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ABSTRACT

This thesis studies two topics in the theory of nonlinear
filtering; the use of multipie stochastic integrals to analyze filters,
and the use of Lie algebraic and operator-theoretic techniques to
discover new, finite-dimensicnally solvable filtering problems.

The main results of the muitiple integral techniques are:

1. A simpier and more insightful proof of a result of
S. Marcus on filtering polynomials functions of a
Gauss-Markov process.

2. A formula for representing the product of two multiple
integrals as a sum of multiple inteqgrals, thus providing
a rudimentary calculus of multiple integral expansions.

3. An expansion of the optimal mean square filter as a
ratio of two muitiple intagral expansions.

4. Integral equations Tor the kernels of the best mean
square filter of the class of {finite} rth order multiple
integral expansions.

The problem of estimating a diffusion process observed in
white noise is studied with Lie algebra techniques. Necessary con-
ditions, and in the scalar case, necessary and sufficient conditions,
are given for estimation algebra finite dimensionality. Examples of
scalar problems with fin. dim. estimation algebras are discussed, and
it is shown that, from among them, no new cases exist for which Zakai's
gquation can be sclved by a Wei-Norman type method.

Thesis Supervisor: Sanjoy K. Mitter
Titlae: Professor, Oenartment of Electrical Engineering
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CHAPTER 1: INTRODUCTION

1.1 The Nonlinear Filtering Problem

Nonlinear filtering theory is the study of a broad range of
problems in the estimation of stochastic processes. A typical
example concerns the estimation of a signal in additive noise. .In
this situation, one is interested in the properties of a stochastic
process {x(t)[t>0} called the signal. One might want to know, for
instance, the value of f(x{(t)), for a function f, or even the
value g{x(s}0<s<t) for a functional of the past of x(-) up to time t.
However, information about x(-)} is available only through observation

of the process
t
h(t) = JO h(s,x(s))ds + w(t) (1.1)

in which h is a given function and w(t) is a "noise", usually an
independent increments process. Thus estimates, or rather, filters,

for f(x(t)) and g(x(s);0<s<t) must be constructed from {y(s)|O<s<t}.

Minimization of the mean square filtering error is the
criterion generally chosen to guide filter design. Thus, in Tinear
filtering theory the goal is to produce the best (mean square)
estimate that is a linear functional of {y(s)|O<s<t}. Nonlinear
filtering theory goes further; it asks for the best mean square

estimafe.given the past of y{-). If Efz(x(t))<m and if F{ denotes the



¢ -algebra o{y(s)|O<s<t}, it is well known that this estimate is
7o (f) = E(f(x(t))[F{}. The goal of nonlinear filtering is to com-

pute or to approximate this conditional expectation.

Interest in filtering problems stems from their central role
in several applied subjects. For example, in the theory of com-
munication {Van Trees [48]), (1.1) is a common model for a signal
sent in a noisy channel; successful transmission of information re-
quires extracting the signal from the noise. It may also be
necessary to decide on the basis of {y(s){s<t} between two
possibilities, h{s,x{s)}z0, s<t, or h(s,x(s})) = a given signal.
This "signal detection" problem is closely related to optimal
filtering (E. Wong [46 ]). Stochastic control problems, in which
a control is to be chosen s¢ as to inf1uence signal process be-
havior, can also involve filtering if the control is allowed to
depend on noisy or partial observations of the signal (see

Fleming and Rishel [14] and references cited therein.).

The modern titerature of nonlinear filtering begins with the
contribution of Kalman and Bucy [24], who formulated and solved the
model (1.1) for the case in which x{t) is a Gaussian diffusion,
h{s,x) is a linear in x, w(t) is Brownian, and f(x(t))=x(t).

Their main result, to be stated in lemma 3.1, proves that the
conditional density of x(t) given F{ is Gaussian and provides a

method to compute the conditional mean and covariance recursively.



For few other cases is such a complete and easily constructed
solution available. However, two very powerful characterizations
of optimal filters are known to hold in quite general situations,
The first is a Bayes-type formula for vt(f), which is due to
Kallianpur and Striebel [22] and which, in essence, represents
Wt(f) by a functional integration in process path space (see
Section 1.3). It is valid for Brownian noise w{t) with minimal
restrictions on x(+), h, and f. When the signal is Markovian,
nt(f) can be further characterized as the solution of a stochastic
differential equation (Fujisaki, Kallianpur and Kunita [19]). In
general, nt(f) cannot be‘found from this result because the co-
efficients of the filter equation involive optimal estimates of
¢o(x{t)) for functions ¢ different from f. Thus additional
eguations are required to compute Ht(¢), which, in turn require
estimates of yet other functions of x(t). The resulting system
of equétions is in general infinite-dimensional. The cleanest
formulation of this infinite dimensionality is Zakai's [47]
stochastic partial differential equation for an unnormalized
version of the conditional density, assuming this density exists.
(see Chapter 5). Finally, several very recent developments
promise new insights. V. Benes [1] has derived new examples of
explicitly solvable filtering problems, and Brockett and Clark
[17], Brockett [5], and Mitter [35] have begun applying Lie

algebraic and operator: techniques to the study of conditional



density equations. These developments will be discussed in

Chapter 5.

The abovesbriefly outlined results constitute the principal
highlights of nonlinear filtering theory, but, despite their
mathematical depth, they remain incompletely developed. For
many common filtering problems little is actually known about the
filter structure and one must resort to reasonable, but ad hoc
techniques. A powerful and general theeory for building,

analyzing and comparing suboptimal designs does not exist.

1.2 Summary of Thesis

This thesis studies two different ideas for analyzing non-
linear filtering problems. The first is that of evaluating or
approximating filters by expansions in series of multiple
stochastic integrals. Such an approach is motivated by the fact
that the optimal estimate nt(f) may be thought of as a functional
Ft(y(-)) of the observation process. It is then possible to
explore wt(f) within the framework of a representation theory for
F, for instance, one that expands F in a series of simpler and
more easily manipulated basis functicnals. Multiple integrals
are ideally suited for this, because they are easy to handle and

because they can represent a large class of functionals F
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{see theorem 2.2).

The second idea differs from the first in method and style.
Rather than expansion or approximation, it studies the question
of when a filtering problem can be solved in an exact, finite
dimensional manner. And rather than being probabiiistic, the
techniques are algebraic and operator-theoretic. Brockett and
Clark [7], Brockett [5,6] and Mitter [35] have shown recently
that certain Lie algebras of operators, called estimation alge-
bras, can be associated to the problem of filtering a Markov
process observed in white noise. In examples with known, finite
dimensionally computable conditional densities, that is, the
examples of Kalman and Bucy [24] and of Benes {1], the estimation
algebra is also finite dimensional. Conversely, it is widely
cqnjectured that given appropriate hypotheses, Lie algebra
finite dimensionality will imply the existence of a finite
dimensionally computable expression for the conditional density.
This suggests the strategy taken up in the second part of the
thesis research: seek all problems with finite dimensional

estimation algebras and try to solve them.

The main results of our investigation are presented in the
following chapter by chapter summary of the thesis. Chapter 2
defines the multiple stochastic integral and develops some of its

fundamental properties. The main result here is the multipli-
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cation formula, (theorem 2.4, Section 2.3), which describes how

to re-expand the product of two multiple integrals as a sum of
multiple integrals and which is an important calculational and con-
ceptual tool in the theory of Chapter 4. Technical Temmas needed

in Chapters 3 and 4 are also stated and proved.

Chapter 3 contains a proof of a result originally due to
S. Marcus [29] on the finite dimensional solvability of filters for
estimating polynomial functions of a Gauss-Markov signal process
given linear, but noisy observations. The proof here sets the
problem. in the context of Gaussian process theory by using
multiple integrals and homogeneous chaos theory, It is simpler
than Marcus' original proof and explains more clearly how and why
a finite number of statistics characterize the optimal estimate.

This work was done jointly with S. Marcus and S. K. Mitter.

In Chapter 4 we present expansion theories fﬁr the general
filtering model of estimating a signal in white Gaussian noise.
First, we derive a representation of the full optimal filter as
a ratio of multiple integral expansions. In effect, this
representation evaluates the functional integrals of the Kallianpur-
Striebel formula with multiple integrals. Secondly, we pose a
basic problem,suggested by the multiple integral idea, for the
design of suboptimal filters: For any r, what is the best (mean

th

square) estimator having the form of an r-' order multiple
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integral expansion? Using the expansion representation in con-
junction with the multiplication formula, we derive integral

th order estimate. We then

equations for the kernels of a best r
rederive the Kalman-Bucy filter and discuss the case r=2 as examples

of the technique.

Chapter 5 discusses the Lie algebra approach to finite
diménsiona1'fi1ter computation. The main results are presented in
Section 5.3. For vector diffusion signals with non-singular, constant
local covariance, a fairly restrictive necessary condition is given for
estimation algebra finite dimensionality. In the scalar case, this
allows all possible problems with finite dimensional estimation
algebras to be Tisted. A solution of some of these filtering problems
is then attempted using a method developed and discussed in Sections
5.1 and 5.2. The result is that only those previously known examples

of Benes can be solved finite-dimensionally by this method.

It is worth remarking that the last chapter is discursive in
style and does not present a complete theory. This chapter is
a preliminary report and discussion on calculations of interest to
a new, developing theory with important implications. To shorten
the exposition and concentrate on the main idea, we have omitted

certain cases from the analysis, but, as shall be mentioned, the
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results extend formally to them. In this regard, work remains
to be done in building more complete results. However, we feel
the ideas are sufficiently well-developed and interesting to merit

inclusion.

1.3 The Fundamental Problem: Mathematical Prerequisites

The work of this thesis emplays teﬁhniqués from a variety
of fields. Chapters 2-4 assume familiarity with certain eiements
of stochastic process theory, in particular, stochastic inte-
gration with respect to Brownian motion, stochastic differential
equations, and Ito's rule. Chapter 3 uses some homogeneous
chaos theory, which is summarized briefly in Appendix 1. Finally,
Chapter 5 requires familiarity with the use of Lie algehbra/

Lie group methods in systems theory and with the theory of self-
adjoint operators. Appendix 2 states the basic definitions and

results that are needed from operater theory.

We will adopt the following conventions throughout the
thesis: all Brownian motions are assumed to have mean zero and
unity scale; if {z(t)[t>0} 1is a stochastic process,

Fi = o{z(s)[s<t} denotes the s-algebra generated by z(s) for
s<t.
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We now state the precise filtering problem to be considered in
the thesis. Let {x(t)|t e [0,T]} be a measurable real-valuad process on a
probability space (2,F,P). Let h{s,x) be a Borel measurable function,

Set ¢
y(t) = JO h(s.x(s))ds + w(t)  t e [0,T] (1.2)

and assume

(1) w 1is a Brownian motion independent of the signal
process x{ )

I
(i1) E Io h%(s,x(s))ds < =

Definition 1.1. A process {y(t)(t ¢ [0,T]} defined by 1.2 satisfy-

ing the stated assumptions is called an observation semimargingale.

Given a functional f(t;x(s),s<t) of the past of x(:}, we want to

compute the optimal mean sguare estimate

m (£) = ECF(tsx(s),52) [FL)

The following theorem of Kallianpur and Striebel [22] will
be a principle theoretical tool of this thesis. For a good

exposition, see Wong [46].

Theorem 1.1 (XKallianpur, Striebel). Let

dP T T
o = exp [ | nix(s)awts) - 3 [ n¥e(snasd.
0 ]
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Then (i) PO is 2 probability measure, P and P0 are mutually

absolutely continuous, and
T T
& = oot nixtsnay(s) - RO

t t

(11) O{dp 7Yy exp[JOh(x(s))dy ) - Hohz(x(s))dsj.

(iii) W.r.t. Pys y(<) is a Brownian motion independent of x{°)

(iv) x(*) has the same law w.r.t. Py as w.r.t. P.

(v) E{f(tsx(s),s<t){F)

. dP_ |y
EO{f(t x(s) ,Sit)—PD-| Ft}

Eqgl dP |Fy}

Finally, the concept of innovations will occasionally be

needed.

Definition 1.2. The innovations process associated to the filtering

problem of (1.2) is

t
w(t) = y(t) - jo v, (h(s.x(s)) ds

Interestingly, given mild restrictions on the nature of x(-) and h{s,x),

v(t) is a Brownian motion (Lipster and Shiryayev [28]).
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CHAPTER 2 MULTIPLE INTEGRALS

This chapter will define multiple stochastic integrals
with deterministic kernels, discuss their basic properties, and
establish both theoretical and technical results that are important
in filtering applications. The main result of this chapter is the

multiplication formula of theorem 2.4 in section 3.

2.1 Definition and Basic Prgperties of Multiple Integra1s

This section is devoted to a.brief exposition of the
multiple Wiener integral and its elementary properties. Most of the
material is well known and is due to Ito ( 20 ), who developed the
definition  jin its present form and demonstrated its connecticn to
homogeneous chaos theory. In addition, we prove scme technical
results, including a construction to produce multiple integrals
recursively from stochastic differential equations, important in

subseguent work. . ;

Let {b(t)}t>0 be a Brownian motion, and let

F

L
[B

c{b(s)|s<t} denote its associated family of sub-g-algebras.
If ¢{s,u) is a measurable random process adapted t$ Ft,(i.e.,

a(ty) s tt-measurab1e for every t), and if E J 52(s) ds < =,

Q
then for t < T we can define the measurable, adapted process

t

[ sts)anis)s
a
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see, for instance, Lfdotser and Shiryayey [28 ]. Recall the

properties of this integral

t
EEJ #(s)db(s)] = 0
0 ) (2.1)
t t t
; j 5(s)db(s) j w(s)db(s) = j Es(s)u(s)ds
0 0 0

We will use this single integral to define multiple integrals by

iteration, a technique different than Itc's, but equivalent in

result up to a muitiplicative constant.

Definition 2.1:

(i) fe L2([0,T]r) s separable on $; 2 5, 2 «++ >s

if

T > s] > 52 > eee > 5 .

(1) 200,117 = ofe L3(L0.TT) | 7 s

(a) separable on 512 25, and

(b} symmetric}

(ii1) 1:2([0,T]r) = {stg[O,T]r | f is symmetric}.
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Definition 2.2 Llet f ¢ tz([G,T]r), f = Y](S])---Yr(sr) on
S 2 ocer 2 S The rth muitiple stochastic integral of T up
to time t 1is defined inductively by

t

1506) = [ vy() 157 e v D () (2.2)
)

t
Also, we adopt the convention, Ig(f) = f,

Al . .
and Ir(f) is defined on alil of Lg([O,T]r) by linear extension.
Note that (2.2) is meaningful, because at each step,
using separability and induction, Y](S) I:-](yzo--yr) is-a measurable,
Ft-adapted process and hence may be integrated.

Theorem 2.1 Ffor f, g s/tg([O,T]r)

E I(f) =0 (2.3)
SUGBHORE (1.9)
(2.4)
t ﬁ: Sr
= ---[ F(s],---,sr)g(s.[,---,sr)dsr seedsy
00 0 |

A .
Therefore, /7! I: is an isometry between Li([O,T]r) and
”~
IECQ?([O,T]F)]. Since Ti([O,T]r) is dense in LZ([O,T]r) we can

r

e s - AV r .,
extend the definition of It to L°{{0,T] ) by continuity.
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Proof B8y (2.1), (2.3) and (2.4) certainly nold for r = 1. Let f=
71(51)"77r(5r)’ g = a1(51)---a?(%_), and suppese (2.3) and {2.4)
hold for r = 1. Then

t
£ IR = € [ a(s) 17 ey o =
t
fOY](S) £ Ig_l( 5" ey )ds = 0
t
2 10F) 1(9) = [ y(sdaq(s) & 10 hpeoy ) T (e s
G
t Sr-1
- [O fo v (sq) 1y (s Jag (57 e

The theorem foilaows by induction on r.

Remarks 1 By continuity, (2.3) and (2.4) held for all f in
T%(10,717).

2. It is not necessary to require that f be symmetric
since integration is carried cut only over the set
S1 28y 2+ > 5., However, the convention of symmetry is useful

later on.
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3.- For f ¢ QZEEO,T]r], let f(s,...) denote the ssction

of f at s. We want to write
r ¢ r
10(f) = JI (£(s,...))ds, ‘ (2.5)

but, to do this, we need a measurable version of I;(f(s,...)). If
f 1is separable on S1 2552 et 25, this measurable version is
immediately guaranteed; indeed, this is how we defined I;. If f
is not separable, Tet {fn} be a sequence of separable functions

such that |[[|f -f[| 5+ 0. We then see that limm.s IN(f (s5002))
n L st n

[~
is a measurable version of I; (f(s,+++)) and hence (2.5) is
valid.
let @ E} = LE(Q,FT,P) be the homogeneous chaos

r=0
decomposition of {b(s)|s<T}, (see Appendix 1 for the definition of

this decomposition).

Theorem 2.2 (Ito)

For every r, E} ='{I;(f) f s'tz([O,T]r)}. Thus, if
b € LZ(Q,FT,P), there exist kernels kr e’?z([O,T]r) such that
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Proof The full proof may be found in Ito (20), but let us sketch
briefly why it is true. First, note that the spaces

V. = I;(fz([O,T]r)) are closed. Moreover, by using step functions

cee v o=
we can see that Vr < Pr and Pr<: V0 + +Vr’ (v R}, (see

0
appendix 1 for the definitions of P_ and ?}). Since

G.= P © P_1» it suffices to show VF‘L Vq for r # q, that is,
that integrals of different order are orthogonal. This fact, one
of the salient features of multiple Wiener inteqrals, is easily
verified. 1f £ <T3[0,717, ¢ < T4[0,71% r > q, then, from

(2.5) and (2.1),

.
£ 1R 1) = [ e 1T (s 0 1d (s, ) s
0
T g1,
= J 'J' E ISq Ef(s]: ssqs' )]g(s‘l: ] )
o 0
dsq---ds-i
=0.

Multiple stochastic integrals generalize easily toc the

yector case. If bT(t) = (bT(t),---.bv(t)) is a v~-dimensional

2

Brownian mction and if f a't [O,T]r), we can define
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s
s B - t-l N
L () = | j JORREAL N CREE NI
a Q
If (r,zT---zr) # (q,k1---kq), then the integrals
r;z.[.-'-;lr C q;21,°'°32
It (f} "and It q(g) are orthogonal.

In the case of separable kernels, a construction observed
by Brackett (3 ) for realizing deterministic Volterra series can be
adapted to produce multiple stochastic integrals from stochastic
differential equations. This result motivates the use of multiple
jntegrals because it says we can calculate, or at Teast approximate
them recursively. Moreover, the criterion of kernel separability
is used in Chapter 3 to prove finite dimensional computability of

certain optimal filters,

Theorem 2.3. Let f ¢ ?g(EO,T]r). Then, for some n, there exists
an RM-valued process z{t) that satisfies
0 ,
dz(t} = J A (t)z{t)db (t) z2{0) =z
=1 2 2 0

for some n x n matrix functions Az(t)’ 2 =1,+e+, v, and for some
S A

el
n-vector function c(t), such that I L T(f) = cT(t)z(tLt<T.

r
t
Proof It suffices to consider f = Y1(S1)---Vr(sr). Suppose
Le = wee L. =2, 1

11 1j ]
matrix Az(t)

iy < or < iy and define the (r+1)x(r+1)
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. (t), (’f,j) = (ik"jk.'ﬂ) 1 < kf_j

. s 1 -_—
aldet) = K
0 , otherwise
‘ That is:
r 0 P
i,-row 0 711(t)
Ai(t) = ' N
-ij-row 0~ it.(t)
J
0

. ]
Otherwise, define Az(t) = 0. Consider the system z{t) ¢ R"

dZ(t) = E]Az(t)z(t)dvl(t)a ZT(O) = (01"':011) .
2=
We have
zq(t) 21
t



t Sp-1
56 = | foqcs]) RCRLICREETINES
Thus Ir;21 Z*'(f) = (1,0,---,0) z(t)

Finally, we wil]l need a Fubini-type Temma on the inter-

change between ds and db integrations

Lerma 2.1 Let f e 12([0,TI"). For t <T

t t  Sre2t
r-1 - .
[0 seds = [ o] [ fluispeees )
0 g 9] S
du db(sr_l)---db(s]) . (2.6)
t

Proof Define g, (sys*++*,5_ ;) = j flu,Sy,*++,5. y1du. The r.h.s. of

—_— £ r-1 s 1 r-1

(2.6) 1is I;'](gt). To prove the ! lemma, simply verify that

e[ 177 (f (50 s - 17 (9007 < 0

0

by using the basic properties of the multiple stochastic integral,

2.2 The Observation Semi-Martingale fase

For purposes of filtering we must define multiple stochastic

integrals
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t r-1
: J cee J f(s],---,sr)dy(sr)---dy(s1) (2.7}
0 ¢

with respect to observation semi-martingales

t .
y(t) = j x(s)ds + w(t) . (2.8)

0
(Recall, from definition 1.1 of observation semi-martingales, that
x{+) and w(-) are assumed independent, w 1is Brownian, and
£ L

E J xz(s)ds <o forsome T, 0 <7 < =.) Such integrals are well

0
known and are developed extensively in martingale theory; Meyer [33]

js the best reference. However, the structure of the observation semi-
martingale case allows a simple construction, which we develop
here. Begin by noticing that, as stated in Theorem 1.1, y{-} is
. mutually absolutely continuous w.r.t. Brownian motion; if P
is the original measure under which the processes of (2.8) are
defined, there exists a Po mutually absolutely continuous w.r.t.
P, such that y( } 1is Brownian on (Q,F,Po) for t < T. Therefore,
for f ¢ LZ(EO,T]r) we define {2.7) as the multiple Wiener integral
of the previous section by working on the measure space (Q,F,PO) and

we call this integral IE(f) without reference to measure.

Remark The process with respect to which multiple integrals are
taken will - always be clear from context and so will not be

indicated in the notation Iz(f).

*For simplicity of notation, we have set h(s,x)= X in (2.8) (see section
1.3). The results to follow are valid for general h satisfying the
conditions specified in secticn 1.3.
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Fo¥ F% -~ adapted processes  ¢(s,w)
such that P{j ¢2(s)ds < =} = 1, we can define the integral
0
t t t
[ esrarts) = [atsinges + | e(s)ants) (2.9)
0 0 0

{see Liptser and Shiryayev [28]). As with the Brownian case, (2.7)

may be interpreted as an iteration of (2.9)

Lemma 2.2 Let f e'TZ(EO,T]r).

t
HURRRIGCERIB IO N P L

Proof: This r%su]t is an easy consequence of the more general fact:
the process j ¢(s)dy(s% defined in (2.9) is stochastically equiva-
lent to the prgcess (J ¢(s)dy(s))pO formed by working on

(Q,F,PO) where y s Bgownian. The equivalence of these integrals

is obvious for stochastic step functions

i~

¢(s,uw) = (s)

1 (t5:8544]

and it follows for the general case by taking 1imits of such

step functions.

* = GRAT .
1(ti’ti+ﬂ (s) indicator function of (ti’t++ﬂ
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The expressions (2.3) and (2.4) for the mean and covariance
of multiple integrals no longer holds in the semi-martingale case.
However, if {s important in later calculations to evaluate these
moments, and, for this, the next lemma is useful.

T
Lemma 2.3 Suppose E[J xz(s)ds]r <=, Then for k < r and
f e T2(00,715) 0

. k 2 2 . .
(i) E[It(f)] <M | 1f1] 2 M, < = is independent of f
| t s, .-
‘ k-1
(1) €150 = [ o] oy
0 0
E x(s])--fx(sk)dsk---dST .

Proof. We will actually prove by induction the more general

result: forr > 22>k o, .0, €[0,T]

E[x(cl)---X(UkH)I:k(f)]Zf_ e (opars e T (2.70)

where h, ¢ 1 ([O,T]E-k), and

O kAl
E[x(o’l)---x(ckH)I:kA(f)] o IS T RICTRES (2.11)
0 0 0

E[x(s1)--x(sk)'(ckﬂ)“x(crl)]dsk--ds1
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Lemma 2.3 is the case 2 = k for every x < r. First we

demonstrate (2.10) and (2.11) for r > 2 > k = 1, using the

iterative formula of lemma 2.2 and the independence of x(-) and

w(+). Thus
U-I O'-I
£lx(s,) wxlay) | H()ar(s)1? = Elx(a, )+ x(o,) ¢ Fls)x(s)es +
Q 0
0'-[ T
2 2
[ #(s)amts) P s 28 | [x(oy)-ox(s) T2ds + (2.12)
0 Q
2 €lx(o, P ox(a,)2T] 117112 = by q(opse00,) 1[F]1°

To derive the inequality in (2.12), the Cauchy-Schwarz inequality
is used several times. hz 1€ L]([O,T]z']) for 2 < r because
E[J xz(s)ds]r < @, Likewise

Q

9

' g
1
£lx(a, ) ()| F(s)avg] - tlx(a,) - x(o) [ F(sx(sas +
(2.13)
Ul 0'-[
J f(s)dw(s})]] = J f(s)Ex(s)x(a,) - +x(a,)]ds.
0 0

Now suppose (2.10) and (2.11) are true Eor a fixed k
and all 2, r> 2>k Again, using I+ /(f) = J (s, Dy (s),
Q

Cauchy-Schwarz, and induction,
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Etx(cz)--x(cmni‘:]cf)lz <
+
k+1 s

1
K
2 [ £Lx(a,) xlogugIelsy 1§ (Flsgom )11 %as s,

[2 J hﬁ,,k(s’ck+2’..’dl)ds + 2h1_] ,k(gk+2’”’cz)” lfllz
0

| A

h 1£112.

1,k+1(°k+2"'=“z)‘

3y induction, h, ,,q ¢ LN(L0,TI**T). Thus (2.10) s true for
k + 1. That (2.10) holds for k also implies

3 j %(f(s,*))dw(s) = 0, for t<T.

With the aid of this equality we can prove that (2.11) also is true
for k + 1.
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‘This completes the induction step. Inducticn stops at k = r since

we have raguired r > 2 > k in order to apply E([ xgds)r
Q

< @,

2.3 The Multiplication Formula

) To any given functional ¢ ¢ LZ(Q,FE,P) of a Brownian

motion b(t), t < T, one can associate a sequence of kernels

(k1 ogs kn e TH[0,T17), such that

T If(k,)

5= ko ¥
0 n=1

For applications, it is necessary to have rules for manipulating

this representation, rules that describe how the kernels kn

behave under various transformations of the 4¢'s. This section
states, proves and discusses such a rule for the simplest case; if

fe 12([O,T]r), g s'tz([O,T]q), what are the kernels {9..}°n

i%i=0 such

that

I (1g) = ag rgolg(zr)

The answer will require some new definitions.

efinition 2.3

W

(i) P. = projection of LZ([O,T]P) onto tz([O,T]r):
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1
(Prh)(c'ls"ﬁgr) = T g h(UW(T)’.-’Gﬁ(r))

where Sr = permutation group on r letters.

(ii} For integers r,q,k, 0 < k < min(r,q), and

e 220,717, g e T2([0,71%)

(fk ® (t)gk) (GI L ’GHQ"Z!()

t t

1
HJ "[ f(s'i:"sskad'ls":cr_k)
0 0 -

g(s-l g = ,sk,cr—kJ-'.I s ’Ur‘+Q'2k) dsk- . .ds_l

(1) f O(1) glogsrrsapg o)
Pr+q-2k[fk®(t)gk(gT""°r+q-2k)]

(iv) fOg=f,0O(t)g

Praglflossha)do, s e rhoy,q)]

O(t) is the basic operation by which new Kernels are

created from o'ld, and, indeed, we will show in lemma 2.4 that

O (t 2(10,717) = T2(10,71% ~T2(0,71797%%) | 1o vetter under-
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stand @ (t), it is useful to think of the functions f and g

as tensors, whfch they in fact are under the isomorphism
200,717 = L3([0,T]) ® ++ ®L([0,T]) (r-fold). Then

fk C)(t)gk may be viewed as a tensor centraction, and

fk O] (t)gk as a symmetrized tensor contraction. The notation

fk ) (t)gk is meant to recall the summation notation, i.e.,

a sum (integral) is taken aTong the first k indices of f and g.
It is in this definition that we make use of the convention that the
integrands f and g are symmetric; otherwise (X(t) would have

a much more complicated definition. Finally, as an example of (),

consider the case r > q = k. By diract computation using the

symetry of f,

t t
N SR N .. .. .
r-qJT q! J [ SZ Flsga8gu0n(1) 2" %0 (raq) 805y 2700 s)
@ 0 "r-q
X dSq"dS-i
t t
-1 . . ..
= q[ I . Jf(s'ls ,San],"sGr_q)g(S]: ssq)dsq ds'{
0 0

The main theorem of this saction is:

Theorem 2.4 Let f e‘tz([O,T]r),g
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min(r,q)

[y (™s Oty L (2.)

;
I (F) 13(g) = ; ok

k
{2.14) shall be referred to as the multiplication formula. OQur

nroof of (2.14) usas Ito's differentiation rule and induction, and
jt is fairly complicated in its details. Therefore, before embarking
on the proof, we will set forth the relevant properties of (©

in some preliminary lemmas. In what follows, f will always denote

a function in 'IZ(EO,T]F), g a function in ’12([O,T]q).

Lemma 2.4 For every t < T

f, O (thg, = L5([0,T1797%)

In fact

17,0 (g 112 <ep o HIF11E 1gli?

where ¢ is independent of f and g.

r,q,k

Proof It suffices to prove the lemma for (®, instead of Q@

since P is a bounded operator. Let dg = dc1--d

r+q-2k “rq-2k

ds = ds]--dsk. We then have, using the Cauchy=Schwarz

inequality

1 ®Well= [ & o
[0 I_]r‘-i-q-Zk (k!)
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x —- .. - a [ ] 2
[ J dsT(sqs0 28507000 18(8757 705y, ’UT+Q-2k)]
0,71

D K R i CHETNONTENN
[O’T]H—q-Zk [O,T]k

‘ - 2
XJ 45 97(Sq5 58109 12T pegaak!
r0,71¥

1 2 2
< =Ly eIl sl

Lemma 2.4 establishes that the kernels in the expansion
2.14 are square-integrable and hence that the multiple integrals
are well-defined. The next Temma collects useful {identifies and
facts about ¢ . Recall that the notation f(sl,--,sk,--) in-
dicates the section of f 1in which the first k variables are

fixed at 72798y respectively.

Lemma 2.5
(1) flogss) O loy)glogs )y logsmrudpig oy < V(0,12

SURNCIOEN

£ O (olg * SRR RICICEIERE (2.15)



Proot

(i) follows by calculations similar to the proof of
lemma 2.4, namely, one writes out the definition
of the square norm and applies Cauchy-Schwarz. The

detaiis will not presented.

(i1) By direct calculation and definition, using the

symmetry of f and g extensively.

t t
1
Pr+q—2k[ X7 J " J ds]"dskf(51,--,sk,--)g(ST,-a,sk,..)]

t k=1
= L I . s * o T Lo n-d
P'r‘+q-2k [[OJO J’O f(s'ls ,Sk, )g(s*i: ,S‘ )dsk S-I:i
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g g ]
= PHq-Zk[JsZT[ J ( T-(S1""sk"')9(51""Sk’“)dsk“dsﬂ
00 O
t 51 X%
PY""Q‘ZKEW}TT[JUCIS JO.'JOF(ST’“’sk’“_)g(s]’“Sk’“)dsk“ds'lj
t
O (olgy + [ s f(se) O ()als, o)y

o1

-+

(ii1) and (iv). The proofs of (iii) and {(iv) are similar, (iv)
being just a special case of (ifi). We shall only present {(iv)

as it is simpler. Note first that, by definition,

el (ag0-) O (£)81ags - r0pag)

- ]
“F A o)

g(cﬂ(H”,--,cﬂ(‘Hq)) (2.]8)

where m ¢ S is interpreted as a permutation of (2,--,r+g} .

r+g-1
Now using the symmetry of f, (2.18) may be written as:

jth position
v

1§ P
It L s T oe(-2) 9 g o)
TTr+g-1

=

g(cﬂ'(r':“[),-.,cﬁ(r'{'Q)) (2.19)
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Using the expression analogous to (2.19) for ;%a-f’C)(t)g(cT--)

{;.{'a" 'F(U'la") @ (t)g + ?.'_?,E f@ (t) g(c],--)} (0'2!"=0'Y._:_q)

o
“wanll ] f("niz)’??i:jci“w(r))
J=1 neSr+q_]
Hoa(m1) 2" (rea))
q
+:i£1 ng Flan(z)s"Oa(ra1))

r+q-1

qfh pasition

g(aw(r+2)""°1""cn(r+q))]

-~

1
ST b TR 90 ) 50 )]

wsSr+q

=f Q (t)g(c],--,c ).

r+q
This is the desired resulf.

Proof of theorem 2.4. We use Ito's differentiation formula and the

preceding Temmas to impiement an induction argument that proceeds
in two steps:

(a) Show (by induction) that (2.14) holds for arders r = n, q = 1,
¥n
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(b) Assuming (2.14) for (r-1,q), {r,q-1) and (r-1,9-1), show that

it holds for (r,q).

(a) and {b) then provide a consistent scheme of induction as shown

by the following diagram demonstrating the paths of implication.

L 0
2 0
3 0 = 0 =
s= A T 2 1 etc.
2 0 = 0 = 0 =
B N W
1 o = 0 = 0 = 0 =
1 2 3 4
r=

Step (a) Forr=1,q=1. By Ito's differentiation rule
t t t 51
IMOES EOLICE jojotf(s1)g(s2)+f(s2)g(s1)Jdb(sz)db<s1)

t
+ J f(s)g(s)ds
0

Suppose that the theorem is true for (r,q) = (n-1,1) and Tet
f s’tz([O,T]n), g a'tz([O,T]). Applying 1Ito's differentiation

rule again,



t t --
ATe) = [ s(s) 13(Ran(s) + | 107 e(s, ) Tta)an(s)
0 0
t
+ j 17T (g(s) (s, +))ds (2.20)
)

By induction,

-1 - '
TN (s, )T (g) = 1XnLf(s,e) @ al) + 1T 2(f(s, ) O (s)gy).
Lemma 2.5(1) and lemma 2.1 justify interchamging integrations
in the Tast term of (2.20):
t ‘ t
n-1 _ .n-1 ..
I (g(s)f(s,=+))ds = 1.7 (1 g(u)f(u,sq,7*,s _q1)du) .
5 t s 1 n-1
0 1
Thus, by substitution in (2.20)

t
56) 1yle) = | AUa(sIF()) + 1nlF(s, ) @ sDIde(s)

+ [ Rs, ), @ (s)apab(s)
0
t
S ] T CIESRUR 1)
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n"'ll{g(c_]) (0'2:":0'n) + n[f(c],-«) G(G])I(O’Zs"!cn)}

+ 10160, 0), @ o)y (ogeaey)

t

+ J g(S)f(S,O’] ’..,Gn-l)dS} .
0

And by lemma 2.5 (iii) and (iv) this becomes

n+1

M)t 09) + 17717 0 ()

I

which completes the induction step of (a).

Step b Without loss of generality assume that g < r. The induction

hypothesis is that theorem 2.4 is true for (r-1,q), (r,q-1}, and

(r-1,g-1). Apply Ito's differentiation rule:

t

H(13e) = [ 1317 (5(s, )b s)
0
t
+ JOIE'](Q)I;(f)db(s)
t
; JOI:'1(f(s,--))12-1(g(s,"))ds . (2.21)
By induction
min{g,r-1) (2.22)
IO (I8 (s, ), O 9y
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min{r,k)
13 (s, ) = L S R R DL
(2.23)
1 e(s, )18 g(s, o))
min{g-1,r-1}+1 22k reg-2k
- L N (N b L PR RCA O LIERE I
' (2.24)

Now substitute (2.22) - (2.24) into (2.21), interchange dt and db(t)

integrations where necessary, and collect like order terms. The

result, after some nasty calculation, is, if q < r

1L ()13(g)
= 15 DR ) 091 + (IO alsy ) 115, s )
q=1 -
+ Z I;+q-2k{(r+gj_ik) Ef(s]’“)ka (51)9(51:");(](52:":5r+q_2k)

k=1

-1- 2k .. ..
+ () TR, Q (s)also ) Jsp0m a8 o)
T

+ (r+q 2k) J f(us")k_]CD(u)g(u,-')k_ldu} (2.26)
s
.

+

LNy @ €s7)91 (5005 )
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t
+ J Flu, -)
51

O (u)glu, ) __,du} .

g-1 q-1

Now examine the kernels of the last expression one-by-one. The first

kernel -equals

(") [ (F(s757) © a)(spn*ss )

r+q r+q

+ g (FO(s1 (5575 0,0)

= (r:q)(f CDQ)(51,",sr+q) : (2.27)

The last equality comes from lemma 2.5(iv). Likewise apply
Temma 2.5(i11) and (iv) to the kernel of 1.*%72K 1 <k cq -1

The kernel of I':q'z" equals

-2k -k
(P Trmmear (51570, @ (5109 ) (550°7)

-k

* e [f O (spialsysee), 1 (sp00)

O (Wglu,- ), _qdud (55,0 )]
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= (VRO (115 (570705 g )] (2.28)

Finally, in the same way, the karnel for I;'q is

(@ (elgg)(sysmmus o) (2.29)

r-q
By combining (2.27) - (2.29) ir (2.26) we compiate the induction
step (for g < r):

min{r,q)
nnde) = IR, 0 (t)g))

t t r-k
k=0

The proof for g = r is the same; we need only check that the Towest
order contriputicn in (2.26) corresponding to k = g 15

t 5 sq-1
fq C)(t)gq = f J .- J f(s],---,sq)g(s],---,sq)dsq-~~ds1.

0 0 C

The multiplication formula relates directly to properties

of Hermite polynomials, as one naturally suspects from the connection
between homogeneous chaos and mulitiple Wiener integrals. In fact,
letting '{hn(x)}n=0 denote the Hermite polynomials defined in
Appendix 1 and taking {¢n1:_1 ta be a complete orthonormal basis

of L2([O;T]r), recall from theorem 2.2 and theorem A.1.1 that
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(P | e T,(L0,71)1 = E,
n T
= 5o €1 ([0 (adebla)) [pyewper, g are
Pa 1=1 Pj . 3 | 1 n i

nairwise unequal } ; (2.30)

Now, the hn(x) satisfy the identities
min{r,q)
- ry,q r+q-2k

r(ng(x) = QI AT g a0 2

for r,q > 0 [see e.g., Magnus and Oberhettinger [26]). Comparing
(2.31) to (2.14), one thus sees via (2.30) that the multiplication
formula effectively generalizes the identities (2.31). There is a
discrepancy between (2.31) and (2.14) in the factors multiplying the
expansion terms, but this is due to the different normalizations in-

volved in the definitions of hn, 1" and ©

It is natural to ask whether theorem 2.4 can be proved
using (2.31). However, this strategy appears exceedingly difficult
to implement and I have not succeeded in doing so. Recently Hida [18]
obtained a proof of the multiplication formula independently of
myself. His proof effectively generalizes the tachniques used to
arove (2.31), but to do so ne must invoke his advancad theory of

generalized Brownian functionals. Cur proof, thougn inveived
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cemputationaily, proceeds via elementary methods.

The multiplication formula can also be used to generalize
a fact about Gaussian random variables. Suppose Z s a normally

2

distributed r.v. with mean 0 and variance <¢~. Then the well known

identity
£ 7% = (2m=1) -+ -3gT

expresses the higher order moments of Z in terms of the variance.
Clearly it implies that if Xn is a sequence ¢f mean (0 normal

2 2m

r.v.'s, Exn +0 a5 n -+« iff EXn -0 asn->« for any

integer m > 1, or, in other words, that mean square and omth
order convergence are equivalent for any given m. Now It(f) is
an element in the mean-square closure of rth order poiynomials of

a Gaussian process, and hence itsmoment convergence properties are

similar.

Theorem 2.5 For any r and k, there exists an Mr P < such

that

AGECIES TR  (2.32)

for a1l £ e 12([0,7]7).

Procf Assume that, for a given n,
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nr
(13(F)" = ZOIi(ki) (2.33)
=

where

kI < MIF2T, 2 < o (2.34)

Using the multiplication formula there exist kernels hz such

that

{n+1)r
(15"t LTy

' and, from lemma 2.4, there will exist an N such that
nr
2 2 2(n+1
af < T Hk 12 1e12 < e 0mT)
2: J=0 J

for every 2. Thus (2.33) and (2.34) will hold for n + 1 also, and,
since the case, n =1 {s true, they will hold for all n by

induction. But then

) nr

2
<M 3 kI
0 ')

nr
LRI = ] ek < ]

u 2n
< ML
Of course M" will depend on n  and r.

Corollary Let {f )7, and f be functions in 12({0.71").

Then |[fn-f[[ + 0 asn =+ = iff
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ELIT(F)-IHAT* >0 asnsw

for any or all & > 1.

Remark Theorem 2.5 is not new. I. Segal [43] has derived (2.32)
in the context of Gauss measures on Hilbert spaces. In fact, he

obtains a universal constant ¢ such that .

E(IR(F)2K < 22K7C (1612 for al1 k.

Theorem 2.5 is also related to the Nelson 38  theory of hyper-
contractivity; see Mitter and (cone 36 . Neveu 39 is a good

reference for one version of Nelson's hypercontractivity theorem.

McKean [32] and Wiener [45] also develop identities for

expressions similar to E[(I;(fJ)zk] in theorem 2.5. In these

treatments, the interesting corollary above is not generally observed.

The next result is a variant of an easy and well-known
identity first appearing in Ito [20], and stated here in {2.39). OQur

proof employs the multiplication formula.

Theorem 2.6 Let ¢ ¢ LZ(Q,F$, P have the multiple integral expansion

_ T or
¢ —EIT(kr).
r=0
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Then

kr(c],-.-’q

Proof For given 0g 3 012 *tt 2 Gy let

be the indicator function of [O’Ui]' We will first show that

r
] T [EJ 2
- LT . r-2n,,n
b(d])"‘b(cr)"IT(Y Y ) + Z IT (hO' “eeg ) (2.35)
n=0 1 r

where

[5-] = max{n|[n i%}
and each kernel A" +..g_ has the form

91 r
N .
n _ i
hO'I "'O-r. B iz'lgc-l"'qr (2.36)

in which the g; eio functions each depend only on a proper subset

1 r
of the indices G157 2T This fact will greatly simplify the task
. 3’ . .
of calculating AT E¢b(c1)---b(cr) as will be seen in (2.39)}

below.

Since (2.35) is valid for r = 1, it can be proved for

general r by induction. Thus, suppose (2.35) is true for r.



Then
5(og)ebla ) = L) IT(y +r o)
[r/2] )

Mow expand all the products in this sum by the multiplication formula.
It is easily seen that the kernels of any multiple integrals that arise

from expanding the terms

will be of the form (2.36). However, the first product is

a
L) TG o)

= I;+T((F+T)YOC3 (Thyleey) + I¥‘1«YO)1<D fT)(Y1"'Yr)1)'

The first kernel is

1¢ 1 '
= jgo v2(s5) 0y (5g) e ov (s

for Sg 281702 S, | 1

sz s o] - .
But note that if j > 0, v (Sj)v (sO)~y (so) for Sy 3_sj, sinca
9 291 2 3; implies aq 2 Sj' Thus the last expressicn may be

written more simply as
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190 )enyT R FORRR 3+ —
=7 v (sg)y (s + 7 jzlY (sg) -y sy v (sguq) oo (s
(2.37)
and only the first term depends on all the indices 9gaTys "t 5T,
Likewise, the second kernel is seen to be
7
[ FHsits) (s, pas (2.38)
0

The only kernel in {2.37) and (2.38) that depends an every index is

1
=7 °sg) oy (s,)

Thus by substituting the results of these kernel computations into
the expansion of b(do)"b(cr)' we find that (2.35) is true for

r + 1 as well. Thus (2.35) hoids for all r by induction.

As a result of (2.35)

37
30"+ 30, B¢ blay)-+-b(a.)
r
- .3 re 1 _r
301---acr B¢ I'I'(f r)
3071117909, =g Iy
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r
3 r, 1 r
= — Ee Iy veey)
ac] r T
t 3 Seo1
- ar . ..
) aU]' 'acr J J kr(s1, ,Sr)]EO:U]](S])
a0 0
10,0, 1(s.)  ds,.**"ds, (2.39)

= kr(c]’...,cr) .

This completes the proof.

Finally, we note that theorem 2.4 extends easily to the
case of multiple integrals with respect to observation semi-

martingales.Under added assumptions, theorem 2.5 and its corollary

extends also. Indeed, let I; y(f) now denote integrals witﬁ respect

to y and Tet PO be the measure w.r.t. which y{-) is Brownian.
dp, 2

Theorem 2.7 If E4 (—5—) < =, theorem 2.5 and its coroliary hold

for 1" °

: Ty’

Proof Use the Cauchy-Schwarz inequality to derive

2
21] (1% = g G- 1D (1) < £/P IR gy? if (0
0 T 0 ’

2
/2 @

2%
<y (g Mol 171
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‘Remark

dP
=)} = E exp J xz(s) ds. See, e.g., Wong [46].
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CHAPTER 3 ESTIMATION OF NONLINEAR FUNCTIONS OF GAUSSIAN
' PROCESSES

In this chapter, we begin the application of multiple
integral expansions by treating a filtering problem considered by
S. Marcus in his thesis [29 ], (see also Marcus and Willsky [31 ).
Marcus succeeding in constructing a class of filtering models which
are interesting for systems applications and for which optimal
filters can be finite in dimensionally and recursively computed,
(indeed, a rare and happy event!). Roughly speaking, these models
pass the outputs x(t) of linear stochastic systems through poly-
nomial nonlinearities and seek to estimate the result based an

Tinear observations of x(t) in white noise.

Marcus's original proofs accordingly rely upon linear
filtering theory and Gaussian moment identities, and so his
techniques never really leave the realm of Gaussian process theory.
One naturally suspects that the proper framework for his problem
is homogeneous chaos theory, the theory of polynomials of Gaussian
processes. In what follows, we will show this suspicion to be
well founded by developing a direct proof of Marcus's results with
multiple Wiener integral techniques. We feel this proof explains
in the clearest manner why finite dimensional filters occur in
this problem and how the Filter statistics arise. The results to

to be discussed here have appeared in Marcus, Mitter, Ocone [30 ],
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where an extension by Marcus to the discrete time case is also
presented. It should be noted, as an aside, that solving the dis-
crete time case requires using polynomials of the innovations,

(see Marcus, et. al, [30]). This feature, which does not occur for
continucus time, is explained by homogeneous chaos theory. We will
not comment on the discrete case any further. Finally, Hida and
Kallianpur [ 19] solve the related problem of predicting polynomials
of a Gaussian process using noiseless observations, and they also
use mulitiple integral techniques. By contrast, the results here

deal with the case of noisy observations.

A brief exposition of the homogeneous chaos theory relevant

to this chapter is presented in Appendix 1,

The problem may be stated as follows. Consider the linear

system:

dx(t) = F(t)x(t)dt + G(t)dw(t) x(0)=x4 (3.1a)

dy(t) = H{t)x(t)dt + dnlt) y(Q}=0 0 (3.1b)
In {3.1): x(t) ¢ R", y(t) eR"; F, G, and H are piecewise con-
tinuous, bounded matrix valued functions; w(t) and n(t) are inde-
pendent, vector Brownian motions; and xo'is a2 Gaussian random vari-
able independent of both w(:)} and n(:). We consider x{t) to be the
signal process, y(t) the observation process, and we are interestad

in calculating the filter %t = E{ft(x(s},;gt)IFi} for functionals
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t
elements of x(t), (see definition 3

In 2.7, we gave a constructien for realizing a multiple

stochastic integral with a separable kernel as the cutput of a

f. which are finite Yolterra series with separable kerneis in the

).

stochastic differential system. By the same construction, we can

produce f,, i.e., there exist matrices Ai(t)’ 2=1,»em and a vector

c{t) such that

£, = c'(t)z(t)
where
dz _ m =
&= [ Altdx ()] z(v) z(0)=0
-2=1
Figure 1 illustrates the situation:
- £
W {4) 3 (3.1a) X(t) (3.3) *
N0 Ky £,
/d') A FfH'ET' EE—

(3.2)



- BE =

The following definitions dre convenient:

Definition 3.1

x (o) ex (op)dogerday | Memyyk(e) e LT (R)Y
T4l ip
= 2
(Where 1'\.0 = {Yo(t)1 'YO £ L-Ioc( IR)})
Definition 3.2 The filter %t?E{ft(x(s),SE;){F{} is finite-

dimensionally computable (FDC), if it can be computed from the
output of a finite dimensional stecchastic differential equation

driven by y(t).

Marcus [29 ] proved:

Theorem 3.1 For any p, if ft e A., T

o> Tt is finite-dimensionally

computable,

Remark . The thegorem remains true if dy(t) = H(t)x(t)dt +

R(t)dw(t) where R(t)>0 and is deterministic. The proof is a trivial
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adaption of the one to follew.

To carry out the proof, we need some properties of the state

estimator x(t) = E[x(t)lF{].

Lemma 3.1 (Kalman-Bucy)

i)
dx(t) = F(t)x(t)dt + PO (t)au(t) ,  x(0) = x
where
t
v(t) = y(t) - J H(s)i(s)ds
0

-~

and P(t) = E[(x{t)-x({t)) (x(t)-x(t))}T] satisfies

B(t) = F(t)P(t) + P(L)FT(t) + 6(t) - PE)NT(t)H(t)P(t)

P(0) = cov(x

o)

ii) v(t) is a Brownian motion and FE = F{ (up to sets of measure

zero) for all t.

Proof  See, for instance, M.H.A. Davis [ 9,10 ]. The process

v(t) defined in Temma 3.1 is called the {mncvations process, and
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it is the key to our proof, because it is a Brownian motion that
captures the information in y(.). That is, if f 1is a random

2<¢, then, by lemma 3.1 1i)}

variable such that Ef
E{fIF{} = E{fIFz} and, hence, by the homogeneous chaos expansion,

we can write

oot
ECFIFY) = k (t) + zl { l(t10)dv, (o)
is1 Jo

E t 9 ..
+ 1,
i,0=1 Jo J 0 k2 J(t"’l'“z)d"i("z)d\j("])
+ oo (3.4)

By using the innovations process, we thus achieve an orthogonal de-

composition of any filter. But if f e A _, we can go much further.

P
Lemma 3.2 If ft 3 Ap, the expansion (3.4) truncates at order p:
- n t i
: i=1 40
n t Op-1 Byep
) .. k p(t,c],--u )
1]"1 = 0 0 p p
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Proof: From the definitions of x(t) and Ap’EF§<m and thus {3.4)
is valid. Now consider the process zT(t) = (xT(t),QT(t),uT(t)).
8y (3.1) and lemma 1 1)

-
F(t) 0 0
dz(t) = | H(t) F(t)-p(t)H (£)H(t) 0 | z2(t)dt
H(t) -H(t) 0
[ &(t) 0 T [ awtt) |
+ | 0 P(t)HT(t) dn(t)
0 I
— - L _
Aol = (x7, x7, 0)

Thus z(t) is generated from a TTnéar system with Gaussian input and
Gaussian initial value and hence is Gaussian. We conclude that
(xT(t), vT(t)) is Gaussian also, and hence that we may apply the
homogeneocus chaos construction to it. In Appendix 1, this
construction is developed for scalar processes, but it easy to see
that the entire theory remains valid if we replace B of Appendix 1

by
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Letting A = olx,(s), \)3(5)| T<is<m 1 <j<n, s <t}, wecan

build from H the homogeneous chaos decomposition

2, A, P) =@® T
2=0

However, we can also perform the homogeneous chaos decomposition on
th

the process v(-), that is, if GJ“’ denotes the 2 hemogeneous
chaos of u(s), s < t,
LZ(Q t’ @ Gg'(vj
Evidently, G.(v)] & G, for each 2 and f. ¢ ® G, since f
2 2 t =0 * t

is a polynomial in x{:) of order p. Since G O ) cﬁ-:

Lo =
and G ® G, fork>p,
kT % b

But

E(f |F]} = projection of f, onto @ §,(V)
Thus E{f.|F } € @ G,(v] as desired.

We shall also need
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Lemma 3.3 Let z = [z],-",zk] be a jointly Gaussian random vector.

k
(i) E[z]---zk] = £z Ezyeecz) + _g

cov [zy,z.1 E[ 1 z,]
22 1273 2

273

i3 cen = cee + . B2 . verEzZ
(i1) E[z] zk] Ez, Ezk ¥ cov(zJ] ZJZ)EZJ3 Eka

+ .z, Lz PN -
) cov(zJ] sz)cov(st 234)EZJS ka
e

where the sums are taken over all combinations of pairs in {1...k}

Proof These types of resulis are well-known; a gooad reference is
K.S. Miller [34]. The particular form used here is that given in

Marcus and WiTlsky [31].

Recall again that when a muitiple Wiener intesgral has

a separable kernel it is finite-dimensionally computable. Therefore,
. Loeenl
)s

by lemma 2, ft will be FOC if the kernels kT

r
r (t’g_l,co-,o'

r
r < p, of (3.5) are separable. Proving separability is thus the
strategy of the proof of theorem 1. We shall need one more lemma
that is a standard fact about linear stochastic differential

equations.
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Lemma 3.4 Let Z(t) be the R" valued solution of a linear system
with Brownian inputs.

dz{t) = A(t)Z{t) dt + B(t)dW(t) .

Here W(t) is a vector Brownian motion and A(t) and B(t) are

piecewise continuous matrices of appropriate dimension. Then

ELZ(t)=EZ(t)1[Z(s)-EZ(s) ]

) ]{t<s} X1(t,s) * 1{tgs} X2(t’s)

where 1{t<s} denotes the indicator function of {t<s} and

X](t,s) and  X,(t,s) are matrices of separable functions.

Proof Let (t,s) denote the state transition matrix of A(t), that

is -fﬁ o(t,s) = Alt)a(t,s), o(s,s) = 1. Let

K{s} = Cov[Z(s)] .
t

One easily calculates from Z(t) = #(t,s)Z{s} + J ¢(t,u)B(u)dw(u)

S
that

-¢(t;0)¢"1(s,O)K(s) s<t

£(2(t)-E2(t) I[2(s)-€2(s)] = P
K(s)[a{s.0)e” (t,0)] s>t
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Proof of Theorem 1% We can assume that ft has the form

t  9p-1

foe [ o] aglthnlop) e (e )y (o) ok, (o

)dg_«-+do, (3.6)
1 p
0 0 P

p

Then ft nas a finite expansion as in (3.5). The proof will consist
Qo vl
of showing that the kernels kr] r(t,UT,---,cr),rfp, of the

expansion (3.5) are separable. The idea is to use theorem 2.6 to

[T
express kr1 " in terms of ft and vy
21...2r Br -
kr (t,c],.,.,ar) = EETTTT&;- E[ftvg (GT)"'UR (Ur)]
r 1 r
5"
T3y, oo BTy (o) (001 (3.7)
1 r 1 r
for t > oy > T > «.vv > 0, . The second equality in (3.7} is de-
rivéd from the fact that w(c) is F{ -measurable for o<t ,
When the expression (3,8) for ft is used in (3,7), the result is:
2 2
1% p
K. (8,099,

t sp-1 AT
='Jd'!JO YO(.t )--v\rp(sp)m; E[X (_ST)rrix (SP)U'Q' (d-l)”.\)i (O' )]

ds _,..ds

0 1 (3.8)

*The idea of this proof is due to S. Marcus. It appears in Marcus,
Mitter, and Ocone [30] but with some errors. The errors are
corrected nere.
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Since (x(t),v(t)) is a Gaussian process, lemma 3,311) may be
applied to the expectation term in the integrand of (3,8). The

result fs that this term may be written as a sum of products of the

following terms

Exk_(si) , cov[xk (s (s 11,

(s;)v, (04),
X cov[xk S, j'GJ

._3°
Ea—o_— COV[J 1 i (O' ):[

30.

and

Because v(-) 1is a Brownian motion, the last two termé are
jdentjcally zero. The first two terms are separable functions qf
(51,.,.,50) on the range of Tntegratiqﬁ éq 25,2 00 2 sp i to see
this for cov[xk (s ), % k (s )] use Temma 3.4 and the fact that

S5 3_sj if 9 < J on tﬁe range s; > S, > .., 3_sp . The re-
maining term is

g
<oVl (s)vy ()] = % covlx (), [ [H(s)x(s)-Res e

+ ny (1] - (3.9)

(Note: 1In (3,9) some of the subscripts have been dropped for
simplicity of notation.,} Since the observation nmoisa n»(-) is

independent of the signal x(-) , cov[xr(s),ni(c)] =0 . Thus,
(3.9) = covlx, (s}, [H(s) (x(s)-%(c})],] (3,10)

But ZT(t) = (xT(t),QT(t)) is the solution of a linear stochastic
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system with Brownian inputs. This system may be explicitly con-
structed using the Kalman-Bucy result in lemma 3.1, Thus, using
lemma 3,4,

covix.(s),[H(o) (x(a)-x(a))1,] = T, < g} 108500+ Teg 5 3 ¥p(s,0)
= 1s < o3l (5:0)-dy(s,0)]
Fy(s,0) (3.11)

where w] and ¥, are separable functions,

The end result of all these remarks is that (3.8) may be

written as a sum of expressions of the form

t rsp-T
Jo"' Jo Yo(t)---Yp(sp)GT(S])---@p(sp)8(01)---3(0r)

x s < a; pooelis, <o lds

... ds (3.12)
I g g 1

P

such that q < r

{Jssvind it e {1,..,,p}

1 P

and
{i'ls---s-ip} C {]1---:r} v

To complete the proof it is onily necessary to show that (3.12) is
separable as a functijonof (t,c1,...,cr) , However, by approoriately
adjusting Timits of integration in (3.12) we can write (3.12) in turn

ds a sum of terms of the sort

1 p
Ja.,.aa Ja Yo(t)p--Yp(sp)aI(s1)....ﬁr(cr)dsp,..ds] (3.13)
P
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- 7 y -1 -
such that, for each 1 , 315{0,01,---,urf R bi‘{si—l’c1""‘dp} ,

a1 2.3, 2 ., z_ap ;S 3_a1+1,1‘5 p . Note that (3,13) contains no

indicater functions 1 ., Using the identity
{s < o}

b b ra
J g(s)ds = J g(s)ds - J g(s)ds
a 0 0

to write single integrals as separable functions of their upper and
Tower 1imits, it is seen that (3,13) will be a separable function of

(t,c1...c ) . Thus (3.12) and (3,8) will also be separable, since

r
they are ultimately sums of terms Tike (3.13)., It is worthwhile

illustrating the last argument with an example.

Consider
51

t
J I w(splaglspliy(o)Bylop) Teg ¢ oy Hs, < 0,19%2%
00

By straightforward calculation, this equals

92 51 9 ¢
(o000 [ aq(sy)aplspldsydsy + [ [ ay(s))eglsyas s
00 a5 0
92 Sy
o0 92 N 92
r X
d d - ds. |}
JO a2(52) 52 [J031(51) S] Oa](ST) I]

which is separable.
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CHAPTER 4 MULTIPLE STOCHASTIC INTEGRALS AND NONLINEAR FILTERING

This chapter applies the viewpoint of multiple integral
expansions to the generai filtering problem stated in the introduction.
First, the Kallianpur-Striebel formula is used in 4.1 to derive
a representation for the optimal filter as a ratio of two multiple
integral serjes. The integrals in this representation are formed
with respect to the observation process and have kernels that depend
only upon the unconditioned distribution of the signal process and
that hence may be computed offline, prior to receiving any
observations. Secondly, we discuss the class of suboptimal filters
consisting of a multiple integral expansion truncated after a finite
number of terms. By combining ths exact filter expansions, the
multiplication formula, and change of measure, we derive kernel
equations for the kernels of the best rth order filtar of this class.

We then treat the cases r =1 and r = 2 as examples and, using

the same techniques, rederive the Kalman filter.

The filter expansion presented in 4.1 resembles formulae
obtained by Eterno [11] 1in his thesis. Eterno built filter
approximaticns by expanding the unnormalized conditicnal density in
moment or cumulant power series, and his expressions, wnen appro-
priately evaluated, have multiple integral interpretations.

Our expansion, which can also be applied to the conditional density,

is constructed along different lines and we apply it to a different
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class of suboptihgl filter designs.

It is worthwhile emphasizing that the stochastic integrals
employed in this section are taken with respect to the observation
process, and not, as in Chapter 3, with respect to the innovations
process. At first, integration against innovations appears to be
an attractive alternative, because the innovaticns are Brownian and
so allow one to exploit the homogeneous chaos theory, theorem 2.6
for computing kernels, and etc. in approximating filters. However,
in constrast with Marcus' problem, the innovations are not easily
caiculated for they require optimally estimating the signal h(xt)
(see the introduction), a probiem of equivalent difficulty.to the
original one of estimating an arbitrary functional f(xs,s§;).
Integrals against the cbservation process, on the other hand, are more
readily computable, but Tess easy to handle, since y(-) is not id
general Brownian, much less even Gaussian. y(-)-based integrals of
different orders are, for example, not orthogonal, making it difficult
to project random variables on finite order sums of integrals. The
technique introduced below to derive kernel equations for best finite
order estimates addresses precisely this complication and provides
tools for exploring the probabilistic structure of multiple integrals
of y(t) 1in more detail. Thus integrals of y(t) can be analyzed
and are more satisfactory for applications than integrals of the

innovations process.
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4.1 Filter Expansions

To fix notation, let us restate the general filtering
problem and the Kallianpur-Striebel formula for the optimal estimate.
{y(t)[0 <t < Tk, {x(t)]0 <t <Tt and (w(t)|0 <t < T} are scalar
valued processes on the probability space (Q,F,P), and h(s,x) is a

real-valued (Borel) function such that

t
y(t) = J h{s,x(s))ds + w(t) t<T,
;0 (4.1)
E {[ hz(s,x(s))ds} < =,

0

and w(.} is standard Brownian, independent of «x(.).

=y i
Let G, = F. v F{ and define Py by
dP T T
—E% = exp[-J h(s,x(s))dw(s) - %J hZ(S,X(S))ds] .
0 Q

Recall that P0 is a probability measure w.r.t. which y{(-} and x(-)
are independent, x{-) has the same law as under P, and
(y(t),Gt)t<T is @ Wiener process. By this last statement, we mean
that w.r.tT PO' v(t) 1s a continuous Gt-martinga]e such that
EO{[y(t)-y(s)]Z[GS} =t - s: 1in general, F{E G,. lLet ft(xs,sit)
be a finite variance non-anticipative functional of x{:). - For

simplicity, we shall in the sequel always denote fi(xg,s<t) by F{t),
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and Tikewise h(s,x(s)) by h(s). Then the Kallianpur-Striebel formula

states
f, = EF(O[F b
EgtF(ehexpl | n(s)ay(s) - § [ n¥(s)as |7
] (4.2)
t
tgtexsl| n(s)ay(s) - § [ né(s)asly :
0 0

Because of its importance, we single out the expenential term in (4.2)

with the notation

t t
L = expl h(s)ay(s) - § | n¥(s)as]
0 0
It is well known, {Wong [46]), that L, = QE-, Ly is a G -martingale on
0
(Q,F,PO) and
st = h(t)Ltdy(t), LO =] (4.3)

(4.3) is the crucial relation for what follows.

In order to stata the main thecrem, it is convenient to
introduce the functions
Qn(tss'la“'ssn) = E{f(t)h(s])”'h(sn)} n 2'_0 ( )
4.4

kn(ST,-",sn) = E{h(sl)---h(sn)} n>1.,

Note that in (4.4) the expectation operates on randcm variabies which
depend only on the x{-) process, whose law is invariant under the

change from P to PO' Hence, we can also write

2p(tssysm 77,8 ) = EgIF(t)h(s ) - -hls )3

0
kn(s],"',sn) = Eo{h(sT)"‘h(sn)} .
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Another useful process is -

t Sr

L) - jo---joh(sg---h(s,.;%smdy(s,,ﬂ)---dy(sﬁ .

The existence of Lir), a multiple stochastic integral with

random coefficients, will be justified shortly. We now state

multiple integral expansions for %t'

Theorem 4.1
T T

(i) 1If E[f hz(a)da]r <= and E[fz(t)(f hz(o)dc)rj< ®,
0 0

1(t) + 7 M () + ggee(eil 7R

f, = - n=1 (4.6)
]+ Z1I£r)(kn) + EO{Lér)[F{}
n:
T T
(i1) 1f Elexp f hz(ﬁ)ds] <= and E[fz(t)exp J hz(s)ds] < w
0 0
EEACE: 11V
o= D=1 (4.7)
e LK)

n=1

and the infinite series in (4.7) converge in the U (P) norm.
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Remarks 1. We call {4.6) the partial filter expansion and (4.7)

the full expansion.

2. The expansions are essentially series evaluations of the
Bayes formula (4.2). They work by "separating” the x{-) and y(-)
dependence in (4.2) by expanding Lt; y{+) appears only when integrated
in muitipie integrals and x(.) is integrated out in the kernels. The
kernels, therefore, require only knowledge of the apriori distribution

of x(-) and can be computed offline prior to filtering.
Theorem 4.1 has the obvious generalization to vector valued proéesses.

The proof of theorem 4.1 requires that we handle {ntegrals
of the form tir) or

t Sp-

oo mlsp) e h(s day(s,) - wdy(sy) (4.8)
0 0

whose kernels are random, not deterministic as in chapter 3. These
are easily defined by iteration. For this, it is convenient to work
with the measure PO, with respect to which (y(t),Gt) is a Brownian
process, so that we may apply the standard theory of stochastic
integration, {see, e.g., Liptser and Shiryayev [28]). Thus, if

4(t) 1is a measurable, G,.-adapted process sa%isfying

PD[J ¢2(s)ds <w] =1, we hav% an integral j 3(s)dy(s) with a

¢ 0

version such that PO[ sup IJ o(s)dy(s)| < =] =_1 {Liptser,
Q<t<T -0 T

Shiryayev [28]). The hypothesis of (4.1), E [ hz(c)dc <= 15 thus
-0



- 73 -

enough to guarantee that (4.8) is well defined for all orders r.

t
Indeed, u{t) = J h(s)dy(s) is certainly well defined, and, moreover,
0

T T
Poffohz(s)wZ(S)ds < (EBTTWS)HZ fohz(s)ds <=]=1.
Hence t o £ 51
[ntsputsyevtsy) = | [ n(sydnlspdey(splay(s)
0 00

is well defined, and we can continue in this manner %o all orders.

Similarly, by choosing a continuous version of Ly, we can show

t Sr

r- - aw - “es R
= | o] st | avts ) entsy)

is well-defined.

We shall also encounter expressicns of the form
t

EO{JO¢(s)dy(s){F{} ,

and for these, the following "stochastic Fubini" theorem is useful.

Lenma 4.1 Llet (b(t),Ft) be a standard Wiener process and let

b
t

F,-adapted process such that E[J ¢2(s)ds] < =
0

F. = of{b(s)|s<t} (completed by null sets). If o{s) is an



- 74 -

£ t
£([ ols)an(s) 171 - Jetsts) 1 F3ee(s)

Proof Liptser and Shiryayev [28].

Proof of Theorem 4.1 Parts (i) and (ii) are both consequences of a

multiple integral expansion for Lt' Indeed, (4.3) implies that

t
L= 1+ Joh(s)Lsdy(s) . (4.9)
Iterating (4.9), s
t t 3 :
Ly = 1+ Joh(s)dy(s) + JOJOh(s1)h(sz)Lszdy(sz)dy(s1)
t t
L =14 Joh(s)dy(s) 5 oeee s [o
r-1
[Oh(s1)---h(sr)dy(sr)---dy(s1)
+L§") . (4.10)

Now substitute this last expression into

Y
;. EO{f(t)Lt[Ft}
.

I-}’w
EO{Lt|rt:
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The denominator, for example, becomes

t Shel

-
EqlLy [F{y = 1+ n£1 EO{JO"'JOh(SI)"'h(sn)dy(sn)"'dy(sl)IF{}

+ g {L IFY} (4.17)
T
The hypothesis E[I (s)ds]" < = of part (1) allows lemma 4.7 to be
applied to the terms of (4.11), with the result,

, . b Sh-1
folllF =1+ T jo---[o Egih(sy)+++hls JHy(s )+e-dy(s;) +

(r)eyy - T on (r) 2y
ED{Lt [Ft} =1+ nZ]It(kn) + EO{Lt |Ft}.
A similar calculation applies to £ [f L IF }, thereby completing the

derivation of the partial expansion.

Formally, the probf of the full expansion follows by
setting r = = in (4.10). To prove it rigorously, we first show

that £ exp[J hz(s)ds] < = implies
0

S

N [t n-1
Ly = m.s.(py) ;l2[1 + n§110 --JO h(sq)--<h(s )dy(s ).--dy(s;}]. (4.12)

N

Denote the finite serias on the right hand side of (4.712) by A . Then
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t SN

Eolleae)” = EO[JO.--JOh( Dbl )Ly drlsy,)e-ay(s)2.

SN+

By employing the standard computational rules of (2.1) for stochastic
integrals, this last expression equals

t SN

2 2 2
JO...JOEOEh (5q)-+-n (SN) N+%dsN+1 -ds

provided that it .is finite. However,

Eo[hz(sl)"'h

SN+l
= EO{hz(sl)"'hZ(sN) exp[-Jth(s)ds] (4.13)

SN+1

£glerol2] n(s)ay(s)1IFLl:

With respect to Po,x(-) and y(*) are independent and y(-) is Brownian.

s
N+1
Hence, given {x(s), s < 51}, f h(s%dy(s) is a Gaussian random variable

Q

with mean 0 and variance J N+1hz(s)ds. Thus
0
SN+ SN+
EO[exp 2 J h{s)dy(s IF ] = exp 2 f hz(s)ds . (4.14)
0 0

Therefore, applying (4.14) to (4.13)
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S+
(4.13) = E{h2(s.)++-n%(s,.1) exp[| h%(s)ds]]
’ 0 1 N+1 0 !
S g T
w SNF1 L] J-1
- 2 2 : 2 2
= Bt (s t2lsy) L[ | o] T hPep) s nis e
0 0 0
and hence
% SN+1
2 2 2
ool EalnS(sq) e +h®(sy (1L Ids 5
Jo Jo 0" 15y N1 sy gt T
ot S5
2 2
= ) J J E~Lh“(sy)-++h"(s.)]ds ds
j=rlo Jg O T ‘A A
T T .
= E lT EO{f ---J hz(sl)---hz(s.)ds.*--ds1} . (4.19)
j=Ne1 37 Flo g 3
T2
Since E exp[[ n“(s)ds] < =, (4.15) tends to 0 as N - =, and thus
Lt = m.s (PO) 1im Aﬁ for 211 t < 7. Lemma 4.1 can now be invoked

Newo

for every order n, sa that

. Ny
Eqlms. 1im A [Ft}

E~{L, |F}
0ttl't Nowo T

: . Ny 2y
m.s. L1m EO{At]Ft}
) ]

1l

N
m.s.(PO)1im[l + z

17(k )]
Nowo n=1 tn

+eedoy}
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A similar proof expands Eo{f(t)Lt{F{} in the series

2~(t) + [ I

(
g n= l

n

Finally, to derive the U (P) convergence, note that

.
2 2 .
[dPO = Eglp = E[exp Joh (s)ds] < = .
Thus
y o
ElEo[LtlFt] - (1 + 'Iz It(kn))l
eV 2 r T e T ()T
%0 ey’ fo Mottt Lt Hn -
N
Thus because of (4.12), Eg[L IF{T =L (P)) Tim [+ | I3(k)]

N0 n=1
as claimed. This compietes the proof of theorem 4.1.

Let P(a,t|F) = E[1A(x(t))|F{] denote the conditional

distribution of x(t) given the observation up to time t.

I

2

Corollary If E[exp J h®(s)ds] < =
0 .

E1, (x(t)) + ZI (E1, (x(t))h(sq) - ++h(s,))

n=1 n

P(a,t[F{) =

1 +
n

HNe—3 8

] Ig (En(sy) - -h(s )

A related formula is also of interest. If x(t) nas a density

g{x,t), x(t) has a conditional density given by
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Eg(L(t) [P x(t)=x]a(x,t)
£ [L(t) [F]

o(x,t) |FY) =

Using the same techniques as above, we can easily derive

EolL(8) [FLx{e)oxlax,t) = [1 + T Th(elnls;) +-h(s,) Ix(8)x])]

x q(x,t) (4.18)

for the numerator of p(x,t]Fﬁ). (4.16) is often called the

unnormalized condiftional density.

Theorem 4.1 immediately suggests a scheme for approximating
filters, namely, truncation of the numerator and denominator series
after a finite number of terms. The kernels of these terms are
evaluated off-line, and, if necessary, approximated by separable
versions. Construction of the multiple integrals as outputs of
stochastic differential equations in the manner of theorem 2.3, then
provides a finite-dimensional recursive realization of the

approximate fiiter. _Error analysis of this method is difficult, even

T
in the case Efexp [ hz(s)ds] < »; because truncation occurs in both
numerator and denominator of a ratio and because the error terms are
hard to bound. One might also approximate the unnormalized conditional

p(x,t[F{) by a finite series, but a major drawback to this scheme

is that one cannot guarantee that p(x,t|F{) >0 for all x.
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An alternative is to discuss cumulant expansions
p(x,t[F]) = exp E 1(s,)
n=0
Eterno [11] studies ideas 1ike this in his thesis.

th

4.2 Best r Order Filters

The most common and extensively studied suboptimal estimator

is, of course, the best linear filter. This is an estimator

t
ft = ao + foa‘l(t,S)dy(S),'

linear in y(.), and satisfying
E[f(t)-F,1° < ELF(t)-(by* % (t,8)dy(s)) T
()-F I < %o Io e SIS

for ail other choices of bO and b](t,s). The philosophy of
applying multiple integrals naturally suggests that one seek better-

than-1inear estimates by adding higher order multiple integrals terms.

Definition 4.1

(1) ¥, = Galthmaglt) + T 100 (8))eeTfa (tsy. o5 )EL2(00,TT"
) Y. = {a(t)=a,(t) |n§] g3, (e)t=Tla (tasy oo us Jel2(10,T])  eeT

and 0 < n < r;
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(i1} a(t) ¢ Yr is called the best rth
{y(s)[s<t}, if E[F(t)-a(t)]°

b(t) = Y.. The kernels aj(t) of a(t) are then called the

order Tiiter of f(t), given

< E[F(t)-b(t)]% for t < T, for all

optimal kernels.

Existence of a best rth order filter is not immediately

guaranteed. a{t) amounts to the projection of f(t) upon
Yr(t) ='{a(t)la(-)sYr}, and, for this to always exist, Yr(t) must

be closed under mean-square (P) Timits. An easy sufficient condition

is
T ,

Lemma 4.2 If E(j hz(s)ds)r < =, then Yr(t) is mean-square (P) closed
0

for t < 7.

Proof Apply lemma 2.3 to cbserve that, under the hypothesis,

s OREREINE

forn < ke T2([0,7T]7).

To find the best rth order filter, one must compute

the optimal kernels. Accordingly, in theorem 4.2 we show how to use the
multiplication formula and the filter expansions to dérive integral
equations for the an(t), 0 <n=<r. This requires two preliminary
lemmas, one to restate the problem, the other, to verify a technical

identity. We assume throughout the notations established in s1.
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2 2

Lemma 4.3 let z,v ¢ LZ(Q,F{,P)- Then E(z-f(t)}

if and only if E(z-%(t))2 j_E(V-%(t))Z.

< E{v-F(t))

Proof %(t) equals the projection of f(t) onto LZ(Q,F{,P). Since

z-%(t)s LZ(Q,F{,P), the projection theorem implies

-

E(F(t)-F(t)) (z-F(t)) = O

Thus
E(z-F(£))% = E(z-F(£))% + E(F(t)-F(t))2 - 2E(F(t)-F(t))(2z-F1))
= E(z-F(1))2 + E(f(£)-F(1))2
Similarly,

E(v-F(£))2% E(v-F(£))2 + E(F(t)-F(t))?

A

r
Lemma 4.4 Let c¢(t) = co(t) + 7 Ig(cn(t)) £ Yr(t) and assume that

n=1
T T
E(J h2(s)ds)" < =, E fz(t)(j h2(s)ds)” < = . Then
0 0
Eq {c(t)EO{Lgr)|F{}} = 0 (4.17)

£y (elt) Egef ()L /Yy = o (4.18)
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Proof From (4.11)

.
EO{L le} = Eglt, IR -1 - ] 1f(k)
n=1

and, therefore,

(r) ¥y = Y
EqlelE)EILL  [F{} = Eqe(t)E (L, [F{]

- r r‘ n
- Ege(a)l1 + [ 1k)]

Since y(-) 1is Brownian under PD
LA r
ACGIUERACR I EENOR g][ e epltsgaresy)

E[h(sl)"'h(sn)]dsn---dsI
However,

_dP

Egle(t)ElL, [F1} = Ege(t) 3 = Eelt)

t n-1

r
) +HZJO-..J’OCn(t,S.I R ’Sn)

E[h(sT)---h(sn)]dsn---ds1

by Temma 2.3. Applying (4.19b) and (4.20) in (4.19a) yields

_Y1 =
EO{C(t)EO{Lt[Ftr} 0

(4.19a)

(4.19b)

(4.20)
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(4.18) is established in analogous fashion using a version of lemma
2.3 for eypressions f(t) Ig(cn), n < r, under the condition

E{fz(t)(J h(s)ds)"} < o.

0
.

Suppose now that E(J hz(s)ds)zr and a(*) ¢ Yr' By
expanding Eo[LtIF{] as in theordm 4.1, we obtain

y S on
s(t) Bl [F{] = [ag() + T 1}(a,(e))]

2r .
J (2r), oy
x [1 + j§1It (kj) * Eglly [Ft}] . {4.21)

Using the multiplication formula, we can then calculate kernels

gj (tss~l s "' :SJ') such that

r .
(4.21) = g4(t) + j§1 I%(gj(t,sl,---,sj)) + a(t) EOfL£ZF)|F{}. (4.21a)

Indeed, for 0 < j < 3r, direct calculation with (2.14) gives

=21
.= [ (MMNa ()], O) [k 1. (4.22)
j oo M1 m i n-i
(m,n,1)_Cj
C. = {m,n,i|m+n-21=3,i<min(m,n) ,m<r,n<r}

J

T2 2r T2
Thecrem 4.2 Assume E[J h“(s)ds]" < = and E f (t)[[ n“(s)ds]™ < =,
0
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th

a(t) is the best r arder estimate if and only if

gj(tss-l:”’ssj) = E{f(t)h(s'[)"'h(s-)}(: 1j(t:5]s"’ss')) (4‘23)

J J

for 1 < Jj <.

Remark The equations (4.23) comprise r + 1 intesgral equations for

the r + 1 kernels aj(t), 0 <Jj<r. This can be seen from (4.23)

and the definition of ) and will be illustrated explicitly in the

examples to be discussed.

Proof Because of lemma 4.3 it suffices to show (4.23) holds if and

only if

Efa(t)-F(£)1% < [e(t)-F(t) 1

for all c(t) ¢ Yr(t). Since

2 2

+ E{a(t)-F(t)1% + 2E[c(t)-a(t)]

Efc(t)-F(t)]° = Efc(t)-a(t)]

—+?
—

cr
—
—

x[a(t)-

this will occur if and only if

-~

Efc(t)-a(t)Jla(t)-f(t)] =0 yeclt) e Yr(t) . (4.24)
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Thus, we will demonstrate (4.24). Begin by noting that

dP
el F] = (€, IFYJ)" (gLl IR

Then .
(c(t)-a(t)) [alt)Eq L, [FY} EotF(t)Ly | FY}]

ELe(t)-a(t)1[a(t)-F(t)] = E ¢ 0 }
folbelFe]
- EE[S- ny] (t)-a(t))la(t)eglL, [F{T - Egef(e)L, 1FIDs
= E,{(c(t)-a(t))(a(t)E [L |F 1-¢ [f tiL [F 1)} . (4.25)

0

Now use theorem 4.1 (i) and (4.271a) to evaluate the term

a(t)EglL, IFA] - EgLF(t)L, |F]

= sglt)-Ef(t) + [ 1ilgy(e)-ay(0)] +

a(t)EO[Lizr)iF{] - Eoff(t)ngr)[F{].

This implies, since y(-) 1s Brownian w.r.t. O’ that different order

integrals are orthogonal w.r.t. P5, and that, hence,
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(4.25) = [co(t)-ao(t)](go(t)'zo(t))+

£ S3-1

N | [O._.[O [Cj(t’51""’sj) - aj(t,s1,---,sj)]

et 3

J

[gj(tas-ls"'rsj) = lj(tss] :"':sj)]
dsj-"ds]

¢ ggtle(t)-ale))alt)E L [FDy

) EO{(c(t)—a(t))Eo[f(t)L£2r)IF{]} , (4.26)

The last two terms of (4.26) are zero by lemma 4.3. Thus, it is

clear that (4.26) is zero iff

95 = 2 0<jiz<r

This completes the proof,

- The technique of theorem 4.2 extends to other probiems as

well. Suppose, for instance, that a filter

a'(t) = ag(t) + } 1§{a;(t)

j=1 3

th

of order q is available; a'(t) need not be the best q order

filter. Let r > g, and, rather than ask for the best rth order
filter, let us seek the '"best rth order correction" to a'(t),

i.a., the mean-square minimizing a(t) of the form



a(t)

where aj(t), i

kernels

Theorem 4.3 Let the hypotheses of theorem 4.2 hold.
the best r

=

gj(t) as

a(t)EO{LtlF{} = go(t) +

th

gj(tssla"'

order correction to

g +

'l’-..

before:

J

,5.) =EL{f(t)h(

i=1

,7 are free to be chosen.

zxi

a'(t)

S'l)"'h

(£)) + a(t) g (LiP) R

if and anly if

Define the

Then a(t) s

Proof As before, it suffices to show that (4.27) holds iff

for all c(t)

Efc(

theorem 4.2

Efc(t)-

t)

at(t) +

r

(t)1[a(t)-F(t)]

EO{[c(t)

E
Enf
P jeart
3r
)
j=2r+1
r

tegalag(t)-zo(t) + L 1ls;(6)-1;(0)]

IJ

t
1]
j=q+1/0

t

-a(t)Ifa(t)-

j=q+1 £

e (e)).

a(t}]la(t)EyLL, [Fy

N

F(t)] = 0

(5511, @+ 1 < 3§ <r.(4.27)

By the same calculations as in

E {f(
2r

i=

(35(8))+a(t)Eg[LETIFT -

|

Sj_]
0 J

J

(C -4 )(tas]:“'s

FlE)L [Fy}]}

J

2
Eo{f(t)Lé ) gy

Sj)[gj'ij](trSTa"'

113

oeds
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This equals zero iff 9; = 25 forq+1 <3 <r.

Remark Clearly, an analogous result holds for the case in which an
arbitrary subset of {aj}g=0 is given and the remainder are chosen
as to optimize the mean-square filter error. Thus, if

aj, je {j],"',jq} < {0,1,---,r} are given, then the {aj(t)},
J£ {jl""’jq} are optimally chasen iff gy * zj for every

j g {0,],"',1"} 'T"{.j]""hjq}-

As a first example of theorem 4.2, let us compute the
kernel equations for the best linear estimate %(t)= ao(t) +
t

J0a1(t,s)dy(s). From (4.22),

t
solt) = 2g(t) + | ay(t.0)eln(e) 1o
t
g)(8,5) = ay(2.5) + [ ay(t.0)Eln(s)n(e)Jes + aglt)En(s).
0

The kernel equations are then

t
ag(t) + [ 2, (t,c)En()do = EF(t)

0
t

2 (t)EN(s) + a,(t.s) + f 2, (t.0)Efh(s)h(a)1de = EF(t)h(s), or
Q

eliminating ao(t) from the second equation,
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t
ag(t) + J 3, (t,0)E[n(e) 1do = EF(t)
0 (4.28)
t .
3y(t:5) + | a)(t.s)covn(s) hie)do = covlF(t) h(s)]
0

(4.28) is, of course, the well-known Wiener-Hopf type equation for
otpimal linear filtering. Before examining higher order examples,

we will discuss the Kalman filter.

4,3 The Kalman FiTter

Consider again the signal-observation system (3.1) in
which the state x(t) is a Gauss-Markov process solving a linear
stochastic differential equation driven by Brownian mot%on, and
h(t.x) = H(t)x(t). The Kalman-Bucy theorem, summarized in lemma 3.1,
shows that the state estimator. x(t) = E{x(t)|p{} satisfies the

equation

Fle)x(t)dt + POEVHT (8) [dy(t) - H(E)x(t)dt]

[
>
—
ot
—
]

x(Q) = Xq (4.29)

where P(t) is a deterministic function, (see chapter 3 for definitions.)
Let #(t,s) be the state transition matrix of F(t) - P(t)HT(t)H(t);

Then, the solution of (2.29) is
t

x(t) = o(t,0)xy * J ¢(t,S)P(S)HT(5)dy(s),
Q

i.e., the optimal estimate is linear in y(-).
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It is of interest to connect this result to the expansion
formulae of theorem 4.1 In the case of a scalar signal,

satisfying (3.1) and h(t,x) = x,(4.7) yields, at Teast formally,

te(e) + [ H(EDx(Ex(sy) (s
J_.

x(t) = — —— ; (4.30)
J
1+ [Ty (Elx(sq)mox{sy))
j=1
and bath numerator and denominator are truly infinite sums. This

-~

general representation obscures the linear structure of x(t}. The
techniques for applying the expansion formulae, should at Teast inciude
methods for deriving the linearity of Q(t) from (4.30). In fact,
theorem 4.2 can be parlayed intc a proof of the Kalman-Bucy filten

and we present this here after a few comments.

One commaon proof of the Ka1man-8uc} theorem invcokes the
stochastic differential equatiaons for the conditional moments. When
x{t) = b(t) and h(t,x) = x, where b(t) is a scalar Brownian motion,
these are

/\ N AN
d;h(t nas 1 2 gt + ()™ Rt ()]

[dy(t) - x(t}dt] n > 1 | (4.31)

and a similar infinite set of coupled equations holds in the general

case (3.1) (Fujisaki, Xailianpur, Kunita [15]). These equations do
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not yield themselves to a direct solution. Rather, they require
additional information, namely, that (x(t),y(t)) is jointly Gaussian
ﬁnd that, hence, by limiting arguments, the conditional distribution
of x(t) given ({(y(s)[0 <s <t} is normal. One can then conclude
that the conditional variance E(x-Q)ZIFi] is a deterministic and so
effectively truncate the system (4.31) at n = 2. (4.29) follows
easily [see Kallianpur-Striebel [23]]. By contrast, the derivation
of ;(t) from (4.30) does not involve knowing the form of the
conditional distribution, an object, that, in the general filtering

problem, is not often in hand,

Let us develop our proof of the Kalman filter for the

simple case

]

dx(t)
dy(t)

db(t) x(0) =0
(4.32)

x{t)dt + dw(t) y(0) =0

in which b(-) 1is a Brownian motion. We do this in the interest of

computational simplicity; the proof carries over to the general case.

. t
Thegrem 4.4 x(t) = J a(t,s)dy(s% where a(t,s) satisfies the
0

Wiener-Hopf equation a(t,s) + J a{t,o)(s"o)ds =5, t > s, (4.33)
0 .
(s*c = min(s,q)).

Proof Since y(') s Gaussian, the set of polynomials in y(-) is

dense in LZ(Q,F{,P), a fact presented in the discussion ¢f homa-
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geneoustchaos theory in chapter 1. Therefore, it suffices to show

th

that J al{t,s)dy(s) is the best r order estimate for every r,
0

1 <r <= [Itis true for every r, T <=and t <T that
t t
2 r 2 2 r .
E{| b°(s}ds] < = E b7(t)[| b (s)ds]’" < =. Theorem 4.2 thus applies.
0 0

t

That is, J a(t,s)dy(s) is the best rth order estimate if and only
0 ,
if
g;{tssq5 705550 = EB(E)b(sy) " b(s4)3, 320,171
From (4.22)
golt) = 0
gj(t,51,"',5j) = j(a(t! )O(t)kg-l)(SP ,SJ‘)
+ (a(t, )O(t)(kJ+-‘)-{)(S], ’Sj) J>0
Now
J(a(t!.)G(t’kj_l)(s‘li 133) =%TT|-LS.a(t,S1T(1))
J
Bsa2))7Blsh(y)]
J
=iLﬂtsﬁwwﬂ~hu#ngﬂr b(s;)}
and
(a(t:')] O(t)(kj_:_'l)‘l(s'la"’sj)

t

= [ attoziblo)nis) s 1o
e
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The kernel equations Secome

0 = Eb(t) (4.34)
t .
a(t,s) + Ioa(t,c)E{b(c)b(s)}dc = E[b(t)b(s)] (4.35)
J
1§1a(t’si)E{b(SI)"'b(si-J)b(siﬂ)“'b(sn)
t
+ Joa(t*U)E{b(U)b(51)'--b(sj)}do

2<j=<r
(4.34) is true by definition, and (4.35) is just (4.33). We now
claim that if a(t,s) satisfies (4.35), (4.36}] tis true for all
j > 2. This will imply that the equations for Joa(t,s)dy(s) being

the best rth

order estimate are satisfied for every r, and will
complete the proof. To do this, assume a{t,s) solves 4.35, and

observe the identity

E{b(c)b(s1)---b(sj)} =.% (c“si)E[b(sl)---b(si_1)b(si+1)"'b(sj)]

i=] (4.37)
(4.37) results from a direct application of Temma 3.3.

Now substitute (4.37) into the left-hand side o7 (4.36)j

and use the Wiener-Hopf equation for a(t,s):



[ [ ey | SN
—_—

a(t,si)E[b(s1)---b(si_

])b(s..

i
t
+ fo a(t,c)E[b(G)b(S])"‘b(sj)]dc

t

;I{a(tss.i) + [Oa(tsd)tgﬁsi]dc} E[b(sl)-..b(s‘f—'])b(s'i'ﬂ)”'b(sj)]

i
m
—
o
-
r
s
o
-
7]

—

"
o
-
wn
—
| D—)

The last equality employs lemma 3.3 again and validates (4.36)j for

any j.

4.4 Quadratic filters

In this section we treat best second order, or quadratic,
filters as an example of the theory of 4.2. We first present the
optimal kernel equations for this case and then show how they may be
solved. To guarantee validity of the discussion, we assume throughout

the hypotheses of theorem 4.2 for r = 2:
T
E([ h2(s)ds)* < =
0

Efz(t)([ n2(s)ds)? < w oyt <
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Deriving the integral eq%ations is simply a matter of

calculation. Let a(t) = a.(t) + | a,(t,s)dy(s) +
ts - 0 0 !

1
( J az(t,s1,52)dy(sz)dy(s1) be a quadratic estimate and Tet

00
gj(t,ST,"°,sj), 0 <Jj <2, be the kernels associated with a(t)

in the manner of (4.21a). Thus, using (4.22)

3y(8) = 2g(t) + [a,(£.)1, O (61T, 1, + [a,(t,)], Q) Tk
91(t:5) = a-[(t,S) + ao(t)k](s) + [a](t!°)]'| G (t)[kzj](s) (4.38)

+ [a,(t,7)]; O(t) Bk Ty (s) + [ap(t, )], Q(t)[k3]5(s)
9,(ts5755,5) = a,{t,51,85) + ag(t)hky(sy,s,) + fag(t. )1 O(L) [k1(sq.5,)
+ [31(t)]lo (t)[k3]'[ (51’52) + 2[a‘1(t)]‘l ’

QL) [k,li(sg.55)
+ [az(t)]ze (t)[kq_]z(s-I 352)-

By theorem 4.2, a(t) is optimal quadratic if and only if
£F(t) = gy(t)

Ef(t)h(s)

g;(t,5) (4.39)

Ef(t)h(s1)h(52) = gz(t,s],sz)

Now evaluate gj, 0 <Jj <2 1in (4.39) using (4.38) and the

definitions of O (t) and ks The result s in its full blown
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ugiiness,
t t $4
£7(t) = ag(t) + [ ay(t.s)En(s)es + | [ aplt,s).5)En(syIns)dsydsy
0 2 ¢ (4.40a)
F(E)n(s) = a(t,s) + 2g(t)eh(s) + | 3 (t.o)En(a)n(s)ds
0
t t 91
+ j a,(t,5.0)EN(s)do + j J ay(t .37 0, )R (o, Ih(a,)h(s)ds
° 00 (4.40b)

Ef(t)h(sl)h(sz) = az(t,s1,52) + ao(t)Eh(s1)h(sz) + a](t,s1)Eh(52}

+

t
2, (t.s,)En(s;) + Joa](t,c)Eh(c)h(s]Jh(sz)dc

-+

t
Jo[az(t,s1,a)Eh(c)h(sz} + az(t,szg)Eh(c)h(sﬁ]dc

t ©
. 1

+ a,(t,0,,0,)E{n{s,n(s,)h(a, )h{c, B} do,do, (4 40c
Joifo 5(t,99,3,)E{n(s;)0(s,)h (o, )h(o, ] doydoy )

These equations deserve some elementary remarks before we set
about solving them. First, the optimal kernels are all interrelated
in the general case. We cannot solve for ag and 3y independently
of knowing a5 . Likewise, if 3g T € » 2 = cp are the kernels
of the best linear estimate, they will not, in general be the Tower
order kernels of the best quadratic estimatza. Secondly, the

equations (4.40) can be used far other suboptimal designs in the

spirit of thearam 4,3. Thus, if &, and 3, ars given, and we
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t
seek the bhest quadratic correctian to ao(t) + J

031“’5)@(5) ;
this will be found by solying (4.4Qc) for 3, in terms of 3, and
an - The methods developed for solving the full set of equations
(4.40) will also apply to this problem,

To solve (4,40), we first eliminate a, and 3, to derive
an integral equation selely for 8, . 3 is easy to handle. Merely
solve (4.40a) for ao(t) in terms of a, s 3, , and the known
functions Ef(t) , Ef{t)h(s) , etc. and substitute this expression
in (4,40b) and (4.40c). To further simplify, use (4.40b) in

a1(t,sl)Eh(sz) + al(t,sz)Eh(sl) of (4.40¢c), We thus derive

t t ¢
1
solt) = E5(8) - | &y(toltntoldo - [ | ay(t0,.0.)8H(a, nlay)asydor
(4.47a)
t
al(t,s) = cov[f(t),h(s)] - JO cov[h(s),h(c)]ai(t,c)do
t
- J Eh(c)az(t,s,c)dc
0
t 1
- JO JO cov[h(s),h(c1)h(cz)]az(t,c1,02)d02d01 (4.41b)

t
az(t,SI,sz) = cov[f(t),h(sI),h(sz)] - [Ocov[h(s]),h(sz),h(o)]a1(t,c)do

t
fo[cov[h(s1),h(c)]az(t,szc)-Pcov[h(sz),h(c)]az(t,STc)dc

t g

1
[ J cov[h(s}),h(sz),h(r:fl)}1(-\72)]‘32(t,c,|,cz)do'zdc:.l
070 (4,47¢)
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(In these expfessions, cov[x].-~-xrj = ECXW'Exi)"'(Xr'EXr)')

We have yet to eliminate 2 from (4.41b) and (4,41¢), but
this requires some mere notation and a bit of theory, Define the
operator g (t): LP([0,t]) - L3([0,t]) with kernel

r1(5so) = cov[h(s),h(a)] by
t
(& (118)(s) = | covin(s) (o) ]a(o)eo .

RT(t) appears in (4.41b) and (4.41¢c), In particular, (4.41b) may be

rewritten as
t

148 (81 (£,))(s) = covlF(t),h(s)] - | Enloda,(e,s,0)ds
0
!
i JO JO covih(s) .h(oy 1h(o,)Jay(t,0, .0, )doydo;

(4,42)
and thus, solving Tor a.I in terms of 2, requires inverting

I+R](t). Fortunately, this can always be done in an explicit way,

Lemma 4.5 .

- i
i) h(t) has a best linear estimate h(t) = ao(t) + J aT(t,s)dy(s) ,

qQ
t < T . Uithout toss of generality, we take a](t,s) =0 for

T>s>t>0,
9i) I+R](t) is invertible, and [I+R1(t)]~T = 1-Q(t) where Q(t)
is the integral operatgr with kernel

q(ts57:55) = a1(57,8,) + ay(s5.54)

t
- J0a1(c,s1)a](o,sz)dc:0 25908, St
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[ 4 R
Proof E[J hz(s)ds] < = guarantees that h(t) exists (Temma 4.2)
sl i Q -

and, as in (4.28)
31
aT(sﬁ,sz) + [Oal(s],d) cov[h(sz),h(o)]dc

= cov[h(s]),h(sz)] 0<s,2 < T

1=

i1) follows from results of Kailath and Geesey (Geesey [16],

Chapter 3). These imply that, under the hypothesis

T
J cov[h{(s),h{s}]ds < = , which is certainly implied by
0

T.
E[f hz(s)ds]4 < e, I+R1(t) is invertible and its inverse has the
0

given form.
We now apply this lemma to solve (4.42) for a1(t,s) "

t
a;(t.s) = cov[F(t),h(s)] - Joq(t,s,o)cov [(t),h(o) Jdo

t (t
. JO Jor'(t,s,c1,sz)az(t,o1,02)d02dcl (4.43)

where

r(£,5,07,65) =5 covlh(s),n(e)hioy)]
+5 [a(t,5,0,)En(ay) + q(t,5,07)En(0,)]
t
+-% Joq(t,s,c)cov[h(c),h(01)h(02)3d0 .

In deriving r' , we took advantage of the symmetry of g, to

symmetrize r' . Finally, we substitute (4.43) into (4.47¢) to get
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az(t,s1,sz) = F(t,sT,sz)

rt
Jo[r1(s1,c)a2(t,sz,o) + ry(s;.0)2,(t,5.0)]do

t t .
- JO Jorz(t,s1,52,01,02)a2(t,01,02)d02d01 , (4,44)

where

F(t,s9.5,) cov[f{t),h{sy),n(s,)]

t
- [ Ceovtnis;) hls ) a() 1(corl7(t) (o) ]

‘0

't
- Joq(é,UTGz)COV [f(t),h(cz)]dﬁz)dc

r2(t’51’52’01’02) =‘%' [cov[h(s1),h(sz),h(UT),h(cz)]

- cov[h(s1),h(sz)] cov [h{ay),h(o,)]1]

rt ,
- covlalsy)un(s,) ()T e (20,07 ,0,)dn
0
We have shown that if (ao,a],az) solve (4.40) then 2, solves
(4,44), Conversely, by reversing the steps of this derivation, if
a5 solves (4,44) and 3, and a; are defined via (4.43) and

(4.47a), then 3gs 275 A, solve (4.40),

(4.44) is simply 2 linear integral for a, . However, the
middle term of (4.44), invalving a tensor contraction between a5
and *1 » 1s non-standard, and the usual ]inear integral equation

techniques do not directly apply. In what follows, we will show how
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to eliminate the tensorcontraction term to derive a Fradholm intagral
equation for 23, thus reducing the kernel equations to a well-
known problem for which methods of solution or aporoximate solution

are readily available,

It is useful to do this in a general context.

Definition 4.2. Let S(s],sz)aL2 ([Ostlz) and let

Y(s],sz,c1,cz)sL2 (EOth4) such that v is symmetric in sps,. The
operator T: L%([0,t1%) ~ L%([0,t1%)

t rt
(rc)(STSZ) = [B]‘lg(t)[C]'l(s'[:Sz) + JO JOY(S'I’SZ’UT’GZ)C(G] :Gz)ddzdd]

is said to be of tensor contraction (T-C) type. The kernel 38 can
also be used to define an integral operator on Lz([O,t]) , which

we will denote by B , and, in fact, we can write

(B3O )Led; (5q.5,)

t
f [8(sq0)c(sy,0) + 8(s,,0)c(sy,0) Ido
JO S .

(Be(sys+)}(sy) + (Be(sy,«))(s,) .

Remark: It is of interest to note that, while the second term of

I' 1is the usual compact, Hilbert-Schmidt operation, the tensor
Contraction term is not compact in gereral, Since compact operators
have finite dimensional eigenspaces, we can prove this by supolying
a 8 such that {cstz(fo,;]z)lc = B]CKt)ci} is infinite

dimensional. It is easily seen that
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8(51:52) = ¢*i (S.j )¢i(52) ,

=

i=1
where the ¢, , 1 <1 <M<= aremutually orthogonal, will work,

Then i§f {w1}{51 are functions orthogonal to Span{¢1,--,¢M},

M
c(sq,8,) =i§][¢1(51)w1(52),+¢i(52)wi(51)] satisfies ¢ = g, (t)c,.
The space of such soluticons is clearly infinite dimensional.

For a T-C cperator I characterized by kernels 8 and v ,

we want to solve the integral equation
= "2 Y
c=F+Tc , Fe LT ([0,t1%) (4.45)

which generalizes (4.44).

.Thecrem 4.5. Suppose that [-B is invertible and
-1 € 1.2 2
([1-8776)(s) = o(s) + jos (s,0)0(o)ds 8 eL2([0,t1%)

Then, if ¢ = I'c has no non-zero solution, I-T' has a bounded

inverse,

Progf Using (I—B)"1 we will derive a Fredholm equation for ¢

from (4.45). Thus, suppose ¢ = F + I'c, From the definition of T

b

we have
t
(EB)elsyso)]lsy) = elspusy) - [ Blspi0)elsyokis

t
F(ST,SZ) + JOB(S1,G)C(SZ,0)dG

+

(Lot
JO j07(51:52!51=32)C(5102)d52d01
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By inverting I-B8 and rearranging terms, we derfve

't

[(1-8)c(+,5,)1(sq) = Flsyhs,) + Josl(sz,omspc)do

t (t
+ JO jOY](s1,52,01,02)c(c],02)d02dc1 (4.46)

where

1
Y-' (5];52301 302) = Y(S'[’stc'[ :0'2) + B (52301)5(51;62)
t
+ JOB (sz,n) (51,n,c1.02)dn

Now invert (4.46), to get

t (t
c(s],sz) = F](SI,SZ) + [0 JOY3(51,SZ,G1,GZ)C(G],Gz)ddszI (4.47)

where
¢

Filsus) = Flspusy) + | 81(55,00F (5,00

a
t L
+ [O 8 (51,01)[F(q,52) + JOB (SZ’UZ)F(UI’GZ)dGZJdGT

and
t
Y3(5-[:5290'~|so'2) =“('|(S'| 352:0'1 302) + J'OB.I (S],n)‘:’] (n,Sz,G],GZ)dn

(4.47) is the desired Fredholm equation for ¢ ; if ¢ solves
¢ =F +Tc then c satisfies (4.47). Conversely, if ¢ satisfies

(4.47) then c = F + I'c . Analogous reasoning shows that ¢ = T¢ iff

rt ot

. _ (
c(s1,52) = (13c)(s1,52) = JO JOY3(S1,52,GT,J )dczdor.| (4.48)

2
4
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Thus, if ¢ = T¢ has no non-zera solution, neither does ¢ = rsc .
But F3 is a compact operator, and hence the Fredholm alternative
theorem jmplies that I-F3 is invertible, This clearly implies that

I-T is invertible also.

The statement of theorem 4,5 may seem odd because it does not
focus on the central equation (4.47). This is done to emphaé{ze
that once the Fredholm egquation {s derived, we need conditions to
guarantee it can be solved., Stinulating that 1 not be an eigenvalue
of T provides just such a critaerion. Further, the statement of
theorem 4.5 may be extended to a sort of mutant Fredholm alternative
for tensor contraction operators,
Corollary. If I-AB is invertibie and X 1is not an eigenvalue of
I ,then I-AT 1s invertible.’

Proof. Compietely analogous to that of theorem 4.5,

The equation (4.44) for az(t,s],sz) js of tensor contraction

type; in fact, we may write it

az(tsslgsz) = F(t,S],Sz) + [R(t)az(t:')](s]:lsz) (4-49)

where R(t) i{s the tensor contraction operator characterized by
the kernels 8(01,02) = -F(d1,02) and

Y(s'lsszyg] 50'2) = -r2(t’s'l 952101 :GZ) .

Theorem 4.6, I-R(t) 1is invertible and az(t,-,-) is the unique

solution of



- 106 -

(t

. .
az(t,s1,sz) = F](t,sl,sz) + JO Jov(t,s],52,31,oz)az(t,sT,UZ)dczdc]

(4,51)
where
t

F.i (tsS-l 352) = F(t!S-I 352) - JOEQ(tsSZsU-I)F(t,S-! ,0'2)+C.](t,5-|0'2)F(t,g-l,52)]
' dUsz-l
tt
+ JOJ‘Oq(tss1 ’GI)Q(t’SZ’UZ)F(t’U] ,Gz)dczdc.l

t
Y(t’sl’SZ’c]’UZ) =Y1(t’sl’52’01’02) - Joq(t,s,u)v](u,sz,c1,cz)du

Y'[(tss'lssz:vg] :0'2) = - rz(ts,s-lsszscwl 50'2) - Q(t,SZ,UI)q(t:51102)

t
+ J Q(t,SZ,U)rz(t,s],u ,c],cz)du )

0
Proof From theorem 4.5, it suffices to show that I + R](t) is
invertible and that 1 is not an eigenvalue of R{t). The invertibility
of I+ Rl(t) is proven in lemma 4.5. The eigenvalue condition
is a consequence of the uniqueness of the best quadratic estim%te.
For suppose that c(sl,sz) = (R(t)c)(s],sz). Then aé(t,s1,52) =
az(t,s],sz) + c(sl,sz) would also be a solution of (4.44), and hence,
if aé(t) and ai(t,s) were defined from aé(t,s],sz) via (4.43) and
(4.41a), aé(t),ai(t,s),aé(t,s1,52) would alse satisfy the optimal
kernel equations. This contradicts the uniqueness of the best

quadratic estimate. The definitions of F} and v Tollow from
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the proof of theorem 4.5, Finally, note that if Y denctes the
integral operator defined by v, [ + v Js invertible and hence (4.51)

has a unique solution.

We have thus reduced the complicated kernel equations (4.40)
to a simple Fredholm equation which can be solved by standard methods.
Moreover, we can achieve a similar result for the problem of
determining the best guadratic correction to a linear filter, which,
as previously mentioned, requires solving (4.40c) for 3, in terms
of 3, and ay- Again, (4.40c) is an equation of tensor-contraction

type for ‘a2 and the tensor contraction kernels are the same as in

(4.44):
aZ(t’SI’SZ) = [Ef(t)h(s])h(sz) - ao(t)Eh(STJh(sz) - a](t,s1)Eh(52)

t
- ay(tas)En(sy) - |3, (ta0)Eh(s)n(s (s y)do]

Q
t

- J [r](sz,c)azit,sl,c) + r1(s1s)a2(t,52,c)]dc
0

to
[

S R ICA TR LICA PN R LI
00

Mote that this method does not succeed in solving the
optimal kernel equations recursively. Rather, t 1is fixed through-
out and the relevant operators are defined and invertad on

L2(10,¢1) or L2([0,t]%). At a different time &', the entire
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process would be repeated. A recursive solution would use

az(t,s1,52) to construct az(t+dt,s1,52).

An important problem is to determine conditions on f, h
and the signal process x(*) such that a](t,s) and a2(t,sl,52)
are separable, for in this case the filter can be constructed with
stochastic differential equations (see theorem 2.3). This has not
yet been done and is fairly complicated due to the complex manner
in which Ef(t), Ef(t)h(s), etc. combine to produce the kernels

F and y of (4.51), the Fredholm equation for as.
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CHAPTER 5 NONLINEAR FILTERING PROBLEMS WITH FINITE OIMENSIONAL
ESTIMATION ALGEBRAS

- Suppose that a signal x(t) is defined by the stochastic

differential equation

dx(t) = f(x(t))dt + g(x(t))db(t)

x{(0) = Xq (5.1)
and that it is observed via
dy(t) = h{x{t))dt + dw(t) . (5.2)

As usual, b(t) and w(t) are assumed to be independent Brownian
motions. The filtering problem associated to (5.1) - (5.2) will

be completely solved if the conditional distribution, P(x(t)sA[F{),
A ¢ {Boreil sets of state space}, is known. A basic question is:
when can P(x(t)eAlF{), as a measure, be characterized by a finite

set of statistics propagating recursively in time?

Recent progress on this issue has come from several
directions. First, V. BeneE'[T ] has proved the following result
by probabilistic methods. Suppose g = constant, h{x) = «x + 8, and
f is a global solution, (i.e., defined on all of R) of

f] + f2 = axz +bx+c . (5.3)

Then the conditional distributicn of x(t) given F{ has a density

which can be expressaed in terms of a {inite number of statistics
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generated by Kalman-Bucy type f{1tering equations.

There is also a suitable generalization to the case of vector

signals and observations. This result covers the case treated by thne
Kaiman-Bucy theorem, (Temma 3.1), but it gives new examples of

finite dimensionally computable filters as well. We will refer to
the filtering problems treated in Benef’' theorem as the "Benes

examples™,

Secondly Brockett and Clark [7 ], Mitter [35], and
Brockett [5 ,6 ] have suggested that Lie algebraic techniques
can be applied to the nonlinear filtering problem. They show how
to associate a Lie algebra of operataors, the so-called estimatiaon
algebra, with filtering models such as (5.1) and (5.2) and how the
Lie algebra structure bears upon the filtering solutions. In
particular, they suggest that when the estimation algebra is finite
dimensional it may be possible to compute conditional densities

finite-dimensionally.

In this chapter, we will pursue the implications of Lie
algebraic techniques for exact, finite dimensional calculation of
conditional densities. The first section will sketch the basic
ideas of this theory, especiaily those that concern generating
filter solutions from the estimation algebra structure. As part
of this exposition, we will derive by Lie algebraic techniques the

conditicnal density for the problem of estimating a Brownian
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motion in white noise. The solution to this problem is, of course,
well-known. We derive it here not for the end result but to demon-
strate and explore a Lie algebraic technique, called the Wei-Norman
method, (Wei and Norman [44]), that establishes the connectian between
finite dim.estimation algebras and finite dim. filters. Further, a
rigorous derivation of a filtering solution directly from the algebraic
structure has not appeared in the literature for difqufOn.SiQHGTS

and so we present one here. As another part of this treatment, we

will indicate connections between the Lie algebra strategy and the
theory of Lie algebra/Lie group representations on infinite dimensional
vector spaces (see also Brockett {6]). This will provide us insights
into the behavior of the filtering problems we consider. Also, Lie
algebraic theories of estimation are presently very incomplete and

we believe representation theory will ultimately offer much to their
study. Finally, we briefly develop the Benes examples from the Lie
algebrajc viewpoint, a possibility first realized by Mitter , who

suggested it to us, after Benet' results became kncwn.

The remainder of the chapter is devcted to the search for
new examples that may be solved Lie algebraically. Sectiocn 2 presents
a case to which the methods developed in this section do not apply,
and it explains why not. Section 3 contains the principal results
of the chapter. It first gives necessary conditions for a general

class of vector process models to have finits dimensional estimation
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algebras, since these are the models that could possibly be solved
by the algebraic¢ techniques. By applying this result, we are able
to Tist all possible problems with finite dimensional estimation
algebras for scalar process models. We then ask the question: for
which of thesa examples does the Wei-Norman, Lie algebra calculation
work? Qur results are largely negative. Roughly speaking, they
indicate that only for the previously known examples does the

calculation work.

5.1 Estimation Algebras and Filtering

Qur concern henceforth shall be with the filtering problem
stated in (5.1) - (5.2). Suppose that for all t, x(t) has a density

q(x,t}. . Then the conditional distribution of x(t) given F{ has a

density
EO{Lt|F{, x(t)=x}q(x,t)

plx,t[FY) = (5.3)

EglLy Y3
This is easily derived from the Kallianpur-Striebel formula. Cail
the numerator of (5.3) p(x,t[F{). p(x,t[F{) captures the
x-dependence of 5(x,t|F{), that is, it equals B(x,tLF{) up to
a random normalization factor, and it is, therefore, called the
unnormalized conditional density. p(x,t[F{) is easier 1o work

with than ﬁ(x,t[F{).
2

let L* = 52
3X
x(t). Under appropriate requiarity conditions, (Zakai [47],

2
5§ (x) - g;-f(x) be the forward generator of
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Pardoux [#0]), the unnormalized conditional density p(x,tJF{) defined

in (5.3) satisfies the stochastic partial differential equation
do(x,t) = L*p(x,t)dt + h{x)p(x,t)dy 65.4)
p(x,0) = po(x) = initial density of x(0).

The Stratonovich and white noise forms of (5.4 ) are, respectively,

dp(x,t}={L*- %ﬁzfx)]p(x,t)dt + h(x} p(x,t)dy (5.5)
and
3’-’{’;—*’ = [L*- %hz(X)]p(x,t)-+h(x)p(x,t)y(t). (5.6)

In (5.5), ¥ denotes the Stratonovich differential. (5.6) is a formal
exprassion because y(t) does not exist except in a generalized

sense but it s useful in calculations. (Note: As in (5.4) -

(5.8), fhe y(+) dependence of p(x,t|F{) will often be

suppraessad for notational convenience.) Al1 or any of these equations
will be referred to as Zakai's equation, (Zakai [47]). For the Lie
algebraic theory, it is necassary to work with (5.6), since
manipulations involving y(t) obey ordinary, rather than Itc
calculus, and the Lie algebra results to be adapted were developed

for deterministic problems with ordinary calculus.

The precise question that we will study here may now be
stated. When can p(x,t) be characterized by a finite number of
statistics propagating in time; in other words, Qhen does p(x.t)
evolve on a ¥inite dimensicnal manifold? The new approach to
filtering that we deal with here is to Tearn about p(x,t) by

applying lie algebralie group methods to Zzkai's equatign. Let
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0° L* - %-he(x) ang let

{Lo,h}LA denote the lie algebra of operations generated by LO and

L

h using the bracket operation [A,8] = AB-BA. After Brockett [6 1],

we call {Lo,h}LA the estimation algebra.

The fundamental idea is that '{Lo,h}LA‘ carries information
about the infinitesimal behavior of bp(x,t}. In particular, if
p(x,t) evolves on a finite dimensional manifold, then '{Lo,h}LA
ought to be finite dimensional as a consequence of the interplay
between Lie groups and Lie algebras, (Brockett [5]). Thus, we can
search for finite-dimensionaily solvable filtering probliems by looking
for e;amples in which dim{LO,h}LA < @, This will become clearer

in the subsequent discussion.

Example 1: (Brockett and Clark [7 ], Mitter B51]).

Consider the simplest case covered by the Kalman-Bucy theorem

(see Temma 3.1).

x(t) = x, + b(t)

0

(5.8)
dy(t) = x(t)dt + dw(t)

where xq 1is a randem variable independent of the processes b(t)

and w(t). For (5.8), Zakai's equation is

2

3 1 3 1.2 y
-— 2 = (—= -~ = L,t) + t ,t
5t plot) = (77 - 2 0p(t) + y(t)xplx.t)
(5.9)
p(x,0) = density of Xy -

The corresponding estimation algebra is easily seen to be
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2
-1 d 1 .2 d
AzSpan {75 -5 X ,%, 5= I}
2 dx2 2 dx
142 1 2
Define AO To Tt T X The commutation relationsof A are

dx

-4
J:‘O‘O’X:| T dx
[Ag: g—x - x (5.10)
%;,XJ =1

We remark that 4 is solvable.*

Estimation Algebras and Soluticns

In exploring the interaction between finite dimensicnal
estimation algebras and finite dimensicnally computable p(x,t) we
must first confront the question: Given a finite~dim. estimation
algebra how does one integrate it to'get a solution of (5.6), i.e.,
how does one determine p{x,t) from the algebra structure? This
problem relates naturally to the theory of integrating representations

of Lie algebras of unbounded aperators cn a Hilbert space to a

corresponding representation of a Lie group. We present some

A lie algebra G 1is solvable if the series of ideals G, = (6,61, -,
6, = [6, 1,6, 71, " terminates at 0 for scme n < =,

I ¢G is an ideal if [I,6] I.
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jdeas of this theory to motivate the main calculational method,
and because, as mentioned above, we find it a useful source of

concepts for thinking about estimation algebras.

Let G be a finite-dim. 1ie algebra and G its associated

(simply connected) group. Let H be a complex Hilbert space.

Definition 5.1

A representation T of G on H isamap T from G
onto a set of linear operators on H with a common, dense, invariant
domain D such that [T(x}.T(y)] = Wlx,yl} for all x,y ¢ G. Like-
wise, a representation t of G on H is amap t:G -+ L(H) =
bounded Tinear operators on H such that r(g1 92) = 1(91)1(92) for

91 ,92 g G.

The problem of integrating a Lie algebra representation
to a group representation is as follows. Given a representation T

of G on H, when does there exist a group representation v of G

such that r(etx) = etT(x) ¥ X ¢ G? Here etT(x)

o tT(x)

is a group

generated by T(x) in the sense that %E = T(xd v ¢ eD.

Suppose that Xpat Xy is a basis for G and that we have groups

etT(xi),i=1,sss,d- A method for constructing +t Tocally is to

define
t

e t]T(xI) t T(xd)

d

X t X
1 1"'e d d) = e coen _ (5.17)

Formally, this can be made to work, if the aperator identity
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n tX

tX. ]
%T [ade]n Xie I (1)

Ix, =

e }
! n=_

holds for Xj = T(xj), 1 <3, 3 =<d. (Flato, et al. [131]).

(I) will be of chief importance.

The procedure recalls the Wei-Norman [44] technique for
solving differential equations. Lat us develop this formally for

the above situation.

Suppose that in H we want to sclve thelevolution

equation

-fj—% = %P + u(t)XyP (5.12)

which is similar to Zakai's equation. We try a solution in t{(G);

IOE RO

p(t) = e p(0) . (5.13)

For this p(t),

d o
E% - g} (t)x]p
g, {t)X g,{t)X (t)X
+ gy(t)e 1 ] Xze_2 2.9 dp(Q)+
: g, ()X g, (t)X
tggtle Texe 0y (5.14)

From (4), for 1 <1, j < d

*[adAlB = [A,8].
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X, d . . tX,
v = 1,J i
e X, = Y c V(t)X e
1 m=1 m m

and applying this repeatedly in (7),

90 = Fy(a(),3(8)) e+ 4(g(1) 50X P (5.15)

for some non-linear functions F, of g(t) =(g1(t),"-,gd(t)) and
g(t). For p(t) to solve (5}, Fy(g(t),g(t)) =T,

Fala(t),a(t)) = u(t) and Fj(g(t), g(t)) =0 for j > 2. Solving
this set of equations (locally in t) for g(t) gives a Tocal

solution of (5).

We will use this method to solve a filtering problem, but
first we present a few more remarks onlije algebralie group
representation theory. The heuristi¢ ideas contained in (5.1T) and
{I) have been worked into a rigorous theory by Melson [37] and
Flatg, et al. [13] for the situation in which G 1is represented
by skew-symmetric operators and t s required to bé unitary (i.e.,
to take values in the space of unitary operators). Their results
involve heavy use of the notion of analytic vectors (Neison [37]);
see appendix 2 for a definition. 1In theif theory < will exist
if the algebra domain 0 contains a dense, invariant set of vectors

analytic for each element of a basis for T(G). Conversely, if =
exists there ié a common, dense set of analytic vectors for the whole
1ie algebra (see Flato, et al. 03]). Further implications of %ne

theory ares revealed in the following examples,which play a role in
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the later discussion.

Example 2 Let Ay = {- ix, %E“'i} and specify its domain as

n
"

rapidly dec¢reasing functions

{6 ¢c( R)Isuplxsaax;‘a(x)[ <=y oBe Z+}
X

iy is then a representation of the so-called Heisenberg algebra on

LZ(R) and it does generate a Lie group on LZGR). It is not

important here to present this group. However, it is interesting

to construct a domain of analytic vectors for Ay because this

1,d42 1, . 2
)™+ 5(-ix)

involves the second order operator A, =

0
1 d2 1 .2 . . \ ,
7T 5 X, which arose in the estimation algebra A of example 1.
dx
i

ndeed, it turns out that AD on LZGR) has a discrete spectrum

PN

nin=1’ Ay < 0, 1im An = -=, Let {wn}n=1 be the corresponding

No>w
gigenvectors, and define

N
D' = { ]Z anwn[N < =}
D' 1is a dense invariant set of analytic vectors for AO and Ay

It is easily seen that [' 1is also a dense set of analytic

vectors for A of example 1.

Example 3 Let Ay = {-1x, %;, -i} be a representation of the
2(R*) with domain c;’@f) = (5C"(R7) |4 has

+ . . .
compact support in R ;. In this case, a unitary representation =

Heisenberg aigebra on L
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generated by Ly does not exist. The reason is that i %; will

not be essentially self-adjoint on CEGR+) (see Appgendix 2), and,

by a theorem of Nelson [37], this precludes <. MNelson [37] also
2 2

£}y s et

X

self-adjoint on cmtm+) and that CS( R+) will not contain

shows that % will not be essentially

a dense, invariant set of analytic vectors either. We shall observe

analogous behavior for the filtering probiem studied in section 2.

We will now adapt the Wei-Norman method of (5.12) - {(5.15)

to the solution of (5.9) in example 1. The first step is to
tX.

associate avolutions e | to the elements Xi of the estimation
algebra A. However, for A, the situation is considerably more
complicated than in the theory of representations by skew-symmetric

‘operators. It will no Tonger always be possible to generate

groups with the elements of A, or to insure that the evolutions are

bounded. Nevertheless, we proceed with the most natural definitions.
tA

Define {e O|tgp} to be the semigroup associated to AO by

solving in LZGR) the equation

a(t) = Agu(t)  u(0) = ¢ ¢ LAR)

<

tAO
(e ¢)(x)=js(x,y,t)¢(y)dy t 50 (5.15)

G{x,y,t) = 2rsinht)” /2 exp(- %-(cotht)(x2+y2

) + xy/sinht]
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Similary, define

(e%4)(x) = e™o(x) " t <R
bd_
(e %g)(x) = s(x+t) teR .

As in (5.13) Tet us try to solve (5.9) by the expression

9)(tg 5,(t)x eg3(t% g (t)

p(x,t) = [e e pglx (5.17)

where the gi(t) functions are to be determined. One may certainly
raise objections to {5.17) -- the operator egz(t)x is unbounded,
g1(t) cannot take negative values -- but thesa will be cleared up

as we go aTOﬁg. The Wei~Norman method will allow the values of
gi(t) to be calculated if (I) holds for the elements of &.

Tnis requires, for example, that

tA tA tA

e 0x¢ = (cosht)x e O¢ + (sinht)%; 2 O¢ (5.18)
tA tA tA
e 0 %; » = (sinht)x e 0¢ + (cosht)%€ e O¢ (5.19)
and
; d .t t
ML o= et ey o (5.20)

The right-hand-sides of (5.78) and (5.19) are derived from

(I) by using the identities

[ad Aojznx = X

RS soTves u(t) = xu(t) u(0) = 5, but noz in Lo(R).
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]2n+.l

=4

which follow easily from the commutation relations (5.10).

Lemma 5.1
(i) (5.20) holds for every ¢ e C1GR)
(1) Let V = (¢{x) = xséxxw(x)[s,adR,w 3 L](R)}. For every 4 ¢ V

(e 94)(x) = j B(x,y,t)o(y)dy
R

exists and is infinitely differentiable on {(x,t}|t>0}. Further

] 0 - 3
S (2 9 Latmax” 6(x,y5t)4(y) 8y (s.21)
] tA, thq
and for t > 0, 3¢ (e “o)(x) = (AOE 2 (x) (5.22)

(i11) (5.18) is true for every ¢ e V, (5.19) for every 4 ¢ V
such that ¢' ¢ V.

g,(t)x EQS(t)g—f 5,(%)

Remark If Py € U (R} then e e V

Pg
and hence p(x,t), as given by the product of evolutions (5.17), is a

well-defined function in LU (R).

Proof (i) 1is an elementary calculation,

(ii) can be derived easily using the expiicit farm of G{x,y,t}.

The principal observation to make in doing the calculations is that

for t > 0, G(x,y,t) will decay like e * as y - = for some positive «.
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(ii1) The foilowing calculation proves (5.18)

(==}

JG(z,y,t)y¢(y)dy

tA
(e %x¢)(z)

[ 600,80 leotht)x Glxy, ) ]

-l

sinht ¢(y)dy

tA tA
(sinht %; e O¢)(Z) + (cosht)(xe O¢)(Z).

To get, (5.19) integrate by parts

tA
(e ° %§¢)(2) = JG(z,y,t)gy s(y)dy = - f[%y G(z,y,t)Is(y)dy
tA tA
= (cotht)(e xo)(z) - crp.(xe 03)(2)
tA tA
= sinht (xe O¢)(z) + cosht (%;—e Ocp)(z)

To obtain the last equality, we used (5,18).

Let p(x,t} be as in (5.17). We will now solve for the

functions gi(t) i=1,2,3,4. From (5.17)

d
. . g1 (t)Ay  9,(t)x g,(t)= g,(t)
—% = g1(t)AOp + gz(t) e ] Oy o 2 e 3t dx e

Q2 1ar

0.
>
uw
e
P
-+
"

(£)A, g, (t)x g.(t)
r 3glt) egl o %2 XX R

+ a,(t)p o (5.23)
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By applying (5.18) - (5.20), one derives

3

22 = g (t)Agp(x,t) + Fo(glt),a(t))xp(x,t) + Fa(g(t).a{t))go(x,t)

ctrl

m
+ Falg(t),g(t))plx,t) (5.24)

with F%s given below in (5.25). But if p(x,t} is to solve (5.9)

with p(x,0) = po(x) we must require

é1(t) =]
y{t)e FLg(t),a(t)) = §,(thcosh gy(t) + galthsinh gy(t) (5.25)

§,(t)sinh gy (t) + g5(t)cosh gq(t)

0 = Fy(g(t),a(t))

0_

|
—m
R
—
[{a]
—
t
o
“
[Te L)
—
o
g
s
!

= é4(t) - §3(t) gz(t)
gi(t) =0 {i=1,"-,4

(5.25) may be sasily solved. The result, written in terms of the

dy(t) notation rather than y(t), is

t
a,(t) = | cosn(s) ey(s)
0
t
a5(t) = - J sinh(s) dy(s) (5.26)
0
t t
ga(t) = I (sinhs)(coshs)ds - J gz(s)(sinhs)dy(s).
0 0
Finally, by substituting these expressionstin (5.17) and using the
0

explicit form of the kernel G(x,y,t) of e =, we derive



-1 2
p(x,t) = Jk(z,t) e /20 (t)Lx-m(t)] po(z)dz (5.27)
p(t) = tanht ¢
m{t) = cgsht ¥ J E;SEE dy(s)
0

Let p(x,t;z) denote the integrand of (5.27) exclusive of po(z).
p(x,t;z) may be interpreted as the unnormalized conditional density
of x(t) for the process x(t) starting at x(Q) = z. It is clear that
the normalized version of p(x,t;z) is a Gaussian density with mean
m(t) and covariance p(t), and this agrees with the Kalman-Bucy
solution of the problem. Though theée calculations used the

y(t) formalism, they can be carried out, with some added

computational complexity, using the rigerous Ito calculus. Therefore,

we have rederived the Kaiman filter.

Remark In presenting the Wei-Norman technique, it was indicated that

in general it only gives solutions Tocal in t. However, theorem 5.1
provides a soiution for all t > 0. This happens because the

estimation algebra A 1{s solvable (see example 1). Wei and Norman [44]

g.(t)X.
show that for solvable matrix Lie algebras, if the operators e | !

are placed in the correct order in (5.13), global solutions can be

found. Without further elaboration, we observe that this result
g,(t)A

extends to the present case and motivates putting e 0 Q first

in (5.17).
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The Bene3 Example

The kie algebra strategy is also able to recover the theorem

of V. BeneY auoted above. Consider the scalar case

dx{t) = f(x(t))dt + db(t)
dy(t) = x(t)dt + dw(t)
Fr o+ 2= ax® rbx +C . (5.29)

The Zakai equation is then

2
3ap . A3 3 .12 : -
E {2 ax2 3% f(x) 5 X {x,t) + y(t)xP . (5.30)
The estimation algebra R = {1-33— - fx) -5 x2 X}, . is a&gain
2 axZ X 2 LA
tinite dinensional. Indeed, i L. 2 12° 3 £(x) - 1 x
0~ 2 ax2 ax 2

o , d
A= Span{LO,xsa = ‘F,I}

and its commutation relations are

_d
[LO’M:l T dx f

d - )
[Lgodr -f1 = (a+1)x + 3 (5.31)
R R

These calculations are valid without restriction on the coefficients

-

i, b, and c. However, for general a, b, ¢, (5.29) may not have a

global soiution, in which case (5.31) is to be intarpreted con Ffunctions
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whose domains are contained in the region where f is dafined. We

will explore when (5.29) has global solutions in section 5.3.

We could now try to solve the Zakai equaticn (5.30) by

d.
99(t)Ly 9, (t)x g.(t)a—= -~ f g,(t)
ol 0 2 o 3 A o4

p(x,t) = { Jx,t) .

Pg
However, it is simpler to first rewrite Zakai's equation via
& simple transformation that compares to the gauge transformations

of quantum physics. Let z R and define

x .
F(x) = J F(s)ds
z
If q(x,t) = e'F(x)p(x,t), a substitution in (5.30) demonstrates
that
39 _ (13 1 2 :
5t = [7 =5 - 7(a+1)x%+bx+c]lq + y(t)xg (5.32)
3X

(5.32) is similar to the 7Zakai -equation for the

Brownian signal example. Although (5.32) is not the Zakaj

equation for a filtering problem, let us define its Lie algebra of
: 2
2

operators as R = {EGX}LA LD Ty 5 - % [(a+1)x“+bx+c].

L ois isomorphic to A by the ismorphism EO -+ LO’ X + X,

d d

Friaiidoy

I =-1I. It s trivial to observe that
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Suppose that f is globally defined so that, in order to find
p(x,t), we seek a solution q(x,t) of (5.32) that is defined for all
x € R. Suppose further that (a+1) > 0. We can then solve (5.32)

by the method

9 (80hy 8,(t)x 93(8)G% Salt

q(x,t) = (e qg) (x) .

The gi(t) functions will be slightly different from thosa calculated
for example 1 because of the different commutation relations between
ﬂo,x,%; and I. The resulting solution p(x,t) = eF(x)q(x,t) is
precisely that obtained by Bene$. Whether the same method can be

made to work for the case in which f 1is not globally defined is

an issue we will take up in the remaining sections.

5.2 Estimation of Absorbed Brownian Motion

This section counterpoints the successes of 5.1 by providing
an exampie in which the estimation algebra has finite dimension, but
in which the Wei-Norman calculation does not work. The signal in
this example is a Brownian motion absorbed at a boundary, and the
associated filtering problem is very similar, operator-wise, to the
problems treated in 5.1. But it turns out that the Wei-Norman
method cannot proceed because the identity (I) fails for the-
astimation algebra operators. The phenemonalegy of this failure is
discussed in hope of characterizing the estimation algabras for which

the technique does or does not work. For the examples at hand,
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crucial information is revealed by the algebra's behavior on the
eigenvectors of the partial differential operator L0 = L* - %-hz
(see 5.6) of Zakai's'equation and by the interaction between operators
and boundary conditions. The domain étructures of the estimation
algebras are also more closely identified. An important role is
played by the existence Or non-existence of a dense invariant domain

of analytic vectors associated with the eigenvalues of LO'

Let b{t) be a Brownian motion, let Xg be a r.v. with
density po(x) such that po(x) = 0,x < 0 and such that Xg is
independent of b(t), and let 1 = inf{t|x0+b(t) = 0. Consider the

problem

x(t) = (x0+b(t)) ]{t<r}
dy(t) = x(t}dt + dw(t)

(5.33)

x(t) is an absorbed Brownian motion with random initial value. The
distribution will now have two parts; an atom Qy(t) = P4{x(t)=0},
and a measure Q(A,t) = P {x(t)eA-{0}) (for Ac [0 ,»)) with density
Gg(x,t). Accordingly, the unnormalized conditional density of x{t)

will have two parts:

] y
Palt) = Bgllie(1)-03e 1Pt
and

i} y
POALE) = Eogll iy ity ea-ropte I Pt

P(A,t) will have a density
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t
p(x,t) = a(x,t) Egll ey yexd L] (xgb(s))ay(s)
0
t
| txgb(sn)Zas] 7L x(8) = xa. (5.34)
.0

r|—

Again these statements are all consequences of the Kallianpur-Striebel
formula. Assuming differentiability, p(x,t) will satisfy the

Zakai equation

2

BALEL (153;2 - 5 $E)plxt) + {t)xp(x,t) (5.35)
p(0,t) =0 t>0
p(x,0) = py(x)

(5.35) may be derived formally as follows. Let

V={fc¢ COR+)|f has finite Timit at + =3 .

Let (T(t)f)(x) be the semigroup on V
generated by absorbed Brownian motion. The generator of T{(t) is
1 ¢ 2
7 = with domain D = {f ¢ C°|f" ¢ V, f"(0)=0} {see, e.q.,

dx

Lamperti [49]). For f ¢ D, define

1l
m

(7 (5.35)

n
-
~—
(= ]
"
~—
t
+
‘-‘—\

“h
N
x
St
0
L]
=
ot
(a8
=
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8y applying the stochastic differential equations of filtering

(Fujisaki, Kallianpur, gunita [15] and Kunita [25]) one may derive

2
9 fldt + o, (xF)dy(t) (5.37)
2 t

Ny —

dct(f) = Ut(

for f e D. By substitutihg (5.36) in (5.37) and integrating

o (l.QE_
th2 de

f) by parts, one finds

F(0)eP, () + | F1x) dp(x,t)ex

* ff(x)xp(x,t)dy(t)dx
(

Since this must hold for ail f ¢ D

212 i
dPa(t) 7 3% p(x,t)lx:O dt
p(0,t) = 0
dp(x,t) = 3 2 plx,t)at + xp(x,t)ey(t) . (5.38)
3x

The white noise version of (5.38) is indeed (5.359).
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In (5.35), let A, rather than A

2
3—5 ~% x2, to emphasize that the functions A acts on are now

0’ denote

1
2
def1ned only on R The estimation algebra is

. 4
A = {A9 X, dx! I}

which, but for the fact that the domain of functions is different,
is the same as A 7n example 1 of section 5.1. Again, one might hope

that p(x,t} is solved by

. ' d
g1 (t}A t t)=/— t
p(x,t) _ (e ]( ) egz( )X eg3( )dx 394( )

once the varjous operators are properly defined. However, the

crucial identity (I) will fail in this case. The problem is the

boundary condition p(0,t) = 0. Because of this condition, etA will
tA

not be the same as e 0 of the previous section. Rather, to

meet this condition in (5.39), we must require. (es)(0) = 0 for
all relevant ¢. A simple reflection argument on the kernel G(x,y,t)

tA
®

of e see 5.16) yields

(4] (x) = joe]<x,y,t)¢(y)dy
{5.40)

i 2 XY
G (x,y,t) = Voo exp(- ‘COtht (x°+y° Hsinh (SR -

If we try to prove the analogue of (5.61) with A replacing AO we
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then get

( taA tA tA

e"x¢)(z} = cosht{xe "¢)(z) + sinht(%; e 's)(z)

. J T -172 cotht(2%4y%) _-zy/sinht
rsinht
0

9(y)dy.

The last term will not be identically zero unless ¢ 1s, and hence
(I) fails. The Lie algebraic calculation of section 1 to solve

Zakai's equation will then not work.

Discussion

In the above calculations, we verified or disproved the
tA

cruciai identity (I) by using the explicit formulae for etA and e O.
It is desirable to explain the results at a more fundamental, operator-
theoretic level, i.e., to understand how the closely related

estimation algebras A and A' involve such widely variant behavior.

OQur first step is to reprove the identities (5.18) and (5.19)
of section 5.1 by much more fundamental methods. This proof will not
be quite as strong as that of lemma 5.1 since it will apply only to

restricted set of functions. Reczll from exampie 2 of section 5.1 that

D' = {finite linear combinaticns of eigenvectors}

is a dense, invariant domain for A. Let w ¢ D' be an eigenvector
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with eigenvalue A. From the commutation relations (5.10)

d - . = -
G ¥ = [Agsxly = Agx v - xay (5.41)
xv = [Ags 00 = Ag S - S v - (5.42)

By adding (5.40) and (5.41) we derive

vy -+ 0y

Since 0' 1{s invariant under %; and X, (%;-+ X}y ¢ D' also. Thus

we conclude that (%; + x)u s an eigenvector of AO with eigenvalue

A+ 1. A similar argument shows that %; - x 1is an eigenvector with

eigenvalue A - 1. The following calculation now proves (5.18) fbr
. tA .
¢ = ¢. Observe first that e 0, = g*ty,

d t{a+]
e O(Hf + X))y = eL( )(%; + x)y, etc. Then
tAq tAg; d

e Oxy=e GG +xw- (5 - ]

t(x+1)(g_ - __% et(k-])(d

=1
=7 ¢® dx

cosht X etlw + sinht %; etl¢

tA tA

. d
0¢+ sinht xe V- {5.43)

"

cosht x e
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By linearity, (5.43) extends tc all the elements of 0'. Thus, the
invariance of the domain D', which is also a domain of vectors
ana1ytfc for &, implies identity (I) after a direct calculation using
little more than the commutation relations. The development here is
reminiscent of the quantum field theory of the harmonic oscillation

or the construction of the free Boson field. This is not accidental,
because deep connections between quantum field theory and filtering

exist. (This was discovered and treated by Mitter [35].)

These nice domain .and eigenvector properties of the Brownian
motion signal case do not extend to the absorbed Brownian motion
problem, despite the isomorphism between A and A'. The root cause

is the boundary condition p(0,t) = 0, and the fact that this condition

is not invariant under %;. Indeed, we can see intuitively that
etAx¢ # cosht x etA¢ + sinnt %; etA¢ (5.44)

tA

because, for general ¢ (etAﬁ¢(O) = 0 and sinht(g; e $)(x) # 0.

However, the fact that (I) fails 1is not apparent
directly from the structure of A' because the boundary condition makes
no contribution to the definition of A'. We can rectify this
situation by more careful attention to the issue of operator domains.
It is useful to think of &' as a representation of a Lie algebra

cn a function space VY, and in this discussion it will suffice to
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set V = LZ(S), S = state space. Recall that a Lie algebra
representation required not only an algebra of operators, but also

a dense, common, invariant domain on which to define them, because
an unbounded operator is not fully specified until its domain is
given. Thus it 1s actually inadequate to discuss estimation algebras
without considering domains, and thus we attempt the more rigorous

formulation

Definition 5.2 Let Dec V be a common, dense, invariant domain

of L0 and h. Then {Lo,h}LA D denotes the lie algebra of operators

generated by LO/D and h/D and defined on the domain D.

Remark Domain invariance insures that all brackets [A,B] of

elements of the lie algebra are again well-defined operators on 0.

What is the correct domain D to associate to A' when
trying to solve (5.35) by the Wei-Norman product series (5.39)? Up to
now, the discussion of operators in A' has been formal since we did
not specify domains. However, we did find that A, 1in conjunction
with the boundary condition p{0,t) = 0, gives rise to the semi-

group etA defined in (5.40). The proper domain D' for A is

then that for which A[D' 1is the infinitesimal generator of etA.
For clarity, denote this infinitesmal generator by A. It is

easily seen that
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2

B(A) = 14 = LR (G 2 - § xO)e cL2®)a(0) = 0}
X

ONTE

-~

Henceforth, we will discuss A instead of the less well-defined A.
Eigenvectors of A will again be important, and domain considerations
enter into their definition; ¢ 1is an eigenvector of ﬂ if

(l.QE_ - 142
2 dxz 2

y =y for some aand ify(0) = 0.
Now, in analogy with Lie algebra representation theory,
we want the domain D of A' to be such that ﬂlD generates

tA tA

e also, (in the sense that e~ is the unique semigroup

s.t. lim % [etA¢—¢] = A¢, y ¢ ¢ D). At the very least this
requit;g that D C.D(A). Otherwise A|D will generate a different
semigroup or will have extensions generating different semigroups.
For arbitrary D, of course, it may not be possible to associate any

semigroup to EID.

However, the next theorem will show that the requirement

D ¢D(A) is also problematic and it will lead Us to a deeper

characterization of why the Wei-Norman method fails.

Theorem 5.2 Let D < D(A) be a dense (in L2(R+)) invariant

domain for A'. Then ‘D does not contain any eigenvectors of A

nor does it contain a dense, invariant domain of analytic vectors.
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Remark It can be shown that ﬂ]D has many different self-adjoint,
negative extensions. Thus there will exist many other semigroups

U(t) such that

Tim L [U(t)-s] = Ao, W € D

t40

We conclude that D does not have the structure necessary for
integrating the elements of A'.

Proof If y 1is an eigenvector of A it is clear that {0} = 0 and
y'(0) # 0, for otherwise the unique solution of %w" - %-xzw -Ap =0
(» = eigenvalue) is p = 0. However, if D ¢ D(R) is invariant under
A', it is at least invariant under %;. Thus if ¢ ¢ D, ¢(n) € DcD(ﬁ)
¥ which implies RUNTIRS ¥n. Thus

D € B(A),tefs ¢*Y), oM (@) = 0, ¥n

It is immediately clear that D contains no eigenvectors of A.
Consider a representation of the Heisenberg algebra A"={—ix,g;,—i}
on D. As in example 3 of section 5.1, i%; is not essentially
self-adjoint on D and hence, by the theorem of Nelson [37] (see
Appendix 2} A" on D does not integrate to a unitary group and
hence does not possess a dense invariant domain of analytic vectors
in D. An analytic vector for ix is an analytic vector for «x

and vice versa, so D does not contain such a domain for A' either.

In short, the eigenvectors ¢f A, which in the Brownian
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signal example were the source of a dense, invariant domain of
analytic vectors, are no longer invariant under the estimation
algebra. Thus if ¢ 1is an eigenvector of ﬁ, ﬁw = Ag, it s

no longer true that (%; +x)y and (%; -x)y are eigenvectors of A

and hence the proof of (I) on eigenvectors by commutaticon relations

also fails for the absorbed Brownian motion case.

In summary, when a dense invariant domain of analytic
vectors, in these cases provided by the eigenvecters of A O
AO’ fails to exist in the domain of the estimation algebra, the
Lie algebraic method of solving Zakai's equation does not work. We
shall see this same behavior repeated in examples presented in the
next section. It is our conjecture that the existence of analytic
vectors for the domain of an estimation algebra will be a necessary
condition that a filtering problem with finite-dim. estimation
algebra also have a finite dimensionally computable conditional

density. Further work on this has not been done.

5.3 Finite Dimensignal Estimation Algebras.

In this section we seek to identify those filtering
problems that possess finite-dimensional estimation algebras. MWe will

rastrict our attention to the class of models

[a %
>
—
t
——
1]

f(x(t)}dt + G db(t)
(5.45)
dv(t) = n{x({t)) + dw(t).



- 139 -

and we will assume that x(t) is an R"-valued process, y(t) is
Rp-valued, b(t) is an m-dimensional Brownian motion, m >n and G

is a constant nxm matrix of full rank. Additionally, we will suppose
that x(t) evolves in an open, connected set U C.Pn, and that

f, he C?(U). As the estimation algebra domain, we will always take
'CE(U) = (4 ¢ CT(U)|suppe is compact},

a choice avoiding boundary conditions, but imposing ne loss of
generality to estimation algebra calculations, since the algebra
operators shouid be defined on a sufficiently well-behaved and complete
domain. The first result will present a necessary cendition that
(5.45) has a finite-dim. estimation algebra. We then use this
condition to list 211 possible finite-dim. examples in the scalar
version of (5.45}), n=m=p =T1. Finally we discuss in which of

the scalar possibilities, Zakai's equation can be solved by the

method of section 5.1.

Conditions for Finjte Dimensionality

The Zakai equation for (5.43) is

P
i%%ﬂ = Lop(x,t) + (]_Z]h_](x)y_](t))p(x,t)

n a2

, P 5
ST Lhilx) . (5.48)

ne-—133

L = l _S_.. .
Q0 21,j=1 oyaxy

A= GgT
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Consequently, the estimation algebra is defined to be
A= {L0:h1 shp}LAyc‘g(U)

The following lemma, which incorporates an important Lie algebra

calculation, is needed in the first theorem.

Lenma 52 Llet ge C(U). Then Vk

fad Lla = 1 oa(A, e, ) 2

{
fyaeeeyt, =1 1 o, e )
1° :k‘

4 a0

+ terms witﬁ Tower order differential operators

In (5.47) Dkg(°'-) denotes the kth- differential of g considered

th

as a symmetric, k-linear function, and Ai denotes the &~ column

of A.

Proof For k = 1, a direct computation will show

n
= 39 3% 4l .0%q) - vg-
[Lg-91¢ 1 §=1 x; A o t [z tr (A-D°g) - vg-f]

for ¢ ¢ CS(U). In the last term,

g

[0%gle, e, )1 5

th

k standard basis vector

&

and

= (29_ ... 39
Vg (ax1 . ,axn).
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For k > 1, the proof proceeds by induction. The details will

not be presented.

The next theorem gives the necessary condition for the

model (5.45}.

Theorem 5.3 If dim A < =, h](X),"'shp(X) must be polynomials
of degree < 2. Mare generally, if g(x) ¢ C (U) is in &, g{x)

must be a polynomial of degree < 2.

Proof Fix g{x). The sequence {[ad Loj‘g}k=o is contained in
A and hence cannot nave operatcrs of arbitrarily high order.

Because of lemma 5.4, this implies that, for some Kk,

D%g(A, »eeesh, )

2’ K

for all aq,--+52, 1 2 29500+,2, < n. Since A is non-singular,

this means that

for all IRRRREE 1< fqscetsly SN, Thus g 1is polynomial of

degree k - 1.

The sequence of functions {an(x)}n=0,
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ay(x) = g(x) ..
= [[Lgsag(x) ], a4(x)]

fo)
—
P
b4
—
1}

a (x) = [[Lg.a,_¢{x)], a_{(x)]

must also be in A. Another tedious calculation shows that

a_(x) = vaﬁ_i(x) A VT

n an—1(x) .

If g(x) 1is a polynomial, then clearly {an(x)}:=0 is a sequence of

polynomials. We claim that

deg an(x) = 2 deg an_l(x) -2 . (5.48)

To prove this, observe A > 0. Hence, there exists a matrix S

such that
$SAST = diag [Asseeesh 1 as >0 =1, <=+ n
§ LAy ’
so that .
_ 1 peT e 13T T
an(x) = van_1(x)s SAS (5™ )'w an_](x)
_n ve=142
= z (Van_](x)s )i

But van_](x)S'] will be a vector of polyncmials, the highest degres

of which will be (deg an_](x)) - 1. {5.48) clearly follows from this.
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Now suppose deg{g(x)] > 2. (5.48) will then imply that the sequence
deg an(x) will increase without bound and so admit polyncmials of
arbitrarily high order into A. But this cannot happen if

dim A < «. Therefore deg g(x) < 2.

In the scalar case, theorem 5.3 may be used to impose
conditions on the drift f(x) and so to obtain n.a.s.c.'s for

finite-dimensionality.

Theorem 5.4 Letn=m=p=1, G=1, Then dim A < = ff

(1) h(x) = ax + 3

(5.49)

fr+ £ = ax2 +bx+c
(i1} h(x) = axz + 8x +v,a# 0, and
fFr+fo = hte a(2cx+s)2 + b+ -—5————2
(2ax+8)
or :
Frrfle- i axfabx +c . (5.51)

Proof Assume dim A < « and h(x) = ax + 8. The function

r](x) = [Los[Losh]]
_ 2 Ten -
=@ x * ff + ff

is in A. Hence by theorem 2,

2 2)

rT(x) = ex” + (a+a")x + b/2

(5.50)
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for some constants, e, &, and ©. Thus

TFeff] = T e £ s ex® s ax + b/2

and hence

3

£ st ex® + ax® + bx + ¢ , (5.52)

n
(M) N

Likewise

ra(x} = [Lgs[Lyary(x}1] - dely

2e(2ax+8)2 + 2€[f'+f2] +

2

(2ex+a+a2)E%f”+f +(ax+g)]

is quadratic. But, by substituting (5.52) into (5.53) we find that

rz(x) contains the term eZE% x3. Hence e = (0. Thus f' + f2 is

quadratic. Conversely, if f(x) satisfies (5.52) with e = 0,

= d_
A = Span {LO, X5 9 I},

which is finite-dimensional.

Next suppcse that h(x) = axz +8x + v, a # 0. Again

r{x} = [LO,[LO,h]] - daly

2al#'+2] + & (2axeg) [F426£] + 2ah’

1)

+ (2ax+g8)hh'

2

is a quadratic function Q(x). Let z = f' + f7. We see that z
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satisfies
20z + %{2ax+s)z' = - 2:h° - (2ax+g)hh' + Q(x) . (5.54)

The general solution z of this equation is

2(x) = - h2(x) + Q(x) + —2

(2a2+s)2

where Q](x) is another quadratic function solving
200, + 3{2ax+8)Q] = Qx)

and x(2ax+s)'2 is a2 solution of the homogeneous part of (5.54).
If 01(x) #.u(Zax+8)2 + v, then by taking an appropriate linear
combination of Q{x}) and n(x) we may show that x ¢ A. It then
turns oyt that

[LolLgsx11 = Q5(x) - 2xa(2ax+s)’

is in A. But this must be quadratic and hence i = 0.

Conversely if Q](x) = u(Zax+B)2 + v, then A may be non-zero

and the estimation algebra is

A = Span {LO,(Zax+s),2(2ax+s)d— + [a-{2ax+8)F1,I} .

dx

2 2 2

If f' + f - h™ 4+ ax” + bx + ¢ and Q1(x) is nct of the zbove

special form
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A = Span {Lo,xz,x, - xr,

ax vax - I

Tnis completes the proof.

Remark Case (i) compares to the Benes [ 1] examples; a form of

(ii) appears in Brockett [6].

By a simple transformation, we may extend this result to the

filtering model

dz(t)

1]

fx{t))dt + g{z(t))db(t)
(5.56)

dy(t) = h(z(t))dt + dw(t),

and h,f,g eC7(U), U 1is an open interval of R.and g{(z) > 0 for

z ¢ U. Consider the differential equation
cad {x) = g(a{x)}) g(0) = zq ¢ u.

Let 1 denote the maximal interval about x = 0 on which the
solution 8(x) exists. & maps I onto U, is infinitely
differentiable on I, and is invertible. These statements are easily

demonstrated from differential equation theory. Next let

F(x) = g7y [F(3(x)) - 38" (x)]

and suppose

dx(t) = f{x(t))dt + db(t) .

s(x{t))

By applying Ito's rule, one finds that {f z{t)
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dz(t) = f(z()dt + g(z(D)db(t) .

Hence, (5.56) may be replaced by:

dx(t) = f(x(t))dt + db(t) | (5.57)

dy(t) = h{a(x(t)))dt + dw(t).

The Lie algebra analysis can now be carried out on (5.57), The

1% 2 3 1.2
estimation algebra is &y = {3 == ¢ (t} - 3T f(z) - > h (z),h(z)}LA,
3z
that of (5.57) is A, = (& 23 7 - Lihea)Znee)
y SR T 7T ZANeal LA%eT a0 -

If T:Az > A is defined by

(1[Blw)(z) = Bwes(x)

one sees easily that 1 is an isomorpnism of'A] and Az. Hence, we

derive.

Theorem 5.5 dim A1 < o iff dim A

< @,

2

Theorem 5.5 says that any Tinite dimensicnal estimaticn
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algebra for the model (5.56) with g(z) > Q can be reduced by state
space diffeomorphism to one af the cases in theorem 5.4,

Solution of Zakai's Equation

Which cases among those singled out in theorem 2, allow
a solution of the filtering problem via the method of section 5. 7
To answer this, it is first important to characterize the drifts f
solving the equations (5.49) - (5.51). It turns out that  may
explode for finite x, that is, the maximal interval
U= (ro,r]) on which f can be defined may be only bounded or
semi-infinite because |[f(x)]| - « as x - bounded endpoint of U.

Despite this a signal solving

dx(t) = f{x{t)) dt + db(t)

x(0) e U (5.58)

will still exist, but, in general only up to a stopping time, =,
at which it attains a boundary point of U, (Gihman and Skorchod
[ 17]). The theory of diffusions on bounded intervais must now
be applied to proceed further. It says that to specify x(t)

for t > t, one must impose conditions that tell how the process
behaves at the boundary, i.e., whether it is absorbed, reflected,
terminated, or some combination of these three, Always, when

x(t) ¢ U, it is assumed to solve (5.58). The theory also
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indicates that even if x{t) does not hit the boundary, so that
x(t) can be defined as a solﬁtion of (5.58) without additional
conditions, different process benhavior near the boundaries can
occur. Whether or not x(t) attains the boundary and how it acts

near a boundary depends on the nature of f.

To study f and (5.58) we state some preliminary results
from diffusion theory. In our definitions and statements we follow
the exposition of Mandl [ 27]; the original reference is Feller

[ ]2]. Let f e.C](UL U=(r0,r]) and consider the operator

2
1 d d
8 = = + f'(x)___.
2 dxz dx

r
X y

ulx) = { dy e'c(Y) ] dz eC(Z)
r r
X y

vix) = J dy ec(Y) [ dz e-c(z)
r r
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Definition 5.3 For the operator 8,

The boundary point T is
(a) an inaccessible, natural boundary if u(ri)=m, v(r1)=a
(b) an inaccessible, entrance boundary if u(r1)=m, v(ri)<@

(c) an accessible, exit boundary if u(r1)<m,v(ri)<m.
(d) an accessible, regular boundary if u(rj),v(r;) < =.

Let {U):={y(x),xel| v is continuous, 1im w(x) exists and is finite,
X1
i=0.1}

and consider the differential operation B

on

D(B) = {y e c{U)!B v £c{U)}

Lemma 53

i) If the boundaries of U are inaccassible then B an D(B) generates

a unique Markov semigroup an C(U)

ii) Suppose B has an accessible boundary. Define D'(8) as the set

of vy € D(B) s.t. at a regular boundary r

0= piw(ri)-(-1)ini 1im e X o(x} + o:Bu(r,)

x=-r
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»

and at an exit boundary Q = piﬁ(ri)+318¢(ri),piai3§ 2 Pi¥e>0.

Then B on D'(B) will generate a Markov semigrow on C(U).

Proof. Mandl [27 ].

Remark. The boundary conditions in lemma 5.5 i) are called local.
More general, "Tateral” conditions.corresponding to having the process
jump to a point inside U, are possible, but for such signals Zakai's

equation no Tlonger holds,

For a domain yith inaccessible boundaries, let x(t;xo) denote
the solution ofl(5.58) with-x(O;xO) =Xy elU. Then 8 an n(g}
generates (T(t)g)(xo) = Eg(x(t;xo)) for g ¢ C(U}. Construction of
Markov precesses that correspond to the semigroup generated in the
case of accessible boundaries with lecal boundary conditions may be

found in Gihman and Skorohod [ 177.

We shall now analyze the solutions 7 of (5.45)-(5.51) in

X
terms of this theory. Given a function f, Tlet v = exp J f, {or,

vice-versa, given v, let f = v/v. Then f satisfias (5.49), (5.50) or

(5.51) respectively, if and only if v satisfies

v'!' o= (ax2 +bx +¢) v (5.59)

ar

y't o= (-hz + a(Zcx+S)2 = 2}v
2ux+3)

- b +

~_
in
in

O

—



ar

y'' = (--h2 + ax2 +hx +¢) v (5.581)

respectively. Clearly, singularities of { will arise at zerces of
y. The situation is summarized in the following lemma. MNote that
special attention must be given to (5.80) because of the singularity

of the coefficient at x, = -8/2a.

Lemma 5. 4

i) Suppose that f ds a solution of (5.49) or {5.51) and that f

becomes singuiar at.xo. Then f{x) = + 9o(1) as x=-x,. The same
. X=Xq 0
, - -3
holds true if ¥ solves {5.50) and X4 # 5o
i1) If f is a solution (5.50) and c > - 3, then f can have a
solution on an interval with endpoint x, = %E and
fh)=b% +000) , x=>X

where a(e-1)=c.

iii) If ¢ < - %3 f 1is not defined on an interval with endpoint X9

or containing Xq

Proaf (i) Let v(xo} = 0. Then v'(xo) # 0 {or otherwise v = Q).

Thus
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v'(x0)+v"(x0)(x-x0)+---

]

f(x) 1 : .
VI(xo)(x-xo).;.?vn(xo)(x_xo) oo

1
X=Xq

+ O(T) J X-_' XG .

(i) 1t suffices to consider the case 8 =0 and a =1, for which
XG = 0, and

2

y" = (-h~ + ax2 + b+ E?)v
X

If ¢» - %— a{e=1) = ¢ has two solutions %y <-% < ay and v has

series solutions near zero

() =x 1 Jax
vilx) = x ax, as, #0
1 n=0 n a
( ) GZ czn n
ValX) = X ax, bs#0Q
2 n=0 n 1)
For each solution
%5
f:—x—+0(‘l) 1 X"_'>0
i

For ¢ = - 1/4, the solutions v are generally of the form
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vilx) = x /2 §oax”
n=0
vz(x) = (2n x) x1/2 () a xM) + x1/2 Y ob x"
n=0 n=0
Again
11
f-§;+0(1)

(i11) If ¢ < -%, the solutfons v, and v, are still valid, but

now  a and a, are compl ex

a, = 5= i AL
i 2 2
Thus since
. ] . ]
72 e 7/ l4est] (112t = VAc+l an x

any real solution v will have an infinite number of zaroces in any
neighborhood of zero. Since each of these zeroes will correspond to
a singularity of f, f cannot be well-defined in an interval

containing 0 or with 0 as an endpoint.
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From Temma 5.4 we can derive

Lemma 5.3

Let f be a solution of any of the equations (5.49) -

(5.51) on U = (rgory). If ry s finfte and 1im [f(r )| <=, r
X->r

is regular. If r. is finite and f(x) = ;%F— +
1'

an entrance boundary if « > 1/2, a regular boundary if « e(-1/2,1/2},

;
0(1) (xory) vy s
and an exit boundary of 2 < - 1/2. If r, 1is infinite (+ @ or =),

it s natural.

Proof For the finite boundaries, calculate wu(x) and wv(x) and
apply definition 5.3. To prove that an infinite boundary is natural
it is necessary to know how f behaves at that boundary. It will be
shown later that f can exist in a semi-infTinite or infinite domain
only if it solves (5.49). Suppose for instance that ry = te. It
turns out that

f' + f2 = ax2 + bx + ¢

whether either a >Q ora=0,b5%>0,0r a=0,b=20,c>0,
In any of these cases f(x) can grow at most like x as x+= and
from this one can show Timu(x) = += Tim v{x)} = +=,
P X+
Let us take up the guestion raised in the last proof;
which equations of (5,49)-(5.51) have solutions on which kinds of

domains?
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Lemma 5.5

Suppose f satisfies (5.50), (5.51) or f‘+f2=ax2+bx+c
and either a<0, or a=b=0, ¢<0. If f is defined on U=(r0,r1) and has
no singularities in U, then U must be bounded. If f satisfies

£ +f2sax®bx+c and r; is infinite, Tim axZrbxte 2 0.

-r.
X 1

Proof. The proof appiies the Sturm-Liouville comparison theorem
(see, e.g. Coddington and Levinson [ 8 ]). Suppose f satisfies
X

(5.51). Then v = exp J F(x) satisfies
r

2

v' oo+ (hz-ax -bx-c) v=0

Since h 1is quadratic, for |x| Targe enough

2. bx2 -c > 1,

hz(x) - ax
Hence, by the Sturm-Liouville comparison theorm v must have a zero

between any two successive zeroes of any solution of

Since ¢ = cicosi + czsinx we see that v must have a zero in any
unbounded domain. Thus f can be defined without singularities

only in unbounded domains. The other statements are proved analogously.

The interesting results contained in thess Temmas are

(1) that no finita boundary arising from an ¢ sclving (5.49), (5.50),
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or {5.51) will be natural and (2} that finite boundaries will always

be encountered, except possibiy, with (5.49). It will turn out that
these non-natural boundaries will generate non-trivial boundary
conditions for Zakai's equation. The general implication is then that,
just as in the absorbed Brownian motion example, these boundary
conditions will interfere with the attempi to apply Lie algebraic
techniques. It would then follgw that for scalar-signal models

of the type (5.58) only the known examples of Benel can be treated

by the method of section 5.1.

[t is difficult to prove this statement in such sweeping
generality., First, there is a problem of formulation. If x(t)

solves:

dx(t) = f{x{t)) dt + db(t)

on a finite domain U with regular accessiblie boundaries, it is no
tonger possible to characterize the conditional distribution just by

a density p(x,t) an U; one must also consider the conditional mass
distributions.Pri(t) = EO{T{x(t)=ri}Lt|F{}' For general local

boundary conditions, we must solve a system of equations for the triple
(Pro(t), p(x,t), Pﬁ(t))’ and Lie algebra techniques, if any, must be
applied to this system. Thus in the analysis of Lie algebraic

technigues to follow we will avoid the accessible boundary case.
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Remark. For certain boundary conditions in the regular accessible
case the system (Pr , plx,t), Pr (t)) degenerates into just a

0 1
density equation with boundary condition; if ry is pure reflecting,

i.e., ¢ D'(B) only if &

3X q°|x=,-1_ = 0, then pr_(t)EO and

i
2 -F(x)I(x,t) |, =0, VYt; if r. is pure absorbing, i.e., ¢ ¢ D'(8)

.i
. b _ _ L I - .
iff B¢(ri)-0, then dBri(t) = [ ™ p(x,t)|x=ri]dt and p(ri,t) =0, Vt.
(see Pardoux [40 ]}. Theorem 5.5 will hold for these cases, but we will

not work out the details.

Secondly, the case

(. a(2ax+8)2 + b+ —< c#0

£ + £ = -h »
(2ax+8)° ¢ > -4

on an interval with Xg = -B/2a as an endpoint poses analytical

difficulties, both because of the variety of cases f{x)} ~ xax , X Xo
o
a ¢R, to be analyzed and because of the singularity

2

S 5 1n f 4+ f°. In the interests of simplicity, we will not

2axX+8
treat this case.

From now on, we will be interested in solving Zakai's
equation for the problem of filtering a signal x(t) solving {5.58)

under the assumptions:



(1)
(i1)

(111)

iv)
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h is linear or quadratic
f solves one of (5.49) - (5.51)

y = (ro,r]) is the full domain of definition (H)
of f

If fsolves (5.50) withc #90, ¢ > -‘%: neither

endpaint r equals Xq = -8/2a

From the lemmas presented above, one can conclude that if rs is a

finite boundary, it is of entrance type, and f(x) ~

X>r..
1

1

2 as
Zakai's equation for any one of these problems is:
5 132 3 1,2
3T Plx,t) = {3 7" 37 f(x) - 5 h7(x)} olx,t)
+ y(e)h({x)p(x,t) (5.62)

1im {g—x- 2f(x)} plx,t) = 0 if r. s a finite  (5.63)

X=->r.

(entrance) boundary.
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We give a brief, formal derivation of this for the case IrO!,[rll < =,

For g e C{U) define

-
1
0,(9) = Eglalx )L I} = f g(z)p(z,t}dz
r
0
If g ¢ D(B),
do.(g) = o,(Bg)dt + o, (hg)dy(t) (5.64)

(Kunita [251). By integrating the term c;t(Bg) by parts we derive

"

doy(a) = | a(2)eplz,t) ¢z
"o
"

- [ g(z)[B*p(z,t)dt + h(z)p(z,t)dy(t)1dz

(x)[Z - 2f(x)Ip(x,t)

2
- 5 )

g%

N[-—-‘

B* =

In order that this hold for general g ¢ CO(B), we require

dp(x,t) = B*p(x,t)dt + n{x)p(x,t)dy(t) (5.

(8]
(03]
o
—
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lim g'(x)p{x,t) = 0 (5.66)
X-)-T',i
Tim g(x)[g—x 2F(x)Ip(x,t) = 0 . . (5.67)
X1

]

For g ¢ D(B) one can easily show that

1im {%— - 2F(x)iplx,t) = 0
X
X=T i

implies both (5.67) and {5.66). When writing (5.65) with ¥(t) instead
of dy(t) one must add the Wong-Zakai correction term -1/2 hz(x) to
B*. This proves (5.82) - {5.63).

Rather than work with (5.62) directly it is convenient to

invoke the "gauge" transformation

F(x) f(z)dz

e = @ rec (ro,rT)
( = e]/Zc(x))
and write
o(x.t) = e Xq(x,t)
A calculation shows that
3q . 13° 1 ..,..2.2 - i
7 = (35 - 5 [F+ 0 Thalx,t) + y(t)h(x)qlx,t) (5.868)
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in X R rgTatat=0 iF x

i is an entrance

X _

boundary (5.69)
It is this equation that we seek to solve by Lie algebraic
2

13 Trer, 2,2 :

methods. Fet A =-§-;;§ "E[f +f+h"] and call {A,h}LA the

algebra of (5.68). {A,h}LA is isomorphic to {Lo,h}LA by the

map B -+ e F B e—F from {A,h}LA to {LO’h}LA' This map also trans-

lates evolutions; that is if

et
Tim [S=—1¢ = A¢ $ D
t40
then .
F tA_-F
Tim Afe’e e 1]g = Lo, o0
t+0

Thus the Lie algebra analysis may be carried out on (5.68).

The technique we want to explore is that of solving (5.68)

(t)A t)X ()X
egi! egz( ) 2. 94 ) d

q(x,t) = ( e qp){x) . (5.70)

g (t}A
We place e 1 first in this series because we need an evolution

that must, in general, satisfy boundary conditions. It is not usually
possible to do this with first order operators, and A is of second
order. Different second order operators in {A,h}LA might be chosen

instead of A, but this will make no difference in what follows.
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The natural semigroup to associate with A 1is that
determined by the boundary conditions (5.63). We will define this

semigroup on L2(U). Thus Tet

D(A) = {wsLZ(U)[ A wsLZ(U), w(ri) =0, r. an entrance

boundaryf

Assume r. is an entrance boundary. The condition w(ri) =0
does not look like (5.69), but it is in fact equivalent. Since

v = ¢ e LA(U),

.
N [ 05 +F2+h23(s)u(s)ds
;

& u(x) = $4x

x=r 5
and y ¢ L°(U)

Since eF(X) v kx (x+ri) for some constant k we see that
Tim eF(x) %; p(x) = 0
X+r

Thus T1im e
X =T

o 1im KX _ -
= lim = p{x) —kw(ri) 0.

- .
X 1

We now state the main theorem.

Theorem 5.5

Let h, f and U satisfy the hypotheses (H}, and suppose
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U s bounded or semi-infinite
(i) -A 1is self-adjoint and bounded-below on O(A) and hence
generates a semigroup etA. Also, A has a discrete spectrum.

(i1) Let D'(A) = {finite linear combinations of eigenvalues of A}

m

o

-

“th

_—
-1 g

n
%T [ad A]n h)etA¢ for ¢ e D'(A), ¢ # 0 .
o N
(5.71)

Proof Assume, without loss of generality, that h(x} = x in the
linear case, and h{x) = x2 in the quadratic case, It is easiest
to prove the theorem separately for the cases U bounded and U

semi-infinite.

Let U be bounded. Then

and %[f'+f2+h2] is a bounded, C° function an U.. (Recall

that (H) excludes the case in which f' + fz

may have a singularity
in U} A standard calculation.from differential equation theory
(Coddington and Levinson [ 8]) shows that A 1is self-adjoint on

D(A} and -A is bounded below. Further, the theory of seif-adjoint,
differential operators on bounded intervals implies that A on O©B(A)

i i = - =, and
has a discrete spectrum Ao Setes Ag > Ao ;lz Ay ,

and a corresponding complete set of orthogonal eigen-
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vectors {wn}n=0' (Coddington and Levinson [8 ]). If 4 ¢ LZ(U)

' © =it
(P)x) = [ 1T & Moty (n)Tely)ay (5.72)
n=0

(Coddington and Levinson [8 ]). One now proves (ii) case by case.

To illustrate we do the example h = x2 and f' + f2 = - h2 + ax2 + c.

2 d

The estimation algebra {A,h}LA is then spanned by {A,x%,x i I}

and has commutation relations

21 _o.d .
[A, x] = 2x = T 1
(A, x &= 2a+ 22 x% + ¢

From these, one readily derives

[--]

n
} %T [ad A]nh = %—[cosh 2vat - T]JA + [cosh2/ét]x2
n=0 '

1 , d
+ = (sinh 2vat)x —— + g(t)
/i dx

1 . c
g(t) = —— sinh 2/at + 7 cosh 2/at -
2/ a

[\r]1g}
u

Now let us check (5.72) on U Observe first that
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(ri) # 0. (Qtherwise wn(ri) = 0, ¢H(r1) = 0 would imply

— T3 =

Thus

-]

n
(1 L fad a1Mme™y (x)
n=0 °

At
P a-l/z(sinh 272 t)x ¢$(x) (5.73)

At

+ (Ana'1(cos 2/a t-l)+g(t)+x2cosh2¢é the "y (x) .

n

This will not satisfy the boundary conditions ¢(r1) =0,i =0,1

because of the $5(x) term. Thus (5.73) cannot equal etAhw since

: N
by (5.72),(etAh¢)(r1) = 0,i=0,1. Nowlet y¢(x)= 7} oq by N <.
n=1
Then
o tn n tA
- T [ad Al'h) e (ri) =0, 1=0,]
n:
only if
i ALt
Z a.e Jo= o ,
=0

(see 5.73). Since the kj are unequal this cannot happen unless
o5 = Q, j=1,"+-,n. The statement analogous to (ii) with h replaced
by 2x %; is also true. The other cases involving bounded U are

proved in the same manner.

Now let U = (ro,m), q finite. As was shown above this
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case can oniy occur if f' + 2= ax? ¢ bx + ¢ and a >0 at the

very least. Hence the operator A is of the form

2
] 1r2

2+bx+c]

and 1im %[x2+ax2

X+

on D(A} = {w[A v ¢ LZ(U),$(rO) = 0} with a strictly decreasing

+bx+c] = =. It is then known that A {s self-adjoint

saquence of eigenvalues Aj. The analysis then proceeds exactly as
for the absorbed Brownian motion case. (Indeed by a transformaticn
z=yx + 38, ' (t) = ay(t), (5.68) with boundary condition q(0,t) = 0
becomes the Zakai equation for absorbed Brownian motion). The proof

for the case U = (-m,rl) ryo< =, is the same.

Remarks

(i) Theorem 5.9 implies that the crucial lie algzbra identity (1)
of section 5.1 fails, and hence that the method (5.70) of solving
(5.68) will not work. The result is that, exclusive of the cases not
satisfying the assumptions (H) the Lie algebra technique works only

for the case treated by BeneS in which f 1s a global solution of

f' o+ f2 = ax2 + bx + c.

(i) The one non-rigorous point in the above calculation was the
derivation of Zakai's equation. However, the equation (5.68) for

q{x,t) can be rigorcusly derived, if the differentiability of gq{x,t)
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is assumed. Indeed if (Q,F,E) is a probability space an which
B{t) and y(t) are independent Brownian motions; it can be shown by
change of measure techniques tnat
t t
2,,2

a(x,t) = E texpl nixgeb(s)a(s) = § [ [F+72n23(xgro(s) 5]
0 Q

x 1{t<f}!F{)B(t)+x0=x}r(x,t)

where = = 1nf{t|x0+8(s) e U} and r{x,t) is the density of

B(t) + Xq (Liptser and Shiryayev [28]). The techniques of Zakai

F47] applied to this object yield (5.68),and the bcundary conditions
q(ri,t) = 0 at finite boundaries ry are clear. The details will

not be presented.

It is in trying to Justify Zakai's equation rigorously that
_t
(2ax+8)°
excluded the case from the analysis of theorem 5.5. NgvertheTess, if

the singularity at Xq = 8/2x causes trouble and is why we

one presumes Zakai's equation holds and applies the method of theorem
5.5 with careful attention to what happens at Xgo the same conclusian
about etAh will follow.

(i1} From the remark on page /§¢ , the analysis of theorem5.5 can
be applied to the case when any one of the boundaries is regular and
ejther instantaneously reflecting, on purely absorbing.

(1v) In theorem 5.5, as in the absorbed Brownian moticn case of
section 2, if 0 <€ D(A) s invariant under A and n, it will not

contain an invariant set of analytic vectors for A and h.
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In our analysis of Lie algebraic techniques we.excluded a ..
number of possible, finite dimensional examples by restricting our-
selves to problems satisfying hypothesis (H). However, remarks (i) -
(iv) state that the results of theorem 5.5 are true, at least by
formal arguments, for any excluded case for which the conditional
distribution can be found by solving Zakai's equation for with
(possible) boundary conditions. Thus, we conjecture that no other
examples beyond those of 8enes can, in fact, be solved by the method

developed in this chapter.



(&)

10.

1.

12,

13.

- 170 -

BIBLICGRAPHY

Benes, V., "Exact Finite Dimensional Filters for Certain Diffusions
with Nonlinear Drift," to appear in Stochastics, 1980.

Brockett, R. W., "Lie Algebras and Lie Groups in Control Theory,"
In Geometric Methods in Control Theory, (D.0. Mayne and R. W.
Brockett, e.d) Reidel, Cordrecht, Holland (1973).

Brockett, R, W., "Volterra Series and Geometric Control Theary,"
Automatica, Vol. 72, 1976, pp. 167-176.

Brockett, R. W. "Nonlinear Systems and Differential Geometry,"
Proceedings of the IEEE, Jan. 1976, pp. 81-72.

Brockett, R. W., "Some Remarks on Finite Dimensional Nonlinear
Estimation," Journees sur L'Analyse des Systems, Bordeaux, 1978.

Brockett, R. W. "Classification and Equivalence in Control
Theory," Proceedings, 18th IEEE Canference on Decisicn and Contrel,
1979, Ft. Lauderdale, Fla.

Brockett, R. W., and Clark, J. M. C., "Geometry of the Conditional
Density Equations,” Proceedings, Int. Conf, on Analysis and
Optimization of Stochastic Systems.

Coddington, E. and Levinson, N., Théory of Qrdinary Differential
Equations, McGraw Mill, New York, 1955.

Davis, M., H, A,, Linear Estimation and Stochastic Control,
Chapman and Hall, London, 1977,

Davis, M. H. A., "A Direct Proof of Innovations/Observations
Equivalence for Gaussian Processas," IEEE Trans. Information
Theory, Vol. 24, 2, March, 1978.

Eterno, J. S., Nonlinear Estimation and Phase-lLock Loops, PhD
Dissertation, Dept. of Aeronautics and Astronautics, 1976, MIT.

Feller, W., "The Parabolic Differential Egquations and the
Associated Semigroup of Transformations," Ann. Math., Vol. 55,
1952, pp. 468-513,

Flate, Simen, Snellman and Sternheimer, "Simple Facts About
Analytic Vectors and Integrability," Ann. Scient. Ec. Morm. Sup.
de sarie, t5, 1972, 423-434.




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

- 171 -

Fleming, W. and Rishel, R., Deterministic and Stochastic Optimal
Control, Springer-Verlag, Mew York, 1%75. '

Fujisaki, Kallianpur and Kunita, "Stochastic Differential
Equations for the Non Linear Filtering Problem," Qsaka J. Math.,
9, 1972, 19-44.

Geesey, R., Canonical Representations of Second Order Processes
with Applications, PhD Dissertation, Department of Electrical
Engineering, Stanford University, 1969.

Gihman, I. 1. and Skorohod, A. V., Stochastic Differential
Equatians, Springer-Yerlag, New York, 1972.

Hida, T. "Nonlinear Brownian Functionals", Procaedings 18th
IEEE Conference on Decision and Control, Ft. Lauderdale, Fla.
1979,

Hida, 7. and Kallianpur, G., "The Square of a Gaussian Markov
Process and Nonlinear Prediction," J. of Mult. Anal. 5, 1977,
ppd51-461. -

Ito, K., "Multiple Wiener Integrals,” ; Math. Soc.. Japan, 3,
1851, pp. 157-169,

Kallianpur, G., "The Role of Reproducing Kerrel Hilbert Spaces in
the Study of Gaussian Processes,” in Advances in Probability and
Related Topics, P. Neg, ed., New Yark, Marcel Dekker, 1970,
49-83.

Kallianpur, G., and Striebel, C., "Estimation of Stochastic
Systems: Arbitrary System Process with Additive White Noise
Observation Errors,” Ann. Math. Stat., 39, 1968, pp. 785-801.

Kallianpur, G. and Striebel C., "Stochastic Differential Equations
in Stochastic Estimation Problems," Multivariate Analysis II,
Academic Press, 1969.

Kalman, R. and Bucy, R., "New Results in Linear Filtering and
Prediction Theory," J. 3asic Engr, {Trans. ASME), Vol. 83-D,
1961, 95-108,

Kunita, H., "Asymptotic Behavior of the MNonlinear Filtering
Errors of Markov Processes, Journal of Multivariate Analysis,
1, 1971, pp. 1-11.




26.

27.

28.

29

30,

31.

32.

33.

34,

35,

36.

37.

38.

39.

- 172 -

h&gnus, W., and Oberhettinger, F., Formulas and Tneoresms for the

Special Functions of Mathematical Physics, Springer Verlag,

New York 19585,

Mandl, P., Analytical Treatment of One-Dimensional Markov Processes,
Springer Verlag, 1968.

Liptser and Shiryayev, Statistics of Random Processes, I and II,
Springer Verlag, 1977. '

Marcus, S. T. Estimation and Analysis of Nonlinear Stochastic
Systems, Report ESL-R-601, Electranic Systems Laboratory, MIT, 1975,

Marcus, S., Mitter, S. K, and Qcone, D., "Finite Dimensional
Nonlinear Estimation in Continucus and Discrete Time," Proceedings,
Int. Conf. on Anal. ang Opt. of Stochastic Systems, Oxford, 1568.

Marcus and Willsky, "Algebraic Structure and Finite Dimensional
Nonlinear Estimation”, SIAM. J. Math. Anal. 9 (2), 1978, pp.
3124325,

McKean, H. P., "Wiener's Theory of Nonlinear Noise," Stochastic
Differential Equatians, SIAM-AMS Proceedings, American Math.
Soc., Providence, R. I., 1973, pp. 191-209.

Meyer, P. A., Un cours sur les integrales stochastiques in
Seminaire de Probabilites X, Springer Lecture Notes 5171, 1976.

MiTTer, K. S. Multidimensional Gaussian Distributions, John
WiTey, 1965, '

Mitter, S. K., "Filtering Theory and Quantum Fields," to
appear in Asterisque.

Mitter, S. K. and Ocone, D., "Multiple Integral Expansions for
Nonlinear Filtaring, " Proceedings of the 18th IEFE Conference
on Decision and Control, Ft. Lauderdale, Fla. 1978,

Nelson, E., “Analytic Vectors," Ann. Math., 70, 1959, pp. 572-615.

Nelson, E., "The Free Markov Field", J. Functional Analysis, 12,
1973, op. 211-227.

Neveu, J., "Sur 1'esperance conditionelle par rappert a un
mouvement brownien," Ann. Inst. Henri Poincare, Section B8,
Vol. XI1, 2, 1976, pp. 105-109.




40.

41.

42.

43.

a4,

45.

48.

47.

48.

49.

- 173 -

Pardoux, E., "Stochastic Partial Differential Equations and
Filtering of Diffusion Processes,” Stochastics, Vol. 3,
1979, pp. 127-167.

Reed, M. and Simon, 8., Methods of Mathematical Physics I:
Functional Analysis, Academic Press, New York, 19/2.

Reed, M. and Simon, B., Methods of Mathematical Physics II:
Fourier Analysis, Self-Adjointness, Academic Press, New York,

1975.

Segal, I., "Construction of Non-Linear Local Quantum Processes: I,

Ann. Math., Vol., 92, No. 3, 1970, 462-481.

Wei, J. and Norman E., "On The Global Representation of the
Solutions of Linear Differential Equations as a Product of
Exponentials," Proc. Am. Math, Soc., April, 1964,

Wiener, N., Nonlinear Problems in Random Theory, Wiley, New York,
1958. ' o

Wong, E., Stochastic Processes in Information and Dynamjcal Systems,
McGraw-Hill, 19/2.

Zakai, M., "On the Optimal Filtering of Ciffusion Processes,”
Z. Wahr, verw, Geb., 11, 1969, pp. 230-243.

Yan Trees, H. L., Detection, Estimation, and Modulation Theory,
New York, Wiley, 1968-1971, 3v.

Lamperti, Stochastic Processes, Applied Mathematical Sciences,
Vol. 23, Springer-Verlag, New York, 1977.




- 174 -

APPENDIX 1 HOMOGENEQUS CHAQS THEQRY

Wiener's homogenecus chaos theory providesa method of repre-
senting functions of Gaussian processes by certain infinite expansions,
the terms of which are the prototypes of multiple stochastic integrals.
This appendix presents the fundamental motigns of the theory; the

treatment follows that of Kallianpur [21 1J.

The situation is as follows. Lst T be a separable,
topological space. {x{t)[t e T} will denote a mean zerc Gaussian pro-
cess on T with a covariance function c(t,s) = Ex(t)x(s) that is
jointly continuous in t and s. Let the probability space of the °
process be (2, F, P) and let A = o{x(s)|s ¢ T}. Homogeneous chaos
theory concerns jtself with the structure of LZ(Q,A,P) considered as
@ Hilbert space with inner product <¢,y> = E[éy]. It seeks to build

a useful orthonormal basis for LZ(Q,A,P).

We present the hasic construction. Let

N

H=%pan { § ax(t) [ty e T, N < =)
T

('——' denotes closure in the norm of LZ(Q,A,P)). H is the subspace

of LZ(Q,A,P) consisting of linear functionals of x{-). H s

separable, because of the separability of T and the continunity of

c(t,s), and hence H has a countanle orthonominal basis {ij}w
i=1
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Definitian A.1.1

i) P, = {polynomials of order < n in the variables (af}a ;
i=]
1) P = g P
R = = 1 L
) G 2P & Py {3 Prlot Py
Go = {i}
th

E; is called the n*" homogensous chaos of {x(t}|t ¢ T}.

8

Evidently, P = & in which @ denotes a direct

o

it

n,
n
sum of Hilbert spaces. The E; thus give a Gram-Schmidt type

decomposition of P. To provide orthonormal bases for the Gn’ we
introduce the Hermite polynomials, which, as it will be seen are

naturaily associated to Gaussian procasses.

- th . co1 s o
Definition A.1.2 The n Hermite polynomial is defined as

n 2 n 2
hn(X) = (-1) eX /2 d_n e-x /2
yn! dx

Theorem A.1.1 (Hmog snecus chaos sxpansion)

For every n

I\.[ A

0 (o e
My,,.m

-

Apsmetaiy pairwiss unequal,
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is an orthonormal basis of E; . 3}

ii) P is dense in LZ(Q,A,P). Thus

L3(2.AP) =7 = @ &,
n=0
and if s ¢ L2(.A,P)
-3 l ---)\ A .nol
s= 3 T (s Tyel! T

{mT,..-’mr,A],..-;\r} £ %

= “ra 52 { N = . aws 1 1
In {m], ,mr,AT,A hr lm1+ m.=n, m1>0, A], ’lr pairwise

unequal}
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APPENDIX 2. SOME CONCEPTS FROM COPERATOR THEOQRY
The definitions and theorems follow Reed and Simon [41,42 J.

Let A and B be linear operators on dense domains O
and D' respectively in a (complex) Hilbert space H. Let {-,-) denote

the inner product in H.

Definition A.2.1

(1) A 1is closed if its graph {<¢,A¢>|¢ ¢ D} 1is a closed
subset of H x H w.r.t. the norm |[[<é,p>|| = [|s]] + [|y]]-

(2) B extends A if DC D' and B¢ = Ad, ¢ = D.

(3) A[D ds the smallest closed extension of A, assuming
a8 closed extension exists.

(4) Spectrum of A = o{A} = § - {» aI-A bijects D onto H} .

Definition A.2.2

1) D(A*) = {s e H| 3& e H s.t. (Ap,¢) = (¢,g) vy e D}.

r

(
For ¢ = D(A*), A% = z.
(2) A is symmetric if (Ap,s) = (v,A¢) for all ¢, < D.
(3} A 1is self-adjoint if A = A*, that is if A is
symmetric and D{(A*) = D.

(4) A is essentfally self-adjoint if AJD is seif-adjoint.

Theorem A.2.1 (Spectral theorem)

For A self-adjoint, s{(A) R. There is a map 3 from the
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bounded Borel functions en o(A) to bounded linear operators on H

such that

o(f) o(g) = ¢(fg)
8(1) = 1
[e(f)]* = o[f]

and if hn(x) - x pointwise, [hn(x)} < |x} for all x and n.
1im 9(h Jv = Ap Yy ¢ D.
- n
Example If <A 1is self-adjoint and bounded below (i.e.,
g(-8)  {(A,=), X > ==, e('t)('A)= et - @(etx) is well defined by
spectral theorem for t > 0. 0One can show 7t is a bounded semigroup

on H.

Definition A.2.3

b ¢ D is an analytic vector for A if A" y ¢ D for all

tn

= | |ATy] | has a positive radius of convergence.

nand
n=0

Theorem A.2.2 (Nelson {38]).

Suppose that A 1is symmetric and D {s invariant under A

the

and contains a2 dense set of analytic vectors. Then A 1is essentially

self-adjoint en D.
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tet G be a finite dimensional Lie algebra, and G its

associated simply connected group.

Theorem A.2.3 Let T(G) represent G by skew-symmetric operators

on a domain D of H. If there exists X e T(G) such that iX (on
D) is not essentially seif-adjoint, then G has no unitary

representation on H. Further if x],---,xd is a basis of

2

d will not be essentially self-adjoint on D either;

T(6), Xi+.--+X

For the notion of representation in this theorem see definition 5.1

in chaptar 5.



