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ABSTRACT

This thesis studies two topics in the theory of nonlinear
filtering; the use of multiple stochastic integrals to analyze filters,
and the use of Lie algebraic and operator-theoretic techniques to
discover new, finite-dimensionally solvable filtering problems.

The main results of the multiple integral techniques are:

1. A simpler and more insightful proof of a result of
S. Marcus on filtering polynomials functions of a
Gauss-Markov process.

2. A formula for representing the product of two multiple
integrals as a sum of multiple integrals, thus providing
a rudimentary calculus of multiple integral expansions.

3. An expansion of the optimal mean square filter as a
ratio of two multiple integral expansions.

4. Integral equations for the kernels of the best mean
square filter of the class of (finite) rth order multiple
integral expansions.

The problem of estimating a diffusion process observed in
white noise is studied with Lie algebra techniques. Necessary con-
ditions, and in the scalar case, necessary and sufficient conditions,
are given for estimation algebra finite dimensionality. Examples of
scalar problems with fin. dim. estimation algebras are discussed, and
it is shown that, from among them, no new cases exist for which Zakai's
equation can be solved by a Wei-Norman type method.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor, Department of Electrical Engineering
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CHAPTER 1: INTRODUCTION

1.1 The Nonlinear Filtering Problem

Nonlinear filtering theory is the study of a broad range of

problems in the estimation of stochastic processes. A typical

example concerns the estimation of a signal in additive noise. In

this situation, one is interested in the properties of a stochastic

process {x(t)ft>01 caTled the signal. One might want to know, for

instance, the value of f(x(t)), for a function f, or even the

value g(x(s);O<s<t) for a functional of the past of x(-) up to time t.

However, information about x(-) is available only through observation

of the process

-t

h(t) = f h(s,x(s))ds + w(t) (1.1)

in which h is a given function and w(t) is a "noise", usually an

independent increments process. Thus estimates, or rather, filters,

for f(x(t)) and g(x(s);O<s<t) must be constructed from {y(s)0<cs<t}.

Minimization of the mean square filtering error is the

criterion generally chosen to guide filter design. Thus, in linear

filtering theory the goal is to produce the best (mean square)

estimate that is a linear functional of {y(s)0<s<t}. Nonlinear

filtering theory goes further; it asks for the best mean square

estimate-given the past of y(-). If Ef 2 (x(t))<= and if F' denotes thet
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q -algebra a{y(s) lO<s<t}, it is well known that this estimate is

(f)= E{f(x(t))IFY}. The goal of nonlinear filtering is to com-

pute or to approximate this conditional expectation.

Interest in filtering problems stems from their central role

in several applied subjects. For example, in the theory of com-

munication (Van Trees [483), (1.1) is a common model for a signal

sent in a noisy channel; successful transmission of information re-

quires extracting the signal from the noise. It may also be

necessary to decide on the basis of {y(s)ls<t} between two

possibilities, h(s,x(s))EO, s<t, or h(s,x(s)) = a given signal.

This "signal detection" problem is closely related to optimal

filtering (E. Wong [46]). Stochastic control problems, in which

a control is to be chosen so as to influence signal process be-

havior, can also involve filtering if the control is allowed to

depend on noisy or partial observations of the signal (see

Fleming and Rishel [14] and references cited therein.).

The modern literature of nonlinear filtering begins with the

contribution of Kalman and Bucy [24], who formulated and solved the

model (1.1) for the case in which x(t) is a Gaussian diffusion,

h(s,x) is a linear in x, w(t) is Brownian, and f(x(t))=x(t).

Their main result, to be stated in lemma 3.1, proves that the

conditional density of x(t) given FY is Gaussian and provides a
t

method to compute the conditional mean and covariance recursively.
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For few other cases is such a complete and easily constructed

solution available. However, two very powerful characterizations

of optimal filters are known to hold in quite general situations.

The first is a Bayes-type formula for lt(f), which is due to

Kallianpur and Striebel [22] and which, in essence, represents

t(f) by a functional integration in process path space (see

Section 1.3). It is valid for Brownian noise w(t) with minimal

restrictions on x(.), h, and f. When the signal is Markovian,

r t(f) can be further characterized as the solution of a stochastic

differential equation (Fujisaki, Kallianpur and Kunita [15]). In

general, 7rt(f) cannot be found from this result because the co-

efficients of the filter equation involve optimal estimates of

p(x(t)) for functions different from f. Thus additional

equations are required to compute t()W, which, in turn require

estimates of yet other functions of x(t). The resulting system

of equations is in general infinite-dimensional. The cleanest

formulation of this infinite dimensionality is Zakai's [47]

stochastic partial differential equation for an unnormalized

version of the conditional density, assuming this density exists

(see Chapter 5). Finally, several very recent developments

promise new insights. V. Benes [1] has derived new examples of

explicitly solvable filtering problems, and Brockett and Clark

[17], Brockett [5], and Mitter [35] have begun applying Lie

algebraic and operator. techniques to the study of conditional
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density equations. These developments will be discussed in

Chapter 5.

The abovesbriefly outlined results constitute the principal

highlights of nonlinear filtering theory, but, despite their

mathematical depth, they remain incompletely developed. For

many common filtering problems little is actually known about the

filter structure and one must resort to reasonable, but ad hoc

techniques. A powerful and general theory for building,

analyzing and comparing suboptimal designs does not exist.

1 .2 Summary of Thesis

This thesis studies two different ideas for analyzing non-

linear filtering problems. The first is that of evaluating or

approximating filters by expansions in series of multiple

stochastic integrals. Such an approach is motivated by the fact

that the optimal estimate it(f) may be thought of as a functional

Ft(y(-)) of the observation process. It is then possible to

explore Tt(f) within the framework of a representation theory for

F, for instance, one that expands F in a series of simpler and

more easily manipulated basis functionals. Multiple integrals

are ideally suited for this, because they are easy to handle and

because they can represent a large class of functionals F
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(see theorem 2.2).

The second idea differs from the first in method and style.

Rather than expansion or approximation, it studies the question

of when a filtering problem can be solved in an exact, finite

dimensional manner. And rather than being probabilistic, the

techniques are algebraic and operator-theoretic. Brockett and

Clark [7], Brockett [5,6] and Mitter [35] have shown recently

that certain Lie algebras of operators, called estimation alge-

bras, can be associated to the problem of filtering a Markov

process observed in white noise. In examples with known, finite

dimensionally computable conditional densities, that is, the

examples of Kalman and Bucy [24] and of Benes [1], the estimation

algebra is also finite dimensional. Conversely, it is widely

conjectured that given appropriate hypotheses, Lie algebra

finite dimensionality will imply the existence of a finite

dimensionally computable expression for the conditional density.

This suggests the strategy taken up in the second part of the

thesis research: seek all problems with finite dimensional

estimation algebras and try to solve them.

The main results of our investigation are presented in the

following chapter by chapter summary of the thesis. Chapter 2

defines the multiple stochastic integral and develops some of its

fundamental properties. The main result here is the multipli-
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cation formula, (theorem 2.4, Section 2.3), which describes how

to re-expand the product of two multiple integrals as a sum of

multiple integrals and which is an important calculational and con-

ceptual tool in the theory of Chapter 4. Technical lemmas needed

in Chapters 3 and 4 are also stated and proved.

Chapter 3 contains a proof of a result originally due to

S. Marcus [29] on the finite dimensional solvability of filters for

estimating polynomial functions of a Gauss-Markov signal process

given linear, but noisy observations. The proof here sets the

problem, in the context of Gaussian process theory by using

multiple integrals and homogeneous chaos theory. It is simpler

than Marcus' original proof and explains more clearly how and why

a finite number of statistics characterize the optimal estimate.

This work was done jointly with S. Marcus and S. K. Mitter.

In Chapter 4 we present expansion theories for the general

filtering model of estimating a signal in white Gaussian noise.

First, we derive a representation of the full optimal filter as

a ratio of multiple integral expansions. In effect, this

representation evaluates the functional integrals of the Kallianpur-

Striebel formula with multiple integrals. Secondly, we pose a

basic problemsuggested by the multiple integral idea, for the

design of suboptimal filters: For any r, what is the best (mean

square) estimator having the form of an rth order multiple
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integral expansion? Using the expansion representation in con-

junction with the multiplication formula, we derive integral

equations for the kernels of a best rth order estimate. We then

rederive the Kalman-Bucy filter and discuss the case r=2 as examples

of the technique.

Chapter 5 discusses the Lie algebra approach to finite

dimensional filter computation. The main results are presented in

Section 5.3. For vector diffusion signals with non-singular, constant

local covariance, a fairly restrictive necessary condition is given for

estimation algebra finite dimensionality. In the scalar case, this

allows all possible problems with finite dimensional estimation

algebras to be listed. A solution of some of these filtering problems

is then attempted using a method developed and discussed in Sections

5.1 and 5.2. The result is that only those previously known examples

of Benes can be solved finite-dimensionally by this method.

It is worth remarking that the last chapter is discursive in

style and does not present a complete theory. This chapter is

a preliminary report and discussion on calculations of interest to

a new, developing theory with important implications. To shorten

the exposition and concentrate on the main idea, we have omitted

certain cases from the analysis, but, as shall be mentioned, the
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results extend formally to them. In this regard, work remains

to be done in building more complete results. However, we feel

the ideas are sufficiently well-developed and interesting to merit

inclusion.

1.3 The Fundamental Problem: Mathematical Prerequisites

The work of this thesis employs techniques from a variety

of fields. Chapters 2-4 assume familiarity with certain elements

of stochastic process theory, in particular, stochastic inte-

gration with respect to Brownian motion, stochastic differential

equations, and Ito's rule. Chapter 3 uses some homogeneous

chaos theory, which is summarized briefly in Appendix 1. Finally,

Chapter 5 requires familiarity with the use of Lie algebra/

Lie group methods in systems theory and with the theory of self-

adjoint operators. Appendix 2 states the basic definitions and

results that are needed from operator theory.

We will adopt the following conventions throughout the

thesis: all Brownian motions are assumed to have mean zero and

unity scale; if {z(t)jt>O} is a stochastic process,
2F t= a{z(s)Is<t} denotes the a-algebra generated by z(s) for

s<t.
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We now state the precise filtering problem to be considered in

the thesis. Let {x(t) It e [0,T]} be a measurable real-valued process on a

probability space (2,F,P). Let h(s,x) be a Borel measurable function.

Set
t

y(t) = h(s,x(s))ds + w(t) t e [0,T] (1.2)

and assume

(1) w is a Brownian motion independent of the signal

process x( )

(ii) E h2(s,x(s))ds < o>
0

Definition 1.1. A process {y(t)jt - [0,T]} defined by 1.2 satisfy-

ing the stated assumptions is called an observation semimarinale.

Given a functional f(t;x(s),s<t) of the past of x(-), we want to

compute the optimal mean square estimate

irt(f) = E{f(t;x(s),s<)jFY}

The following theorem of Kallianpur and Striebel [22] will

be a principle theoretical tool of this thesis. For a good

exposition, see Wong [46].

Theorem 1.1 (Kallianpur, Striebel). Let

dP0  =expT[- h(x(s))dw(s) - 1Th2(x(s))ds].

0 ~0
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Then (i) P0 is a probability measure, P and P0  are mutually

absolutely continuous, and

T T

+L exp[ h(x(s))dy(s) - h2(x(s))ds]
dP 0 o0

t t
(ii) E0{2 jFx'y} = expf h(x(s))dy(s) - h2(x(s))ds].

0 d 0t f

(iii) W.r.t. Po, y-) is a Brownian motion independent of x(').

(iv) x(-) has the same law w.r.t. P0 as w.r.t. P.

(v) E{f(t;x(s),s<t)IFY}

ttE {f(t ;x(s) ,s<_t) :y }

0

Finally, the concept of innovations will occasionally be

needed.

Definition 1.2. The innovations process associated to the filtering

problem of (1.2) is

t

v(t) = y(t) - f T s (h(s,x(s)) ds

Interestingly, given mild restrictions on the nature of x(-) and h(s,x),

v(t) is a Brownian motion (Lipster and Shiryayev [28]).
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CHAPTER 2 MULTIPLE INTEGRALS

This chapter will define multiple stochastic integrals

with deterministic kernels, discuss their basic properties, and

establish both theoretical and technical results that are important

in filtering applications. The main result of this chapter is the

multiplication formula of theorem 2.4 in section 3.

2.1 Definition and Basic Properties of Multiple Integrals

This section is devoted to a brief exposition of the

multiple Wiener integral and its elementary properties. Most of the

material is well known and is due to Ito ( 20 ), who developed the

definition in its present form and demonstrated its connection to

homogeneous chaos theory. In addition, we prove some technical

results, including a construction to produce multiple integrals

recursively from stochastic differential equations, important in

subsequent work.

Let {b(t)}t>, be a Brownian motion, and let

Ft a{b(s)Is<t} denote its associated family of sub-c-algebras.

If (sca) is a measurable random process adapted to Ft
T

t(t,-) is Ft-measurable for every t), and if E t2(s) ds <
o

then for t < T we can define the measurable, adapted process

t

I(s)db(s);
0
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see, for instance, Ltptser and Shiryayev [28 3. Recall the

properties of this integral

t

E[f (s)db(s)] = 0

0 (2.1)

t t t

E fIc(s)db(s) {(s)db(s) = fE(s)p(s)ds
o 0 1

We will use this single integral to define multiple integrals by

iteration, a technique different than Ito's, but equivalent in

result up to a multiplicative constant.

Definition 2.1:

(i) if L2([0,T]r) is sepacrble on sl> s >r

if

f(s ,(is' -(i) ) for= i ! l rr

T 1s s22Sr

(ii) Lj[0,T]r) = (f L([0,TJ f

(a) separable on s > - > s and

(b) symmetric}

(iii) 2([0,T)]r)= fL 2E0,T3C ]r If is symmetric}.
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Definition 2.2 Let f z-LY([0,T]r), if =Y(sK).--Yr(sr) on

s > Sr The rth MU.tipLe stochastic integral of f up

to time t is defined inductively by

.t

I (f) = y1(s) Ir-l (y2''y)db(s) (2.2)

0

and r(() is defined on all of L2 ([,T]r) by linear extension.t s

Also, we adopt the convention, I(f) = f.

Note that (2.2) is meaningful, because at each step,

using separability and induction, y(s) Ir-l (y2easyr) is-a measurable,1 s _2. . r)

Ft-adapted process and hence may be integrated.

Theorem 2.1 For f, g t L([0,T]r)

E I(if) = 0 (2.3)

E I (f) I (g) = (fg)

t~ 5sr 
(2.4)

- - f(s,..*sr)g(s , -.-,sr)ds *-ds 1

0 0 0

Therefore, r I is an isometry between L s([0,T]r) and

I LL([o,T]r)J. Since Ljc,TSr) is dense in L2([0,T]r) we can

I to A2( ]rextend the definition of L L (FO,T~r by continuity.



19

Proof By (2.1), (2.3) and (2.4) certainly hold for r = 1. Let f=

y (s ... (sr(s)---a(sr), and suppose (2.3) and (2.4)

hold for r - 1. Then

t

E I (f) = E fYi(S) 21(Y2 f*Yr)ds =

t

jy1(s) E -17Y 2 .. n )ds = 0

t

E I r(f) ((g) =J y1(s)ct(s) E17-1  2~r- 1(la )d5E t t 1(~ S I (y2''' r)s (2 - - ar)d
0

t sr-1

- fo J0 (s) -- Y(s)a(s)>-

ar(sr)dsre'..ds 1.

The theorem follows by induction on r.

Remarks 1 By continuity, (2.3) and (2.4) hold for all f in

32([otir)

2. It is not necessary to require that f be symmetric

since integration is carried out only over the set

s _2 > - - r. However, the convention of symmetry is useful

later on.
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3. For f E LC,T] 3, let f(s,...) denote the section

of f at s. We want to write

t

Ir(f) = I7(f(s,...))ds, (2.5)
t ~ 0s

but, to do this, we need a measurable version of Ir (f(s,...)). If
s

f is separable on sl> s2 - > sr this measurable version is

immediately guaranteed; indeed, this is how we defined It. If f

is not separable, let {fn } be a sequence of separable functions

such that ln t  2 + 0. We then see that im m.s I (fn(s,-..)
L r

is a measurable version of I (f(s,-r?)) and hence (2.5) is

valid.

Letr r = L2FTP) be the homogeneous chaos
r=O

decomposition of {b(s)js<T}, (see Appendix 1 for the definition of

this decomposition).

Theorem 2.2 (Ito)

For every r, Gr = L2([0,T~r)}. Thus, if

& L2  TP), there exist kernels kr e L2 O([,T]r) such that

= k0 + yZIr(k )
r T r
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Proof The full proof may be found in Ito (20), but let us sketch

briefly why it is true. First, note that the spaces

Vr 2(L(r0,Tr)) are closed. Moreover, by using step functions

we can see that Vr C. Pr and P C. V +66 .- +Vr' (V = R), (see

appendix 1 for the definitions of Pr and Pr). Since

Gr = P P it suffices to show V r. Vq for r r q, that is,

that integrals of different order are orthogonal. This fact, one

of the salient features of multiple Wiener integrals, is easily

verified. If f E L2([O,T]r), g< 2 ([0,T]q), r > q, then, from

(2.5) and (2.1) ,

T

E I4(f) I (g) = fE I (f(s,...))Iq 1(g(s,...))ds

0

sT sq-l -
= --- fj E I [f(s -- , ,-qs -- s )

0 0

ds ---dsq

0.

Multiple stochastic integrals generalize easily to the

vector case. If b (t) = (b 1 (t),---..b (t)) is a v-dimensional

Brownian motion and if f e ([O,TIr), we can define
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,z-Z s
I T ...rf f l( '' ''.Ir ) dbZ (ar) - - -db (a ) .

o0 Or

If (rz-eezr) / (q,k-.--kq), then the integrals

I r r(f) .and I.t q(g) are orthogonal.

In the case of separable kernels, a construction observed

by Brockett ( 3 ) for realizing deterministic Volterra series can be

adapted to produce multiple stochastic integrals from stochastic

differential equations. This result motivates the use of multiple

integrals because it says we can calculate, or at least approximate

them recursively. Moreover, the criterion of kernel separability

is used in Chapter 3 to prove finite dimensional computability of

certain optimal filters.

Theorem 2.3. Let f e (rO,T]r). Then, for some n, there exists

an Rn-valued process z(t) that satisfies

dz(t) = A (t)z(t)db (t) z(O) = z0

for some n x n matrix functions A (t)2, 2 = 1,--, v, and for some

n-vector function c(t), such that tr ) = cT(t)z(t),t<T.

Proof It suffices to consider f = y (s1)-.-yr(sr). Suppose

z. = .@as-i=ci < i j , and define the (r+l)x(r+l)

matrix A (t)
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a(t) , (i,j) = (ik'3k+1) 1 < k < j
kik~

0 , otherwise

0

o m (t)

- 4

o t (t)

0

Otherwise, define A (t) = 0. Consider the system z(t) s r+1

dz(t) = Z A(t)z(t)dVZ(t), T (0) = (0,---,O,1)
Z=1

We have

Zr+i(t)
- 1

t

Zr(t) = Yr(s)db (S)
0 r

A0 t)I2 =15
That is:

row

A (t)

- row

a
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t Sr-l

z1(t) = t---"(i( 2s 4)--r(sr db (sr)---db (s ).

Thus I = (lO,..,0) z(t).

Finally, we will need a Fubini-type lemma on the inter-

change between ds and db integrations

Lemma 2.1 Let if et2([O,T]r). For t < T

t t sr-2 t

I - (f(sl,---)ds = - - f(U's , 3-sr-= J f..s f {f~us,' ~l
0 0 0 s

du db(sr-i)e--db(si) . (2.6)

t

Proof Define gt(s,-, s - = 2f(u,s ,-3os r-1 )du. The r.h.s. of

(2.6) is I (gt). To prove the s lemma, simply verify that

t

E[{ I 7 (f(s,---))ds - I~(gt)] 2 = 0

0

by using the basic properties of the multiple stochastic integral.

2.2 The Observation Semi-Martingale Case

For purposes of filtering we must define multiple stochastic

integrals



25

t s(r-1

f-- f(S19,---sr)dy(sr)---dy(sl) (2.7)

0 0

with respect to observation semi-martingales

t

y(t) J x(s)ds + w(t) . (2.8)

0

(Recall, from definition 1.1 of observation semi-martingales, that

x(-) and w(-) are assumed independent, w is Brownian, and
T

E f x2(s)ds < c for some T, 0 < T < . Such integrals are well

0
known and are developed extensively in martingale theory; Meyer [33]

is the best reference. However, the structure of the observation semi-

martingale case allows a simple construction, which we develop

here. Begin by noticing that, as stated in Theorem 1.1, y(-) is

mutually absolutely continuous w.r.t. Brownian motion; if P

is the original measure under which the processes of (2.8) are

defined, there exists a Po mutually absolutely continuous w.r.t.

P, such that y( ) is Brownian on (o,F,P0) for t < T. Therefore,

for f s L2(O,T]r) we define (2.7) as the multiple Wiener integral

of the previous section by working on the measure space (oF,P ) and

we call this integral It(f) without reference to measure.

Remark The process with respect to which multiple integrals are

taken will-always be clear from context and so will not be

indicated in the notation I r(f).
t

*For simplicity of notation, we have set h(s,x)='X in (2.8) (see section

1.3). The results to follow are valid for general h satisfying the

conditions specified in section 1.3.
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For F -- adapted processes t(s,w)
T T

such that P{{ 2(s)ds <co} = 1, we can define the integral

t t t

T c(s)dy(s) = { t(s)xsds + Jf(s)dw(s) (2.9)

0 0 0

(see Liptser and Shiryayev [28]). As with the Brownian case, (2.7)

may be interpreted as an iteration of (2.9)

Lemma 2.2 Let f E12 (F0,T]r

t

I (f) = Ir-1(f(s,..-))dy(s) t < T.

Proof: This result is an easy consequence of the more general fact:
t

the process {t(s)dy(s) defined in (2.9) is stochastically equiva-
0 t

lent to the process (f p(s)dy(s))p formed by working on

0(oFP0 ) where Y is Brownian. The equivalence of these integrals

is obvious for stochastic step functions

n*
)= $((tl)l (S)

i=1 (t ,th ]

and it follows for the general case by taking limits of such

step functions.

* 1(ti t I (s) = indicator function of (tt.11
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The expressions (2.3) and (2.4) for the mean and covariance

of multiple integrals no longer holds in the semi-martingale case.

However, it is important in later calculations to evaluate these

moments, and, for this, the next lemma is useful.

Lemma 2.3 Suppose

f L 2 ([0,T]k

T

E[ x 2(s)ds]r < . Then for k < r and

0

(i) E[(f)J2 Mk 2 k < is independent of f

t skL

(ii) E It(f) =0--- f s ,--sk

E x(s ) x---x(sk)dsk- -dsl

Proof, We will

result: for r

actually prove by induction the more general

> Z >_k ak'GOODaz e[0,T]

k22

E[x(a )-x(ak+l1, k(2f < h z k ck+l ' 2 If1 (2.10)

where hz k 0L ([0,T]-k), and

k s

E[x(a )--x(ak+l)akf
0 0

E[x(s )o-x(sk) (ak+l) x(aZ)Idsk. ods

sk-1

f(s -- ,s (2.11)
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Lemma 2.3 is the case z = k for every k < r. First we

demonstrate (2.10) and (2.11) for r > z > k = 1, using the

iterative formula of lemma 2.2 and the independence of x(-) and

w(-). Thus

E[x(a )--x(a 2) { f(s)dy(s)]2 = ECx(a )..x(a2){f f(s)x(s)ds +

0 0

a1  T

f(s)dw(s)}]2< [2E [x(a).--x(s)]2ds + (2.12)

0 0

2 E[x(aZ).x(a2)21 IfII
2 = h i(a2)Iaj1IfII 2

To derive the inequality in (2.12), the Cauchy-Schwarz inequality

is used several times. hZ9 c L ([0,T] - ) for z < r because

E[ x2(s)ds ]r < . Likewise
f0

a 1  a1

ECx(a )--x(a2)f f(s)dys] = E[x(a ).-x(a2)[ f(s)x(s)ds +

S0 (2.13)

f(s)dw(s)]] f(s)E[x(s)x(a2 )..x(a)]ds.

0 0

Now suppose (2.10) and (2.11) are true for a fixed k
t

and all z, r > z > k. Again, using I 1(f) = f s

Cauchy-Schwarz, and induction,
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E x(aC)-x(ak +l (f 2

k+l

ak+l s

2 F iE[x(a).-x(ak+)x(sl)Ik (f(s2 .. Js2ds
2+2 2 s1

a2 k
+ .2 E[x(a )--x(a k+2I( f( s,-) dsk+2 s u

0

T

< [2 fhzk(s ak+2c 'a)ds + 2hz-1,k (crk+ 2 ,.e -Z)]HfI[ 2

0

= h2 ,k+1 (k+2''zf' II2

By induction, hzk+l ELI([0,T3 -k-1).

k + 1. That (2.10) holds for k

T

E I S(f(s, ))ds <

0

Thus, because of (2.3),

t

E f I (f(s.,- ))dw(s) = 0,

0

Thus (2.10) is true for

also implies

for t < T.

With the aid of this equality we can prove that (2.11) also is true

for k + 1.
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This completes the induction step. Induction stops at k = r since
T

we have required r > z > k in order to apply E(F x2ds)r <
10 S

2.3 The Multiplication Formula

2 b
To any given functional L c L(,FtP) of a Brownian

motion b(t), t < T, one can associate a sequence of kernels

k" r=1, kr e 2([O,Tr), such that

"rr=0jk

= k0 + I fr(k
n=l t n

For applications, it is necessary to have rules for manipulating

this representation, rules that describe how the kernels kn

behave under various transformations of the t's. This section

states, proves and discusses such a rule for the simplest case; if

f cL([0,T]) 2([0,T]9), what are the kernels {z} 0  such

that

I (f)I (g) = 0+ Ir
t t ~r=O

The answer will require some new definitions.

Definition 2.3

(i) Pr = projection of L2([0,T]r) onto 2([0,Tf)
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(Ph)(a1 ,--,r) = 1
r r (:7Tr (

T h () 5 . Crr)

where Sr = permutation group on r letters.

(ii) For integers r,q,k, 0 < k < min(r,q), and

A2 ]r), A^2C
f L $([0,Tr2(,T )

(fk (t)gk) (a ,.,ar+q-2k

t t

k! 1f1-kf f(sl,,sk'l''r-k

0 o

g(s , --- , s k3'ar-k+l''''or+q-2k) .dsk - - -ds1

(iii) fk 0(t) gk ("I ecr+q-2k)

Pr+q-2k fk ( k El$''''r+q-2k)

(iv) f ()g = fo () (t) go

Pr+q If'(al'' r ) ar+l''a r+q)]

((t) is the basic operation by which new kernels are

created from old, and, indeed, we will show in lemma 2.4 that

^2( ]r )x 2 (,] A2( r+,-2k)
f k L(FO Tk): L ([O,T L ([0,T] ))-L%(Cj. Ta better under-
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stand ((t), it is useful to think of the functions f.and g

as tensors, which they in fact are under the isomorphism

L 2 ( ,T ]r)=L2 ([0,T]) 0 ®L2([O,T]) (r-fold). Then

fk C(t)gk may be viewed as a tensor contraction, and

fk O (t)gk as a symmetrized tensor contraction. The notation

fk 0( (t)gk is meant to recall the summation notation, i.e.,

a sum (integral) is taken along the first k indices of f and g.

It is in this definition that we make use of the convention that the

integrands f and g are symmetric; otherwise (yt) would have

a much more complicated definition. Finally, as an example of Q,

consider the case r > q= k. By direct computation using the

symmetry of f,

t t
I J Tf f j ~)g(s 1 3

q - S, f(sl,-q-, ,a --,rdr-q))gsI- ,r

0 0 r-q

x dsq *dsI

t t

ff(s,--, ,5q C,--,ar-q)g(s,--sq )ds --ds
0 0

The main theorem of this section is:

Theorem 2.4 Let f c L2([0,T]r c2L([',TJ).
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t

min(r,q)

k=O
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r+q-2k ((r+q-2k)k (
t r-k'k ()

(2.14) shall be referred to as the multiplication formula. Our

proof of (2.14) uses Ito's differentiation rule and induction, and

it is fairly complicated in its details. Therefore, before embarking

on the proof, we will set forth the relevant properties of (Q

in some preliminary lemmas. In what follows, f will always denote

a function in 12 ([,Tlr), g a function in L2([0,T]).

Lemma 2.4 For every t < T

fk () (t)gk E L2 ([0 J,Tr+q-2k)

In fact

C r,q,k IIf 2I 1 !9 2

where cr,q,k is independent of f and g.

Proof It suffices to prove the lemma for ®, instead of 0

since Pr+q-2k is a bounded operator. Let da=dale dar+q-2k

ds = ds1 -"-dsk. We then have, using the Cauchy=Schwarz

inequality

k Gk(t)gk1 1 = da2
[o,T,.r+q-2k (!

(2.14)

. f I ) I(t)gk 21
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(kxs.2{ [ df(s1..5sk'c0l,..)(s' ,)sk' ' r+q-2k

[0T]k

2 da di ~f2(s ,--,s''''-k

(k!)2k7T 
Pr -

[0,T]r+q-2k [0,T]k

{ ds g2(s ,--, Csk'r-k+l 'ar+q-2k)

[0,T]k

1 2

(k!)

Lemma 2.4 establishes that the kernels in the expansion

2.14 are square-integrable and hence that the multiple integrals

are well-defined. The next lemma collects useful identifies and

facts about 0 . Recall that the notation f (s -,sk,--) in-

dicates the section of f in which the first k variables are

fixed at s,--,sk, respectively.

Lemma 2.5

(i)~~~~~~~~~~~ 
f~ ) )( a )k0''o~-k1 2 ([ ,T )r+q-2k-1)

- k 0 (t)+k t

=f ko ak + ic f(s,- -)k-1( ) (s)g(s,--)k-lds (.5
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(iii) For k >. 1, fkO(t) 9k(Cl'''Cr+q2k

r-k 
ka.) (t)g + -fr~q-2 )k( (.Igk +r+q-2k kk

(a2'0 % r+q-2k)

(iv) fOG (t)g(ae--a q) = [ -f(a 1 e,-) O(t)g

+ -4- () (t)g(a ,-a)] (a2'a''r+q-2k). (2.17)

Proof

(i) follows by calculations similar to the proof of

lemma 2.4, namely, one writes out the definition

of the square norm and applies Cauchy-Schwarz. The

details will not presented.

(ii) By direct calculation and definition, using the

symmetry of f and g extensively.

t

p r+q-2k[ T {
0

t s 1

= Pr+q-2k 010

t

f dsg -ds kf(s1 , -3s k,3-90)g(s 1, -0-,sk~a )
0

)dk-1.s 1

(2.16)

k 0 (t) gk



36

Pfr+q-2k f f(sl,..,sk,--)g(sl9,--sk,--)dsk--ds)]
0 0 0

t i 'k-1

+Pr+q-2k%(k ds) f(s ,e-,sk' )g(s, - skme)dsk--dslJ

t

= fkO(a)9k + fds f(s,--)k-l(s)g(s,-)

(iii) and (.iv). The proofs of (iii) and (iv) are similar, (iv)

being just a special case of (iii). We shall only present (iv)

as it is simpler. Note first that, by definition,

4q (f(a1 , ) 0 (t)g9 (a2 ''ar+q)

=~- ' f(alawr(2)'J''a'(r))r~q (rrq-1)

9(a ( r+ 1)' a'r(r+q)) (.)

where 1 r e S is interpreted as a permutation of {2,..,r+q}.

Now using the symmetry of f, (2.18) may be written as:

rjth position

(r+q) j., ,(2),- ,T(j-2) -'al' (j-)

g (air ( r +1 )(2'-r1r9 )
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Using the expression analogous to (2.19) for 2 (t)g(a - -)
r+q

{ ~ ,-Q t ) g + r-f ( t ) g (c,-)}1(2 r+q

.th.
r position

7sf(7(2)3..9al304a(r)r+q-l

g~ r( r+l )7 ( r+q)

q
+ 7 7f(a

Srq (2 ) (rl))

th . .
Sposition

(n(r+2) 'aT'(r+q)

(r+q)! ),r-)g( Trc)Sr)

f GO(t)9(a,-e ar+q)

This is the desired result.

Proof of theorem 2.4. We use Ito's differentiation formula and the

preceding lemmas to implement an induction argument that proceeds

in two steps:

(a) Show (by induction) that (2.14) holds for orders r = n, q = I,

Vn
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(b) Assuming (2.14) for (r-1,q), (r,q-1) and (r-l,q-1), show that

it holds for (r,q).

(a) and (b) then provide a consistent scheme of induction as shown

by the following diagram demonstrating the paths of implication.

4 0

3 o == =>

S= Ofetc.

2 0 0 o== ---

1 a => a =e a -=? a -=

1 2 3 4

Step (a) For r = 1, q = 1. By Ito's differentiation rule

t t t Sl.

{f(s)db(s) {g(s)db(s) = f[f(s)g(s 2)+f(s2)9(s 1)]db(s 2)db(s1 )

t

+ {f(s)g(s)ds

Suppose that the theorem is true for (r,q) = (n-1,1) and let

f L2([O,T]n), g L([O,T]). Applying Ito's differentiation

rule again,



39

t t

)(g) jg(s) I(f)db(s) + i (f(s, ))Q(g)db(s)

0 0

t

+f In-1(g(s)f(s,, -))ds

0

(2.20)

By induction,

I -1(f(s, ))I (g) = I (n[f(s,-*) g]) + In-2 (f(s, - -) )(s)g ).

Lemma 2.5(i) and lemma 2.1 justify interchanging integrations

in the last term of (2.20):

t

(g(s)f(s,--))ds = Itl (i g(u)f(u,s1 ,--,sn 1 )du)
1

Thus, by substitution in (2.20)

Il(f 4g

t

0
{Tn(g(s)f(- -)) + I n(n[f(s,.- ) Q g])}db(s)

I ( a- 0- (s)g1)db(s)

t

+ I2j(j 9(u)f(u~s17,- n,..)dU)

t
In-1

0

t+1
0
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=I {gn )f 2'..'a ) + n~af ,--))] 9 T2,'--, )}ITk ({(a1) f(a2 '~n

+ I71 {f(a, -) 1 0(a)9g(a2 ''an ) +

t

+ {fg(s)f(s,a,--,a 1)ds}.

0

And by lemma 2.5 (iii) and (iv) this becomes

In+l ((n+1)f G) g) + It1 (f0(t)g),

which completes the induction step of (a).

Step b Without loss of generality assume that q < r. The induction

hypothesis is that theorem 2.4 is true for (r-l,q), (r,q-1), and

(r--l,q-1). Apply Ito's differentiation rule:

t

I{(f)I (g) = fI(g)I71 (f(s,- -))db(s)
0

t

+ foI -(g)I ( fdb(s)

t

+ {I 1(f(sl-))I 1 (g(s,--))ds . (2.21)

By induction

min(q,r-1) (2.22)

1- = +q--2 (r+q-- -2kk k)
S Sk=0 S r-l-k k K
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min(r,k)

I (f) I (g(s ,-z-)) = r+q- 1-2k((r+q-l-2k) f
I(f)Is= k=O s r-k k 0 (S)9k(s )

(2.23)

I ~- (M s, -.))Iq~-l(g(s,._ ))

min(q-1,r-1)+1 r+q-2k ((r+q-2k)f(sC(gs,

k=1 s r-k k-l (k-1

(2.24)

Now substitute (2.22) - (2.24) into (2.21), interchange dt and db(t)

integrations where necessary, and collect like order terms. The

result, after some nasty calculation, is, if q < r

I (f)I (g)

I +q f(r+l) [f(ms,-) g] + (r+q-) -)fs2, - )}

+t-l r lr2 r

+ q I r+ q-2k ( r+q-1-2 k) [f , ) s )g 3 ,- ) 3 .''. 3s-

k=1t -- 12 k0 sgs3 k]2 q-)

+ (r+q-1-2k k[ G (s )g (s , - )k] 2 22--s r - k

t

+ (r+_-k s f(U )k-1O(u)g(u,' --)k-1du} (2.26)

+ I%{[f(s 1 D)O (s )gq](s 2 s r-q
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t

+ f(u,-)q 1
0 (u)g(u,'')q-1 du}

s I

Now examine the kernels of the last expression one-by-one. The first

kernel equals

(r+q) r qsl~
r q (f(sa, -- ) g) (s2, ',rNI

+ (f 0 g(s1 ,'')(s2 , ,s )

- (r+q)(f 0  (g)((s 2 , ) . (2.27)

The last equality comes from lemma 2.5(iv). Likewise apply

lemma 2.5(iii) and (iv) to the kernel of Ir+q-2k , 1 < k < q-1

ttThe kernel of rq-2k equals

t

+ 4 srf(u,' -)k- (u)g (u, -])

= (r-k kk 1 r+q-2k
+g

+ ( g..) u,'0 - )- (u-)k-g u--)(sk-,du)]( 2
s1
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(r+q-2k)k(f G (t)gk) (sl D , sr+q-2k)l (2.28)

Finally, in the same way, the kernel for Irq ist

(f C (t)g )(s ,'- ) . (2.29)

By combining (2.27) - (2.29) in (2.26) we complete the induction

step (for q < r):

I r~f~jq min(r,q) 1r+q-2k(r+q.2k)f
It(r)It(g) = It r-k k G (t)gk)

k=0

The proof for q = r is the same; we need only check that the lowest

order contribution in (2.26) corresponding to k = q is

tfq t) { s

f q(D (t)g f-- f f(sa,---. s q)g(sl3,---,sq)ds q--ds .

0 0 0

The multiplication formula relates directly to properties

of Hermite polynomialss; as one naturally suspects from the connection

between homogeneous chaos and multiple Wiener integrals. In fact,

letting {hn Cx n=o denote the Hermite polynomials defined in

Appendix 1 and taking { n} to be a complete orthonormal basis

of L2([0,T]r), recall from theorem 2.2 and theorem A.i.l that
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(I r(f)f .12(L0,T ]r)} = G

T
n

= pan n*rh j j(a)db(a))pl+*--+pn=r, j, are

. pairwise unequal } (2.30)

Now, the h (x) satisfy the identities

min(r,q)

hr(x)h (x) = Y /( )(,) /(r q-2k) hr+q-2k(x) (2.31)
k=0

for r,q > 0 [see e.g., Magnus and Oberhettinger [26]). Comparing

(2.31) to (2.14), one thus sees via (2.30) that the multiplication

formula effectively generalizes the identities (2.31). There is a

discrepancy between (2.31) and (2.14) in the factors multiplying the

expansion terms, but this is due to the different normalizations in-

volved in the definitions of h., Ir andOG .

It is natural to ask whether theorem 2.4 can be proved

using (2.31). However, this strategy appears exceedingly difficult

to implement and I have not succeeded in doing so. Recently Hida [18]

obtained a proof of the multiplication formula independently of

myself. His proof effectively generalizes the techniques used to

prove (2.31), but to do so he must invoke his advanced theory of

generalized Brownian functionals. Our proof, though involved
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computationally, proceeds via elementary methods.

The multiplication formula can also be used to generalize

a fact about Gaussian random variables. Suppose Z is a normally

2distributed r.v. with mean 0 and variance a2 . Then the well known

identity

E Z2m (2m1)...3-a2m

expresses the higher order moments of Z in terms of the variance.

Clearly it implies that if X is a sequence of mean 0 normal

r.v.'s, EX e -0. as n+ - iff EX - 0 as n +e for any n EX2

integer m > 1, or, in other words, that mean square and 2mth

order convergence are equivalent for any given m. Now Ir(f) ist

an element in the mean-square closure of rth order polynomials of

a Gaussian process, and hence itsmoment convergence properties are

similar.

Theorem 2.5 For any r and k, there exists an Mr,k < such

that

E {(I (f)) 2kj}< M 2k (2.32)

for all f e ^.2 ([o,T]r).

Proof Assume that, for a given n,
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(Ij(f))n = I P(k ) (2.33)
z=0

where

[k%! <MIifII2n, z < nr (2.34)

Using the multiplication formula there exist kernels h. such

that

(Ir(f))n+l = (n+l)rI(h
z=O

and, from lemma 2.4, there will exist an N such that

tlhI z N l k1  2 Itf2 zN flt2(n+)

for every z. Thus (2.33) and (2.34) will hold for n + 1 also, and,

since the case, n = 1 is true, they will hold for all n by

induction. But then

E[Iyf) 2n =nr nr 2
E[IT )In = E[IT(k )]2 < M' I Ilk .12

z=O =

MI" Ilf[ 12n

Of course M" will depend on n and r.

Corollary Let rfn => and f be functions in 1.2 ( 0T]r)

Then H1 -f| + J 0 as n + if f n
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E[I r( )-I r )]2k + aas n-*c

for any or all k > 1.

Remark Theorem 2.5 is not new. I. Segal [43] has derived (2.32)

in the context of Gauss measures on Hilbert spaces. In fact, he

obtains a universal constant c such that

E(I (f)) 2k < 22krc 2k for all k.

Theorem 2.5 is also related to the Nelson 38 theory of hyper-

contractivity; see Mitter and Ocone 36 .- Neveu 39 is a good

reference for one version of Nelson's hypercontractivity theorem.

McKean [32] and Wiener [45] also develop identities for

expressions similar to E[(I r(f)) 2k] in theorem 2.5. In these

treatments, the interesting corollary above is not generally observed.

The next result is a variant of an easy and well-known

identity first appearing in Ito [20], and stated here in (2.39). Our

proof employs the multiplication formula.

Theorem 2.6 Let E : L2(Q,Fb ,F have the multiple integral expansion

* =r r I(kr)
r_0TO
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Then

kr( ''r) a,.a E b(a)--b(ar)

Proof For given a0 a2 y --, ar, let

Y (s) = '(0,ai ](s), 0 < i < r

be the indicator function of [0,a ]. We will first show that

b' b .r1 l... Y T)+ 1r-2n nb(al)-'--b(ar TT) I n(h - r) (2.35)
n=0

where

[ max(nin <_j}

and each kernel h" '- -ar has the form

h= N
ha9 i1 1 r (2.36)

in which the g functions each depend only on a proper subset

of the indices a , ,r. This fact will greatly simplify the task

of calculating ar rEcb(a)---b(ar) as will be seen in (2.39)

below.

Since (2.35) is valid for r = 1, it can be proved for

general r by induction. Thus, suppose (2.35) is true for r.
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Then

b(a0 )-..b(aOr) Ii o)Ij(yl..r)

[r/2]

+ I(Y )Ir-2n(hn
n=O T T alCyr

Now expand all the products in this sum by the multiplication formula.

It is easily seen that the kernels of any multiple integrals that arise

from expanding the terms

I I(yo Br-2n (hn
T T al- - -r

will be of the form (2.36). However, the first product is

I (yI) I r(71..r)

I 1 ((r+l)y0 o (T)yYYr) + Ir 1 (y 0) 1 Y(T)(y -..-r

The first kernel is

1 r 1 j 1(
rl z y0(s.)[y (sO)..y(s 1 0ly3 (j+p...oyr(sr)1

for so --- s

But note that if j i 0, yo( 1) 0(s)y ( ) for s >s, since

C >5 00 implies a >s.. Thus the last expression may be

written more simply as



so

1 0(so).yr(sr) + r (sQ-y(s J+ 1 (sJ )-r(s)

(2.37)

and only the first term depends on all the indices ao'lleec'ar.

Likewise, the second kernel is seen to be

al

y1 (s)2 r(s r(s )ds

0

(2.38)

The only kernel in (2.37) and (2.38) that depends on every index is

1O(s 0OYr(es
r+. '(0 r

Thus by substituting the results of these kernel computations into

the expansion of b(a 0)--b(ar), we find that (2.35) is true for

r + 1 as well. Thus (2.35) holds for all r by induction.

As a result of (2.35)

Eq b(a )*--b(a)
r 1r

3r

r

+ a - a r

rE Ir
E IT

[r/2] r-2n(n

n 0 T a( "* )
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= 1 3 0r _ Et (Y-Yr
1 rT

t S1 s

c *- c J f a- .j kr( Sl'1's. )l3 [0,a](s )-

1 0 0 0

[0,ar](sr) dsr*'*ds (2.39)

= kr(a sar)

This completes the proof.

Finally, we note that theorem 2.4 extends easily to the

case of multiple integrals with respect to observation semi-

martingales.Under added assumptions, theorem 2.5 and its corollary

extends also. Indeed, let I y(f) now denote integrals with respect

to y and let P0 be the measure w.r.t. which y(-) is Brownian.

Theorem 2.7 If E0  dP < W, theorem 2.5 and its corollary hold

for IrTT~y

Proof Use the Cauchy-Schwarz inequality to derive

E r[I 2k =E{ dP Ir (f) }< E/ 2 r1 r 4k
0 Tsy } 0  0r1

0 0

<E 1/2 (AL ) 2 M2
S0 dP 0 r,ki-l
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Remark

E0 2 = E exp fx2(s) ds.
0

See, e.g., Wong [463.
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CHAPTER 3 ESTIMATION OF NONLINEAR FUNCTIONS OF GAUSSIAN
PROCESSES

In this chapter, we begin the application of multiple

integral expansions by treating a filtering problem considered by

S. Marcus in his thesis [29 1, (see also Marcus and Willsky [31 3).

Marcus succeeding in constructing a class of filtering models which

are interesting for systems applications and for which optimal

filters can be finite in dimensionally and recursively computed,

(indeed, a rare and happy event!). Roughly speaking, these models

pass the outputs x(t) of linear stochastic systems through poly-

nomial nonlinearities and seek to estimate the result based on

linear observations of x(t) in white noise.

Marcus's original proofs accordingly rely upon linear

filtering theory and Gaussian moment identities, and so his

techniques never really leave the realm of Gaussian process theory.

One naturally suspects that the proper framework for his problem

is homogeneous chaos theory, the theory of polynomials of Gaussian

processes. In what follows, we will show this suspicion to be

well founded by developing a direct proof of Marcus's results with

multiple Wiener integral techniques. We feel this proof explains

in the clearest manner why finite dimensional filters occur in

this problem and how the filter statistics arise. The results to

to be discussed here have appeared in Marcus, Mitter, Ocone [30 L
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where an extension by Marcus to the discrete time case is also

presented. It should be noted, as an aside, that solving the dis-

crete time case requires using polynomials of the innovations,

(see Marcus, et. al. [30 ]). This feature, which does not occur for

continuous time, is explained by homogeneous chaos theory. We will

not comment on the discrete case any further. Finally, Hida and

Kallianpur [193 solve the related problem of predicting polynomials

of a Gaussian process using noiseless observations, and they also

use multiple integral techniques. By contrast, the results here

deal with the case of noisy observations.

A brief exposition of the homogeneous chaos theory relevant

to this chapter is presented in Appendix 1.

The problem may be stated as follows. Consider the linear

system:

dx(t) = F(t)x(t)dt + G(t)dw(t) x(O)=x0  (3.la)

dy(t) = H(t)x(t)dt + dn(t) y(O)=O (3.lb)

In (3.1): x(t) _IRn, y(t) EIRn; F, G, and H are piecewise con-

tinuous, bounded matrix valued functions; w(t) and n(t) are inde-

pendent, vector Brownian motions; and x0 is a Gaussian random vari-

able independent of both w(-) and n(-). We consider x(t) to be the

signal process, y(t) the observation process, and we are interested

in calculating the filter t = E(ft(x(s) ,st)t Fy} for functionals
t it
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ft which are finite Volterra series with separable kernels in the

elements of x(t), (see definition 3.1).

In 2.1, we gave a construction for realizing a multiple

stochastic integral with a separable kernel as the output of a

stochastic differential system. By the same construction, we can

produce ft, i.e., there exist matrices A (t), z=l',-m and a vector

c(t) such that

t= c(t)z(t) (3.2)

where

dz m
= [Z A,(t)x ,(t) 3 z(t) z(O)=O (3.3)

Figure 1 illustrates the situation:

{+3 X~t
3.1a (3. 3)

Fig. 1
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The following definitions are convenient:

Definition 31

Ap m
1=1

f: p-1
0

x Ik 1 k. p)dcP--da, M<=,YZ(s) L1oc(

(where A0  Y0(t)y y0 e Lo

Definition 3.2 The filter f =E(Tf(x(s),s<t)F } is finite-. . W . .t. t I="* t

dimensionally computable (FDC), if it can be computed from the

output of a finite dimensional stochastic differential equation

driven by y(t).

Marcus [29 1 proved:

Theorem 3.1M

computabl e.

For any p, if f t c Ap3 t is finite-dimensionally

Remark The theorem remains true if dy(t) = H(t)x(t)dt +

R(t)dw(t) where R(t)>0 and is deterministic. The proof is a trivial
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adaption of the one to follow.

To carry out the proof, we need some properties of the state

estimator x(t) = E[x(t)|FYJ.

Lemma 3.1 (Kalman-Bucy)

i)

dx(t) = F(t)x(t)dt + P(t)HT(t)dv(t) ( = x

where

-t

VMt E y(t) - H(s)x(s)ds
Jo

and P(t) E[(x(t).-x(t)) (x(t)-x(t)) TI satisfies

P(t) = F(t)P(t) + P(t)FT(t) + G(t) - P(t)HT(t)H(t)P(t)

P(0) = Cov(x0 )

ii) v(t) is a Brownian motion and F = Fy (up to sets of measuret t

zero) for all1 t.

Proof See, for instance, M.H.A. Davis [ 9,10 1.

v(t) defined in lemma 3.1 is called the innovations

The process

process, and
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it is the key to our proof, because it is a Brownian motion that

captures the information in y(.). That is, if f is a random

variable such that Ef2<W, then, by lemma 3.1 ii)

E{f[F} = E{flFi} and, hence, by the homogeneous chaos expansion,

we can write

Eff Fj}=k,()+
i =1

i,J=l

t . a)dv

S t
0

T a1
k '3 (t,aa 2 dv(a 2 )dv.(a 1 )0 21,c

(3.4)

By using the innovations process, we thus achieve an orthogonal de-

composition of any filter. But if f P A , we can go much further.

Lemma 3.2 If st E Ap, the expansion (3.4) truncates at order p:

t= k0 (t) +
"i=1

ft. k
0

(t,a) dv(a) + a

t
- - 1 k p t cri -- a

JO 0 p
1 --Ap=1

dv ( cr) s-9-dvz ( a 1) (3.5)
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Proof: From the definitions of x(t) and ApEft<co and thus (3.4)

is valid. Now consider the process z (t) = (xT(t),x T(t)vT(t)).

By (3.1) and 1.emma 1 i)

F(t)

dz(t) = H(t)

LH (t)

0

F(t)-P(t)HT(t)H(t)

-H(t)

07

0 z(t)dt

0_I

G(t)

+ 0

0

0

P(t)HT(t)

I

T = (x T0

Thus z(t) is generated from a linear system with Gaussian input and

Gaussian initial value and hence is Gaussian. We conclude that

(x T(t)X, T(t)) is Gaussian also, and hence that we may apply the

homogeneous chaos construction to it. In Appendix 1, this

construction is developed for scalar processes, but it easy to see

that the entire theory remains valid if we replace H of Appendix 1

by

H.an 1(s), (s) 1 < i < m, < j < n, s < t}

dw(t)

dn(t)
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Letting A = a{x(s), vls)I 1 < i <_ m, I j < n, s < t}, we can

build from H the homogeneous chaos decomposition

L2, A, P) =G .Z

However, we can also perform the homogeneous chaos decomposition on

the process W(), that is, if G ( denotes the zth homogeneous

chaos of v(s), s <

L2(nF",P)t0

Evidently, GTT CG

is a polynomial in x(-)

and Gkl0+ G fork>
2=Q

p
for each z and ft z=0
of order p. Since

p,

WG sinceft

k) c Gk

L;t91 (v) 2 z pa

E{ft F } = projection of ft onto (
1=0

G (') as desired.

We shall also need

But

p

Thus E(ftlFv} (0)(
t =0

G (v'



"D 1 -

Lemma 3.3 Let z = [z 1, 2-902Zk] be a jointly Gaussian random vector.

(i) E[Zloez k] =

(ii) E[z - - -Z k] =

k
EzI Ez2*'pzk + cov [1z2z] E[ n z

j=2 zj

EzV- Ezk + cov(z. ,z.)Ez. --Ezk+k ovz jz. )cov .j3z.s)Ez

+ 2 COV(Z j , .j2) cov (z j ,z. )Ez. --. EZ .n2 33 34 J5 ak

where the sums are taken over all combinations of pairs in (1 -- -k}

Proof These types

K.S. Miller [34].

Marcus and Willsky

of results are

The particular

[31].

well-known; a good reference is

form used here is that given in

Recall again that when a multiple Wiener integral has

a separable kernel it is finite-dimensionally computable. Therefore,

by lemma 2, ft will be FDOC if the kernels klr, r

r < p, of (3.5) are separable. Proving separability is thus the

strategy of the proof of theorem 1. We shall need one more lemma

that is a standard fact about linear stochastic differential

equations.
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Lemma 3.4 Let Z(t) be the R'n valued solution of a linear system

with Brownian inputs.

dZ(t) = A(t)Z(t) dt + B(t)dW(t)

Here W(t) is a vector Brownian motion and A(t) and B(t) are

piecewise continuous matrices of appropriate dimension. Then

E[Z(t)-EZ(t)][Z(s)-EZ(s) ]

= 1{t<s} X (t~s) + 1(t>s} X2(ts)

where 1{t<s } denotes the indicator function of {t<s} and

X1 (t,s) and X2(t,s) are matrices of separable functions.

Proof Let D(t,s) denote the state transition matrix of A(t)', that

is D(t,s) = A(t) (t,s), (s,s) = 1. Letdt

K(s) = Cov[Z(s)]

t

One easily calculates from Z(t) = t(t,s)Z(s) + fs(tu)B(u)dw(u)

that

- o(t,O) ~ (s,O)K(s) s<t

E[Z(t)-EZ(t)][z(s)-EZ(s)j s (s -l T
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Proof of Theorem 1* We can assume that f has the form

t "p-i

ft { .J Y(t)Yl(a)...Yyp(ap)xk I(ak) .. ap)dap -*-da, (3.6)
0 0

Then ft has a finite expansion as in (3.5). The proof will consist

of showing that the kernels kj r(t,a,.-s.,ar),r<p, of the

expansion (3.5) are separable. The idea is to use theorem 2.6 to

express k r in terms of f and vr t

r

k1 1q r1 9 a E[ft Vz ').. v (C7r)] (3.7)

r1 r

for t > a1 > a2 > '*''> ar. The second equality in (3.7) is de-

rived from the fact that v(a) is FK -measurable for a < t
t

When the expression (3,6) for ft is used in (3,7), the result is:

k 1 Z rt~ , )p(

t aP-1r
YO(t ),,,y (s) l I- E[x (s ),,,x (s)v (a)

ryl r01 P

ds , ,,ds (3.8)

*The idea of this proof is due to S. Marcus. It appears in Marcus,
Mitter, and Ocone [30] but with some errors. The errors are
corrected here.
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Since x(tjv(t}) is a Gaussian process, lemma 3,3ii) may be

applied to the expectation term in the integrand of (3,8). The

result is that this term may be written as a sum of products of the

following terms

Exk(s ) , cov[xk(sxk (s),

and

wEv (s) v (

Because v(-) is a Brownian motion, the last two terms are

identically zero. The first two terms are separable functions of

( . ,. so) on the -range of irttgrati.on s s- 2> '' - sp ; to see

this for cov[xk.(si),xk.(s )] use lemma 3.4 and the fact that
1 3

s > s if i < j on the range s > > ..>s9 . The re-

maining term is

O cov[x(s)v ] cov[x(s), [H(s)(x(s)-x(s))] dsOCT (a)] ) = 3 k J1' j

+ n(a)U (3.9)

(Note: In (3,9) some of the subscripts have been dropped for

simplicity of notation.) Since the observation noise n() is

independent of the signal x() , cov[xr(s)'nja)J 2 0 . Thus,

(3.9) = cov[xr(s) ,[H(a)(x(a)-2(a))]z] (3,10)

But ZTx = (t) ,^T )iochasticBut Z () =(x t)x (t)) is the solution of a linear stohsi
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system with Brownian inputs, This system may be explicitly con-

structed using the Kalman-Bucy result in lemma 3,1, Thus, using

lemma 3,4,

covfxr (s),[H(a)(x)(a)-x(a))J] = U s i } (s,a) + 1 c is'a)

{S <. a}1(s'a)~42(s ,)]

+ 2(s,a) (3.11)

where 1 and p2  are separable functions,

The end result of all these remarks is that (3,8) may be

written as a sum of expressions of the form

t r sP-

To''' (t) (sp)cgjsi)...(S(s)(a 1)., .s(ar

{s. <c }''' {s. <c } ds p s(.2X j C7i 1 si-sC71 sp ...ds1  (3.12)

such that q < r

and j ,..,j} c {l,,.,,p}
and

P} c (,...,r}

To complete the proof it is only necessary to show that (3.12) is

separabTe as a function of (t,aI,,,,,a ) ' However, by appropriately

adjusting limits of integration in (3.12) we can write (3.12) in turn

as a sum of terms of the sort

b b

a- - YO P ,.T(s P)ag (s ) ,,, 0gr Cr )ds P, ,ds 1 (3,13)

SP
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such that, for each *t , a cfo c , ... QJ , b s{s.

a > a2  ,r, 'a ,s.>a , < p , Note that (3,13) contains no

indicator functions I <a}, Using the identity

b b ra

fg(s)ds = fbg(s)ds - jg(s)ds

to write single integrals as separable functions of their upper and

lower limits, it is seen that (3,13) will be a separable function of

(ta 1...or) . Thus (3.12) and (3,8) will also be separable, since

they are ultimately sums of terms like (3.13). It is worthwhile

illustrating the last argument with an example.

Consider

ts
a I )(s1 )a5s 2 1 (c( 2 ) l(s < } {s < I}ds 2ds1

0 0- 2-2

By straightforward calculation, this equals

a2 s al a

sal 1 )s 2 ){f cz1 (s)a2(s2ds2ds1  + "20a1(s1 )cz2(s2)ds2ds1}

2 1

= s1 (a1)2(a 2 ) {Jf j' (s 2)a2(sd2) ds 1 +

a2  a1  2

fo a2(s2 )ds2  f0ct(s)dsI - ja 1(s1 )ds ]}

which is separable.
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CHAPTER 4 MULTIPLE STOCHASTIC INTEGRALS AND NONLINEAR FILTERING

This chapter applies the viewpoint of multiple integral

expansions to the general filtering problem stated in the introduction.

First, the Kallianpur-Striebel formula is used in 4.1 to derive

a representation for the optimal filter as a ratio of two multiple

integral series. The integrals in this representation are formed

with respect to the observation process and have kernels that depend

only upon the unconditioned distribution of the signal process and

that hence may be computed offline, prior to receiving any

observations. Secondly, we discuss the class of suboptimal filters

consisting of a multiple integral expansion truncated after a finite

number of terms. By combining the exact filter expansions, the

multiplication formula, and change of measure, we derive kernel

equations for the kernels of the best rth order filter of this class.

We then treat the cases r = 1 and r = 2 as examples and, using

the same techniques, rederive the Kalman filter.

The filter expansion presented in 4.1 resembles formulae

obtained by Eterno [11] in his thesis. Eterno built filter

approximations by expanding the unnormalized conditional density in

moment or cumulant power series, and his expressions, when appro-

priately evaluated, have multiple integral interpretations.

Our expansion, which can also be applied to the conditional density,

is constructed along different lines and we apply it to a different
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class of suboptimal filter designs.

It is worthwhile emphasizing that the stochastic integrals

employed in this section are taken with respect to the observation

process, and not, as in Chapter 3, with respect to the innovations

process. At first, integration against innovations appears to be

an attractive alternative, because the innovations are Brownian and

so allow one to exploit the homogeneous chaos theory, theorem 2.6

for computing kernels, and etc. in approximating filters. However,

in constrast with Marcus' problem, the innovations are not easily

calculated for they require optimally estimating the signal h(xt)

(see the introduction), a problem of equivalent difficulty to the

original one of estimating an arbitrary functional f(xs,sct).

Integrals against the observation process, on the other hand, are more

readily computable, but less easy to handle, since y(Q) is not in

general Brownian, much less even Gaussian. y(-)-based integrals of

different orders are, for example, not orthogonal, making it difficult

to project random variables on finite order sums of integrals. The

technique introduced below to derive kernel equations for best finite

order estimates addresses precisely this complication and provides

tools for exploring the probabilistic structure of multiple integrals

of y(t) in more detail. Thus integrals of y(t) can be analyzed

and are more satisfactory for applications than integrals of the

innovations process.
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4.1 Filter Expansions

To fix notation, let us restate the general filtering

problem and the Kallianpur-Striebel formula for the optimal estimate.

{y(t) 0 < t.< T}, {x(t) 0 c t < TI and (w(t) JO< t < T} are scalar

valued processes on the probability space (Q,F,P), and h(s,x) is a

real-valued (Borel) function such that

t

y(t) = h(s,x(s))ds + w(t) t <cT,

0T 0(4.1)

E { h2(s,x(s))dsl <

0

and w(.) is standard Brownian, independent of x(.).

Let G = FX v F and define P0  byt t t0

dP T T

=~ exp[-j h(s,x(s))dw(s) -f h2(s,x(s))ds].
0 0

Recall that P0 is a probability measure w.r.t. which y(-) and x(-)

are independent, x(-) has the same law as under P, and

(y(t),Gt)t<T is a Wiener process. By this last statement, we mean

that w.r.t. P'. y(t) is a continuous Gt-martingale such that

E0([y(t)-y(s) ]f2Gs} = t - s: in general, F G. Let f (xs ,st)t st t' t s

be a finite variance non-anticipative functional of x(Q). -For

simplicity, we shall in the sequel always denote ft(x,s<t) by f(t),
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and likewise h(s,x(s)) by h(s). Then the Kallianpur-Striebel formula

states

f t aE{f(t)|F }t t

E {f(t)exp[ h(s)dy(s) - f h2(s)ds]JF }

0 0 (4.2)
t t

E0{exp[ h(s)dy(s) - 4fI h2 (s)ds]}

0 0

Because of its importance, we single out the exponential term in (4.2)

with the notation
t t

Lt expqh(s)dy(s) - h2(s)ds2

It is well known, (Wong [46]), that LT = d L is a Gt-martingale on
0

(GF,P0 ) and

dLt = h(t)Ltdy(t), LO = 1 (4.3)

(4.3) is the crucial relation for what follows.

In order to state the main theorem, it is convenient to

introduce the functions

2n(t0,sl, - sn) = E{f(t)h(sl) -.- h(sn)} n - 0

kn (s1,---,sn) = Efh(s1)---h(sn)} n > 1

Note that in (4.4) the expectation operates on random variables which

depend only on the x(-) process, whose law is invariant under the

change from P to P . Hence, we can also write

zn(t,s 3--,sn) = E0ff(t)h(s1)- --h(sn)}

kn(s,---sn) = E0{h(s)'-.h(sn) (4.5)
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Another useful process is

t s r

L(r) = h(s)---h(s)L dy(s+)...dy(s1 )

0 0

The existence of Lr, a multiple stochastic integral with

random coefficients, will be justified shortly. We now state

multiple integral expansions for ft'

Theorem 4.1

T T

(i) If E[ h2(C)dalr <c and E[f2(t)({h2(a)dar]<

0 0

(t)+ i t ) + E0(f(t)L IF)

Ant .(4.6)

1 + I Z()(k) + E0{L(r)IF }
n=1

T T

(ii) If E[exp { h2(s)ds] < and E[f2(t)exp {h2(s)ds]

z0(t) + IN(zn
ft n) (4.7)
tt

1 + { I n)(k )
n=l

and the infinite series in (4.7) converge in the L (P) norm.
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Remarks 1. We call (4.6) the partial filter expansion and (4.7)

the full expansion.

2. The expansions are essentially series evaluations of the

Bayes formula (4.2). They work by "separating" the x(-) and y(-)

dependence in (4.2) by expanding Lt; y(-) appears only when integrated

in multiple integrals and x(-) is integrated out in the kernels. The

kernels, therefore, require only knowledge of the apriori distribution

of x(-) and can be computed offline prior to filtering.

Theorem 4.1 has the obvious generalization to vector valued processes.

The proof of theorem 4.1 requires that we handle integrals

of the form Lt or

t 5r-l

S. o h(s 1)-.. -h(sr)dy(sr). .dy(s)) (4.8)

0 0

whose kernels are random, not deterministic as in chapter 3. These

are easily defined by iteration. For this, it is convenient to work

with the measure PO, with respect to which (y(t),Gt) is a Brownian

process, so that we may apply the standard theory of stochastic

integration, (see, e.g., Liptser and Shiryayev [28]). Thus, if

$(t) is a measurable, Gt-adapted process satisfying
T t

P[ F 2 (s)ds < 1] = I, we have an integral f t(s)dy(s) with a
0 t J0,

version such that P =[ sup T(s)dy(s)T < ] = 1 (Liptser,
S<t<T 0 2

Shiryayev r28]). The hypo7thesis of (4.1)., E Oh2(a)da < is thus
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enough to guarantee that (4.8) is well defined for all orders r.
t

Indeed, (t) = h(s)dy(s) is certainly well defined, and, moreover,
0

T TC

POC h2(S42(s)ds < (sup p(s)j) 2 {h2(s)ds < = 1.

0 [0,T 0

t Si

h(st)(s )dy(s) = { h(s 1)h(s2)dy(s2)dy(s1 )
0 0 0

is well defined, and we can continue in this manner to all orders.

Similarly, by choosing a continuous version of Lt, we can show

t s r
rsLt 1 (9.*.f h (s1T) aa.h(s r)L s dY(5r) ty(s,)

t J 0 0 +1r+l

is well-defined.

We shall also encounter expressions of the form

t

E0 {{+(s)dy(s)IFY}

and for these, the following "stochastic Fubini" theorem is useful.

Lemma 4.1 Let (b(t)Ft) be a standard Wiener

F t a{b(s)js<t} (completed by nulT sets). If

Ft-adapted process such that E[j't2(s)ds] <

process and let

t(s) is an

Hence
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t t

E[f (s)db(s)IFJ = fEC (s)IF Jdb(s)
JO 0s

Proof Liptser and Shiryayev [28].

Proof of Theorem 4.1 Parts (i) and (ii) are both consequences of a

multiple integral expansion for Lt. Indeed, (4.3) implies that

t

Lt = 1 + foh(s)Lsdy(s) . (4.9)

Iterating (4.9),ts

Lt = 1 + oh(s)dy(s) + f0 h(s)h(s2)L2dY(s2 )dy(s1 )

t t

Lt = 1 + {h(s)dy(s) + .-- +

sr-l

.fh(sl)S--h(sr)dy(sr).-.dy(s)

+ L (r) (4.10)+t

Now substitute this last expression into

E0(f(t)LtIF~}

f t 0 Ft
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The denominator, for example, becomes

r t S -

EO{Lt!F'} = 1 + Z E (f-s-[h(sl)...h(s )dy(sn)- .. dy(s) iF}
0 tn=l 0n n

+ E{L F(r)IF} . (4.11)

The hypothesisEE h2(s)dsr< a of part (i) allows lemma 4.1 to be
00

applied to the terms of (4.11), with the result,

r t s

EOCLt[F] = 1 + nl - -S- E0{h(s)...h(sn) }dy(sn) ---dy(s1) +
0 tn=l f

n= I

A similar calculation applies to E[f(t)LtIFY}, thereby completing the

derivation of the partial expansion.

Formally, the proof of the full expansion follows by

setting r =c in (4.10). To prove it rigorously, we first show

that E exp[ h2(s)ds] < = implies
0

N t Sn-

Lt = m.s.(p0) nlimrl = Ft..( h(s))..h(sn)dy(sn) -.-- dy(s) ]. (4.12)

NDenote the finite series on the right hand side 'of (4.12) by At. Then
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t

AN2 =

s N

0 h s)-hsN+ ) Ls N+ I

2
dy(s N+l)eedy(sl)l

By employing the standard computational rules of (2.1) for stochastic

integrals, this last expression equals

t s

f0. ofEj h2(s1) *meh 2(sN)L ]dsN+1 .- -ds
NMl

provided that it.is finite. However,

E0[h 2 (s )'h2(sN)Ls

SE0 {h 2(s )i-- h2(sN )e

I

sN+l

xp[ fh2(s) ds

sN+l

E0[exp[2fh(s)dy(s)]IFX}00 s

With respect to P 0 x(-) and y(-) are independent and y(-) is

Hence, given (x(s), s <

with mean 0 and variance

Brownian.

sN+l
h(s dy(s) is a Gaussian random variable

J N+lh2(s)ds. Thus
fo

E0[exp 2

sN+l

h(s)dy(s)lF ] = exp 2
0 s 1

sN+l

fh2(s)ds
40

Therefore, applying (4.14) to (4.13)

(4.13)

(4.14)
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s f ( s

ex 0 h 2(s) ds }

= 2

= E0{h2(s )-0- h2(s N+1

1N+1 1a -12() 2(a

o Jo fo h( 3h

and hence

s N+l

--fE0 [h2(s )---h22(s+)L 2
1I N+ ]dsN+1--S

c = t +1.1 2( 2

z -f-se-f E 0[h2(s )9- - h2(.s )Ids - - ads;
j=N+l 0

j=N+l

T T

i 0j0 h 2 (s )9- h2(s1)ds 1 -- ds1}

Since E exp[f h2(s)ds] < o, (4.15) tends to
i na

Lt = m.s (P 0)
%j Nlim At

N-co

(4.15)

0 as N -)-c, and thus

for all t < T. Lemma 4.1 can now be invoked

for every order n, so that

EO{Lt IFY} N+= E0{ms. 1urn AN!Ft}

= m.s. lim EQ{ANfFY}
N-)=0

= m.S.(Po)lim[1
Nn

+ Z It(kn
nml

(4.13) = E0{ 2(s1) - - -h2(sN+1

)da ---*da1}

t

f0
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A similar proof expands E (f(t)Lt{FY}

+ IIn(,)
n=l

Finally, to derive the

E dP 0

2
E0LT =E[exp

in the series

Li (P) convergence, note that

T

{h2(s)ds] <
0

Nn
EIEO[Lt!y] - (1 + Itk

0H2 dP2
0

E /2[EO[LtIF"J - (1
N

+1[
In 

2
1t (~

1 N
Thus because of (4.12) , EO[LtIFj] =(L (P)) lim [1 + Ny

N-.4n=l
as claimed. This completes the proof of theorem 4.1.

In (kn
t n

Let P(A,tFy)= E[1 (x(t)))jIFYJ denote the conditional

distribution of x(t) given the observation up to time t.

T

Corollary If E[exp {h2(s)ds] <

0 .

El (x(t)) +

P(AtjFt) =

I t (El (x(t))h(s,))--0-h(snn=l

1 + [ It (Eh(si)''h(sn
n=l

A related formula is also of interest. If x(t)

q(x,t) , x(t) has a conditional density given by

nas a density

Thus
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E (L(t)|F(,x(t)=xlq(x,t)

p(xgt)lF()
E [L(t)JF ]

Using the same techniques as above, we can easily derive

E0[L(t)[FY,x(t)=x]q(x,t) = [1 + It(E[h(s)---h(sn)Ix(t)=x1)J
0 t ~n=O

x q(x,t) (4.16)

for the numerator of p(x,tJFy). (4.16) is often called the

unnormalized conditional density.

Theorem 4.1 immediately suggests a scheme for approximating

filters, namely, truncation of the numerator and denominator series

after a finite number of terms. The kernels of these terms are

evaluated off-line, and, if necessary, approximated by separable

versions. Construction of the multiple integrals as outputs of

stochastic differential equations in the manner of theorem 2.3, then

provides a finite-dimensional recursive realization of the

approximate filter. TError analysis of this method is difficult, even

in the case E exp h2(s)ds] < =; because truncation occurs in both

numerator and denominator of a ratio and because the error terms are

hard to bound. One might also approximate the unnormalized conditional

p(x,t[Fy) by a finite series, but a major drawback to this scheme

is that one cannot guarantee that p(x,tJFY) > 0 for all x.
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An alternative is to discuss cumulant expansions

p(x,tjFy) = exp It%)
tn=Ot f

Eterno [11] studies ideas like this in his thesis.

4.2 Best rth Order Filters

The most common and extensively studied suboptimal estimator

is, of course, the best linear filter. This is an estimator

t

ft = a0 + {a1 (ts)dy(s),

linear in y(.), and satisfying

E[f(t)-ft 2 < E[f(t)-(b 0+f b (t,s)dy(s))]2

for all other choices of b0  and b1(t,s). The philosophy of

applying multiple integrals naturally suggests that one seek better-

than-linear estimates by adding higher order multiple integrals terms.

Definition 4.1

(i) Yr {a(t)=a0(t) + I(an(t)),t<Tjan(ts ,' ) t2 ([oT]n),t<
n=1

and 0 < n < r}
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(ii) a(t) E:Yr is called the best rth order filter of f(t), given

{y(s)(sct}, if E[f(t)-a(t)]2 < E[f(t)-b(t)]2 for t c T, for all

b(t) E Yr' The kernels a(t) of a(t) are then called the

optimal kernels.

Existence of a best rth order filter is not immediately

guaranteed. a(t) amounts to the projection of f(t) upon

Yr(t) = {a(t)ja(-)sYr}, and, for this to always exist, Yr(t) must

be closed under mean-square (P) limits. An easy sufficient condition

is

T

Lemma 4.2 If E( h2(s)ds)r< , then Yr(t) is mean-square (P) closed
0r

for t < T.

Proof Apply lemma 2.3 to observe that, under the hypothesis,

E[In(k)]2 <M kl|2

for n < r, ks L ([O,T]n).

To find the best rth order filter, one must compute

the optimal kernels. Accordingly, in theorem 4.2 we show how to use the

multiplication formula and the filter expansions to derive integral

equations for the an(t), 0 < n < r. This requires two preliminary

lemmas, one to restate the problem, the other, to verify a technical

identity. We assume throughout the notations established in 1.
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Lemma 4.3 Let

if and only if

Then E(z-f(t)) 2 < E(v-f(t)) 2

E(z-f(t)) 2< E(v-f(t)) 2

Proof f(t) equals the projection of f(t) onto L2(Q,F(,P).

2(iz-f(t)c L (s2,F t P), the projection theorem implies

E(f(t)-f(t)) (z-f(t)) = 0.

Thus

E(z-f(t)) 2 = E(z-f(t)) 2

E(z-f(t))

+ E(f(t)-f(t)) 2 - 2E(f(t)-f(t))(z-f(t))

+ E(f(t)-f(t)) 2

Similarly,

+ E(f(t)-f(t))2

Lemma 4.4
r

Let c(t) = c0(t) +
n=l

It(c (t)) E Yr(t) and assume that

E(jh2(s)ds)

T

< 2, E2(t) ( oh 2(s)ds )r <-.Then

E0 (c(t)E0{LQ)F}} = 0

E0 c(t) E0(f(t)LKr)F}} = 0

Since

(4.17)

(4.18)

zIv L 2 (QF ,P).

E~v-~t)2'= v-0t)2
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Proof From (4.11)

EQ{L )IFJ} = Eo[LtFZ I(k),
n=1

and, therefore,

E0{c(t)E 0 4L |Fy}} = E0c(t)Ej[Lt[FY

- E0c(t)[1 +
n=1

Since y(-) is Brownian under
P0

E0{c(t)[fl
r

+ In(kn)I} =
n=1

r
cg~t) +

n=1

t

I.
0

sn-1

c 

-n(t,s ,c-

0

However,

E0{c(t)E0 t[L

E[h(s )'''h(sn )]dsn -- ds1

Fy] E ~t)dP =Ec(t)S]= E0c(t) F
ts

= c0(t) t+ --S Cn(ts 1,- -- sn)

E[h(s ) --h(s n)]ds ---@ds

by lemma 2.3. Applying (4.19b) and (4.20) in (4.19a) yields

E0{c(t)E 0LtIF }} = 0

n(k
.t n (4.19a)

- - ,sn)

(4.19b)

(4.20)
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(4.18) is established in analogous fashion using a version of lemma

2.3 for efpressions f(t) IT(C%), n < r, under the condition

E{f2(t)(4h2(s)ds)r} . 0.

T

Suppose now that E(f h2(s)ds)2r and a(-) Yr. By

expanding E [LtIFY as in theor~m 4.1, we obtain

a(t) EO[LtIFY] = [a0(t) + nII(a (t]

x C1 + I9I (ks) + E0{L4 2r)FJ}] . (4.21)
j1

Using the multiplication formula, we can then calculate kernels

gj (t,s 1 ,-,s 1 ) such that

3r -. .(r
(4.21) = go(t) + rI(g (t's,--,s + a(t) E(L4 2r)IF}. (4.21a)

j=l

Indeed, for 0 < j < 3r, direct calculation with (2.14) gives

= ,m+n-2i 1
(m (nM,)-n-I m(t)] 1 0 (t) [kn i (4.22)
(m,n,i) EC

C = (m,n,ijm+n-2i=j,i<min(m,n),m<r,n<2r}

Theorem 4.2 Assume E[ h2 (s)ds] 2r < and E f2(t) [jh2(s)ds]2r<
0
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a(t) is the best rth order estimate if and only if

g1(t,s1 ,,92,s.) =E{f(t)h(s)- h(s 1)}z 1( t,s1,-,s 3 )) (4.23)

for 1 < j < r.

Remark The equations (4.23) comprise r + 1 integral equations for

the r + 1 kernels a.(t), 0 < j < r. This can be seen from (4.23)

and the definition of Q and will be illustrated explicitly in the

examples to be discussed.

Proof Because of lemma 4.3 it suffices to show (4.23) holds if and

only if

ECa(t)-f(t)]2< E[c(t)-f(t)] 2

for all c(t)s Yr(t). Since

A 2 2 2
E[c(t)-f(t)] = E[c(t)-a(t)] + E[a(t)-t(t)] + 2E[c(t)-a(t)]

x [a(t) -f(t)]

this will occur if and only if

E[c(t)-a(t)][a(t)-f(t)] = 0 SC(t) Yr(t6) .(4.24)
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Thus, we will demonstrate (4.24). Begin by noting that

dPE I = 0fI = (Eo[LtiFY]) 1

Then

ECc(t)-a(t)J[a(t)-f(t)] = E C

= E{ [)Jt)-a(t))[a(t)EJ}LtjF -

= E0 (c(t)-a(t))(a(t)E 0[LtIFJ] - E [f(t)LtjF])} (4.25)

Now use theorem 4.1 (i) and (4.21a) to evaluate the term

a(t)E0ELtiF ] - E0Ef(t)LtIFyJ

2r.
= 90(t)-Ef(t) + Ir [g (t)-z.(t)] +

3r
EI[g1(t)J

j=2r+l

+ a(t)%[L( 2 r)IFyJ -

This implies, since

E0 [f(t)L( 2r) [FJ.

y(-) is Brownian w.r.t. PO , that different order

integrals are orthogonal w.r.t. Po, and that, hence,

(c(t)-a(t)) [a(t)E'(Lt F }I-E {f(t)Lt|F }]

E 0[Lt Fyt]
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(4.25) =[c0(t)-aO(t)](g0 0(t))+

S.

r t: s
+y * [c 1(t,s,---,s) - a( (t,s,---,s1Y

[g 1(t,s,--,ss) - (s s

ds--'-ds1

+ E0 (c(t)-a(t))a(t)E 0[L
2r) FY]}

E0{(c(t)-a(t))E0[f(t)L 2r) F]}, (4.26)

The last two terms of (4.26) are zero by lemma 4.3. Thus, it is

clear that (4.26) is zero iff

g = O ij < r.

This completes the proof.

The technique of theorem 4.2 extends to other problems as

well. Suppose, for instance, that a filter

a'(t) = ad(t) + I(a'(t))
0. j=l t

of order q is available; a'(t) need not be the best

filter. Let r > q, and, rather than ask for the best

filter, let us seek the "best rth order correction"

i.e., the mean-square minimizing a(t) of the form

qth order

rth order

to a'(t),
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a(t) = ad(t) +
q r .
Y Ij(a(t)) + ZI(a(

j=l j=q+l

where a.(t), j = q + 1,'0',r are free to be chosen. Define the

kernels g.(t) as before:

a(t)E0{LtiFy} =gj(t) +
3r .(2 ) ,3 II(g (t)) + a(t)E{LI2r)

j=l t

Theorem 4.3 Let the hypotheses of theorem 4.2 hold. Then a(t) is

the best rth order correction to a' (t) if and only if

g (t,s 1,'',s.) =Ef(t)h(s 1) -- h(s.)}, q + 1 < j < r.(4.27)

Proof As before, it suffices to show that (4.27) holds iff

E[c(t)-a(t)][a(t)-f(t)] = 0

for all c(t) = a'(t) + lI (C (t)
jt=q+4

theorem 4.2

By the same calculations as in

ECc(t)-a(t) ][a(t)-f(t)3

= Eo([c(t)-a(t)][a(t)E {LttF } - E0{f(t)LtIF(}J}

r 0
= E0 . I(c. -a )[go(t)-z0(t) +

0 =q+1

2r

j2 I [-
j=l

3r 2ry (2r)y,
+ I T(g (t))+a(t)EFL FY] - E{f(t)LK2F ]
j=2r+1 t 3UAtt 0 t
r tj s

--- (c -a) )(t*s, - s )tIs, -'s*)ds - ds
a=q+1 0 0 j
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This equals zero iff g = z, for q + 1< jc< r.

Remark Clearly, an analogous result holds for the case in which an

arbitrary subset of (a1}>j= is given and the remainder are chosen

as to optimize the mean-square filter error. Thus, if

a , je {ja, - -t-,j}.{0,1,- ,r} are- given, then the {a (t)},

j q q , are optimal-ly chosen iff g for every

j c {0O1,.-,r}-r-{j,-,j }q

As a first example of theorem 4.2, let us compute the

kernel equations for the best linear estimate f(t)= aO(t) +
t

foa (t,s)dy(s). From (4.22),

t

g0(t) = a0(t) + fa (ta)Eh(c)]da

t

9K(t,s) = a1(t,s) + 0a1I(t,c)E[h(s)h(a)]da + a(t)Eh(s).

The kernel equations are then

t

a (t) + foa1 (t,a)Eh(a)da # Ef(t)

t

a0(t)Eh(s) + a 1(ts) + fa1I(ta)E[h(s)h(a)]da = Ef(t)h(s), or,

eliminating a0(t) from the second equation,
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t

a0(t) + {a1 (ta)Ejh(a)]da = Ef(t)
a 0 ) + 1(4 

.2 8 )

t

a1(ts) + fa 1(t,a)cov[h(s),h(a)]da = cov[f(t),h(s)]

(4.28) is, of course, the well-known Wiener-Hopf type equation for

otpimal linear filtering. Before examining higher order examples,

we will discuss the Kalman filter.

4.3 The Kalman Filter

Consider again the signal-observation system (3.1) in

which the state x(t) is a Gauss-Markov process solving a linear

stochastic differential equation driven by Brownian motion, and

h(t,x) = H(t)x(t). The Kalman-Bucy theorem, summarized in lemma 3.1,

shows thatthe stte estimator . x(t) = E{x(t)IF{} satisfies the

equation
A T

dx(t) = F(t)x(t)dt + P(t)HT(t)[dy(t) - H(t)x(t)dt]

x(0) = x0  (4.29)

where P(t) is a deterministic function, (see chapter 3 for definitions.)

Let t(t,s) be the state transition matrix of F(t) - P(t)H (t)H(t).

Then, the solution of (4.29) is

t
+ T

x(t) = (t,0)x0 + {O(t,s)P(s)HT(s)dy(s),

i.e., the optimal estimate is linear in y(-).
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It is of interest to connect this result to the expansion

formulae of theorem 4.1 In the case of a scalar signal,

satisfying (3.1) and h(t,x) = x,(4.7) yields, at least formally,

Ex(t) + I j(E[x(t)x(s )--x(s.)3)t3
x(t) = (4.30)

1 + I (E(x(s )---x(s

and both numerator and denominator are truly infinite sums. This

general representation obscures the linear structure of x(t). The

techniques for applying the expansion formulae, should at least include

methods for deriving the linearity of x(t) from (4.30). In fact,

theorem 4.2 can be parlayed into a proof of the Kalman-Bucy filter,

and we present this here after a few comments.

One common proof of the Kalman-Bucy theorem invokes the

stochastic differential equations for the conditional moments. When

x(t) = b(t) and h(tx) = x, where b(t) is a scalar Brownian motion,

these are

dxn(t) = n(n-) -2 dt +x(t)n-(t)xn(t)

[dy(t) - x(t)dt] n > 1 (4.31)

and a similar infinite set of coupled equations holds in the general

case (3.1) (Fujisaki, Kallianpur, Kunita [15]). These equations do
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not yield themselves to a direct solution. Rather, they require

additional information, namely, that (x(t),y(t)) is jointly Gaussian

and that, hence, by limiting arguments, the conditional distribution

of x(t) given {y(s) jOc s < t} is normal. One can then conclude

that the conditional variance E(x-x)2fFY] is a deterministic and so

effectively truncate the system (4.31) at n = 2. (4.29) follows

easily [see Kallianpur-Striebel [23]]. By contrast, the derivation

of x(t) from (4.30) does not involve knowing the form of the

conditional distribution, an object, that, in the general filtering

problem, is not often in hand.

Let us develop our proof of the Kalman filter for the

simple case

dx(t) = db(t) x(O) = 0

dy(t) = x(t)dt + dw(t) y(O) = 0

in which b(-) is a Brownian motion. We do this in the interest of

computational simplicity; the proof carries over to the general case.

t
Theorem 4.4 x(t) = a(t,s)dy(s where a(t,s) satisfies the

0
Wiener-Hopf equation a(t,s) + {a(ta)(s^a)da = s, t > s, (4.33)

0
(s-a = min(s,a)).

Proof Since y(-) is Gaussian, the set of polynomials in y(-) is

dense in L2 (a,Fr3P), a fact presented in the discussion of homo-
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geneoustchaos theory in chapter 1. Therefore, it suffices to show

that a(t,s)dy(s) is the best rth order estimate for every r,

1< r <-. It is true for every r, T < and t < T that
t t

EC b2(s)ds]r < =E b2(t)[rb2(s)ds]r < -. Theorem 4.2 thus applies.

That is, ta(ts)dy(s) is the best rth order estimate if and only

if

g1(t,s 1 ,---,s1 ) = E{b(t)b(s)'-'b(s)} j=0,1,'--,r

From (4.22)

90(t) = 0

g1(t,s,--',s) = j(a(t3 -)(D(t)k )(s,',s )

+ (a(t, *)O(t)(k ) l)(s 3,,s )j > 0.

Now

j(a(t,-)O G(t)k1 _)(s,---,s) = a(t,s()
Tr6r

Eb(s,,(2) ) --.- b(s - )

= a(t,s.)Efb(sl)' - .b(s. )b(s. ) ---b(s.)}

and

(a (t,. ) G (t) (k +1),(s ,---. ) 

t

= Fa(t,a)E{b(a)b(s). .. b(s.)}da
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The kernel equations become

0 = Eb(t) (4.34)

t

d(ts) + f a(t,a)E{b(a)b(s)}da = E[b(t)b(s)] (4.35)

I0

, a(t,s)E{b(s i)--b(sl)b(s )---b(sn)

t

+ fa(ta)E{b(a)b(sl)...b(s1)'}da

= E[b(t)b(s) - -b(s.)J (4.36)j

2 <j _<_ r

(4.34) is true by definition, and (4.35) is just (4.33). We now

claim that if a(t,s) satisfies (4.35), (4.36)j is true for all
t

j > 2. This will imply that the equations for a(ts)dy(s) being

th 10

the best rth order estimate are satisfied for every r, and will

complete the proof. To do this, assume a(t,s) solves 4.35, and

observe the identity

E{b(a)b(s 1)---b(s1 )} = (acs)E[b(s) - i-b )b(s)+l .-.- b(s )
(4.37)

(4.37) results from a direct application of lemma 3.3.

Now substitute (4.37) into the left-hand side of (4.36)

and use the Wiener-Hopf equation for a(t,s):
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a(t,s )Eb(s 1 )...b(s i)b(si )-.. b(s.)J

t

+ I0a(t,a)E[b(a)b(s)...-b(s1)]da
I t

1'{a(t,s) + f a(ta)[ars ]da} E[b(s)-...b(s i)b(s+) -..-b(s.)]

(s- ̂ t) E[b(s.)---b(s )b(s )...b(sj]

= E[b(t)b(s )-- -b(sj)

The last equality employs lemma 3.3 again and validates (4.36)j for

any j.

4.4 Quadratic Filters

In this section we treat best second order, or quadratic,

filters as an example of the theory of 4.2. We first present the

optimal kernel equations for this case and then show how they may be

solved. To guarantee validity of the discussion, we assume throughout

the hypotheses of theorem 4.2 for r = 2:

T

E(jh2 (s)ds) 4 <
0

T

Ef 2(t) ( h 2(s)ds) 4 < Vt <_ 1,

0
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Deriving the integral eqyations is simply a matter of

calculation. Let a(t) = a(t) + a1(t,s)dy(s) +
t s 1 0

f a2(t,s ,s2 )dy(s2)dy(s1 ) be a quadratic estimate and let

0 0
g1(t,s ,'',s.), 0 c j < 2, be the kernels associated with a(t)

in the manner of (4.21a). Thus, using (4.22)

go(t) = a0(t) + [a 1(t,-)]1 ) (t)[k1J I+ [a 2(t,-)] 20(t)[k2J2

g (t,s) = a1(t,s) + a0(t)k1(s) + [a 1(tj-)] Q (t)[kc2J1(s) (4.38)

+ [a 2(t,-)]1 Q(t)[k1 31(s) + [a2(t,-)1 2 (t)[k3 2(s)

g2(ts1 ,s2) = a2(ts1 s2) + a0(t)k2 (s12 s2 ) + [a(t,-)]O(t)[k1 ](s1 ,s2 )

+ [a1 (t)31 O (t)[k3]1 (s's2) + 2[a2(t)]

Q(t) [k21 (s1,s2 )

+ [a2(t) 2 0G (t)[k412(s s29.

By theorem 4.2, a(t) is optimal quadratic if and only if

Ef(t) = go(t)

Ef(t)h(s) = g,(t,s) (4.39)

Ef(t)h(sI)h(s2) = 92(t,s1,s2)

Now evaluate g., 0 <_ j c2 in (4.39) using (4.38) and the

definitions of C (t) and k. The result is in its full blown
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ugl iness,

t t sI

Ef(t) = a0(t) + al(t,s)Eh(s)ds + {{a2(t1 ss2)Eh(s)h(s2)dS2ds,

0 0 0 (4.40a)
t

Ef(t)h(s) = a1(t,s) + a0(t)Eh(s) +f a(t,a)Eh(a)h(s)da

0
t t a

+ {a2 (t's a)Eh(a)da + If1a2(t,a1 ,a2)Eh(a1 )h(a2)h(s)ds

0 0 (4.40b)

Ef(t)h(s1)h(s2 ) = a2(t,s1 s2) + a(t)Eh(sl)h(s2 ) + a (tisI)Eh(s2 )

t

+ a1(t's)Eh(s1 ) + Oa1 (t,a)Eh(a)h(sl)h(s2)da

t
+ ft[a2(tsla)Eh(7)h(s2) + a2(t,s ;)iEh(o)h(s)Jda

t Cl

+ 2 f a9(t,a1 ,a2)Eh(s1 )h(s)h(a)h(2)}da2dc1 (4.40c)

These equations deserve some elementary remarks before we set

about solving them. First, the optimal kernels are all interrelated

in the general case. We cannot solve for a0 and a independently

of knowing a2 . Likewise, if a0 = c0 ' a1 = c1  are the kernels

of the best linear estimate, they will not, in general be the lower

order kernels of the best quadratic estimate. Secondly, the

equations (4,40) can be used for other suboptimal designs in the

spirit of theorem 4,3. Thus, if a0 and a1 are given, and we
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t
seek the best quadratic correction to a0(t) + faj(t,s)dy(s)

this will be found by solving (4,40c) for a2  in terms of a and

a0 , The methods developed for solving the full set of equations

(4q40) will also apply to this problem,

To solve (4.40), we first eliminate a0  and a1  to derive

an integral equation solely for a2 . a0  is easy to handle. Merely

solve (4.40a) for a(t) in terms of a1 , a2 , and the known

functions Ef(t) , Ef(t)h(s) , etc. and substitute this expression

in (4,40b) and (4.40c). To further simplify, use (4,40b) in

a1(t,s1)Eh(s2) + a,1(t,s2)Eh(s1 ) of (4.40c), We thus derive

t t a1
a0 (t) =Ef(t) -01 a(t,a)Eh(a)da - j 0 a2 (tya1 ,a2 )EH(a 1 )h(a2) da1

(4.41a)

t

a 1(t,s) = cov[f(t),h(s)] - f0 cov[h(s),h(a)]a(t,)da

t

- fEh()a 2(ts a)da

t CT 1
- JJcov[h (s),h(a, ) h (a2)]a 2(t ,a,a2)da2da1  (4.41b)

t

a2(t,s1,s2) = cov[f(t),h(s1),h(s2)J fcov[h(sl),h(s2),h(a)]a (t,c)dc

rt
- fEcov[h(s, ),h(c)]a2(t,s 2 c) +cov[h(s2),h(a)]a2(t,s,1 a)dc

t r C

FJO J0cov[h(s)
2,h(s2)j,h(a)h(]a2 (tc ,2)da 2 d(c

(4,.41c)



- 99 -

(In these expressions, cov[xi,-O-Xr] = ECx-Ex)A- (xr-Ex)r)

We have yet to eliminate a1 from (4,41b) and (4,41c), but

this requires some more notation and a bit of theory, Define the

operator Rj(t): L2 ([o0t]) + L2 ([0,t]) with kernel

r1(:'c) = cov[h(s),h(a)] by

t

(R1 (t)g)(s) = fcovrh(s),h(a)]g(ca)da

R (t) appears in (4.41b) and (4.41c), In particular, (4,41b) may be

rewritten as
t

[I+R (t)](a,(t,))(s)= covrf(t),h(s)] - E~~2tsad

t Lf og2 t's a d

- I 0 cov[h(s),h(a )h(a2)]a2(t,a,2)dca2dcr,

(4.42)

and thus, solving for a in terms of a2 requires inverting

I+R (t), Fortunately, this can always be done in an explicit way.

Lemma 4.5
r

i) h(t) has a best linear estimate h(t) = a 0(t) + a(ts)dy(s)

t < T . Without loss of generality, we take c (t,s) = 0 for

T >s > t >0.

ii) I+R1(t) is invertible, and [I+R 1(t)] = -Q(t) where Q(t)

is the integral operator with kernel

q(t,s1 ,s2) = t1(s's2 ) + a 1(s2'1)
t

- f a(a'sl)a, (a,s2 )dc,0 < s ,s2 < t
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Proof E[jh 2 (s)ds] < = guarantees that h(t) exists (lemma 4.2)

and, as in (4,28)

sI

a 1(S- ,$S2) + {Jta(s1,,c) cov[h (s2),h (a)]da

= cov[h(s 1),h(s2)] 0 < s2 c T

ii) follows from results of Kallath and Geesey (Geesey D6],

Chapter 3). These imply that, under the hypothesis

fcov[h(s),h(s)]ds < , which is certainly implied by
0

E[ Th2(s)ds]4 < , I+R1(t) is invertible and its inverse has the
0

given form.

We now apply this lemma to solve (4.42) for a1(t,s)

t

a (t.,s) = cov[f(t),h(s)] - {q(tsa) cov [f(t) ,h(c)]da

- ftftr'(t,s ,oalu 2)a2(tal o, 2)da2dal (4.43)

where

r' (t, s ,c ,a2) =2 cov[h(s)h(a)h

+ 1 [q(tsa2)Eh(ay) + q(t,s,o'1)Eh(a 2)

+} fq(ts a)icov [h(a),h(a)Gh2)]da

In deriving r' , we took advantage of the symmetry of a2  to

symmetrize r' . Finally, we substitute (4.43) into (4.41c) to get
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a2(t,s1,s2) F(t,s1 s2)

rt
- JfEr (s ,a)a2(t's2,a) + r1(s2,c)a2(t,sla)]da

0 0
-f r2(t~sis2'3apa2)a2t,a 7,a2)da2da1 . (4,44)

where

F(t,s 2s2) = cov[f(t),h(s1),h(s2]

- cov[h(sl),h(s 2),h(a)1(cov[f(t),h(a)J

ft

0q( t , c C2) cov [f (t) ,h(a2 )l]d2da

= [cov[h(s),h(s2),h(a1 ),h(a 2)]

- cov[h(s ),h(s2) ccv [h( 1 ) ,h(a2

(t
-ftcov[h(sl) ,h (s2) ,h(n)] r (trj,a1 ,a2)dn.

We have shown that if (a0,a1,a2) solve (4.40) then a2  solves

(4,44). Conversely, by reversing the steps of this derivation, if

a2  solves (4.44) and a0  and a1  are defined via (4.43) and

(4.41a), then a0, a1, a2  solve (4.40).

(4.44) is simply a linear integral for a2 , However, the

middle term of (4.44), involving a tensor contraction between a2

and r1 , is non-standard, and the usual linear integral equation

techniques do not directly apply. In what follows, we will show how
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to eliminate the tensor contraction term to derive a Fredholm integral

equation for a2 , thus reducing the kernel equations to a well-

known problem for which methods of solution or approximate solution

are readily available,

It is useful to do this in a general context,

Definition 4.2. Let S(s ,s2)eL2 r([0 t] 2 ) and let

y(s 1,s2 'l' 2)s L2 ([0.,t]) such that y is symmetric in sls2 .The

operator r: L2([0,t] 2) L 2([01 t]2

tt

(rc)(sl s2) = L10(t)Flc]1(s1,s2) + {{Y(sls2 a17,c2)c(a1 0,72)da2da1

is said to be of tensor contraction (T-C) type, The kernel S can

also be used to define an integral operator on L2([0,t]) , which

we will denote by B , and, in fact, we can write

[s]0(t )rc]1 (s1 ,s2) = FtS(sl,)c(s2,a) + S(sC)c(sl ,c)d7

= (Bc(s2,'))(s1 ) + (Bc(s1 ,))(s 2)

Remark: It is of interest to note that, while the second term of

r is the usual compact, Hilbert-Schmidt operation, the tensor

contraction term is not compact in general. Since compact operators

have finite dimensional eigenspaces, we can prove this by supplying

a S such that (csL2([0, t] 2 )1c = $10(t)c1j} is infinite

dimensional. It is easily seen that
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m
S =s 1(s1)t (s2) '

where the b , 1 < i < NM < are mutually orthogonal, will work,

Then if { N } are functions orthogonal to Span 1,- , '

c(s1,s2) . [t~si)i(s2) +ci(s2>Pi(s9)J satisfies c = sy -(t)c1 .
i=1

The space of such solutions is clearly infinite dimensional.

For a T-C operator r characterized by kernels $

we want to solve the integral equation

and y

c = F + rc FE L2 ([0,t]2 )

which generalizes (4,44).

Theorem 4.5. Suppose that I-8 is invertible and

(CI-B]1$)(s) = $(s) + ftl(sa)t(a)da S1 EL 2 ([0,t] 2)

Then, if c = rc has no non-zero solution, I-r has a bounded

inverse.

Proof Using (I-B) 1  we will derive a Fredholm equation for c

from (4,45). Thus, suppose c = F + rc. From the definition of P

we have
t

[(I-B)c(s 3,9)](s2) =c(si ,s ) O (s2,)c(sl ,r)da

)+t
- F(s,s2) + f%(s1 ,aGcCs2 ,a)dc

rt t

10 -o 0(s , s 2' al l'2 )CCU(a 2) d"2 dcl

(4.45)
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By inverting I-B and rearranging terms, we deriye

E(I-B)c(Qs5)](s1 ) = F(s1 ,s2) + jtc(s2 ,o)F(slc)da

+ ffty (ss2Jal'2)c( (J,2)da2da (4.46)

where

y1 (s ,s2,'l , 2 ) = y(s 522C1'u2) + S (s2,a ) 2(sa2)

+ f $1(s2,n) (s1 ,n a1 ,2)dn

Now invert (4.46), to get

c(s1 ,s2) = Fj(sVs2) + p 3 (s1 ,s2  a U2)c(al, 2 )da2da (4,47)

where

F1 (s1 ,s2) F(s1,s2 ) + fts(s2 ,a)F(sl,a)dc

+ p sl(s 1,a;[F s2 ) + ftl(s 2 'c2)F(JlI,a2)da2 ]dal

and

Y3(s1 ,s2,a1,a2  =Y 1(s1 2s2 ,a,1 a2 ) + f (s 1 ,n)y1(n,s 2 ,'1 'u2 )drn
0

(4.47) is the desired Fredholm equation for c ; if c solves

c = F + rc then c satisfies (4.47). Conversely, if c satisfies

(4.47) then c = F + Fc Analogous reasoning shows that c = c iff

c(sS2) = ( c) (ss2) = rt) d-da (4.48)2 3 s2) Jo J0Yj3(s Ip5 a2 j 2dC 1
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Thus, if c = Ic has no non:zero solution, neither does c = F c

But F3 is a compact operator, and hence the Fredholm alternative

theorem implies that I-P3 is invertible, This clearly implies that

I-r is invertible also.

The statement of theorem 4.5 may seem odd because it does not

focus on the central equation (4.47). This is done to emphasize

that once the Fredholm equation is derived, we need conditions to

guarantee it can be solved. Stipulating that 1 not be an eigenvalue

of r provides just such a criterion. Further, the statement of

theorem 4.5 may be extended to a sort of mutant Fredholm alternative

for tensor contraction operators,

Corollary. If I-XB is invertible and A is not an eigenvalue of

F , then I-AP is invertible.

Proof. Completely analogous to that of theorem 4.5.

The equation (4.44) for a2(t,s ,s2 ) 'isof tenscr contraction

type; in fact, we may write it

a2(t,s,s2 ) = F(t,s1 ,s2) + [R(t)a2 (t,-)(s1 ,s2) (4.49)

whete R(t) is the tensor contraction operator characterized by

the kernels $(a ,2 = 2 -r1,a 2) and

y(s1 ,s27 'n1 ) 2 -rj2t,s1 ,s2'a1c 2)'

Theorem 4.6, I-R(t) is invertible and a 2 (t,-,-) is the unique

solution of
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a2(t,s1 ,s2 ) = Fj(tis1 ,s2) ri V Y(t's ,s21l '2)a2(t'al ,C2)dF2dal

(4,51)

where

t

F j(t's1 s 2 ) = F(ts1 ,s 2  0[q(tIs2 'ol)F(t,sla2)+q(tsia2)F(t9als2)]

da2da1

t t

+ f0 q(tsl,al)q(t ,s2 a2)F(ta,3a2)da 2dai

t

y(t,s,,s2 ,a 1 ' 2 ) yj(t,s1 ,s2 a1a 2) - f0q(t's'u) (us2'a'12)du

y (tsps2 'lPa 2) = - r 2(t~s1 ' 2 ' 2) - q(t,s2 'a1)q(t,s1 ,a2

t

+ f q(ts2 ,u)r2(t,s1 ,u ,a1,a2)du
0

Proof From theorem 4.5, it suffices to show that I + R1(t) is

invertible and that 1 is not an eigenvalue of R(t). The invertibility

of I + R1(t) is proven in lemma 4.5. The eigenvalue condition

is a consequence of the uniqueness of the best quadratic estimate.

For suppose that c(s1,s2) = (R(t)c)(s,s2). Then a2(t's1's2) =

a2(t,s1 ,s 2 ) + c(s1 ,s2 ) would also be a solution of (4.44), and hence,

if a (t) and aj(ts) were defined from ai(t's1 s 2) via (4.43) and

(4.41a), a8(t),ai(t,s),a(t,si ,s2) would also satisfy the optimal

kernel equations. This contradicts the uniqueness of the best

quadratic estimate. The definitions ofF and y follow from
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the proof of theorem 4.5. Finally, note that if y denotes the

integral operator defined by y, I + y is invertible and hence (4.51)

has a unique solution.

We have thus reduced the complicated kernel equations (4.40)

to a simple Fredholm equation which can be solved by standard methods.

Moreover, we can achieve a similar result for the problem of

determining the best quadratic correction to a linear filter, which,

as previously mentioned, requires solving (4.40c) for a2 in terms

of a0 and a1. Again, (4.40c) is an equation of tensor-contraction

type for a2 and the tensor contraction kernels are the same as in

(4.44):

a 2(t,ss 2 ) = [Ef(t)h(s1)h(s2 ) - a0(t)Eh(s)h(s2) - a1(t,s)Eh(s2)

- ag(t,s2)Eh(s1 ) - taI(t,c)Eh(a)h(s)h(s2)da]

0
t

- f[r(s2,a)a2(t,s1 ,c) + r 1 (sIo)a2(t,s2,a)]da

0

- ;tE{h(sl)h(s2)h(a)h( 2)} x a2(t,a1 ,a2)da2da.
0 0

Note that this method does not succeed in solving the

optimal kernel equations recursively. Rather, t is fixed through-

out and the relevant operators are defined and inverted on

L2 ([0,t]) or L2([0,t]). At a different time t', the entire
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process would be repeated. A recursive solution.would use

a2(t9s13 s2) to construct a2(t+dt,s1 ,s2

An important problem is to determine conditions on f, h

and the signal process x(-) such that a1(t,s) and a2(t,s1 ,s2)

are separable, for in this case the filter can be constructed with

stochastic differential equations (see theorem 2.3). This has not

yet been done and is fairly complicated due to the complex manner

in which Ef(t), Ef(t)h(s), etc. combine to produce the kernels

F1 and y of (4.51), the Fredholm equation for a2 .
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CHAPTER 5 NONLINEAR FILTERING PROBLEMS WITH FINITE DIMENSIONAL

ESTIMATION ALGEBRAS

Suppose that a signal x(t) is defined by the stochastic

differential equation

dx(t) = f(x(t))dt + g(x(t))db(t)

x(O) = x0(5.1)

and that it is observed via

dy(t) = h(x(t))dt + dw(t) . (5.2)

As usual, b(t) and w(t) are assumed to be independent Brownian

motions. The filtering problem associated to (5.1) - (5.2) will

be completely solved if the conditional distribution, P(x(t)eAjF),

A s (Borel sets of state spacel, is known. A basic question is:

when can P(x(t)eAIFY), as a measure, be characterized by a finite

set of statistics propagating recursively in time?

Recent progress on this issue has come from several

directions. First, V. Benes [1 1 has proved the following result

by probabilistic methods. Suppose g = constant, h(x) = cax + s, and

f is a global solution, (i.e., defined on all of R) of

f + f2 = ax2 + bx + c . (5.3)

Then the conditional distribution of x(t) given F{ has a density

which can be expressed in terms of a finite number of statistics
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generated by Kalman-Bucy type filtering equations.

There is also a suitable generalization to the case of vector

signals and observations. This result covers the case treated by the

Kalman-Bucy theorem, (lemma 3.1), but it gives new examples of

finite dimensionally computable filters as well. We will refer to

the filtering problems treated in Benes' theorem as the "Bene

examples".

Secondly Brockett and Clark [731, Mitter [353, and

Brockett [5 ,6 } have suggested that Lie algebraic techniques

can be applied to the nonlinear filtering problem. They show how

to associate a Lie algebra of operators, the so-called estimation

algebra, with filtering models such as (5.1) and (5.2) and how the

.Lie algebra structure bears upon the filtering solutions. In

particular, they suggest that when the estimation algebra is finite

dimensional it may be possible to compute conditional densities

finite-dimensionally.

In this chapter, we will pursue the implications of Lie

algebraic techniques for exact, finite dimensional calculation of

conditional densities. The first section will sketch the basic

ideas of this theory, especially those that concern generating

filter solutions from the estimation algebra structure. As part

of this exposition, we will derive by Lie algebraic techniques the

conditional density for the problem of estimating a Brownian
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motion in white noise. The solution to this problem is, of course,

well-known. We derive it here not for the end result but to demon-

strate and explore a Lie algebraic technique, called the Wei-Norman

method, (Wei and Norman [44]), that establishes the connection between

finite dim.estimation algebras and finite dim. filters. Further, a

rigorous derivation of a filtering solution directly from the algebraic

structure has not appeared in the literature for diffusion signals

and so we present one here. As another part of this treatment, we

will indicate connections between the Lie algebra strategy and the

theory of Lie algebra/Lie group representations on infinite dimensional

vector spaces (see also Brockett [6]). This will provide us insights

into the behavior of the filtering problems we consider. Also, Lie

algebraic theories of estimation are presently very incomplete and

we believe representation theory will ultimately offer much to their

study. Finally, we briefly develop the Benes' examples from the Lie

algebraic viewpoint, a possibility first realized byMitter , who

suggested it to us, after Benevs' results became known.

The remainder of the chapter is devoted to the search for

new examples that may be solved Lie algebraically. Section 2 presents

a case to which the methods developed in this section do not apply,

and it explains why not. Section 3 contains the principal results

of the chapter. It first gives necessary conditions for a general

class of vector process models to have finite dimensional estimation
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algebras, since these are the models that could possibly be solved

by the algebraic techniques. By applying this result, we are able

to list all possible problems with finite dimensional estimation

algebras for scalar process models. We then ask the question: for

which of these examples does the Wei-Norman, Lie algebra calculation

work? Our results are largely negative. Roughly speaking, they

indicate that only for the previously known examples does the

calculation work.

5.1 Estimation Algebras and Filterina

Our concern henceforth shall be with the filtering problem

stated in (5.1) - (5.2). Suppose that for all t, x(t) has a density

q(x,t). Then the conditional distribution of x(t) given Fy has at
density

EO{Lt[F, ,x(t)=x}q(x,t)
p(x,tjF ) = (5.3)t JY

EOtLtI

This is easily derived from the Kallianpur-Striebel formula. Call

the numerator of (5.3) p(x,tIF ). p(x,t[FY) captures the
A A

x-dependence of p(x,tIF ), that is, it equals P(xtIF{) up to

a random normalization factor, and it is, therefore, called the

unnormalized conditional density. p(x,tjF) is easier to work

with than p(x,tjF).
t2

Let L*= 7I T g2(x) - fx) be the fonvard generator of
iex

x(.t). Under appropriate regularity conditIons , (Zakai [47],
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Pardoux [ 40]), the unnormalized conditional density p(x,tJFY) definedt
in (5.3) satisfies the stochastic partial differential equation

dp(x,t) = L*p(x,t)dt + h(x)p(x,t)dy t54)

p(x,O) = p0(x) = initial density of x(O).

The Stratonovich and white noise forms of (5.4 ) are, respectively,

Cp(x,t)=[L*- }12 (x)]p(x,t)dt + h(x) p(x,t)cTy (5.5)

and
ap(x ,t) = [L*- h2(x)Jp(x,t)+h(x)p(x,t)&(t). (5.6)

In (5.5), T denotes the Stratonovich differential. (5.6) is a formal

expression because &(t) does not exist except in a generalized

sense but it is useful in calculations. (Note: As in (5.4) -

(.5.6), the y(-) dependence of p(x,tlF) will often be

suppressed for notational convenience.) All or any of these equations

will be referred to as Zakai's equation, (Zakai [47]). For the Lie

algebraic theory, it is necessary to work with (5.6), since

manipulations involving y(t) obey ordinary, rather than Ito

calculus, and the Lie algebra results to be adapted were developed

for deterministic problems with ordinary calculus.

The precise question that we will study here may now be

stated. When can p(x,t) be characterized by a finite number of

statistics propagating in time; in other words, when does p(x,t)

evolve on a finite dimensional manifold? The new approach to

filtering that we deal with here is to learn about p(x,t) by

applying lie algebra/Lie group methods to Zakai's equation. Let
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L = L* 1 h2(x) and let0 2

{LOJh}LA denote the lie algebra of operations generated by L0  and

h using the bracket operation [A,B] = AB-BA. After Brockett F[ 3,

we call {Loh} the estimation algebra.

The fundamental idea is that {Loh}LA carries information

about the infinitesimal behavior of p(x,t). In particular, if

p(x,t) evolves on a finite dimensional manifold, then {L0,h}LA

ought to be finite dimensional as a consequence of the interplay

between Lie groups and Lie algebras, (Brockett [5 ]). Thus, we can

search for finite-dimensionally solvable filtering problems by looking

for examples in which dim{LOh}LA < e. This will become clearer

in the subsequent discussion.

Example 1: (Brockett and Clark [ 7 ] Mitter 35

Consider the simplest case covered by the Kalman-Bucy theorem

(see lemma 3.1).

x(t) = x0 + b(t) 
(5.8)

dy(t) = x(t)dt + dw(t)

where x0 is a random variable independent of the processes b(t)

and w(t). For (5.8), Zakai's equation is

, p(x,t) = (2 2)p(xt) + y(t)xp(xt)

(5.9)

p(x,0) = density of X0

The corresponding estimation algebra is easily seen to be
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1 d2  1 2 d
A E Span 2 dx2  2 

7x''9dx

D A 1d2 1 2
Define A0  2 2 ~ x The commutation relatiorrsof A are

[AQL.X] =d
A0 dx

[A0, -h-1= x (5.10)

Edx]=I.

We remark that A is solvable.*

Estimation Algebras and Solutions

In exploring the interaction between finite dimensional

estimation algebras and finite dimensionally computable p(x,t) we

must first confront the question: Given a finite-dim. estimation

algebra how does one integrate it to get a solution of (5.6), i.e.,

how does one determine p(x,t) from the algebra structure? This

problem relates naturally to the theory of integrating representations

of Lie algebras of unbounded operators on a Hilbert space to a

corresponding representation of a Lie group. We present some

*
A lie algebra G is solvable if the series of ideals G =[
Gn = [GnlGn-llC'' terminates at 0 for some n < o.

I c G is an ideal if [I,G] I.
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ideas of this theory to motivate the main calculational method,

and because, as mentioned above, we find it a useful source of

concepts for thinking about estimation algebras.

Let G be a finite-dim. lie algebra and G its associated

(simply connected) group. Let H be a complex Hilbert space.

Definition 5.1

A representation T of G on H is a map T from G

onto a set of linear operators on H with a common, dense, invariant

domain D such that [T(x),T(y)] = F(5,y]) for all x,y E G. Like-

wise, a representation t of G on H is a map T:G + L(H) =

bounded linear operators on H such that T(g g2) (gr(92) for

g11g2 e G.

The problem of integrating a Lie algebra representation

to a group representation is as follows. Given a representation T

of G on H, when does there exist a group representation T of G

such that x(.etx) = etT(x) V x e G? Here etT(x) is a group

generated by T(x) in the sense that - etT(x)t = T(x) cD.

Suppose that xl,-'9,Xd is a basis for G and that we have groups

etT(xi),i=l,,,,,d. A method for constructing t locally is to

define

(5.11)F (eal, t --iae- de =t wok 'te optor i

Formally, this ca;.n be made to work, if the operato-cr identity
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tX n tx.
e i X. n t[adX.]n Xie *

I n
(I)

holds for X = T(x.), 1 c j, j < d. (Flato, et al. p3]).

(r) will be of chief importance.

The procedure recalls the Wei-Norman f44] tech.nique for

solving differential equations. Let us develop this formally for

the above situation.

Suppose that in H we want to solve the evolution

equation

dt Xp + u(t)X2P

which is similar to Zakai's equation.

p(t) = eg () e gdtdp(O)

For this p(t),

(5.12)

We try a solution in t(G);

(5.13)

gL (t)X p

S (t)eg (t)X g2(t)X2 e.9 d(t)Xd
92 2 e*ep}+

+ . j(t)X1  *d(t)xd
+gd(t)e - Xde p(Q )

From (4), for 1 < i, j < d

*[adA]B = [AB].

(5.14)
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tX. d .. tX.
e tX . = d c''3(t)X e j

m=lm m

and applying this repeatedly in (7),

F(g(t) , g(t))Xp+---+Fd(g(t),g(t)).XdP (5.15)dt 1 (g t

for some non-linear functions F. of g(t) =(g 1(t),---1,gd(t)) and

g(t). For p(t) to solve (5), F1(g(t),g(t)) = 1,

F2(g(t),g(t)) = u(t) and F(g(t), g(t)) = 0 for 5 > 2. Solving

this set of equations (locally in t) for g(t) gives a local

solution of (5).

We will use this method to solve a filtering problem, but

first we present a few more remarks on Lie algebra/Lie group

representation theory. The heuristic ideas contained in (5.11) and

(.I) have been worked into a rigorous theory by Nelson [37] and

Flato, et al. [13 ] for the situation in which G is represented

by skew-symmetric operators and r is required to be unitary (i.e.,

to take values in the space of unitary operators). Their results

involve heavy use of the notion of analytic vectors (Nelson [37]);

see appendix 2 for a definition. In their theory a will exist

if the algebra domain D contains a dense, invariant set of vectors

analytic for each element of a basis for T(G). Conversely, if z

exists there is a common, dense set of analytic vectors for the whole

lie algebra (see Flato, et al. [13]). Further implications of the

theory are revealed in the following examples,which play a role in



- 119 -

the later discussion.

Example 2 Let A1 = {- ix, ,-i} and specify its domain as

S = rapidly decreasing functions

{ c c0( R)fsupIxS3ax(x)I < =Q ae Z+}
x

A is then a representation of the so-called Heisenberg algebra on

L 2(R) and it does generate a Lie group on L2(R). it is not

important here to present this group. However, it is interesting

to construct a domain of analytic vectors for A1  because this

involves the second order operator A, 1(T)2+i M2
0 2dax 2 y~x

1 d 2 1 2
2  - x , which arose in the estimation algebra A of example 1.
dx2  xx2

Indeed, it turns out that A0 on L2(R) has a discrete spectrum

{X 1} <,=- Let {nl be the corresponding
n-*w

eigenvectors, and define

N
Z= { aninINjN <}
1

D' is a dense invariant-set of analytic vectors for A0 and A2.

It is easily seen that D' is also a dense set of analytic

vectors for A of example 1.

Examole 3 Let A 2 = {-ix, i], -i} be a representation of the

Heisenberg algebra on L2R+) with domain C"( {C$( )| has

compact support in R+}. In this case, a unitary representation r
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generated by A2  does not exist. The reason is that i will2 t. dx

not be essentially self-adjoint on C (RW) (see Appendix 2), and,

by a theorem of Nelson [37], this precludes T. Nelson [373 also

1d 2 ld 2 1 2
shows that - T x2 = t+ - 2 will not be essentiallys h o w s t h a td x 2X-( d+ ( i x

self-adjoint on C"(R+) and that C2( R+) will not contain

a dense, invariant set of analytic vectors either. We shall observe

analogous behavior for the filtering problem studied in section 2.

We will now adapt the Wei-Norman method of (5.12) - (5.15)

to the solution of (5.9) in example 1. The first step is to
tX.

associate evolutions e to the elements X. of the estimation

algebra A. However, for A, the situation is considerably more

complicated than in the theory of representations by skew-symmetric

operators. It will no longer always be possible to generate

groups with the elements of A, or to insure that the evolutions are

bounded. Nevertheless, we proceed with the most natural definitions.
tA

Define {e 0It>0} to be the semigroup associated to A0 by

solving in L2(R) the equation

6(t) = A 0u(t) u(O) = 2 e L2

It is well-known that

(e tA 0)(x) = fG(x,y,t)h(y)dy t > 0 (5.16)

= -1/2 (x2 2)G(x,y,t) =(2m7sinht)- exp[- I (cotht)( y) + xy/sinht]
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Similary, define

(tx tx *(e t )x W ) = e t (x) t erI

tj-
(e dx)(x) = t(x+t) t F]R.

As in (5.13) let us try to solve (5.9) by the expression

p(x,t) = [eg 0( 92(t)x e93(t)>T e24(t) p0Jx (5.17)

where the g.(t) functions are to be determined. One may certainly

92(t)xraise objections to (5.17) -- the operator e2is unbounded,

g1(t) cannot take negative values -- but these will be cleared up

as we go along. The Wei-Norman method will allow the values of

g.(t) to be calculated if (I) holds for the elements of A.

This requires, for example, that

tA0  tA0  tA
e 0xp (cosht)x e t0 + (sinht)t e (518)

etA0 -=(sinht)xe 0d tA + (cosht) e 0  (5.19)

and

etxd L txt tetxt . (5.20)

The right-hand-sides of (5.18) and (5.19) are derived from

(I) by using the identities

[ad A0] 2nx

*This solves .t) = xu(t) u(O) = 5, but not in L2

"I
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[ad A0 2n+1

which follow easily from the commutation relations (5.10).

Lemma 5.1

(i) (5.20) holds for every E C I(R)

(ii) Let V = (O(x) = xseaX(x)[s,cdR, e L (R)}. For every 4 e V

(etA0)(x) = G(x,y,t)4(y)dy

R

exists and is infinitely differentiable on {(xt)It>0}. Further

m+n tA 0 m+n

- e tp()(x) J G(x,y,t) (y)dy (5.21)
at max nfat ax"

and for t > 0, (e tA 0)(x) = (AetA )(x) (5.22)

(iii) (5.18) is true for every b E V, (5.19) for every e V

such that p' V.

g(t) x g (t)L g(t)
Remark If p0 OE L(R) then e92(e) 3 t eg4( p0 EV

and hence p(x,t), as given by the product of evolutions (5.17), is a

well-defined function in L (R).

Proof (i) i s an elementary calculation.

(ii) can be derived easily using the explicit form of G(x,y,t).

The principal observation to make in doing the calculations is that

for t > 0, G(x,y,t) will decay like e-ay2 as y - for some positive o(.
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(iii) The following calculation proves (5.18)

(etxp)(z) = G(z,y,t)y (y)dy

-CO

= K'-LG(x,y,t) f+(cotht)x G(x,y,t) >'jdy xz x -Z

sinht p(y)dy

= (sinht d etA0O)z) + (cosht)(xe 0tA0)(z).dx _ c)z
To get, (5.19) integrate by parts

tA 0 d rfrk [LytJtyd
(e .a-.)(z) = G(z,y,t)y (y)dy = G(z,y,t)](y)dy

= (cotht)(extA0x) (z) -i ht ( Ax 0)(z)

= sinht (xe tA)(z) + cosht ( e tA 4)(z).

To obtain the last equality, we used (5.18).

Let p(x,t) be as in (5.17). We will now solve for the

functions g.(t) i =1,2,3,4. From (5.17)

p. g1 (t)A0  gjt)x g(t) g4(t)
= ga(t)A p + g2(t) e x e e e p0

9(t)A 92(t)x 3(t gt
+93(t) e 0e e e 9 0

+ h (t)p (5.23)
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By applying (5.18) - (5.20), one derives

k= (t)Aop(x,t) + F2(g(t),g(t))xp(x,t) + F3(g(t),d(t)) (x,t)

+ F4(g(t),g(t))p(x,t) (5.24)

with Fis given below in (5.25). But if p(x,t) is to solve (5.9)

with p(x,0) = p0(x) we must require

gl(t) = 1

y(t)* Fgg(t),2(t)) = 2(t)cosh g1(t) + 3(t)sinh g1(t) (5.25)

0 = F3(g(t),g(t)) = 02(t)sinh g1(t) + n3(t)cosh g1(t)

0 = F4(g(t),g(t)) = 64(t) - 43 (t) g2(t)

g.(t) = 0 i = 1,---,4

(5.25) may be easily solved. The result, written in terms of the

dy(t) notation rather than y(t), is
t

g2(t) = cosh(s) dy(s)

0

t

g3(t) = - sinh(s) dy(s) (5.26)

t t

g4(t) = f (sinhs)(coshs)ds - f9g2(s)(sinhs)dy(s).
0 0

Finally, by substituting these expressions in (5.17) and using the
tA

explicit form of the kernel G(x,y,t) of e 0,we derive
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p(x,t) = k(zt) e-1/2 p pO(z)dz (5.27)

p(t) = tanht

m(t) = sht + htdy(s)

Let p(x,t;z) denote the integrand of (5.27) exclusive of p0(z).

p(x,t;z) may be interpreted as the unnormalized conditional density

of x(t) for the process x(t) starting at x(O) = z. It is clear that

the normalized version of p(x,t;z) is a Gaussian density with mean

m(t) and covariance p(t), and this agrees with the Kalman-Bucy

solution of the problem. Though these calculations used the

-(t) formalism, they can be carried out, with some added

computational complexity, using the rigorous Ito calculus. Therefore,

we have redertved the Kalman filter.

Remark In presenting the Wei-Norman technique, it was indicated that

in general it only gives solutions local in t. However, theorem 5.1

provides a solution for all t > 0. This happens because the

estimation algebra A is solvable (see example 1). Wei and Norman [44]
g.(t)X.

show.that for solvable matrix Lie algebras, if the operators e

are placed in the correct order in (5.13), global solutions can be

found. Without further elaboration, we observe that this result

extends to the present case and motivates putting e(t)A0 first

in (5.17).
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The Bene's Example

The Lie algebra strategy is also able to recover the theorem

of V. Benev quoted above. Consider the scalar case

dx(t) = f(x(t))dt + db(t)

dy(t) = x(t)dt + dw(t)

f' + f2 = ax2 + bx + c . (5.29)

The Zakai equation is then

I2 a 2 a-1 2
= a{ - yf(x) - 2 x 2}p(x,t)

at a 2 a
+y(t)xP (5.30)

1 a2  2
The estimation algebra A = a2x2 f) LA is again

1 a2  a 1 2
finite dimensional. Indeed, if LO 2 ax2  ax - X

Aft dA=Spari{Lo 0 X -

and its commutation relations are

[LO ] d fdx

[LO, -f] =(a+l)x b (5.31)

d
[T - fix] =I.

These calculations are valid without restriction on the coefficients

a, b, and c. However, for general a, b, c, (5.29) may not have a

global solution, in which case (5.31) is to be interpreted on functions
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whose domains are contained in the region where f is d&Fined. We

will explore when (5.29) has global solutions in section 5.3.

We could now try to solve the Zakai equation (5.30) by

p(x~t)= (eg1(t)Lo e92(t)x g3(t)d - f.g4(t)
p~~t ( ee e p9)(x~t).

However, it is simpler to first rewrite Zakai's equation via

a simple transformation that compares to the gauge transformations

of quantum physics. Let z ER and define

x

F(x) = f(s)ds
-z

If q(x,t) = e'xp(x,t), a substitution in (5.30) demonstrates

that

t .[.2 - [(a+l)x2+bx+c]]q + y(t)xq
ax

(5.32)

(5.32) is similar to the Zakai equation for the

Brownian signal example. Although (5.32) is not the Zakai

equation for a filtering problem, let us define its Lie algebra of

operators as A = {LX}LA L 2  2[(a+)x+bx+c].

A is isomorphic to A by the ismorphism L0+ Lo' X X'
d 0d T Lx .-x r I + I It is trivial to observe that

I;2 (a+l) 2 d P= Span{A 2 =( )- X 2 9
a x
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Suppose that f is globally defined so that, in order to find

p(x,t), we seek a solution q(x,t) of (5.32) that is defined for all

x e R. Suppose further that (a+l) > 0. We can then solve (5.32)

by the method

g (t)A0 92(t)x g3(t)dy g4(t)
q(x,t) = (e e e e qQ(x)

The g.(t) functions will be slightly different from those calculated

for example 1 because of the different commutation relations between

AO,'2' and I. The resulting solution p(x,t) = eF(x)q(x,t) is

precisely that obtained by Bene's. Whether the same method can be

made to work for the case in which f is not globally defined is

an issue we will take up in the remaining sections.

5.2 Estimation of Absorbed Brownian Motion

This section counterPoints the successes of 5.1 by providing

an example in which the estimation algebra has finite dimension, but

in which the Wei-Norman calculation does not work. The signal in

this example is a Brownian motion absorbed at a boundary, and the

associated filtering problem is very similar, operator-wise, to the

problems treated in 5.1. But it turns out that the Wei-Norman

method cannot proceed because the identity (I) fails for the

estimation algebra operators. The phenemonology of this failure is

discussed in hope of characterizing the estimation algebras for which

the technique does or does not work. For the examples at hand,
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crucial information is revealed by the algebra's behavior on the

eigenvectors of the partial differential operator L0  = L* - }1h2

(see 5.6) of Zakai's equation and by the interaction between operators

and boundary conditions. The domain structures of the estimation

algebras are also more closely identified. An important role is

played by the existence or non-existence of a dense invariant domain

of analytic vectors associated with the eigenvalues of L0.

Let b(t) be a Brownian motion, let x0 be a r.v. with

density p0(x) such that p0(x) = Ox < 0 and such that x0  is

independent of b(t), and let r = inf{t[x0+b(t) = 01. Consider the

problem

x(t) = (x 0+b(t)) 1{t<} (5.33)

dy(t) = x(t)dt + dw(t)

x(t) is an absorbed Brownian motion with random initial value. The

distribution will now have two parts; an atom Q(t) = Pafx(t)=O},

and a measure Q(A,t) = Pa{x(t)EA-{O}) (for AC [0 ,o)) with density

q(x,t). Accordingly, the unnormalized conditional density of x(t)

will have two parts:

Pa t) = E 0 (x(t)=o}LtFt

and

P(At) = E{I{xL(t)A{o}LtIFY1

P(A,t) will have a density
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t

p(x,t) = q(x,t) E{t<-} ( 0 b(s))dy(s)

0

t

- (x0+b(s)) 2ds][FY, x(t) x}. (5.34)

0

Again these statements are all consequences of the Kallianpur-Striebel

formula. Assuming differentiability, p(x,t) will satisfy the

Zakai equation

ap(x~t) =(1l 2 1 2
a(t)x)p(xt) + y(t)xp(x,t) (5.35)

1 x

p(0,t) = 0 t > 0

p(x,0) = p0(X)

(5.35) may be derived formally as follows. Let

V = {fU C(R+)jf has finite limit at +

Let (T(t)f)(x) be the semigroup on V

generated by absorbed Brownian motion. The generator of T(t) is

2 d with domain 0 = f C2fI" E V, f"(0)=O} (see, e.g.,

Lamperti [49]). For f E 0, define

(f) = E0[f(x(t))LtIFt OL t t(5.36)

= f(O)Pa(t) + f(x)p(x,t)dx

(0,)
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By applying the stochastic differential equations of filtering

(Fujisaki, Kallianpur, Kunita [15] and Kunita [25]) one may derive

da =( f)dt + a(xf)dy(t) (5.37)
dx

for f c D. By substituting (5.36) in (5.37) and integrating

t d f) by parts, one finds

f(O)dPa(t) + f(x)'dp(x,t)dx

(0,-)

a -r f'(O)p(0,t) + f(0) p(xt)L e&dtax Ix

2

+ f(x) 2f 772p(x,t)dt dx

(02wa

+ f(x)xp(xt)dy(t)dx

(0,=)

Since this must hold for all f e D

dPa(t) = p(xyt) x=0 dt

p(0,t) = 0

dp(x,t) = 12 p(x,t)dt + xp(x,t)dy(t) . (5.38)2ax2

The white noise version of (5.38) is indeed (5.35).
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In (5.35), let A, rather than A0, denote

a 2  1 2
2 a2 f x , to emphasize that the functions A acts on are now

defined only on IRi. The estimation algebra is

- A' = {A, x, ,
dx'

which, but for the fact that the domain of functions is different,

is the same as A in example 1 of section 5.1. Again, one might hope

that p(x,t) is solved by

91 (t)A g(t) x d( ) g t

p(x,t) = (e e 2(x e3(t)d 0e94(t) P9(x), (5.39)

once the various operators are properly defined. However, the

crucial identity (I) will fail in this case. The problem is the

tA
boundary condition p(Q,t) = 0. Because of this condition, e will

tA0
not be the same as et0 of the previous section. Rather, to

meet this condition in (5.39), we must require. (etA)(O) = 0 for

all relevant . A simple reflection argument on the kernel G(x,y,t)

of etA (see 5.16) yields

(etA)(x) = fG(x,y,t)(y)dy

(5.40)

G1(x,y,t) = / 2sinht exp[- 122otht(x2 ) sin ht

If we try to prove the analogue of (5.61) with A replacing A0 we
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then get

(e tAx)(z) = cosht(xetAp) (z) + sinht(d etAp)(z)

+ f hte-1/2 cotht(z2+y2 ) e-zy/sinht (y)dy,
7rsinhtRe$(~y

The last term will not be identically zero unless e is, and hence

(I) fails. The Lie algebraic calculation of section 1 to solve

Zakai's equation will then not work.

Discussion

In the above calculations, we verified or disproved the
tA0crucial identity (I) by using the explicit formulae for etA and e .

It is desirable to explain the results at a more fundamental, operator-

theoretic level, i.e., to understand how the closely related

estimation algebras A and A' involve such widely variant behavior.

Our first step is to reprove the identities (5.18) and (5.19)

of section 5.1 by much more fundamental methods. This proof will not

be quite as strong as that of lemma 5.1 since it will apply only to

restricted set of functions. Recall from example 2 of section 5.1 that

D' = {finite linear combinations of eigenvectors-}

is a dense, invariant domain for A. Let w s D' be an eigenvector
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with eigenvalue X. From the commutation relations (5.10)

dx = [A 0,x]h = A0x - xx(5.41)

x{[A0,%d = A0 d d (5.42)
d-x a0it- TX XO

By adding (5.40) and (5.41) we derive

d d d
(L x)4) = A0(L + x)4) - x(L-+ x)4)

Since D' is invariant under L and x, (d + x)p e D' also. Thus
dx d

we conclude that ( + x)4) is an eigenvector of A with eigenvalue

d
x + 1. A similar argument shows that L - x is an eigenvector with

eigenvalue x - 1. The following calculation now proves (5.18) for

tA 0 xt
=4=. Observe first that eA = e p

tA0 d x) = e(X+l)( + x)tp, etc. Thene x dx

tA tA01dd
e 0  = e }F(4j+ x) x)

et~+1)1-+ (- - xt(-1)j i
7 d x 2 d

tx d tX

= cosht x e ui + sinht'- e p

- cosht x etA0 w+ sinht d etA 0 . (5.43)



- 135 -

By linearity, (5.43) extends to all the elements of D'. Thus, the

invariance of the domain D', which is also a domain of vectors

analytic for A, implies identity (I) after a direct calculation using

little more than the commutation relations. The development here is

reminiscent of the quantum field theory of the harmonic oscillation

or the construction of the free Boson field. This is not accidental,

because deep connections between quantum field theory and filtering

exist. (This was discovered and treated by Mitter [35].)

These nice domain .and eigenvector properties of the Brownian

motion signal case do not extend to the absorbed Brownian motion

problem, despite the isomorphism between A and A'. The root cause

is the boundary condition p(0,t) = 0, and the fact that this condition

is not invariant under L Indeed, we can see intuitively thatdx

tA tA . d tA
e x A cosht x e 6 + sinht L e t (5.44)

tA d tA AO.because, for general + (e xk(O) = 0 and sinht(L e p)(x)

However, the fact that (I) fails is not apparent

directly from the structure of A' because the boundary condition makes

no contribution to the definition of A'. We can rectify this

situation by more careful attention to the issue of operator domains.

It is useful to think of A' as a representation of a Lie algebra

on a function space V, and in this discussion it will suffice to
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set V = L2(S), S = state space. Recall that a Lie algebra

representation required not only an algebra of operators, but also

a dense, common, invariant domain on which to define them, because

an unbounded operator is not fully specified until its domain is

given. Thus it is actually inadequate to discuss estimation algebras

without considering domains, and thus we attempt the more rigorous

formulation

Definition 5.2 Let D c. V be a common, dense, invariant domain

of L0  and h. Then {Lovh}LAD denotes the lie algebra of operators

generated by L0/D and h/D and defined on the domain D.

Remark Domain invariance insures that all brackets [A,B] of

elements of the lie algebra are again well-defined operators on D.

What is the correct domain D to associate to A' when

trying to solve (5.35) by the Wei-Norman product series (5.39)? Up to

now, the discussion of operators in A' has been formal since we did

not specify domains. However, we did find that A, in conjunction

with the boundary condition p(0,t) = 0, gives rise to the semi-

group etA defined in (5.40). The proper domain D' for A is

tA
then that for which AID' is the infinitesimal generator of e

For clarity, denote this infinitesmal generator by A . It is

easily seen that
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12D()={ 2 + 12) 1 2 2 +),()=

Henceforth, we will discuss A instead of the less well-defined A.

Eigenvectors of A will again be important, and domain considerations

enter into their definition; p is an eigenvector of A if

( d - x2) = for some Xand if ,(o) = 0.
dx

Now, in analogy with Lie algebra representation theory,

we want the domain D of A' to be such that AID generates

etA also, (in the sense that etA is the unique semitgroup

s.t. lim [etA-_] = Acp, y 'D). At the very least this

requires that DC.D(A). Otherwise AID will generate a different

semigroup or will have extensions generating different semigroups.

For arbitrary D, of course, it may not be possible to associate any

semigroup to AID.

However, the next theorem will show that the requirement

D CD(A) is also problematic and it will lead Us to a deeper

characterization of why the Wei-Norman method fails.

Theorem 5.2 Let D D(A) be a dense (in L2]+)) invariant

domain for A'. Then -D does not contain any eigenvectors of A

nor does it contain a dtnse, invariant domain of analytic vectors.
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Remark It can be shown that AID has many different self-adjoint,

negative extensions. Thus there will exist many other semigroups

U(t) such that

lim [U(t)v-t] = Ac, Vck D
t+O

We conclude that D does not have the structure necessary for

integrating the elements of A'.

Proof If i is an eigenvector of

'(0) / 0, for otherwise the unique

(x = eigenvalue) is p E 0. However:

A', it is at least invariant under

Vn which implies (n) (0) = 0,

A it is clear that (0) = 0 and

solution of 1 1" 1122=0

if D C. D(Z) is invariant under

d (n)
. Thus if a D, a DcD(A)

'n. Thus

D C D(A){pla C(]), (n)( 0 ) = 0 Vn}

It is immediately clear that 0 contains no eigenvectors of A.

Consider a representation of the Heisenberg algebra A"={-ix,d,-i}

on D. As in example 3 of section 5.1, iL is not essentially

self-adjoint on D and hence, by the theorem of Nelson [37] (see

Appendix 2) A" on 0 does not integrate to a unitary group and

hence does not possess a dense invariant domain of analytic vectors

in 0. An analytic vector for ix is an analytic vector for x

and vice versa, so D does not contain such a domain for A' either.

In short, the eigenvectors of A, which in the Brownian
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signal example were the source of a dense, invariant domain of

analytic vectors, are no longer invariant under the estimation

algebra. Thus if p is an eigenvector of A, Ap = xp, it is

no longer true that (L +x)p and (L -x)p are eigenvectors of A

and hence the proof of (I) on eigenvectors by commutation relations

also fails for the absorbed Brownian motion case.

In summary, when a dense invariant domain of analytic

vectors, in these cases provided by the eigenvectors of A or

A0, fails to exist in the domain of the estimation algebra, the

Lie algebraic method of solving Zakai's equation does not work. We

shall see this same behavior repeated in examples presented in the

next section. It is our conjecture that the existence of analytic

vectors for the domain of an estimation algebra will be a necessary

condition that a filtering problem with finite-dim. estimation

algebra also have a finite dimensionally computable conditional

density. Further work on this has not been done.

5.3 Finite Oimensional Estimation Algebras.

In this section we seek to identify those filtering

problems that possess finite-dimensional estimation algebras. We will

restrict our attention to the class of models

dx(t) = f(x(t))dt + G db(t)

(5.45)

dy(t) = h(x(t)) + dw(t).
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and we will assume that x(t) is an .n-valued process, y(t) is

!R-valued, b(t) is an m-dimensional Brownian motion, m > n and G

is a constant nxm matrix of full rank. Additionally, we will suppose

that x(t) evolves in an open, connected set U C R, and that

f, h E C7(U). As the estimation algebra domain, we will always take

C'(U)e= { CW(U)supp6 is compact},

a choice avoiding boundary conditions, but imposing no loss of

generality to estimation algebra calculations, since the algebra

operators should be defined on a sufficiently well-behaved and complete

domain. The first result will present a necessary condition that

(5.45) has a finite-dim. estimation algebra. We then use this

condition to list all possible finite-dim. examples in the scalar

version of (5.45), n = m = p = 1. Finally we discuss in which of

the scalar possibilities, Zakai's equation can be solved by the

method of section 5.1.

Conditions for Finite Dimensionality

The Zakai equation for (5.45) is

'p = L0p(xt) + ( 7h(x)$ (t))p(x,t);t i1

n 2 n p2
L . A 1  - (x) - h (x) . (5.46)

TA=GG
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Consequently, the estimation algebra is defined to be

A = {Lothl ,-9hp} LA C (U)

The following lemma, which incorporates an important Lie algebra

calculation, is needed in the first theorem.

Lemma 5.2 Let g C C0(U). Then Vk

Lad L0 kg ZDkg(A ,---,A k )
1l , - - - ,Z k =l 1 k l k

(5.47)

+ terms with lower order differential operators

In (5.47) 0kg(''-) denotes the kth- differential of g

as a symmetric, k-linear function, and A, denotes the

of A.

Proof For k = 1, a direct computation will show

[LOS10,g4=

considered

th column

a-A +L + [1 tr(A-U g) - vgf]

for p e c (U). In the last term,

Dg= [ 29(ezek)

ek = kth standard basis vector

and

vg ax1 'sxn v
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For k > 1, the proof proceeds by induction. The details will

not be presented.

The next theorem gives the necessary condition for the

model (5.45).

Theorem 5.3 If dim A < =2, h(x),'-- ,hp(x) must be polynomials

of degree <.2. More generally, if g(x) E C"(U) is in A. g(x)

must be a polynomial of degree < 2.

Proof Fix g(x). The sequence ([ad L0 Jkg is contained in

A and hence cannot have operators of arbitrarily high order.

Because of lemma 5.4, this implies that, for some k,

k0 g(A ,---,A ) = 0
1k

for all zL,-.-.-zk9 1 < Z' 'z'k c n. Since A is non-singular,

this means that

a kg =0

*6* X Zn

for all l, s- -zk 1 '< zl1ea' Zk - n. Thus g is polynomial of

degree k - 1.

The sequence of functions (a (x)7- = 'n n=0'
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a Ox) = g(x)

a (x) = [[Lo,a0(x)J, ajxWJ

an (x) = [[Lo0 a 1 (x)], an-(x)l

must also be in A. Another tedious calculation shows that

an (x) = va.,(x) A 7Tanl()

If g(x) is a polynomial, then clearly {a(x)}n is a sequence of

polynomials. We claim that

deg an(x) = 2 deg ani(x) - 2 . (5.48)

To prove this, observe A > 0. Hence, there exists a matrix $

such that

T
SAS = diag [x1,---,n.Ji > 0 i = 1,-- n

so that

an(x)=7a 1 (x)S~1 SAST-1 T Tan- )

= Z(7a (x)S 2
=l 1n-

But van-i(x)S3 will be a vector of polynomials, the highest degree

of which will be (deg anl (x)) - 1. (5.48) clearly follows from this.
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Now suppose deg[g(x)] > 2. (5.48) will then imply that the sequence

deg an(x) will increase without bound and so admit polynomials of

arbitrarily high order into A. But this cannot happen if

dim A < w. Therefore deg g(x) < 2.

In the scalar case, theorem 5.3 may be used to impose

conditions on the drift f(x) and so to obtain n.a.s.c.'s for

finite-dimensional ity.

Theorem 5.4 Let n = m = p = 1, G = 1. Then dim A < iff

(i) h(x) = ax + (
(5.49)

f' +f 2 =x 2 + bx + c

(ii) h(x) = ax2 + sx + y2, a 0, and
(5.50)

f' + f2 = - h2 +a(2ax+s) 2 + b + C 2
(2ax+s)

or

f, + f2 = - h2 + ax2 + bx + c

Proof Assume dim A < a and h(x) = ax + a. The function

r1(x) = [L,'[LQh]]

= a2x + if" + ff,

is in A. Hence by theorem 2,

r(x) = ex2 + (a+2 )x + b/2
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for some constants, e, a, and b. Thus

cf'+f2'I I I" + ff' = ex2 + ax + b/22 2

and hence

f'+f2 = ex3 + ax2 +bx +c . (5.52)

Likewise

r2(x) = [LO 0[L, 3r(x)JJ - 4eL0

= 2e(2ax+s)2 + 2e[f'+f2] +

21111+2
(2ex+a+a2)f"f+f2(ax+E)

is quadratic. But, by substituting (5.52) into (5.53) we find that

r2(x) contains the term e2r7ix3 . Hence e = 0. Thus f' + f 2 is

quadratic. Conversely, if f(x) satisfies (5.52) with e = 0,

A = Span {L0  d , I

which is finite-dimensional.

I2

Next suppose that h(x) = ax2 + ex + y, a 7 0. Again

r(x) = [L 0 [LO,hJ] - 4aLO

= 2a[f'+f2J + ] (2ax+o) [f"+2f'f] + 2ah2

+ (2ax+s)hh'

2is a quadratic function Q(x). Let z f' + f. We see thatz
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satisfies

2az + f(2ax+s)z' = - 2ah2 - (2ax+s)hh' + Q(x) . (5.54)

The general solution z of this equation is

z(x) = - h2(x) + Q1(x) + 2
(2ax+s)

where Q1l(x) is another quadratic function solving

2aQ1 + t2ax+e)Qi = Q(x)

and x(2ax+s)- 2 is a solution of the homogeneous part of (5.54).

2If Q1(x) tw,(2ax+s) + v, then by taking an appropriate linear

combination of Q(x) and n(x) we may show that x E A. It then

turns out that

[L[LO,x]] = Qj(x) - 2xca(2ax+e)3

is in A. But this must be quadratic and hence x = 0.

Conversely if Q1(x) = v(2ax+s)2 + v, then x may be non-zero

and the estimation algebra is

A = Span {LO,(2ax+X),2 (2ax+s)t + [-(2x+s)f],I .

If f' + f2= - h + ax + bx + c and Q1(x) is not of the above

special form
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A = Span 1LQ' 2 Xd-xf,id f, I},x x dx dx

This completes the proof.

Remark Case (i) compares to the Bene's [1] examples; a form of

(ii) appears in Brockett [ 6].

By a simple transformation, we may extend this result to the

filtering model

dz(t) = f(x(t))dt + g(z(t))db(t)
(5.56)

dy(t) = h(z(t))dt + dw(t),

and h,f,g e C(U), U is an open interval of R,and g(z) > 0 for

z E U. Consider the differential equation

9ed(x) = g(e(x)) e(0) = z0 e U.

Let I denote the maximal interval about x = 0 on which the

solution e(x) exists. e maps I onto U, is infinitely

differentiable on I, and is invertible. These statements are easily

demonstrated from differential equation theory. Next let

f(x) -', Ff(e(x)) - V"(x)]

and suppose

dx(t) = f(x(t))dt + db(t)

By applying Ito's rule, one finds that if z(t) = &(x(t))
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dz(t) = f(z(t))dt + g(z(t)db(t)

Hence, (5.56) may be replaced by:

dx(t) = f(x(t))dt + db(t) (5.57)

dy(t) = h(a(x(t)))dt + dw(t).

The Lie algebra analysis can now be carried out on (5.57). The

estimation algebra is A( = t) - f(z) - h(z),h(z)'

2 g -(X) h}1 2 z 2)}A

that of (5.57) is A22= 1 a2  T x)1-(h )hea}LA

If i:A2 ) Al is defined by

(i[B]) (z) = Bwoe(x)

x=e (z)

one sees easily that i is an isomorphism of A1 and A2. Hence, we

derive.

Theorem 5.5 dim A1  <= iff dim A2<

Theorem 5.5 says that any finite dimensional estimation
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algebra for the model (5.56) with g(z) > 0 can be reduced by state

space diffeomorphism to one of the cases in theorem 5.4.

Solution of Zakai's Equation

Which cases among those singled out in theorem 2, allow

a solution of the filtering problem via the method of section 5. ?

To answer this, it is first important to characterize the drifts f

solving the equations (5.49) - (5.51). It turns out that f may

explode for finite x, that is, the maximal interval

U = (r0,r1 ) on which f can be defined may be only bounded or

semi-infinite because f(x)+ - as x -+ bounded endpoint of U.

Despite this a signal solving

dx(t) = f(x(t)) dt + db(t)

x(0) c U (5.58)

will still exist, but, in general only up to a stopping time, ',

at which it attains a boundary point of U, (Gihman and Skorohod

C 17]). The theory of diffusions on bounded intervals must now

be applied to proceed further. It says that to specify x(t)

for t > T, one must impose conditions that tell how the process

behaves at the boundary, i.e., whether it is absorbed, reflected,

terminated, or some combination of these three. Always, when

x(t) E U, it is assumed to solve (5,58). The theory also
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indicates that even if x(t) does not hit the boundary, so that

x(t) can be defined as a solution of (5.58) without additional

conditions, different process behavior near the boundaries can

occur. Whether or not x(t) attains the boundary and how it acts

near a boundary depends on the nature of f.

To study f and (5.58) we state some preliminary results

from diffusion theory. In our definitions and statements we follow

the exposition of Mandl [ 273; the original reference is Feller

[12]. Let f C C(U), U= (r0,r1 ) and consider the operator

B = 1

dx
+ )df(X)ai.

Let r e (r0,r,) and define

x

c (x) =2 f(s)ds

= is

v(x) =

dy e-c(y)

dy ec(y)

y

dz ec(z)

dz e-c(z)
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Definition 5.3 For the operator B,

The boundary point r. is
I

(a) an inaccessible, natural boundary if r(ri)=ca, v(ri)==

(b) an inaccessible, entrance boundary if w(r )=o, v(rg)<

(c) an accessible, exit boundary if (ri)<o,v(ri)<00.

(d) an accessible, regular boundary if (r ) ,\(r ) < cc.

Let C(I):={p(x),x.U p is continuous, lim w(x) exists and is finite,
x-*ri

i = O.l}

and consider the differential operation B

on

0(B) = e C(TI B y

Lemma 52

i) If the boundaries of U are inaccessible then B on D(B)

a unique Markov semigroup on C()

ii) Suppose B has an accessible boundary.

of q c D(B) s.t. at a regular boundary r

generates

Define 0'(B) as the set

= pi (ri)-(-)i 1:im e (X) i(x) + Bv(r

x- r

aC +7 T > 0, P ir, a > 0
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and at an exit boundary 0 = o w(r.)+.Bt)(r), pg .0 , p+c.>0.

Then B on D'(B) will generate a Markov semigrt~p on C (U).

Proof. Mandl [273.

Remark. The boundary conditions in lemma 5.5 ii) are called local.

More general, "lateral" conditionscorresponding to having the process

jump to a point inside U, are possible, but for such signals Zakai's

equation no longer holds.

For a domain with inaccessible boundaries, let x(t;x0) denote

the solution of (5.58) with x(0;x0) = xo e U. Then B on D(B)

generates (T(t)g)(x0) = Eg(x(t;x9) for g C(I). Construction of

Markov processes that correspond to the semigroup generated in the

case of accessible boundaries with local boundary conditions may be

found in Gihman and Skorohod [173.

We shall now analyze the solutions f of (5.49)-(5.51) in
rxterms of this theory. Given a function fi, let v = exp f, (or,

vice-versa, given v, let f = '/v. Then f satisfies (5.49), (5.50) or

(5.51) respectively, if and only if v satisfies

V'' = (ax2 + bx + c) v (55)

or

= (-2 + a(2x+s)L2 + b + c (5.50)
2a~
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v = (-h 2 + ax2 + bx+ c) v (5.61)

respectively. Clearly, singularities of f will arise at zeroes of

v. The situation is summarized in the following lemma. Note that

special attention must be given to (5.60) because of the singularity

of the coefficient atx =

Lemma 5. 4

i) Suppose that f is a solution of (5.49) or (5.51) and that f

x 1
becomes singular atmx . Then f(x) = + 0(1) as x- -x0. The same

x-0
holds true if f solves (5.50) and x .0 2a

ii) If f is a solution (5.50) and c - then f can have a

solution on an interval with endpoint x0 = and0 2at

f(x) = 0 + 0(1)
x-xC

where a(a-1)=c.

iii) If c < - ,f is not defined on an interval with endpoint x0

or containing x0'

Proof (i) Let v(x 0 ) = 0. Then v'(x0) , 0 (or otherwise v ' 0).

Thus
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f(x) =

x-x0

v'(x0)+v (x0) 20+---

v'(xx 0 0 0 +--

+ 0(1) J (.rX

(ii) It suffices to consider the case s = 0 and a = 1, for which

x = 0, and

= (-h2 + ax2 + b + 2)v
x

a(a-1) = c has two solutions
1a1 <-< a2 2 and v has

series solutions near zero

v (x) =

a
v2(X) x 2 anx

n=O

For each solution

S= A + 0(1)
a i x0)

For c = - 1/4, the solutions v are generally of the form

Ifc > -

w

a n =n=O
a0 A 0

b0 t 0

/X-+ 0
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v1(x) = x1/2 a xn

v2(x) = (in x) x1/ 2 (Z anxn) + x/bnn
n=O n= n

Again

1 1f =- -+ 0(0) .

(iii) If c < - , the solutions v and v2  are still valid, but

now a and a2  are complex

1 . /4c+1
i 2

Thus since

1/2 i 14c+1 1/2 i }/4c+1 n x

any real solution v will have an infinite number of zeroes in any

neighborhood of zero. Since each of these zeroes will correspond to

a singularity of f, f cannot be well-defined in an interval

containing 0 or with 0 as an endpoint.
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From lemma 5.4 we can derive

Lemma 5.'

Let f be a solution of any of the equations (5.49) -

(5.51) on U = (r0,r9). If r1  is finite and lim If(r < ,
x-r.

is regular. If r is finite and f(x) = + 10(1) (x-r.) r. is

an entrance boundary if a > 1/2, a regular boundary if a e(-1/2,1/2),

and an exit boundary of a < - 1/2. If r, is infinite (+= or

it is natural.

Proof For the finite boundaries, calculate 4(x) and v(x) and

apply definition 5.3. To prove that an infinite boundary is natural

it is necessary to know how f behaves at that boundary. It will be

shown later that f can exist in a semi-infinite or infinite domain

only if it solves (5.49). Suppose for instance that r1 = + 0. It

turns out that

f' + f2 = ax2 + bx + c

whether either a > 0 or a = 0, b > 0, or a = 0, b = 0, c > 0.

In any of these cases f(x) can grow at most like x as x-= and

from this one can show limw(x) = += lim v(x) = +o.

Let us take up the question raised in the last proof;

which equations of (5.49)-(5.51) have solutions on which kinds of

domains?
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Lemma 5.6

Suppose f satisfies (5.50) , (5.51) or f'+f2 =ax 2 +bx+c

and either a<0, or a=b=O, c<O. If f is defined on U=(r 0 ,r1 ) and has

no singularities in U, then U must be bounded. If f satisfies

f +f2 =ax2 +bx+c and r. is infinite, lim ax2 +bx+c > 0.
x->-r.

Proof. The proof applies the Sturm-Liouville comparison theorem

(see, e.g. Coddington and Levinson [ 8 3). Suppose f satisfies

(5.51). Then v = exp { F(x) satisfies

v" + (h2-ax2-bx-c) v=0

Since h is quadratic, for jxj large enough

h2 (x) -ax 2 - bx2 -c >1.

Hence, by the Sturm-Liouville comparison theorm v must have a zero

between any two successive zeroes of any solution of

e" + e= 0.

Since e = c1Icosx + c2sinx we see that v must have a zero in any

unbounded domain. Thus f can be defined without singularities

only in unbounded domains. The other statements are proved analogously.

The interesting results contained in these lemmas are

(1) that no finite boundary arising from an f solving (5.49), (5.50),
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or (5.51) will be natural and (2) that finite boundaries will always

be encountered, except possibly, with (5.49). It will turn out that

these non-natural boundaries will generate non-trivial boundary

conditions for Zakai's equation. The general implication is then that,

just as in the absorbed Brownian motion example, these boundary

conditions will interfere with the attempt to apply lie algebraic

techniques. It would then follow that for scalar-signal models

of the type (5.58) only the known examples of Benes can be treated

by the method of section 5.1.

It is difficult to prove this statement in such sweeping

generality. First, there is a problem of formulation. If x(t)

solves:

dx(t) = f(x(t)) dt + db(t)

on a finite domain U with regular accessible boundaries, it is no

longer possible to characterize the conditional distribution just by

a density p(x,t) an U; one must also consider the conditional mass

distributions.P (t) = E0l{xct)=r}LtIF}. For general local

boundary conditions, we must solve a system of equations for the triple

(P (t), p(x,t), Pr(t)), and Lie algebra techniques, if any, must be

applied to this system. Thus in the analysis of Lie algebraic

techniques to follow we will avoid the accessible boundary case.



- 158 -

Remark. For certain boundary conditions in the regular accessible

case the system (P , p(x,t), r (t)) degenerates into just a

density equation with boundary condition; if rj is pure reflecting,

i.e., E c D'(B) only if _ = 0, then 0 (t)E0 andax Ix=r.ir

0{ -f(x)}p(xt)l =0, Vt; if ri is pure absorbing, i.e., p s Q'(B)

iff B (r )=O, then dP (t) = E p(xt) I ]dt and p(r.,t) = 0, Vt.1 r1  ax x=r1  1

(see Pardoux [40 1). Theorem 5. 5 will hold for these cases, but we will

not work out the details.

Secondly, the case

f, + f2 = -h2 + a(2ax+$) 2 + b + c 2 c f 0
(2ax+a) c > -4

on an interval with x0 = -B/2 a as an endpoint poses analytical

difficulties, both because of the variety of cases f(x) ' 0 x-XO
x.-x0

a eDR, to be analyzed and because of the singularity

c 2
2 in f' + f. In the interests of simplicity, we will not

2ax+ .

treat this case.

From now on, we will be interested in solving Zakai's

equation for the problem of filtering a signal x(t) solving (5.58)

under the assumptions:
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(i) h is linear or quadratic

ii) f solves one of (5.49) - (5.51)

U = (r0 ,r1 ) is the full

of f

domain of definition

iv) If f* solves

endpoint r.
1

(5.50) with

equals x0

C O, C>_ - 1 neither
W4

From the lemmas presented above, one can

finite boundary, it is of entrance type,

x + r.

conclude that if r is a

and f(x) o asx-r i

Zakai's equation for any one of these problems is:

I2
p(xt) = 1- f(x) -

ax
h2 (x)} p(x,t)

+ y(t)h(x)p(x,t)

lim { . - 2f(x)} p(x,t) = 0ax

x-r.
1 (entr

if r is a finite

ance) boundary.

(

(iii) (H)

(5.62)

(5.63)
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We give a brief, formal derivation of this for the case Jr 0 l,Ir1  <

For g C 0(U) define

r

at(g)= E0(g(x)Lt!F} = g(z)p(z,t)dz

If g c 0(B),

dat(g) at(Bg)dt + at(hg)dy(t) , (5.64)

(Kunita 25]). By integrating the term at(Bg) by parts we derive

dat(g) =f{rg(z)dp(z,t) dz

r 

=Ig(z)[B*p(z,t)dt + h(z)p(z,t)dy(t)]dz

r 0

+ }ec,(x) g' (x)e(X)p(x,t) r0

0

g(x)[1-- 2f(x)]p(x,t)r+

B* a - f(x)
2ax 2 a

In order that this hold for general g e D(B), we require

dp(x,t) = B*p(x,t)dt + h(x)p(x,t)dy(t) (5.55)



- 161 -

im g'(x)p(x,t) = 0 (5.66)
x~r.

im g(x)[L -2f(x)]p(x,t) = 0 . (5.67)
xe*r i ax

For g e D(B) one can easily show that

lim ( - 2f(x)}p(x,t) = 0
xr ax

implies both (5.67) and (5.66). When writing (5.65) with 9(t) instead

of dy(t) one must add the Wong-Zakai correction term -1/2 h2 (x) to

B*. This proves (5.62) - (5.63).

Rather than work with (5.62) directly it is convenient to

invoke the "gauge" transformation

eF(x) erf(z)dz r F ( 0,r1 )

(=1/2C(x))

and write

p(x,t) = e-F(x)q(x,t)

A calculation shows that

aq~la 2

2 

= 2 1,2 [f'+ 2+h2]}q(x,t) + y(t)h(x)q(x,t) (5.68)
ax
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vim eF(x) 3L- f(x)Jq(x,t)=0 if r is an entrance
x-)r 'Fx

1 boundary (5.69)

It is this equation that we seek to solve by Lie algebraic

methods. Let A a 2  [f+f2+h2 Jand call {Ah}LA the
ax

algebra of (5.68). {Agh}LA is isomorphic to {Loh}LA by the

map B -+ eF B e-F from {A,h}LA to {LOh}LA. This map also trans-

lates evolutions; that is if

tA
lim t ] = A D
t+O

then

im {eFetAe- _ Lo F 0
t+O

Thus the L.ie algebra analysis may be carried out on (5.68).

The technique we want to explore is that of solving (5.68)

by

q(x,t) = (eg e(t)Aeg2(t)X2... e qd(t)Xd )(x) . (5.70)

We place e first in this series because we need an evolution

that must, in general, satisfy boundary conditions. It is not usually

possible to do this with first order operators, and A is of second

order. Different second order operators in {A,hILA might be chosen

instead of A, but this will make no difference in what follows.
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The natural semigroup to associate with A is that

determined by the boundary conditions (5.69). We will define this

semigroup on L2(U). Thus let

D(A) = (#eL2(U)I A #-L2(U), (r.) = 0, r an entrance

boundaryj'

Assume r is an entrance boundary. The condition p(r.) = 0

does not look like (5.69), but it is in fact equivalent. Since

Ap = 2 L(U)

x

*(x) = '(x) + [f+h ](s) (s)ds .

x r+ r and e L2(U)

Since e vF(x) kx (x-#r.) for some constant k we see that

lim edF(x)L (x) = 0 .dx
xer~

Thus lim eF(x) F(x)

x-or. x--r

limLx(x) =kp(r.) = 0.
xr

We now state the main theorem.

Theorem 5.s

Let h, f and U satisfy the hypotheses (H), and suppose

. I
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U is bounded or semi-infinite

(i) -A is self-adjoint and bounded-below on D(A) and hence

generates a semigroup etA. Also, A has a discrete spectrum.

(ii) Let D'(A) = (finite linear combinations of eigenvalues of A}

tA t n n tA
e h ( ,[ad A] h)et for 0 0'(A)2, 0

n=0
(5.71)

Proof Assume, without loss of generality, that h(x) = x in the

2linear case, and h(x) = x in the quadratic case. It is easiest

to prove the theorem separately for the cases U bounded and U

semi-infinite.

Let U be bounded. Then

A='1 d+2  1 2 + h2
2 dx2  f

and }[f'+f 2+h2] is a bounded, C function on U.- (Recall

that (H) excludes the case in which f' + f2  may have a singularity

in U.) A standard calculation. from differential equation theory

(Coddington and Levinson [8 ]) shows that A is self-adjoint on

D(A) and -A is bounded below. Further, the theory of self-adjoint,

differential operators on bounded intervals implies that A on D(A)

has a discrete spectrum n, s.t., Xn > X 1 , lim n= - , and

< and a corresponding complete set of orthogonal eigen-
n xnn o r s on i g cm l~



- 165-

vectors {p } =o. (Coddington and Levinson [8 ]).

tA

If c L(

-K t

n nUn (y)] (y)dy
U n=0

(5.72)

(Coddington and Levinson [8 ]).

To illustrate we do the example

The estimation algebra {A,h}JLA

and has commutation relations

One now

h =x2

is then

proves (ii) case by case.

and f' + f2 = - h2 + ax2 + c.

spanned by (A,xtx2-, Idx'

[A, x2 ] = 2xj+lj

[A, dx d]= 2A + 2a x2 + c

From these, one readily derives

: n
[ad A]nh = [cosh

n=O

+ 1(sinh
va

g(t) = sinh 2/at +
2 V-

2/at - flA + [cosh2/at]x 2

2/at)x t.+ g(t)dx

c cosh 2/at - .2a 2a

Now let us check (5.72) on Wn. Observe first that

tA nte 'b e b
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and p'(r.) r 0. (Otherwise tn(r) = 0, "(r.) = 0 would imply
ni r n 1n

w E 0). Thus

n

n n tA( [ad A] h)et (X)
n=O

e nt a-1/2 (sinh 2/a t)x i'(x) (5.73)

a ( 1 (cos 2/a t-f)+g(t)+x 2c/nt(x (o cosh2/a t)e p (x).

This will not satisfy

because of the i"(x)

by (5.72),(etAhp)(r.)

Then

t n
L [ad

n=0 n.

only if

the boundary conditions t(r1 ) = 0 ,i =0,1

term. Thus (5.73) cannot equal etAhp since
N

0, i = 0,1. Now let (x) = $ , N < e.
n=1

A] h) etAiQ(r.) =0.]niA0,1

N x.t
j a.e =0

j=0 0

(see 5.73). Since

= 0, j=1,- n.

dxby e 2x is also

proved in the same

the are unequal this cannot

The statement analogous to (ii)

true. The other cases involving

manner.

happen unless

with h replaced

bounded U are

Now let U = (r0,), r0 finite. As was shown above this
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case can only occur if f' + f2 = ax2 + bx + c and a > 0 at the

very least. Hence the operator A is of the form

2
1 d2  [x2 +ax 2 + bx + c]

dx

and lim [x2 +ax2+bx+c] = x. It is then known that A is self-adjoint
22

on D(A) = {pA p c L2(U),tp(r0) = 0} with a strictly decreasing

sequence of eigenvalues X1 . The analysis then proceeds exactly as

for the absorbed Brownian motion case. (Indeed by a transformation

z = yX + 6, y'(t) = ey(t), (5.68) with boundary condition q(0,t) = 0

becomes the Zakai equation for absorbed Brownian motion). The proof

for the case U = (-=,rI) rI < =, is the same.

Remarks

(i) Theorem 5.9 implies that the crucial lie algebra identity (I)

of section 5.1 fails, and hence that the method (5.70) of solving

(5.68) will not work. The result is that, exclusive of the cases not

satisfying the assumptions (H) the Lie algebra technique works only

for the case treated by Benes in which f is a global solution of

f' + f2 = ax2 + bx + c.

(ii) The one non-rigorous point in the above calculation was the

derivation of Zakai's equation. However, the equation (5.68) for

q(x,t) can be rigorously derived, if the differentiability of q(x,t)
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is assumed. Indeed if (nF,P) is a probability space on which

B(t) and y(t) are independent Brownian motions; it can be shown by

change of measure techniques that

t t

q(x,t) =E(exp[ h(x0+b(s))dy(s) 1 f[f'+f2+h2](x +b(s))ds]

0 0

X l {t.,,,}|FYB( t)+x,=x}r ( x ,t)

where t = inf(tlx0+B(s) E Uc} and r(x,t) is the density of

B(t) + x0 (Liptser and Shiryayev [28]). The techniques of Zakai

[47] applied to this object yield (5.63),and the boundary conditions

q(ri 3t) = 0 at finite boundaries ri are clear. The details will

not be presented.

It is in trying to justify Zakai's equation rigorously that

(the singularity at x0 = /2a causes trouble and is why we
(2ax+s)2

excluded the case from the analysis of theorem 5.5. Nevertheless, if

one presumes Zakai's equation holds and applies the method of theorem

5.5 with careful attention to what happens at x0 , the same conclusion

about e tAh will follow.

(iii) From the remark on page /fT , the analysis of theorem 5.5 can

be applied to the case when any one of the boundaries is regular and

either instantaneously reflecting, on purely absorbing.

(iv) In theorem 5.5, as in the absorbed Brownian motion case of

section 2, if 0 C 0(A) is invariant under A and h, it will not

contain an invariant set of analytic vectors for A and h.
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In our analysis of Lie algebraic techniques we-excluded a -.

number of possible, finite dimensional examples by restricting our-

selves to problems satisfying hypothesis (H). However, remarks (i) -

(iv) state that the results of theorem 5.5 are true, at least by

formal arguments, for any excluded case for which the conditional

distribution can be found by solving Zakai's equation for with

(possible) boundary conditions. Thus, we conjecture that no other

examples beyond those of Benes can, in fact, be solved by the method

developed in this chapter.
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APPENDIX 1 HOMOGENEOUS CHAOS THEORY

Wiener's homogeneous chaos theory providesa method of repre-

senting functions of Gaussian processes by certain infinite expansions,

the terms of which are the prototypes of multiple stochastic integrals.

This appendix presents the fundamental motions of the theory; the

treatment follows that of Kallianpur [21 3.

The situation is as follows. Let T be a separable,

topological space. {x(t)jt ET will denote a mean zero Gaussian pro-

cess on T with a covariance function c(t,s) = Ex(t)x(s) that is

jointly continuous in t and s. Let the probability space of the

process be (2, F, P) and let A = a{x(s)js e T}. Homogeneous chaos

theory concerns itself with the structure of L2(,A,P) considered as

a Hilbert space with inner product <$,> = E[$q]. It seeks to build

a useful orthonormal basis for L2(2,A,P).

We present the basic construction. Let

N
H = Span ( zx(t.) t. e T, N < c}

denotes closure in the norm of L2(2,A,P)). H is the subspace

of L2(n,A,P) consisting of linear functionals of x(.). H is

separable, because of the separability of T and the continunity of

c(t,s), and hence H has a countable orthonominal basis {:A
i=l
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Definition A.l-1

i) ( polynomials of order < n in the variables (7) }
i=l

ii) P SUPn
n

in 2n ® n-l =n-

G is called the n homogeneous chaos of (x(t)lt e T1.

Evidently, P = S G, in which G) denotes a direct
n=O n

sum of Hilbert spaces. The Gn thus give a Gram-Schmidt type

decomposition of P. To provide orthonormal bases for the Gn, we

introduce the Hermite polynomials, which, as it will be seen are

naturally associated to Gaussian processes .

Definition A. 1 .2 The nth Hermite polynomial is defined as

(- 1 )fl x2/2 dn x/h (x) = --- de n e
nn! dx

Theorem A.l.l (!mogeneous chaos expansion)

For every n

. r
il (5r = h (j )---h (; )'m..--n=n,m M rI N > '

. r 1 '1 r r
A,- r pairwise unequCi

. O0

mg 1. 1 Im "s
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is an

ii)

orthonormal basis of G .

P is dense in L2(Q,A,P). Thus

L2(QAP) = P = 0D
n=O n

2
and if E L2(i,A,P)

* = Xir M 1 X
a= ml- -emr mle mr

{m ,-,3m r'3x X r

f{M 1 M.e r ii + S +M

n in1 {m , -- , rs lI'' Xr m +* +- - mr=n, m >0, X1,--S, r pairwise

unequal }
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APPENDIX 2. SOME CONCEPTS FROM OPERATOR THEORY

The definitions and theorems follow Reed and Simon [41,42 1.

Let A and B be linear operators on dense domains D

and D' respectively in a (complex) Hilbert space H. Let (-,) denote

the inner product in H.

Definition A.2.1

(1) A is closed if its graph {<c,At>! e DY is a closed

subset of H x H w.r.t. the norm < = K! + I[H

(2) B extends A if DC D' and B0 = A, D.

(3) T0 is the smallest closed extension of A, assuming

a closed extension exists.

(4) Spectrum of A = a(A) = Z- fx; xI-A bijects D onto H}

Definition A.2.2

(1) D(A*) = {E Hf 3 e H s.t. (A*,0) = ( ,)vE V D}.

For O s D(A*), A* =

(2) A is symmetric if (Ap) = (p,Af) for all p,p D.

(3) A is self-adjoint if A= A*, that is if A is

symmetric and D(A*) = D.

(4) A is essentially self-adjoint if T is self-adjoint.

Theorem A.2.1 (Spectral theorem)

F. There is a map t from the

Now

For A sel 7' -ad oint, a(A)
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bounded Borel functions on a(A) to bounded linear operators on H

such that

c+(f) o(g) = @(fg)

+(l) = I

and if hn(x) + x pointwise, Ihn(x)I < xj for all x and n.

n-
lIt (h nl =A p,V Dc .

Example If -A is self-adjoint and bounded below (i.e.,

a(-A) (x,), x > -- , e(t)(A) etA (etx) is well defined by the

spectral theorem for t >-0. One can show it is a bounded semigroup

on H.

Definition A.2.3

D 0 is an analyticevectorfor A if A np Dfor all

tn
n and 7 JAng|| has a positive radius of convergence.

n=0 n

Theorem A.2.2 (Nelson [38]).

Suppose that A is symmetric and D is invariant under A

and contains a dense set of analytic vectors. Then A is essentially

self-adjoint on D.
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Let G be a finite dimensional Lie algebra, and G its

associated simply connected group.

Theorem A.2.3 Let T(G) represent G by skew-symmetric operators

on a domain 0 of H. If there exists X e T(G) such that iX (on

D) is not essentially self-adjoint, then G has no unitary

representation on H. Further if Xl364 -. Xd is a basis of

T(G), X2+-0-2+X2 will not be essentially self-adjoint on D either.

For the notion of representation in this theorem see definition 5.1

in chapter 5.


