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ABSTRACT

The connections between steel offshore platforms and
the foundation piles are generally made by filling the
annulus between each pile and its sleeve with cement grout.
The grouted c¢onnection forms the only structural connec-
tion between the jacket and the foundation and the grout
is required to transmit forces arising both from the dead
weight of the jacket, deck and superstructure, and from
wave or seismic loading. The strength of axially loaded
grouted connections is generally described in terms of an
equivalent bond strength which is obtained by dividing the
ultimate capacity of the connection by the total surface
area of the pile-grout interface.

The objective of this study is to define the princi-
pal parameters which affect the behavior of grouted connec-

" tions and describe the effects of these parameters by means

of structural mechanics. TIwo analytical mechanical models
were developed and their capability of predicting the struc-
tural behavior of the connection was tested by comparison
with experimental results. Two finite element models were
developed and tested also. .

The results show good agreement of the model which
accountcs for Poisson effects but ignores bending of the
components, with experimental data. The ultimate bond
strength of grouted connections depends primarily on the
strength and stiffness of the steel-grout interface and
on grout strength. Since for typical stiffnesses of the
steel-grout interface the distribution of shear stress
along the connection is almost uniform, the current prac-
tice of describing the ultimate strength of axially loaded
grouted connections in terms of an average bond strength
seems valid.



The non-linear behavior of the steel-grout interfaces
does not appreciably affect the behavior of normal stresses
and deformations in the connection and since it has a uni-
formizing effect on the distribution of shear stress along
the connection, it adds validity to the description of the
strength of the connection by means of an average bond
strength. The actual slippage along the connection in the
post-ultimate range can be predicted only be a non-linear
finite element analysis.

Thesis Supervisor: Dr. Michael N. Fardis

Title: Assistant Professor of Civil Engineering
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CHAPTER 1: INTRODUCTION
1.1. HISTORICAL OVERVIEW

The most popular form of construction for fixed off-
shore platforms is the piled steel jacket. The steel tu-
bular piles are driven through the legs of the structure
or through tubular sleeves attached to the lower part of
the structure. The annulus between pile and jacket leg
or sleeve is then filled with cement grout thus providing
a connection which may be additional to or may replace a
welded connection. Grouting reduces corrosion of the
pile and of the interior surface of the leg, improves the
mechanism of load transfer by achieving continuous trans-
fer along the leg and provides some reinforcement to the
brace to leg joints.

In shallow water, normally a single pile is placed
through each leg of the structure and often extends to
the top of the leg so that the deck structure is welded
directly to the pile. The jacket resists the effects of
wave loading, stabilizes the piles and stiffens the com-
plete structure whereas the grout transmits lateral forces
between the piles and the jacket but is not normally re-
quired to transmit vertical loads from the deck super-
gstructure to the piles. Bond stresses at the interfaces
between steel and grout are low and debonding is unlikely

to have an effect on overall structural stabilicty.
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In deeper water, however, the piles do not extend to
the surface and are either grouted in clusters around the
main legs of the structure or in some cases are evenly
distributed arcund the base of the struéture. The grout-
ed connection forms the only structural connection between
' the jacket and its foundations and the grout is required
to transmit forces arising both from the dead weight of
the jacket, deck and superstructure, and from wave, cur-
rent or seismic loading. In addition, with the develop-
ment of offshore oil fields in deeper water, the capacity
of offshore construction facilities for handling and driv-
ing piles has increased, resulting in a trend towards
foundations consisting of smaller numbers of large diame-
ter and less radially stiff connections. In view of the
increasing importance of grouted connections and of the
trend towards larger diameters, a large research effort
has been directed into defining the principal parameters
which affect the strength of grouted connections and es-
tablishing design procedures which describe the effects

of these parameters.
1.2 THE PROBLEM

The strength of axially loaded grouted connections
is generally described in terms of an equivalent bond
strength which is obtained by dividing the ultimate capa-

city of the connection by the total surface area of the
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interface between the pile and the grout. For identical
grouts the bond strength actually attained in the annulus
between two steel pipes can vary as much as threefold due
to independent factors and conditions. Experimental data
also have shown that with identical design and conditions,
tw6 grouts with the same compressive strength but differ-
ent expansion properties can show bond strengths which
differ as much as fivefold.

Final shear bond strength depends on a combination
of independent factors and grout properties. Those inde-
pendent factors include interface surface condition or
modification, confinement potential or radial stiffness
and moisture environment or access to external water.

The relevant grout properties are expansion potential,
compressive or shear strength, corrosion at bond interface
and chemical or adhesive bond due to special admixtures.
Shear bond strength in a steel annulus is far from an
intrinsic property of the hardened grout. However when

all independent factors, corrosion at bond interface and
chemical or adhesive bond are the same, shear bond strength
depends mainly on compressive strength.

Several attempts have been made to correlate bond
strengths to compressive strengths using equations of the
form:

0.5

fb = Afcu
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where fb is the ultimate bond strength, fcu is the grout
cube strength, A is a factor which depends upon surface
roughness and geometry of the pile and the sleeve. Gene-
rally, the rougher the steel surface the higher the shear
bond strength. However, a reliable correlation between
roughness and bond strength has not been developed.

Confinement potential is sometimes referred to as
radial stiffness factor. Several equations have been
proposed for the radial stiffness factor and most appear
to have some validity. They serve three principal pur-
poses: (1) they provide a means to predict actual bond
strength from a test model which is not a true scale
model of the jacket-pile system, (2) they reveal certain
parameters which can be useful in the design of the jac-
k jle connection, and (3) they provide a method for
c‘ing grout performance data from different test
models. If the radial stiffness of the complete connec-
tion is considered, various stiffness factors proportion-
al to the radial stiffness of pile, sleeve and grout cy-
1in&ers can be derived depending on assumptions regarding
the distribution of forces in the grout and the compatibi-
lity of displacements or forces across the interfaces
between steel and grout.

Thus far little progress has been made towards the
determination of actual shear bond stress as a function

of position along tubular member. At present an average



shear stress value is employed, obtained by dividing the
ultimate capacity of the connection by the total surface
area of the pile-grout interface. The use of an average
shear stréss to describe the behavior, or predict the
strength of grouted connections is questionable. It
therefore becomes impértant to formulate a mathematical
model which describes the shear stress along the length

of the tubular member.
1.3. REVIEW OF PREVIOUS RESEARCH EFFORTS

Heretofore, most studies concerning the bond strength
of offshore platform grouts have been purely experimental.
Attempts to correlate empirical data to structural theory
are limited. The most extensive studies have investigated
the effects of grout properties, surface condiri of the
steel, radial stiffness and length to diameter bof
the test specimen on the bond strength.

Testing at full scale requires very high testing ca-
pacities to reach ultimate load for evenbrelatively short
specimens. However, reduced scale modelling techniques
have been developed which give results in terms of bond.
strengths directly comparable with those from full scale
tests.

The relationship between bond strength and grout com-
pressive strength has been derived from reduced scale test

data. Equations such as that given in Section 1.2.,



b = Afcuo's. represent a least squares fit to ultimate

f
bond strengths obtained from test results. Bond strength
is not a linear functicn of compressive strength, (Ostroot,
1978), and this is evident from such an equation. '

Variations in surface roughness have a dramatic ef-
fect on bond strength. The effect of epoxy coating on
the pile is to reduce the bond strength from that of the
shot blasted condition significantly. Similar results
have been obtained when the surface roughness is reduced
by grinding the steel surface demonstrating that the re-
duction in bond is not a chemical bonding effect. A re-
liable roughness factor to predict changes in bond strength
from changes in roughness haé not been developed. (Bil1-
ington and Gael, 1978) |

Forming a chemical or adhesive bond to the steel by
adding admixtures such as latex to the grout has potential
for increasing the bond strength, but unless extra mixing
water is used such admixtures cause large increases in
grout viscosity. The extra water needed to prevent mix-
ing and placement problems often causes enough compressive
strength loss to offset any advantage for increased bond
strength. (Ostroot, 1978)

The effects of radial stiffness of the connection
have been studied énd results show that the ultimate bond
strength is extremely sensitive to specimen geometry and

is dependent on the radial stiffness of the sleeve, pile



and grout. (Billington and Gael, 1978) If the radial
stiffness of the complete connection is considered, various
stiffness factors proportional tu the radial stiffness of
the pile, sleeve and grout cylinders can be derived.

| One of the first stiffness factors devised could be
defined as an inverse confinement modulus without a jac-
ket-pile-material constant and was an empirical correla-
tion based on bond strength test results. In a dimension-

less form this correlation is:

" SF = (Dsz/tg)(l/tg +1/c)

where DS = inner diameter of jacket
tg = grout thickness
ty = jacket wall thickness
tp = pile wall thickness

Experimental results with expansive grouts show that
when this stiffness factor increases bond strength de-
creases. (Ostroot, 1978)

A more recently proposed stiffness factor referred
to as K 1is:

K = Sg + (I/Sp + IZSS)-I, force/unit area

where S = E t/d and g denotes the grout, p the pile,
s the sleeve (jacket) and E = Young's modulus.
Claims have been made that fb is a’'linear function
of K with the general equation being fb = BKfcuO'5 where
B depends upon the length to diameter ratio of the connec-

tion and on the surface roughness. (Billington and Gael,
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1978) This claim has not been completely supported by

data. (Ostroot, 1978)
1.4. OVERVIEW OF THE THESIS

Three mathematical models of the connectiod are pre-
sented here: The first two are analytical models which
consider linear, elastic isotropic behavior and neglects
any bending of the components. One is an axisymmetric
model which takes into account the radial geometry, but
considers' only longitudinal normal stresses (i.e. in
the direction of the tubular members) and shear stresses;
the second, is an axisymmetric model which additionally
acecounts for all normal stresses (including radial and
circumferential). The third model is a finite element
axisymmetric model which considers the steel and the
grout as linear elastic but accounts for the non-linear
relationship between bond shear stress and deformation
or slip at the steel-grout interfaces as well as bending
of the components. The results of these models are com-
pared among themselves aﬁd to experimental results from
a test model representing a typical design.

These results show that although the one-dimensional
model gives a good approximation to the actual behavior,
the three-dimensional an& the finite element models are
by far superior, since they account also for theAradial

and hoop stresses and strains. These effects can be very
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significant. Bending effects appear negligible to the

overall behavior and therefore the finite element model
and the three-dimensional model are in good agreement.

The three-dimensional model -adequately predicts the be-
havior of the structural system in the lineur range of

the bond stress-slip relationship.

Results also show that we can describe the strength
of the connection in terms of an_equivglent average bond
strength since the actual distribution of shear stress
along the connection is almost uniform. The non-linear
behavior of the steel-grout interfaces does not alter
appreciably the behavior of normal stresses and deforma-
tions but alters slightly the behavior of the shear stress
at those interfaces, however the distribution of stress
along the connection remains nearly constant.

Although the three-dimensional and linear finicte
element models give a good approximation to the actual
distributions of stresses in the connection even in the
plastic range, the inelastic finite element model is the
only one that can predict the actual slippage along the
connection in this latter range.

Full scale testing to failure requires very high
load capacities for even relatively short specimens.
However, reduced scale modelling techniques have been
.deVeloped giving results in terms of bond strengths which

are then extrapolated to fu11 scale.



1.5. THE TEST MODEL

Gfouted connection tests performed by the Chicago
Bridge and Iron Company provide the experimental model
used to validate the three mathematical models developed.
A series of tests on pile connection models was performed
on specimens approximately one-quarter scale. The speci-
mens consisted of an 8 in. (inner) diameter inner cylin-
der representing the pile and a 12 in. (inner) diameter
outer cylinder representing the structure. The surfaces
of the cylinders were smooth and the annular space between
them was filled from the top with grout. A typical test

arrangement is shown in Figure 1.1. below:

Test Machine

Frame ' Spherical Seat
Direct Reading -—;:j——-_—q Inner Pile of

Dial Indicator g Test Specimen
Outer Sleeve-~—______4

(jacket) B

Spacer Pipe — = —

Movable Table —o]

’A,,f-Hydraulic Jack

Direct Reading __|
Load Gauge

78

Figure 1.1. Test Arrangement for Bond Tests
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The specimens were tested in a specially constructed
test frame which applied a downward load on the inner cy-
linder and an opposite load on the outer. An incremental
loading scheme was used and the amount of relative move-
ment between the upper ends of the two pipes was measured
with a dial indicator for each increment of load. An ave-.
rage bond stress between the grout and pile surface was
calculated by dividing the load by the contact area be-
tween the grout and the pile surface.

The thicknesses of both the jacket and the pile steel
cylinders were 0.3125 in., that of the grout layer was-
1.6875 in., the bonded length was 19.5 in. and the bond
area on the pile was approximately 530 square inches.

Typical results of these tests are given in Figure
1.2. in the form of a plot of average bond stress (in psi)
versus deformation or slip (in inches). This graph served

as the prototype for the mathematical models developed.

400 1

‘7 300 ¢
=

W g 200 1
¥
X -
Woan

z 2 100 {
Z
a

0 ' 4 + " 4+ ; DEFORMATION
0 0.4 0.8 1.2

Figure 1.2. Axial Load Failure Tests on
One-Quarter Scale Model

R SLIP (inghes)
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CHAPTER 2: BOND STRESS-SLIP RELATIONSHIP
OF STEEL--GROUT INTERFACE ’

The»steel-grout interface is the most important com-
ponent of the connection s}stem. However, modelling of
the interface is difficult due to the lack of reliable
information on the 1local bond stress-slip relationship.
Experimental data from steel bar pullout tests in concrete
are available and provide a relationship between local
bond stress and corresponding slip or deformation, however
such data exist only for deformed reinforced bar specimens.
The experimental data on smooth steel surfaces which pro-
vide shear versus deformation relationships are based on
gross average shear stress and do not refer to local bond
stress.and slip. Figure 2.1. presents a representative

bond stress-slip curve for deformed reinforced bars.

BOND STRESS RATIO uAf"

SLIP

Figure 2.1. Bond Stress-Slip Curve
for Deformed Reinforced Bars
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The values from such a graph are not applicable to
the case of a smooth steel surface, however they do express
the general trend of stress vs. deformation for such a
case. It was therefore necessary to combine information
on local bond stress-slip for deformed bars with data on
gross average shear stress versus deformation for smooth
steel surfaces in order to arrive at the interface stiff-
ness employed in this analysis.

The local bond stress versus slip relationship used
in this study is shown in Figure 2.2.

.

The value of k used
in the analysis was
k = 21000.0 psi/in.

Figure 2.2. Local Bond Stress versus Slip
Relationship
Notice that because of its frictional nature, a real-
istic relationship between T and § must include the nor-
mal stress < as a parameter also. However, because of

the unavailability of data this effect is not included
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in the analysis. Since the three-dimensional and the
finite element models give radial stresses normal to the
interfaces, these models can be supplemented in the future
to include the effect of o on the T-d relationship.

For the purposes of the analysis, the following
grout properties were assumed: Young's Modulus for the
grout was assumed to be 2.92 x 106 psi, Poisson's ratio
for the grout was 0.17 and the Shear Modulus for the

grout was 1.25 x 106 psi.
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CHAPTER 3: ANALYTICAIL MODELS

Two analytical models were developed: both models
are linear, elastic and account for cylindrical geometry
and the local deformations (slip) along the steel-grout
interfaces but neglect bending of the pile, the sleeve
or the grout. The first model, called here "one-dimen-
sional" neglects all normal stresses except those in the
longitudinal direction. The second model called here
"three-dimensional"” includes all three normal stress com-
ponents and thereby accounts for the Poisson effegts.

The geometry of both models appears in Figure 3.1.

W, ¢

Figure 3.1. Geometry of Analytical Models
of the Grouted Pile Connection
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where tj = thickness of jacket
tp = thickness of pile
tg = thickness of grout
Rj = radius of jacket cylinder
Rp = radius of pile cylinder
P = Axial load
L = Length of connection
x = Axial coordinate along the connection

3.1. ONE-DIMENSIONAL AXISYMMETRIC LINEAR MODEL

The method of solution employed ‘in this model uses
the stress equilibrium equations, the normal stress-strain
relations, shear stress-strain relations, the strain-
displacement equations and the geometric compatibility
equations in the three material layers. The combination
thereof produced a fourth order differential equation.

By setting appropriate boundary conditions on the normal
stresses in the jacket and the pile, a solution was ob-
tained.

Some additional notation is introduced:

Gg = Shear Modulus for grout

Ej = Young's Modulus for jacket steel
Ep = Young's Modulus for pile steel
E8 = Young's Modulus for grout

In addition to linearity and elasticity, the assump-

tions employed by the first model are the following:



1) Only axial rormal stresses (i.e. in the x-direc-

tion) are considered. These stresses are denoted by:

03x = Normal stress in jacket in x-direction
Obx = Normal stress in pile in x-direction
aéx = Normal stress in grout in x-direction

and are assumed constant throughout the thickness of the
corresponding component (i.e. they depend only on x and
bending is neglected).

2) Shear stresses vary linearly through the thick-
ness of each component. Because there are no shear
stresses on the inner surface of the pile and on the outer
surface of the sleeve, the distribution of shear stresses
through the system at given x is as in the figure below,
Figure 3.2, with the shear stress at the jacket-grout
interface denoted by-tj and with that at the pile-grout

interface denoted by Tb.

T

F ey +tf'l

Figure 3.2. Assumed Distribution of Shear Stress
Through the System



3) Shear deformations in the steel components are

neglected, implying that the axial displacements in these

components,
ujx = Displacement in jacket in x-direction
upx = Displacement in pile in x-direction
ugx = Displacement in grout in x-direction

depend on x alone.
Eguilibrium

Satisfying force equilibrium in the jacket and pile
steel layers, one obtains the following force block dia-
grams and static equilibrium equations --

JACKET:
Xy
errRJq] tJ

7 )

dx rm(th-/z)'c-dx "-{(Rj-t'/z)l‘-:R-t-a_q—- (1)

n 7 /// i~ 412 A= R
-t |

| Rt + oyt

PILE:

X
t”ﬁﬁﬁ

/ A | "1 - (R : "
X

kt
Bk

2m(Rp + tP/ﬂTP dx




Since T varies linearly from Tj to Tp through the

grout, force equilbrium in the grout layer gives --

GROUT : fzn-(a,,»f tp+ S)%‘fg
e tq+ ¢
5: irol‘l‘l

(R} - £j/2)Tjdx J e :'-‘:.I-_j-. r 21 (Rp + tp/2)Tp dx
2.an

L ZW(RM _t_g%tz)[crg"t{ + .:;(crftg)dx]

S {(RF + tf’/z)TP - (R) - tj/znj = i_i'i"tz (RP * M)} (3)
2

Normal stress-displacement relationships

ax Ej
PILE: . & (9)
dx E?

Consistent with the assumption that T varies linear-
ly from T} to tb through the grout, and since the shear
flexibility of the grout is included the axial displace-
ments in the grout vary quadratically. Due to slippage
at the jacket-grout and pile-grout interfaces, one must
define four (4) displacements at those interfaces as siiown
in Figure 3.3. The displacements through the grout vary
quadratically as shown in Figure 3.4.

Since T X is éonsidered constant through the thickness

8

of the grout we use the averagé value of‘ugx in the stress



T et e

‘ I . Y . ‘-|.‘4 :I:‘.u X
/ S .,4 ." \‘c; '_‘\ :}“.‘ P'g
'.‘ .Q. l\.. e |~‘- : & -‘,. X
/I RN G B

Figure 3.3. Four Longitudinal Displacements
at the Interface

—— tg/2—s]

—— ti gy—
-——

Figure 3.4. Quadratic Behavior of Longitudinal
Displacements Through The Grout

displacement relation in the grout. This average is

. - X _ X X X -
equal to: ug =us, + 4ug + u . There
fore, : 6

X X
a3 = 3 (ugt 4 dut 4 up.g") (1)
E‘{ dx 6

Shear stress-displacement relationships in the grout

Remembering that T varies linearly from 15 to Tp
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through the grout --

/2
ug“-. uM*+ -Gl-gf T(s) ds = umx-(- %(Iza' + TE;T")
Q 2 i

{uf" - ey’ - g%(&;_%)}as)
Also  Wjg = Upq + _é_{[ {1(s) as = Up g+ _t_g_(’t' TE)

i.e. Gf 2
{("j\ix - upg') = %(MH“")

2
Shear stress-slip relationship at the interface

To take into account the slippage at the interfaces,
let the stiffness derived from the bond stress-slip curve

be denoted by K, and write:

{uf: uj\gx+ TJ-/K} (i7)

X _ x _ |
{ur = Upg - TJ/K} (18)
Mathematical Solution

Substituting equations (16) and (15) into equation

(11) one finds that T = \ _3_(6u,.,g‘+ toT| + 2t 1'3)

X one substitutes equation (18) into the

P8
above expression and next replaces upx using equation (9)

to arrive at [ &'z & + | 3T + Eg_i(’f,'f ZT:)} (ia)
E{ Ep K X <F ax A

Differentiating equation (16) and substituting in equa-

Eliminating u

tions (17), (7), (18) and (9) one obtains --

X
T - 1T =G+ 1L + te d [Tr B\l Gia)
{E;‘ R& & Ko aﬁa(“—"‘z }
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adding equations (1), (3) and (5) and integrating, one

h .- X X .
gets -- {Rjtju:" (Rt )5t Rotp 3" = _z;_} (21)

2

Substituting TJ. and Tp from equations (1) and (5)

respectively into equations (ia) and (iia) respectively

one finds that -- . ;
X X L h X ,
2 Al - GRS |
s (g3 AR - (]
r

E’J Ef' 2Qg X ZRJ-tJ ax 1Rp + tp/ X
+ | 3T 2R& ]30' - _I__a_{ 2Rptp ]ar } iih)
Kaxzaj-tj 3% KBKZRP+{:P-;~E (
from equation (21) into equation

Substituting 0"g
X

_ L ary@ 2Rt L
o) "{ﬁmwﬂm E;"Rr*‘r**‘x“{ ey &/
2Rty VTt (i)

= _Ritjte 2Rptpt
sa.fuej-tl) ax 36{(12‘,1-%,,\ agz T Karp+ &) EQ

uation (iib) --

Solving for é{'{r from eq

(s (g 2 s AEF)PSe e o) | i)

J Ef R'tl Aax
Substituting into equacion (ic) this expression for

® 2 -
%‘[_one geLs or (23 t,{.% X!thp-ﬁﬁfﬂ ?:Pa%f: TTE{’CQ;?ZRN tp t t)

X

Eq’cfmpﬁfr’q) JEj(Keg + 26¢) ) -\
Rptp 1 - lakeg + 660 " :
Lﬁ’““‘rftrfh\ i Ep  3Ep(keg+ 269 P } (id)

1 d
Similarly, solve for %I‘- from equation (ic) and sub-

’n

stitute into equation (iib) and get --

_(3r &% ,
{Iﬁ"::;t-{_ (c‘{ K) (2“ y 2\ 3+ -kt-%:ﬂb W‘: = WEi(;:;Rﬁi‘B:*tg) + (cant'd)
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o |
+[R;§ 6+ m‘) +_|.]sz+{(3+ L,Gf)( Rptp +|_)_ ]F }(nd)
et E kt\Egte ot b1ty Epl Fp
Differentiate equation (id) twice and get --

{ tJ{G{ (SZFK :266 )- 3%5'] %—f: [E{t,{é:::trn-g)

(2ktq + 664)] 1 X [ 2Rot O __(akte + 6Gg) | ¥ 4
T rrrs) e o Pt arrores Rl el o 21})] - e
e

Solve for x%from equation (iid) and substitute

this expression into equation (ie). This gives --

{_ﬁzé_gj_[(%+ 2 )(zkg? 66513 3_%_]36_%;_ - [_28j%

2Ry =% 3ktg + 267 x4 g (2Rp+ £p + 1)
Zkte+ 6Ge a“u-* =4 6Ge 2Rptp | x
¥ 3E,a<t§.£ t z%).l dxd +{[ Ep ( 3t kts')( e{tf(mrupeg) Ep )] T

(3,,.?63'),, \ (“'—E{)RJ’CJ 2Roto 4 1 _ {2Kte+6Gy)
+—

- g Oj,x Eqte(Rpripits) Ep 38, (Ktpt2a) (i0)
recr [ 5 e e

ZRP+ ff 3 63‘

Solve for a.px from equation (id) --

~

o = ' P
F= 2Rot I (2kts + G T Eqgtr (2Rp + tp ¢ 1q)
TV I - P

[ gukpftpft{) + Ep 3ep (kEq+ 2 ')] EZ { P 5

2
e R i}

Substitute @ " into equation (if) to arrive at the

governing fourth order differential equation below --

Rit; [ 2 2Kf€+66€) M rR kry 2R/ 4
28] - %; (6.‘{+ )( Kt%i-z&ﬂ E] s axp E‘{t‘{(zlzpftp\ttq)

2R;- p -% WRottpt 0 +
- e, m[[s( i 3%;;;* _;(;f; E)])[( liegieg <3

(CONT'D)
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[%JF;F b (zktpe&g))

2R+ +4)  Ep  3Ep(ktgrt 2Gy)
el (& 2 2) (s
1__6_64)( zzit'g,_ 1_1)] -
e A
P {{E{t;(zzgitffp 4-'t9-)+ -El—p B 3;’;:%‘::2%(_;)](3 ¥ %;9}

1.(_1; )( 34 G_Gg_)}TrET‘t{(?.RF *ptty)

- bGy 2R ¢ | )]
—+ |3t =P p +
[EP (3 ktr)(Eqi:a (2R + tp + to) Ejr:_

[(“ * et lJ }

Eqtq(2Rpt tp+tg)

+ ' Jq —
'H'E%:tg (2Rp + tp +tg)
Let A = Rit] ( t ZKtr + 661) ]
2R %] [Egi"' 3[1<¢+267 —é_
B= - 2Rt (zz<+3'+ esg)
Egtq(2Rp +'tp + tg) 3gj (ktq + 2Gq)

RLt (2Rp + ;) [ I + (3 66()( 2Rptp g1 1)][(@« +__z_)(zt + 66 "15]
+ Rptp (R -4) || g, ktqllEgte (1Rpv 4t gofll\Gs | K 3(kt{§+265 3ag

[-(tgteg + 2/K) + (2tgr36g + 2/K)(3 + éG{/th)]
cC = _ 2Rptp I (2kt féGar)]{(6+!26w/kf{ml’(' +_ ]
{[E’fg (ZRP+ tp *tf) e r 3EP (k‘f"f' 23; E‘ItT(lRF& ‘t,v“tr) Ej
_ i+(3+ _4,_6_.,)( Rotp 4 | H 2Rt .,.rzktqf-é.&.l IR +fp[ ‘t%*‘ 2)
EP ktg Eo“ﬁn'(zﬂf‘l’fpf‘tg) EP f{(ZR}ﬁfP*\'a, 3EJ“<{':’T'-G§) + 55()]
K

3
D = 9(31—6 )(2Kt§+6(§r __l_)
ng 3Ep (ktq+ 24q) Ep

T S F)e - s
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a+ b3 azd_x
Therefore, AT:,'- + B+ Cqgy = D becomes the

governing equation. The general solution is of the form --

<A, X -M, (L= X) Mg X
ij-‘- Ee”"+ re” r Gy He™: /e

where  plz -8+ VBI-4AC and  m = -B - /BT- 4AC
2A ZA

Applying boundary conditions, one obtains:

At x = 0, cl‘jx=E'+Fe""""+G+—!—i-t»1)/C = P

_ Z'H'Rjtj
At x = L, crj-"= Ee""L + F+ Ge"“"‘+ He*t‘s D/C = O
At x = 0, Gi)x=0 i.e
A(/qle */“:zFe.M t /“7.6* /41 H) = /E{E + Fe"H'L-J- )
“Eftf‘mf**!’”zi +H+ D/IC)
where /d= 2Rt + Z2kts + 6Gs

Eqtq (2Ro+ ot £ 3€; (kg + 2Gq)
Hence, (Aﬂ,z-/d)E + (A/M,’e"“"L - /de"“‘L)F + “/‘zz" /3)5
+ (’A/u,"-/g)H = -p + 4D
WE{{'{(ZR,,P?V:{) c

At x = L, c'px = P
ZTTRPtP
i.e., if Y=__ 2Rt + | - (ktr+ 6Gg)

then

e"“"‘(A/q,l-ﬁ)E + (Apt- £)F + e’ A,“z A1

L
s pi s -p +AD P
WEghdr (2Rp + tpt tg) ¢ 2 Ra tp
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In matrix notation, the boundary conditions take the

following form:

P

, -
1 et 1 1 (E P_ - 2
. 2Rt C
e-/"l‘- 1 e“/‘z'- c/“z'- F -_D_
! J__ _ c
-AL -
Ap2-g 1&gl apt-3 | Ap2-a |G -p >
A /3 , Mpl Aty A P . nE{tf(ZRerH‘,r) * %—
a WML ML
e (A _8)| Auz- et At.‘ItH ] D YP
S AP AR-A ! /“= ﬂ)‘e (A | |FEgam e 3 +an,.1_&&‘
T

Therefore the constants E, F, G and H can be obtained

as (E

\)G
\H

The final solution is:

- M X - - -
a*= Ee*%4 Fe MLX) 4 Ge ™% 4 HeM* & DiC

X

% =_I_{A(/¢,‘E¢"""+ ﬂ,‘Fe'”'(L'K) + M2Ge "%+ H P He M)

+ P - X

TTE{tTlZRF + ff + {'2')

X

O'x = P - Zﬁt‘ q.ix - 2RF*P Q-Px
T (28 +4p + 1)ty (2Rp + 4p+ ¥1\tg (2Rp + tp+ to)ty

T: = 2R:¢; '

i ATHRIA - MX - M (L - x) - MX M
(ZRj -tj)( JEETTTH T pGen M He ™)
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TF - - ZREtﬂ {A(-/’('aEe-H'x + /“lsFe'r“l{L-x" - /qISGe‘/ulx
AR < o pe g

- MaGe™ 4 /:He’“’-")}

=Y T (averac{e Shear gtress in the grout)

o 1B A ]
5 5\ A
+ 1 [-Ge™™* + G + He™* - ] +_DL)
M C

X ‘ X
up‘r._l__[ ol‘,"dx= ylg {A(-ﬂ,Ee‘M'x + o FemMs \_/qzc.‘,e'/“zx
r

F pnet) e - g
-~ TEqte (280 + tp + tg)

+ A(ME - wret /q,G-/««zH\)}

)
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3.2. THREE-DIMENSIONAL AXISYMMETRIC LINEAR MODEL

The method of solution v=ilized in this model was
analogous to that of the one-dimensional model with the
additional inclusion of the radial and circumferential
normal stresées. Once again the governing equation be-
comes a fourth order differential equation whick is solved
under appropriate boundary conditions.

In addition to the variables defined in the one-
dimensional model, the following ones are included in

this model:

a.r = Compressive normal stress in radial direction
J at the jacket-grout interiace '
-] . . .

J... = Normal stress in. the jacket in the hoop
J direction

ot = Compressive normal stress in radial direction
P at the pile-grout interface

Gée = Normal stress in grout in hoop direction

ujr = Displacement in jacket in radial direction
r (1] 1" 3 ” " "

u = ile
D p
r ” ”" (1) 1 [1]

u =~ = rout
g &

LS = Poisson's ratio for jacket steel

V - ” ” " i 1 e "

P P
}é = " " " grout layer

In addition to the assumptions of the one-dimensional
model, it is assumed herein that the radial stress varies

linearly through the thickness of each component, as shown



in Figure 3.5.

a f

S

ety o tg ——vfe tp]

Figure 3.5. Assumed Distribution of
Compressive Normal Stress in the Radial Direction

Similarly, also assume u{r: uP'4. ujr.
2

Equilibrium

Force equilibrium ir the jacket, grout and pile
layers is satisfied in both the vertical and radiai
directions. Equilibrium in the hoop direction is satis-
fied automatically by axisymmetry. In the vertical direc-
tion, one obtains the same equilibrium equations as in
the one-dimensional model. In the following, the equili-
brium equations in the rédial direction are derived. A
force block diagram accompanies the equation for radial
equilibrium in the jacket.

(1) JACKET
VERTICAL: {(Rj-_tl)'tj = Rjtjgﬂf} (1)



|~ .
/cr"t'dx

| _144——— @ (RJ - tsz)Aedx

/
K TLTRdet + 4 W Ridatjd
Gt Y e

a%, dxde ‘;(Q:cftjdxg@_
/ thdee 2

9 tjdx "-49 RESULTANT

N
Therefore, I AT R;t: (R' - t')G‘-r - O’Bt'} (2)
- 1Y + =
b (g7 T

(2) GROUT
VERTICAL: <
Rp + ¢ Q-(R--t')‘r-zao-t(k Ftarte\l (3)
P J
(B g (S gu= e frr e
RADIAL:
{(é;l“_,{__z)(kff-t )tg-(nj-ij_)a}'-l-(a,ﬁ;;)o;’: oi,’tg}(‘r)
(3) PILE
VERTICAL: {-(Rfa-&)‘qn = thpg_g}:} (5)
‘ 2 ax

RADIAL: {- (RP +3&)oi,'+ 19T Rpty = O}G’cF} (b)
2 2 dx -



Normal stress-strain relations

(1) JACKET
AXTAL: {%1_45 - %{03"- vV (o]"- chr/z\ } (1)
J p
. r .9 ek =Tl ]
HOOP : {_uJ__-_- l_[cq - (g}~ /2)} (8)
RJ' Ej J
(2) PILE
AXTAL: [dup" = I_[O'P"- v, (crf.e—- 0‘{/2)” (3)
X Er
HOOP ; {_ui:_l_[cqoa- vp ("~ O‘P"/z)]} (10)
R E |
P P .
(3) GROUT
AXTAL {éaﬁ'i - é—[o-{ _Vg,(o-ie_ [q.r+ G’k})]} (“)
(Notice the use {of the average value of ugx,
Géx, in this equation as was the case in the

one~-dimensional formulation.)

HOOP : Ug" = | -V [T = T T
((Rpm«v) E{[x’ fleact i )}}m)
RADIAL: :

{g%g = _é{[_(g',f_z_ci)- v{(o-g'w 0'{9)]} (13)

Shear stress-strain relations

Again T varies linearly from 'EJ. to Tp, as in the

one-dimensional model. Then:

{u{‘— uﬁfx = 3(31&-} T!')} (153)
G{ 8



-gqy-

{TI{":—. Wi + fug + u,,,{"} (15b)
[

2
Shear stress-slip relation at interfaces

{T\] + Tr = Enr (Mj‘gx— MP){X)} (l‘:)
Y

We take into account the slippage at the interfaces
and let the stiffness derived from the bond stress-slip

curve be expressed as K. Then --

{uf‘: qu + Tj/K} (A)

(W = upg™ = T/k} ()

Mathematical Solution

Substituting for ugr into equation (12) one obtains--
r P -] { = X r r
AUSENEL S (b @ a])]
et tp+ g 2 J

Combining this expression with equation (13), one is

able to solve for upr and ujr:

up" = _| {(mr*’ tptig+ V{*{)V}e + (2R - tf.vﬁr‘mff"

5
" [(zzp+ £+t + tf]q;,' r [(ZRP'P'{’P bt W tﬂo]"
2 2 ]
uj"= _1_{{-3_-:- ZZS'-(ZRP*' to + tg\}ap‘” + [-_ti + K(ZRP + tPH{)Jo]r
ZE{ 2 2 2

+ [-zv{tf - 21{{ Rp - %tp]o‘g«ﬁ [-1{{'6{ t2Rp t tp ¢ fﬂcrfe}

Combining with equations (8) and (9) we find:



~4l-

{fi.[“?e' i U] = L ([t e i)
+[ﬁ+1_/§_(mf+f,.+t,\]oj [-wﬁ 2Ry - v ]o; [ vgtzuzf,]g (7)
2 2 F*tf
an%
Ro [2°- o™+ 1,0 | g
P p+ 0 WRp+t,t s.c Vqt ]Q“ RoVgy -t
{“EE[ b Z]ZE{(LFP * H*[W P19
2 o PR J

Combining equation (11) with equations (B), (15b),
(15a), (16) and (9) one obtains: £qn. (19)
{lL{?{&lyqﬁa{£ﬁ5;+-ﬁgzi]:(l rﬁ 1@0} -l—L] 'Q_E+ ELQ(IL:£39
B 2 2] & ki Geax\ 6

Substituting for ’tj and ’tp from equations (1) and

(5) into equation (16) and then making appropriate sub-

stitutions from equations (A), (B), (7) and (9) into

equation (16) one finds: {ﬁ{[' (t" VT 8, v I).._'_(O‘,’,"—%OPO
Ej 2 E

- (
+an-E') -_l(ﬁ)r b_TL) = [( 2R;¥; )azcr!-" _ ( 2Rptp )a hera } (20)
2 Klax dx 2L12Rj- ¢ X 2Rp + tp/ dx*

Adding equations (1), (3) and (5) and integrating,

we obtain:

Rk + [R 4 +t} T Rt = P} (21)
{JJ pt it it Ty + RetpTp <

Substituting for %;l and 2% from equations (2) and
K

(6) into equation (4):

e

+ [ti(zz,, + tp m{)] %7+ [t{(znfn tf. rfd\(22,+tp\ + ( p fﬂ)] = 10y }(22)
1Rp 4RP4:P -2
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Substituting for T . from equation (1) into equation

(2) one obtains: _a;_:{_x: [22!-;‘]030_ {(zﬂl\ t-l'\z]qr} (23) -

Z(Rjtj)
Substituting for 1fp from equation (5) into equation
(6) yields: { 310";" = - ([menﬂcf + {(zRE{- tg\zlo‘; } (14)
X fr Rr ZC'QP{‘.PV )

Substituting from equation (23) and equation (24)

into equation (20), one obtains: {( Gi )oj“_ ( éi q?_;x:

t¢E 7 E
| 5 . ] =p °
oo [ ) (s [t s e
4E] J te 251*5 28, %] kuga f{EP Rp ktg
G 2Rp + tpl[1 + 2Ge |\ TR"
*la - [P g e

Substituting from equation (23) and equation (24)

. < . X b} 9 .
into equation (19), we find: {S’i—f&: (W)(T + (% + VY

Wery (- e N mr o, 4 N
"t gl G T e ) P )
3:{ Rotp E{ 661 Rj ¢ p Ro 5Gq 3GgRJ
Substituting ogx from equation (21) into equations
(26), (18) and (17), we eliminate Géx from those equations.
The essential equations are therefore the five algebraic
equations (26), (25), (22), (18) and (17) and the two
differential equations (23) and (24). Using the five al-
gebrajc equations, one can solve for the unknowns Gpr.

Gpe. O‘.r G'-e CJ"e in terms of O‘jx and (TPX. Then

J' T3 s

by substituting those unknowns into equations (23) and
(24), one is able to solve the differential equations
simultaneously. The five algebraic equations written in

matrix form become:



~ ~ “p Z|
d + 0N +:0W =4
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|
|

-

g°
~N

+~-+
o | W
o et
w
~

-Q

b3z
Y48y 49y 19z |-

e
MA-

B

lybog
wu.l

fyz

(5 t: lﬁ B

Ty
vl

i

i
'
i
i

ﬁr +dp 4 kéwm_\

bar Tag
3y Ty

w

e e e et

\F t P97 T

m iy Vo9
qzw w|.+
baz) i

Rl

'
!

%

aﬂr 1% 497) % +
z
ﬁfi,
:ng by g
.

N-Tyzh Yoz +

+ _.\L“U -

5 _uNV

dg
dy

ybog ¥
AT T

2/ % -

dyz

dydy
- ? *&L

14
_.wu. +dy n_x.n.._nml
4 aww
%)
- by

_wr n\.mtm: ,Lmﬂ%

ﬁ_mw

“?1

—

lwl

<
Badr +

@y +dy +daghy

LI..«I.
Tmmb;v_ +

dqb
-

hdyy

@ S+ dh

B,

3,4

(L)

(3)

(72)

(z7)

)

‘ON
‘NO3
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tEj
(o]
1Rt
w}\ere_ M= thg(ZRr'r{pi-t?)
™ (ZRPVg * tplfg_)( 25}' ‘t:j )
ZE{ fg_[l_l?g-f- tp+ '(’ﬂ
[ + 2% + LA . )+ R
AN Ey b{'§M¢+¢+ﬁ3 Ej_
&
{q(E?
————— e e s ——— - O_—-——‘-—- - —— —— ey,
|+ 2Rot,
N = Ep ":{E{(ZRP-i-tfi' ’cer)
n .
Vr&r + (J'ijfp /‘)( Z?ofp )
Ep 2Eq _{”i_f__}’ _2_
(V9f5.+ YRe, 1@*9)( LRptp 7
= E.& 2E¢q \HE’RPf tp+ *:a] _
— -
L 0
o _ -—
~p
P=|__ TElRetipinty
N - %y + fm\/ P )
b % N\rhyleehe )]
B
€ & 26Tty larpr b))
\
Let [a, (b, ¢, 0@ AT+ G ¢ ¢
32 -l b,‘ - cl R F = a 0] + b q-p + c-o
{a; =AM b, AN ¢ hNB j '3303 *bsq'f"'CS

0?9- 850' t bs"? +Cg
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Substituting these into equations (23) and (24):

. * oy TR - (W -¢)
Equation (23) _a_;)r-i[_{\‘_?]a‘r _z(iﬁ—tj)‘_a:-}q]

{(za ’c)b4 (28 - £)) )b}gﬁ{(znj tﬂq-(zaj-t)’c;}

{J Z(KJ‘EJ)Z tR” 2(R fj)

5*{.-; = {(zRu;-’ci_) - (224} ag}d’m (23 R;-t )h4 (28] - £)) b-j} 37'0;
o R 2gig)? ) AT GRY  algpt ) ax?
Equation (24)*

igr = {:Mal - (Rp4 ¢ )131} G]'x + (2@p+tﬂbi— (ZRpf‘tP):h,}QF,x
Ix* tf' Rr'l Z(QF*F)I tFRF Q(RF"‘:,PV'

+ {‘ {2RP + {P\ci - (2RP 4 ‘tP‘zC'}
1l
TRP 2(Rlofr)

Substituting a Jp" into the equation for .B_ﬂl.one finds:

yxt
N { (28; -1 ) Lae s\ )zb “iRE;-'tE)Cz
G;r- 2 *\44-- 2Rj -1 143 ¥ & {(zgj'w)br (Ri-tjIby) TP Rp )
ax R l 2(R f \ bx tJRjz Z(Rjtj}z - (2Rp 4-4':?) (o
4 1(2& ~t)\bg — (28}~ tj) 53“ (3Rp + 403, - (ZRFH:-PYA,} gJ_-X 2(Rptp)
tiR; ) (2(Rjtj: e,,ef*) 2(Rp tpl* by x
+ m'-t') - (2R-t;P }{-(zn +45)b, = (2Rp + tpl zg‘
1= =G5 £ pT tpl G
Now substituting a'px from equation (23)° into the
above; one obtains:
ij- {-(2RP+£P)M-(mP+€p)zL. + (215-4:,‘)24 - (ZRJ‘-J:J'\"azH 37'0:;
3x4 'EFRPz Z(RP{'P),. {'j RJ'z Z(Rj tj)z éx
+ {(ZREJ- £k, + (2RP+&)zb,}{(ZE -4 - (25'-{-,')%3-;
" tpRp* 2(Rptp)® J1 4R 2(Rj4j)? )

+ {(_25'—{-1')64- @-ej]'bs}l-(mﬂ-{?)cz - (2RP+tf)’c,1 (CoNT’D)
tRi: alRitp)? R 2(Rptp)*



-46-

+ [( (2RJ'- tj)b4 - (2RJ‘ - tl‘)zb3}{' (ZRE + '&P)az - {zpf t+ {P\22|}
2(gj £V

l tj‘ jz {'P r" Z(Epfr)z
+-((2R,+g,,)b, + (2Rp++p) b, b}{(z@ t_[)14 ~ (2R} -¢/) 33}]0"‘
toRp* 2(Rptp)? &R " z(gm)
Let B = { ‘ZRE"EZ)E - GRp+ £pP % + lztaJ t1)34 ~ 120 - 1?3y
tpRp " 2(Bptp) 4R z(zzJ 617
= {th tl)b4 - (ZR, t[l ba}[' (2Rf+tr)32 - (ZRP 1‘{?)23’
+{122p+ tolb, + (Z_Rpi'{plzb}{(lﬂ tj)a4 (zg,--tj)’a;}
toRpt 2gptp)® N HR)? 2% ¢/1*

D E{‘(zzp*l'{p)kl + (zR',+tp)’-b\}((2k,-{-,)c4 - (2R 40y |
fPRP" Z(Rptf)z fJR 2 Z(RJ )

+ {(zutJ - )by + (2R; - t; )%3}[ (184 £y - (2Rp+ £0) c,'}.

V] B> 2(reP tpRo? 2 Rotp)* )
a‘.'a- x b.<
Therefore TYAL -CT. =D becomes the govern-
axl J
ing equation and the solution is of the form:

MiX

2%

- -
0= Ee” "+ Fe' + Ge M e e
where /4,2= B+ VB + &  and Myt 8- VBZ+ 4C
2 2

5 ﬂlz\/B+W1 /42= 1/8__/-8172—6‘
2 2

Using boundary conditions to solve for the coeffi-

cients --

]
o
a

»®
1
-

At x =E+F+ GFH-D

szjtj C

ML -
At x = L, G]x: 0 = Ee a + FeM'L t Qe '“zL+ HehL-—
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At x = 0, 0",":0

LAE S MIF MG ACH = { (28~ t/)cy - ("J"*.l__,_')z“}

4R 2 (R} &)
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where W = (2R;- t! d; - (2r;- &)1a3
( 4 R; ) Z(RJtJ)
e sl
BRi-t)ey — (aR;-4))Cy
iR 2 2(R; tf)

Therefore the constants E, F, G and H can be solved

by matrix multiplication. The final solution is:
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CHAPTER 4: NUMERICAL MODEL
4.1. FINITE ELEMENT ANALYSIS

A finite element static analysis was performed using
an Automatic Dynamic Incremental Non-linear Analysis pro-
gram (ADINA) developed at M.I.T. In the non-linear static
analysis the finite element system response was evaluated
using an incremental solution of the equations of equili-
brium. .The incremental solution scheme used was an acce-
lerated modified Newton iteration. To increase the solu-
tion efficiency and to assure an accurate solution, solu-
tion steps were specified in which a new effective stiff-
ness matrix was formed and equilibrium iterations were
carried out. During the step-by-step solution, the linear
effective stiffness matrix was only updated for the non-
linearities in the system.

The complete solution process consisted of four dis-
tinct phases: the finite element mesh and element data
were prepared and compiled; the constant structure matrices
(in this case the linear structure stiffness matrix only)
were assembled; the externally applied load vectors were
calculated; and then the step-by-step solution was obtained
which provided the displacement vectors as well as element

stresses.
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4.2, THE FINITE ELEMENT MODEL

Figure 4 shows the finite element discretization
employed in the analysis. This mesh contained 61 iso-
parametric two-dimensional finite elements to model the
jacket steel, pile steel and grout material layers and
160 three-dimensional truss elements to model the two
steel-grout interfaces. The model contained 359 node
points,

A linear-elastic stress-strain relationship for the
two-dimensional elements was used. The displacements of
the elements were assumed to be Small and the strains
infinitesimal. The material behavior of the isotropic
model was defined by the constant Ydung's moduli and
Poisson ratios: These values were the same as those used
for the analytical models.

A materially non-linear stress-strain relationship
was used for the truss elements and followed the assumed
non-linear behavior of the bond stress versus slippage
curve (Chapter 2) to model the steel-grout interfaces.

An elastic-plastic model was used for these truss elements
2fined in terms of the initial Young's modulus, the yield
stress and the strain hardening.modulus.

This model was fixed at the top of the jacket steel
and incremental prescribed displacements were applied at

the bottom of the pile steel.
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CHAPTER 5: RESULTS AND DISCUSSION

The results of the three models employed are pre-
sented in graphical‘form, accompanied by an analysis and
interpretation. Figure 5.1. shows the plot of bond
strength versus deformation or slip as calculated by
each of the three models as well as the existing experi-
mental data. The bond strength values were obtained by
dividing the applied load on the connection by the total
surface area of the interface, namely the contact area
between the grout and pile surface.

In all three models, the same properties of grout,
radial geometry and stiffness of steel to grout interface
were used. However, Figure 5.1. shows an increase of
overall connection stiffness as the models become more
sopnisticated. This effect may be due to the different
distributions of shear stresses along the connection given
by the different models.

Due to the capability of the finite element model to
account for the non-linear behavior of the bond stress
versus deformation relationship, that model provides re-
sults in the plastic range of Figufe 5.1. as well.

Figures 5.2, 5.3 and 5.4 give the plots of longitu-
dinal normal stresses G}x, Gbx and Géx, respectively, as
a function of position in the material layers. These

graphs describe the distribution of load along the con-
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nection. As expected, when the load is applied at the

top of the jacket steel it is carried completely by the
jacket with no stresses seen in the grout or in the pile.
The stress in the jacket decreases with distance from the
top in an almost linear form whereas the stress in the

pile increases in almost linear form as well and the stress
in the grout follows a parabolic distribution which reaches

a maximum in the middle of the connection and becomes zero

. at borh ends.

The inclusion of Poisson effects in the three-dimen-
sional and the finite element models causes the decay of
stress in the jacket steel with distance from the top to
lessen and therefore larger stresses are seen in the lower
end of the jacket according to those models than those
predicted by the one-dimensional model. However the re-
sults of all three models for stress in the pile steel
are in good agreement. The deviation of the finite ele-
ment results for stress in the jacket from a smooth ,
almost linear distribution can be attributed to bending
effects in the jacket steel.

The longitudinal normal stress values in the grout
as predicted by the three-dimensional and finite element
models are in good agreement, however due to the deviation
of <73x given by the one-dimensional model from those

given by the other two models, the plot of Géx as pre-

dicted by the one-dimensional model differs drastically
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from Géx for the other two. Finite element results in
the plastic range for slip equal to 0.033 in. are also
included. The general form of the longitudinal normal
stresses remains the same és the finite element results
in the elastic range (slip equal to 0.030 in.) with an
appropriate increase or decrease in the.stresses in pro-
portion to the average shear stress.

Figures 5.5, 5.6 and 5.7 give the longitudinal dis-

placements u.x, u_* and ugx. respectively, as a function

J p
of position.

Figure 5.5. exhibits good agreement between the
three-dimensional and finite element models. However
agreement with the one-dimensional model (with its exclu-
sion of Poisson effects) is not as good. The same is true
of Figures 5.6 and 5.7 where once again the finite ele-
ment and three-dimensional models compare quite well,
with only a slight deviation observed for upx, whereas
the general behavior of the one-dimensional results does
not follow the seemingly correct trend of the other models.

As could be expected, the displacements in the jacket
steel follow a quadratic form and differ more discernably
in the upper part of the jacket nearer the load, while
the displacements in the pile steel followed a similar
quadratic form but with the increased displacement differ-

ential between subsequent positions along the pile occur-

ring in the lower end of the pile where that load was
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applied. The displacements in the grout are almost con-
stant.

It is apparent that the total bond strength of the
connection is a function of many parameters, one of which
is the existence of friction between the steel and concrete.
The frictional component is dependent on the normal forces
between the two materials. Although the effect of fric-
tion on the.bond strength is not considered herein, it is
of interest to present the radial normal stresses at the
interfaces. A more sophisticated model may include the
effect of these stresses on the relation between shear
stress and bond slip.

- Figures 5.8 through 5.13 give plots of the radial
normal stresses and the radial displacements for the three-
dimensional and the finite element models. The three-di-
mensional model predicts an almost linear distribution
of radial normal stresses. However the bending effects
accounted for in the finite element analysis show an addi-
tional "sinusoidal" component especially near the two ends.
At the jacket interface the finite element model gives -an
overall reduction in radial stress at the top and an over-
all increase in stress at the bottom. Similarly, effects
show up at the pile interface.

The bending}effeCts become less pronounced in the
grout layer however. Figure 5.10 shows a slight rippling

effect due to bending, with only slight deviations from
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the linear distribution predicted by the three-dimensional
model. Figures 5.8 through 5.10 show that, for the most
part, the axial loading system introduces tensile radial
stresses near the top and the opposite is true for the
bottom part.

Figures 5.11 through 5.13 give plots of radial dis-
placement of the jacket, the pile and the grout. Once
again the bending effects are predominant at the upper
and lower third of the connection while the middle por-
tion compares well with the three-dimensional. model.

Once again bending effects become apparent in the
graphs of circumferential (hoop) stress in the jacket,
pile and grout, presented in Figures 5.14 through 5.16.
The circumferential stress in the jacket as predicted by
the finite element model follows the three-dimensional
model well with the additional of the "sinusoidal" bend-
ing effects. The stresses in the pile and grout differ
gubstantially at the upper and lower ends of the connec-
tion implying that bending effects here are very pronounced.

It is important to note here that the non-linear be-
havior of the interface between the steel and the grout
does not drastically affect the values of the longitudi-
nal, radial or circumferential stresses or displacements.
Finite element results in the elastic range only differ
by a constant from those in the plastic range and this

difference is in agreement with the difference in the
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corresponding values of average shear stresses. The effect
of the non-linearity of the interfaces becomes evident in
the values of the shear stresses however.

Figures 5.17 through 5.19 show the plots of shear
stresses in the jacket, pile and grout for the two analy-.
tical models and for three finite element models. The
results of the one-dimensional model for shear stress
along the jacket steel interface show poor correlation
to the actual behavior. The three-dimensional and finite
element models are in good agreement, with the exception
of the jacket-grout interface. For the finite element
model which includes the non-linearity of the interface
and into the plastic range (slip equal to 0.043 in.), the
distribution of the shear stress is similar and the values
of shear are appropriately less.

The one-dimensional model provides better results
for the pile-grout interface than for the jacket-grout
one. The three-dimensional model and finite element model
for slip equal to 0.030 in. provide better results. Since
the average shear stress was calculated by using the con-
tact area of the pile-grout interface, the average value
of the stresses in Figure 5.18 must be equal to that value.
The three-dimensional model corresponds to a slippage of
0.030 in. and fo an average shear stress of 400 psi. This
model predicts a distribution of shear stress ranging from

330 psi to 470 psi with an average value of approximately
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400 psi. However the finite element model for slip equal
to 0.030 inch and ‘tavg = 400 psi predicts a distribution
of stress ranging only from 310 psi to 410 psi with an
average value of approximately 360 psi. This value 1is
lower than the assumed overall average shear stress and
implies an inadequacy of the finite element model to pre-
dict accurately the shear stress distribution.

Even though the overall behavior of the connection
was non-linear for the inelastic finite element model
in Figure 5.17 (slip equal to 0.043 in.), the jacket-grout
interface was not in the plastic range because the shear
stresses there are much smaller than those along the grout-
pile interface where inelasticity occurs. As a result,
the distribution of shear stress along the jacket inter-
face follows the same trend as the elastic results.

The results of the finite element model for slip

equal to 0.033 in. and T = 396 psi (Figure 5.18)

avg
show the effects of the non-linearity of the pile-grout
interface on the shear stress here. Within the top 4.000
in., the interface remains elastic. Beyond that point
the plastic behavior begins to govern and a gradual de-
crease in shear stress becomes evident. For slip equal
to 0.043 in. and 1:avg = 300 psi the finite element re-
sults show that the entire interface is in the plastic

range, and the shape of the shear stress distribution is

different from that in the elastic range. The difference
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is more noticeable near the bottom of the connection.

Figure 5.19 gives the plot of shear stress in the
grout. The cne-dimensional model does not adequately
predict the behavior of the grouted pile connection while
the three-dimensional model appears valid in the elastic
range. The finite element model predicts elastic shear
stresses which are less than those implied by the exXter-
nal load but the distribution of which agrees with the
three-dimensional model. .In the plastic range, the finite
element models show a change in the distribution of the
shear stress.

Figures 5.20 through 5.22 show the plots of shear
" stresses in the jacket, pile and grout when the interface
between the steel and grout is assumed very stiff or
ignored all together. As can be seen in these graphs,
a rough, stiff interface leads to a non-uniform distri-
bution of shear stress along the connection with peaks
near the ends and small values at the center. In this
case, the tendency to describe the strength of the connec-
tioﬁ by an equivalent average shear stress becomes inva-
1lid. This study shows that such a simplification which
ignores the stiffness of the steel-grout interface incurs
significant error and fails to accurately predict the

behavior of grouted pile connections.



-73-

_600 -500 -400 -300 -200 -100 0,
T}lpﬁ) — o ' ‘
T
[ 3
“
T =
li"’*-'l03l< T g
19,75 5
o
L&
4
19.5

Figure 5.20. Shear stress j for a very
stiff jacket-grout interface

-1050 -900 -750 -600 -450 -300  -130 0

4 ] 1 T 1] v ‘_;; O
T (psi)
1975
{19.5

Figure 5.21. Shear stress Tp for a very
stiff pile-grout interface '

NOLLISOd

(satpu.-)



-74-

-600 -500 -400 -300 -200 -100 0
—~— : | ' r - 0

7%(Fﬁ)

+ 8
2

L 3
(@]
=2

T

19.75 %
a

i )

1-

|

19.5

Figure 5.22. Shear stress Tg for a very
stiff steel-grout interface



-75-

CHAPTER 6: CONCLUSIONS AND
DESIGN RECOMMENDAT IONS

In this thesis, the behavior of grouted pile connec-
tions has been studied with emphasis on defining the prin-
cipal parameters which affect strength and on establishing
mathematical models which include the effects of these
parameters and predict the behavior of the connection.

The major conclusions of this study are:

1) The ultimate bond strength of grouted connections
depends mainly on the following two characteristics
of the interface between steel and grout: on the
stiffness (which determines the distribution of
shear stress along the connection) and on the
local bond strength of the interface. A rough,
stiff interface leads to a nonuniform distribu-
tion of shear stress along the connection, with
peaks near the ends and a small value at the
center. On the contrary, a smooth, flexible in-
terface leads to uniform distribution of shear
stress along the connection.

2) Poisson effects on the behavior of grouted pile
connections can be significant due to the fact
that the three-dimensional stress state can be an
important parameter in determining the amount
of friction bond since the latter is dependent
on the normal stresses on the interfaces. The
three-dimensional model presented herein can be
easily modified to anlude the dependence of bond
on normal stress.

3) No significant bending effects are present in
the longitudinal stresses but become more sig-

. nificant in the radial and circumferential
stresses., It is considered, however, that the
effect of bending on the strength of the connec-
tion is negligible. This justifies the use of a
three-dimensional model which includes Poisson
effects but ignores bending.

4) The current practice of describing the strength
of axially loaded grouted connections in terms
of an equivalent average bond stress appears
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justified for realistic stiffnesses of the steel-
grout interfaces.

The normal stresses and displacements do not change
appreciably when the behavior of the steel-grout
interface becomes plastic. More importantly, the
shape of the shear stress distribution changes

only slightly. Therefore the equivalent average
bond strength is a valid description of the strength
of the connection under both elastic and plastic
conditions of the steel-grout interfaces.

A three-dimensional analytical model was developed
which adequately predicts the behavior of grouted
pile connections. This model accounts for cylin-
drical geometry, all important material properties
of both steel layers and of the grout, for the
stiffness of the steel-grout interface and for
Poisson effects.

The post-ultimate slip-deformations along the con-
nection can be predicted only by the non-linear
finite element model.
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