIT FORMAT
[S-']g =Y A (3'7);
[TJy = CA(37)s
[Mlg = M A (37)s

ICT. ADDR =(3 wss oF Tl Gsmss oF)l Evesors)

Y

LOOK.UP ICT ENTRIES
’ ~ ~ ~ t~1 ~ ~
T 'y ATY ’ &Tc ? AT" 9 ATY,C Y ATC,M ’ ATM ’Y

Y

COMPUTE

T= T+ [T] ATy + [E]g AT + [F]g0Tw
+[¥1y [T]y AT,
+ [€lg Cils A-T'Cm
+ [l [T]g & Tuy

\OUTPUT T/ T= One °F§Y.c,mj

NEW-DATAY >

YES
GoTo (D

MICRO- FLOW CHART FOR K

Csrmz‘r)
Y

MOVE HNON.LINEARLY TRA TOo GRY

Y

MOVE NON- LINEARLY IR2 To GR2

v

MOVE NON- LINERRLY IR3Z To GRS

Y

MULTIPLY GR3 wilth 3H¢EH

Y

MULTIPLY-ADD GR2 Witk +4: 49H

Y

MULTIPLY-SURTR. GRYL with #¢EFH

Y

NOP

NO YEs

APPENDIX~A. 7

Dp ¢ 'f(R)

De < £(6)
Dg < f(B)
0- {09375 * Dy
©-{09375% Dy,

+ ©-57034i23 # Iy,

1.867{875 1

~ 0-5703125 * Dg

~ ©-109375 # Dy

UNDER FLOW ;

Y

CLAMP RESULT To ZERO

Yes

OVERFLOW?

~

CLAMP Resql.‘r To ALL ONES

SHIFT wWoRD LEFT

MovE RESULT To Gr 4

Y

MULTIPLY GR3Z wilti 4= 23H | O-2734375% Dy

!

5 : ©:2734375 * Dp
MULTIPLY-ADD Gfi willy ¥#94H + 1.48625 ¥ Dg

MULTLPLY- TR, GR2 wilyy 1.992(8Y5» Pgqg
Y-SUBTR, GR2 witk #w@Fpy| i)
v = ©-2TB 4375 * Dy

No P

UNDER FLOW,

CLAMP ResULT To ZEROD

OVERFLOW P> YES

CLAMP RESULT To ALL ONESI

SHIFT WORY LEFT

MOVE RESULT To GRS

N A.
(3 i

- I A o
MULTIPLY GR4i wilk #48H 0-1875 #* Dg

IR T

| it 1 0.1875 % Dr
M U."_TE’LI:" ”_&igz’_f‘ “‘f_zﬂf +0.3671875%Dg

[MULTIPLY- ADD GRZ With #51H 2013373 :;-l;g % D,

1‘“ +0-6328125 % Dy

NOP

-
SHIFT WoRD LEFT CLAMP RESULT To ALL ONes

> 4

MOVE ResSULT To GR§

YEs
NO —cra<Grs?
.
GR5< GR6E ? o

MOVE GRS To §R7 MOVE GRG TOGRY Move Gra To CR7]

MAaP UCR GR7 To oRs

NEW-DATA ¥

Go TO START

A-3

APPEN:DIJ&-R-#
MICRO-FLOW CHART FOR Y,C,M

(sTART)
v

MOVE NON_LINEARLY IR{ ToGR| Dp + F(R)

!

MOVE NON-LINEARLY IR2 ToGrp Dg <« F(&)

Y

MOVE NON-LINEARLY IR3 To GRS| Dg <« f(B)

Y

MULTIPLY GR3 with stopy | ©-109375 »Dg
: ©-109375 % Dp
MULTIPLY ADD GIZ with 3£ 49 Y 0. 5705125 0D,

] cha "867'875* -DR
MULTIPLY-SUBTR. GRL willidigerd " 0 o e De

¢ - 0.109375 % Dy

NoP

JNDGRFLDN ?

CLAMP RESULT To ZER0

CLAMP RESULT To ALL ouQ

SHIFT WORD LEFT

A.+

MOVE RESULT TO GR4 & MAR{

Y

MULTIPLY GR3 wWilf 3F2zy | O-2734375 %2y

Y

MULTIPLY-APD GRi wilti # 94y [O-2734375%Dy

% +1.15625 » Dy
MULTIPLY- SUBTR. GR2 Wi F §-9921875 » D¢
GR2 *'¢ FH| §.15¢€ 25 » Dg
¢ ~0.2Y24375 *.DB

NoP

SvERFLOW I, _YES CLAMP RESULT To ZERO

Y

CLAMP RESULT TO ALL ONES

SHIFT WORD LEFRT

MOVE RESULT To GRS & MAR2

© a

MULTIPLY GRi Wil 4i8H 0.{875 %Dy

Y

MULTIPLY-ADD GR2 Wik ##2FH

Y

0i875 % Dg
+0-3€71975 % D¢,

MULTIPLY- ADD GR3 wii #5114 :-01..33:;57:;.;): ® Dg
¢ + 0-6328{25 »pg
NoOoP

I&Qovsrenow,
..
Y
SHIFT WORD LEeFT CLAMP RESULT Te ALL ONES

MOVE REBSULT TO GRé & MmAR3ZI

Y

SHIFT LEFT GR4,GRS BYTE MODE [mask

y

SHIFT LEFT Msg,lsB BYTE modE

y

MevE LSB TOGRY ¢ MsSB To GR2

SHIFT LEFT GrRE BYTE MoDdE/mask

Y

SHIFT LEFT LsB,mMsE BYTE MODE

!

MOVE Ls®E To GR3

Y

MULTI PLY GRI Wik GR2

Y

NoP

Y

SHIFT RESULT LEFT NORD MODE

Y

MOoveE MsB To GRY

Y

MULTIPLY GR2 Wik GRS

Y

No?P

Y

SHIFT RESULT LEFT WORD MODE

Y

MOVE MSB To GRS

Y

MULTIPLY GRi itk GRS

A -4

NoP

!

SHIFT RESULT LEFT WORD MODE

Y

MULTIPLY ICTY wilh MsSB ReEsueT

Y

MULT.-ADD ICTG with GRS

!

MULTIPLY-ADY ICTE5 wi¥ GRY

Y

MULT IPLY-ADD TCT4 wiliT GR3

Y

MULTIPLY =ADD ICT3 wilh GrY

Y

MULTIPLY-ADD TICT2 W& GrRL

Y

MULTIPLY - ADD ICT4 wili R¢ERH

Y

NoP

A4

A4

YES

CLAMP RESULT To ZERO

_Yes

OVERFLOW ¢

£l CLAMP RESULT To ALL oNE%

SHIFT WORD LEFT

MOVE RESULT To ORZ % ‘TERMINM%

NEW. DATN 2

GO To START

APPENDIX-B

DATA INTERFACE

APPENDIX-B

fEifme
SEERRBBRRIBEE|

SBARRERRE mmmnmgzé.ﬁw

ARSRORY

.....

..p._u. ..f, xlvﬂﬂﬂﬁT 1lq\r~.1ﬂ

= — N
3

e ,'-..\’Q:

(o

DATA INTZERFACE

)

1: 8%

' _ °_ MICROPEUGRAS,
ey g CONTR: 2R

i S|
: l
.E s 5; i
s B
= 0 e “:j
> = : 3
e N E W X
'ec.“_} FRREN)
21 ! Y: 111 G

MICROPROGKAM CONTROLLER

p33 ThC g ‘;:,&‘.

2r s

eckrnan o - v e EaeTe ey —mid
198-1-RiK

‘?h)_ﬂ.‘"‘q‘l‘fis\
) Y ______ o
! -agﬁggggggg -. _zaniamﬂﬂu g

—‘,4

;.:mx

-._: . uvuypppp) .nn-umn,a uu:t s‘rm (A

,.uuuuuuu adﬂdimnuuuu_.l. ;

.....

‘v ', . . . n [.. : i...hlhhi N
MI CROPROGRAM MEMORY

--.ri*rrv

mwmh

‘Xiﬂu’“ul

1LL. MA 02081

2

CEO 1D PARR ORIV

as a

REGISTER ARRAY & BUS-CONTKOL LOGIC

o s

-

.y u

L ek
i
o

B
4
2,
p

2

0

12-DE-8

BUS-MASK & MISCELLANEOUS

\
|
.LL
Q

vl

\ RRREET,
, | s i
1 1
) . J: . : 'E EEl 1&1
o &__-_g;\ d__g__ = —— . _.J —
fr2 — £ S o — ;‘=q§:?’; T
!: sev e
- \ ‘]
1120 _‘t\'__ 12 AL RREDYR
. - . - E———— " e
DOABDDL B - 4.7 i
L e L \:"._’
¥ et VA P = —
.- - . ™ v i"-’—';"- ""‘ %9 l
- .I.lﬂlll.l. g -l {] i : :
‘&_ =] “s . e
..': “ e o @
,,,,,,, MR MR
SREFRREHRRARRHNN, KRN

/

1111111

5RO

N
YA

(
A\ |

Syt

LINTEROG
ON

3
.y

o

e I T —— —
ARITHMETIC & LOGIC EXECUTLVE

[S

ERI UV_.‘_..n-.u‘.: AR L Ry o

I e e e aea s o

L

s
K
. 3

-3

. H
.

INX CORREZCTION TAB

LE

: ‘fi!_i:‘ffi.";
RN B

SYSTEM MANAGER

r

rre -

ﬂ‘ﬂr »

V2 rens Ve g

ililiii 3

i £

UNIBUS INTERFACE

R Texas Insthuments T o L

Ti-30 [

0 ! 8/i! MEM |ERST'DIGC
NN NN

1/p| 9/L1 REG !RTST{DIGL

NN NN
“;i ADDR | RCLQD1G2

B | STEP| VECT DIC3)
- - . B B
I c | RUN|RRUN'DIG4 -

D | NCXT| RBRKIDIGS
- - - [, R
i i KPJRSIN DIG6 ;

F ! CLR | QHLD’DIG?

- » e

HHKD MODULE

il
L J

ATV

FEEEEEFE
YL
PRt

NI

K
' ‘.ﬁgp T

SYSTEM MANAGER WITH INTERFACES

obb- B

R

BRI Fi kit

-
—
-
—
-
-
-
-—
—
-

-

w

1

I

0y

ICM TEST BOARD

ICM BACK PLANE

ICM DEBUG STATION

FORWARD TRANSEER APPENDIX-C.4

WRCLK | _
'« %< 180 - Tie204
\ ° \
ereeek |
<i7>
XART (L) i
xwxl (L)

-
S S O O T
N O

IDBx VALID
set .
ODBx AR VALID .
L
! :

BACKWARD TRANSFER

WRetk |, [
“2 < 140 - —>k '

: Al
eTLCLK !
| ' :
!ﬂ.']-n .
.. X

ot] (RN ! T
'<— 30 >~ i
- ! N

oon AT vatm G
irnd i

ToBx D NN 7“1 VALID O
' :

|
| ALL TIMINGS IN NANOSECS .

JATA TRANSFER TRANSACTION

APPENDIX~ C.2

NoN-LINEAR MAPPING TRANSACTION

arwa (e L X gdar
! |
<— 04 |.J
dI7UA N/ vEax
&.qlv.m l—
N TZrun vdao
' 1
1 OF b—
s | MTixxx
§ é (1) 1907
- ; CDVLx xR
~>{ LY e
[|
_ _ ATO4LD
—>0F < OFF —— >R

ALL TiMINGS IN NANDSECS .

RPPENDIX-C.3

ROTATE OR SHIFT TRANSACTION

WRCLK
T ' t
;é 2,0->i-< {40 — —- - - ;—i<zo>i
' (—
CTLCLK,
e 17>
2XXT(LY ™
RosgeN (L) [\ -\\\5 /_f
f<-30 >
IDBx YT VALID)C
naf Ui
T T Y VALID '
ODEx) SR AN
I
e 40—-—>q;
INPUTT‘ LAV X \lvr/-y,', i
ROSH OO\ W T vALTZD)@
REGISTER

BALL TIMINGS IN NANOSECS.

APPENDIX-C .4

TIME DIAGRAM -ALU TRANSACTION

WRELK

et

CTLCLK
| |
17>
|

xxx T(L> v\
ALUEN (L) L"-‘L\I
=30 >

IDBx

Iﬂpw ('...7'.",.“‘. \ 1\.‘-""-?"-."' r'_,,_,;”.' v ,1 ‘
e T T vAp] R

REGISTER i"-"-'") [
! |
X AR o T G e AT L AT “:“ . '."l -
'I'oN:cR M AT Atz A\
¥

ceeLk
= MACEN(L), « ETTEIK + MUenN(L) - WRELK

ALL TimiINGS IN NABNOSECS .

APPENDIX-C-5

” “ -BF A VzmeQ + ATI1LD o tﬂdvz.wgz =

i

1 N

“ _” | __ [_ f N . A1992

I | W }) / : _

] £99 JA. NMU X TV .. o..:n_tov d10 | 490
1 t ﬂ !

| i .

: m._...sn..u.,.-_ vﬂJﬁ:nm_m X T ..ammuﬂ X ann.uu <710 . d

i \ l

T X%

A4

=() N3ovi

A_L.azuus‘

ANV

MM ' " T1o9ds

" 8.-”. sdqu
ATOUM

' . | l “
IIE.I[_IE_:L_I.__L_IL_IL_ILEF_I:._HE:

gertJHEJLur]LHjLISHEHl

SUs_y) T.

_ _ [_ _._ _.u:outﬂ

i Fo— dON —>j< UISW - >pi— ATUW —rp< AL — .Aua..oa

TIME DIAGRAM - MAC TRANSACTION

APPENDIX-D

RTP's MICROINSTRUCTION FORMAT
63 | - PUSED | E£U2 3 | 2 MINSTY | EVL
62 [T x| RTPACK | EV2 ¢ | & MInsTg | EVU4
61 ;.d 2| sparecL| ETQ 29 | 2 | Minstg | ESt
6p |» " | sSparecp| ES2 28 | YV | mInsT4 | ERL
| 59 ! SPAREY | EF2 87 | § | MansTz | EPL
.' 58 ' spARE] | EEQ 36 | @ | MINsT2 EN{
ICA SPAREY | ED2 25 | @ | mEnsTL | EML
56 SPARES | DV2 24 3‘5 MInSTE | ELL
55 ! '&‘ SPARES | DVU2 33 BL3 02
| 5¢ < SPARE4 | DT2 23 BL2 De2
53 | ¢y | SPAREZ | DVi | Bui DF
| 62 SPARE2 | DVL % | 9 BLP DH2
5 SPAREL | DS4 19 - BED2 72
5¢ SPARE® | DRY 18 % 8ED4s | Dk2
W | ¥ | M DB2 17 | Y [Bepp | DL2
4 | = Mg DAL 1€ | o BT4 DMz
4y | q IMDY ER2 5 | 373 DN2
4 | 2 [Iwpe | FF2 14 | 5[312 DP2
45 | & | TmMps | ENz 13 | @ [Brg DR2
44 't IMD4 EMQ 12 BT D82
45| < ! Tmp3z EL2 14 AL3 B4
4% | o[Twpz | Ekg | [T | [ALy | Det
44 f_ Impy ETY @9 8 AL{ IVL
49 | H | I™MDG EN2 *8 | AL$ DE4L
3 | 4 £y §K{ ¢7 | & | AED2 | DF4
3 | ° E6 ETL ¢ | O | Aed4 DH4
3y ; ES ENY ®s5 | o AED¢ | DIL
36 8 E4 EF4 g4 v', AT4 ki
35 E3 [{1 &3 a AT3 LA
3¢ | w Ed (371 $2 AT DMy
33 | € Ed €C4 P1 ATL DT
32 E¢ EBL ¢ Arg DFP4

akb-D

gLy

FLY

2Ly

1 Y14

YLl

Ba3

——

TTIl

Ca 3y

Ay

~A CONTROL

Iy

(14
£7v

__ _BUS

S

X) X

—~ G —~

@ (= ©
= 3 [
m —
w0 1 o0 ®
NMNMNY Y XN NNMYQ al o [N

A~~~ [=l = (-
T @©O@O®UOOCOT MNMX AP O L
Ll el Tl N e N e R R — Vo
+$ © @ © T P
— AN IN\D ~00 @ F~ =~ | S [9 XX O0®
) 60 80 R &0 &) vy 0 (e Jo) o 0O P
DOV VOVY O - ™M ¢ 9 @ @© le)
| S o . R TR) MMM YN = o
P PLoe® vo A Add40v X [BN
MXeA A~ 4~ O o Qo U @@ OCTC g Q —~ Q0o
—~ (@ (@ @ @ T @O T O -~ > > -S> oNN L o
LU S S O SR T SN Ui o QFE R) 5 . B AFE AP
HFoOVOOVOOVOVOVOYO OV) —NMNMNITNOM~O 1 .1 O
ceccsecaocEQnA nn HEHRBERERED DOO g.4
OCQVWVVVWVOVOVWOES O oo LovoLvoLooLoLLE ~H<T oo
Z000 00000 HHFHHN o o e NN R NN <C<EXON

[IO D I R TR AN DY Y N I N I |

I D R A R I R I N | "t 16 11

OO0 OO~ 0O OO~ O rO~O0ONO~O O~ 0O ~0OvrO«
OO0 rr 00O~ OO0~ OO OO0~ OO~ 0 ~~rO0
QOO0 =~ O0O000 "~~~ O0000 00000 ™ ™ v
OO0 O0O0OO0O0 0O rrrmrrrrrrrrr 00000000 r v v
(ejefofoNoNoloNoNolofoNoloNeNoNo R ol il Il il iR el
< P PSP g P DK PE DG PG DS g D D G DG G DG DG DG g D G DG 5¢ D¢ DX G D D e ¢
PSP DU PR DG P PG DG DG DG DG B D Dd DG DG D D DG g D4 DX DG ¢ D4 D4 DG D D e ¢
xxxxxxxxxxxxxxxxxxxxxxxxxxxanxxx
P PC DS PG DG X P4 D DA DG B 5 DG D4 DE DX DG D4 D4 DG 5 DS D D e DG DG DS D¢ < ne ¢
P PC P PG Bd Pd DK D DG DG Dd 5 D D4 D D DG 5 DG DS e D4 DG DG ¢ D D D¢ D< D¢ e ¢
PP PG e P P< D4 D DX DG g G DG D D DG D G DG 5 D DE DG g DG D D4 >k d e D
PA PO PSS D P 4 B DR DK DG B DG P4 DX DG DG DY DX DG g DG D D e D D4 DG Dd B pe D¢

ofpp- D

CONTROL

BUS-A

oLy

YLl

oLy

£LY

Pl

#C2y

TE€3vY

<Y
Py

Lal-

2w

£y

.

@

€

G

>3

(ol > ol >IN < w3 « g} = m
VOVOVIVOYOOOVOD k
PP POLPLPPLDP 0 O
NnMNMNDNnnnmonon f =i]
e s e I IR I —t P
U I TR UK VR [QRS | ;en
— Al N INO M- oo L O
B0 80 oo Bl u) oo b0 B (e 3o}
DLV OOLOO [z, b=

(2 =i o RN o AN TR S i« A

holko]
Arrd A A AAA oo
U@ ®©MOmoamoOC o > >
I R N . -
oo VvYVOVLOLLO Q9
LCocogoo S o 0 0
Covovovoovd o Qo
ZO0VD0VDVLVLOV [- 4
[T T T T T T Y | []
P< P< 5E PSS PS Dd 54 DG P< DS DG D < Dd Dd <

5< 54 5a DG DS B¢ 5 b DS D B B B4 B¢ b >
24 B4 b D4 DE Be B¢ e D4 DE D bd D¢ B¢ < ¢
D¢ < 5e 54 Dd 5 a5 DS 5 D Bl D B b >
2 < 5 D< DE B¢ < Bd D DX Dl Bl 5L B 5 D
D< B b DG B 5d B b DE D B b B Dd b b
DG DG 5a DX DG 5e D D D D4 ba D< D D < b
D¢ B 5e D4 BE 5 < D DE D B B B B¢ b bd
OO0 +rO—~O0O~O0O—Or—0Or
OO0~ —00 OO0~
OO0 OFer 0000 —
COO0OCOO0ODO0CO ™ ™ "™ v+— v

| &

U Q.

“~ O .

G 5 Q. o

S o o

[s e 7] | Se}

1o o wn

a0 > n o

[o\] V>
g, -~ [> @
o @ [
Q = 23]
(o S | - |
0O O & s, 2
| S £y)] Qe
© G [AFyy . &
0 OV~ Gt
Qo3 3 0.
>>Mm mn
O =
] O X Q1

N n ag O
0OV ® © <t
Z o o xE

t [|

R R T o
P42 PP PCPCE S
>4 S PE PSP DA D D]
>4 PGPS PQ PSP PSP
>4 2C DE PSP X P
OO~ OO«
OO~ O0OQw«
OO0OO0OO0Orr—vr—
>4 DG DS P 26 PC S S
e e R Rl Rl
>4 PG P PC S KPS S
P PG PG PGPS PC S PG

M*J)

BUS-B CONTROL

gig

TiE

TLi8

£1Q

¥ig

PT3IE

€39

ta3g

P18

118

(¥

£18

s
X o ~
— Gt —~t
© — 4]
= o = X
m —~
w0 1 x o) @©
X MNMNYMNMNMXNYNNO w0 O o
A A A A~ c @ e
O U@ o oo o © 4 - P | &
A oA x© o0 ® o
P @ T P
~— N NTINO 0 @ @ — s XX O ®
n0 00 oo b B0 wd by WA = (e e} ~—~0 P
VDO OO YYTOL O = 2o L1, W @© O
[S R T S TR = Cmx
Q L OAXXMXTY =~ O~
MXAA~"A A~ O 1~ DO — Qe B o §,
—~@© OO U0 OO O | @g@>> TN o
T s & & S LD PHE N [R - >3 RS)
HQOQOUOVOVOVOO OV D I t O
cocCcccococccEEE MmN SO0 o
CVvVVVPVOVOVWWVEATOO OO A< oo
Z000C00D0V0U0H A DX C<EZON
[I T Y T TN T T O O RO IO A I B RN |

I O B |

OO~ O e ~0 0O r O~ 0 ~0O0~ OO OO OvrO-~
OO~ rr OO0~ O00O0™ 000000~ OO0«
OO0 erre==CO000 e~ O0000 0000~
OO0 rrrerererr—0O0O0000000 T
cjoNoNololeoeokokoloNoNoNoNoNe Ne R il il oll ol adh adb adh il 2 2 il ol ol ot
B¢ DA DA 5 He 5e DE D DG DA D DA B DA DI DA DA DA DA DA DA DA PE DS DT DA DS D X D D
De D DG DG 5 He e D 5d Dd 52 Dd D 5 D DG B D4 D DG DG D DG DS DG < DG < Bl bl DG
5 D4 5< B He S¢S D¢ DG Dd D D B 5 D4 D4 DG D D D4 DG DX DG D D PQ DK DG D Dd D4 »Q
SE D DG D 5 Ha e DS DE DS DA D DA B DA D DA DA DDA DA DA DA DA DG DA PG DS G X 4 D
S OG5 D 5d He 5e DX DA DI DA DA DG S DA DI DA DA DG DI DY DA DA DI DS DS DS DG DG DG D4 ¢
DA DE DL DA e HaHE DX DL DL DA DI DA DL DA DS DA DA DDA DA DA DS DA DA DA DA DS DA DX 4 D
54 5E 5 5 e S S D¢ D G 34 DG d g DG DS DG DA B DG D DG DG D4 PG D4 DS PG D pd

\vs)
c
(.'IJ
o

L3

BL2

Q
o
=2
=3
o)
O
=

BL4
BLp

BED2
BEDL

-4

BEDY
374
373

BT2

874

BTé

S et e e = = 00000000

<D< D4 54 DG DG <

_,—EL a0 000D, 20000

PGS D3 DG P DE PC PSS

B OO0 =200 =R 200200

PS> 54 D DS DS < g

-0 =m 000,00+ 0—0O
DS 5 Dd DG Bd PE DG DG PC DL P DG P K P
DG D¢ DS D DG PP D DU DI PO D PSS
D4 Dd D D D DX PG DG PG DG P DK DS DG DS
D4 DG D B D PG PG DG PS B PG D PS D P g

PS¢ >4 e b W DS P<
- e =000 00

= O 00

- 0—=20=0-0

P4l DG D D DE PSS

>4 D D D DG P PS g P4 D P DK P DG P

P4 >4 DE B¢ DG DS S 4

I R I i R T S
Dd DC DG D¢ DS PE DS DG DS DG P D DS D PN

PS> Dd B Dd D P D

< D4 D4 B D D4 PS D¢

D4 D4 D D DG PE P D P D S DG P D4 S

< D DG D D D¢ < <

abp-D

No Listener

General Regl Listen
General Reg2 Listen
General Reg3 Listen
General Regl Listen
General Reg5 Listen
General Regb Listen
General Reg7 Listen
General Reg8 Listen

Output Regl Listen
Output Reg2 Listen
Output Reg3 Listen

Reserved For Ring-Buffer
Reserved For Stack

No Eavesdropper

Reserved For Ring-Buffer
Mask Buffer-B Eavesdrop
ICT ADDR Regl1 Eavesdrop
ICT ADDR Reg2 Eavesdrop
ICT ADDR Reg3 Eavesdrop
MAC-XTP PREL Eavesdrop
MAC-LSP PREL Eavesdrop

]

LE__CONTROL

o 0 o M B e e by
00X XXXXX -
010XXXX1 -~
010XXX1X-
010XX1XX-
010X 1XXX-
011XX000 -
011XX001 -
011XX010 -
011XX011-
011XX100 -
011XX101-
011XX110 -
011XX111-
10XXXXX1-
10XXXX1X-
1T0XXX1XX -
10XX1XXX-
10X 1XXXX-
101XXXXX -
11XXX000 -
11XXX001-
11XXX010 -
1T1XXX011-
11XXX100 -
11XXX101-
11XXX110 -
11XXX111-

NOP

Multiply-Accumulate
Multiply=-Subtract
Round-0ff/ Truncate
Two's-Complement

XTP=Hiz, MSPz=Hiz, LSP=Hiz
XTP=Hiz, MSP=Hiz, LSP=PL

XTP=Hiz, MSP=PL, LSP=zHiz gMAO

XTP=Hiz, MSP=PL, LSP=PL
XTP=PL, MSP=Hiz, LSP=Hiz
XTP=PL, MSPzHiz, LSP=PL
XTP=PL, MSPzPL, LSPzHiz
XTP=PL, MSP=FL, LSP=PL

Funetion Select SO
Function Select St
Function Select S2 2 ALV
Function Select S3?

Carry Input

Function Mode

Byte Shift Left

Byte Shift Right
Byte Rotate Left

Byte Rotate Right fRos"‘
Word Shift Left

Word Shift Right

Word Rotate Left

Word Rotate Right

-6~

-3
E__CONTROL _ kb

____SEQUENCE _

M M B
81281l al5lel2
Z 4

H H H|H
Hiz|2|8|=lz|=l
0 000X XXX - ALU Zero/MAC Bit 15
0010XXXJX - ALU Minus/MAC Bit 16
0100XXXX - ALU Logical Carry/MAC Bit 18
01 10XXXX - ALU Hardware Carry/MAC Bit 17
1 000X X X X - ALU Equal/MAC XTP Minus
1010XX XX - ALU Overflow/MAC Bit 14
11002XXXX - RTP New-Data :
1110XX X X - Manager's Flag

<
»<
>
-
>
>3
<
>3
]

CCEN_Unconditional

JZ Jump Zero

CJS Cond JSB PL

JMAP Jump Map

CJP Cond Jump PL

PUSH Push/Cond Load CTR
JSRP Cond JSB R/PL

CJV Cond Jump Vector
JRP Cond Jump R/PL

RFCT Repeat Loop, CNTR=0
RPCT Repeat PL, CNTR=0
CRTN Cond Return

CJPP Cond Jump PL & POP
LDCT LD CNTR & Continue
LOOP Test End lLoop

CONT Continue

TWB Three-Way Branch

—l—b—h_.—l-a—n_.oOoooooo
S, O=2QO0=0 200w ~0—=0

PG DG D¢ D¢ DS PS PG B B PC Dd D¢ D¢ 5¢ PSP
PC DG D4 DE DS DS PS 5<d 3¢ DS D D D¢ D¢ M
teRalol Raka kol B Rl Il 1
PS PG PG DG DS PG PC DA D P DL DG DG DS K P
e e Y e Yo lole R JNENY, Yo e Ne
S, OO0 200w —-00 2400
IR T DY O R DO Y IO IO RO D IO I N |

MASK CONTROL

« | D
2|z
0 0 - Disable Both Masks
0 1 - Enable Mask-A Only
1 0 - Enable Mask-B Only
1 1 - Enable Both Masks
E%I',AL CONTROL
213
Vi
[
-
|
! I
0 X - Reset Data Flag
X 1 - Set Acknowledge Flag

APPENDIX - E

INK CORRECTION MONITOR
VERSION 1.1

we wo wa WO

.TITLE ICMON-V1.1

This software system is a COMMAND INTERPRETER, intended for
operation on a PDP-11 computer, to facilitate management of
the INK CORRECTION MODULE. It accepts commandes, which may
be upto 4 characters long, from the console terminal and
interacts with ICM to perform various initialization or
diagnostic functions within the ICM. The interaction

occurs by virtue of handshaking between this Interpreter
and the ICM SUPERVISOR (another software system, resident
in a Microcomputer named ICM CONTROLLER) through special
hardware called UNIBUS INTERFACE. This Interface maps ICM
Manager in the Unibus address space as two I/0 ports

viz. Control Port (ICMCSR, Address=164152) and Data

Port (ICMBUF, Address=164150). From the Unibus end, a
command may be written into the Control Port or status

may be read from it. If the Control Port is written into
the ICM Manager respands, through its interrupt system,

by activating appropriate service routine. Data exchange
occurs through the Data Port.

EDIT HISTORY

JUL-23-80 SNM Original.
;OCT-16-60 SNM LDPT Command added.

We WD WO VO WD W WO W W W W W PP V4, g, Ve W W We W Ve Ve we

REGISTER EQUATES

“weo WO wo w

RO = %0

R1 = %1

R2 = %2

R3 = %3

R4 = %4

RS = %45

SP = %6

PC = 47

; 170 EQUATES
H

&bP’E

H Console Terminal

CTRCSR
CTRBUF
CTXCSR
CTXBUF

177560
177562
177564
177566

;jreceiver control & status reg
;receiver data buffer
;transmitter cortrol & status reg
stransmitter data buffer

; ICM Interface

ICMCSR
ICMBUF

MO Wwe WO WE we W We WO we

MONHDR :

164152
164150

; 1ICM control port
;ICM data port

PROGRAM EQUATES

None.

MACRO DEFINITIONS

.MACRO
MOV
ASL
ADD
.ENDM

.MACRO
JSR
.WORD
.WORD
+WORD
JSR
JSR
MOV
. ENDM

-ASECT

.=1000
MOV
TST
MOV
MOV
MOV
JSR
DEC
BNE
JSR
JSR
+-WORD
-WORD

MULRX 3, RX smultiplies named reg by 3
RX,-(SP) ;Save regiseter on stack
RX smultiply firet by 2
(SP)+,RX ;then add once from stack

GETARG, PARM,LENTH,DEST ;fetches named param

R5,WRITE ;from console terminal & loads
PARM ;it in named destination

LENTH ;LENTH = parameter name length
IOBUFC

R5,PUTEQU

R5,GETNUM ;juses NUMBFR thru GETNUM subr.
NUMBFR,DEST

yprogram begins here

PC,SP ;init stack painter

-(SP) ;dummy push to init stack ptr.
#TRHAND,@#4 ;load trap vector
#0T74340,646

#6, RO ;space for program header
R5, PUTSKP ;Skip to next line

RO ;check 1f done

MCNHDR syno, do it again

R5,PUTAB ;put a Tab

RS,WRITE ;write top line of header
MSHDR1

BINOSO

.WORD
JSK
JSR
JSR
.WORD
«WORD
+WORD
JSR
JSR

PROCMD: JSR

Q)0 %0 o woe Wt o W0 UE VY Ve WE Vo W WD we W

JSR
.WORD
+WORD
.WORD
JSR
JSR
CLR
JSR
BR

GET-CoMmanD Routine

I0BUFC
RS, PUTSKP
RS, PUTAB
R5,WRITE
MSHDR2
BINO20
I0BUFC
R5,PUTVER
RS, PUTSKP
RS, PUTSKP
RS, WRITE
MSGCMD
BINOO7
I0BUFC
RS, PUTEQU
R5, GETCMD
RO

RS, GOCMD
PROCMD

a*t-ﬁ

;jwrite 2nd line of header

;write ICMS version number
;ekip to next line

;start a new line

;jwrite prompt "COMMAND := "

;get a command from terminal
;RO will contain command cocde
;80, process fetched command
;loop until EXIT command

This routine fetches a command word, which can be upto 4

characters long, and returns it in IOBUF.

If operater types

more than 4 characters then only last 4 characters are
returned. If fewer than 4 characters are typed, then the
string is padded with tailing spaces. IOBUFC keeps

a count of of actual number of characters typed in.

Calling Sequence:

ETCMD: JSR

.WORD
+WORD
+-WORD
MOV

GETC1: CMP

BGE
MOVB
INC
BR

GETC2: RTS

we U0 Wi ws WO we W w

GO-CaMmanD Routine

RS, READ
I0BUF
BINOOY
IOBUFC
I0BUFC, RO
RO, #4
GETC2

SPACE, IOBUF(RO)

RO
GETC1
R5

JSR RS, GETCMD

;read from console terminal

;check # of characters read
;4 characters read?

;yes, bypass padding

sno, pad with a 'space'
sincrement # of chars now
;80 back and check if done

This rqutine matches the string fetched in IOBUF with

the entries in the Command List. If a mateh is found,

contreol is transferred tao the corresponding process

-3-

C)-. e W WO UL o we

OCMD: MoV
MULRX3
ASL
TSTB
BEQ
CMP
BNE
CMP
BNE
JMP

GOCM1: INC

BR

abp-E

routinre. If no match is found, exit is made via
NOCMD routine.

Calling Sequence:

JSR R5, GOCMD
RO, R1 ;init R1 pointing to beginning
R1 ;3X,1ist has 3 word entries
R1 ;2X, to get 6 bytes offset
CMDLST(R1) ;check if end of list
NOCMD yyes, then exit
IOBUF,CMDLST(R1) ;no, compare 1st 2 characters
GOCM1 ;yno match, go for next in list
IOBUF+2, CMDLST+2(R1) ;matched, compare next 2
GOCM1 ;yno match, go for next in list
@ CMDLST+4 (R1) ;jmatched, goto corres. routine
RO ;paint to next entry in list
GOCMD ;jrepeat search till done

NOt-valid CoMmanD Routine

name was typed.

’
’
'
’
’
7y Prints message warning that an invalid command
’
?
’
N

OCMD: JSR R5, PUTQOT ;Wwrite a double quote
JSR R5,WRITE ;jwrite command word as read
+WORD IOBUF
.WORD BINOO4
.WORD IOBUFC
JSR RS, PUTQOT jWwrite another double quote
JSR R5,WRITE ;jwrite message 1
.WORD MSGNC1
.WORD BINOS8O
+WORD IOBUFC
JSR R5,WRITE jWwrite message 2
.WORD MSGNC2
.WORD BINOS8O
.WORD IOBUFC
RTS R5

lwo we we we W Wi we W

ELP: JSR
«WORD
+WORD

HELP COMMAND PROCESS ROUT INE

Prints a list of valid commands.

R5,WRITE jwrite taop message
MSGHLP
BINOS8O

HLP1:

HLP2:

Q-. “we YO Wo wWe we e Vs W w

ET:

GET1:

GET2:
GET3:

GDELAY:

GET4:

.WORD
ADD
TSTB
BEQ
JSR
JSR
JSR
MOV
MOV
JSR
.WORD
«WORD
.WORD
JSR
TST

RTS

IOBUFC
#CMDLST, RO
(RO)

HLP2
R5,PUTAB

R5 ., PUTAB
R5,PUTAB
(RO)+,IO0OBUF
(RO)+, IOBUF+2
R5,WRITE
IOBUF
BINOOY
IOBUFC

R5, PUTSKP
(RO)+

HLP1

R5

obp - E

joffset addrecss of comm. word
;check if done

;yes, then exit

;no, put space first

jtransfer 1st 2 chars

stransfer next 2 chars

;Wwrite the pointed comm. word
1

;skip to next line
;Skip next word in command list
;repeat process till done

GET COMMAND PROCESS ROUTINE

GETARG MSADDR,BINO14,R1
GETARG MDADDR,BINO19,R2
GETARG MWDCNT,BINO10,R3

TST
BLE
CMP
BLE
MOV
BR
MOV
MOV
JSR
. WORD
SWAB
BIS
SWAB
BIT
BNE
MoV
BIC
JSR
«WORD
MOV
ADD
DEC
DEC
BNE

R3

GETS
#376,R3
GET2

R3, R4

GET3
#376,R4
R1,ICMDTA
RS, PUT ICM
ICMDTA

RY

RY4, RO

RY
#40,8#ICMCSR
GDELAY
RO,@#ICMCSR
#177400, RO
RS,GETICM
ICMDTA
ICMDTA,(R2)+
#2,R1

R3

RY

GET4

Transfers a record of specified length from specified
source address in ICM to the specified destination
in HOst Processor.

sget source address in R1
;get dest. address in Re2
;get word count in R3
;check if word count = 0
yyes, exit
sno, check if word count < 376
;jna, transfer 376 words first
;yes, transfer just as many
sproceed for transfer
;376 words to be transferred
;1load source address
stransfer data to ICM

jalign faor qualifier field
;set qualifier

;jreset length parameter
;sICMC busy?

;yes, then loop

;no, write new caontraol word
;blank qualifier field
;transfer data from ICM

;store in dest., point next
supdate squrce sddress

;jupdate final transfer count
;update current transfer count
;laop, if transfer not finished

GETS:

O we wo o, ¥ 9o e wowe w

UT:

PUT1:

PUT2:
PUT3:

PDELAY:

PUT4:

PUTS:

(1) we we wo weo vo wos we »

DMP:

BR
KTS

GET1
R5

apb-E

s;l1oop till full transfer done

PUT COMMAND PROCESS ROUT INE

GETARG MSADDR,BINOi4, R1
GETARG MDADDR,BINO19,R2
GETARG MWDCNT,BING10,R3

TST
BLE
CMP
BLE
MOV
BR
MOV
MOV
JSR
«WORD
SWAB
BIS
SWAB
BIT
BNE
MOV
BIC
MOV
ADD
JSR
-WORD
DEC
DEC
BNE
BR
RTS

R3

PUT5

#376, R3
PUT2

R3,RY

PUT3
#376,RY

R2, ICMDTA
R5, PUT ICM
ICMDTA

RY

R4, RO

R4
#40,@#ICMCSR
PDELAY

RO, @#ICMCSR
#177400, RO
(R1)+, ICMDTA
#2,R2
R5,PUTICM
ICMDTA

R3

RY

PUTA4

PUT1

RS

Transfers a record of specified length from specified source
address in HOP to the specified destination in ICM.

;get source address in R1
;eet dest. address in R2
;eet word count in R3
;check if word count = 0O
;yes, exit
sno, check if word count <376
;jno, transfer 376 words first
;yes, transfer just as many
;jproceed far transfer
:376 words to be transferred
;load destination address
stransfer data to ICM

;align for qualifier field
;set qualifier

;reset length parameter

; ICMC busy?

;jyes, loop

;no, write a new control word
;blank qualifier field

;load from source, paint next
;jupdate destination address
;transfer data to ICM

supdate final transfer count
supdate current transfer count
;loop, if transfer not finished
;loop till full transfer done

Error-DuMP COMMAND PROCESS ROUTINE

BIT
BNE
MOV
JSR
. WORD
MOV

#40,8#ICMCSR
EDMP
RO,8#ICMCSR
R5,GETICM
ICMDTA

#5, RO

Fetches ERROR Code from ICM and prints error message,

;ICMC busy?

yyes, loop

sno, write a new control word
;jtransfer data from ICM

;error message = 32 chars max.

abk- €

EDMP1: ASL ICMDTA ;ymultiply error code by 32
DEC RO
BNE EDMP1
ADD ffERRTBL,ICMDTA ;add offset to Table Origin
MCV ICMDTA, ERRMSG ypass parameter to WRITE subr.
JSR R5,WRITE ;80 write message

ERRMSG: .WORD ERRTBL
.WORD BINO32
+WORD IOBUFC
RTS R5

Erraor-ReSeT, (RTP)RUN, (RTP)HOLD COMMAND PROCE3SS ROUTINES

ERST process resets RTP error state.

RUN process sets RTP in run mode.

HOLD process freezes RTP in hold mode.

DIGx processes perform diagnostics.

All these RTP processes are activated by simply writing
appropriate control woerd into ICM Control port.

9

ERST:

RUN:

DIGO:

DIG1:

DIG2:

DIG3:

DIG4:

DIG5:

DIG6:

DIGT:

HOLD: BIT #40,@8#ICMCSR ;ICMC busy?
BNE HOLD ;yes, loop
MOV RO,8#ICMCSR ;jno, write a new control word
RTS R5

WO OO o We WO Ve we W W we we

Status-DuMP COMMAND PROCESS ROUTINE

Fetches ICM status, decodes it and prints appropriate
status messages.

U we wo ¥ 20 ¥o uo ws wo ws

DMP: BIT #40,6#ICMCSR ; ICMC busy?

BNE SDMP ;jyes, loop

MOV RO,8#ICMCSR ;no, write a new control word

JSR RS,GETICM stransfer data from ICM

.WORD ICMDTA

MOV ICMDTA, R1 sstart decoding color mode

BIC #177774 , R ;jbalnk other bits

MOV #5,R2 ;jstatus messages = 32 chars max.
SDMP1: ASL R1 smultiply code by 32

STMSG1:

DEC
BNE
ADD
MOV
J5R
.WORD
.WORD
.WORD
MOV
CLR

SDMP2: CMP

BLE
BIT
BEQ
MOV
MOV

SDMP3: ASL

STMSG2:

DEC
BNE
ADD
MOV
JSR
.WORD
.WORD
+WORD

SDMP4: ASL

INC

SDMP5: TST

STMSG3:

BNE
MOV
ADD
MOV
JSR
-WORD
.WORD
.WORD

SDMP6: MOV

BIC
ASR
ADD
MOV
JSR

STMSGA4: .WORD

.WORD
«WORD
RTS

CoMPaRe

Compares two
addresses in

R2

SDMP1
#STBL1, R1
R1,STMSG1
RS, WRITE
STBL1
BINO32
I0BUFC
#4, R1

R3

#3, R2
SDMP5

R1, ICMDTA
SDMPY
R2,R3

#5, R4

R3

RY

SDMP3
#STBL2, R3
R3, STMSG2
RS, WRITE
STBL2
BINO32
I0BUFC

R1

R2

SDMP2

R3

SDMP6
#200, R4
#STBL2, R4
R4, STMSG3
RS ,WRITE
STBL2
BINO32
I0BUFC
ICMDTA, RO
#1T7T7477, RO
RO
#STBL3, RO
RO, STMSGH
R5,WRITE
STBL3
BINO32
I0BUFC

R5

app-E
;add offset to STBL1 origin

;pass as parameter to WRITE subr.
;€0 write color mode

;start decoding turn-off bite
sclear flag for inhibit bite

sall 4 turn-off bits checked?
;yes, g0 next

;no, check current bit

;bit not set, go for next bit
;bit set, then first set flag
:message = 32 characters max.
smul tiply code by 32

;add offset to STBL2 origin
;pass as parameter to WRITE subr.
;80 write message

:shift template for next bit
;update count

;loop until all bits checked
;test flag

:flag set, skip to next step

;not set, another message

:add offset to STBL2 origin

;pass as parameter to WRITE subr.
;80 write message

;start decoding Operation mode
;blank other bits

;compute offset corres. to code
sadd offset to STBL3 origin

ipass as parameter to WRITE subr.
;80 write operation mode

COMMAND PROCESS ROUTINE

records of specified length at specified
HOP. In case of exact match, signals 0 error.

ws we we wo

MPR:

CMPR1:

CMPR2:

GETARG
GETARG
GETARG
CLR
TST
BLE
DEC
CMP
BEQ
CMP
JSR
WORD
«WORD
«WORD
JSR
MoV
JSR
JSR
JSR
.WORD
.WORD
«WORD
JSR
MOV
JSR
JSR
JSR
.WORD
.WORD
.WORD
JSR
MOV
JSR
JSR
JSR
.WORD
.WORD
WORD
JSR
MOV
JSR
JSR
INC
BR
MOV
JSR
JSR
«WORD

«WORD

-WORD

MSADDR, BINO 14, R1

MDADDR, BINO19, R2
MWDCNT, BINO10,R3

RO

R3

CMPR2

R3
(R1)+,(R2)+
CMPR1
-(R1),=-(R2)
RS, WRITE
MSADDR
BINO14
IOBUFC
R5, PUTEQU
R1, NUMBFR
RS, NUMDMP
R5, PUTAB
RS ,WRITE
MSCONT
BINOOS
IOBUFC
R5,PUTEQU
(R1)+,NUMBFR
R5 , NUMDMP
R5,PUTSKP
RS . WRITE
MDADDR
BINO19
IOBUFC
R5,PUTEQU
R2,NUMBFR
R5, NUMDMP
RS, PUTAB
R5,WRITE
MSCONT
BINOOS
IOBUFC
R5, PUTEQU
(R2)+,NUMBFR
R5,NUMDMP
R5,PUTSKP
RO

CMPR?
RO,NUMBFR
RS, PUTNUM
RS ,WRITE
MERDET
BINO20
IOBUFC.

abb-E

Else, prints addresses and their contents wherever a match
did not occur and finally gives number of errors.

;€et source addrecss in R1
;aet dest. address in R2
;get word count in R3
;RO will keep count of errors
;test if done
yyes, go exit procedure
yno, update word count
;compare words & point next
jmatched, loop till dene
;no match, point back to it
;write "source aadress"

ywrite "=t

;jload source address
sWwrite it

;jwrite a tab char
;write "contents"

jwrite ":="

;load pointed word & point next
ywrite it

;Skip to next line

ywrite "destination address"

jWwrite ":
;load destination address
swrite it

jwrite a tab char

;jwrite "contents"

ywrite ":=

;load pointed word & point next
jwrite it

;Skip to next line

;increment number of errors
;loap till done

;load number of errors

swrite it

;jwrite "errors detected"

RTS

]

INIT: MOV

IDELAY: BIT
BNE
MOV
JSR
.WORD
BIC
MOV

INIT1: ASL
DEC
BNE
MOV
TST
BEQ
MOV
MOV
MOV
ADD
SUB
MoV
JSR

INIT2: MOV
MOV
MOV
ADD
MOV
JSR
MOV
RTS

O we wewe B0 we ¥o 9o wo we s

ODMP1: JSR

R5

RO,-(SP)
#40,8#ICMCSR
IDELAY
#7,8#ICMCSR
RS,GETICM
ICMDTA
#177774, ICMDTA
#12, RY
ICMDTA

R4

INIT1
ICMDTA,-(SP)
ICMDTA

INIT2

#2 , RO
#1000, R3
#INKTBL, R1
ICMDTA, R1
#2000, R1
#104000, R2
RS, PUT1

#2, RO
#770,R3
#MICPGM, R1
(SP)+, R1
#100020, R2
RS, PUT1
(SP)+,@#ICMCSR
RS

DMP: GETARG MSADDR,BINO14, R1
GETARG MWDCNT,BINO10,R2

R5, PUTSKP

INIT COMMAND PROCESS ROUTINE

Perfaorms initialization of the Real-time Proccescor.

Two major actions taken are downloading of Microprogram and
Ink Correction Table corresponding to the Color Mede, which
is defined by the current status.

ySave command code for later
; ICMC busy?

yyes, loop

;ho, write control word
;transfer data from ICM

;jlsolate status code
;compute offset into the tables

;X by record length (2Kbytes)

;save offset for next download
;color mode = Black?

yyes, no ICT be downloaded
yno, set control word

;set record length = 1Kwords
;load INKTBL origin

;add offset

yshift origin to align record
;set destination address in ICM
;80 download

;set control word for download
;set record length (770 octal)
;load MICPGM origin

;add offset from stack

;set dest. address in ICM

;80 download

;write cont. word for RTP init

Octal-DuMP COMMAND PROCESS ROUTINE

Performs a core-dump, in octal, of a specified length
record from a specified destination in HOP.

;get source address in R1
;8et record length in R2
;ckip to next line

-10-

TST
BLE
CMP
BLE
MOV
BR
ODMP2: MOV
ODMP3: JSR
JSR
MOV
JSR
DEC
DEC
BNE
BR
ODMPY4: RTS

We We We wa Wo we wWe e

LOAD: GETARG MDADDR,BINO19,R1
GETARG MWDCNT,BINO10, R2

LOD1: TST
BLE
JSR
MOV
DEC
BR

0D2: RTS

we 2° o we wo ws we ws ™

DPT: GETARG
GETARG
ASL
LDP1: TST
BLE
INCB
LDP2: TSTB
BPL
MOVB
DEC
BR
LDP3: RTS

R2

ODMPY
#10, R2
ODMP2

R2, R3
ODMP3
#10,R3
RS, PUTSPC
RS, PUTSPC
(R1)+,NUMBFR
RS , NUMDMP
R2

R3

ODMP3
ODMP 1

RS

R2

LOD2
R5,GETNUM
NUMBFR, (R1)+
R2

LOD1

R5

MDADDR,BINO19, R1
MWDCNT, BINO10, R2

R2

R2

LDP3

@#CTRCSR
@#CTRCSR

LDP2

@#CTRBUF, (R1)+
R2

LDP1

RS

obp-E

jword count = 07

;yes, exit

;ro, word count > 8

1yes, first process 8 words
;yno, procecss just as many

iset loop count = 8

;write a space char

jWwrite another space

;load mem. contents, point next
;dump in cctal

jupdate word count

;update loop count

:loop till 8 words are dumped
;loop till full record dumped

LOAD COMMAND PROCESS ROUTINE

Loads specified number of data words from console
terminal at the specified address in HOP.

;get dest. address in R1
;get ward count in R2

;sword count = 07

;yes, then exit

ino, get a word from terminal

;store & point next

supdate word count

;loop till done

LOAD PAPER-TAPE COMMAND PROCESS ROUTINE

Loads specified length reecord from paper-tape reader of
the Console terminal at the specified address.

;get destination address
;get word count
;X by 2 to get byte count
;done?
;yes, exit
;not done, go transfer a byte
;jreceiver busy?
;yes, loop
sno, transfer a byte
supdate byte caount
;repeat till done

app -E

EXIT COMMAND PROCESS ROUT INE

Terminates Command Interpreter ICMON.

XIT: HALT shang up

SXWe 00 Wo Vo Wi Ve W W W VO Vs B ;W W Ve WP WE WP W W WS PO U, Wl Ve WE W W we We Ve we P WS BE Wl [TIwe we WO WO We Ws we e

m
»
| =

SUB-ROUTINE LIBRARY

READ Sub-routine

This sub-routine reads from the console terminal.

The address of the input buffer, the address of the
buffer length argument, and the address of the byte
count buffer are passed as parameters. All characters
read are immediately echoed to the terminal. The
process is terminated when a Carriage-return character
is read, whereby the control is transferred to the
caller of the sub-routine. Only a string of specified
length is returned in the specified input buffer.

If more characters are typed, the buffer is scrolled
so that only last typed as many characters are returned.
The number of bytes actually read from the terminal

is returned in CNTBUF.

Calling Sequence:

JSR R5, READ

.WORD INBUF address of input buffer
.WORD LENBUF address of length argument
.WORD CNTBUF address of byte count buffer

Return Conditions:

Number of bytes read from terminal is stored in COUNT.
Symbolic References:

CTXCSR, CTXBUF, CTRCSR, CTRBUF, CRET, LFEED
Register Usage:

RO

R1

R2

R3
MOV RO, = (SP) ;save caller's registers
MOV R1,-(SP)
MOV R2,-(SP)
MOV R3,~-(SP)
MOV (R5)+, RO ;get buffer address in KO
MOV €(R5),R1 ;eet length count in R1
ADD RO, R1 ;joffset address Dy length

-12=

RD1:

RD2:

RD3:

RDY:

RD5:

RD6:

RDT:

Wb U WBs ws B2 g9 wo Y Ve ws we we el

CLR
CMP
BNE
CLR
TSTB
BPL
MOVB
TSTB
BPL
MOVB
BICB
CMPB
BEQ
CMP
BGE
MOVB
INC
BR
MOV
MOV
SUB
MOVB
CMP
BNE
MOV
MOVB
INC

TSTB
BPL
MOVB
TSTB
BPL
MOVB
TST
MOV
MOV
MOV
MOV
MOV
RTS

-(R1)

R1, RO

RD1

R1

8##CTRCSR
RD2
8#CTRBUF , R3
@#CTXCSR
RD3

R3,64C TXBUF
#200, R3
CRET, R3

RD6
R1,8(R5)
RDY
R3,(RO)+

R1

RD2
R3,-(SP)
RO, R3
@(R5),R3
1(R3)1(R3)+
RO, R3

RD5
(SP)+,R3
R3,-1(RO)
R1

RD2
@#CTXCSR
RD6

LFEED,@#CTXBUF

@#CTXCSR
RDT7

NULL, @#CTXBUF

(R5)+
R1,8(R5)+
(SP)+,R3
(SP)+,R2
(SP)+,R1
(SP)+, RO
RS

WRITE Sub-routine

&bd -E

yzap buffer for spec. length

;zap length count

yreceiver busy?

yyes, loop

;yno, read character
stransmitter busy?

yyes, loop

;yno, echo character

;j¢lear parity bit

jcarriage return character?
;yes, end of line, exit

yno, all bytes read?

yyes, shift buffer as FIFO
yno, store character in buffer
;jyincrement length count

;80 for next character

;jsave last character on stack
;copy end address of buffer
;subtr. length for start addr
;shift buffer as FIFO

;jcheck if done

+no, loop till done

;restore char from stack now
;yStore at the top of buffer
;increment # of chars typed
;80 for next character
stransmitter busy?

;yes, loop

;send a line feed
;transmitter busy?

yyes, loop

syno, send null, TTY to recover
;point spec. buffer for count
sstare # of ckars typed in
yrestore caller's registers

This sub-routine writes data on the consale terminal.

The address of the output buffer, the address of the
buffer length argument, and the address of the byte

cqunt buffer are passed as parameters. If an ASCII null
character is encountered in the output stream, a carriage
return and a line feed are generated at the caonsaqle
terminal amd contreol is returned to the caller. The
number of bytes actually read from the output buffer

-13-

JSR

.WORD
.WORD
.WORD

-
Tt e we P s W s e P P 4, ws we Ve we W

RITE: MOV
MOV
MOV
MOV
CLR
CMP
BGE
INC
TSTB
BNE
TSTB
BPL
MOVB
TSTB
BPL
MOVB
TSTB
BPL
MOVB
BR
TSTB
BPL
Le[0d):]
BR
TST
MOV
MOV
MOV
MOV
RTS

WRT1:

WRT2:
WRT3:

WRTNUL:
WRTY:

WRT5:

PUT-tAB

MOV
MOV
JSR

*Pws we we ws we

- #12,R
:‘;85 .

Calling Sequence:

R5,WRITE
OUTBUF
LENBUF
CNTBUF

Return Conditions:
Number of bytes used from the output buffer is
stored in COUNT.

Symbolic References:
CTXCSR, CTXBUF, CRET, LFEED.

Register Usage:

app-E

iz returned in the parameter licst.

address of output buffer
address of length 2-.ument
address aof byte

. 4t buffer

RO - byte address
R1 - length caount

RO,-(SP)
R1,-(SP)
R2,-(SP)
(R5)+,RO

R1

R1,@(R5)

WRT5

R1

(RO)

WRTY

@#CTXCSR

WRT2
CRET,8#CTXBLUF
@#CTXCSR
WRT3
LFEED,8#C TXBUF
@#CTXCSR
WRTNUL
NULL,@#CTXBUF
WRTS
@#CTXCSR
WRTY
(RO)+,9#CTXBUF
WRT1

(R5)+
R1,8(R5)+
(SP)+,R2
(SP)+, R1
(SP)+,RO

)

Sub=routine

PUTS

;Save caller's registers

;get buffer address in RO
;zap length count

;entire buffer printed?
;yes, return

;no, increment langth count
;jnull character?

;no, pracess normally
;transmitter busy?

;jyes, loop

;no, send a carriage return
;transmitter busy?

;yes, loop

;jno, send a line feed
stransmitter busy?

;yes, loop

;na, send null,TTY to recover
sreturn

;transmitter busy?

;yes, loop

sno, send a char from buffer
;80 for next character
;paint to count buffer

;store number of chars written

;jrestore caller's registers

;save caller's R1
;set loop count
;caLliggn times

hu‘. e Wwe We W

" es We e ws we

*"Pueo we 9o Bo we We we Ve W

DEC R1

BNE TAB1

MOV (SP)+,R1
RTS R5

PUT-SPaCe Sub-routine

JSR R5,WRITE
.WORD SPACE
.WORD BINOO1
«WORD IOBUFC
RTS R5

PUT-QuOTe Sub-routine

JSR R5,WRITE
.WORD DBLQOT
.WORD BINOO1
+WORD IOBUFC
RTS R5

PUT=-SKiP Sub-routine

JSR R5,WRITE
.WORD NULL
.WORD BINOO1
.WORD IOBUFC
RTS RS

PUT-VERsion Sub-routine

UTVER: CLR @#ICMCSR
JSR R5,GETICM
.WORD ICMDTA
MOY ICMDTA,NUMBFR
SWAB NUMBFR
BIC £177400, NUMBFR
JSR R5, PUTNUM
JSR R5,WRITE

.WORD POINT
.WOKD BINOO1
.WORD IOBUFC

abt E

;jrestore caller's R1

;jwrite a space

;write a double quote

;generate carriage return and
;linefeed via writing a null

-

This subroutine fetches the version number and subversion

numbers of the ICMSupervisor and prints it in the
header.

swrite a 0 for control word
stransfer data from ICM

;scopy fetched data

;align versiaon number to low byte
;clear high byte

;print version number

;print a decimal point

-15-

UTEQU:

O"' “-e we we we

C2BN:

OC2BN1:

OC2BN2:

OC2BN3:

OC2BN4:

OC2BN5:

MOV
BIC
JSR
RTS

ICMDTA, N UMBFR
#177400, NUMBFR
RS, PUTN UM

R5

PUT=EQUal Sub-routine

JSR
.WORD
.WORD
.WORD
RTS

R5,WRITE
MSGEQU
BINOOUY
I0BUFC
RS

app-¢
;copy fetched data once more

;clear high byte
;print subversion number

swrite MSGEQU

OCtal-2-<BiNary Sub-routine

MOV
MOV
MOV
MOV
MOV
CLR
CLR
ADD
MOVB
SUB
BMI
CMP
BLE
MOV
MULRX3
TST
BEQ
ASL
DEC
BR
BIS
INC
CMP
BGT
BR
JSR

- WORD
«WORD
-WORD

TST
MOV
MOV
MOV
MOV
RTS

RO, =-(SP)
R1,-(SP)
R2,=-(SP)
R3,-(SP)
(R5)+,R2
R3

8(R5)
#6, R2
-(R2), RO
#60, RO
OC2BN4
#10, RO
OC2BN4
R3,R1

R1

R1
OC2BN3
RO

R1
0C2BN2
RO,€(R5)
R3

#6,R3
OC2BN1
0OC2BN5
RS, WRITE
MSBADC
BINO20
IOBUFC
(R5)+
(SP)+,R3
(SP)+,R2
(SP)+,Ri
(SP)+, RO
R5

;save caller's registers

;get address of buffer in R2

;clear output buffer initially
;6 digits number only valid
;fetch digit

;convert to value

;not valid char, signal error
;check validity again

;jnat valid, signal error

:R3 points to digit position
;compute number of shifts
scheck 1if done

;yes, praceed

;no, shift left one bit
;jupdate # of shifts to be done
;loop till done

;save partial results

supdate digit pointer

;check if done

:n0, process another digit
;yes, exit

;jwrite error message

;skip argument list
;jrestaore caller's registers

-16-

N20C:

BN20C1:

BN20C2:

BN20C3:

BN20C4:

BN20CS5:

BN20C6:
BN20C7:

) ws 00 9o wo we

ETNUM:

apb-E

BiNary-2-0Ctal Sub-routine

MOV
MOV
MOV
MOV
MOV
MOV
CLR
ADD
MOV
MOV
MOV
MULRX3
TST
BEQ
ASL
DEC

BR
MOV
MULRX3

- COM

BIC
TST
BEQ
ASR
DEC
BR
ADD
MOVB
INC
CMP
BGT
BIT
BEQ
MOVB
BR
MOVB
TST
MOV
MOV
MOV
MOV
MOV
RTS

GET=-NUMber Sub-routine

MOV

RO,-(SP)
R1,-(SP)
R2,~(SP)
R3,~(SP)
R4,-(SP)
(R5)+, R2
R3

#6, R2
€(R5),R0O
#7, R4
R3, R1

R1

R1
BN20C3
RY

R1
BN20C2
R3,R1

R1

R4

R4, RO

R1
BN20C5
RO

R1
BN20C4
#60,R0
RO,-(R2)
R3

#5,R3
BN20C1
#100000,68 (R5)
BN20C6
#61,-(R2)
BN20CT7
'60."(R2)
(R5)+
(SP)+, R4
(SP)+,R3
(SP)+,R2
(SP)+,R1
(SP)+, RO
RS

R‘.‘(SP)

;Save caller's registers

sR3=-pointer to digit position
;offset painter for last digit
;fetch input number

;load a 3-bit mask

;R1 will contain # of shifts
sjmultiply R1 by 3

;check if done

;yes, praceed to next step
;no, shift mask one bit left
;jupdate # of shifts to be done
;loop till done

;init R1 again with # of shifts
;jmul tiply R1 by 3

;jinvert mask

;smask other bits

;check if dane

;yes, proceed to next step
;yno, shift masked bits 1 right
;supdate # of shifts to be done
;loop till done

jconvert to ascii value

;save caonverted output

jupdate digit pointer

;check if last digit

;jno, loop till done

;check bit 15

;zero, go for putting zero
snot 0, put 1(only other poss.)
sthen exit

sput 0 for most signif. digit
;Skip argument list

srestore caller's registers

;save caller's registers

-17-

GETNM1:

GETNM2:

GETNM3:

GETNM4:

Mo We wo we woe

NUMDMP:

Jue 00 9o we we Wo we we we

UTNUM:

MOV
JSR
.WORD
.WORD
.WORD
MOV
MOV
CMP
BGE
MOV
CMP
BEQ
ADD
INC
CMP
BGE
MOVB
BR
MOVB
INC
BR
JSR
.WORD
.WORD
MOV
MOV
RTS

R2, -(SP)
RS, READ
I0BUF
BINOO6
I0BUFC
#I0BUF , R2
IOBUFC, R1
#6, R
GETNM1
#6, R
#6,R1
GETNM4
R1,R2

R2

#I0BUF+1,R2

GETNM3

-2(R2),-(R2)

GETNMZ2
#60,-(R2)
R1

GETNM 1
R5, OC2BN
IOBUF
NUMBFR
(SP)+,R2
(SP)+,R1
R5

abb.2

;fetch a number frem terminal

;init R2 with buffer address
;€et nunber of chars typed in
;jcheck if less aor equal to 6
yyes, skip next

jno, limit number to 6

;check if number of chars ic 6
;yes, bypass padding lead 0's
joffset byte address

;check if done

;yes, praceed to next step
;yno, shift buffer up by one
;loop till done

;store a leading 0 in buffer
;update byte count

;loop till done

;yconvert string to value

;restore caller's registers

NUMber-DuMP Sub-routine

JSR
.WORD
.WORD
JSR
«WORD
«WORD
.WORD
RTS

R5,BN20C
IOBUF
NUMBFR
R5,WRITE
IOBUF
BINOOG6
IOBUFC
R5

;eanvert value to string

;Write it on canscle terminal

PUT=-NUMber Sub-routine

This subroutine converts a number into an octal

ascii string by calling subroutine BN20C and prints
it with leading zeros suppressed.

MOV
MOV
MOV
JSR
«WORD

R1,-(SP)
R2,-(SP)
R3, -(SP)
R5,BN20C
I0OBUF

;save caller's registers

scenvert input to ascii string

-18-~

PNUM1:

PNUM2:

PNUM3:

Clwe we we weo wo

ETICM:

UTICM:

RHAND:

TRH1:

-WORD
MOV
MOV
CMPB
BNE
DEC
MOV
MOVB
DEC
BNE
CMP
BLT
MOV
JSR
.WORD
+WORD
.WORD
MOV
MOV
MOV
RTS

NUMBFR
#6,R1
#I0BUF , R2
#60,(R2)
PNUM3

R1

#6,R3
1(R2),(R2)+
R3

PNUM2

#1, R1
PNUM1
R1,NUMBFR
R5,WRITE
IOBUF
NUMBFR
IOBUFC
(SP)+,R3
(SP)+, R2
(SP)+,R1
R5

GETICM Sub-routine

BIT
BNE
MOV
RTS

ahb-E

;jetring length = 6 chars
;load pointer to first char
;is char a zero?

;no more leading zeros

;first ane a zero

;suppress by scrolling buffer
;scroll buffer by one char

;check i f done

;if not, loop till done
;pass length of final string
;print the final string

;jrestore registers

#100,@#ICMCSR ;ICM transmitter full?

GETICM

;no, loop

@#ICMBUF,8(R5)+ ;yes, transfer a word from ICM

R5

PUTICM Sub-rqutine

BIT
BNE
MOV
RTS

#200,9#ICMCSR

PUTICM

;ICM receiver empty?
;no, loop

€(R5)+,8#ICMBUF ;yes, transfer a word to ICM

R5

TRap-HANDler Interrupt Service Routine

CMP
BLT
JSR
-WORD
+WORD
«.WORD
HALT
JSR
.WORD
-WORD

#400, 3P
TRH1
R5,WRITE
MSTKOV
BINO8O
IOBUFC

R5,WRITE
MBUSTO
BINO32

;check stack overflow
ino, bus time-out occured
syes, write stk o/ flaow message

;fatal error, hang up
swrite bus time-out message

-19-

app-E

.WORD IOBUFC

MOV (SP)+, NUMBFR ;get return addrass

JSR R5, NUMDMP jwrite it on console terminal
JSR R5,PUTSKP

MOV #PROCMD,~(SP) ;push start address

RTI

. PAGE

CoMmanD-LiST

We We We W3 we

.EVEN

CMDLST: .ASCII /HELP/ ;jlist of commands
.WORD HELP
.ASCII /GET /
.WORD GET
+ASCII /PUT /
.WORD PUT
.ASCII /EDMP/
.WORD EDMP
.ASCII /ERST/
.WORD ERST
.ASCII /RUN /
.WORD RUN
.ASCII /HOLD/
.WORD HOLD
.ASCII /SDMP/
.WORD SDMP
+ASCII /INIT/
.WORD INIT
.ASCII /DIGO/
.WORD DIGO
.ASCII /DIG1/
.WORD DIG1
.ASCII /DIG2/
.WORD DIG2
.ASCII /DIG3/
.WORD DIG3
.ASCII /DIGu/
.WORD DIGH4
.ASCII /DIGS5/
.WORD DIGS
.ASCII /DIG6/
.WORD DIG6
.ASCII /DIG7/
.WORD DIG7
.ASCII /ODMP/
.WORD ODMP
.ASCII /LOAD/
.WORD LOAD
.ASCII /CMPR/
.WORD CMPR
.ASCII /LDPT/

-20=-

MSTKOV:
MBUSTO:
MSHDR1:
MSHDR2:
MSGCMD:
MSGEQU:
MSGHLP:
MSGNC1:
MSGNC2:
MSGTMP:
MERDET:
MSADDR:
MDADDR:
MWDCNT:
MSCONT:
MSBADC:
MSBADYV:
LFEED:
CRET:
SPACE:
DBLQOT:
POINT:
NULL:

Be VO de B we W Wb

BINOO1:
BINOO4:
BINOOG6:
BINOO7:
BINOOS:
BINO10O:
BINO14:
BINO19O:
BINO20:
BINO32:
BINOS8O:

+.WORD
- ASCII
.WORD
.ASCIZ
.PAGE

.EVEN

.ASCIZ
. ASCII
+.ASCIZ
+ASCII
.ASCII
. ASCII
+ASCIZ
+ASCIZ
.ASCIZ
. ASCIZ
+Ah3C1IZ
.ASCII
.ASCII
+ASCII
«ASCII
.ASCIZ
. ASCIZ
.ASCII
+ASCII
+ASCII
.ASCII
+ASCII
. ASCII
. PAGE

.EVEN
.WORD
«WORD
«WORD
.WORD
«WORD
.WORD
.WORD
.WORD
+WORD
.WORD
«WORD

LDPT
/EXIT/
EXIT
//

ASCII strings to be output to Console Terminal

/SYSTEM STACK OVERFLOW, FATAL ERROR./
/UNIBUS TIME-OUT OCCURRED AT PC= /
/INK CORRECTION MONITOR - V1.1/

/ICM SUPERVISOR - V/ ;18
/ COMMAND/ 3 7
/ =/ s

/USE FOLLOWING COMMANDS ONLY;/

/ NOT A VALID COMMAND./

/TYPE "HELP" FOR A LIST OF VALID COMMANDS./
/ NOT YET IMPLEMENTED./

/ ERRORS DETECTED./

/SOURCE ADDRESS/ s 14
/DESTINATION ADDRESS/ : 19
/WORD COUNT/ £ 10
/ CONTENTS/ ;8

/ BAD CHARACTER/
/BAD VALUE/
<012>

<015>

<0u40>

<042>

<056>

<000>

PROGRAM VARIABLES AND MEMORY ALLOCATION

Numeric Constants

001
004
006
007
010
012
016
023
024
040
120

-21-

R I1/0

1]
IOBUF:
IOBUFC:
ICMBFC:
ICMDTA:
NUMBFR:

STBL1:

STBL2:

STBL3:

We V6 B Ve ws

ERRTBL:

VARIABLES

. BLKB 120
. BLKB
. BLKB
. BLKB
. BLKB
. PAGE

PN

STATUS TABLES

.EVEN
.ASCIZ /
.=STBL1+40
.ASCI1IZ /
.=STBL1+100
.ASCIZ /
.=STBL1+140
.ASCIZ /

.EVEN
«ASCIZ /
.=STBL2+40
.ASCIZ /
.=STBL2+100
.ASCI1Z /
.=STBL2+140
.ASCIZ /
.=STBL2+200
.ASCIZ /

.EVEN
.ASCIZ /
.=STBL3+40
<ASCIZ /
.=STBL3+100
.ASCIZ /
.=STBL3+140
.ASCI1Z /
.PAGE

oabp-€

COLOR MODE = BLACK/
COLOR MODE = YELLOW/
COLOR MODE = CYAN/
COLOR MODE = MAGENTA/

BLACK COLOR SUPPRESSED/
YELLOW COLOR SUPPRESSD/
CYAN COLOR SUPPRESSED/
MAGENTA COLOR SUPPRESSED/
NO COLOR SUPPRESSED/

OP-MODE = IDLE/
OP-MODE = TRANSPARENT/
OP-MODE = PROCESS/
OP-MODE = SPARE/

ERROR MESSAGES TABLE

.EVEN
+ASCIZ /
«.=ERRTBL+40

NO ERROR/

«ASCIZ /ERROR 1 - RTP NOT INITIALIZED/

«-sERRTBL+100

2=

4??'5

.ASCIZ /ERROR 2 - HEKD NON-COMMAND KEY/

.=ERRTBL+140

.ASCIZ /ERROR 3 - HHKD IMPROPER KEY/
.=ERRTBL+200

.ASCIZ /ERROR 4 - MEM WRITE OP FAILED/
.=ERRTBL+240

.ASCIZ /ERROR 5 - HHKD IMPROPER KEY/
.=ERRTBL+300

.ASCIZ /ERROR 6 - EMPTY LOC. ADDRESSED/
.=ERRTBL+340

.ASCIZ /ERROR 7 - RAMTST ARGUMENT BAD/
.=ERRTBL+400

.ASCIZ /ERROR 8 - RUN-MODE SWITCH BAD/
.=ERRTBL+440

.ASCIZ /ERROR 9 - RTP PC OVER-RANGE/

.=ERRTBL+500
-ASCIZ /ERROR 10 - ICM HUNG UP BY HGOP/
.PAGE

’

?

;MEMORY ALLOCATION FOR MICROPROGRAMS AND INK-CORRECTION TABLES

.EVEN
MICPGM: .BLKW 4000
INKTBL: .BLKW 3000

.END

-23-

APPENDIX - F

8085A-BASED ICM RESIDENT SUPERVISOR -- ICMS.8080

This is the Supervisor for Ink Correction Module.
It resides in 2708 EPROMs installed on ICM-Manager board.
Its objective is to provide the following;
1) Initialization of ICM.
2) Handshake-operatiaon with the ICMON
(Ink Correction MONitor), which is a Command
Interpreter operating on the host PDP-11 computer.
3) A Hex/Command-Keyboard-LED-Display monitor
called KHDMON, which offers debugging as well as
pragram development facility in the same style as
HAL-monitor operating on NEC's TK~-80A microcomputer.
4) A collection of routines for controlled operation
of the ICM Real-Time Processor.
5) A collection of RTP diagnostic routines.

The program is activated through pawer-on reset or manually
from RESET push-buttaons, following which, initialization
routine is executed and then the control is transferred

to KHDMON. The control always remains with KHDMON unless

an interrupt occurs, whereupon, appropriate service routine
is entered. Control is eventually returned to KHDMON after
the interrupt has been serviced.

Interrupts are used for the following purposes;
INTR - trap for non-existent memory addressing
RST5.5 - single step facility of KHDMON
RST6.5 - handshake-operation with ICMON
RST7.5 - monitor ICM status changes
TRAP - watchdog for UNIBUS hang-up situations

ERROR Handling : In case of error condition, error LED is
turned on and a error-cade number is stored in a
reserved location in the cantral block. This code
can be viewed by activating ErrorDuMP raoutine.

Erraor conditiaon is reset by activating ErrorRESET
routine. Errors are qualified according to the
following list;
01 - System naot initialized after RESET/Status-change.
02 - Non-command key while Supervisor wants command key.
03 - Impraper key far register pair display.
04 - Memory 'write' not successful.

-t=

05
06
07
08
09
OA

|

VER
SUBVER
SIM
RIM

I/0

]

DA1THOS
DB1HOS
DC1HOS
C1HOST
DA2HOS
DB2HOS
DC2HOS
C2HOST
DA1RTP
DB1RTP
DC1RTP
CIRTP

DA2RTP
DB2RTP
DC2RTP
C2RTP

D8279

C8279

TRACK

ARMSTS
WAITIN

Improper key for register display.
Non-existent memory addressed.

RAMTST's memory boundary violation.
RUN-Maode switch contents not valid.

RTP Program Counter over-range.
ICM hung up by host processor.

EDIT HISTORY :

JUL-23-80
JAN-10-81

Vi.0 S NM Original
Vi.1 SNM

User I/0 via PDP-11 Interface
Debugging thru HHKD (Hanrd-Held Keyboard/Display module)

INK CORRECTION MODULE SUPERVISOR

GENERAL EQUATES

m
I'®)
c
b=
=
m
72}

Diagnostic Routines added.

/701 { ICMSUP Version Number

/01 {ICMSUP Sub-Version Number

/30 iSIM instr not implem. on mical
/20 {RIM instr not implem. on mical
/A0 iHost Interi'ace Data Port A1
/A1 {Host Interface Data Port B1
/A2 {Host Interface Data Port C1
/A3 {Host Interface Contraol Port 1
/B0 {Host Interface Data Port A2
/B1 {Host Interface Data Port B2
/B2 |Host Interface Data Port C2
/B3 itHost Interface Control Port 2
/80 {RTP Interface Data Port A1
/81 {RTP Interface Data Port B1
/82 {RTP Interface Data Port C1
/83 {RTP Interface Cantrol Port 1
/90 {RTP Interface Data Port A2
/91 {RTP Interface Data Port B2
/92 iRTP Interface Data Port C2
/93 {RTP Interface Control Port 2
/00 18279 Data Port

/01 18279 Cantrol Port

/C0 i TRAP acknowledge

/D0 irearm single-step thru RST5.5
/E0 ipause for HOST respanse(drop)

-2-

WAITOT
ACOBI
ABICO
AM2BI
CLKMDL
CLKMDH
IGNDL
IGNDH
ICMBSY
ICMRDY
DHOLD
DFLOW
DSTEPL
DSTEPH
RRUNL
RRUNH
ERRL
ERRH
SCLRL
SCLRH
RINTL
RINTH
CINL
CINH
RLDL
RLDH
RJMPL
RJMPH
STMSK
SLPMSK
NWDMSK
STFMSK
ACKMSK
VEC8L
VEC8H
VECIL
VEC9H
VEC10L
VEC10H
VEC11L
VEC11H
FIFO
IOMODE

]

BASE
MCROPC
NEXT

/FO0
/82
/92
/FF
/08
/09
/09
/08
/0E
/OF
/0A
/0B
/0D
/0C
/00
/01
/02
/03
/04
/05
/07
/06
/0A
/0B
/0D
/0C
/0E
/0F
/0F
/10
/20
/40
/80
/00
/01
/02
/03
/04
/05
/06
/07
/40
/00

PROGRAM EQUATES

/0000
/7000
/15

i pause for HOST response(pick)
iport A, C cut B in
iport A, B in C out
iport A mode 2, B mode 1 in
{RTP clock turn-off template
i RTP clock turn-on template
| IGNORDTA' turn-off template
{ IGNORDTA' turn-on template
i ICMRDY turn-off template
{ ICMRDY turn-on template
| DATAHOLD' turn-on template
{ DATAHOLD' turn-off template
| DATASTEP' turn-qoff template
{DATASTEP' turn-on template
| RTPRUN turn-off template
IRTPRUN turn-on template
{ERROR turn-off template
{ERROR turn-on template
ISYSCLR turn-off template
{SYSCLR turn-aon template
iRTPINT' turn-off template
{ RTPINT' turn-on template
{CIN turn-off template
i CIN turn-on template
{RLD turn-on template
{RLD turn-off template
{RIJMP turn-off template
| RIMP turn-on template
| CDF status mask
|RTPSLP mask
{ NEWDTA mask
| STKFUL mask
| RTPACK mask
IVECT8 turn-off template
IVECT8 turn-on template
{VECT9 turn-off template
IVECT9 turn-on template
IVECT10 turn-off template
IVECT10 turn-on template
{VECT11 turn-off template
{VECT11 turn-on template
18279 command code to read FIFO
18279 command code to set I/0
mode far 8 B8-bit character
display -left entry and
Encoded scan keyboard

- 2 key lockout

{Supervisaor arigin
IRTP pragram caqunter address
ivalue of NEXT key

-3-

CLEAR = /17 ivalue of CLEAR key
LEDASH = /40 i T-segment LED DASH
RAMLEN = /08 ilength of display RAM
LEDE = /79 i T-segment LED capital E
LEDR = /50 | T-segment LED low-case r
LEDG = /3D | 7T-cegment LED capital G
LEDO = /5C | 7T-segment LED low-cacse o
LEDD = /5E iT=-segment LED low-case d
LEDB = /7C {7-segment LED low-case b
LEDP = /F3 i T-segment LED cap P with a pt.
PCLK = /34 18279 clock init template

[]
]
)
]
|
[}
:
{ Execution starts here after RESET

START: .CSECT istart assembly
.=BASE iaddress origin
ibr

JMP INIT anch to Init routine
[]
i
.=/08 |address restart 1
' JMP INTHND {branch to interrupt handler
:
».=/10 iaddress restart 2
. JMP INTHND |branch to interrupt handler
!
.=/18 iaddress restart 3
JMP INTHND |branch to interrupt handler
]
E
.=/20 iaddress restart U4
JMP INTHND |branch tg interrupt handler
]
!
.=/24 iaddress TRAP vector
' JMP TRHAND |branch to TRap HANDler
1
!
.=/28 {address restart 5
JMP INTHND |{branch to interrupt handler
[]
[}
!
.=/2C | address RST5.5 vector
I JMP RSHAND |branch to Rst5.5 HANDler
I .
.=2/30 | address restart 6
JMP INTHND (branch ta interrupt handler

Y-

.=/34 1address RST6.5 vector

JMP R6HAND |{branch to Rst6.5 HANDler
é

.=/38 iaddress restart 7

JMP INTHND ibranch to interrunt handler
5

.=/3C iaddress RST7.5 vector

JMP RTHAND |branch to Rst7.5 HANDler

INITIALIZATION ROUTINE

RTP Interface Initialization

e e e e

NIT ouT TRACK iinit watchdog on TRAP input
MVI A,ACOBI |set RTP control port 1
ouT CI1RTP tInit mode command
MVI A, ABICO (set RTP control port 2
ouT C2RTP iInit mode command
MVI A,/6C tload initial control byte
OuT DC1RTP {Init port C1 on RTP Inter face
MVI A,/T0 iload initial control byte
' ouT DC2RTP |Init port C2 on RTP Interface
[}
j HOST Interface Initialization
]
MVI A,AM2BI |set HOST Interface cont. port
ouT C1HOST {Init mode command
. ouT C2HOST |Init mode command
]
i 8279 Initializations
1
i IOMODE programs the 8279's keyboard/display mode.
i FIFO sets the 8279 data reads for the FIFO RAM.
H All data reads are assumed to be from the FIFO RAM.
i If subsequent changes take place, the FIFO command
H must be moved to the key sub-routine.
[]
[}
MVI A, IOMODE} set 8279 I/0 mode
ouT Cc8279 tinit 8279 command port
MVI A,FIFO |set 8279 data reads for FIFO
ouT c8279 iinit 8279 command port
MVI A,PCLK |set 8279 clock devider
' cuT Cc8279 iinit 8279 clock
1
5 Control Block & System Stack Initializatian
]
LXI H,BRKA |address next loc. in CBLOCKX
XRA A ito flush the rest aof CBLOCK
INIT1: MOV M,A iclear location
INR L ipoint to next locatian
JNZ INIT1 {loop until done

5=

KHDMON: LXI SP STACK.purge system stack

PUSH .save user HL at SAVHL
PUSH B isave user BC at SAVBC
PUSH D :save user DE at SAVDE
PUSH PSW isave user AF at SAVAF
LXI H,/1000 JHL <- starting RAM address

SHLD RAMPTR |init user RAM pointer
SHLD SAVPC i init user program counter

MVI A,/19 1load RST mask init template

SIM iinit RST mask

CALL RTHAND |[get handler to init status
GOCMD: LXI H,0 iclear HL

DAD SP {HL <-= value of stack pointer

SHLD SAVSP lsave user stack pointer

CALL CLu7 iclear LEDs 4 thru 7(right)

CALL DLPC idisplay (on LEDs) user-PC

LDA DSPLM iget display mode cont. switch

ORA A itest if zero

JNZ CRG1 ino, goto reg display mode

CALL DLHLP 1yes, display HL-pointed value

JMP GETCOM |[get a command from keyboard

Restart 7 INTeRrupt HaNDler routine

Activated by hardware INTR signal as a result of
non-existent memory addressing or Restart 7 (FF) instr.

H - O e anren =

NTHND: DI idisable intr for RSTT7 entry
XTHL tHL <~ PC, orig HL on stack
SHLD PANBOX |save PC for later analysis
PUSH D isave user's DE
MVI E,/06 i{load error cade
CALL ERROR idisplay error
POP D irestore user's DE
LXI H,GETCOM| prepare ta exit thru GETCOM
XTHL irest. HL,addr GETCOM an stack
EI ienable interrupts
RET

ReSTart 5.5 Interrupt Handler routine

:

1

]

i

1

]

i

i Activated by hardware RST5.5 signal, generated by
i single-step circuit. Triggered by Mi1-states, the
i signal goes high after execution of 3 instructions
i from reset. The circuit is reset by activation of
i ARMST5 signal.

[]

1

R

S5HAND: XTHL iHL <~ UserPC, aorg. HL on stack
SHLD SAVPC isave UserPC in CBLOCK
PUSH B { save BC on stack

-6

PUSH D isave DE aon stack

PUSH PSW | save AF on stack

RIM i feteh current mask

ANI /07 iblank non-relevant bits

ORI /09 imodify mask

SIM iset new mask, RST5.5 dicsabled
EI ienable rest of the interrupts
LDA RUNM iget Run Mode control switch
ORA A icheck if 0, ModezFreerun

JZ BRKRUN |yes, then go check breakpoint
DCR A icheck far single-step mode

JZ GOCMD 11f sao, go process a command
MVI E,/08 iinvalid RUNM, load error code
CALL ERROR 1 signal error condition

JMP USERPC 1| and exit

Check BREAKPOINT after RST5.5 interrupts RUN MODE

w i T ——

RKRUN: XCHG {DE <- user PC
LHLD BRKA iget breakpoint address
MOV A,E iget LSB of user PC
CMP L jcompare with LSB of BRKA
JNZ USERPC {different, return to user prog
MOV A,D | same, now get MSB of user PC
SUB H i subtract MSB of BRKA
JNZ USERPC {different, return to user prog
LXI H, BRKD |same,point HL to BRKD
ORA M iget BRKD in ACC and set flags
JZ USERPC {no depth, return to user prog
DCR A {if depth, count it down
JZ GOCMD {zero, process a command
MOV M,A inan-zero, staore new depth
JMP USERPC |{return to user program
]
i
.=/0100 jalign page boundary for tables
1
]
a COMMAND VECTOR TABLE
]
i Offset into this table by command key value
i Table entry contains complete address of
a command process routine.
]
i This table must not cross pages.
t
[}
COMTBL: .WORD CMEM { MEM key, value = /10
.WORD CREG i REG key, value = /11
.WORD CADDR {ADDR key, value = /12
.WORD CSTEP {STEP key, value = /13
.WORD CRUN iRUN key, value = /14
«WORD CNEXT {NEXT key, value = /15
«WORD CBKPT { BKPT key, value = /16

-7-

.WORD GETCOM |CLEAR key, value = /17
.WORD CERST {ERST key, value = /18
+WORD CMTEST |RAMTST key,value = /19
.WORD CRPCLR {RPCLR key, value = /iA
.WORD CVECT i VECTOR key,value = /1B
.WORD CRPRUN [RPRUN key, value = /1C
.WORD CRPBRK |!RPBRK key, value = /1D
.WORD CRPSIN |RPSING key,value = /1E
.WORD CRPHLD |[RPHOLD key,value = /1F
.WORD CDIGO +DIGO key, value = /20
.WORD CDIG1 iDIG1 key, value = /21
.WORD CDIG2 iDIG2 key, value = /22
.WORD CDIG3 {DIG3 key, value = /23
.WORD CDIGH iDIGY key, value = /24
-WORD CDIGS tDIGS5 key, value = /25
.WORD CDIG6 iDIG6 key, value = /26
.WORD CDIG7 |!DIG7 key, value = /27

HEX DISPLAY TABLE
Hex-digit to 7T-segment LED conversion
Of fset into this table by hex key value

One-byte table entry is T-segment LED code
This table must not cross pages.

e " T e e e e me e ca —-

EXTBL: .BYTE /3F 10
.BYTE /06 i1
.BYTE /5B 12
. BYTE /4F 13
.BYTE /66 4
. BYTE /6D i5
.BYTE /7D)
.BYTE /07 i 7
. BYTE /TF i 8
.BYTE /6F i 9
+BYTE /77 i A
.BYTE /7C i B
.BYTE /39 i C
.BYTE /5E iD
.BYTE /79 {E
.BYTE /T1 W F

REGISTER DISPLAY TABLE
Register name display and location in stack

Consists of 8 2-byte entries. Offset inteo
this table by hex-key value (where 8 is REG H and
9 is REG L). A table entry caonsists aof:

-8-

1) A 1-byte 7-segment LED code for the
corresponding register name.

2) A 1-byte offset into the stack from the
stored stack pointer. Upon entry to the
monitor, all the processor's registers
are saved on the stack in a given order
which permits DLREG to predict their
location for display or modification.

This table must not begin in the lower 15 bytes of any
page, nor cross pages.

w —— i O e e A - e - e

EGTBL: .BYTE /76,7 idisplay
. BYTE /38,6 idisplay
.BYTE /77,1 idispl ay
.BYTE /7C,5 idisplay
.BYTE /39,4 idispl ay
.BYTE /5E,3 idisplay
. BYTE /79,2 idisplay
+.BYTE /71,0 idisplay

offset 7 bytes
offset 6 bytes
offseyt 1 byte
offset 5 bytes
affset U4 bytes
affset 3 bytes
offset 2 bytes
no offset

- P o w w

TSImMmooOoOweETx

REGISTER PAIR TABLE
Register-pair key value to register-pair name display

Consists of 5 3-byte table entries. Look-up routine
attempts match on first byte of eentry, and must keep
track of such iterations to detect errors. A typical
table entry contains:
1) A hex-key value which represents a
particular register pair request.
2) A 2-byte value which is the corresponding
displ ay pattern in 7T-segment LED code.

| This table must not cross pages.

[}

RGPTBL: .BYTE /01,/6D,/F3ikey#1, display SP.
.BYTE /02,/6D,/B1 key#2, display ST.
.BYTE /08,/76,/B8 key#8, display HL.
.BYTE /0B,/7C,/ B9 key#B, display BC.
.BYTE /0D,/5E,/F9ikey#D, display DE.

ERROR sub-routine turns 'ERROR' LED ON
Displays 'Error' and code on LED display.
Expects error code in register E. ‘

e e cc e -

RROR: PUSH H isave caller's HL
PUSH D {save caller's DE
PUSH B |save caller's BC
PUSH PSW isave caller's AF

-9-

CALL CLO7 iclear all LEDs and A, B

MOV AE icopy error code in ACC

STA ERCODE |save error code in CBLOCK

CALL DLA 1display error code

MVI A,ERRH Iset ERROR turn-on template
OuT C1RTP iturn LED on

MVI H, 0 ipoint to LED#0

MVI L,LEDE |load capital E for display
CALL DSPLAY |(display on LEDs

INR H ipoint ot next LED

MVI L,LEDR {load lo-case r for display
CALL DSPLAY |display on LEDs

INR H ipoint ta next LED

CALL DSPLAY |display another lo-case r

INR H ipoint tao next LED

MVI L,LEDO |load lao-case o for display
CALL DSPLAY |display on LEDs

INR H ipoint to next display

MVI L,LEDR |load lo-case r faor display
CALL DSPLAY |display on LEDs

POP PSW irestore caller's AF

POP B irestore caller's BC

POP D irestore caller's DE

POP H irestore caller's HL

RET

ERESET sub-routine clears ERCODE in CBLOCK, turns LED off
no parameters are passed either way

m —— e e am e - -

RESET: PUSH H Isave caller's HL
PUSH D isave caller's DE
PUSH B isave caller's BC
PUSH PSW isave caller's AF
XRA A {clear A
STA ERCODE {clear ERCODE in CBLOCK
CALL DLA {display 0 now as error code
MVI A,ERRL |set ERROR turn-off template
OouT C1RTP jturn LED off
POP PSW irestore caller's AF
POP B irestore caller's BC
POP D irestore caller's DE
POP H irestore caller's HL
RET
i
i
H
| ¥XBBL--Canvert Accumulataor to Two Nibbles
i Expects value in A
E Returns low nibble in A, high nibble in B
[]
NBBL: MOV C,A {save ariginal value

ANI /F0 { keep only upper nibble

0—— T e e ar— —— m G, - o — - -

m
~3
e o

GH1:

Q - e st T e me — amas Gk Gb e -

RLC
RLC
RLC
RLC
MOV
MOV
ANI
RET

iswitch into lower nibble

iput into lower nibble of B
irestore original value
i keep only lower nibble

N > o

Oew «
o>

GET A HEXKEY AND SHIFT IT INTO LOWER NIBBLE OF HL

CALL
JC
MOV
POP
POP
RET
DAD
DAD
DAD
DAD
ORA
MOV
RET

Uses B
Returns shifted HL

On command key-termination, exits with a
dummy pop followed by a RET. This effects
a2 return to the caller of the routine
which called GETH.

KEY 1get a key

GH1 1if hex key, continue

B,A 1if comm. key, propagate value

D idummy pop to abort normal ret

D irestore key count in D
ireturn to caller of caller

H ishift HL left four positions

H

H

H

L iOR with latest key value

L,A

inormal return to caller

GET WORD (TWO BYTES) FROM HEXKEYS

LXI
PUSH
CALL
CALL
POP
INR
PUSH
CALL

Uses B,C,E

Returns key count in D

Returns terminating command key in A and B
Returns word value in HL

Displays word value in leds #0-#3

H,0 tinitialize word value

H iinitialize key count on stack
GETH iget a hex key

DLHL idisplay value in progress

D irestore key count from stack
D iincrement key count

D iput it back an stack

DLHLP idisplay pointed byte
-11-

JMP GW1 ido again until GETH exists

GET BYTE FROM HEX KEYS

Uses B,C,E

Returns key count in D

Returns terminating command key in A and B
Returns byte value in HL

Displays byte value in leds #6-#7

GETB: LXI H,0 rinitialize byte value
PUSH H iinitialize key count on stack
GB1: CALL GETH iget a hex key
MOV A,L iprepare byte for display
CALL DLA idisplay it in rightmost leds
POP D irestore key count from stack
INR D |increment key count
PUSH D iput it back on stack
JMP GB1 ido again until GETH exists

:
1)
]
i
i GETCOM GETS A COMMAND KEY AND PROCESSES IT

i Gets cantrol after initialization and upon

i recognized exit from some commands--other

i commands may unpredictably acquire a command
i key, then enter GETCOM at optional entry

H points GC1 and GC2.

1
L]
G

ETCOM: CALL KEY iget a hex key command in A & C
JNC GCo iif comm key, bypass error call
MVI E,/02 iset error code
CALL ERROR iand call ERROR routine
JMP GETCOM |on return, loop for proper key
GCO: LXI H, ERCODEipoint to ERCODE in CBLOCK
MOV E,M i fetch error code
DCR E
DCR E icheck if last error due to key
Ccz ERESET |(yes, reset error, now comm key
LHLD SAVPC iprep HL with user PC for later
GC1: MVI D, 0 iinit hex key counter
GC2: PUSH H |save user PC on stack for now
SUI /10 i subtr offset 16 from key value
ADD A .2x key value to abtain offset
MOV C,A icopy offset into C
CALL CL4T iclear leds #4-#7
LXI H,COMTBL |point to command table
XRA A iclear ACC for command routines
MOV B,A izero MSB of register pair BC
DAD B ioffset pointer to comm addr LSB
MOV C,M iset up vector LSB in reg C

-12=

DLREG:

INX H ipoint to next loc to get MSB
MOV H,M iset up vector MSB

MOV L,C iHL= addr of comm prac routine
LXI B,DSPLM |set up BC for command routines
XTHL iHL=addr parm, comm addr on stack
RET igo to selected command routine

REGISTER DISPLAY SUBROUT INE

DLREG displays a register-name legend and a dash
followed by the value of that register at entry
to the monitor (after reset, step, or breakpoint).

Uses A,B,D,E

Expects stopped register key value in DSPLM
(display mode). If zera, this routine
will invoke default HL-pointed format.

LDA DSPLM i get display mode indicator

ADD A idouble it

JZ DLHLP 1if zero, use HL-pointed mode
LXI H,REGTBL-/10|point to register table
ADD L iadd register key displacement
MOV L,A

PUSH H isave HL on stack for now

MOV L,M | get register-name display in L
MVI H,/04 ipaint to LED#4

CALL DSPLAY |put reg-name in display led #4
MVI L,LEDASH| get a dash in T7-segment code
INR H ipaint to next LED

CALL DSPLAY |put dash in led #5

POP H irestore HL

INX H ipaint to 2nd byte REGTBL entry
MOV E,M iget the stack displ acement

MVI D,0 i zero msb of DE register pair
LHLD SAVSP iget stored stack pointer

DAD D tadd the displacement

JMP DLHLP idisplay the saved reg value

KEYBOARD sub-routine

Reads the 8279 FIFO until a valid key is depressed.
Uses B and D.

Returns key value in A and C.

Returns carry set if a hex-key was depressed.

Returns carry not set if a command-key was depressed.

Key value returned is /00-/0F for hex-keys aor /10-/27
for command keys. Format is:

000C CRRR

192

where CC

00 for keys 0-7
01 for keys 8-F
10 for command-keys

PN men T -, ——.

RRR = binary value of row 0-7
EY: IN Cc8279 iread FIFO status word
ANI /07 iset zero if FIFQ is empty
JZ KEY iloop until a key is depressed
IN D8279 iread FIFO
MOV B,A imocve A to register B
ANI /07 iobtain return bits
RLC ishift return bits left
RLC
RLC
MOV D,A imove A to D
MOV A,B imove FIFO word to A
ANI /38 jobtain scan bits
RRC i shift scan bits right
RRC
RRC
ADD D ireturn + scan bits = key value
CPI /28 1set carry if value < /28
JNC KEY 1if not set, loop for valid key
CPI /10 iset carry if value</10, hex-key
MOV C,A icopy A into C
RET
i
|
i
E CLEAR-DISPLAYS subrqutines
1
i CLO7 clears display leds #0-#7
E CLY4T clears display leds #U4-#7
]
E Uses H,L,B and A
1
CLOT7: MVI B,/08 iset to clear 8 leds
JMP CL ibegin clear
CL4T: MVI B,/04 iset to clear 4 leds
CL: MVI L,O iset clearing value
MVI H,/07 ipoint to rightmost led (#7)
CL1: CALL DSPLAY |clear one led
DCR H ipoint to next lower led #
DCR B i count down lcap cantral
JNZ CL1 iclear again until done
RET

DSPLAY subroutine displays 1 hex character

H contains 8279 ram address
L contains character to be displayed
the 8279 ram command is

1k

l

i

i

DSPLAY: MOV
CPI
RNC
ORI
OouT
MOV
ouT
RET

1000 OAAA where AAA = ram location
Uses A
A,H 18279-display RAM addrecss to A

RAMLEN |set carry if address is valid
ireturn if carry 1is not set

/80 iset up A with 8279 ram command
8279 iprogram 8279 for next RAM loc.
A,L ymove character to A

D8279 iwrite display char to 8279

BYTE-SIZE display subroutines

DLHLP displays the value pointed to by HL
DLA displays the accumulator.

both of above display in rightmos. leds.
DLADE displays A to leds pointed to by D .

Uses A,B,C,D

DLHLP: MOV A,M iget value to dispiay in ACC

DLA: MVI D,/07 ipoint to rightmost led (#7)

DLADE: PUSH H isave caller's HL
CALL NBBL idivide A into two nibbles
CALL DLHEX idisplay first nibble as hex
MOV A,B i prepare second nibble
CALL DLHEX idisplay second nibble as hex
POP H irestore caller's HL
RET

i

{

i

i DLHEX - Display a nibble in A as one hex digit

]

1 .

i Expects value in low nibble of A

1 Expects D pointing to LED'display number

s Returns D one smaller

]

i Uses H,L

]

DLHEX: LXI H,HEXTBL|point to conversion table
ADD L iadd in accumulator
MOV L,A
MOV L,M i fetch T-segment display value
MOV H,D tmov display address to H
CALL DSPLAY |(display nibble
DCR D tpoint D to next lower led
RET

-15=

DLHLDE:

WORD-SIZE display subroutines

DLPC displays user's PC (SAVPC) in leds.
DLHL displays current HL in leds
both of above display at lefimost leds (#0-#3).

DLHLDE displays current HL in leds pointed to by DE .

Uses A,B,C,D,E .

DLPC uses HL alcso
DLHL and DLHLDE return HL unchanged.

LHLD SAVPC { fetch user PC into HL

MVI D,/03 i point to left-half LEDs 0-3
MOV A,L iset up L faor display

CALL DLADE idisplay it in LEDs 2-3

MOV A,H iset up H for display

JMP DLADE idisplay it in LEDs 0-1 & ret

COMMAND KEY PROCESSES

COMMAND BREAKPOINT PROCESS

If no address parameter preceded, displays existing
breakpoint address and depth.

If address parameter preceded, displays BP. and
awaits depth parameter.

If CLEAR entered for depth parameter, breakpoint
address (BRKA) and depth (BRKD) are cleared.

If valid terminator on depth parameter, breakpoint
address and depth is set and displayed.

PUSH H isave pending address param
MVI H,/04 ipoint to LED#4

MVI L,LEDB |load lo-case b for display
CALL DSPLAY |display on LEDs

INR H i point to next LED

MVI L,LEDP {load capital P. for display
CALL DSPLAY |display an LEDs

POP H irestore addr param, if any
MOV A,D icheck for pending addr param
ORA A iany pending?

JZ DLBK inone, display present breakpt.
PUSH H {yes, save it again on stack
CALL GETB iget a byte from hex keys

CP1 CLEAR iwas delimiter a CLEAR key?
MOV A,L iget entered value in ACC

POP H irestore address parameter

-16-

SETBP:

DLBK:

e ettt T Tt ittt

NEXT:

]
CSTEP:
CRUN:

SRO:

SR1:
USERPC:

JNZ SETBP ilnot CLEAR key, set breakpoint

LXI H,O0 lyes, set up for clearing

XRA A

SHLD BRKA i store the breakpoint address
STA BRKD istore the breakpoint depth
MOV A,B icheck terminator key again
CPI CLEAR twas it CLEAR key?

JNZ GC1 i no, process terminator command
LHLD B RKA | fetch the breakpoint address
CALL DLHL idisplay it on LEDO thru LED3
LDA BRKD | fetch the breakpoint depth
CALL DLA ldisplay it on LED6 and LED7
JMP GETCOM |go process another command.

COMMAND NEXT PROCESS

Next key encountered by main GETCOM loop
implies termination of an addr parameter.
Note that next key during reg inspection
is handled separately under command reg
process. Here, routine sets display mode
to HL-pointed format after incrementing
the HL pointer. Processing continues in
command MEM routinre.

INX H iincrement memory pointer
STAX B ' zero display mode(HL-pointed)
JMP SETPTR jgo to set RAM pointer

COMMAND STEP AND RUN PROCESSES

Sets RUN Made switch for STEP or RUN (1 or 0).
If no address preceded, assumes pre-existing
user PC in CBLOCK's SAVPC.

INR A iset ACC to 1

STA RUNM istore mode value

JZ SRO {if RUNM,bypass enabling RST5.5
DI 'hold intrpts untii end routine
RIM i fetch current mask

ANI /06 imodify mask

ORI /08

SIM iset new mask, RST5.5 enabled
MOV A,D icheck for pending addr param
ORA A

Jz SR1 inone, go from current SAVPC
SHLD SAVPC {if pending, store it

CALL CLO7 iclear display for user

POP PSW irestore user's REGs from stack
POP D

-17-

[e ity

o D e

POP
LHLD
XTHL
OuT
EI
RET

B
SAVPC

ARMST5

lload user‘'s PC

IHL <- orig HL, userPC on stack
idisarm RST5.5 in order to ret
yenable interrupts

{g0 to userPC

COMMAND ADDR PROCESS

Displays user PC (initial default) and
HL-pointed byte.
Accepts addr parameter, displaying partial
parameter in progress, and HL-pointed byte.
Sets up count parameter in reg D:
0--addr key not preceeding.
FB-FF--addr key preceeding, value is
complement of number of hex keys.

CALL
CALL
CALL
CPI
Jz
MOV
ORA
JNZ
LHLD
CMA
MOV
MOV
JMP

DLPC
DLHLP
GETW
CLEAR
CADDR
A,D

A

AD1
SAVPC

D, A
A,B
GC2

'HL = user PC, and display it

idisplay HL-pointed byte

lget U4-digit hex value (word)

iterminated with CLEAR key?

| yes, repeat display and fetch
iget key count

inon-zero count, bypass next

| zero count, use default

| complement key count

isave it in reg D

| propag ate terminator key value
icontinue at comm process entry

COMMAND REG . 10CESS

Displays user PC in leftmost leds.

Gets a key and displays correspanding
register with value.

Accepts a byte from hex keys and alters
corresponding register value.

Also accepts NEXT key and advances to
next register in alphabetic arder.

CALL
CALL
JNC
CPI
JNC
MVI
CALL
JMP

DLPC

KEY

GC1

/08
SETRG

E,/05
ERROR

GETCOM

{HL = user PC, and display it
iget a hex keypad closure

{if command key, go comm entry
ivalid register-name?

{yes, bypass ERROR call

ielse, 1laad errar code

iand call ERROR

{return for next command

-18-

SETRG:
CRG1:

CRGz2:

n P e, S S A S R Enan T R oy e, T R G TR GhEs TR Em e G e e S - -

MEM:

CMM1:

STA DSPLM | set register display mode

CALL DLREG tdisplay register and value
PUSH H isave ram addr of reg on stack
CALL GETB i get a byte from hex keys

MOV Cc,L isave entered value in C

POP H irestore ram addr of reg

CPI1 CLEAR iwas delimiter a CLEAR key?

JZ CRG1 | yes, repeat display and fetch
MOV A,D iretrieve key count

ORA A

JZ CRG2 inone, bypass update

MOV M,C iany Keys, update reg in ram
MOV A,B i propagate terminator key value
CPI NEXT lwas deliminator a NEXT key?
JNZ GC1 ino, go command process entr
LDA DSPLM | yes, get register key value
ADI /F9 ipoint tao next reg, wrap-around
ORI /08

JMP SETRG icontinue display and fetch

COMMAND MEM PROCESS
Displays an address and corresponding ram value.

If preceding address parameter contained only one
hex Key, that value is taken as a register pair:
1--stack pointer
2--top-of-stack, i.e. the SP-pointed word
8--HL
B--BC
D--DE

If preceding address parameter did not contain
exactly one hex key, that address value is used.

Additionally displays the register-pair name if that
mode was selected to caonstruct the address.

Accepts byte parameter to alter pointed ram.
If address points to raoam or non-existent memory,
exits to ERROR display routine.

STAX B iset DISPLM to HL painted format
ADD D iget key-count and set flags

JZ GETPTR |none, use existing RAM pointer
CPI /FE texactly one entered?

JNZ SETPTR {no, use ADDR param as entered
MOV A,L lyes, use key-value as reg-pair
LXI H,RGPTBL|point to register-pair table
MVI c,/05 tinit table entry counter

CMP M icompr key ta 1st byte of entry
INX H ipoint to display image bytes

19~

CMM2:

CMM3:

SETPTR:
GETPTR:

CMMy4:

Jz

INX
INX
DCR
JNZ

MVI
CALL
JMP
MoV
INX
MOV
MVI
CALL
MOV
MVI
CALL
LHLD
MVI
MoV
CPI
JZ
ADD
MOV
DAD
MOV
INX
MOV
XCHG
JMP
MVI
DAD
SHLD
LHLD
CALL
CALL
CALL
CPI
JZ
DCR
MOV
LHLD

MOV
CMP

MVI
CALL
JMP
MOV
JMP

CMM2
H
H
C
CMM1

E,/03
ERROR
GETC OM
D, M

H

L,M
H,/05
DSPLAY
L,D
H,/04
DSPLAY
SAVSP
D, 0
A,C
/05
CMM3

c

E, A
D
E,M
H
D,M

SETPTR
E,/08
D
RAMPTR
RAMPTR
DLHL
DLREG
GETB
CLEAR
GETPTR
D

A,L
RAMPTR
CMM4
M,A

M

CMMY
E,/04
ERROR
GETCOM
A,B
GC 1

ikey match, go reg-pair display
ielse, point to next entry

icount down 1loop control

i1if not zero, check next entry
iif zero and no key match,

1load error code in regis ter E
igo display error

'loop back for new process

iget 1st displ-image byte in D
.p01nt to 2nd displ-image byte
iget it in L

imov 5 to H

idisplay 2nd image byte in LEDS5
icopy first image byte in L
imov 4 to H

idisplay 1st image byte in LEDY4
iHL= saved stack pointer

.prep MSB of D pair for DAD op
.get the residual loop counter
.was it 5, i.e. 1/P key?

.ye , bypass.

ino, compute 2%¥loop-count

iput it in LSB of DE pair
ioffset from saved stack ptr.
iget LSB of HL-painted reg pair
imove pointer to MSB

.get MSB of HL-pointed reg pair
iprep result in HL for RAM ptr.
icaontinue with cale. addr param
iuser SP is 8 more than SAVSP
imake the diff. transparent
istore addr param as RAM ptr.
iretrieve RAM pointer

idisplay RAM ptr. in left LEDs
idispl HL-pointed in right LEDs
iget a 2-digit hex value(byte)
iterminated with clear key?

| yes, repeat display and fetch
1set minus flag if key count=0
iget entered value

iretrieve RAM pointer

1if no keys, bypass update
ielse, put entered value in RAM
iwas it stored as entered?
iyes, continue

:else, load error code

iand display error

'100p back for new process

| propagate terminatar key value
nso command process entry

«20-

COMMAND ERROR-RESET PROCESS
Resets error state.

ERST: CALL ERESET |call sub-routine to do the job
JMP GETCOM | and return

COMMAND REAL-TIME PROCESSOR CLEAR PROCESS
Clears RTP by calling RPCLR sub-routine.

O~ cmcc e —— =

RPCLR: CALL RPCLR
JMP GETCOM |return for next command

COMMAND VECTOR SET PROCESS

Loads vector in RTP, if valid conditions exist,
from RPVECT in CBLOCK thru VECTOR sub-routine.
Invalid conditions are;

1) RPVECT and RPBRKD both cantain zeros.
2) RPVECT and RPBRKD contain values such that the
computed new vectar averflows the boundary.

Under these conditions, RPVECT is left unchanged
(computed new vector not set) and error code '09°
is flagged.

If valid conditions exist, a new vector is computed,
set in RPVECT, and displayed in following manner;
1) If RPBRKD contained a zero, new vector is one

less than that currently loaded.

2) If RPBRKD contained naon-zero depth, new vector

is offset from the current vector by the
specified depth.

)= e e e e e e e e e e ———————

VECT: PUSH H |save pending addr parameter
PUSH D {if any
CALL CLO7 iclear LEDs for new display
LDA RPVECT |fetch current vector
MOV E,A icopy
MVI D,/01 ipoint to LED#1
CALL DLADE idisplay current vector(LEDO-1)
LDA RPBRKD |fetch breakpoint depth
ORA A icheck if zero?
JNZ Cvi ino,compute new vectar
DCR E ielse, decrement vector
JM cv2 1if bottom end, go error
MOV A,E {else, proceed further
JMP Cv3
cv1: ADD E inew vector = offset thru depth

-21-

[@ Eataahala

JNC CV3 1if no overflow, proceed

MVI E,/09 i load error code

CALL ERROR 1display error

JMP cvy lamd exit

CALL VECTOR |set current vector

STA RPVECT Jupdate vector w/computed value
CALL DLA idisplay new vector on LED6-T
POP D iif any,

POP H irestore address parameter

JMP GETCOM |return for next command

COMMAND REAL-TIME PROCESSOR RUN PROCESS

If no depth, RTP is set in RUN mode thru RPRUN subr.
If RPBRKD contains non-zero depth, RTP is single
stepped thru the depth.

LDA RPBRKD |fetch breakpoint depth

ORA A icheck if zero

CzZ RPRUN iyes, set RUN mode thru RPRUN
JZ CRPN2 iand exit

CALL RPSING {no, then single step

DCR A icheck if done

JNZ CRPN1 ino, then loop till done

JMP GETCOM |(return for next command

COMMAND REAL-TIME PROCESSOR BREAKPOINT RUN PROCESS

If no address parameter preceded, displays existing
vector and breakpoint depth.

If address parameter preceded, displays "BP." and
awaits depth parameter.

If clear entered for depth parameter, default vector
(from RPSTRT in CBLOCK) and zero depth are set
and displayed.

If valid terminator on depth parameter, vector and
depth are set and displayed.

PUSH H |save pending addr parameter
CALL CLO7 iclear LEDs for new display
MVI H,/03 ipoint to LED#3

MVI L,LEDB |load lo-case b for display
CALL DSPLAY |display on LEDs

INR H ipoint taonext LED

MVI L,LEDP |load capital P. for display
CALL DSPLAY {display an LEDs

POP H irestore address parameter
MOV A,D icheck for pending addr param
ORA A 1any pending?

JZ DLRBK inone, display present breakpt.

-22-

SETRBP:

DLRBKX:

[Rl

RPSIN:

PUSH
MVI
MOV
CALL
CALL
CPI
MoV
POP
JNZ
LDA
MOV
XRA
STA
MOV
STA
MOV
CpPI
JNZ
LDA
MVI
CALL
LDA
CALL
JMP

H
D,/01
A,L
DLADE
GETB
CLEAR
A,L

H
SETRBP
RPSTRT
L,A

A
RPBRKD
A,L
RPVECT
A,B
CLEAR
GC1
RPVECT
D,/01
DLADE
RPBRKD
DLA
GETC OM

iyes, save it again on stack
ipoint to LED#1

icopy breakpt. addr for display
idisplay breakpt. addr(LEDO-1)
iget a byte from hex keys

iwas delimiter a CLEAR key?
iget entered value in ACC
irestore address parameter
inot CLEAR key, set breakpoint
iyes, fetch default start addr
iprep to set default vector
iprepare to set zero depth
iset breakpoint depth

icopy vector to be set

| set vectar

icheck terminator key again
iwas it clear key?

ino, proc. the terminator key
i fetch vectar (breakpt. addr)
ipoint to LED#1

idisplay it on LED#0 and 1

| fetech the breakpaint depth
idisplay it on LED#6 and 7
ireturn for next command

COMMAND REAL-TIME PROCESSOR SINGLE STEP PROCESS

Single-steps RTP by calling RPSING sub-routine.

PUSH
PUSH
PUSH
PUSH
CALL
CALL
LDA
MVI
CALL
IN
MVI
CALL
IN
CALL
POP
POP
POP
POP
JMP

H

D

B

PSW
RPSING
CLO7
MCROPC
D,/01
DLADE
DA2RTP
D, /04
DLADE
DB2R TP
DLA
PSW

B

D

H
GETCOM

isave HL

tsave DE

{ save BC

| save AF

isingle-step RTP

iclear LEDs for new display
i fetch RTP program counter
ipoint to LED#1

{display RTP PC on LEDO-1
iread RTP bus-A

ipaint to LEDY

idisplay RTP bus-A on LED3-4
iread RTP bus-B

idisplay RTP bus-B on LED6-7
irestore AF

irestore BC

irestore DE

irestore HL

ireturn for next command

COMMAND REAL-TIME PROCESSOR HOLD PROCESS

-23-

Q== - ——

RPHLD:

O~ ~mmm—————— ==

DIGO:

(@ Rt

DIG1:

'S R P,

DIG2:

A= mm == ———— e

DIG3:

n A bt ar e G G e s

DIGHY:

Turns off the clock to RTP by calling RPHOLD.

CALL RPHOLD
JMP GETCOM |return

COMMAND RTP DIAGMOSIS-0
Perfaorms diagnosis-0 by

CALL DIGO
JMP GETCOM |return

COMMAND RTP DIAGNOSIS-1

Performs diagnosis-1 by

CALL DIG1
JMP GETCOM |return

COMMAND RTP DJIAGNOSIS-2
Performs diagnosis-2 by

CALL DIG2
JMP GETCOM ireturn

COMMAND RTP DIAGNOSIS-3
Performs diagnosis-3 by

CALL DIG3
JMP GETCOM |return

COMMAND RTP DIAGNOSIS-4
Performs diagnosis-4 by

CALL DIGY
JMP GETCOM |return

COMMAND RTP DIAGNOSIS-5

for next caommand

PROCESS

calling DIaGnose(0 subroutine.

for next command

PROCESS

calling DIaGnose1 subroutine.

for next command

PROCESS

calling DIaGnose2 subroutine.

for next command

PROCESS

calling DIaGnose3 subroutine.

for next command

PROCESS

calling DIaGnosek subroutine.

for next command

PROCESS

-2l

Performs diagnosis-5 by calling DIaGnose5 subroutine.

]
|
CDIGS5: CALL DIG5
JMP GETCOM !return for next command

COMMAND RTP DIAGNOSIS-6 PROCESS
Performs diagnosis-6 by calling DIaGnoseb subroutine.

DIG6: CALL DIG6
JMP GETCOM |return for next command

COMMAND RTP DIAGNOSIS-7 PROCESS

Performs diagnosis-7 by calling DIaGnose7 subroutine.

CDIG7: CALL DIGT
JMP GETCOM |return for next command

COMMAND RAM TeST PROCESS

This process is for carrying out RAM memory
diagnostics. If the memory is good, message
"Good" is displayed on LEDs. Else, defective
memory location is displayed alongwith its
contents as well as what the contents should
actually have been. Display format is as

follows;
LED 0 1 2 3 4 5 6 T
defective location correct value actual value

To continue from the breakpoint MEM key should be hit.
If any other key is hit, diagnostic process is
reinitiated from the very start, for the same
arguments.,

Expects start-address in DE and end-address in BC.
These registers are returned unchanged.

If any attempt is made to check PROM area (loc /0000
thru /OFFF) code 7 error occurs.

Constraints: If low 32 bytes in pagel (first RAM block of 4K
- lae. /71006 thru /1FFF) is included in the check
region, top 32 bytes of the page should be excluded.

-25-

i - RAM MAP : /1000 - /1FFF, /8000 - /87FF, /8800 - /8FFF

|
CMTEST: DI

idisable intr during this proc.
LXI H,SAVDE |fetch test parameters
MOV E,M ireg pair DE to hold start addr
INX H ipoint to next location
MOV D, M
INX H ipoint to next location
MOV C,M ireg pair BC to hold end addr
INX H ipoint to next location
MOV B,M
CMT1: MOV H,D tinit HL with start address
MOV L,E
MOV A,D 1establish region for stack loc
CPI /20 icheck area on page1?
JNC POKE3 ino, use std. stack location
CPI /10 iyes, test space include PROMs?
JNC POKE 1 ino, praceed further
SHLD PANBOX {yes, save HL in PANBOX
MVI E,/07 iand go error
CALL ERROR
JMP GETCOM |return for next command
POKE1: JNZ POKE?2 1if test space not in low area
MOV AVE iregion in low area of pagel
CPI /20 iregion includes low 32 bytes?
JNC POKE?2 ino, then go to POKE2
LXI SP,/1FFF| yes, loc stack con taop of page
JMP POKE3 1and proceed further
POKE2: SPHL ilocate stack below test space
POKE3: XRA A iclear ACC
MoV M,A {stoare 0 in HL-pointed location
CMP M icheck if memory loc. cleared
CNZ MEMERR (no, then display error
INX H ipoint to next location
MOV A,L i check if end of region
CMP C
JNZ POKE3 ino, then loop and continue
MOV A,H
CMP B
JNZ POKE3 ino, then loop and continue
MOV H,D iyes, then begin a new pass
MOV L,E
POKEY4: XRA A ito check for addressing error
CMP M icheck addressing error
CNZ MEMERR |yes, display error
INR A ino, start next procedure
POKE5: MOV M,A i store new pattern
CMP M idid it store correctly?
CNZ MEMERR {no, display error
RLC iyes, go for next bit
JNC POKES5 iif not done, loop and continue
MVI A,/FF i load all ones pattern
MOV M,A {111 locatiqn with all ones
CMP M iwas it stored correctly?

-26-

CNZ MEMERR |no, signal error

INX H idane, pcint to next location
MOV A,L icheck if end of region
CMP C
JNZ POKEY ino,loop for checking next byte
MOV A,H
CMP B
JNZ POKE 4 ino,loop for checking next byte
MOV H,D iyes, begin a new pass
MoV L,E

POKE6: MVI A,/ FF inow start check for all ones
CMP M
CNZ MEMERR |no, display error
INX H iyes, paint to next location
MOV A,L icheck if end of region
CMP C
JNZ POKE®6 inot yet, loop and continue
MOV A,H
CMP B
JNZ POKE 6 inot yet, loop and continue
CALL MSGOOD |check completed and surcessful
JMP CMT1 ido it all over again

RPCLR subroutine

Clears RTP by pulling SYSCLR high and then low.
Does not change registers or status.

PCLR: PUSH PSW 1save caller's AF

MVI A,SCLRH }load SYSCLR-hi template
ouT C1RTP ipull SYSCLR high
MVI A,SCLRL {load SYSCLR-lo template
ouT C1RTP ipull SYSCLR low
POP PSW irestore caller's AF
RET

i

i

|

H VECTOR sub-routine

[]

]

i Expects vector in RPVECT of CBLOCK.

: Loads vector in real-time PC thru RTP-INTerrupt.

i Does not alter any registers.

]

VECTOR: PUSH PSW | save caller's AF
LDA RPVECT |fetch vector fraoam CBLOCK
OCT DAIRTP (write vectar ta RTP interface
MVI A,RINTH {load template for RTP intr.
our CiIRTP {interrupt RTP
MVI A,RINTL }load template faor normal op
ouT C1RTP inormalize RTP interrupt

CALL RPSING |single-step RTP
CALL RPSING |single-step RTP

«27-

) T e e ce e - —-

PRUN:

PSING:

CALL RPSING |single-step RTP
POP PSW irestore caller's AF
RET

RPRUN sub-routine

Sets RTP in RUN mode by pulling CLKMOD
iow and RTPRUN high.

Also set RTP Data Interface for RUN made.

Does not change registers or status.

PUSH PSW |save caller's AF

MVI A,SCLRL }load SYSCLR-lo template
ouT C1RTP ipull SYSCLR line low
MVI A,DSTEPL|load template

ouT C2RTP 1set DATASTEP' line high
MVI A,DFLOW {load template

ouT C2RTP iset DATAHOLD'®' line high
MVI A,IGNDL |load template

ouT C2RTP iset IGNORDTA' line high
MVI A,CLKMDL|load template

OouT C1RTP iset CLKMOD line low

MVI A,RRUNH |{load template

ouT C1RTP 1set RTPRUN line high
POP PSW irestore caller's AF

RET

RPSING sub=-rautine

Single-steps RTP by twiddling CLKMOD
and RTPRUN lines.
Does not change any registers or status.

PUSH PSW isave caller's AF

MVI A,SCLRL {load SYSCLR-lo template
ouT C1RTP ipull SYSCLR line low
MVI A,RRUNL }{load template

ouT C1RTP iset RTPRUN line low
MVI A,CLKMDH}load template

ouT C1RTP iset CLKMOD line high
MVI A,RRUNH }{load template

ouT CIRTP = iset RTPRUN line high
MVI A,RRUNL }reset RTPRUN

ouT C1RTP

MVI A,CLKMDL|reset CLKMOD

ouT C1RTP

;%g PSW irestore caller's AF

-28-

w—— o - - -

PHOLD:

z —— T s mamn e v T e - e e -

EMERR:

SGCOD:

RPHOLD sub-routine

Cuts off clock to RTP.
Daes not change registers or status.

PUSH
MVI
OuT
POP
RET

PSW

A, RRUNL

C1RTP
PSW

lsave caller's AF
iload template

!set RTPRUN line low
'restore caller's AF

MEMERR sub-routine

Displays defective memeory location in
LEDO thru LED3, cantents of ACC in
LEDY4 & LEDS5, contents of MEMory in
LED6 & LED7 , and then waits for a key
to be depressed. If the depressec key is
MEM, then memory diagnostics is resumed
from the broken point. Any other key
reinitiates diagnostics from the start
for the same arguments.

Expects HL painting to the defective location
and ACC contents to be the same as was used
for memory check.

Returns BC, DE and HL unchanged.

PUSH
PUSH
PUSH
MVI
CALL
CALL
CALL
CALL
CPI
POP
POP

POP
RZ

JMP

H

D

B
D,/05
DLADE
DLHL
DLHLP
KEY
/19

B

CMT1

lsave caller's HL

lsave caller's DE

Isave caller's BC

lpoint to LEDS

!display ACC in LEDY4 and LED5S
tdisplay HL in LEDO thru LED3
tdisplay HL-pointed in LED6-7
'wait for key to be depressed
lkey value matches RAMTST ?
'restore caller's BC

irestore caller's DE

'restore caller's HL

lkey matched,cont. from brkpt
lelse, start testing again

Me Ssage-GOOD sub-raqutine

Displays "Good"

PUSH
PUSH
MVI

H
PSW

in LEDO thru LED3
isave caller's HL
Isave caller's AF
ipoint to LEDO

=29~

MVI L,LEDG |load pattern for capital G
CALL DSPLAY |display 'G'

INR H ipoint to next LED

MVI L,LEDO |{load pattern for locase o
CALL DSPLAY |display 'o'

INR H ipoint to next LED

CALL DSPLAY |display another 'o

INR H ipoint to next LED

MVI L,LEDD 1{load pattern for locase d
CALL DSPLAY |display 'd'

POP PSW irestore caller's AF

PCP H irestore caller's HL

RET

MONITOR COMMAND TABLE

ONTBL: .WORD MGIVER |command = /00, qualifier = /00
.WORD MGET | command = /01, qualifier = /xx
.WORD MPUT icommand = /02, qualifier = /xx
.WORD MEDMP icommand = /03, qualifier = /00
.WORD MERST icommand = /04, qualifier = /00
.WORD MRUN icommand = /05, qualifier = /00
.WORD MHOLD fcommand = /06, qualifier = /00
.WORD MSDMP jcommand = /07, qualifier = /00
.WORD MINIT icommand = /08, qualifier = /00
.WORD MDIGO {command = /09, qualifier = /00
.WORD MDIG1 icommand = /0A, qualifier = /00
.WORD MDIG2 icommand = /0B, qualifier = /00
.WORD MDIG3 icommand = /0C, qualifier = /00
.WORD MDIGY {command = /0D, qualifier = /00
.WORD MDIGS icommand = /0E, qualifier = /00
.WORD MDIG6 icommand = /0F, qualifier = /00
.WORD MDIGT7 icommand = /10, qualifier = /00

ReSTart 6.5 INTERRUPT HANDLER ROUTINE

1

]

=

=

[}

]

1

H Receives command code thru Control Port on HOP

: Interface, which is used as a vector into

1 MONitor-TaBle to provide address of the corresponding
H service routine.

[]
]
R

6HAND: PUSH H isave HL
PUSH D {save DE
PUSH B { save BC
PUSH PSW |save AF
LXI D,0 {clear DE for DAD operation
LXI H,MONTBL|{load monitor table origin
IN DB1HOS |control port - low byte
ADD A {2X comm code for word offset
JNC R6H1 {skip next if not carry

-30-

INR D

R6H1: MOV E,A 'DE=word offset in mon-table
DAD D 'HL=pointer to service routine
MOV E,M ifetch low byte of address
INX H ipoint ta next location
MOV H,M ifetch high byte of address
MOV L,E IHLz=address of service routine
PCHL Ibranch to service routine

ReSTart 6.5 EXIT PROCEDURE

This procedure is common to all service routines.

Y m— ———e m =

6EXIT: POP PSW
POP B
POP D
POP H
EI
RET
i
i
i
a SERVICE ROUTINE No. O
]
i Outputs Version and Sub-Version numbers.
]
MGIVER: IN DB2HOS |dummy read of qualifier port
MVI A,SUBVER|load subversion number
OuT DA1HOS loutput to HOP as low byte
MVI A,VER iload version number
ouT DA2HOS !qutput to HOP as high byte
' JMP R6EXIT lexit
i
i
i SERVICE ROUTINE No. 1
]
1
: Fetches a record of specified length from specified
E ICMC address and outputs to HOP word by word.
]
MGET: IN DA1HOS |get source address low byte
MOV L,A linit reg L with it
IN DA2HOS !get source address high byte
MOV H,A tinit reg H with it
CPI /TF lcheck if RTP mem referenced
cpP RPHOLD |yes, set RTP in HOLD mode
IN DB2HOS .get rec length from qual port
MOV B,A isave in reg B
INR B
MGET1: DCR B tcheck if done
Jz R6EXIT .yes exit
MOV A,M ino, get current low byte first

-31-

z-- e e - - - - -

PUT:

MPUT1:

EDMP:

ouT
OuT
INX
MOV
ouT
INX
JMP

WAITOT
DA1THOS
H

AM

DA 2HOS
H
MGET1

iwait if last data not picked
ioutput low data byte to HOP
ipoint to next location

iget current high byte
ioutput high data byte to HOP
i point to next location

1 loop till done

SERVICE ROUTINE No. 2

Loads a record of specified length at specified
destination ICMC address from HOP word by word.

MVI
IN
MOV
IN
MOV
CPI
Cp
IN
MOV
INR
DCR
JZ
IN
IN
MOV
CMP
CNZ
INX
IN
MoV
CMP
CNZ
INX
JMP

SERVICE ROUTINE

Transmits errbr

IN

LDA
ouT
XRA
ouT
JMP

E,/0H
DA1HOS
L,A
DA2HOS
H, A
/TF
RPHOLD
DB2HOS
B,A

B

B
R6EXIT
WAITIN
DA1HOS
M, A

M
ERROR
H
DA2HOS
M, A

M
ERROR
H
MPUT 1

DB2HOS
ERCODE
2A1HOS

DA2HOS
R6EXIT

tinit reg E in case of error

i get destination addr low byte

tinit reg L with it

i get destination addr high byte
iinit reg H with it

icheck if RTP memory referenced
lyes, set RTP in HOLD mode

lget rec length from qual port

i save it in reg B

i check if done

| yes, exit

ino, wait if data not available
1get data low byte from HOP
istore in current location
icheck if correctly written
ino, signal error

ipoint to next lqcatian

iget data high byte from HOP
i stare in current location
icheck i f correctly written
ino, signal error

ipoint to next location
iloop till done

Na. 3
cade to HOP.

idunmy read of qualifier port
{load error code

{eutput as low byte to HOP
|load a zero

ioutput as high byte to HOP
jexit

MERST:

3-- - e - - ——

RUN:

HOLD:

DIGO:

: - ke e S S - -

DIG1:

SERVICE ROUTINE No. 4

Resets error condition by calling ERESET.

IN DB2HOS |(dummy read of qualifier port
CALL ERESET 1|let others do the job
JMP R6EXIT lexit

SERVICE ROUTINE Na. 5

Sets RTP in RUN mode by calling RTPRUN.

IN DB2HOS |dummy read of qualifier port
CALL RPRUN i{let others do the job
JMP R6EXIT lexit

SERVICE ROUTINE No. 6

Sets RTP in HOLD mode by calling RPHOLD.

IN DB2HOS |dummy read of qualifier port
CALL RPHOLD 1{let others da the job
JMP R6EXIT lexit

SERVICE ROUTINE No. 9

Performs d iagnostic procedure no. 0 by calling DIGO.

IN DB2HOS |dummy read of qualifier port
CALL DIGO ilet others dao the job
JMP: R6EXIT lexit

SERVICE ROUTINE No. 10

Performs diagnostic procedure no. 1 by calling DIG1.

IN DB2HOS |{dummy read of qualifier port
CALL DIG1 {let others do the job
JMP R6EXIT |exit

SERVICE ROUTINE No. 11
Performs diagnostic procedure no. 2 by calling DIGZ2.

[}

MDIG2: 1IN DB2HQS |(dummy read of qualifier port
CALL DIG2 ilet others do the job
JMP R6EXIT lexit

SERVICE ROUTINE No. 12

Performs diagnostic procedure no. 3 by calling DIG3

|
MDIG3: 1IN DB2HOS | dummy read of qualifier port

CALL DIG? llet others do the job
JMP R6EXIT jexit

SERVICE ROUTINE No. 13

Performs diagnostic procedure na. 4 by calling DIGH.

z P —— L T DY

DIGY4: 1IN DB2HOS |{dummy read of qualifier port

CALL DIGY ilet others do the job
JMP R6EXIT {exit

i

1

i

i

i SERVICE ROUTINE No. 14

]

| Performs diagnostic praocedure nao. 5 by calling DIGS5.

]

MDIG5: 1IN DB2HOS |dummy read of qualifier port
CALL DIGS ilet others do the job

. JMP R6EXIT lexit

:

]

i

i SERVICE ROUTINE No. 15

]

[}

i Performs diagnaostic procedure no. & by calling DIG6.

]

]

MDIG6: 1IN DB2HOS |dummy read of qualifier port
CALL DIG6 |let athers do the job
JMP R6EXIT lexit

1

!

}

i SERVICE ROUTINE No. 16 .

]

E Perfaorms diagnostic procedure na. 7 by calling DIGT.

1

MDIG7: 1IN DB2HOS |{dummy read of qualifier port
CALL DIG?7 ilet athers do the job
JMP R6EXIT |exit

-34-

MINIT1:

SERVICE ROUTINE No. 7

Transmits RTP status to HOP.

IN

LDA
ouT
XRA
OUT
JMP

DB2HOS
STATUS
DA1HOS
A

DA 2HOS
R6EXIT

| dummy read of qualifier port
lload status fram CBLOCK
loutput as low byte to HOP
{load a zero

i output as high byte to HOP
jexit

SERVICE ROUTINE No. 8

Performs initialization of RTP by calling
appropriate routines.

IN

MVI
XRA
LXI
MOV
INX
DCR
JNZ
LXI
MVI
MVI
STA

CALL
CALL

LDA
CPI
cz

JMP

ReSTart

PUSH
PUSH

MVI
ouT
MVI
ouT
MVI

CALL

IN
STA

DB2HOS
B,/10
A

H,/ 8000

M,A

H

B
MINIT1

H,/8003

M,/16
A,/02
RPVECT
VECTOR
RPRUN
ERCODE
/01
ERESET
R6EXIT

| dummy read of qualifier port
lload reg B with 16

iclear ACC

lpoint to base of MICPGM memory
iclear memory

ipaint to next location

lloop 16 times

ipaint 18t microprog cont. inst.
!init with JVEC instruction

| load MICPGM start address
Isave it as vector

lvectar RTP to start address
Iset RTP in RUN mode

|feteh error code

!check if due to lack of init
lyes, then clear error state
texit

7.5 INTERRUPT HANDLER ROUTINE

D
PSW

isave DE aon stack
| save AF an stack

A,ICMBSY!load ICMRDY turn-off template

C2RTP

tinit ICMRDY to off

A,IGNDH {load template

C2RTP
E,/01
ERROR
DB1RTP
STATUS

iset IGNORDTA' line low

|set error code 1

{signal need for initialization
{fetch new status

!save new status in CBLOCK

-35=

POP PSW irestore AF from stack

POP D irestore DE from stack
EI jenable interrupts
RET

TRAP INTERRUPT HANDLER ROUTINE

RHAND: PUSH D isave DE on stack
MVI E,/0OA iload error code
CALL ERROR idisplay error
POP D irestore DE
ouT TRACK irearm watchdog
EI {enable interrupts
RET
i
i
. .=/0800 lorigin for 3rd PROM chip
]
E DIAGNOSTIC ROUTINES
{
| These rqutines transfer the diagnostic micraoprograms
! to RTP's memory, and sets RTP ta execute it.
]
i
DIGO: PUSH PSW | save callers's AF
PUSH H |save caller's HL
PUSH D |save caller's DE
PUSH B | save caller's BC
LXI D,MPORG |load squrce pointer
LXI B,/8000 {load destination pointer
MVI L,/10 i1load byte caunt
DO1: LDAX D ifetch data from source
STAX B istore in destination
INX D lincrement source pointer
INX B !increment destination painter
DCR L idecrement byte count
JNZ DO1 {if not done, loop
LXI D,MPGMO |{load source pointer
LXI B,/8010 {load destination pointer
LXI H,/7300 1{load byte count
DOo2: LDAX D {fetch data from source
STAX B istore in destination
INX D {increment source pointer
INX B lincrement destination pointer
DCX H idecrement byte count
MOV A,L icheck if done
ORA A
JNZ D02 {if not, loop
MOV A,H
ORA A
JNZ D02
STA RPBRKD |if done, clear depth param
MVI A,/ 02 !load microprogram start addr

-36-

[w JET

U - e wse

STA
CALL
CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH
PUSH
LXI
LXI
MVI
LDAX
STAX
INX
INX
DCR
JNZ
LXI
LXI
LXI
LDAX
STAX
INX
INX
DCX
MOV
ORA
JNZ
MOV
ORA
JNZ
STA
MVI
STA
CALL
CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH

RPVECT
VECTOR
RPRUN

PSW

PSW

D,MPORG
B,/8000

~
—
o

PPrUOPPILIOOpDO T OO —
. e
b o3 \C NN o

o
-
N

RPBRKD

=
~N
o
n

RPVECT

VECTOR
RPRUN
B

PSW

PSW

| set it as param

ivector RTP to this start addr
rset RTP in RUN mode

irestore caller's registers

isave callers's AF

isave caller's HL

isave caller's DE

| save caller's BC

iload source pointer
i1load destination pointer
iload byte count

| feteh data from source
istore in destination

i increment source pointer
i increment destination pointer
jdecrement byte count

iif not done, loop

{load source pointer
{load destination pointer
iload byte count

ifetch data from source
istore in destination
iincrement source pointer
iincrement destination pointer
idecrement byte count
icheck if done

iif not, leop

1if done, clear depth param
iload microprogram start addr
| set it as param

|vector RTP to this start addr
1set KTP in RUN mode

irestaore caller's registers

{save callers's AF
isave caller's HL
{save caller's DE

-37-

D21:

D22:

[w B

IG3:

D31:

D32:

PUSH
LXI
LXI
MVI
LDAX
STAX
INX
INX
DCR
JNZ
LXI
LXI
LXI
LDAX
STAX
INX
INX
DCX
MOV
ORA
JNZ
MOV
ORA
JNZ
STA
MVI
STA
CALL
CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH
PUSH
LXI
LXI
MVI
LDAX
STAX
JNX
INX
DCR
JNZ
LXI
LXI
LXI
LDAX

PORG
8000

roowoCwow
\-\:{
o

(w N
- N
T =
o
(]
=
n

PO IToomo

o
n
n

RPBRKD

>
~
o
n

RPVECT
VECTOR
RPRUN

PSW

"]
w
=

PORG
8000

- -
-—b
o

oUW roomox

isave caller's BC

11load socurce pointer

i1load destination pointer
iload byte caunt

| fetch data from source

istore in destination
iincrement source pointer
iincrement destination pointer
idecrement byte count

i1if not done, loop

iload source pointer

i1load destination pointer
iload byte count

i fetech data froem source

istore in destination
iincrement source pointer
iincrement destination pointer
|decrement byte count

icheck if done

{if not, loop

{if done, clear depth param

i load microprogram start addr
iset it as param

ivector RTP tq this start addr
iset RTP in RUN mode

irestore caller's registers

isave callers's AF

1save caller's HL

isave caller's DE

{save caller's BC

| load source pointer
tload destination pointer
iload byte count

|fetch data from source

| store in destination
{increment source paointer
{increment destination pointer
{decrement byte count

{if not done, loop

{load source painter
{load destinatiaon pointer
|load byte count

{ fetch data from source

-38-

U —— on e

DU41:

Dy2:

IGY:

STAX
INX
INX
DCX
MOV
ORA
JNZ
MOV
ORA
JNZ
STA
MVI
STA
CALL
CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH
PUSH
LXI
LXI
MVI
LDAX
STAX
INX
INX
DCR
JNZ
LXI
LXI
LXI
LDAX
STAX
INX
INX
DCX
MOV
ORA
JNZ
MOV
ORA
JNZ
STA
MVI
STA
CALL

3

’

D32
RPBRKD
A,/C2
RPVECT
VECTOR
RPR UN
B

D

H

PSW

PO ITOOT
M lon

wn
x

PORG
8000

NNX
——
o

=
-

y MPGMY
,/8010
»/300

P oIl noCotr-roowootlwOwo v
&=
zhnh -

o
&
n

RPBRKD
A,/02

RPVECT
VECTOR

istore in destination

i increment source pointer
iincrement destination pointer
jdecrenient byte count

tcheck if done

1if not, loop

1if done, clear depth param
i1load microprogram start addr
1set it as param

vector RTP ta this start addr
iset RTP in RUN mode

irestore caller's registers

isave callers's AF

{ save caller's HL

isave caller's DE

|save caller's BC

tload squrce pointer
tload destination pointer
iload byte count

| fetch data from source
istore in destination
iincrement source pointer
iincrement destination pointer
idecrement byte count

iif not done, loop

{load saurce painter
iload destinatian pointer
iload byte count

ifetch data from source
istore in destination
lincrement source pointer
iincrement destination pointer
idecrement byte caount
icheck if done

1if not, loop

{if done, clear depth param
{load microprogram start addr
iset it as param

ivector RTP to this start addr

-39~

[T

U-- -—ce enes

CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH
PUSH
LXI
LXI
MVI
LDAX
STAX
INX
INX
DCR
JNZ
LXI
LXI
LXI
LDAX
STAX
INX
INX
DCX
MOV
ORA
JNZ
MOV
ORA
JNZ
STA
MVI
STA
CALL
CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH
PUSH
LXI

RPRUN

PSW

D52

PO nIOUOmO

RPBRKD
A,/02
RPVECT
VECTOR
RPRUN

WITOWwW

PSW
H
D
B

iset RTP in RUN mode
irestore caller's registers

isave callers's AF

1save caller's HL

isave caller's DE

|save caller's BC

iload source pointer

| load destination pointer
iload byte count

| fetech data from source
istore in destination
iincrement source pointer
tincrement destination pointer
idecrement byte count

iif not done, loop

|load source paointer
1load destination pointer
iload byte count

ifetch data from source
istore in destination
iincrement source pointer
{ increment destination pointer
idecrement byte count
icheck if done

i1if not, loop

1if done, clear depth param
iload microprogram start addr
Iset it as param

ivector RTP to this start addr
iset RTP in RUN mode

irestore caller's registers

| save callers's AF
isave caller's HL
isave caller's DE
{ save caller's BC

D,MPORG {load source paointer

-40-

D61:

D62:

[REE T T

IGT:

D71:

D72:

LXI
MVI
LDAX
STAX
INX
INX
DCR
INZ
LXI
LXI
LXI
LDAX
STAX
INX
INX
DCX
MOV
ORA
JINZ
MOV
ORA
INZ
STA
MVI
STA
CALL
CALL
POP
POP
POP
POP
RET

PUSH
PUSH
PUSH
PUSH
LXI
LXI
MVI
LDAX
STAX
INX
INX
DCR
JNZ
LXI
LXI
LXI
LDAX
STAX
INX

B, /8000
L,/10

ProPPrlToowmO

<
(=)}
n

RPBRKD
4,/02
RPVECT
VECTOR
RPRUN

PSW

L,/710

-~
-—b

y MPGMT7
,/8010
» /300

VoD wOYutrwowo

iload destination pointer
1load byte count

i feteh data from source

istore in destination
iincrement source pointer
iincrement destination pointer
idecrement byte count

tif not done, loop

lload squrce pointer

1load destination pointer
iload byte count

i fetech data from source

|store in destination
iincrement scurce pointer
iincrement destination pointer
i decrement byte count

icheck if done

{if not, lcop

1if done, clear depth param
iload microprogram start addr
iset it as param

ivectar RTP to this start addr
iset RTP in RUN mode

irestore caller's registers

isave callers's AF

isave caller's HL

{save caller's DE

{save caller's BC

lload source pointer
iload destination pointer
i{load byte count

ifetch data from source
istere in destinatiaon
iincrement source painter
iincrement destination pointer
idecrement byte count

iif not dane, laop

iload squrce pointer
{load destinatiaon pointer
t load byte caunt

|fetch data from source
istore in destination
{increment source pointer

-41-

INX B lincrement destination pointer
DCX H idecrement byte count

MOV A,L icheck if done

ORA A

JNZ D72 1if not, loop

MOV A,H

ORA A

JNZ D72

STA RPBRKD (if done, clear depth param
MVI A,/02 lload microprogram start addr
STA RPVECT |{set it as param

CALL VECTOR |vector RTP to this start addr
CALL RPRUN iset RTP in RUN mode

POP B lrestore callerfs registers
POP D

POP H

POP PSW

RET

z - - e -

PORG: -BYTE ”,/1611”
'BYTE ’9’/13!”7

z - - -

PGMO: .BYTE /O0A,/90,,/1E,/Ch4,,,
.BYTE /1E,/E0,/01,/1E,/Cl,,,
.BYTE /1E,/E0,/01,/1E,/Ch,,,
.BYTE /1E,/E0,/01,/1E,/Ch4,,,
.BYTE /1E,/E0,/01,/1E,/C4,,,
.BYTE /1E,/E0,/01,/1E,/Cl,,,
.BYTE /1E,/E0,/01,/1E,/Ch,,,
.BYTE /1E,/E0,/01,/1E,/Ch,,,
.BYTE ,/E0,/C1,/13,,/02,,
.BYTE ,,,/1E,,,,

PGM1: .BYTE /OA,/01,,/1E,,,,
.BYTE /0B,/10,,/1E,/99,,,
.BYTE ,,,/A3,,/08,,
.BYTE ,,,/1E,,
'BYTE ./40,/C1./13,,/02,,

.BYTE v s/ 1E,,
.BYTE /BO,/CO /13,,/02,,
. BYTE ,/1E,,,,

PGM2: .BYTE /OA,/01,,/1E,,,,
.BYTE /0B,/10,,/1E,/44,,,
.BYTE /0C,/90,,/1E,/47,/01,,
BYTE 4,4/ TE 4y,

“42-

z - wsas enan

z — - -

.BYTE
.BYTE

.BYTE
+BYTE
.BYTE
. BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
. BYTE
. BYTE

.BYTE
. BYTE
«BYTE
. BYTE
. BYTE
. BYTE
.BYTE
. BYTE
. BYTE
. BYTE
.BYTE
.BYTE
.BYTE
.BYTE
«BYTE
.BYTE
. BYTE
.BYTE
. BYTE
. BYTE
.BYTE

«BYTE
.BYTE
« BYTE
.BYTE

,/B0,/C1,/13,,/02,,
"’/1E1”’

/0A,/0M4,,/1E,,,,
/0B,/05,,/1E,,,,
/0¢c,/06,,/1E,,,,
/04,/50,,/1E,/86,,,
,,,/"3,,/00,,
’)v/1E’vsv
/04,/60,,/1E,/86,,,
fvv/u3s’/121’
yas/1E 5,4,
/40,/C0,/13,,/02,,
,,/1E

05,/60,,/1E /86, ,,
vv/u3’1/1531

1

/50,/C0 /13,,/02,,
’/1E1”7
60,/C0,/13,,/02,,
’/1E11)’

w W W W v N\v -

- Ne

/0A,/C0,/10,/1E,,,,
/0A,/C0,/10,/1E,,,,
/0B,/C0,/20,/1E,,,,
/0B,/C0,/20,/1E,,,,
/0¢,/€0,/30,/1E,,,,
/0¢,/€0,/30,/1E,,,,
/03,790, ,7 1E,/u44,/0E, ,
/02,/90,,/1E,/45,/49,,
/01,/90,,/1E,/47,/EF,,
119/1E0191
y19/83,,/13,,
v11/1E,’v’

",/039’/15”

719 1E”’9

/1B,/€0,/01,/1E,/C4,,,

,/E0,/C1,7/13,,/02,,
J/1E,

.740,7€0,713,,/02,,

1’1/1Erv

" /B0, /C0.713,,/02, ,

1!1/1E1v11

/0A,/C0,/10,/1E,,,,
/0A,/C0,/10,/1E,,,,
/08B,/C€0,/20,/1E,,,,
/08B,/C0,/20,/1E,,,,

~43-

3 ——— e

. BYTE
.BYTE
.BYTE
.BYTE
.BYTE
«BYTE
.BYTE
.BYTE
. BYTE
. BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
. BYTE
.BYTE

.BYTE
.BYTE
. BYTE
. BYTE
. BYTE
.BYTE
. BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
.BYTE
. BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
+BYTE
.BYTE
.BYTE
.BYTE
« BYTE
«BYTE
- BYTE
.BYTE

/0C,/C0,/30,/1E,,,,
/0C,/C0,730,/1E,,,,
/03,790, ,/1E,/44,/23,,
/01,790, ,/1E,/45, /91, ,
/02,/90,,/1E,/47,/FF,,
y92/ 1E, 4y,
91s/83’1/1317

9”/1E”1l

!”/0311/15t9

? 9 1 Y219
/1B,/C0,/01,/1E,/Ch,,,
,/E0,/C1,/13,,/02,,
’1’/1E’!”

"!/159177
,/B0,/C0,/13,,/02,,
1,’/18”!’

/0A,/C0,/10,/1E,,,,
/OA,/C0,/10,/1E,,,,
/0B,/C0,/20,/1E,,,,
/0B,/C0,/20,/1E,,,,
/0C,/€0,/30,/1E,,,,
/0C,/C0,/730,/1E,,,,
/01,790, ,/1E,/44,/18,,
/02,/90,,/1E,/45,/2F,,
/03,/90,,/1E,/45,/51,,
y29/1E,,,,
v1)/0309/11s’
1’1/1E’1v1
/1B,/C0,/01,/1E,/C4,,,
,/E0,/C1,/13,,/02,,
11’/1E9r11
,/B0,/C0,/13,,/02,,
1”/1E”',

/OA,/C0,/10,7/1E,,,,
JOA,/C0,/710,/1E,,,,
/0B,/C0,/20,/1E,,,,
/0B,/C0,/20,/1E,,,,
/0C,/C0,730,/1E,,,,
/0¢,/C0,/30,/1E,,,,
/03,790, ,71E ,/44,/ OE, ,
/02,790, ,/1E,/45,/49, ,
/01,790, ,/1E,/47,/ EF,,
”’/1219”
"’/83"/13”

’1’/1E”!’

!l’/031’/15’l

7299 1El'99

Ty

.BYTE
.BYTE
-BYTE
. BYTE
.BYTE
+BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
. BYTE
.BYTE
. BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
. BYTE
. BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
«BYTE
.BYTE
. BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
« BYTE
«BYTE
.BYTE
.BYTE
.BYTE
« BYTE
.BYTE
. BYTE

/C0,/01,/1E,/Ch,,,
/41,/13,,/16,,
/13,,/16,,
LI]
'/ 1E,,,,
,/1E,/7U44,/23,,
/01,/90' ,/1E’/u5,/9u"
/02,/90,,/1E,/47,/FF,,
,”/1E””
,,’/83l1/21”

1"/1E",'

y917/03,,/23,,

v/ 1E, 5,4,
/18,/€0,/01,/1E,/C4,,,
,/E0,/51,/13,,/24,,
v9:/1E4,,,
,/A0,/50,/13,,/24,,
v31/1E,, 5,
,/B0,/50,/1E, ,,,
/01,/90,,/1E,/44,/18,,
/02,/90,,/1E,/45,/2F,,
/03,/90,,/1E,/45,/51,,
v99/1E, 44,
v1+/03,,/2D,,

v91/1E 54,4,
/1B,/C0,/01,/1E,/ C4,,,
/EG,/61,7/13,,/2E,,
y/1E, 44,
B0,/60,/1E,,,,
4,/50,,/1E,/86,,;
y/43,,/36,,

y/1E,,,,
4,/60,,/1E,/86,,,
y/43,,/3B,,

y/1E, 44,
4,/07,,/13,,/3C,,

v/ 1E,,,,
5,/60,,/1E,/86,,,
43,,/38B,,

1
40
1
0
?

Ne w Nw v New » o

)
/
0

?

?
0

?

?
0

[EEN)
07,4/1E,,4,4,
/08,/70,,/1E,/C1,,,
»/EO,/C1,/13,,/02,,
199/ 1E, 4,

CONTROL BLOCK DESCRIPTION

.=/1FEO

{Stack grows downwards from here

-45-

SAVAF:
SAVDE
SAVBC:
SAVHL:
STACK:
SAVPC:
SAVSP:

RAMPTR:

BRKA:
BRKD:
DSPLM:

RUNM:

PANBOX:
RPVECT:
RPBRKD:
RPSTRT:
ERCODE:
STATUS:

. BLKB
.BLKB
.BLKB
. BLKB

. BLKB
. BLKB
. BLKB
.BLKB
.BLKB
. BLKB

.BLKB

.BLKB
. BLKB
. BLKB
.BLKB
. BLKB
. BLKB

.END

= =M MN VIV NV

—) - = QO

isave area for AF
isave area for DE
isave area for BC
isave area for HL

isave area for program counter
isave area for Stack Pointer

isave area for RAM support pointer
{save area for breakpoint address
isave area for breakpoint depth
idisplay mode

i 0 - indicates HL painted format
i other values indicate REG format
irun mode

| 0 - free running

i other - single step(BKPT on M1)
imiscellaneous buffer

isave area far RTP vector

|save area for RTP breakpoint depth
isave area for default start address
1Error Code

istatus as follows

i bit7=1 - ICMICT initialized
1
|

bit3 thru bit0 = S7,S6,31,30

-46-

APPENDIX - G.1

Intel's Hex-Format

\ N/
.q61FFOQ91734............ FETB(CR)(LF)etc
N — |
0 ¢ v ¥
RC L RT DB CS BS

RC => # of data bytes in record (2 digits).
Ranges from OH to 10H.
Must be 0 on last record.

LA -> Load Address (4 digits).

v

RT -> Record Type (2 digits).
0 = Normal
1 = EOF ; RC = 0, LA = Execution Address
of program.

[Note: Last record may also be a
O-length normal record if no
Execution Address exists.]

DB -> Data Bytes (2 digits each).

CS => Checksum (2 digits).
[Mod_256 sum of each byte from the RC to the
last data byte inclusive.]

BS -

\4

Other garbage. Ignored. Nothing matters until
the next ":" .

-l=

APPENDIX - G.2

#include <stdio.h>

fdefine zero 0

ffdefine fixcnt 16

#idefine colen 58

fidefine one 1

#define twofs 255 :

main() /* This program converts .dld format files into
Intel-hex format absolute load modules, suitable
for burning PROMs on MDS system. */

int badrhi,badrlo,bytcnt,c,chsum,count;
int filler = 0;
start: badrla getchar();
badrhi getchar();
pytent getchar();
if (bytent !z 0)
{ whi%e (bytent > 0)

count (bytent < fixent) ? bytent:fixcnt;
chsum = badrhi + badrlo + count;
printf("%1c¢", colon);
printf(*%02x", count);
printf("%02x", badrhi);
printf("%02x", badrlo);
printf("%02x", zero);
while (caount-- > 0)

{

¢ = getchar();

chsum += ¢ ;

printf("$02x", ¢);

--bytent;

};
chsum = - chsum;
chsum &= 255;
printf("%02x", chsum);
printf("0);
if({ badrlo += 16) > 255)

{ badrlo -= 256;

\ ++badrhi;

?

}.
goto étart;
}
else

{
printf("%1c¢", colon);
while (filler++ < 3)

1=

printf("%02x", zero);
printf("%02x", one);
printf("%2x", twofs);

?

opp-6-2

APPENDIX - H

#include <stdio.h>

~

fidefine unhex(ec) ('0' <= ¢ && ¢ <= '9' ? c='0"':c=-"A"+10)

main{ argc,argv)
int argec;
char %¥%argy;

{
int done;
FILE #file;
done = 0;
while(-~argce>0)
{
done = 1;
if((file = fopen(®*++argv, "r"))==NULL)
{
printf("unhex: can't open %s0, ¥argv);
continue;
}
filter(file);
}

if(!done)
filter(stdin);
return(0);

}

filter(file)

register FILE *file;

{

register int ¢, t;

while ((c = getc(file)) >= 0)
{
if (c == " n' || ¢c == "' r!
continue;
t = gete(file);
¢ = (unhex(c) << 4) + unhex(t);
gutchar(c);

ltl

o]
[]]
n
o]
1]
1]

MGR

ADDR

8010

8018

8020

8028

8030

8038

8040

8048

8050

8058

0A

1E

1E

1E

1E

1E

1E

1E

00

00

MICRO_CODE

90
EO
EO
EO
E0
EO
EO
EO

EO

00

00

01

01

01

01

01

01

01

C1

00

1E

1F.

1E

1E

1E

1E

1E

1E

13

1E

Cy

Ch

Cy

cy

Cuy

Cu

C4

Cy

00

00

00

00

00

00

00

00

00

00

02

00

APPENDIX - J.1

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

MPGM

ADDR

02

03

ou

05

06

07

08

09

0A

0B

ASSEMBLY

CODE
SHWL IR1,#00
SHWL ROSA, ROSB
SHWL ROSA, ROSB
SHWL ROSA, ROSB
SHWL ROSA, ROSB
SHWL ROSA, ROSB
SHWL ROSA,ROSB
SHWL ROSA, ROSB
MO VB ROSB,OR 3
BR #02
NOP

APPENDIX - J.2

MGR MICRO_CODE MPGM ASSEMBLY

ADDR ADDR CODE

8010 OA 01 00 1E 00 00 00 00 02 MOVA IR1, GR1

8018 0B 10 00 1E 99 00 00 00 03 ADD IR2,GR1

8020 00 00 00 A3 00 08 00 00 o4 BAC #08

8028 00 00 00 1E 00 00 00 00 05 NOP

8030 00 A0 C1 13 00 02 00 00 06 MOVB ALU,OR3
R #02

8038 00 00 00 1E 00 00 00 00 07 NOP

8040 00 BO CO 13 00 02 00 00 08 MOVB LIMHI,OR3
BR #02

gou48 00 00 00 1E 00 00 00 00 09 NOP

APPENDIX - J.3

MGR MICRO_CODE MPGM ASSEMBLY

ADDR ADDR CODE

8010 O0A 01 00 1E 00 00 00 0O 02 MOVA IR1,GR1

8018 OB 10 6O 1E 44 00 00 0O 03 MLIR IR2,GR1

8020 0C 90 00 1E 47 01 00 00 o4 MSIR IR3,#01

8028 00 00 00 1E 00 00 GO 00 05 NOP

8030 00 BO C1 13 00 02 00 00 06 MOVB MACL,OR3
BR #02

8038 00 00 00 1E 00 00 00 00 07 NOP

=

MGR

ADDR

8010

8018

8020

8028

8030

8038

8040

8048

8050

8058

8060

8068

0A

0B

0C

o4

00

00

04

00

00

00

00

05

ou

05

c6

50

00

00

60

00

00

40

00

60

MICRO_CODE

00

00

00

00

00

00

00

00

00

co

00

00

1E

1E

1E

1E

43

1E

1E

43

1E

13

1E

1E

00

00

00

86

00

00

86

00

00

00

00

86

00

00

00

00

oD

00

00

12

00

02

00

00

APPENDIX - J.4

00

00

00

00

00

00

00

00

00

00

00

00

Cco

00

00

00

00

00

00

00

00

00

00

00

MPGM
ADDR

02

03

o4

05

06

07

08

09

0A

0B

oc

)

ASSEMBLY

CODE
MO VA IR1, GRY
MOVA IR2, GR5
MOVA IR3, GR6
CMPR GRY4, GRS
BAHC #0D
NOP
CMPR GRY4,GR6
BAHC #12
NOP
MOVB GR4,0R3
BR #02
NOP
CMPR GR5,GR6

8070

8078

8080

8088

8090

8098

00

00

00

00

00

00

00

00

50

00

60

00

00

00

Co

00

co

00

43

1E

13

1E

13

1E

00

00

00

00

00

00

12

00

62

Qo

02

00

00

60

00

00

00

00

00

00

00

00

00

00

-2

OE

OF

10

1M

12

13

BAHC

NOP

MOVB
BR

NOP

MOVB

NOP

app- T4

#i2

GR5,0R3
#02

GR6,0R3

MGR
ADDR

8010

8018

8020

8028

8030

8038

8040

8048

8050

8058

8060

8068

8070

0A

0A

0B

0B

ocC

0C

03

02

01

00

00

00

00

Co

Cco

Co

Co

Co

Cco

90

90

90

00

60

00

00

MICRO_CODE

10

10

20

20

30

30

00

00

00

00

00

00

00

1E

1E

1E

1E

1E

1E

1E

1E

1E

1E

83

1E

03

00

00

00

00

00

00

4y

45

47

00

00

00

00

00

00

00

00

00

00

OE

hg

EF

00

i3

00

15

APPENDIX - J.5

60

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

60

00

00

00

-1-

MPGM
ADDR

02

03

o4

05

06

07

08

09

0A

0B

ocC

oD

OE

ASSEMBLY
CODE

MOVN

MOVN

MOVN

MOVN

MOVN

MOVN

MLIR

MAIR

MSIR

NOP

BMXP

NOP

BM15

IR1,GR1

IR1,GR1

IR2,GR2

IR2, GR2

IR3,GR3

IR3,GR3

GR3,{#!0E

GR2, #49

GR1,#EF

#13

#15

8078

8080

8088

8090

8098

80A0

80A8

80BO

co

1B

00

00

00

00

00

00

00

Co

EO

00

AO

00

BO

00

00

01

C1

00

Co

00

Co

00

1E

1E

13

1E

13

1E

13

1E

00

cu

00

00

00

00

00

00

00

00

02

00

02

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

OF

10

11

12

13

14

15

16

NOP

SHWL

MOVB
BR

NOP

MOVB
BR

NOP

MOVB
BR

NOP

qr@-iﬁs

MACL,MACH

ROSB, OR3
#02

LIMLO,OR3

{##02

LIMHI,OR3

#02

MGR
ADDR

8010

8018

8020

8028

8030

8038

8040

8048

8050

8058

8060

8068

8070

0A

0OA

0B

oC

ocC

03

01

02

00

00

00

00

Co

Co

Co

co

Cco

co

90

90

90

00

00

00

00

MICRO_CODE

10

10

20

20

30

30

00

00

00

00

00

00

00

1E

1E

1E

1E

1E

1E

1E

1E

1E

83

1E

03

00

00

00

00

00

00

4y

45

47

00

00

00

00

00

00

00

00

00

23

94

FF

00

13

00

15

APPENDIX - J.6

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

MPGM
ADDR

02

03

o4

05

06

07

08

09

0A

0B

oC

oD

OE

ASSEMBLY
CODE

MOVN

MOVN

MOVN

MOVN

MOVN

MOVN

MLIR

MAIR

MSIR

NOP

BMXP

NOP

BM15

IR1,GR1

IR1,GR1

IR2,GR2

IR2,GR2

IR3,GR3

IR3, GR3

GR3,{#23

GR1,#94

GR2,{FF

#13

#15

8078

8080

8088

8090

8098

80A0

80AA

80B0

00

1B

00

00

00

00

00

60

00

Co

EO

00

AO

00

BO

00

00

01

C1

00

co

00

Co

00

1E

1E

13

1E

13

1E

13

1E

00

C4

00

00

00

00

00

00

00

00

02

00

02

00

02

00

00

00

00

00

00

GO

00

00

00

00

00

00

00

00

00

00

-P=

oF

10

11

12

13

14

15

16

NOP

SHWL

MOVB
BR

NOP

MOVB

BR

NOP

MOVB

BR

NOP

M-‘l’-s

MACL , MACH
ROSB,OR3
#02
LIMLO,OR3
#02
LIMHI,OR3
#02

MGR
ADDR

8010

8018

8020

8028

8030

8038

8040

8048

8050

8058

8060

8068

0A

0A

0B

0B

ocC

ocC

01

02

03

00

00

00

Cco

Co

Cco

Co

Cco

Co

90

90

90

00

00

00

MICRO_CODE

10

10

20

20

30

30

00

00

00

00

00

00

1E

1E

1E

1E

iE

1E

1E

1E

1E

1E

03

1E

00

00

00

00

00

00

4y

45

45

00

00

00

00

00

00

00

00

00

18

2F

51

00

11

00

APPENDIX - J.7

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

MPGM
ADDR

02

03

o4

05

06

07

08

09

0A

0B

oc

oD

ASSEMBLY
CODE

MOVN

MOVN

MOVN

MOVN

MOVN

MOVN

MLIR

MAIR

MAIR

NOP

BM15

NOP

IR1,GR1

IR1,GR1

IR2,GR2

IR2,GR2

IR3,GR3

IR3,GR3

GR1,#18

GR2,#2F

GR3,#51

#11

8070

8078

8080

8088

8090

1B CO 01 1E C4 00 00 0O

CO EO C1 13 00 02 00 0O

00 00 00 1E 00 00 00 00

00 BO CO 13 00 02 00 00

00 00 00 1E 00 00 00 00

OE

OF

10

1

SHWL

MOVB

BR

NOP

MOVB
BR

NOP

oph-T-7
MACL,MACH

ROSB,OR3
##02

LIMHI, OR3
#02

MGR

ADDR

8010

8018

8020

8028

8030

8038

8040

8048

8050

8058

8060

8068

8070

OA

0A

0B

0B

ocC

ocC

03

02

01

00

00

00

00

Co

Cco

Cco

Co

co

Co

90

90

90

00

00

00

00

MICRO_CODE

10

10

20

20

30

30

00

00

00

00

00

00

00

1E

1E

1E

1E

1E

1E

1E

1E

1E

1E

83

1E

03

00

00

00

00

00

00

4y

45

47

00

00

00

00

00

00

00

00

00

00

OE

49

EF

00

13

00

15

APPENDIX - J.8

00

00

00

00

00

00

00

00

00

00

00

00

00

00
00
00
00
00
00
00
00
00
00
00
00

00

MPGM

ADDR

02

03

04

05

06

07

08

09

OA

0B

]

oD

OE

ASSEMBLY

CODE

MOVN

MOVN

MOVN

MOVN

MOVN

MOVN

MLIR

MAIR

MSIR

NOP

BMXP

NOP

BM15

IR1,GR

IR1, GR1

IR2,GR2

IR2,GR2

IR3,GR3

IR3, GR3

GR3,#0E

GR2,#49

GR1, #fEF

#13

#15

8078
8080

8088

8090

8098

80A0
80A8
80B0O
80B8
80C0
80C8
80D0
80D8
80EO
BOEB
80F 0

BOF8

00

1B

00

00

00

00

00

03

01

02

00

00

00

00

00

1B

00

00

co

EO

00

00

00

BO

9¢C

90

90

00

00

00

00

00

co

EO

00

01

41

00

40

00

40

00

00

00

00

00

00

00

00

01

51

1E

1E

13

1E

13

1E

1E

1E

1E

1E

1E

83

1E

03

1E

1E

13

00

Cy

00

00

00

00

00

44

45

47

0C

oo

00

00

00

C4

00

00

00

16

00

16

00

00

23

94

FF

00

21

00

23

00

co

24

00

00

60

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

oeC

00

00

00

-2-

oF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

NOP

SHWL

MOVB
BR

NOP

MOVB
BR

NOP

MOVB

MLIR

MAIR

MSIR

NOP

BMXP

NOP

BM15

NOP

SHWL

MOVB

akb"“s

MACL, MACH

ROSB, GR4
#16

LIMLO,GR4
#16

LIMHI,GR4

GR3,#23

GR1,#94

GR2,#IFF

#21

#23

MACL ,MACH

ROSB,GR5

8100

8108

8110

8118

8120

8128

8130

8138

3140

8148

8150

8158

8160

8168

8170

8178

00

00

00

00

01

02

03

00

00

00

1B

00

00

00

04

00

00

AO

0d

BO

90

90

90

00

00

00

Cco

EO

00

BO

50

00

00

50

00

50

00

00

00

00

00

00

01

61

00

60

00

00

1E

13

1E

1E

1E

1E

1E

1E

03

1E

1C

13

1E

1E

1E

43

00

00

00

00

4y

45

45

00

00

00

Cu

00

00

00

86

00

00

24

00

00

1E

2F

51

00

2D

00

Go

2E

00

00

00

36

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

09

00

00

00

00

00

00

00

00

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

BR

NOP

MOVB
BR

NOP

MOVB

MLIR

MAIR

MAIR

NOP

BM15

NOP

SHWL

MOVB
BR

NOP

MOVB

CMPR

BAHC

.3’8
rou ¥

LIMLO,GR5
#24

LIMHI,GR5
GR1,#18
GR2,#2F

GR3,#51

#2D

MACL,MACH

ROSB,GR6
{#2E

LIMHI,GR6
GR4, GRS

#36

8180

8188

8190

8198

81A0

81A8

81B0

81B8

81C0

81C8

81D0

81D8

81E0

81E8

81F0

00

o4

00

00

04

00

05

00

00

05

00

06

08

00

00

00

60

00

00

07

00

60

00

00

07

00

07

70

EO

00

00

00

00

00

00

00

00

00

00

00

00

00

00

C1

00

1E

1E

43

1E

13

iE

1E

43

1E

13

1E

1E

1E

13

1E

00

86

00

00

00

00

86

00

00

00

00

00

C1

00

00

00

00

3B

00

3C

00

00

3B

00

3C

00

00

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

.

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

NOP

CMPR

BAHC

NOP

MOVA
BR

NOP

CMPR

BAHC

NOP

MOVA
BR

NOP

MOVA

SHBR

MOVB
BR

NOP

a“_:.i

GR4,GR6

#3B

GR4,GRY
#3C

GR5,GR6

#3B

GR5, GRT
#3C

‘GR6, GRT

GRA,GR7

ROSB, OR3
#02

APPENDIX - K

RTP INSTRUCTION SET SUMMARY

The general syntax of the MICRo-ASSembler language state-

ment is as follows;

LABEL: OP-CODE OPRND-A,OPRND-B,0OPRND-C ; COMMENT
(opt.) +QUALIFIER(opt.) (sp. case) (opt.)

1. Label Field

This field is optional and same rules apply regarding its
use, as in case of conventional assembly language programming.
Each symbol must be terminated with a colon(:) to form a valid
label field.

Examples; START:
FOO: BAR:

T$:

2. Op~Code Field

This field refers to an instruction mnemonic or assembler
directive. In addition, op-codes may be suffixed with qualif-

ier characters to denote special hardware functions. All op-

-l-

kb - K

codes are upto 4-character long. The 5th (and 6th) character,

if present, always denotes the qualifier.

Examples; MOVN+ |
SDBL&
BAM
MOVB”
At the ehd, this Appendix lists all valid op-codes group-

wise, including assembler directives.

2.1. Qualifiers

The qualifiers denote special function by hardware such
as masking, additional destination operands, program cycle
termination etc. All valid qualifier characters and their
meaning are as follows;

n,n _ denotes additional destination, to be specified by

operand-C.

ngn _ denqtes masking on both buses to be turned on.

ngA" - denotes masking on bus-A only to be turned on.

ngB" - denotes masking on bus-B aonly to be turned on.

n“n _ denotes praogram cycle termination.

3. Operand Field M"K

The operand fields are seperated by comma(,) and are
interpreted according to the operation specified by the Op-
cade field., If the specified operation requires use of a sin-
gle bus only (as in MOVA or MOVB instructions), the first
field specifies the source operand and the second.field speci-
fies the destination operand. Else, whenever both buses must
be used, the first field specifies the bus-A operand and the
second field specifies the bus~B operand. If the op-code is
qualified with a "+" character, a third field must be =stated,
specifying the additional destination operand. At the end,
all valid operands are listed. As shown there, some operands
have limited communication capabilities.

An Immediate operand iz prefixed with "#" character.
Presently, all immediate operands must be specified by 2 hexa-
decimal characters.

Examples; IR3
GR1
MACL
#2F
ALU

4. Comment Field

The comment field must begin with a semi-colon(;) charac-
ter and is optional. Same rules apply regarding its use as in

-3-

4*¢-K

cacse of conventional assembly language program.

LIST OF VALID RTP OP-CODES akp -K

m/c code ap-code action

(A) DATA-TRANSFER GROUP

MOVA - Move the contents of the 1st operand

to the 2nd operand using bus-A.

MOVB - Move the contents of the 1st operand

to the 2nd operand using bus-B.
SPECIAL INSTRUCTIONS:

MAPN - Map the contents of operand-A

non-linearly and move result to operand-B.
MUCR - Map the contents of operand-A for
Under-Color-Removal and move result to opr-B.
(B) EXECUTE GROUP

99 ADD

- Add operand-A to operand-B, result in ALU.
86 SUBT - Subtract opr-B from opr-A, result in ALU.
86 CMPR - Compare aperand-A with operand-B, result in CCR.
9F DECR - Decrement operand-A, result in ALU.
80 INCR - Increment operand-A, result in ALU.
90 PASS - Pass operand-A as result in ALU.

5=

AB

Al

AE

Al

Ab

A9

83

93

40

4y

48

4¢c

41

45

49

4D

43

AND

NAND

OR

NOR

EOR -

NOR -

LIML

LIMH

MLIT

MLIR

MLTT

MLTR

MAIT

MAIR

MATT

MATR

MSIT

abb - K

- Logically AND opr-A with opr-B, result in ALU.

- Laogically NAND opr-A with opr-B, result in ALU.

Logirally OR opr-A with opr-B, result in ALU.
- Logically NOR apr-A with opr-B, result in ALU.
Logically EOR opr-A with opr-B, result in ALU.
Lagically ENOR opr-A with opr-B, result in ALU.

- Set ALU result to all zeros.

- Set ALU result to all ones.

- Multiply Integer and Truncate.

- Multiply Integer and Rouna-off.

- Multiply 2's-Complement and Truncate.

- Multiply 2's-Complement and Round-off.

- Multiply-accumulate Integer and Truncate.

- Multiply-accunulate Integer and Round-off.

- Multiply-accumulate 2's-Complement and Truncate.
- Multipl y-accumulate 2's-C and Round-off.

- Multiply-subtract Integer and Truncate.

6=

47

4B

4F

64

62

61

67

Co

C1

c4

C5

c2

C3

Cé

C7

apy - K

MSIR - Multiply-subtract Integer and Round-off.

MSTT - Multiply-cubtract 2's-Complement and Truncate.

MSTR - Multiply-subtract 2's-Complement and Round-off.

MPL - Pre-load MAC TP .

MMPL

MLPL

MPEL

SHBL

SHBR

SHWL

SHWR

ROBL

ROBR

ROWL

ROWR

Pre-load MAC MSP .

Pre-1oad MAC LSP .

Pre-load MAC completely.

Shift byte left.

Shift byte right.

Shift waord left.

Shift word right.

Ratate byte left.

Rotate byte right.

Rotate word left.

Rotate word right.

(C) BRANCH GROUP

03

BAZ

- Brénch on ALU zero.

23

63

43

83

A3

A3

03

23

43

63

83

C3

E3

13

BAM

BALC

BAHC

BAQ

BAV

BM14

BM15

BM16

BM17

BM18

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

on

on

an

on

on

on

on

on

on

ALU

ALU

ALU

ALU

ALU

MAC

MAC

MAC

MAC

a»@-l(

minus.

logical carry.
hardware carry.
equal.
overflow.
bit#14 high.
bit#15 high.
bit#16 high.

bit#17 high.

Branch on MAC bit#18 high.

BMP - Branch on MAC TP minus.

BNWD - Branch on new data arrival.

BCON - Branch on Contraller signal.

BR

(D) SPECIAL GROUP

1E

NOP

(E) ASSEMBLER DIRECTIVES

- No operatiaon.

- Unconditional branch.

app-K

START - Program origin, Location Counter = 02

END = End of program.

LIST OF VALID RTP OPERANDS

GR1, GR2, GR3, GR4, GR5, i Can talk and listen on both

GR6, GR7, GRS Bus-A and Bus-B

IDR, CCR, ALU, ? Can talk on both Bus-A and Bus-B
MACL, MACH ALU, MAC, ROSH always listen
ROSA - Can talk on Bus-A only
ROSB - Can talk on Bus-B only
IR1, IR2, IR3, ICT1, Can talk only on Bus-A only

1¢T2, ICT3, ICT4, ICT5,

ICT6, ICT7

OR1, OR2, OR3 - Can listen only on Bus-B anly
MAR1, MAR2, MAR3, Can eavesdrop only on Bus-A
MBRA, MMPL i

MBRB, MLPL, MXPL, PGR - Can eavesdrop only on Bus-B

APPENDIX - L

;This version should be assembled using the
-two-paes MICRoASSembler.

Th1s microprogram computes printing ink density YELLOW
from input color R-G-B. Following assumtion is made as
regard° the state of the input to Real-time Processor,
,at the time of the activation of this program:
, IR1 - contains RED

IR2 - contains GRN

1

) IR3 - contains BLU

?

10$: START sorigin program at PC=02

MOVN IR1,GR1 ;compute DR and save
MOVN IR1,GR2
MOVN IR2,GR2 ;compute DG and save
MOVN IR2, GR2
MOVN IR3,GR3 ;compute DB and save

MOVWN IR3, GR3

AT THIS POINT, DR-DG-DB VECTOR HAS BEEN COMPUTED
‘STARTING FROM INPUT COLOR VECTOR R-G-B.

MLIR GR3,{0E ;compute p.DB
MAIR GR2, #49 ;compute n.DG and accumulate
MSIR GR1,{#fEF scompute m.DR & subtract cum.
NOP
BMXP 1% :if underflow, clamp to zero
NOP
BM15 12% ;if overflow, clamp to '/FF?
NOP
SHWL MACL,MACH ;shift MAC o/p left, word mode
;shift takes care of m,n,p 's format I.FFFFFFF
MOVB ROSB,GR 4 ;save Y-bar
BR 13% scontinue
NOP .
11%: MOVB LIMLO,GRY sunderflow, clamp value to zero
BR 13% ;jcontinue
NOP
12%: MOVB LIMHI,GR4 ;overflow, clamp value te 255
13%: MLIR GR3,#23 ; compute t.DB
MAIR GR1,#94 -compute r.DG and accunulate
:3§R Gk2,#FF scompute q.DR & subtract cum.
BMXP 21$;if underflow, clamp to zero

NOP
-1-

21%:

22%:
23%:

31%:

AT THIS POINT,
iM-BAR HAVE BEEN COMPUTED.

32$§

BM15
NOP
SHWL

sshift is

MOVB

BR

NOP

MOVB

BR

NOP

MOVB

MLIR

MAIR

MAIR

NOP

BMXP

NOP

SHWL

sshift is

MOVB

BR

NOP

MOVB

22%

MACL,MACH

akb-b

;if overflow, clamp to '/FF'

sshift MAC o/p left, word mode

required for the same reason as above

ROSB,GR5
23%

LIMLO,GR5
23%

LIMHI, GRS
GR1,#18
GR2, #2F
GR3,#51
31$

MACL, MACH

;save C-bar
;continue

;sunderflow, clamp value to zero

;continue

soverflow, clamp value to 255
;campute x.DR

;compute y.DG and accumulate

;compute z.DB and accumulate

;if overflow, clamp to '/FF'

sshift MAC o/p left, word mode

required for the came reason ac above

ROSB,GR6
32%

LIMHI,GR6

;save M-=bar
;continue

soverflow, clamp value to 255

INK DENSITY APPROXIMATIONS Y-BAR, C-BAR,

FOLLOWING PROGRAM SEGMENT COMPUTES 3 _DIMENSIONAL LINEAR
s INTERPOLATION USING INK_CORRECTION_ TABLE.

;left shift Y bar,C_bar mask on
;one more time

;save [Y]8

;save [C]8

;format for [T]8 is 2's C O0.FFFFFFF , F=0 or 1

;left shift M-bar with mask on
;one more time

,save [M]8

scompute [Y)8.[C]8

;shift MAC o/p left, word mode

:save [Y]8.[C]8
,compute [Cc]8.[M]18

;shift MAC o/p left, word mode
ssave [C]8.[M]8
scompute [M]8.[Y]8

sshift MAC o/p left, word mode
;compute

;commpute

jcampute

SHBL& GR4,GR5
SHBL ROSA, ROSB
MOVA ROSA,GR1
MOVB ROSB,GR2
SHBL& GR6
SHBL ROSA
MOVA ROSA,GR3
MLTR GR1,GR2
NOP
SHWL MACL,MACH
;shift justifies decimal point
MOVB ROSB, GR7
MLTR GR2,GR3
NOP
SHWL MACL,MACH
MOVB ROSB,GR8
MLTR GR1,GR3
NOP
SHWL MACL ,MACH
MLTR ICT7,ROSB
MATR ICT6,GR8
MATR ICT5,GRT
MATR ICT4,GR3

;compute

41¢$:

42%:
51%

MATR
MATR
MATR
NOP
BMXP
NOP
BM15
NOP
SHWL
MOVB~®
BR
NOP
MOVB”"
BR
NOP
MOVB~
BNW
NOP
BR
NOP
END

ICT3,GR2
ICT2,GR1
ICT1, #EF

h1$

24
MACL,MACH
ROSB,CR3
518

LIMLO,OR3
51%

LIMHI,OR3
10%

51$%

alph - b
ycompute
;compute
;add Y!
jcheck if underflow
scheck if overflow
;align result
;joutput result & terminate
;under flow, output 0, terminate
soverflow, output /FF, terminate

;if new data, start new cycle

;else, loop & check again

