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ABSTRACT

An approach is presented for dealing with problems
that can be formulated in terms of the variances and covari-
ances of averages of random fields using the concept of the
scale of fluctuation rather than that of the covariance
function. This approach provides good approximations to the
solution of such problems. In particular it is very suitable
for use in geotechnical engineering because the usually
limited amount of data does not permit the estimation of
covariance functions and because it greatly simplifies the
necessary computations. The application of the proposed
approach to some problems of geotechnical engineering is
outlined.

Several problems in geotechnical engineering can
be formulated as problems involving random fields of which
no theoretical solutions exist. The simulation of random
fields is presented as a practical way to deal with such
problems.
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CHAPTER 1

INTRODUCTION

Geotechnical engineering is often mentioned to be a

"young" science. If the criterion of being "young" is the

age in years, then perhaps this is no longer true: more than

half a century has passed since the publication of Terzaghi's

"Erdbaumechanik" in 1925. But if the criterion for a science

to be characterized "young" is whether there is room for

improvement of our state of knowledge, then geotechnical

engineering definitely qualifies for this adjective.

From the point of view of the practicing engineer who

recognizes that his methods do not give results as good as

he would like them to be, the problem lies in at least one

of the two: (a) in the insufficiency of the mathematical methods

he is using; (b) in the inappropriateness of the parameters he

inputs to his models. Of course the answer is that the problem

lies in both of the above. But the question then arises as

to where an attempt towards improvement will be more efficient.

In the early years of soil mechanics the main considera-

tion clearly was how to get a better understanding of the

physics of the problems at hand, so the most efficent way to

attack them was to try to improve the mathematical modelling.

But now it seems that the efficiency of modelling-oriented

research is dropping. One could not easily substantiate the

claim that concerning ourselves more with the parameters we

input to the models would be more efficient, but at least the
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idea becomes more and more appealing. Better parameter deter-

miniation can of course mean improvement of the testing tech-

niques or of the interpretation of existing ones. But still

testing of samples amounts to testing a volume of soil whose

order of magnitude is roughly 1/10 6 of the volume of the soil

stratum under consideration.

It should then appear as an attractive approach to the

improvement of geotechnical predictions to try to take into

account our uncertainty about soil properties. And of course

we refer here not to the uncertainty due to poor testing

techniques but to the uncertainty that is due to our inability

(for practical and economic reasons) to obtain complete data

describing a soil profile. Engineers have traditionally used

empirical factors of safety to deal with this uncertainty.

In this work the theory of random fields is seen as a tempting

alternative. After all, probability theory is the only way to

quantitatively formulate and solve the problem of design

optimization which is the ultimate objective of engineering,

i.e. the problem of maximizing the expected utility and/or

minimizing the expected loss.

Chapter 2 presents a summary of the theory of random

fields. A random field is a field (a function in, say, the

three-dimensional space) whose values are random variables.

This concept obviously covers several situations in geotechnical

engineering where we are dealing with limited information about

soil properties that vary in space.

Chapter 3 shows how it is possible to simplify the theory

6



of random fields in order to obtain simple approximations for

practical use.

Chapter 4 deals with the important problem of simulation

of random fields, which is presented as a practical method of

answering questions for which no theoretical results are avail-

able.

Chapter 5 examines some applications of the material

presented in Chapters 3 and 4 to some problems of geotechnical

engineering.
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CHAPTER 2

THE THEORY OF RANDOM FIELDS - BACKGROUND

The material in this chapter serves as a very brief

introduction to the concepts that will be used later. Yaglom

(1962), Matern (1960) and Veneziano (1978) cover what is

presented here in much greater depth and breadth.

2.1 DEFINITION OF A RANDOM FIELD

Consider a real valued function x(w,t) where t belongs

n *
to R , the n-dimensional space, and w belongs to the set Q

of the possible outcomes of a random experiment. Such a

n a
function is called a random field in R since its values are

random numbers due to their dependence on w. Usually, we are

interested either in the study of the field (in the ordinary

sense, i.e. non-random) resulting from fixing w or in the

study of the random variable resulting from fixing t. We

will denote the deterministic field resulting from fixing

w by x(t) and the random variable resulting from fixing t by

**
X(t).

As an example, consider the variation of the undrained

shear strength in the volume of the soil under a foundation.

* The symbol t is used to represent the point (t1, ...,t )
where t , .. ,t are its Cartesian coordinates. The n
same syibolstaRds for the vector with Cartesian components

t 1,0 ... ,'tn'&

**
Random variables will be referred to by capital letters
and deterministic variables by lower case letters.
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We can consider the shear strength to be a random field

x(w,t) where t = (t1 , t2 , t3) is a point in the three-dimen-

sional space R3 and ti, i = 1,2,3 are its Cartesian coordi-

nates. In this case X(t) will be a random variable representing

the shear strength at point t, whereas x(t) will represent

the result of an experiment to determine the shear strength

at point t. (This example ignores the fact that soil tests

are subject to experimental errors).

A random field is considered to be completely specified

if for each t in Rn we are given (or can derive) the distri-

bution function

Ft(x) = VLX (t) < xl (2.1)

of the random variable X(t), if for each t1 , 1t2 in Rn we

are given the joint distribution function

Ft1 , 2 (X1 #'X2) =,P[X(t 1  < x1 1 X(t2) < x2] (2.2)

of X(t1 ) and X(t52, and so on, and in general if for any k

points t1 , ., t in Rn we are given the joint distribution
1 -k

function

Ft t (x', ... , x ) = P(X(t) 1 , ...,X(t )<x 1 (2.3)

-'1' ~''' k -lk k

of X(Q), ... , X(t ).
"Ok
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2.2 HOMOGENEITY -ISOTROPY

A random field specified this way is called homogeneous

if all the above distribution functions remain the same as

the whole set of points , ... t is translated (but not

rotated) in Rn, i.e. if all the distribution functions depend

only on the relative location of the points involved and not

on absolute location. For random processes, i.e. one-

dimensional random fields, the term stationary is used instead

of the term homogeneous. If the distribution functions remain

the same even when the group of points is rotated then the

field is called isotropic.

2.3 THE MEAN AND THE COVARIANCE FUNCTION

In practice we do not know that much about the fields

with which we are dealing. Instead all that we know (or

assume that we know) are the mean and the covariance function

of the random field. They are defined in the following way:

Mean: m(t) = E[X(t)] (2.4)

Covariance:

B (t ,2) = E [ (X (t )-M)(t )=(2)-M2t

= E[X(t1 )X(t2) m(t)m(t2 )

Whereas getting a feeling of what the mean represents should

be no problem, the concept of the covariance function needs

some clarification. This is provided-by the relation

) = Ph'2t a (t1 ) a Ct2) (2.61
Bt2 V2

where a2(t1 ) and at2 ( 2) are the variances (standard deviations

squared) of the random variables X(t1 ) and X(t2) and P(tlt2)

10

(2.5)



is the coefficient of correlation (called correlation

function here) between these two variables. Always

-1 P p(tI, t2) S 1 (2.7)

When dealing with a homogeneous field, we can write m instead

of m(t), i.e. the mean is constant, and B (T) instead of

B , ,2), i.e. the covariance depends only on the vector

T=t 2  1  (2.8)

and not on the location of the points t1 and t2 . For iso-

tropic fields we can simplify the notation further by writing

B(r) where

r = I = It 2 ~tl (2.9)

The covariance function is symmetric with respect to ti

and 2'i.e'

B(t 1 , 2  Bt 2 ' S1  (2.10)

as it is obvious from equation (2.5).

Equation (2.7) implies that for a homogeneous random field

q lt',t2) 3 2 (2.11)

where a2 is the (independent of t) variance of the random

variable X(t). Also

2
B (t 1 , t) = a (t )t(2.12)

in all cases and

~ B (t 1 t = a 2 (2.13)

for homogeneous random fields.

In order to obtain some insight into the significance of
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the covariance function consider the following example.

Assume that a soil parameter can be modelled as a threer

dimensional random field and that we have experimentally

determined the value of this parameter at a point t Let

this value be x(t1 ). Assume further that the random field

is homogeneous and has a covariance function

B(t - t2 ) =U 1 )- . (2.14)

Before making the measurement at point t1 we know that at

another point t the value X(t 2  of the parameter has mean

value m and variance a2 , We want to determine the mean and

the variance of X(t 2 ) after we have observed X(t1 ). These are

given by the equations

E[X(t 2 )]X(t 1 ) = x(t 1)] = m + P(t-t2 ) [x(tl)-m] (2.15)

Var[X(t2)IXQt1 ) = x(t1 )] =aI-P~
2 2)] (2.16)

Equations (2.15) and (2.16) are exact only for Gaussian fields

(see.Section 2.5) but they are good approximations in other

cases. As can be seen from (2.15) and (2,16), the correlation

function is a measure of how knowledge of the value of a

realization of a random field at one point affects our know-

ledge of the value of the same realization at another point.

If p is zero then knowledge of x(t1 ) does not give us any

information concerning x(t2 ), If p is positive we expect

x(t 2 ) to lie on the same side of the mean value of the field

as x(t ). If p is negative we expect x(t2 ) and x(t1 ) to lie

on different sides of the mean value,
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2.4 EXAMPLES OF COVARIANCE FUNCTIONS

The choice of functions that can be used as covariance

functions of random fields is limited by necessary conditions

such as (2.7). Sufficient conditions can be found in the

references mentioned at the beginning of this chapter. In

the present section some commonly used covariance functions

are given. See Figure 2.1.

The following are admissible covariance functions of

isotropic random fields of one, two or three dimensions:

a. Simple exponential

r

B(r) a ae , a > o (2.17)

This covariance function is appropriate for spaces of any

dimension.

b. Exponentially damped cosine function

r

B(r) = a2 a cos Br, a >o , a <(2.18)
3p

c. Double exponential

- fr)2

B(r) =a2e. (2.19)

Two very simple models for use in random processes

(one-dimensional random fields) are the box-shaped covariance

function( [a2 if r < a, a > o
B(r) =

0 otherwise

13



t~r) Simple exponential

Cr.2

1/e ~ ~

91 r

73(r) Exponentially damped cosine

S 2 function

Double exponential

cr r

Box-shaped
B(r)

a2

n(r ) Triangular

S2

r

rI'l%: 2.1
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and the triangular covariance function

B 2(1-1) if r a, a > 0
B (r) a(2.21)
0 otherwise

However, these two models are not proper for random fields

of dimension two or three.

2.5 GAUSSIAN RANDOM FIELDS

The mean and the covariance function are in general not

sufficient to specify completely (in the sense previously

discussed) a random field. However, if the field is Gaussian,

i.e. if all the distribution functions specifying it are

Gaussian distributions, then the mean and the covariance

function are indeed enough for the complete specification

of the field. The central limit theorem provides some justi-

fication for the assumption that the fields encountered in

some applications are Gaussian.

2.6 ERGODICITY

We define the operator < > as follows:*

c f()> - urn I f f(t)dt (2.22).
D+Rn Dn D

where Dn is a subset of the space tF and f(k) is a function.

This operator produces spatial averages, whereas, by comparison,

the operator E produces ensemble averages. A homogeneous

The symbol is used instead of I .'' and the symbol
n n times

dt is used instead of dt, dt.. Also D stands for both
the region and its measute , i.U. its lefgth, area or
volume, whichever is appropriate.
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random field is called ergodic if these two operators produce

the same results. Thus for an ergodic random field we will

have, by analogy to (2.4) and (2.5):

m = < x(t) > (2.23)

= <(x(t)-m) (x (t+T)-m)> (2.24)

for any realization x(t) of the random field X(t). In most

cases random fields occuring in practice are assumed to be

ergodic.

2.7 PROPERTIES IN THE WEAK VS. PROPERTIES IN THE STRONG
SENSE

If a random field has any one of the previously mentioned

properties (homogeneity, isotropy, ergodicity) in accordance

with the respective definitions, we will say that the field

has this property in the strong sense. If, however,

this - applies to the mean and the covariance function but

not necessarily to other descriptors of the random field we

will say that the field has this property in the weak sense.

In what follows we will restrict our attention to fields

described by their mean and covariance, so only weak homo-

geneity, isotropy and ergodicity will be of interest.

2.8 SPECTRAL REPRESENTATION OF RANDOM FIELDS

This section will be concerned with weakly homogeneous

random fields. If X(t) is such a field, we can write

X(t) 4 cos (ge) Z(d%) + m (2.25)
kn

where Wel denotes the dot product of the two vectors W and



t. In this formula Z(d') is an uncorrelated random function

with the following properties:

For all intervals Aw

E[Z(Aw)1 = 0 (2.26)

For any disjoint intervals A w and 2

Z(A W + A2  Z 1 ) + z(A2 w) (2.27)

and

E[Z(A dZ(A(A2w)] = 0 (2.28)

On the other hand, if B(1) falls off sufficiently rapidly

at infinity, we can write

B(T) cos (CoT) S(W)dw (2.29)

Rn

and

S(_) = n cos(sr) B( 1 ) d1  (2.30)
nf(21T) in

The function S(w) is called the spectral density function of

the random field. The two functions Z(dw) and S(M_) are

related to each other by the equation

S(w)dw = E[Z 2 (dw)J (2.31)

This can be seen if one substitutes X() and X(T) from

(2.25) into the equation

B(V) E[X(0) X(T)J -M 2  (2.32)

Using (2.25) one arrives at

(s) * cos(t#T) ECZ2 (d)I (2.33)

R

17



and equation (2.31) follows, since for each function B(t)

there is only one function S(w) satisfying (2.29) and (2.30).

The function S(w) is real and even. For isotropic

fields S(g) depends only on w = jyl, hence we can write S(w)

instead of S(o).

An interpretation of St!) is provided by (2.25) and

(2.31). We can imagine X(t) to be the result of superimposing

to its mean value many functions of the form cos(u-t), each

with a different w and each'multiplied by a random amplitude.

Z(dW) with zero mean and variance S(Lg) dj. The chapter on

simulation will use and clarify this observation.

2.9 LINEAR TRANSFORMATIONS OF RANDOM FIELDS

Consider a homogeneous random field X(t) and let Y(t)

be another random field defined by

Y(t) L([X(t) ](2.34)

where ,[ I is a linear operator independent of t. We define

the complex function t(L) by the equation

XC[e a u (w)e (2.35)

Let

L() a e(o)|2

Then the spectral density function Sy(c) of Y(t) is given in

terms of the spectral density function Sx(w) of X(t) by the

equation 8() Z()3(W(2.36)
Sy m ~) xg)2. )

18



Equation (2.36) is very useful since it enables us to find the

spectral density function of random fields derived from a

random field by integration, differentation, etc.



CHAPTER 3

SOME USEFUL APPROXIMATIONS

In the previous chapter it has been shown how it is

possible to describe a random field in terms of its covariance

function. Knowledge of the covariance function of a random

field enables us to solve a great variety of problems. How-

ever, in many cases the form of the covariance function is

not known, and this is certainly the case in geotechnical

engineering where due to practicai and economic limitations

the available data are insufficient for the determination of

covariance functions. The engineer is then faced with two

options. The first is to assume a form for the covariance

function, try to adjust it to the limited data and use the

resulting covariance function together with the exact formulae

of the theory of random fields to arrive at the results he

wants. The second is to make reasonable assumptions about the

results themselves, taking, of course, into account whatever

data are available. The former approach has the disadvantages

that it gives a false impression of accuracy and that it

involves quite complicated computations. The latter avoids

both of these. In what follows we will show how this is done.

3.1 THE VARIANCE OF AVERAGES OF RANDOM PROCESSES

Most of the material in this section appears in Vanmarcke

(1977 , 1979).

Consider a zero-mean stationary random process X(t)

with covariance function B(T). Let YT be the average of X (t)

20



over the length T, i.e.

YT i f X(t)dt (3.1)

0

Clearly YT is a random variable. We are interested in det-

ermining the variance Var [YT] of Y . It can be easily shown

that

Var[YTJ = A TVB(T -r)djdT (3.2)
T T 2 a2&

or

Var[YT = ?Tif (lj)p)d (3.3)

0

where

B(t) = 2 (T)(3.4)

Equation (3.3) can be written in the form

Var[YTI = 2 (T) (3.5)

If the covariance function is known, r2(T) can be determined

as

=2fT(1-4) p (t)dt (3.6)

For example, if p(T) is exponential, i.e.

P(T) = e a(3.7)

then

r22(T)= (a)2[2  ( 1 + e (3.8)

If p(T) if double exponential, i.e.

p(t) = e a (3.9)

21



then
T2

2 2 TrT ar (T = ~[~/er f (-) + e a - 1] (3.10)

An alternative way to arrive at the same results is

the frequency domain approach. If S(w) is the spectral density

function of X(t) then, using the results presented in Section

2.9, we get the formula

Var [YTI =

hence

P2,(T)

+ T 2

win 2 S(w)dw

+00coT2f 4in 2
coT
2/

s(w) do

s (W) = S()

s (W) = cos(or) p(T)dT

o(T) f cs (cot) s(o)do

Formulae (3.11) and (3.6) give the same results provided that

s(c) and p(T) are derived from each other according to (3.14)

and (3,.15) .

22
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(3.12)

and

(3.13)

(3.14)
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Because

/ wT
sin f7

C
1 if T0

2T6(w) if T+co
T

where 6 is Dirac's 8-function, we have that

2
s (w) dw = I

-e

2irs(0) if
T

if T+O

(3.17)

From (3.14) we get
+cc

s(O) = (r) d-

Hence we can rewrite ( 3.17) as

1 i f T-+O

r2(T) i T .
TfTe

(3.19)

with

e = 21rs(0) = fp(T)dT

Equation (3.19) motivates the following approximation of

r 2(T):

lif T

\eif T
T

(3.21)

23
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That this is indeed a good approxmiation can be seen from

Figure 3.1 where equation (3.21) is compared with equations

(3.8) and (3.10) and also with the equation

T iT<

92(T) ( 
1 -if T (32

(1- ) if T=8

This last equation is exact if the correlation function of

the process is triangular, i.e. if

1 i- if IT| 6 8 (3.23)

- P(T) =

0 otherwise

Also (3.21) is exact if the correlation function of the process

is box-shaped, i.e. if

1 if|T = (3.24)

p(T) = It 2
0 otherwise

Thus we see that either (3.21) or, better, (3.22 ) can

be used as approximations for r2 (T) with very good results,

even if we do not know the exact form of p(T). The only

parameter which we need to know, apart from the variance a2

of the random process, is 0 which is called scale of fluctu-

ation. The physical interpretation of 9 is very simple: two

points at a distance to each other larger than 0 are expected

to have poorly correlated values of the random process,

whereas two points at a distance to each other smaller than 6

are expected to have highly correlated values of the random

process.



- ]T'(T) from equation (3.'21)

--- I'(T) from equi*tion (3.20)

- (T) from equation (3.8)

r(T)' from equation (.3.22)

1.0

rNT)

0.5 4%

o 1 5 10 15 20

FIGURE 3.1

. 25



The approximations to r2 (T) that have already been presen-

ted appear in Vanmarcke (1977) and were motivated from the ex-

act expressions for r2(T) that correspond to certain types of

correlation functions. An approximation to rAT) which is not

meant to be associated with a specific correlation function is:

r2 (T) - exp [in e lin) + 2 (3.25)

This is a quite general approximation due to the presense of the

parameter c & 0 (see Fig. 3.Ib). This parameter expresses how

fast r2 (T) decreases when T increases from 0 to -. This can be

seen by evaluating (3.25) at T = 8:

r2 (e) - exp(- 1) (3.26)

Therefore if e = 0 then r2 (O) = 1. In this case (3.25) becomes

r2 .(T) = exp[(In e lin(3.27)

which is easily seen to be identical to (3.21). If e > 0, then

r2 (e) < 1. By appropriately selecting e we can use (3.25) to

approximate the exact r2 (T) corresponding to any of the commonly

used correlation functions. Of course the behavior of (3.25)

when T is very small or very large is that described by (3.19).

3.2 THE VARIANCE OF AVERAGES OF RANDOM FIELDS

The results presented in the previous section can be

26
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28

generalized to two (and of course to more than two) dimensions.

Consider a zero-mean homogeneous random field X(t11t2) with

covariance function

B(TT2 ) 2P( 11 ) (3.28)

and spectral density function S(w 1 ,w2 ) such that

(2) (11W 1 ~r2 drd'2(3.29)1 " ,'2) f fCOS(W 1T + W 2T 2 ) ', T2 ) dT 1d T2 *
(2w) - -

and

+0 +W

S(, 1 r 2 ) -f ff cos(w1 T1 + W2 2) S(W 1 4w2 ) dw 1dw2  (3.30)

Also let

S(w1 ,P2 )
s(,w 2  2 (3.31)

If YT12 is the average of X(t,1 t2 ) over a rectangle with sides

T and T2 ,i.e.,if

1 T 1 T2

Y T j J X(t1 ,t2)dt1dt2  (3.32)
T11T2  T1 T2 0 o

then the variance Var [YT ,T2 can be found either from

42 1 2 T T
Var[YT 1 3Tfp 'rTrV2)dT'1 dT2 (3.33)

2 1T2 0 0 1 2

or, using the results presented in section 2.9 from

W T W T 2
+4 =S 11 2 2

+f +-2 r sin2
var[YTT - 2T Tj2Ts(W 1 w2 )dw 1 d 2  '(334)

2 - _1 1 k22
2 2



As in the one-dimensional case let

+0

1 j P(t1 ,0)dT

and
+0

2 P(OT2)dT2-m
(3.36)

be the scales of fluctuation in the t1 and the t2 direction

respectively. The two scales of fluctuation 9l and 82 are

related to s(w11,w2) by the equations

+cc
B1 1 2w f s(w 1,0)dw 1  (3.37)

62 = 2w f s(0,w 2 )dw 2 (3.38)

Let

Since

we havE

+0 4.

f f p(trl't 2 )dt1 dt2

f(fP (T2 '2)d 1dT2
(2w) -co -a*

a = 41 2 s(0,0)

(3.39)

(3.40)

(3;41)

Observing that

sin O2

wT

1 if T 0

21utdScu) i f T +-0-c

We can arrive at interesting approximations of Wr(Y 3, namely

29

(3.35)

(3.42)



/02 i *O 2 + 0

2 f T + ac, T2  0
1

Var CYT

- oif + , 2 cc
2

T1T2f 1+, T2 +00

(3.43)

Figure 3.2 compares the exact values of VarEYTT2 as obtained

from (3.33) or (3.34) with the approximations introduced by

(3.43) for the case where the correlation function is a simple

exponential one.
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An approximate equation for finding r 2 (T1 ,T2) defined from

Var[YTT2I = 2 r2 '(TT2 )

r2 (T11 T2 ) = r2 (T1) r2 (T2 )

r2 (T 1 ) = exp{

r2 (T2 ) = exp{

in -

ln 2-

e1k1 2+ E2

22 +C 2
T 2 2

62 62

(3.48)

(3.49)

It is easy to see that r2 (T1 ,T2 ) as defined above exhibits the

behavior described by (3.43). Also equation (3.25) can be con-

sidered as the special form of (3.45) when either T1 + 0 or

T2 + 0. If the field is isotropic, then

61 = 62 = 6 F k=k 2 =k

Notice that for an isotropic field k equals unity if

a= e (3.51)

This is the case for the double exponential function. For the

32
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where

(3.44)

(3.45)

and

(3.46)

(3.47)

(3.50)
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simple exponential function

a= 1.57 o2 (3.52)

and (3.51) may be used as an approximation. In general, it may

be assumed that a equals e2 whenever there is no reason to as-

sume otherwise. The parameters k1 and k2 have been introduced

in order to take the value of a into account in equation (3.45)

and therefore no physical significance should be attached to

them. Had k1 and k2 been ommitted, equation (3.45) would be-

have like 61 02/T1T2 instead of like a/T1T2 when T1+ m, T2 + *C

Equation (3.45) by no means represents the only possible

approximation for Var[YTlT). Even though it is entirely ar-

tificial, it is justified on the basis of its limiting behavior

and its flexibility.

The curves in Fig. 3.2 can be approximated by (3.45) with.

less than 10% error if e is selected equal to unity.
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3. 3 THE COVARIANCE BETWEEN AVERAGES OF RANDOM FIELDS

Consider the problem of finding the covariance between the

average Y1 of a zero mean homogeneous two-dimensional random

field X(t1 ,t2) over a region D1 and its average Y2 over a re-

gion D2 . In other words, we want to find the covariance

Cov[Y 1 Y2 ] between

Y =-hf X(t1 ,t 2 ) dt1 dt2  (3.53)

D

and

Y2 =f X(t1 ,t2 ) dt dt2  (3.54)

D 2

The solution to this problem is known to be:

Cov[YiY2 ] = -1 f fB-(t, -t - t) dt' dt' dt dt
1 2B t-tt2 t22

1  D2  (3.55)

where D1 and D2 stand for the areas of the corresponding re-

gions, (t11 t2) is a point in the region Dl, (t,t ) is a point

in the region D2 and B(t, t2 ) is the covariance function of the

random field (see Figure 3.3).

Evaluating the multiple integral in (3.55) is not a simple

task. Besides, being much concerned with applying an exact for-

mula of which the parameters (namely the covariance function)

we do not know with great accuracy is contradictory. Hence, we

will try to make assumptions about the output rather than the

input of (3.55 ). To this end, consider the special case appear-

34



D

D

2

t ,t'
1-

FIGURE 3.3

35

22



ing in Fig. 3.4, i.e., the case where the regions D1 and D2 are

rectangles with parallel sides. It is possible to write:

16

(D1 Y1 ) (D2Y 2 ) + (D3 Y3) (D4 Y4 ) =1 k (05f)2  (3.56 )

i=1

where the regions Di, i = 1,2,3,4 are identified in Fig.3.4  and

Yi, i = 1,2,3,4 are 'the averages of the random field over these

regions. The regions Zi, i = 1, ... ,16 are all the regions

having the forms appearing in Table 3.1 . In the same table, the

coefficients ki are given. ByTi, i = 1, ... ,16, we denote the

averages of the random field over the regionsti, i = 1, .. ,16

respectively. The proof of (3.56) is straightforward if one ex-

presses the products ,%Ji, i = 1, ... ,16 in terms of the pro-

ducts D.Y , i = 1,2,3,4. Now consider again formula (3.55)6

This formula applied to the regions Di and D2 of Fig. 3.4 be-

comes:

6 b a d

CovYI,Y2 = -JB(t-t',t-t) dt'dt'dt dt
1 r2 DD fifjfjf 1 122 12)31 2

y a a c (3,57)

The same formula applied to the regions D3 and D4 of Fig. 3.4

becomes:

p b 6 d

CovIY3 f4 ] = f B(t-tdt' dt' dt dt
34 1 ' B ttjt2 14) 12

a a y c (3.58)

Obviously, it is always true that:

D D2 = D3 D4 (3.59 )
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.lumber of regions
worm of' with this forr Coefficient k

ii

F.:
ID1

1 1

TABLE 3.
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On the other hand

B(t1 - tj,t2 - t ) = B(t - t4,t - t2) (3.60 )

Comparing (3.57) and (3.58) we see that

CovqfY2] = Cov[f3 1Y4 ] (3.61 )

Using this and equation (3.56) we arrive at the following result

16 2
Z k &oOVar[J]

Cov 1 ,Y2  = 1= D1,D (3.62 )
12

This is an exact formula if the exact values of Var['fi, i =

1, ... ,16 are used. However, we can write:

Var[D] = a2 r2 (D) (3.63)

2
as suggested in section 3.2. In (3.63) l(D) is meant to show

that r2 depends on the region D and not only on its area. Note

that regions and their areas are denoted by the same symbols.

The coefficient of correlation between Y1 and Y2 can now be

written as

16
Z2 CkOr 2 ( )

= i1 1=1Ply YI -i=1( 3.64)
1[Y 2Y2] 4 D1 D2 r(D1 ) r(D2 )

Therefore, if we have an approximate expression for r2(D) we can

find pLY1 ,Y2] from (3.64 ), a formula that involves only simple

arithmetical operations as opposed to the integrations required

when using (.3.55). Of course, (3.64) can be used as an exact

formula if the exact values of r2 (D) are known, but its impor-
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tance lies in providing us with a way to use approxi-

mate expressions for r2 (D) to arrive at approximate values of

P(Y1 ,Y2J.*

.It is possible to extend the above result to three dimen-

sions. For this purpose, consider Fig. 3.5. We want to find

an expression for Cov[Y1 ,Y2] where Y and Y2 are the averages

of a three-dimensional field over two boxes with parallel sides,

as in Fig. 3.5. Again we start from the observation that we

can write

(D Y ) D2 Y2) + (D3Y 3 ) (D 4 Y4 ) + (D5 Y ) (D6Y) + (D7Y7) (D 8Y)=

64

2. k 0f)2  (3.65)

i=1

See Fig. 3.5 and Table 3.2 for identification of the regions in-

volved. Using an argument similar to that used in the two-di-

mensional case, we can show that

Cov[Y1 Y2 ] = CovIY3 Y41 = CovfY5 Y61 = CovIY7 Y8
(3.66 )

Also,

D D2 = D3D4 =D5D6 = D7D8(3.67)

Therefore

64 2
~ ki..L1.VarIlI

CovIYY2 J= D112 (3.68)VY2 Di D2

The one-dimensional form of the above results appears in Van-

marcke (1977).
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Again, given an exact or approximate expression for r2 (D) de-

fined by

Var[D] = a2 r2 (D) (3.69)

we may write

64

p(Y,Y2) l l (3.70)

1 2 =8 D92 r(D1 ) 1r(D2)

Table 3.3 shows the general expressions for p(Y1 ,Y2 ) when:

a.Y and Y2 are the averages of a random process over

two intervals D and D2 . See Figure 3.6a.

b. Y and Y2 are the averages of a two-dimensional ran-

dom field over two rectangles with areas Diand D2 and parallel

sides. See Figure 3.6b.

C. Y, and Y2 are the averages of a three-dimensional

random field over two boxes with volumes Diand D2 and parallel

sides. See Figure 3.6c.

These expressions are of course valid for any position of

the intervals, rectangles or boxes relative to each other and

the same is true for all the expressions in this section. The

formulae in Table 3.3 are just another way to write the already

presented formulae, but have a form that makes them suitable to

use with a programmable calculator, since given the coordinates

of the points involved they provide the required correlation in

a straightforward manner.
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3.4 CONCLUSIONS

In this chapter, we have seen how it is possible to arrive

at important results using a very simple description of a ran-

dom field. Their applicability to several problems will be

ahown in Chapter 5. Only three parameters, a2 , 8 and a (and

recall that we may assume that a 62, which leaves only two

parameters) can provide a satisfactory approximate description

of a two-dimensional random field, thus substituting the cova-

riance function. As it has been mentioned in the beginning of

this chapter, this both simplifies the computations the engin-

eer has to make and recognizes the fact that the limited data

from soil exploration programs do not permit the engineer to

determine covariance functions. On the other hand, it is hoped

that for each soil type and for each soil property it will be

possible to establish a2 and e once and for all. For each

site the engineer would then have only to determine the spati-

ally varrying mean m(t) of any soil property. Then he would

use a2 and 8 to describe the homogeneous and zero-mean field

X(t) - m(t), where X(t) is the soil property considered.



CHAPTER 4

SIMULATION OF RANDOM FIELDS

In this chapter the method of simulation of random fields

as presented by Shinozuka and Jan (1972) is given. We will deal

with zero-mean fields but clearly this does not restrict the

general validity of the results.

Let X(t) be a n-dimensional homogeneous random field with

zero mean, covariance function B(T) and spectral density func-

tion S(M). According to (2.25) we may write:

X(t) = J cos(w e-t) Z(dw) (4.1)

Rn

Recall also that

E[Z 2 (d)] = S_(w) dw (4.2)

We will show that X(t) may be written as:

X(t) = V1 cos[> - t + tM))] /TTFJ (4.3)

Rn

where (w) is a random angle uniformly distributed between 0 and

2n such that o(wl) and "W2) are uncorrelated whenever W1 2'

In order to do this we have to show that X(t) as given by (4.3)

has mean equal to zero and covariance function equal to B(t).

This can be done easily by using the definitions of the mean

and the covariance function and observing that

E[cos[w. t + (w)]] = 0 (4.4)
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and

E[cos[t 1 - + (w)] cos[w2  2 +

0 if W1 42. (4.5)

coswt-t-L2) if W 2

Thus we obtain

E[X(t)] = 0 (4.6)

and

E(X(t2) Xt1)] =

= 2 r E[COS[W_ * tL + '0(w)] cos[w2 * t2 + D( )2] VS(w 2)dwS( )2d

J cos[w-w(t2 - t)] S(W) dw = B(t2  t (4.7)

Equations (4.4-) to (4.7) are also true if we average spatially

instead of averaging over the ensemble, i.e.. if we write < >

instead of E[ ], hence X(t) as given by (4.3) is also ergodic.

Assume now that the spectral density function S(_) has in-

significant magnitude outside the region'defined by

W s co s(4.8)

and let

2si

Awi = -- , i = 1, ... ,n (4.9)

where Ni is the number of intervals Awi in the ith direction of
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the frequency domain. In this case we may use (4.3) to arrive

at the following approximation X(t) of X(t):

N Nn

X(t) 5 2'2z 'S( ok, . ,nk Aw ...

k1=1 1 n

(4.10)

COS(lko.,t + ... +nk t n +.+, k
n n

where ,. k is an independent random angle uniformly

distributed between 0 and 21T and

, Wik. ii + k - )wail ki = ,...N, i = 1...n

(4.11)

Equation (4.10) can be used directly for simulating X(t) by ge-

nerating a series of random angles 0ki,...,kn* The random

fields generated using (4.10) are zero-mean, ergodic and have

covariance function

B(T) = 2I LZcos(Olk + ... + wnk Tn
k=1 kn =1n

S(A, ... ,w w ... A(4.12)
1 n

i.e., they have the same structure as the field X(t) when

Ni + v, -+ , i = I, ... ,n. An additional feature of the

random fields generated using (4.10) is that they are periodic

with period u/Awi in the ith direction. However, we can eli-

minate this periodicity by making the frequency domain grid

slightly irregular, i.e.. by adding a small random frequency



Swi to W ik . , i = 1 I.. n where Sw. is uniformly distributed

between -Awj/2 and Aw!/2 and Aw! << Aw.

In the case of a two-dimensional random field, equation

(4.3) becomes

-w -00x (ttt 2COS[W1t1+W2 t 2 + (W1to 2)/ '2)d1(d12

(4.13)

and (4.10) becomes

N N2

x (t 1 t2 
2 

;k =l k2=1

Vs(wlk '"2k ) AW 1Aw 2 Cos (lk tI + w 2k t2 + + ,k11 2 j Z2 112
(4.14)

Figure 4.1 shows the frequency domain grid used in 4.14. If

the field is isotropic then the summations in (4.14) can be li-

mited only to points with wlk > 0 and w2k2 > 0 if we substi-,

tute the 91 in front by 291.

A computer program for simulating two dimensional isotropic

random fields is listed in the Appendix.
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CHAPTER 5

SOME APPLICATIONS IN GEOTECHNICAL ENGINEERING

5.1 SETTLEMENTS OF FOOTINGS

Consider a building with n footings. We are interested

in predicting the settlement of each footing and the differ-

ential settlement between any two footings. These will depend

on the flexibility of the ground under each footing and on

the loads carried by the building. Both the loads and the

flexibility of the ground are usually not known exactly and

should therefore be considered random variables. The settle-

ment of each footing and the differential settlement between

any two footings are then random variables too. and our task

is to determine their variances and mean values.

Following Diaz-Padilla (1974) let S. be the (random)

settlement of the ith footing, P.. the (random) load on the ith

footing, t.. the (deterministic) influence factor that is

equal to the load at' footing i due to a unit settlement at

footing j (note that t.. is equal to t..) and a.. the (deter-

ministic) factor that is equal to the fictitious load that

should be applied on footing i in order to produce the

settlement of footing icaused by a unit load acting on footing

j (note that a.. is equal to a..). F is the flexibility under

the ith footing. Now let us form the following vectors and

matrices *: 1P

PP
. (5.1)

\un

*We use andO{ denote vectors, ow and [ to denote matrices.



F o. 0

0 F2..0

* (5.2)

F

F 2

(5.3)

F
n

S1

2 (5.4)

Sn

t t12 1 9 tit11 t12'' ln-

t 21 t22.. t2n

9 * (5.5)

tnl tn2-O-tnn_

a 1 a2... aln

a 21 a 22...a2n

9 . . (5.6)

a . a .20 a n-n n2 nnj



Clearly

S=F a (P + t S) (5.7)

or

where

= a (5.9)

Our. objective is to determine the mean m (the ith

component of the vector m 5 is the mean value of the settle-

ment S of the ith footimg) and the covariance matrix C

(the component C.. of C is equal to Cov[S.,S.]) of S given
1) 3) -

the mean m and covariance matrix C of P and the mean

and covariance matrix C of F.
~ F-

Assuming that there is no correlation between F and P

we can arrive at the following approximate result (Diaz-

Padilla, 1974)

-l
=(I - m t) r m m (5.10) -S= ~ ~ Q ~ ~V -P

CS= Ac AT + eC eT (5.11)

where

-l9 I- inS) mg (5. 12?)

& 1.



and i-at
A. = -(I-rnt) 1 bF (I-rnQ m

at F =-

+ - - LP (5.13)

at F =M

where A. is the ith column of A.

Here we will focus our attention to the determination

of mF and CFU Consider for concreteness the case of footings

on sand. A commonly used deterministia formula to compute

the settlement 0 in inches of a rectangular footing with the

lesser side equal to B feet located at a depth d feet below

the ground surface and loaded with q tons per square foot is

3= ( ) 21 ) 5.14
N 1+B 4B

where N is the average of the standard penetration test N-

values down to a depth B feet below the footing. This formula

is implied in the q vs. B design chart given by Terzaghi and

Peck (1967).Nls.The average N-value down to a depth B at any

point. Hence it is seen that.the evaluation of the mean flex-

ibility and of the variance of the flexibility under a footing

involves evaluating the mean and the variance of the average of

a randopn field over a rectangle. Also the evaluation of the

covartonce of the flexibilities under two footings involves

evaluating the covariance between the averages of a random

field over two rectangles," The applicability of the results

of Section 3,3 to this problem is therefore obvious,



5.2 STABILITY OF SLOPES

The problem of slope stability has been investigated

from a probabilistic viewpoint by several authors, See,

for example, Morla-Catalan and Cornell (1976), Vanmarcke

(1977b), Veneziano et al (1977). The purpose of this

section is to show how the results of Chapter 3 can be

utilized in this problem.

Refering to Fig. 5.1, the factor of safety is defined

in a deterministic undrained analysis as

cLrb + Re
Wab (5.15)

If, following Vanmarcke (1977b), we ignore the randomness

of the end sections' contribution Re to the resisting moment,

the only quantity about which we are uncertain is the average

c of the shear strength over the cylindrical failure surface.

Considering c as the realization of a random variable C we

may write

E[F] = E[C]Lrb +Re(5.16)
Wab

and

Var[F] = Var [C]( )2  (5.17)

But C is nothing but the average over the cylindrical failure

surface of the random field representing the spatial variation

of the shear strength, therefore the determination of its

variance falls in the category of problems treated in Chapter

3, Provided that the radius r of the failure surface is a

few times larger than the scale of fluctuation 6 we may ignore
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the fact that the failure surface is curved and compute the

variance of C as the variance of the average of a two-dimen-

sional random field over a rectangle b x L, hence we may

apply the results of Section 3.3. Thus using (5.16) and

(5.17) and assuming that the factor of safety has a Gaussian

distribution we can find the probability distribution of the

factor of safety corresponding to any mode of failure. To

find an approximation for the probability of failure in any

mode in any location along the embankment of Fig. 4.1 one

may follow the procedure proposed by Vanrnarcke (1977b),

i.e. first assume that the location of 0 is such as to

minimize the deterministic factor of safety in a two-dimen-

sional anlaysis (i.e. assuming that Re = 0 and b + c), then

determine the width b that will minimize the probability of

failure at a given location along the embankment and lastly.

consider the factor of safety that corresponds to that width

as a random process whose argument is the location along the

embankment. The probability of failure anywhere within the

length of the embankment will be equal to the probability

that this random process becomes less than unity at least

once within the length of the embankment.
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5.3 EXPLORATIONSAMPLING AND TESTING

Most soil-testing procedures involve measuring of averages

of soil properties. This is true for both laboratory tests (for

example the oedometer test measures properties averaged over the

volume of the sample) and field tests (for example the plate-

Iothling test measures the average compressibility of the soil

over a volume that depends on the size of the plate). Usually

the engineer wants to use the test results to estimate either

the variance of the random field that corresponds to the soil

property under consideration given the variance of the average

over the test volume, or the mean and variance of another

average, over a volume different from the test volume, given

that he has observed the average of the property over the test

volume. Clearly both of these problems can be handled using the

methodology presented in Section 3.3.

On the other hand an exploration program that will be ,of

optimal efficiency in the sense of achieving high correlation

between what is measured and what needs to be predicted and

low correlation between different measurements (in order to

avoid obtaining the same information twice) can be planned

using again the methodology of Section 3.3.
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5.4 APPLICATIONS OF SIMULATION

A quite general way to study the effect of the spatial

variability of soil properties on the solution of a particular

problem is to use a finite element discretization of the soil

profile and assign to the elements values of the soil prop-

erties taken from random field simulations. By running the

finite element program several times, each time with element

properties taken from a different simulation, one can find

the variance or even the probability distribution of any

quantity of interest.

For example, one can apply this procedure to study the

effect of the spatial variation of the soil deformability

parameters or the effect of the spatial variation of permea-

bility on the distributionof pore pressures and on the factor

of safety against slope failure of an earth dam.

From a theoretical standpoint the simulation of random

fields is an attractive (but very expensive) way to find

approximate solutions to problems involving extremes of

random fields. Almost all available solutions to such

problems involve exceedances above very high levels. An

investigation using simulation could find approximate results

for problems involving exceedances above low levels and

establish the limits of validity for the high level solutions.
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CHAPTER 6

CONCLUSIONS

Asimplified methodology for applying random field theory

to problems of geotechnical engineering has been presented.

It is based on using a constant, the scale of fluctuation:,

in the place of the covariance function in order to describe

the correlation structure of a random field. Approximate

expressions are presented for the variances and covariances

of averages. These solutions are directly applicable

when dealing with averages over rectangular regions, but

obviously can be extended to regions of any shape by sub-

dividing into rectangular.subregions. Although approximate,

these results are very appealing for use in problems of geo-

technical engineering because they involve simpler computations

than the exact results and because the generally limited

amount of data on the spatial variation of soil properties

makes the use of exact results superfluous. The approximate

methodology that has been presented is an extention to two

and three dimensional random fields of the methodology

presented by Vanmarcke (1979) for random processes.

A number of applications is also presented, where the

spatial variability of varioussoil properties can be dealt

with the simplified approach.

Th6 theory of simulation of random fields has been

reviewed and a computer program for simulation of two-dimen-

sional random fields is presented in the Appendix. Some

applications of the simulation of random fields to geotechnical
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engineering have been suggested.

In general this thesis has attempted to present

methodologies for use in practice-oriented rather than

research-oriented geotechnical engineering work where the

spatial. variability of soil properties must be taken into

account,
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APPENDIX

An interactive computer program for generating two-dimen-

sional isotropic fields is presented here. It has been limited

to the isotropic case in order to increase computational effi-

ciency. It is based on the modified form of equation (4.14)

that has been described in chapter 4. Since the most time-con-

suming operation in applying (4.14) directly would be the eva-

luation of Ni x N2 cosines for each point (ti1t2 ) the program

has been made more efficient byhaving it evaluate relatively few

trigonometric functions directly and using trigonometric iden-

tities for the indirect evaluation of the cosines required.

The program uses a time domain (i.e. the t1 ,t2 plane) and

a frequency domain (i.e. the w1 1 w2 plane) grid as shown in

Figure A.l. The input to the program consists of XMAX, NX

(must be odd), YMAX and NY (must be even). The program simu-

lates the values of the random field at the points of the time

domain grid, computes their mean, variande and standard de-

viation and finds their maximum and minimum value. It can also

find the number and percentage of points above any level FLEVEL

the user requests. Finally it plots contour lines correspond-

ing to levels C as requested by the user by interpolating among

the simulated values at the points of the time domain. Two ar-

bitrary integers, I and 12, must be input together with the

initial data in order to initialize the random number generator.

More than one simulation can be made in each run of the program

and this saves computation time since some calculations are done
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only once and used in all the simulations in a run. Before

using the program one should adjust line 138 so that the value

/2 /S(Wop,2) is assigned to SQRTS(Yl,Y2) where Y1 and Y2 stand

for w, and w 2 and S(w11 w2 ) is the spectral density function of

the field one wants to simulate. The matrices appearing in the

DIMENSION statements must be at least of dimensions A(NY/2,NY/2),

XY(NY/2), CC(NY/2,.(NX-1)/2), SS(NY/2,(NX-1)/2),FIELD(NXNX).o

The random fields that are generated by this program are non

periodic. This is achieved by the method nuggested in Section

4 usina Aw' = Aw/20.



F

DIMENSION A(25,25),RY(25),CC(25,25)pSS(25,25),FIELD(51,51)
PRINT 1001
READ 1002PXMAXPNXPYMAXNY
PRINT 1003
READ 1004I11I12
DX=2.*XMAX/FLOAT(NX-1)
DY=2.*YMAX/FLOAT(NY)
JYMAX=NY/2
JXMAX=(NX-1)/2
DO 10 JY1=1YJYMAX
YI=(JY1-.5)*DY
DO 10 JY2=1Y.JY1
Y2=(JY2-.5)*DY
A(JY1 rJY2)=SQRTS(Y. lY2)*DY

10 CONTINUE
DO 20 JY=1vJYMAX
Y=(FLOAT(JY)-*5)*DY
CALL RANDU(IlvI2,RANDOM)
RY(JY)=(RANDOM-.5)*DY/20.+Y

20 CONTINUE
DO 30 JY=1,JYMAX
CC(JY,1)=COS(RY(JY)*DX)
SS(JYP1 )=SIN(RY(JY)*DX)
DO 30 JX=2pJXMAX
CC(JY ,JXY=CC( JY ,JX-A)*CC(JY 1)-

* SS(JY,6JX-1) *SS(JYv1)
SS(JYJX)=SS(JYrJX-1)*CC(JYy1)+

* CC(JYyJX-1)*SS(JYyI)
30 CONTINUE

NSIM=0
999 CONTINUE

DO 40 IX1=1YNX
DO 40 IX2=1NX
FIELD(IX1YIX2)=0.

40 CONTINUE



NSIM=NSIM+1
PRINT 1005NSIM
DO 50 JY1=1,JYMAX
DO 50PJY2=1vJYMAX
MAXJY=MAX ( JY2y ,JYZ)
MXNJY=MIN( JY2,JY1)
CALL RANDU(Il1I2vRANDOM)
ANGLE=RANDOM*6*2831852
CS=COS(ANGLE)
SN=SIN(ANGLE)
DO 50 IX1=lsrNX
JX1=IX1-JXMAX-1
DO 50 IX2=1vNX
JX2="IX2-JXMAX-1
IF(JXI) 501Y502Y503

501 CS1=CC(JYIY-JXZ)
SN1=-SS(JY1 rv-JX1)
GO TO 504

502 CS1=1.
SN1=0.
GO TO 504

503 CSI=CC( JYrJX1)
SNt=SS( JY1 JXI)

504 CONTINUE
IF(JX2) 505P506Y507

505 CS2=CC(.JY2v-JX2)
SN2=-SS( JY2p- JX2)
GO TO 508

506 CS2=1.
SN2=0-.
GO TO 508

507 CS2=CC(JY2,JX2)
SN2=SS( JY2,JX2)

508 CONTINUE



C=CSI*CS2-SN1*SN2
S=SN1*CS2+CSi*SN2
C=C*CS-S*SN
FIELD(IXI X2)=FIELD(IX1 IX2)+A(MAXJYMINJY)*C*2

50 CONTINUE
FMEAN=0.
FVAR=0.
FMAX=0.
FMIN=0.
DO 60 IX1=1NX
DO 60 IX2=1iNX
FMEAN=FMEAN+FIEID(IXIiX2)
FVAR=FVAR+FIELD(IXiIX2)**2
FMAX=MAX(FMAXpFIELD( IXi, 1X2))
FMIN=MIN(FMINFIELD(IX1vIX2))

60 CONTINUE
FMEAN=FMEAN/FL OAT (NX**2)
FVAR=FVAR/FLOAT(NX**2)-FMEAN**2
FSTD=SQRT(FVAR)
PRINT 1008rFMAXYFMIN
PRINT 1009,FMEANFSTirFVAR

70 CONTINUE
PRINT 1010
READ 1011PNANS
IF(NANS.EQ.0) GO TO 90
PRINT 1013
READ 1014PFLEVEL
NUMBER=0
DO 80 IX1=1,NX
DO 80 IX2=1YNX
IF(FLEVEL.LT.FIELD(IX1,IX2)) NUMBER=NUMBER+i

80 CONTINUE
RAT IO=FL OAT ( NUMBER) /FL OAT (NX**2)
PRINT 1012,NUMBERRATIO
GO TO 70

90 CONTINUE



p

PRINT 1015
READ 1007PNANS
IF(NANS.EQ*0) GO TO 110
CALL PL&T(FIELDNXDX,XMAX)

110 CONTINUE
PRINT 1006
READ 1007PNANS
IF(NANS.EQ.0) STOP
GO TO 999

1001 FORMAT(/1XY' XMAX NX YMAX NY')
1002 FORMAT(F10.5,I5yFl0.5rIS)
1003 FORMAT(/1Xp' Ii 12')
1004 FORMAT(2I10)
1005 FORMAT(/1XP'SIMULATION NO'PI5)
1006 FORMAT(/1Xp'DO YOU WANT ANOTHER SIMOULATION? 1=YES O=NO')
1007 FORMAT(I1)
1008 FORMAT(1X,'MAX.VALLE=' ,F1O.5, 'MIN.VALUE=' ,F1O.5)
1009 FIRMA TC Xp 'MEAN=' , F10.5p 'STD.DEVIATION-',F10T5'vA-RTAN-Ex--F-10.5)
1010 FORMAT(/1X'L'DO YOU WANT TO INP UT A "FLEVEL" VALUE? 1=YES O=NO')
1011 FORMAT(I1)
1012 FORMAT(/1X 'NUMBER=' IS 'RATIO='vF10.5)
1013 FORMAT(/1X,' FLEVEL')
1014 FORMAT(F10.5)
1015 FORMAT(1Xv'DO YOU WANT TO DRAW CO NTOUR LINES? 1=YES 0=NO')

END
FUNCTION SQRTS(Y1PY2)
SQRTS=SQRT(1./(6.2831852*(1.+Y1**2+Y2**2)**1.5))*1.4142135
RETURN
END



SUBROUTINE PLOT (FIELDNXDXvXMAX)
DIMENSION FIELD (51 ,51) , A(22) Xl(5) X2(5) ,F(5)
JXMAX=(NX-lI)/2
NXM1=NX-1
XRANGE=2.*XMAX
XMIN=-XMAX
CALL T4025
CALL VARIAN
CALL START....PLOT(3v'XXX')
CALL DWINDO(XMINXRANGErXMINXRANGE)
CALL TWINDO(0,780P0v780)
CALL MOVEA(XMINYXMIN)
CALL DRAWA(XMINPXMAX)
CALL DRAWA(XMAXYXMAX)
CALL DRAWA(XMAXPXMIN)
CALL DRAWA(XMINYXMIN)
DO 10 IX1i1NX
DO 10 IX2=1NX

JXI=IXi-JXMAX-1
JX2=IX2-JXMAX-1
XX1=JX1*DX
XX2=JX2*DX
CALL POINTA(XX1YXX2)

10 CONTINUE
999 CONTINUE

PRINT 1001
1001 FORMAT(/lX,'DO YOU WANT TO INPUT A'C'VALUE? l=YES 0=N1')

READ 1002PNANS
1002 FORMAT(I1)

IF(NANS.EQ.0) GO TO 100
PRINT 1003

1003 FORKAT(1Xp' C')
READ 1004PC

1004 FORMAT(F10.5)



DO 70 IXI=,INXMI
10 70 IX2=1NXM1
JXi=IX--JXMAX-I
JX2=IX2--JXMAX-1
X1(1)=JXi*PX
X1(2)=Xi (1)+DX
X1(3)=Xi(2)
X1 (4)=Xi (1)
X1(5)=X1 (1)
X2 (1) =JX2*DX
X2(2)=X2(1)
X2(3)=X2(i)+DX
X2(4)=X2(3)
X2(5)=X2(i)
F(l)=FIELD(IXi IX2)
F(2)=FIELD(IXI+i IX2)
F(3)=FIELD(IX1+i1IX2+i)
F(4)=FIELD(IX1PIX2+1)
F(5)=F(1)
N=0
DO 50 I=lP4
IF(((C.LT.F(I)).AND.(C.LT.F(I+1))).OR.((C.GT.F(I)).AND.

* (C.GT.F(I+1)))) GO TO 50
N=N+i
IF(F(I+i).EO.F(I)) GO TO 50
A(IPN)=.Xl(I)+(XI(I+1)-X1(I))*(C-F(I))/(F(I-+l)-F(I))
A (2 YN)= X2:(I)+(X2(I+1)-X2(I))*(C.-FCI))/(F(I+1)-F(I))
IF(N.EQ.2) GO TO 60

50 CONTINUE
GO TO 70

60 CONTINUE
CALL MOVEA(A(1vl)vA(2y1))
CALL DRAWA(A(I 2)FA(2y2))
CALL MOVEA(0.. )



70 CONTINUE
GO TO 999

100 CONTINUE
CALL ENDPLOT
RETURN
END



A sample run of the program is presented in what follows.

The field to be simulated has spectral density function

S(W,w2) = -I- 1 A'1 2 2rf(l + w + w) A*l
1 2

which is the spectral density function corresponding to

B(r) = e-r , r > 0 (A.2)

Figure A. 1shows the time and frequency domain grids. Figure

A.2 shows the corresponding interaction between the user and

the computer. The user's responses are noted by arrows.

Figure A.3 shows a map of the simulated random field.



4$ run simnew

XMAX
42.

NX
41

YMAX
8.

NY
40

I 12
4 54673 28765

SIMULATION NO 1
MAX.VALUE= 1.22898MIN*VALUE= -2.43144
MEAN= -0.23114STD.DEVIATION= 0.76295VARIANCE=

DO YOU WANT TO INP UT A OFLEVEL" VALUE? 1=YES 0=NO
-41

040.
FLEVEL

NUMBER 754RATIDO= 0.44854

DO YOU WANT TO INP UT A "FLEVEL' VALUE? 1=YES 0=NO

4 1

FLEVEL
4,5

NUMBER= 296RATI= 0.17609

DO YOU WANT TO INP UT A 9FLEVEL'8 VALUE? 1=YES 0=NO
+41

FLEVEL
+41.

NUMBER" 26RATIO= 0*01547

DO YOU WANT TO INP UT A NFLEVEL'6 VALUE? IlYES 0wNO

FLEVEL
+*1.5

NUMBERm ORA TID- 0.00000

DO YOU WANT TO INF UT A NFLEVELO VALUE? 1-YES 0-NO

-41

FLEVEL

NUMBER= 1117RATIOw 0.66449

DO YOU WANT TO INP UT A 9FLEVEL' VALUE? 1-YES 0-NO

p16U33 A.Z

0.58209



-41

FLEVEL
-* -1.

NUMBER 1398RATIO= 0.83165

DO YOU WANT TO INP UT A "FLEVEL'0 VALUE? 1=YES 0=N0
4-1

FLEVEL

NUMBER= 1549RATIO= O.92148

DO YOU WANT TO INP' JT A OFLEVEL' VALUE? 1=YES 0=NO
-* 1

FLEVEL
4 -2.

NUMBER= 1644RATIO 0.97799

DO YOU WANT TO INP UT A "FLEVEL' VALUE? 1=YES 0=NO
-4 1

FLEVEL
4 -2.5

NLMBER= 1681RATIO 1.00000

DO YOU WANT TO INP UT A 'FLEVEL* VALUE? i=YES 04NO
- 0

D YOU WANT TO DRAW COi NTOUR LINES? 1PYES 0=NO

DO
41

DO41.

4.5

DO

YOU WANT TO INPUT A'C'VALUET I=YES O=NO

C

YOU WANT TO INPUT A"CVALUE? 1YES O=NO

C

YOU WANT TO INPUT A'C'VALUE? IuYES 0-NO

??WRE A.1 2otlnueg

?a



C
'-+ 0.

DO YOU

-41

DO YOU
* 1

-1.5

DO YOU
-1

WANT TO INPUT A'C"VALUE? 1=YES O=NO

C

WANT

C

TO INPUT A"C"VALUE? 1=YES 0=NO

WANT TO INrUT I'CA"CVALUE? 1=YES 0=N0

C

WANT TO INPUT A'C'VALLE? i=YES 0=NO

C

DO YOU WANT TO INPUT A'C'VALUE? 1=YES O=NO
-'0
....SIAl:P3331KAFRITSASJVARIAN.FLT;1

DO YOU WANT ANOTHER SIMOULATION? 1=YES 0=NO
-40

FORTRAN STOP

FIOU A.2 @ntinued
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