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Chapter 1

Introduction

1.l General Remarks

In this thesis we are concerned with studying manufacturing systéms
with the goal of improving their performance, We use the tocl of
mathematical modelling of such systems i¢ reach that goal. In this
chapter simple examples of manufacturing systems are given, and
some major issues involved in the design and operation of these systems
are discussed. we also survey pasti research that investigated models
of manufacturing systems. The contributions of this work are also

discussed in this chapter.

1.2 Manufacturing Systems - An Overview

In many manufacturing processes a final product is composed of
a number of smaller subassemblies. To manufacture such a product it
is necessary to first prodﬁce each of i1ts components. These parts
are then assembled into larger subassemblies and so on until the final
product emerges from the system,

We will call all operations in such a process "assembly" operations,
although some may not invelve the physical assembly of several products,
That is, unitary operations such as drilling a single hole on 2 single
plece are, for the purposes of this research, treated as a special
case of assembly operations. All assemblies are carried out in work

stations which are also referred to as machines. This terminology is
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not‘meant to preclude operations done manually.

In manufacturing processes work stations or machines are subject
to failure, The term "fallure" here should be interpreted in the
broadest sense to include all cases where a machine is incapable of
stand-alone operation. In the case of a manual process, this could
include the operator taking a break. We éay a machine is up if it is
operational, and down if it has falled.

As an example, we consider a highly abstracted process that
mamufactures Formica table tops, & schematic of such a process appears
in Figure 1.1,

In this plant the Formica is cut to the desired size by one machine,
A éecond machine cuts the wood base to size, The Formica and the wood
tase are then pasted together to produce the table top. The latter
operation is a physical assembly.

Suppose that for example, the pasting machine fails, This implies
that the other machines in the system have to sticp working although
they are perfectly capable of pgrforming their functions., This is
because they have no place to put their output. This is clearly a
waste in the productivity of the system. Similar wastage is incurred
when one of the cutting machines is down. In this situation the pasting
machine and the other cutting machine areforced to stop working. This
is because the pasting machine is noi being supplied the necessary
parts by the_failed cutting machine, and because the other cutting

machine, as a consequence, has no place to put its cuiput.
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To reduce the strong coupling effect, a storage capabllity is
introduced between machines, These storages serve a dual purpose.
First, they provide space into which the outpult of a machine can go even
when the machine that is to accept that ocutput is down. Second, they
provide a backlog of subassemblies, which keep an assembly machine
operating even though one or more of the machines preoducing the
subassemblies is down. It is also clear that larger storage sizes
decrease machine coupling and hence provide for better productivity.

It is exactly this interplay between the sizes of storages or buffers,
the reliability of the machines and the productivity of the system that
is the subject under study.

A schemétic of a manufacturing network of the iype we are dealing
with appears in Figure 1.2. The sguares represent the machines and
the circles represent the siorage devices or tuffers., We call these

networks "assembly merge networks® (AMN's). An important special case

of the assembly merge network is where no assemhly takes place, This

is called a transfer line (see Figure 1,3). Transfer lines have

become one of the most highly utilized ways of manufacturing large
guantities of standardized items at a low cost (Koenigsberg (1959)).
For.this reason they have been the subject of & great deal of study
{see Section 1.4).

The study of AMN's is a significant step towards understanding
flexible manufacturing systems. However, octher issues such as routing

of parts through networks and scheduling that zre nct addressed here
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havé to also be studied to provide a complete understanding of flexitle

manufacturing.

1.3 Measures of Performance

In designing a manufacturing process two performance measures are

of great interest, The first measure 1s the production rate which is the

average number of completed parts that the system produces per unit time,

The second measure is the average in-process inventory, which is the

expected number of pieces in each buffer, That measure coupled with
the kﬁowledge of relevant cost information, such as cost/piece at each
buffer, can provide an average in-process inventory cost,

In the design as well as the operation of a manufacturing network,
one is interested in how performance measures are affected by changes in
the system. BSuch changes include improvements to the reliability of
machines, increases in the sizes of buffers, and possibly changes in

the network configuration.

1,4 Previous Work

Numerous authors have locked at the problem of modelling of
production systems, In this section & survey of some of the work rele-
vant to this thesis is presented.

Several papers survey the issues involved in the design and opera-
tion of production systems, Those papers inelude Buzacott and Hanifin

(19782 and 1978b), Hillier and Boling (1966), Koenigsberg (1959), and
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Soyster'and Toof (1976). Most of the production systems dealt with in
these papers are of the transfer line variety. Koenigsberg (1959)
mentioﬁs more complicaited assembly networks which use the transfer line
as.a building block,

Most of the literature, however, dealt with specific types of pro-
duction systems., All the studies to be discussed deal with movement of
discrete parts through the system. Because of the economic importance
of this problem, many simulation studies have been performed, such as
Anderson and Moodie (1969) and Kay (1972). However, these studies are
not discussed here, since the work to be reported is analytic.

One classification of the papers is by how they treat the three
most important issues described in our model, namely storage size,
reliability, and processing times.

First, there is the issue of the use and size of storages to be
placed in a production system. Avi-Itzhak and Yadim (1965), Hunt (1956),
Muth (1973), and Buzacott (1968) analyze systems with no buffer storage.
Other authors including Goode and Saltzman (1962), and Hunt (1956)
discuss systems in which the storage sizes are infinite., In fact
Jackson networks are analyzed under the infinite-buffer assumption
(see Jackson (1963), Disney (1975)).

Assuming that the buffers have finite capacity seems to complicate
matters considerably. Several authors including Artamanov (1977),
Avi-itzhak (1965), Buzacott (1971, 1967, and 1972), Gordon and Newell

(1967), Hatcher (1969), Hillier and Boling (1966), Sheskin {1974),
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Geréhwin and Schick (1978, 1979 and 1980), Schick and Gershwin (1978),
Gershwin and Berman (1978), and Gershwin and Ammar (1979) have considered
the effect of placing finlte capacity storages in productlion sysiems.
Most have been able to analyze two-stage systems with no success in
generalizing to more complex configurations. Notable exceptions are
Buzacott (1967) in which the author uses approximations to solve a
three stage system, Sheskin (1974) in which a mmerical solution to
three and four stage systems is obtained. However, Sheskin had to mzke
a less than satisfactory assumption on the reliability of machines, As
far as this author is aware, Gershwin and Schick (1979, 1980) present
the only complete‘solution to a three-stage production system with
finite buffers made under plausible assumptions. The work reported here
is an immediate outgrowth from that work. |

The second important issue in production systems is reliability,
Several authors analyze such systems under the assumption that the
machines are totally reliable, Those include Avi-Itzhak {1965), Goode
and Saltzman (1962), Gordon and Newell {1967), Hillier and Boling (1966),
Hunt (1956), Muth (1973}, and Neuts (1965). Artamanov (1977), Buzacott
(196_?, 1971, and 1972), Sheskin (1974), Gershwin and Schick {1979, 1980)
and Gershwin and immar (1979) consider unreliable machines in the
formulation of their models,

The third issue on which authors differ is the modelling of the

processing times of the stages in the preduction system, The standard
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queueing theory assumption of exponential service time is made in the
Jackson network literature. Other authors have chosen to use this medel
in the context of production systems such as Buzacott (1972), Gordon and
Newell (1967), Hillier and Boling (1966), Hunt (1956), Muth (1973), Neuts
(1965), and Gershwin and Berman {1978). Some papers deal with more
general service time distributions such as Erlang. These include
Gershwin and Berman (1978), Hillier and Boling (1967), and Berman {1979).

In the model presented here we use the regular or deterministic
processing time assumption, Authors which have chosen to use this type
of processing time include Avi-itzhak (1965), Artamanov (1977), Buzacott
(1967), Goode and Saltzman (1962), Sheskin (1974), Schick and Gershwin
(1978), Gershwin and Schick (1978, 1979, 1980) and Gershwin and Ammar
(1979).

We are aware of only one work,Harrison (1973), that describes a
queueing model of an assembly operation. The assembly machine is allowed
to have a general service time distribution. A general arrival process
is assumed. Harrison's work, however, has a different goal from the one
sought in this thesis.

Also not included in the above discussion are wdrks that deal with
the qualitative behavicor of the models of manufacturing systems. One
such issue is the reversibility of itransfer lines, that is,
how the order of machines in a transfer line affects performance,

Significant results in this area are by Muth (1979), and Dattatreya (1978).
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In these two works it is proved that production rate of a series of
work stations {a transfer line) remains unchanged when the order of the
stations is reversed., Hillier and Boling (19??) conjecture that this

result is true for their model,

1.5 Contributions of this Thesis

This thesis is a significant step towards understanding production
systems as well as queueing networks with finite waiting room. Specifically
the contributions fall into three main categories:

1 - Medelling: The formulation of a discrete state, discrete-tine
model for a general assembly system,

2 - Qualitative Apalysis: Eguivalence properties of assemtly merge

networks are established in this thesis, Specifically it 1s shown that
there exists eguivalence classes of AMN's. All members of the same
equivalence class have related performance measures, Thus one need only
solve for the measures of performance of a single member of a given
equivalence class., These propertles are proven in the context of the
model developed., However there i1s evidence to the effect that such
ideas are extendable to more general models,

3 - Solution Technigque: We analyze the solution procedure developed

in Gershwin and Schick (1979, 1980) for two-and three-machine transfer
lines., The aim of the analysis is to relate the two-mzchine solutiecn to
the three-machine one, and to emphasize features that will extend the

soluilon to more complicated systems.
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1.6 Thesis Qutline

In the subsequent chapters, a formal mathematical model of assembly
merge networks is presented, equivalence properties of such networks
are discussed and a method of analysis is proposed.

The model description is carried out in Chapter 2. 1In
Chapter 3 theorems and corollaries relating to transfer line reversibility
are proven, and in Chapter 4 we extend the reversibility ideas to more
general AMN's, Chapter 5 is an overview of a solution technique for two-
and three-machine AMN's and conjeciures on how it might extend to more
complex AMN's, Appendices I, and II contain proofs of some of the
theorems presented in the main text. In Appendix I we prove theorems
presented in Chapter 2 relating to the perfcrmance measures of AMN's,
Appendix II has the proof of an equivalence theorem presented in

Chapter 4. 1In Appendix ITI we derive the analysis result of Chapter 3,
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Chapter 2
The Model

2.1 General Remarks

In this chapter a formal description of an assembly merge network
is presented, As was mentioned in Chapter 1, a very important special
case of an assembly ﬁerge network is a transfer line, where no assembly
takes place. A model for a K machine transfer line has been formulated
in Schick and Gershwin (1979) and Gershwin and Schick (1980). The
model described in this chapter is an extension of that model and includes
it as a special case. Therefore, it must be emphasized that the term
"assembly" is used here in a general sense, and includes the case where
a machine operates on a single item and thus does no physical assembly.
For example, in this sense all machines in a transfer line are assembly
machines, Also the term "pari" (or "piece") refers to items flowing
through an assembly network, That includes subassemblies and assemblies,
At the end of this chapter a discussion of the disassembly operation
is included. The need for this discussion will be apparent in the ideas

presented in Chapter 4.

2.2 Model Assumptions
An assembly merge network (AMN) consists of K machines, Machine i
can be fed by, i.e. receives parts from, a set L{i) of buffers called

the upstream buffers of machine i. Machine 1 in turn feeds exactly one

burfer, D(i), called the downstream buffer of machine i (Figure 2.1).
A machine takes a specified number of parts from each of its buffers

simultaneously, assembles them, and produces a single part, That pari
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is then put into the downstream buffer.

-There are two special cases of machines. An input machine 1s one

that does the first processing on the raw material entering the system.
It is assumed that buffers upstream of input machines contain an unlimited

supply of the required raw material, An output machine is the one from

which the final assembled product emerges. It is assumed that the buffer
downstream of the output machine has infinite capacity. In general an

AMN is assumed to have several input machines, but only one output machine,
(Note that this is equivalent to saying that the network is connected.)
Also muffers upstream of input machines and downstream of the output
machine are considered to be outside the system of study.

To be able to operate, machine i requires ‘{j pieces from each of
its upstream tuffers_ ;€L (i). If the number of parts in buffer j is
less than Kj, the machine is said to be starved., Also a machine needs
to have room for one assembly in its downstream uffer to accommodate its
cutput., If not, the machine is said to be blocked, Because of the
assumptions on the buffers upstream of input machines and downstream of
the ouiput machine, an input machine is never starved and an ocutput
machine 1s never blocked.

In én AMN with K machines there are exactly K-1 buffers. This is-
because every machine except the output mzchine is follewed by exactly

one buffer. Buffer i feeds exactly one machine, its downstiream machine

which is labelled di' Buffer i is fed by exactly cne machine, its upstrean

machine labelled [f, (see Figure 2,2). Buffers are assumed to have finite

capacity., That is, buffer i can hold noc more than Ni pieces (or assemblies),
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where Ni'is a finite number., .It is precisely this assumption that leads
to tlockage of machines, and makes the analysis of such systems difficult,
Nevertheless, the finite-capacity buffers assumption is crucial in making
such a model realistic,

Also assumed here is that all machines have the same deterministic

processing time., This is taken to be the btasic unit of time throughout
the following analysis,

Machines are modelled as unreliable, with geometrically distributed times
.betWe-en failures (TBF], and times to repair (TTR). This implies that the TBF
and the TTR are integer multiples of the basic time unit. Also implied is

that the probability of failure (or repair) during a given time unit,
given that the machine is up (or down) in the previous time unit, is the
reciprocal of the mean TBF (or mean TTR). The TBF &nd TTR) is measured
during times when a machine is operating (or down).

The repair process (or a failed machine) tekes place regardless of

the state of any other machine or buffer in the system, In particular,
it is unaffected by the states of its adjacent {upstream and downstream)
buffers. However, it is assumed that the failure of a machine can take
place only when the machine is operating on a piece. Machines do not
0perate,'and thus cannot fail, when they are starved or blocked.

2.3 Describing the siructure of an AMN

Consider an AMN with K machines and K-1 buffers. Without loss of
generality one can impose a labelling scheme as follows:

- label the output machine as machine K;

- Arbitrarily label the rest of the machines with integers between

1 and K-1, not repeating any label,
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'~ label each buffer with the label of its upstream machine,
Figure 2.3 provides an example of the above labelling scheme for an AMN
with seven machines.

For the special case of a transfer line we establish the convention
that machines are labelled in ascending order from input tc output. Thus
the input machine is labelled 1 and the second machine has label 2, and
s0 on until the output machine which has label K (for a X machine transfer
line).

One can describe the structure of an AMN completely by specifying the
list of upstream buffers of each machine. Recall that L{i) is the list
of upstream buffers of machine i, To describe an AMN with K machines we
need a list of the following form:

(L(1), 1(2), +.uy L(K))

Where if machine ! is an input machine, L(i)=¢, the empty set. For
example, to describe the network in Pigure 2.3 we write:

(¢, {1, 6}.,¢, ¢, {3}, {2, 5 4})

Two other examples appear in Figure 2.4,

An alternative way of describing the network labelled in the above
manner is by listing the downsiream machine of each buffer as follows:

(44, dyy veey @

K1)

For example, to describe the AMN in Figure 2.4 we write:

(2,7, 57,7, 2).

The iatter dexcription is more compact than the former. However, it
has the disadvantage of not having the sets L(i) immediately available.

As will be seen in Chapter 5, these seis are important in the analysis of
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the model.

2.4 System Parameters

The following parameters are needed io describe the system; (Note
that a complete system description requires the topology of the network
in addition to system parameters,)

Fer each machine i,

P; = probtability that a machine i fails in the next time period

given that it is operational and neither starved nor

blocked in the present period.
ri = probability that machine i is repaired in the next time

period given that it is down in this -time period.

For each tuffer i,

N.
i

Y.

1

capacity of btuffer i,

number of parts that machine di takes from buffer i in
one time unit.

2.6 State Space Formulation

The state s(t), of an AMN with X machines at time 1, 1s described by:
s(t) = @(t), x(x)) ,
Where n(t) =(n1,(t), seer Bp g (),
and 9_«(t.) = (cxl(t), cens ock(t)) .
In the above
ny (t) = number of parts in buffer i at time t.

0 nl(t) < N, for all i=l, ..., K-1.
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Also 0 if machine i 1s down at time t

oy (1)

1 if machine 1 is up at time t
for all i=l, ..., K.

The system is.modelled as a discrete state, discrete time Markov
process., This is because the probability of being in a particular state
at time t + 1 depends only on the state of ithe system at time t.

It is assumed that siate transitions occur in the following manner;

- Machines change state from & (t} to %(t+l) depending on informa-
tion provided in (n(t), o (t)). In particular, whether a transition is
possible depends on whether or not a machine is starved or blocked,

- Buffers undergo their change of siate fromn(t) to n(t+l) depending
on o (t+1) and n(t).

Physically this means that the machines undergo transitions at the
beginning of a period, vwhile btuffers change state at the end., This
assumption is made for mathemztical convenience, as evidenced in Chapter
5.

An important consequence cof this assumption is that a machine cannot
process a part if it is starved even though the upstream machines can
produce the needed parts., Similarly, a blocked machine cannot start
processing even 1f the downstream machine 1s ready to take in a piece.

Table 2.1 lists the machine state transition probabilities. For
example, the probability thati machine 1 1s down at time t+1 given that it
is up and neither starved nor blocked a2t time t is equal to Py Also if

machine i is blocked and operationzl, it cannot fail, Thus the transition
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n, (t) n, (t) & (t) o (t+1) PROBABILITY
J 1 1 i
jeL(i)
- - 0 0 1 -,
i
- - 0 0 r.
i
- N, 1 0 0
i
- N, l 1 1
i
0 for any j - 1 0 0
0 for any j - 1 1 1
for all j
<X -
2;33 i 1 1 1 Py
for all j
Table 2.1 Machine Transitions

Prob [& (c+D| e (1), ng (8,0, (0),3eL()]




-32-

between qi(t)=1 to ai(t+1) = 0 has zero probability if n.l(t) = N,

In Table 2.1 the index j in the first column refers to a buffer upsiream
of machine i. The index i in the second column refers to the buffer
downstream of machine 1.

Table 2.2 describes how the buffers change state after the machines
change state. Recall that the buffer state at time t+l depends only on
buffer states at time t and machine states at time t+l. Therefore the
transitions described in Table 2.2 are of protability one, and all other
events have a zero probabllity. -

In order to understand Table 2.2 consider Figure 2.5. Buffer i is
affected by the buffers in L(i) and L(di), as well as by buffer d,. It
is also affected by machines i and di' Machine 1 is starved if for some
j e L{1) buffer j contains less than Xj parts. Similarly, machine d, is
starved if for some j € L(di) buffer j contains less than Kj parts. Mach-
ine 1 is blocked if buffer i is full and machine di is blocked if buffer
di is full,

We now consider four cases in Table 2.2 as examples:

Case 1: Here neither machine 1 nor machine di is starved or tlocked,
Then if machine i is up at time t+1 it deposits a part in buffer i. If
it is down no paris are added to buffer i. Similarly if machine di is
up at time t+1 it takes Y3 parts from buffer i, Otherwise no parts are
taken from buffer i. Thus the value of ni('t+1) can be obtained from
-ni(t)hy:

n(t+1) = n.(t) - ¥, 'R (t+1) ¥ o (t+1), (2.1)
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3 o
case nj(t) nm(t)' ndi(t) L ni(t+1)
jEL(1) meL(dij
1 >, DA <Ndi n (t) - ¥, Ndi(t+1) +6¢ (t+1)
2 ZXJ - , m#i Ndi . ni(t) + D(i(t+1)
£ N,
3 )}fj 0 for any m | - ni(t) +0‘i(t+1)
< N,
- - &
4 28 omtt <N, n (6) =¥, % (e41)
N . i i
i
- &=
5 0o ¥ <xy n, (6) - ¥ q (5D
¥y 3 for all m
6 1 - R Na. n,(t)
N * :
i
7 0o
for any j - Ndi ni(t)
8 0 0 - n_(t)
for any j for any m +
9 - 0 - n,(t)
for any m#i +
Ni

Table 2.2 Possible Buffer Transitions. For these transitions
p[ni(t+1)l nj(t), jeL(di), nm(t), meL(di),nd'(t), mi(t+1), md.(_t:ﬂ)l = 1.

For all other transitions this probability 1s zero. *
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Case 2: In this case machine i is neither starved nor blocked, but

machine di is btlocked. Therefore machine d, cannot operate and buffer 1

i

has no parts removed from it at time t+l. Machine i1 can add a piece if

it is up at time t+1. Hence

n, (t+1) = n, (t) + x, (t+1). (2.2)
Case 5: Here machine i is starved while machine di is neither

starved or blocked. Thus machine 1 1s not operaticnal and cannot add a
piece to buffer i. However, machine di can take fi parts from buffer
di if it is up. Hence

n, (t+1) = n, (t) - Xi x4, (t +1) {2.3)

Case 71+ In this case machine 1 is starved and machine di is blocked.
Hence neither machine can add parts to or take parts from buffer 1. Thus
the level of buffer i remains unchanged from time t to t+l. For this case

a, (t#+1) = n, (t) (2.4)

All other cases are treated in the same manner,

In summary if either of the machines i or di is starved or blocked
at time t it does not contribute any change to the level of buffer i at
time t+l. However, if machine i is neither starved nor blocked at time
t and is up at time t+1 then it adds a part to buffer i at time t+1. If
machine di 1s neither starved nor blocked ai time t and is up at time
t+1 then it removes Xi parts from buffer i at time t+1.

For all the cases in Table 2.2 the following is a summary of the
machine conditions (starvation or blockage)

Case 1 - Neither machine i nor machine di is starved or blocked.

Case 2 - Machine di is blocked,
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Case 3 - Machine di is starved.

Case 4 - Machine 1 is blocked.

Case 5 - Machine 1 ié starved,

Case 6 - Both machines, i and d;, are blocked,

Case 7 - Machine 1 is starved and machine di is blocked.,

Case 8 - Both machines are starved,

Case 9 - Machine 1 is blocked and machine di is starved.

Note that if machine i is an input machine, Cases 5, 7, and 8 are
not applicable. Also if machine d, is an output machine, Case 2, 6, and
7 do not arise, Case 9 is not applicable when L(di) contains only one
element,

2.6 Markov Process Formulation

We are now concerned with using Tables 2.1 and 2.2 to consiruct a
discrete time, discrete state Markov chain, We define the transition

probability to state 5., at time t+1 given that the system is in state S,

2

at time %t as

T (s,, 1) = Prob [s(t+l) ==, | s(t) =5s,] (2.5)

(n(t+1), « (t+1)) ]

Prob [s(t+l)

s(t) = (n (1) , % (+))] (2.6)
K-1
=TT Prod [ny(+42) | = (1), je0(3), n (1), mel(q,), ny (1),
&, (t+1}, ddi(i-t—l)]
X

e TT 2rov [og(e)] my(0) 4 5e 1) 4 my(0) L& (0] (2.7)
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The value of expressions (2.7) can be determined from Tables 2.1 and

2.2 as follous:
Prob[ni(t+1) | nj(t) , je L(1), nm(t),hneL(di), ndi(t), n(i(t+l),
Ndi(t+1)]
1 if the quantities ni(t+1), nj(t), 'nm(t),
%, (t+1), cxd_(t+1) conforms to one of the cases
in Tatle 2?2
0 Othervise
(2.8)
A product of such expressions as in.8) is 0 or 1. The value of
prov [# ()] n (8) . e L), B(8), & (3)]
can be obtained from the last column of Tabtle 2.1, Thus

K .
T(s,50) = @ TT Prob[x (+1) | ny(t), Je1(), ny(t), &, (1)]
1=1

or
@ o (2.9
The pair (sz,sl) is in case Dof (2.9) if
Prob [ n,(t+l) ] nj(‘t), je 1(3), nn(t), meL(d,), ndi(t),oai(t+1),
ddi(t+l)]
= 1 , ¥ 1= 1, vvo , K-1 (2.10)
The value of‘T(SZ, s,) forms the transition matrix T. The matrix
is square with-digensions
K-

m=25 T1 (N, +1) . (2.11)
i=1
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For this to be a valid Markov process we need to show that T is a
stochastic matrix, that is that T possesses two properties. First all
its elements need to be non-negative. This is obvious from (2.9). The

second property of stochastic matrices is that

S T(e,sy) =1 (2.12)
52

From 2,9 we see that

1 1 K
% (s,,5,) 1(%}:&»"%&1)% prob[ %, (11)] n(4), e L(i).(ni(t;.w(t)]
2.13

Equation (2.13) can be rewritten as (See Gershwin and Schick (1979)
¥ 1
Z1(s,s) =TT = Prob[ (++1}{ n, (), JeL(1), n (%), x,(¢)]
S, -1 % (t+1) = 0 )
(2.14)
From Table 2,1 wWe have

Prob [mi(t+l)

01 n (%), JeL(D), n, (1), %, ()]

1) ny(1), JeL(s), ny(), &, (1)) = 1 (2.15)

+ Prob [o(i(t+1)

Thus €.14) becomes
= T(s

S2

=

Z'Sl) = (2.16)

We have now shown that matrix T is a stochastic matrix. This proof is
similar to the one provided in Gershwin and Schick (19?9) for the special
case of a transfer line. In the same work it is shown that the Markov
_process under consideration is ergodic. For the more general Markov chain
describing an AMN it can be argued similarly that the process is ergodic,

For the proof the reader is referred to Gershwin and Schick (1979).
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2.6.1 Transient Behaviour

As mentioned before the state of an AMN at time 1s defined by

s(t) = (a(t), (%)) (2.17)
We say

p;(t) = Prob (s{t) =s,). (2.18)
That is pi(t) is the probablility of the system being at state Sy at time
t . Also let

T, )1
p (&) = szt) (2.19)

p (%)
L "
where M is the number of states {see equation (2.11) ). The probability
vector p(t) is given by:
p(t+1) = T p (t) (2.20)

and the normalization eguation
Z_p{t) =1 (2.21)

From (2,25} we can obtain the following relation
t
p{t) = T p(0) (2.22)

2.6.2 Steady State Behaviour

In analyzing this system it is assumed that steady state has
been reached, That is, 211 the effects of the starting conditions have
disappeared. This is appropriate for systems that have been running for
a "long" period of time relative to the characteristic system times

{processing failure and repair times)., The steady siate assumption is



—40-

a good one for manufacturing systems if one is interested in their
behaviour after a sufficiently long time has elapsed since start-up.
The aim of the analysis i1s to calculate the performance measures
discussed in Chapter 1. These calculations require the values of the
probability of the system being in each state. The steady state
probability of being in state s = (Q. & ) is denoted by
p(s) = p{n,& ) = p(n),eean Maeees xp ) (2.23)
Ergodicity for & discrete time, discrete state Markov chain
implies that the steady state probabilities (2.23) exist. 1In particular,
p(si) = %Jinw Prob [s{%) = si] (2.24)
The limiting steady state probabilities, p(si) can be determined

by the matrix equaticn:

Tp=p (2.25)
p(s,)

where p = E (2.26)
- P(SH)

in conjunction with

M
z. p(s,) = 1. (2.27)

i=1
Equations (2.25) and (2.27) can be determined by taking the limit, as
t-> o© , of eguations {2.20} and {2.21),

We can rewrite equation (2.25) as

M .
P (Sj) = :E: T (sj, Si) D (si) ' (z.28)
i=1
. J=1, .... M
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Equations (2.28) are called the steady state transition equations

describing the Markov chain,
(See Bharucha-Reid (1960), Feller (1966) and Howard {(1971))

For the systems at hand the number of states can be quite large
(see equation (2.11) ). This makes a direct solution of the steady
state transition egquations by standard simultanecus linear equations
techniques impractical., A method of solution which circumvents this
difficulty, utilizing the special stiructure of this prbblem is presented
in Chapter 5.

Foxr the purpose of reducing complexity only the special case
where Ki =1 for all i is studied here, This simplifies the analysis
while retaining many of the important features of the modsl.

2.7 Performance Measures from Steady State Probabilities

In this section we show how the performance measures, discussed
in Chapter 1, can be calculated directly from steady state probabilities.
Only the important results are shown in this section. The detailed
proofs of these results are contained in Appendix I,

First we focus on the production rate of an AMN., Define HK (t)

as the number of parts released from machine ¥ (the output machine) in

the time interval [0,t] . We then define production rete as follows:
. R, (t)
1
R- m _K_° (2.29)

t—>oo t
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Proposition 2.1

R = i:inao _HEJ.EiL_ = Prob [NK(t) =1, nj(t-l)> Or (2.30)

\o‘j € L (x)]

The procf of proposition 2.1 1s presented in Appendix I.

Proposition 2.1 says that the production rate is the same as the
probability of the output machine producing a part at time ¢+ . The
difficulty with expression (2.30) is that it depends on the state at two
time instants and thus cannot be calculated from steady state probabilities.
Proposition 2,2 resolves this difficulty.
lPerosition 2.2
Prob [ x (%) =1, nj('t-l)> 0, \*J.c—. L(¥)]

R

prob [ () =1, () > 0, ¥ e 1(K) ] (2.31)

The proof of proposition 2.2 is in Appendix I.

Expression (2,.31) allows for a straightforward calculation of

production rate as follows:

R = Prob [uk(t) =1, n, (ty > 0, ¥ je. L(x) ]

1 Ni Nj 1
= Z rew Z P 2 ‘e P(nl LN HK_l ml ...JqK-\’ )
&x_=0 & =0 n, =0 n.=l ! r '
1 K-1 . J (2.32)
le (k) 34 L(k) =

We now define a related measure of performance, the rate at which an input
machine takes parts. Let D j(t) be the number of parts taken in by input

machine j in the interval [O;t] « Define input rate;
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D.(t)
o lim _J- 7
D= " | {2.33)

For the quantity Dj the following 1s proven in Appendix I.

Proposition 2.3

For J an input machine to an AMN,

TR & ~ prob [#.(t) = 1, n.(t-1) < N, ](2.3%)
Dy = tse % TERR LG T B 3o

Proposition 2.4

For input machines j to an AMN

D.
J

Prob [ixj(t) 1, nj(’o-l)< Nj]

prob [ (t) = 1, ny(t ) < v, ] (2.35)

In a manner similar to the expansion of R, the production rate as

a sum or probabilities, (2.35) allows us to write:

1 N:-1 N,

P S 1 x
D-= e LN P n ll.n_ (x LB B ] u'_ “0 LI I | k
A e, 1,00 k-1, L, AL, T, L T k)

iy L

, 1#j (2.38)

We now state a conservation of flow theorem., Conservation of
flow certainly nolds for a real finite capacity production system, provided
there is no mechanism for part creation or destructicn. The folloﬁing
theorem ésserts that conservation of flow does indeed hold for the
pressent AMN model,

Thecrem 2,1 Conservation of flow

For a k-machine AMN

Dy =R For all input machines j (2.37)

Proof: Theorem 2,1 is proven in Appendix I.
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Theﬁrem 2.1 states one possitble version of conservation of flow: The
rate of input into input machine j is the same as the production rmte
of the system, Note that the intention of the conservation of flow
theorem here is not to show that mass flow is conserved. What we are
concerned with here is that the input rate of each part type, 1n parts
rer unit time, is equal to the ocutput rate in parts per unit time,

The second performance measure described in Chapter 1 is the
mean in-process inveniory at buffer i; we denote this by ﬁi. The
value of ﬁi can be calculated in a straighiforward manner from the

steady state probabilities.

Bs 2 oy p(s) (2.38)

i all s

2.8 The Disassembly Operation

Assenbly merge networks contain machines that perform one type
of operation, namely: an assembly. Recall that "assembly" here includes
single part operations as well as physical assembly operations.

In this section we describe briefly another type of operation:
disassembly. This is needed for the discussion in Chapter 4 to be
complete. Furthermore, the AMN model in this Chapter can be generalized
to include machines that perform disassembly.

Consider the following variation on the Formica plant exam?le
described in Chapter 1. Assume that thé ultimate product is not the
assembled table top but two tables of different sizes. After the
assembled top emerges out of the pasting machine it passes through a

sawing machine that cuts the top into two tops of the desired sizes.,
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Fach then goes to a separate machine where the tables are manufactured.
(See Figure 2.6). The machine where the sawing takes place is an

example of a disassembly machine, (If the pasting and cutting operations

are performed in one machine, then the machine is an Assembly-Disassembly
machine). Generaliy speaking a disassembly operation involves breaking
up a single part into several smaller parts. Thus disassembly machine

i is fed a plece by its upstream buffer L({i) and as a result of the
operation it puts a predetermined number of pieces in each of its down-
stream buffers je€ D (i) (See Figure 2.7).

Note that the disassembly operation is basically a reversed
assembly operation, This idea is expounded in Chapter 4.

A machine that combines the assembly and disassembly capabilities
is one that has a set of upstream buffers, L(i), and downstream buffers
D(i}. 7Parts are taken from buffers in L(i), and assembled into one
piece, The machine then takes the assembled product and disassembles
it (hopefully in a manner that does not just reverse the assembly opera-
tion just performed). The ouiput goes to the downstream buffers. Figure
2.8a is a schematic of an Assembly-disassembly machine (ADM). Figure 2.8b
is a typical network constructed using the ADM as a building block., It
is conjeétured that such networks are amenable to the same kind of

analysis that is presented in this thesis.
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¢

Figure 2.7

A Disassembly Machine
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Chapter 3

Transfer Line Reversibility

3.1 General Remarks

Studies on transfer line reversibility are concerned with investi-
gating the effect of reversing the order of machines in a transfer line on
performance measures. Several works in the literature have dealt with
this issué, (e.g. Muth (1979), and Dattatreya (1978)) . The basic
result of the reversibility siudies that prevails in the literature
is that when the order of machines of a iransfer line is reversed the
production rate is unchanged,

We show that this is indeed true for our tfansfer line model (a
special case of the AMN model)., We also show that the other performance
measure of concern, namely mean in-process inventory, does change. The
latter result, as far as this author is aware, does not appear in the
literature. One clear implication is that for transfer lines that
can be modelled using our AMN model, reversing the order of machines
can change the performance of the system.

Qur basic tool for arguing the above results is the notion of a
hole, or empty space, in a transfer line. (We define this more formally
later). We find it useful to consider the motion of the empty spaces
(instead of parts) in the transfer line. We note that Newell (1979)
also considered hole movement through a queueing network, However, that

notion is not put to the same use as is done in this chaptler.,
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It should also be noted that some of the Theorems and Corollaries
stated in this chapter are motivated by numerical experience obtained

by Pomerance (1979) for three machine transfer lines.

3.2 Part-Hole Duality

In analyzing production systems (AMN's being an example) one
focuses on the motlon of parts through the stages of the producticn
process. Alternatively one can just as easily analyze the motion of
empty spaces in the system. That is there 1s 2 one-to-one correspondence
between the number of empty spaces and the number of parts in a system.
For example conslder a finlte buffer of capactly N. If at any time t
the number of parts in the buffer in n{t), the number of empty space
n'(t) is determined unlquely by:

n'(t) = ¥ - n(t) (3.1)
We call the empty spaces, “holes",(borrowing terminology from semi-
conductor physics).

Consider the behavior of the AMN model when one analyzes the
motion of hﬁles instead of parts, When a machine produces a part it
also, at the same time, takes a part from each of its upstream buffers.
By deposiiing a part in its upstream buffer, the machine decreases the
number of holes in that uffer by cne. Also by taking a part from each
of its upstream buffer 1t increases the number of holes in each of those
buffers by one. Thus a machine g¢ould be thought of as taking a hole
from its downstream buffer and performing a disassembly operation on it,

as a result of which a hole is deposited into each of its upstream buffers.
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Itlhas been argued that an event of part producticn always corre-
sponds to an eveni of hole prpduction, i.e. adding a hole to aﬁ upstream
buffer. Also, in the AMN model, when a machine is down it produces no
parts. Thus it cannot produce holes. Also a machine cannot fail when
any of its upstream buffers is empty because it has no parts to take in
to produce the assembly., However by (3.1) an empty buffer is full of
holes, Therefore a machine that is starved of parts is blocked by
holes and can neither operate nor fail.

Using the same line of argument one can also conclude that a
machine blocked by parts is starved by holes and hence can neither
operate or fail, Therefore we have shown that failure and repair play
the same role in cur mcdel whether one considers the metion of parts ox
the motion of holes. However, hblockage and starvation exchange rcles
when one considers the flew of holes instead of parts.

Finally, if one has an infinite storage for parts {(as there is
downstream of the output machine), then there is an infinite number of
empty spaces, or alternatively infinite supply of heoles., Similarly,
an infinite supply of parts (which appears upstream of each input
machine) corresponds tc an infinite siorage capacity for holes.,

To summarize, we have shown a well defined duality between paris
and holes in our model for an AMN. See Table 3.1. This duality
suggests thaf locking &t the moticn of parts or the motion of holes in

a system should not result in any new information.
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Parts Holes
n N-n
&GO room o0 supply
o0 supply O  room
Blockage Starvation
Starvation Blockage
Failure Failure
Repair Repair

Table 3.1

Part-Hole Duality
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3.3 Thé Strong Reversibility Property

In this sectlon we present and prove several properties related to
transfer line reversibility. This 1s used as an example of how the
hole concept can be utilized to construct equivalent systems, Recall
that a transfer line is a speclal case of an AMN in Chapter 2, (See
Figure 1.2},

Let the two AMN's F and R be defined as follows:
F= (¢, {1}, {zt..odxa} ) (3.2)

R

(é, {2}, {2}, {1} ) (3.3)

Both systems are transfer lines.

F F F R R R
Let Ty Pi . Ni and T, Py s Ni be the system

parameters for F and R respectively.

We say R is the reverse of F if and only if

F_ R
S G o G-4)
PiF = PIlg-i+l (3.5)
F_ R -
Noo= % (3.6)

In other words, R is the reverse of F, if the machines and buffers

in R are arranged in the opposite order to the arrangement in F.
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To motivate the theorem proving the strong reversibility property,
conslider the motion of holes in system F as defined above. Holes in
system F enter ‘the_ systen; through machine K, which is identical to
machine 1 in R, where paris enter that system. The holes in F then
proceed through the system until they exit via machine 1, which is
identical to machine K in R where parts exit that system. At any time
t if buffer i contains ni(t) parts, it has §F

i
the same as the number of parts in buffer K-i of system R at time *.

- ni(t) holes, This is

It appears that holes go through system F in the same manner as parts

go through system R, The above argument suggests the following theorem.

Theorem 3.1: Stirong Reversibility Property

FOI‘ i=1,|o|, K—l, j=l,lll’K

For all ni,O\(nigNi and for all DKJ.=O,1
F
P (nll"' 1 nK-l' “1'.'., KK)
- (x (1 e s ) (3.7)
1’.'0 » nK_l’ 1'--- ] K .
when
HE L LY (3.8)
and
= %xg 41 (3.9)
© Proof:

Consider Tables 2,1 and 2.2 as specialized to transfer lines.
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Table 3.2a contains the transfer line machine transition table, and
Table 3.3a is the transfer line buffer transition table. (These
tables appear in a less compact form in Schick and Gershwin (1978).
In Table 3.2b we modify Table 3.2a by conditioning the
- F
ui(t) - to -, (t+1) transition on Nz-l —ni_l(t) and N, - ni(t)

instead of on ni_l(t) and ni(t). For example where Table 3,la states

that n, ,(t) =Owebave XN, -n (1) = N_|  in Table 3.1n.
Consistently with (3.8) and (3.9) we can define
SSRIONEN AR NN O (3.10)
n.I::_i(t) = NJ;‘ - ni(t)l (3-11)
and
uk_iﬂ(t)‘ = &, (1), (3.12)

Also from the definitions of F and R we have

F _ R
Ty T Tg-i+41?
and
F__F
Py 7 Pgisa,

From the substitutions (3.10) through (3.1%) we can obtain Table 3.2¢
from Table 3.2b, Note that Table 3.2¢ 1is the machine transition table
for system R, (To see this clearly K-i+l by j in Table 3.2¢.)

We now manipulate Table 3.3z in a similar manner. First find the

F - - yF
value of N,® - n, (t+1) conditioned on the values of Ny - ni—l(t)"
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n,_,(t) ni(t) &, () o (t+1) PROBABILITY
F
- - 0 -
0 1 T,
- - 0 1 ri
0 - 1 0 0
0 - 1 1 1
F
- Ni 1 0 4]
F
- Ny 1 1 1
F F
>0 < Ni 1 0 Py
F F
>0 <Ny 1 1 1 -p;

Table 3.2a Machine Transition Probabilities for a Transfer Line
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F F ' ‘

Ny ni_l(t) Ny - n, (6 o, () D(i(t+l) PROBABILITIES
F

- - 0 0 1l - ry
- - 0 1 ri

F
Ny g - 1 0 0

F
Ny - 1 1 1
- 0 1 0 0
- 0 1 1 1

¥ F
<Ni_1 >0 1 0 Py

F F
<Ni—1 >0 1 1 1 -py

Table 3.2b

Modification of Table 3.la
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1 1
ol o
ne s (8 ng 4 (8 w141 () Yo qep (EFD) PROBABILITY
R
) ) 0 0 1= g1
R
- - 0 1 TR-1+1
R
R-1+1 - 1 a 0
R
Ny i+l - 1 1 1
- 0 1 0 0
- 0 1 1 1
R R
< Ng 141 >0 1 0 Proi+1
R R
<N i1 >0 1 1 L - Progar

Table 3.2¢ MachineTransition Table for R, the Reversed Line
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n, (1) n, () B, (8 n, (t+1)

>0 }o,mi <N1‘i"+1 R (8) + O (E+D) = & (E+])
| >0 <NFi N§+1 ni(t) + b(i(t+1)

>0 0 - ni(t) + D<i(t+1)

- Ny <Niy ns () = % (D

0 >0 < N]::;+1 ng(8) = 0g4 (t+D)

- Ni NLl n, (t)

0 - . N§+1 ni(t)

0 0 - r;i(t)

Table 3.3a Possible Buffer Transitions for a Transfer Line
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3
N -0y (t), and N§+1 - 1y

equations (3.8) and (3.9) to give us
ag (P = Mg - g (®)

n (8 = N - ny(8)

i

and
wRoge1(t) = gy ().
Also from the definitions of F and R we have
N," - ngi '
and
NiEl N NI;{I{--~i.+1.

1), This yields Table 3.3b.

Then we use

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

{3.18)

(3.19)

Using equations (3.13) through (3.19) on Table 3.3b yields Table

3.2c. This is exactly the buffer transition table for sysiem R.

We have so far shown that by applying equations {3.8) and (3.9) on

Tables (3.2a) and {3.3a) for system F, we get Tables {3.2¢) and (3.3¢c)

which are the tables for system R. In Chapter 2 1t is shown how the

probability of transition from any state to any other state can be

calculated from the tables. Thus by consiructing the tables for
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F
Nip = oy (8 | N) - n () Nigp = Bygq (€D [N - n, (t+1)
<NF >0 <NF >0 NF -n () - o (t+1)+  _ (t+1)
i-1 A | i i i i+l
< NF >0 0 N - n,(t) - & (t+1)
i-1 i i i
F F F
<Ni_1 N:L - Ni - ni(t) - oti(t+1)
- 0 >0 NF-n (t) + & (t+1)
i i i+l
NY F F
- - o
i-1 <Ni >0 Ni ni(t) + i+1(t+1)
F
- 0 0 Ni - ni(t)
F F
Ni—l - 0 Ni - ni(t)
F
N, F F
i-1 Ni - Ni - ni(t)

Table 3.3b Modification of Table 3.2a
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] 1 l T ] :
Nyoi41¢E) -4 (8 | 118 fg_q (EF1)
R R L} 1 L}
< Ngei+1 >0,y | 20 Aoq (8 = Mgy (EFDF 64 (241
R L} L}
<Mei41 >0 0 Mg (B = &g yqq (EFD)
R R L t
< Ng-1+1 Ng-1 } ‘ Pog(8) =¥y gqy (BHD)
- 0 | >0 gy () + &, (t41)
- wB <N} >0 (D) FOU (t41)
K-1+1 K-1 TR-1 k-1
- 0 0 : n.;_i(t)
R 1
NK—i+l - 0 nK...i(t)
R R '
Rg-1+1 Ne-1 - gy (8

Table 3.3c Possible Buffer Transitioms for R, the Reversed Line
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system R from the tables for system F by using (3.8) and (3.9) we have

shown that

F R
T (52, sl) = T (sé, si). {3.20)
Where TF (sz, sl) is the probability of transition from state Sy to
state s, in system F. TR(sé, si) is defined similarly, Relation
(3.20) is true provided states s, and s} are related by (3.8) and (3.9).

Also states s and si have to be related in the same way.

Let pj(t) = Prob (State of system F at time t = s,),

and p?(t) = Prob (State of system R at time % = s!).

Where states s, and s; are related by (3.8) and (3.9).

i
Also let
) = [ R
(1)
and
M) = [
gf(t)

Fquation (3.20) indicates that by relabelling the states of system
F according to (3.8) and (3.9).one can construct the transition metrix
for system R. This matrix is the same as that for system F. One impli-
cation of this is that if any time t p'(t) = pf(t), then p'(t+1) = To" (1)

= TpR(t) = pR(t+l). Where T is the transition matrix.
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In particular, the steady state probabillities are related as feollows:
pr(s) = pf(s') (3.21)
if s' is the new label of s, The proof of Theorsem 1 1s now complete.
Consider the following example of an applicatlon of Thecrem 2.1

Deflne the followlng twWwo systems:

It

F3 (¢l"1}! {ZI)-
Rj=(¢" {l}! {2’ )l

where
F2 _ _F3 F3 R3 F3 _ _R3
rl = r3 ’ r2 = r2 , r3 =T
and NF3 B, yFB oy ®

Systems F3 and R3 are three-machlne transfer lines and R3 1s the reverse
| of F3.
By Thecrem 2.1 we have
72 (ny, Ny &1y Kyy Xg) = B (n, Ny, Xi» X3 X3)
when

R S

O DU -
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17,
%y =ty
and “é =uj.

For example if

NEB

]

10,

and

NF3 = 10,

2
then

pF3(3.2, 10,0) = pR3(8,?,o,o,1),

3.4 Consequences of Strong Reversibility

3.4.1 Measures of performance

Recall that we are actually interested in calculating measures of
performance for AMN's, Two such measures where identified in Section
2.6, the production rate R and the mean in-process inventory in buffer
i, Ei' Another measure was intrcduced in Section 2.6 namely Dj' the
input rate through input machine j. It is proved in Appendix 1 that
for eacb input machine j, éonservation of flow holds, That is
D. =R, (3.,21)
In the special case of transfer lines there is only one input machine

(machine 1), Thus for a transfer line {3.21) becomes

D, = R. (3.22)
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Theorem 3.1 is now used to prove that the production rates of
systems F and R are equal., We call this the weak reversibllity property
for transfer lines, Defilne RF and RR as the production rates of systems

7 and R, respectively.

Corollary 3.1.1 Weak Heversibility Property

For the two systems F and R

R
R' = &F, (3.23)

Proofs

Consider the formula for RF presented in Section 2.6

Lol N %, X

1 -2 -1

F ' F
R = Z Z 2 > T (nl, veerTh 9000y "uK-Z’ 1)

d: - = = -
0 %170 m=0 g =0 m =l

1 K-1 1
(3.24)
From Theorem 3.1 Wwe know
F .
P '(nll nzl"'l nK_.lluIl“zn-lli l)
R ¥ ] - ] ] [] L] :
=P (ny nJyeees mp 10 1, gy X3seee sy ) (3.25)
where n; = Hg-i T Pa1l i=l,...,K-1 (3.26)
= N? T gy
and o&i =0y 4.1 1=2,...,K (3.27)

Thus (3.23) becomes



%50 &i=0 N0 niz0 AT =0
R(nl‘ n' nl 1 ‘xl 1 . Nl) (3.28)
P 1* Hpreeer By 4o r Ko “3! L X
But from (2,23) the right hand side of (3.28) is equal to D? where D?
is the input rate for system R.
Hence
R =D~ (3.29)
But from (3.22) (conservation of flow)
D" = & (3.30)

Thus the proof of the corollary is complete. It must be noted here that
Muth (1979), and Dattatreya (1978) prove weak reversibility for transfer
lines under more general assumptions.

In the next corollary a relationship between the mean in-process

F R

inventories of the two systems is established. ILet n 5 and n N be the
mean in-process inventories at buffer i in systems F and R.
Corollary 3.1.2
For ihe systems F and R
=R _ =F _ =F
Byt Weg - Ppy o= N -Tg | (3.31)

Forall i1=1, ..., ¥-1,

Proof':

Using the formula for EiF
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PF (”1""’”K—1’“1""’“K)

L ana, 0,1 :

i

all n,=0 NF
1 RAREENT
:E F NF NF

= n P ( -n.,||.| _—n _1? Freay )
a110§_=0,1 i 171 K-1 "K-1' 1 K
o uF
a-ll Ni‘ - ni—o,....Ni (3'32)

By Theorem 2.1
(n n ) = 2 (a ng i )
P 1,---, K_l, 1.--., K =P Feasy K_ll 1!---' K (3.33)

Whenever

4 =N§{ - ng 1=1,...,K1 (3.3%)

%3 = a1 1=1,...,K (3.35)

Thus (3.32) becomes

=F 2%2_ Wy R
n, = ( -ng ) P (n',...,n' ﬁ(.l"-n°<')
1 a1 a0, K-1 T E-1 1 E-171 X
all n{=0.-¢o.N§ (3‘36)
~F , _ =R
Ay = N;‘-i ToPker T Nﬁ-i S S (3.37)

We now investigate the usefulness of corecllaries 3.1.1 and 3.1.2 in

the deslign of transfer lines. Suppose a mamufaciurling process requires
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K Stageé to complete and suppose that paris can go through the stages of
the process in any order, One problem the designer of such a system is
faced with is determining the order in which operations are to be per-
formed, Corollary 3.1.1 tells the designer that, once an arrangement has
been found, reversing the order of operations will not change the per-
formance of the system as far as production rate is concerned. However,
Corollary 3.1.2 reveals that if the designer is concerned with keepling

a low in-process inventory, reversing the order of operations might help
in that regard. Note, also, that there are other rearrangements for

which we can say nothing as far as their effect on performance.

3.4.2 Symmetric Transfer Lines

A symmetric transfer line is one which is identical to its reverse,

Formally, System F is symmetric if:

N - le i=1,...k-1 (3.38)

'r}; - r? i=1,...,K (3.39)
and ‘

Pf: = P? i=1, "'IK (B.LI-O)

From the definitions of system R we have

FonR, - (3.41)

=
I

i K-1'

F __R

Ty = Tg-1+1° (3.42)
and P R

Py = Byosqe (3.43)
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Thus for a symmeiric system F:

N o= N, £ =1,,..,k-1 (3.4)
F_.F -

T, Y% a1 i=1,...,k _ (3.45)
F__F -

Py = o 1= 1K (3.46)

Symmetrlic lines have appeared in the literature as results of
optimization problems (See Ho et al {1979), Hillier and Boling (1979)).
An example of an optimization for a model of transfer lines is
maximizing productlon rate glven a constraint on the total amount of

tuffer storage avallable e.g.

-~
]
=

Ny S M (3.47)
1

[
[ur]

where M is a constant,
| Such an optimization problem has not been attempted for one transfer
line medel, but it is suspected that a constraint such as {3.47) under
the conditions (3.45) and (3.46) will yield condition {(3.44).

We now proceed to state arnd prove results based on Theorem 3.1,

relating to symmetric transfer lines.

Corollary 3,1.3

If system F 1s a symmetric transfer line then
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PF(nl""'nK—l'D&""’ aK)

= pF(ni,..-,n]::_l; “i]lll,“l%) (3.48)
when  ny =Ny - n i=1,.00,K-1 (3.49)
and o) =y g i=1,...,K (3.50)
Proof:

From Theorem 3.1 we know

PF(nll"'ln}{_llu:Ll"'luK)

H 1 ¥ ] [ ]
= P (nljlll,nl{._l, ulji'l’ KK) (3'51)
Whenever
' F :
nj = Ny - Ty 1=1,...,K-1 (3.52)
o) =% 1=1,,..,% (3.53)

However from the symmetry of the transfer line (F and R are identical)

(3.51) is also true whenever

n, = n, 1=1,...,K-1, | | (3.54)
and

>} = 0%, i=1,.u4, K, (3.55)
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Thus we have

R .
P (nljuouan_l, uljl-l| uK)

=PH (ni,....n{{_l, din-t-: U"() (3'56)
Whenever
ni = Ni-i - By, = Nﬁ-i - Ny y i=1,...,K-1 (3.57)
and
ui = uK_i+1 1= lgo-tnK (3'58)

Since R and F are identical systems the R superscripts on the probabili-
tles can be replaced by F and thus the {orollary is proven.,

One implication of Corcllary 3.1.3 is that if one 1s solving
for the probability distribution of a symmetric transfer, one only need
to solve faqr about half the probabllilties, The munber 1s not exactly
half because (3.48) will cometimes yleld a trivial identity indicating
that |

p(s) = 7' (s) (3.59)
The next corcllary states a result for the mean in-process inventory

of a symmetric transfer line.

Corollary 3,1.4

For a symmetric transfer line P

EE = NFK-i - ?{.1 (3.60)
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Proof:
F Z F
n = n. P(n g ue sy n_ ,N yeeey A )
i allDt1=0,l i 1 K-1 1 K
all ni=0,...,N§ (3.61)

From Corollary 3.1l.3 we have

th”.”rkﬂﬁur.u,xﬂ

— F T I L}
=P (nl,.-., nK_l, Okl,..n “f{) (3-62)
Whenever
F
! = - = II’K- .
n.l NK—i ni i 11 ' 1 (3 63)
&) =% 1=1,...,K (3.64)

Therefore (3.61) becomes by a change of variables:

He 2 0w ) S gy X )

allu1=0,l

all n,=0,. .0, Ny . (3.65)
—F _ _ oF ~F
By T Ng-i "y T Fpls 7Pk (3.66)

Hence the corollary is proven,.

Cne interesting consegquence of the above corollary is that if a

K

iransfer line is symmetric around a buffer, 1,e. if > is an integer, the

following relationship holds.,



.

Ei = Ni-x - Hg-x (3.67)
3 2 2
= Ni - Ei (3‘68)
Z 2
Thus
= o= 3 N (3.69)
z 2

Equation (3.69) implies that the expected in-process inventory in the
middle buffer (%) is always half of 1ts capacity. This is independent

of all system parameters.

2.5 Reversibility for other Transfer Line Models

In this sectlon we present evidence that reversibility holds for
other transfer line and queueing models,

1 - The M/M/1/K Queue Kleinrock (1975)

This system has polsson arrivals with rate A rexponential service
times with rate,h, one server, and a finite gqueueing capaclity for X
customers, If an arrival finds the system full it is lost forever, We
denote the steady state probability of finding % customers in the

system by pF(k). From Kleinrock (1975)

K
) 0 & kKKK (3.70)

P -1 MR (&
| W

0 ‘ Dtherwise
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Define the reversed M/M/1/K system as one with arrival rate
and service rate , and let pR(k) be the steady state probability

of finding k customers in the reversed systems. Thus

R
fA
PR(k) = i : (M//:\ K+1 (_Af\(_) 0k \< £
0 Otherwise {3.71)

By simple algebraic manipulations it can be shown that:

p (k) = p(K-k) (3.72)
This is analogous to the strong reversibility property proven for our
transfer line model. (Theorem 3.1}.

Note that the M/M/1/K system is a model for a reliable iwo-machine
transfer line, "Reliable" indicates that the machines are not prone to
failure, The arrival rate is the processing rate of the first machine in
the line. The queue capacity is the interstage buffer of capacity k.
From this point of view (3.72) describes the relation between the steady
state probablility distribution of a transfer line and its reverse.

There is further evidence that when queues of the above type are
placed in tandem, strong reversibility properties similar io (3.72) can

be estatlished.

2 - Muth's Proof of Weak Reversibility

Math (1979) proves that under rather general assumptions the
production rate of a transfer line is equal to that of its reverse.

For the case where each part entering the line has deterministic (and
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in general, different) processing times on each machine. Math requires
time reversibility in addition to line reversibility. Time reversibil-
ity means that parts have ic be fed to the reversed line in the reverse
order in which they are fed to the forward line, This restriction is
not relevant to our model slnce machines cannot distinguish betweenl

parts, i.e. all paris take the same time to process in all machines.,

3.6 Summary and Conclusions

In thls Chapter we prove a strong reversibility property for
transfer lines, Implications of this property are stated and proved
for both general transfer lines, and the speclal case cf symmetric
lines, We conjecture that such properties will hold for more general
nodels of transfer lines,

These results, in addition to being significant in their own right,
provide the ground work for even more striking results and strong con-
Jjectures regarding more general AMN's, By "reversing” only portions of
AMN's, in the same manner entire transfer lines are reversed, we are
able to show equivalences among systems that seem to bear no relationship

to each other at first glance. This 1s done in the next chapter.
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Chapter 4

Equivalence Concepts for General AMN's

L.,1 General Remarks

In this chapter we use the part-hcle duality ideas introduced in
Chapter 3 to argue equivalence properties for AMN's, These are a gen-
eralization of the transfer line reversibility properties of Chapter 3,
to more general AMN configurations. The main result is that AMN's can
be grouped into equivalence classes where performance measures of the

members of an equivalence class are closely related.

4,2 Some Definitions

Two AMN's are sald to be structurally equivalent if:

1l - There exists a correspondence between machines of each and
buffers of each so ithat corresponding machines have the same r and p
parameters, and corresponding tuffers have the same capacities,

2 - Corresponding buffers are connec?ed to corresponding machines,
although parts do not necessarily flow in the same direction,

An example of two structurally equivalent systems appears in
Figure 4.1, where the tables define the machine and buffer cofre5pondences.
So if we use the superscripts I and II to identify parameters of AMN I
and AMN II respectively we have:

1 11 1 _ .11 I _ . .II I _ . II I _ TII
N,=N,T, Ny = Nyo, N, = N34, Ny o= Ngo, No =Ny

1 _I1r 1 Ir r Ir I 11 I __II I _ _II
1= Tg T, ST r3 = r5 s Ty, r2 ' r5 =1, Tg = r3

r
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AMN 1

~[-0{-0+6
2 3 \3/ 4
_-_’.5
AMN It
CORRESPONDENCE

Buffers Machines
1 - I1 I 11
1 4 1l 6
2 3 2 4
3 5 3 5
4 2 4 2
5 1 5 1

6 3

Figure 4.1 Two Structurally Equivalent AMN's

®
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and
I ITI I IT I II I I1 I II I II

P1=P6|P2=P)+|PB?P5¢PL;=P2!P5=p1lP6=P3
Also we say that a transfer line and its reverse are structurally
equivalent, by definition.

Two AMN's are probabilistically equivalent when there exists a

one-to-one correspondence between states of each, such that correspond-
ing states have the same protatbilities.

Following the above definitions, and using the results of Chapter
3 we can immediately state the following theorem:

Theorem 4,1

A transfer line and its reverse are probabilistically equivalent.

This is merely 2 restatement of Theorem 3.1.

Also above we argued that a transfer line and its reverse are
structuraily eguivalent. Thus we have shown that the following
corollary is true.

Corollary &4.1.1

For transfer lines structural equivalence implies probabilistic
equivalence,

This follows immediately from theorem 4,1 and the definition of
the structural equivalence.

Theorem 4,1 and Coroliary 4.1,1 illustrate the concepts of structural
and probabilistic equivalence. Alsc Corollary 4.1.1 motivates the classi-

fication of AMN's into equivalence classes, We say two AMN's belong to
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the same equivalence class 1f they are probabilistically and structurally

equivalent (or just equivaleni for short),

In this Chapter we use the part-hole duality ildeas introduced in
Chapter 3 to construct egulvalence classes, We will also argue that
members of the same eguivalence class hav‘e the same production rates
and related mean in-process lnventorles., These results are only in the

form of conjectures for AMN's with more than three machines.

4.3 The Two-Machine Equivalence Class

The only possible confilguration of iwo machines, within the confines
of our AMN model, is that of a transfer line, (See Figure 4.2) Thus by
Theorem 4.1 and Corcllary 4.1.1, we. can trivially construct for any given
set of parameters a two-machine eguivalence class, This will consist of
a tWwo-machine transfer line and 1ts reverse,

Formally, define

F2 = (¢, {11})
R2 =(p, {1 })
where
N7 = (4.1)
rl‘;z - rzﬁz, rgz - rI{Z (4.2)
and |
L )
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N -
1 Y, 2

Figure 4.2 Two-Machine Transfer Line



Systems F2 and R2 are structurally equivalent.
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Theorem 4,1l stztes

that they are also probabilistically equivalent, and thus by definiticn

F2 and R2 belong to the same equivalence class,

4.4 The Three-Machine Eguivalence Class

In this section We construct, for any given set of parameters, a

three-machine equivalence class.,

The fact that there is only one such

class is not immediately obvicus. 1In fact the proof that for a given

set of parameters, there l1s only one three-machine equivalence class is

the major task to be carried out in this section.

We start by considering the three-machine transfer line, Following

the argument in Section 4.1 we

know that a three-machine transfer line

and 1ts reverse belong to the same equivalence class,

In othexr words define

F3=(¢l{l'}!{2})

m=(¢. {142}
where

ﬁiB - N%B, ﬁgB - ﬁiB

I.F 3 _ rR3 rF3 _ rH3

1 3! 2 2’

B, .,

F3.

Thus R3 is the reverse of

equivalence class.

(1414
52 - (4.5)
7y = 8 (4.6)

We know that R3 and F3 belong to the same
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4.4.1 The Strong Equivalence Property

Now consider the only other possible AMN configuration of three
machines and two buffers. This is where machines 1 and 2 produce parts
0 be assembled into a final product by machine 3. (See Figure 4.3).
We call this a simple assembly system,

Define a simple assembly system that is structurally equivalent

to system F3 {and thus R3) as follows:

M= (P,¢, {12}

wherem
3 _ F3 3 _ \F3

AR A (4.7)

A F A F A F

rl3 = 13, rz3 = r33, r33 = r23 {4.8)
and

: A F
PiB = p§3. pgj = p§3, p33 = p23 (%.9)

The question to be answered now is whether systems 43 and F3 (and
R3) are also probabilistically equivalent.
| Claim: Systems A3, F3, and R3 are protabilistically equivalent,
and hence belong to the same equivalence class,

Before presenting a formal proof of this claim, we use part-hole
duality to argue that the assembly system (A3) resembles the three-
machine transfer line (F3). This is done by focusing on the motion of
holes {or empty spaces) instead of parts in the subsystem of A3 consisting

of mechines 2 and 3 and buffer 2.
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Figure 4.3 Three-Machine Assembly System
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Machine 3 in System A3 takes one part from buffer 1 and one part
from buffer 2 at the same time. But taking a part from a twuffer is
.equivalent to depositing a hole in the same buffer. Thus machine 3
can be viewed as taking a part from buffer 1 and at the same time deposit-
ing a hele in buffer 2. Holes that accumulate in buffer 2 exit the
system via machine 2,

Let us now follow the progress of a "work unit" through System A3.
The work unit is a part in the section of the system consisting of
machines 1 and 3, and buffer 1. It then becomes a hole in the section
consisting of machines 3, and 2, and tuffer 2. Whether the work unit
1s a part or a hole the machines fail and get repaired in ithe same
manner, (see Table 3.1). This work unit enters the sysiem (43) via
machine 1, it gets processed by machine 3, and leaves through machine 2.
Thus machines 1 and 2 ook like the input machine and the output machine
respectively of a three-machine transfer line,

This argument suggesis the statement of a strong equivalence
property for the two systems A3 and F3. |

Theorem 4.2 Strong Equivalence Property

For the two Systems A3 and F3

F . A
P 3 (nl’ n2’ u1! uzl 0(3) = P 3 (nil nés U’\il O‘féi “é) (4.10)

Whenever ni

1
jai

N (4.11)

il

ny = Ny -n, (4.12)
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.:xi= &y (4.13)
ny -2 (5.18)
xg =, (#.15)

The proof of Theorem 4.2 follows along the same lines as that for
Theorem 3.1, Because of the excessive number of tables involved in the
proof, it has been relegated to Appendix II. Also note that we can
make statements about the transient behavicr of the probability distri-
hution in exactly the same manner as was discussed in the proof of
Theorem 3.1,

Ore important consequence of Theorem 4.2 is that solving for the
steady state probtability distribution of Systems A3 and F3 are identieal
problems. For example 1f one has a program that generates the probability
distribution of System FJ, only modificatiéns as to how the results zre
interpreted are needed to make that same program workable for System A3.
Such a program is actually available (Gershwin and Schick {1979)). 1In
the next section we show how it can be used to determine the performance
measures of System A3 as well as the steady state probability distritu-
tlon,

Theorenm 4.2 shows that Systems F3 and A3 are probebilistically
equivalent. By constructlon A3 is also structurally equivalent to
F3. Thus F3 and A3 belong to the same equivalence class. Note that R3

also belongs to the same class.
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We.conjecture that a three-machine disassembly system {(Figure 4.4)
that is structurally equivalent to Systems A3, F3, and R3 is also
probabilistically equivalent, and hence belongs to the same equivalence
class, To argue this one can focus on the motion of holes in System A3.
This hole motion is the same as part potion in a disassembly system.

A formal proof of this is beyond the scope of this thesis, since no
formal disassembly model has been introduced,

4.4,2 Performance Measures

Theorem 4,2 leads one to suspect that it is possible to calculate
the performance measures of System A3 directly from those of System F3.
In fact this is true. We now state and prove corcllaries to Theorem 4.2
that establish the relationships between the performance measurss of
System F3 and those of System A3,

Corollary 4.,2,1 Weak Equivalence Property

For Systems A3 and F3

A3 _ pF3 (4.16)

where HAB and RF3

are the production rates for Systems 43 and F3,
respectively.

Proof:

We know that

M-
N

1 1
Bz =
a1=0 q2=0

P (0, ny &ps oy 1) (817)

o
F_l
il
O
o
oo
I
4=
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Figure 4.4 Three-Machine Disassembly System
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However by Theorem 4,1 we have

PP {0y ngiety 1 ,0%g) = PR (0, ng o0, 5,00) (4.18)
Whenever nj = ny (#.19)
nj = Moo, (4,20)
g =y (4.21)
-0‘2' = 8y (4.22)
X3 = o, (4.23)

Hence M2 o

- 5 o5 oo Tafa Pobimed ey @

1 10 ®
But since NEB = N?B i=1,2 {4.25)
we have lZ 12 Ng- N;j—l
F3  _ Adr v v e '
7 Tx]=0 &40 nj=0 n=0 Po(ng ng,x)s 1) (4.26)

The expression on the right hand side of (4.26) is exactly that for the
input rate into System A3 via machine 2, ng {equation (2.36))

Therefore

F3 . o (4.27)
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However by conservation of flow (Theorem 2,1)

oy’ = B’ | (4.28)
Hence
rFS - g2 (4.29)

and the corollary is proven,
The next corollary deals wlth relatiing the mean in-process inventories
for Systems A3 and F3.

Corollary 4.2.2

_ A3 _F3
Let ni , and ni '

buffer 1 for Systems A3, and F3, respectively., Then

1=1,2, be the mean in-process inventories at

=) (4.30)

) - N'EB - (4.31)
Proof:
We know 1 1 1 N? N?

-3 _F 2. Z.Z_ A3/t v ir o

1T g0 o3=0 30 nj=0 nj=0 By (R ampeX], 6,25)

| (4.32)

By Theorem 4.2

F

F 3(nl.n2.5<1.0£2-&’3) = PAB(nijnélaijxélqji) (4'33)
whenever

ni=nl. né=N§3—n2 (4.34)

*1 =%y K K=& (4.35)
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Thus by a change of variables (4.33) becomes

N3 A3
O S S S N 73
ny "= S_Z_ Z_ mE npmun,xng)
u1=0 &b=0 DB=0 n1=0 n2=0
(4.36)
Where n; is related to the summation variables by (4.34),
For i=1 we have n:‘L=n1 and since Nia = N{j, i=1,2.
Equation (4.37) becomes
-A3 _—F
nl3 =:n13 (4.37)
_ - i3
For i=2 we have né = N2 Ty,
therefore (4,36) becomes
—4 F —F
B =N -n, - R (4.38)

Thus the corollary is proven,

L.4.3 Symmetric Three-Machine Assembly Systems

In this section we prove certain statements regarding symmetric

three machine assembly systems. Define System A3 to be symmetric when

S e | (4.39)
a0 < ) (#.40)
A A

and Pl3 = P23 (4-41)
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A symmetric A3 system belongs to the same equivalence class as a
symmetric three-machine transfer line with the same parameters for
corresponding machines and buffers. This can be easily sheown by the
following argument.

Consider the three-machine transfer line F3 that belcongs to the
same equivalence class as the symmetiric system A3 defined above., By

(4.7), (4.8), and (4.9) we have

3 _ A3 _ A3 3
N7 =N = =Ny (5.52)
LoD ()
F3 _ A3 _ _A3 _ _F3
P =P} = F, = Py (444)

Relations (4.42), (4.43), and (4.44) establish that F3 is indeed 2
symmetric transfer line, We use this to prove the following corollary.

Corollary 4.2.3

For a Symmetric A3 System we have

a) PAj(nlpnzyO‘-lnuzv%) = PAj(ni!né:y‘ii%lﬂ%) (4‘45)
whenever |

ni=n2, né=n1 (4-46)

O Dr =Ry, X3~ (47)

) o= (4.48)
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Thé results stated in Corollary 4.2.2 are rather intuitive and
can be argued from the symmetry of the system. Thus, they do ﬁot need
formal proof. However, a proof is provided here mainly to check on the
consistency of the results obtained so far regarding reversibility of
transfer lines and equivalence of A3 and F3 systems,

Proof of Corollary 4.2.3

az) We know by Theorem 4.2

Aj — F3 ] L} L ] L}

P. (nl’nznb\llall%) =7 (nl'HZ'al'aZ'ch) (4049)
vwhenever nj = np, né = N§3-n2 (4,50)
and k]'_ =al! D(é =“39 0(5 =M2 (4'51

But we know that F3 is a symmetric transfer line and hence by

Corcllary 3.1.3

PP (nguny N oga0y) = BT (ndung oo 0) (4.52)
whenever
o HG0-ng, mey -ng (4.53)
W T "o—ast D(\u_ 1 (Lh-sh')
X7 KT T
Thus from (4.49) through (4.54)
PAj(nl,nZ,ogl,o(z,o(B) = PFB(ni,nE,di,D\E,L\g) (4.55)
whenever
ni=N§3-n2=NF3- gB + n,=n, (4.56)



" gF3 3
n, =Ny -y =N 7-n)
SRR
0<2 =D(2 = 0‘3
and
mg =D\]'- = %

However by Theorem 4 we have

P2y, g, o 00 ) = FP(nys mgs o) Sxs i)
whenever
nf = o]
ny = N -ny
&3 =og
=g = .
3 T2

From (4.55) through {4.66) we have

PP (0, my) ) B oxg) = BRU( m Y o oY)

whenever

(4.57)

(4.58)

(4.60)

(L,61)

(4.62)

(.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4. 68
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.ng = 23 - n% = Ngj = Nij + nl = nl (4'69)

(2 = W7 by (4,43))

XY T T (4.70)
(3 =0 S0y (4.71)
X =oky =0k (4.72)

Thus part a) of the corecllary is proven,
b) From Corollary 4.2.2 we have

;§3 - 51;3 (4,73)

However since F3 is a symmetric transfer line we have from Corollary (3.1.4)
—F3 _ F3 _-F3
n,” = Ng n, (b, 74)
However from GCorollary 4.2.2 we know

533 _ NF3 _ =3

2 T2 T (4.75)
oz no =N - T (4.76)

Thus (4.74) becomes

-51*1“3 _ Nl*2“3 . (N? _ '523) - ;*;3 (4.77)
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Hence .
ml =n) =) (4.78)

and part b) of the corcllary is proven,

4,5 K-Machine AMN Egulvalence Classes

We have shown two examples of AMN equivalence classes. In this
section we informally describe how a general K-machine AMN equivalence
class may be constructed. The discussion is based on the intuitive idea
of part-hole duality, and no formal proof 1s attempted.

For simplicity we take a departure from cur usual AMN labelling
convention introduced in Chapter Z, Here iwo machines from two different
members of an equivalence class have the same label 1f they are identical
(l1.e. have the same fallure and repair probabilities). Similarly buffers
Wwith the same label wlthin an equlvalence class have the same capacity.

As an example consider construciing, for some set of parameter,
all four machine structural equivalence {SE) classes, where a SE c¢lass
is one whose menmbers are structurally eguivalent., We claim that there
are two such classes shown in Figures 4.5 and 4,6, In Figure 4.5 the
class which has the four-machinme transfer line and its reverse as
members is illustrated., The systems in 4.5 ¢) and 4.5 d) can be con-
structed from the forward transfer line by considering hole motion in
the appropriate portion of the transfer line. {Note that we can
informally add two disassembly systems to this class. They wre the

reverse of systems 4.5 (c¢) and {d))
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a)

b)

c)

_ 2

d)

©

Figure 4.5 One Four-Machine Equivalence Class
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Thé second four-machine SE class 1s illustrated in Figure 4.6. The
system in Figure 4.6a), the subassemblies (or parts) are produéed by
machines 1, 2, and 3. They are then assembled by the last machine to
produce the final product., Consider the hole moticn in one of the
branches that produce the subassemblies, say machine 1, and tuffer 1.

The holes leave machine 4 and are then deposited in buffer 1 and leave
the system via machine 1, By making machine 1 the cutput machine we
construct the structurally equivalent system in Figure 4.6.b). The
systems in Figures 4.6¢c) and d) are constructed similarly., (We can

also add to this class four disassembly systems whichare the "reverses”

of systems a), b), ¢) and d).) We now conjecture that the members of
each SE class are also probatilisiically equivalenti, We already know
this is true for the case of a transfer line and its reverse, and suspect
that for cothers itable proofs similar to the ones for Theorems 3.1 and 4.2

can be developed.

L,6 Summary and Conclusions

In this Chapter we have shown how itwo AMN's that are structurally
equivalent can be shown to be probabilistically equivalent. This was
done in & rigorous manner for two and three machine systems, Alsoc an
informal discussion of how one can extend this to larger systems was
carried out. In essence, we have shown that by solving for the probabil-
ity distribution and performance measures of one AMN, one is sclving for

the same quantities of several other AMN's, Systems related in this
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3
— 3
(b)
.1
i
{c)
_-..2

) -
4 3) 3

(d)

Figure 4.6 Another Four-Machine Equivalence Class
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manner are saild to belong to the same equivalence class.

To put this result in perspective, consider that one of the tasks
that was to be performed for this thesis was a complete solution %o the
three machine assembly systems (Figure 4.3). It was thought at the
outset that we had t6 devise 2 solutlion procedure similar to that in
Gershwin and Schick (1979,1980) for the three-machine transfer line.
Instead we were able to prove Theorem 4.2 relating the three-machine
transfer line and.assembly system. All that is needed to cobtain the
derived quantities in a three machine assenbly system from ﬁhe program
in Gérshwin and Schick (1979) is a slightly different interpretation
of the output.

Similar savings of effort are implied by the conjectured results
pertaining to larger AMN's, The immediate usefulness of such results
1s hampered by the fact that by present methods we are only partially
able to extend the solution procedure to systems contalning more than

three machines,



-101-

Chapter 5

Solution Technigque

5.1 General Remarks

In this section we present a technique for obtaining the values of
the steady state probability distribution for AMN's. These probabilities
are to be used to calculate the performance measures discussed in Chapter
2.

The most conceptually straightforward method of obtaining the
steady state probabilities 1s by solving M linear equations for M unknowns,
where M is given by (2.11). The equations are M-1 of the M transition
equations (2.28) and the normalization equation (2.27). However, for any
moderate size problem, the number of equaticns is prohibitively large,
thus making a solution of the system of equations by standard linear
equation techniques, impractical.

A method of solution is presented here which circumvents some of
these difficulties. The method, unfortunately is only complete for
two- and three- machine AMN's, It should be noted that the technique to
be presented here is basically the same one presented in Gershwin and
Schick {1979, 1980). The contribution of this thesis to the solution
method 1s threefold. First we present a complete intefnal analysis for
general AMN's, the results of which have been conjectured in Gershwin
and Ammar {1979). Second, the results of the boundary analysis for

three-machine systems are related to those found for two-machine systems
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in Gershwin and Schick (1980}, and Schick and Gershwin (1979). Furihermore
conjectures are presented on how the three-machine boundary results can be
extended to larger, more complex systems. Third, we use the results of
Chapters3 and 4 to recognize that by solving for the performance mea-

sures of a three-machine trensfer line, one really is solving for the
measures of all members of a three-machine equivalence classes (See

Chapter 4),

5.2 Internal Analysis

5.2.1 Some Definitions

Internal states s=(n1, R A LALLY O(K) are defined as those

i S Ni-z fOI‘ all ie {1 sy K—l} L]

Internal transition eguaiions are defined to be those invelving

that in which 2< n

only internal states, 1.e. the subset of equations (2.28) in chich s‘j
is lnternal and, for =11 Sy such that T(sj, si) = 0, Sy is internal,
When all states are internal, each operational machine can take parts
from iis upstream buffers, and can put a part in its downstream tuffer,
Internal states are those that conform to Case 1 of Table 2.2,

Hence n,(t+l) = ni(t) - % (t+1) + 0 (t41) {5.1)
1 1
for all 1 =1,,.., ¥-1, Recall that%i is assumed to be 1.

5.2.2 The Internal Transition Equaiions

The general form of zny transition eguation is the following:

P = Zp(n), s(1)) p(s(1)) (5.2)
all s(t)

This is the same as equation (2.28) with S 5 replaced by s{t+l) and s,
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replaced by s(t).
Frdm the discussion in Chapter 2 we have

T(s(t+1), s(t)) =

K

"itj; Prob[rxi(t+1) | n, (t), %, (t), nj(t), j(;,-L(i)]
if (5.1) is satisfied for all i
(5.3)
0 Otherwise

For each i we can write (from Table 2.1)
Prob [u.l (t+1) | 0, (%), o, (%), nj(t), je L (1) ]

- [(l-rl) 1- D\i(tq'l) ri U\i(t+l):| 1- d\i(t)

%, (%)

. [(1_ 2.) o (t+1) o - mi(t+1)] ()

Using (5.4), (5.2) can be rewritten as

pn (t+1), & (t+1)) =
1- tx.l(t)

1- of (t+1) (t+1)
L2 ey T Y]

X, (8)=0 & (t)=0 i1 , ‘
K x (1) o, (1) (1)

. [(1"Pi) p;

p(n{t) , & (1)) (5.5)

where n (t) satisfies (5.,1),

5:.2.3 The Sum of Products Solution Forms

It is assumed that the steady state protabilities for internal

states have the following form:
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‘
5(s) = J=Z R TOLR (5.6)
where
S = (NyreresTy 55 Ryseaes O) (5.7)
Uy = (xij...., xk_l.j ; Yij,... K3), (5.8)
and
oy - ?ir XL ﬁ nk (5.9

for s internal,

It is also assumed that each term in (5.9) by itself must satisfy
the internal transition eguations (5.5). For Justification of these
assunptions see Gershwin and Schick (1980), and Gershwin and Berman
(1978). |

We now substitute one term of the solution form (5.6) into equations
{5.5) to obtain: {note that the second subscript on Xy 5 and Yij is

ommitted for clarity).

n, (t+1) X o, (t+1)
k-1 ™ 1
TV Xy 7~Y 1, =
1=1 1=1
1 1 X 1- &, (t+1) - A
T A (1)
Z Z " [(1’1"1) r, ]
M=o (e 1T
o (++1) 1- & (t+1) x(t) K-l n(t) 75(_ (1)
| [(1'Pi) | Py 101 1 1=1 T3
(5.10)

where ni(t) and ni(t) are related by (5.1).
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By performing algebralc manipulations, the details of which are 1n
Appendix III the following relations among the Xi's and the Yi's are

obtained (See Gershwin and Schick (1980)).

-f-‘r (1-r, + p,¥,)-1 (5.11)
i=
X. = s+ (l-pj) Yj _
TT X (I°r, +p, T.) 1. F=laeeuX (5.12)
ie I(J) . J JoJ J

where X, =1, and for {3 = ¢ » as in an input machine, T X, =1

1< 1{3)

These relationships are called parametric equations. They are K+1

nen-linear equations in 2K-1 unknowns, Except for the case where K=2,
they have an infinite number of solutions. For any U = (Xl""xK-l’ Yl,...,
YK) that is a solution to the parametric equations, each ‘%(s,(JG) of the
form (5.9) satisfies the internal transition equations. Thus any linear
combination of the form (5.6), where U satisfies (5.11) and (5.12) for
each j, also satisfies the transition equations.

In equations (5.12) we define

X,

Q. = —ib

" Ton o

in the parametric equations only the Qj's contain information

about the AMN connectivity properties. For each machine Jj the numerator
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of (5.13) represents the X of the downstream tuffer, and the denominator
is the product of the X's of the upstream buffers. Eguation (5,11) and
the right hand sides of equations (5.12) summarize the reliability

information of the AMN.

lemma 5,1
X .
1A} Q. =1 (5.14)
3=1 J
Proof
0 :
Q = IA) X. (5.25)
3= 9 =t 5.15
T %
ie 1L(3)
hi¢
T\ X.
=
- = (5.16)
7T IS
=1 ie L(j)
Since each tuffer feeds exactly one machine, we have:
LANLG) =¢, for 14 5 (5.17)
Also since each tuffer must feed some machine we have
K
U (i) =1{1,..., K1} (5.18)

i=1
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Thus L(i), 4=1,..., K are matually exclusive and collectively

exhaustive seis,

Hence
K X K-1
17 1 = TV x, = 7V X, (5.19)
=1 1€ L(y) =1 7 =1
since XK =1,
Therefore from (5.16) and (5.19)
K
TV Q=1 (5.20)
L Y

and the Lemma 5.1 proven.

Lemma 5,1 is useful beéause it is used as an identity throughout the
analysis of the model.

We note that the results in this section have been conjectured in
Gershwin and Ammar (1979). Also notice that the same results provide a

complete internal analysis for general AMN's,

5.3 Boundary Analysis

5.3.1 Jome Definitlons

Boundary States are states (n, = ) for which at least one n, is
equal to 0, 1, Nfl, or Ni for ie {l...., K-l}. They are further

classified into inner and outer boundary states. Inner boundary states

are states that have at least one ni=l, or Ni-l for iér{l,..., K—l} ,

and for no ie {l,..., K—l} is n, equal t¢c O or N,. Quter boundary

states are all other boundary states.
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Transition equations that are not internal are defined as boundary

transition equations. These are in turn classified into inner boundary

 transition equations, i.e. those involving only inner boundary states

and internal states, and outer boundary transltion equations which are

defined to be all others.

5.3.2 Solution Form

For boundaryhstates, it seems reascnadble to assume that the solutlon
for (5.6) applies, However, for s not internalﬁ%(s. Uj) may not be of
the form (5.9). This is due to the fact that transition equations
involving boundary states have forms that are different from the internal
transition equations (5.5). Appropriate forms must be determined for each
boundary state s,

Ideally the set of i(s, Uj) would satisfy all transition equations
for some Uj' This would imply that the summation (5.6) has only one
term., However, experience has shown that this 1s not possible, There-
fore, more than one term is needed, i.,e.Z>1, and the cj's are to be
determined by satisfying all the equations not satisfied by the individual
terms?(s, Uj)'

In the following sections the boundary analysic is carried out for

simple assembly merge networks consisiing of iwo and three machines.

S.4 The Two-Machine Transfer Line

As was seen in Chapter 4 the only possible two-machine AMN is of

the transfer line type. In this case the parameiric equatlons become
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three non-linear equations in three unknowns. It is found in Schick and
Gershwin (1978) and Gershwin and Schick (1980), that there are two sets
of solutions satisfying the three equations, Thus the solution is found

to be of the following form:

2
P(s) = Z CJ' i(sl Uj)' ‘ (5-21)

J=1
Using boundary transition equations, expressions ﬁ‘s, Uj) are found for
boundary states. It is alsc found that the constant cj associated with
one of the i(s, Uj)'s is zero, and thus the solution has only one term
in the summation,

A complete analysis of the two-machine AMN (or transfer line)
appears in Schick and Gershwin (1978) and Gershwin and Schick (1980), 1In
addition to being significant in its own right, this solution serves as
a benchmark with which solutions to more complex AMN's are to be com-
pared. Specifically, any solution obtained to the general AMN should
reduce to the two-machine scluticn, After we get solutions for the
three-machine AMN's we will retﬁrn to show that the solutions obtained

do in fact reduce to the two-machine solution,

5.5 The Three-Machine AMN's

It is shown in Chapter 4 that there are two possible configurations
of three machines and two buffers that are consistent with the defini-
tions of an assembly merge network, The two networks are shown in

Fugure 5.1,
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) (o)
O3

Figure 53.la) Three-Machine Transfer Line

Figure 5.1b) Three-Machine Simple Assembly System
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From the results of Chapter 4 we know that the above two systems
belong to the same equivalence class. This implies that we oniy need
to provide a solution technique for one of the systems, We choose to
concentrate on the three-machine transfer line, mainly because it is
the case already solved by Gershwin and Schick (1980).

We should remark here that Gershwin and Schick (1980) go about
finding the expressions %(S,U) for boundary states s in a haphazard
manner, The main goal there is to satisfy as many of the transition
equations as possible using one term expressions. The solution method
as 1t 1is presented here is a systematized version, and our main goal is
te produce solution steps that are extendible to larger AMN's,

In the context of the three-machine AMN configurations the
following definitions are made:

Edge states are boundary states (inner or outer) that have only
one 1 for which n, = 0,1, Ni-l, or Ni' for all i =1,...,K,

Corner states are all other boundary states,

Thus for example, siate (1, 1, 1, 1, 0) is an inner corner state,
(0, 1, 0, 1, 1) is an outer corner state, (0, 2, 0, 1, 1) is an outer

edge state, and finally (2, N-1, 1, 1, 0) is an inner edge state.

5.5,1 Transient States

Transient states are those that have zero steady state probability.
The difficulty here is cleaxly not in finding 'i(s,U) for s transient,

tut in finding rules for determining the transient states. (For s
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transient we choose }(s,U) = 0.} Such rules are presented, for the
transfer line case, in Gershwin and Schick {1979). We use these rules
as specialized to three-machine transfer lines to determine the
transient states,

We remark here that the problem of determining transient states
for general AMN's has not been solved yet. It has been observed, how-
ever, that if a state s is a transient state, it must be that s is a
boundary state, (This is one of ihe factors that motivated the classi-

fication of the state space into internal and boundary states).

5.5.2 Inner Boundary Analysis

Using the inner boundary transitlon equations, expressions for
inner boundary states are found for the three machine transfer line in
Gershwin and Schick {1980)., It is observed that all inner boundary
transition equations can be satisfied by these expressions. Here we
invesiigate the form of these expressions with the aim of gaining
insight that will suggesti generalization., Inner edge state expressions

obtained in Gershwin and Schick (1980) are of the following form:

$(s0) = -{<s,u) sf(s,u) (5.22)
n
where ﬁI(S.U) _ Xinl x, 2 1y Y;Ci (5.23)
%
7.
and S\B(s.u) = (g:f—*) (5.24)

where Z izl'ri+PiYi (5.25)
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Note that form (5.22) only applies to non-transient states. The super-
scripts I and B refer to Internal and Boundary, respectively, We say

the machine downstream of a buffer with one part is almost starved, and

the machine upstream of a buffer with one empty location almost blocked.

The cause of an almost starved machine is the upstream machine of the
buffer with one part, while the cause of an almost blocked machine is
the downstream machine of the buffer with one empty slot, Hence in
(5.24) i is the index of the almost starved or blocked machine, and j
is the index of the causing machine,

The reason for this terminology, i.e. the "cause" machine comes
from the fact that a machine is blocked {or almost blocked) due to a
failure in its downstream machine, Similarly a machine is starved
(or almost starved) due to z failure in its upstream machine,

For example, the state (1,3,1,1,1) is an inner edge state, provided
Nz:} 5. The expression for this state is found in Gershwin and Schick
(1980) to be

_ 3 7
i(l,j,l,l,l,u) = Xy X,7Y 2 Y

5;“— 3 (5.26)
o 1(1,3,1,1,1,0) = X X Y, Y.Y (5.27)
i‘ L el et Bt | 12 123 L]
and B _ 7z
1,1,1,0) =
% (113’ !ll U) __%_ (5.28)
Paln

For this state machine 2 is almost starved and machine 1 is the

cause,
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- Also consider the inner boundary state (1,3,0,1,1). It is found in
Gershwin and Schick {1980) that i(l,j,O,l,l,U) is of internal form i.e.

?(1,3,0.1.1) = X1X23Y2Y3. (5.29)

Note that this conforms to the form established in (5.22) with the

coupling term

Z 0
iB(l,B,O,l,l,U) = (?Yz% =1 (5'30)

For inner corner siates the expressions conform to (5.22). However
B(s U) for these states take on different forms. We now discuss four
’

different cases for B( ) for an inner corner state.

s,U

Case 1 S = (NIls l, pk_Ll Mz! 5‘3)

For non~transient states of this type machine 1 is almost hlocked
and machine 3 is almost starved. For both machine 2 is the cause, 5o

we expect

e~ () ()

This does indeed conform tec the expressions for these states found in

Gershwin and Schick (1980).

Case 2 5 = (l,NZ-l, X, % u%)
Eere machine 2 is simultaneocusly almost starved and almost blocked.
The cause of starvation is machine 1 and the cause of blockage is

machine 3. Tor this case
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7 max (“1s 5(3)
) (5.32)

B 2
(SIU) = Y
Prt2
Here also the resulis conform to the expressions found in Gershwin

and Schick (1980),

Case 3 s = (§-1, Ny-1, Ry, X, Xs5)

In this case machines 1 and 2 are both almost blocked, The cause
for machine 1 blockage is machine 2, and for machine 2 blockage is
machine 3, Here we have a chain of events propagating from machine 3
to machine 1, We say that the coupling factor in a chain of this type
is summarized by the last 1ink, 1.e, machine 2 almost blocking machine 1.
Thus

£(s,0) - (EL) "2 (5.33)
P Y

These expressions also conform to the ones in Gershwin and Schick
(1980).

For these states, as well as the cnes in Case 4, we encounter an
anomzly. The expression for state (Nl—l, Nz-l, 0, 1, 1) defies the

~form {5.22). This state, in conjunction with its counterpart in Case 4,

has the only two unexplained expressions for the inner boundary,

Case & s = (151!5‘&:9(2!%)

Here machines 2, and 3 are almost starved. The cause for machine

2 starvation is machine 1, and for machine 3 starvation is machine 1.
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Thus we have the same propagation of events as in Case 3, from machine
1 to machine 3. The last link of this chain of events is machine 2

almost starving machine 3. Hence

7\ X
'{B(S-U)= (P_Bg_j) : (5.34)

The anomalous state here is (1,1,1,1,0). Its expression does not
conform to (5.22), and remains unexplained,

The form of the expressions in Case 4 are not the same as those
found in Gershwin and Schick (1980), Specifically the expression for
state (1,1,1,1,1) has to be changed, In their derivation of other
expressions using the transition equations Gershwin and Schick (1980)
used i(l,l,l,l,l,U) to obtain the expressions for other states, Hence
arny change in the expression of state (1,1,1,1,1) necessitates changes
in other expressions.

A complete list of the changed expressions is in Table 5.1,

We have shown how one might explain the forms of the expressions for the
irner boundary of the three-machine transfer line. These explanations
can be used, as is done later in this chapter, to form conjectures on
boundary expressions for larger AMN's.

5.5.3 QOuter Boundary Analysis

Recall that in deriving boundary expressions Gershwin and Schick
(1980) attempt to satisfy as many transition equatiions as possible, It
so happens that the expressions they derive for outer boundary states

satisfy all the outer boundary transition equations that describe
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. 3
FALLLLLY = XYY, °
Py
: (1 - rz) 23
%(I,I,I,I,O,U) = XIXZYI
Py {1 - r3)
(1 -r.) (1-1,) z
1 2 3
i(O,l,O,l,O,U) = XXY,
T, Py (1 - T,)
_ (1 - r2) 23
%(O,I,O,I,I,U) = XIXZYI (r1+ 4= rlr3)
rp, Pyl -1y
(1 - rl) (1 - r2) 23
?(0,0,0,I,I,U) = XIXZYI : (r1+r3—r1r3—p3r1)
) Py p3{1 = ry)
(1 - IZ) 23
?(I,O,I,I,I,U) = X XY, (r1+ ry- T T4- p3rl)
T1P2 P31 - r3)
%(I,0,0,0,I,U) =
, ry325 (I-ry) ¥y
. [ 1-p,- (1—r3-p3)(1-r2)(1—r1) Ly S e
1X2 3 1

Py (r, + r

- rry)

Table 5.1 New Expressions
Line

%(s,u) for the Three-Machine Transfer
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transitions into inner edge stétes. The results of such an analysis
for the three-machine transfer line is presented in Gershwin and Schick
(1980). 1In this section we look at these expressions in the same
manner as was done for inner boundary expressions, Some insight is
gained into the form of the expressions which helps in making conjectures
for larger systems,

For non-transient states on the outer edge, expressions satisfy
(5.22).

The coupling term is now

iB(s,U) = £(1, 3) (5.35)
where
Y.
£(1,3) = @fiP_fT [(1-r) 2.0,2,-(-p;) (1-ryp)]  (5.36)

The indices i and j correspond, respectively, to the starved cor
blocked machine and the machine that is the cause, Recall that the
cause of an empiy buffer is the upstream machine, and the cause of a
full buffer is its downstream machine,

Outer corner states remain the least understood., Expressions for
those states have been cbtained for the three-machine transfer line in
Gershwin and Schick (1980),

5.5.4 Some Remarks on Boundary Analysis

In deriving expressions for boundary states, inner and outer, we

have been trying for two objectives. First, to have a rational, systematic,
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generalizeable set of expressions, ©Second, to minimize the number of
unsatisfied transition equations. As the solution stands now that
number is linear in N1 and NZ'

Gershwin and Schick (1980) had only the second goal in mind while
deriving thelr expressions., With a few changes to some expressions, we
have shown that there really is scome underlying logic to the way they
approached the sclutioen,

5.5.5 Analysis of Unsatisfied Transition BFquations

Recall that the steady state probabilities are assumed to be of
the form (5.6)., Given the way the f(s,U) expressions are constructed,
probabilities of the form (5.6) satisfy most of the itransition equations.
This is true regardless of the choice of the cj's and + The set Uj
can also be chosen arbitrarily as long as Uj satisfies the parametric
equations for each j. Thils freedom is to be utilized to satisfy z2ll
unsatisfied equations,

The error at state s, g(s,U)} is defined as

e(s,U) = —i(s,U)+ > T(s,s‘)?’(s',U) (5.37)

all s'

' For most states s the transition equations describing transitions into
state s are satisfied by the i(s,U) expressions, Thus for these states
the error g(s,U) is identically zero. Other states are called odd states.
These states occur on boundaries only and are thus divided into odd edge

states and odd corner states, A list of odd states for the three machine

transfer line appears in CGershwin and Schick (1980). This list is

unchanged by the changes in expressicns in Table 5.1,
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Table 5.2 contains 2 list of odd edge states., Those states are

of special interest because we have been able to obtain closed form

expressions for their errors. This is done using the appropriate

equations of the form (5.37). The following relations have been

found to hold for the errors at odd edge states:

g(nl,O,l,O,l,U) = Ylg(nllonosolllu)
g(nllNZ'lil’O'U) = Ylg(nliNzlolllO’U)
g(n lnzlolljliU) = ng(oinzlo!llolu)
g(Ny.n5,1,0,1,0) = Yqe(Ny,n2,,1,0,0,U)
Also
n
g(»4,0,0,0,1,0) = X; ~q(2,3)
n N
2
g(n,,x,,0,1,0,U) = X lxz 1(3,2)
2
g(oﬁnzlo:lsolu) = XZ q_(l,Z)
N, n
2
g(Nlrnz!lIOJO:U) = Xl ]7:2 C_{(Z,l)
where

i Qipirj

Y,
a(1,3) =1+ —— [ (1-ry-pg)  (I-py) - (l-rj-pj)

Zizj

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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EDGE # . ODD STATE

1 (nl,

(nl, o, 1, 0, 1)

0, 0, 0, 1)

2 (nl, N2, 0, 1, 0
(n,, Nz; 1, 1, 0

3 (0, n,, 0, 1, 0)
(o, n,, ¢, 1, 1)

4 (Nl, Dy, 1, 0, 0)

(N;, my, 1, 0, 1)

AN

A N
=
Z
I
o]

=]

A A
Zh—l
1

Table 5.2 0dd Edge States for the Three-Machine Transfer
Line
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Note that i and J represent, respectively, the labels of the starved or
blocked machine, and the cause of blockage or starvation,
For all odd states, the set {cj}, 3=l,s00, 8 1in (5.6) is 1o be

chosen such that

i

ZE:_ ey g(s,Uj) = 0, {5.47)
3=1

One straightforward method of dealing with conditions (5.47) is
presented in Gershwin and Schick (1980). The number £ is assumed to be
equal to the number of odd states. Thus, for a certain choice of
{Uj} . j=l,.5.,£ that satisfy the parametric equations, there are

linear equations in ClreeesCp o One can then solve the linear system

cg=0 (5.48)
where ¢ = (cl,...,cJz ) and G is the matrix of errors g(s,Uj).

In Gershwin and Schick (1979) the siructure of the matirix G is
investigated in detzil. It is shown, there, that under certain assump-
tions that G has rank {-1, which implies that (5.48) has 2 non-zero
solution, The cj's can then be determined to within a multiplicative
constent. That constant can be found using the normalization equation
(2.27).

When implementing this method one runs inte numerical difficulties
which zre caused by limits on computer precision, This tad behavior seems
to improve with certain choices of the Uj's. Ancther major difficulty
with this method is that the size of the system (5.48) is linear in

the iwo storage sizes., This restrictis the storage slzes that can be
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handled by this method and also limits its applicability.,

5.6 Conjectures on Solution Features for more Complex AMN's

In this section we make conjectives on the form of the expressions,
%(S.U) for general K-machine AMN's. Recall that this form of the
expressions for internal states has been shown for general AMN's in

Section 5.2.

5.6.1 Inner Boundary

Define a decoupled inner boundary state as one where no machine is
connected (upstream or downstream) to more than one buffer which has
one part or one empty slot. Coupled inner boundary states are all
others.

For example an inner edge sﬁate for a three machine system is
decoupled, while, an inner corner state is a coupled state.

For decoupled inner boundary states each btuffer i has associated
with it a pair of labels (i,di), indicating the upstream and downstream
machines, One of the machines is either almost starved or almost
blocked., The other is the cause,

Conjecture 1l For all non-transient decoupled inner boundary states

S o(d
7 di Zl_) i
K-1 n K d
(s0) = T x bt 77 v T ( e [ (PlYl
% ’ i=1 + i=1 + ijn,=1'p. Y i;jn,=N, -1
- di di M1 Ty
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The expressions for coupled inner boundary states will depend very
much on the nature of the coupling. In Section 5.5.2 we have investi-
gated four types of coupling in a three-machine transfer line. It is
clear that the varieties of coupling will increase tremendously as wWe
go tolarger systems., All that can be said for codpled Inner boundary state
expressions is that they will behave in a manner similar to those found
for the three machine case,

5.6.2 Quter Boundary

Define a decoupled outer boundary stzte as one where no machine is
connected to more than one empty or full buffer. Coupled outer boundary
states are all others., As an example, outer edge states for three
machine systems are decoupled while outer corner states are not.

For decoupled outer boundary states each empiy or full tuffer i
has a pair of labels (i,di) indicating iis upstream and downstream
machines respectively. One machine 1s either starved or blocked, and
the other is the cause,

Conjecture 2 For all non-transient decoupled outer-boundary

states s
E-1 X ]
¢ (s,0) = 71 A Yiul m £(1,a,) 1N £(4,,1)
=1t - t *

1 l;ni=0 i, ng =Ny

(5.50)
where f(i,J) is given by (5.36). Ko conjectures can be made at this time

fer coupled outer boundary stztes.
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Note that the three-machine transfer line expressions obtained in
Gershwin and Schick (1980) and mofified earlier in this chapter conform

to the conjectures.

5.7 Relating the Two-Machine Solutions to the General Conjectures

In this section we show that the sclution for the two-machine
transfer line in Gershwin and Schick (1980) does indeed conform to
our general conjectures in the last section. Note that all boundary
states in a two machine system are decoupled, This is due to the fact

that there is only one buffer.

5.7.1 Inner Boundary

There are six non-iransient inner boundary states for a two
machine system; namely, (1,G0) (1,0,1), (3,1,1), (Nl—l,0,0), (Nl—l,l,l)
and (Nl-l,l,O). According to Conjecture 1, the expressions for these

states should be as follows:

%(1,0,0) =X (5.51)
?(1,0,1) = XY, Z (5.52)
i(l,l,l) = XYY, 5;%; (5.53)
‘(N 1,0,0) = X 1t ' :
ﬂ 171,0,0) = %; (5.54)
R
3(N|—1,1,0) =X, 1 (5.55)
N, -1 Z

i(Nl-l,l,l) = S O A (5.56)
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Equations (5.51), (5.52), (5.54), and (5.55) conform to the
solution form found in Gershwin and Schick {1980). We now show that
the remaining two expressions (5.53), and (5.56) indeed are the same

as those found in the same paper,

Zz
PYz

5 (1,1,1)

Z,
X, ¥y 5, (5.58)

Il

From the solutlons to the two-machine parametric equations we

have
Y, = Tt~ Ty “PpTy (5.59)
P1tPp"P Py “Pi T,
Y, = 0T TP T (5.60)
P1¥Py~P PP T,
and
Y
R
1
Hence Y2, = T ¥Tp=T T, -PpTy (5.62)
P1*Pp"P1Pp TP
ThusT(l,l,l) = Xl(r1+r2-rlr2—p2r1) {5.63)

P,{P+P,-P1P,-T1P,)
Expression (5.63) is the one found fozni(l,l,l,U) in Gershwin and
Schick (1980), Using similar manipulations we can show that expression

found for state (N;-1,1,1) is the same as the one in Gershwin and Schick

(1980),
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5.7.1 OQuter Boundary

For the two machine systems there are two non-transient outer
boundary states (0,0,1) and N,1,0), both are decoupled because there

is only one uffer, Thus according to Conjecture 2:

?(O!O!]‘)

1l

Y, £{2,1) (5.64)

and

¥

i(N,l,O) =X, 7, f (1,2) {5.65)

where £{i,j) is given by {5.36).
We now show that (5.64) and (5.65) are the same as those found in
Gershwin and Schick (1980).
Recall that for the twoc machine systenms
22, =1 (5.66)
and

QQ, =1 (5.67)

Equation (5.66) is the parametric equation (5.11), and (5.66) is

true by Lemma 5.1.

We have
Y
3(0,0,1) =1z ﬁg?iEEEZ [ (1-7,)8,2,0121- (1-p;) (1-x,-3,)]
| | (5.68)
= Yl
Gp,m; [3%2) - (opy) (zpopp)] (5.69)

Also recall that

1
Q, = f{ (5.70)
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Thué
Xy
?(0.0,1) = Y1 [Py*Py P17, P,P ] (5.71)
P2T1
X
= oo [rl+r2-rlr2-p2r1] (5.72)

Expression (5.72) is the same as the 6ne found in Gershwin and Schick
(1980). We can handle (5.65) in a similar manner to show that it is

the same as the one found by Gershwin and Schick (1980).

5,8 Summary and Conclusions

In this Chapter we have shown how one might go about finding the
steady state probabilities for two-and three-machine sysiems. The
details of ihe method of solution are in Gershwin and Schick (1980C).
Emphasis, here, is put on understanding the form of the solution
with the 2im of generalizing it. Minor changes are found to be
necessary,

Two conjectures are made on how the solution extends to systems

Wwith more than three machines.



-129-

Chapter 6

Summary and Suggestions for Future Research

6,1 General Remarks

In this chapter we summarize the work presented in this thesis.,

Also directions for future research are suggested.

6,2 Thesls Summary

In this thesis we present a discrete time, discrete state Markov
chain model for assembly merge networks (Chapter 2). The model is
intended to contain some of the important features of a manufacturing
network,

Some fundamental equivalence results for the model are presented.
In Chapter 3 we deal strictly with transfer lines, Specifically we
prove a strong reversibility property (Theorem 3.1) regarding the
equivalence of the probability distributions of a transfer line and its
reverse, This is used to state and prove how the performance measures
of a2 transfer line and its reverse are related, Chapter 4 extends the
ideas on transfer line reversibility to three-machine assembly merge
networks (AMN's), We conclude that the solution of the three-machine
assemblj system (Figure 5.1b) is identical to that of the three-machine
transfer line (Figure 5.la)., We also conjecture on how the three-
machine equi#alence results extend to larger systems.,

In Chapter 5 we briefly discuss a solution method foxr AMN's., The

solution is only complete for two-and three-machine systems, Note that
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thié is basically the same method as the one presented in Gershwin and
Schick (1980). However, the discussion in this thesis systematizes the
steps of the solution, and attempts to explain some of the boundary
expressions obtzined. Based on these explanations, conjectures are
made as to how the solution might extend to AMN's with more than three
machines, Also using the insight gained into the solution, we are able
to relate the two-and three-machine solutions,

In Appendices I, II, and III we include proofs and derivations that
are 100 cumbersome to include in the main text. Appendix I contains the
proof of the conservation of flow theorem, and other propositions
relating to the performance measures. Appendix I has the proof of the
strong equivalence property for three-machine systems (Theorem 3,1),

In Appendix III we derive the parametric equations (5.11), and (5.12) of

Chapter 5.

6.3 Future Research Directions

Ir this section we suggest future research that can be tased on the
work in this thesis. The new research directions fall into these cate-
gories: modelling, extension of equivalence results, and the solution
method,

6.3.1 Modelling

The formulation of a disassembly machine and assembly-disassembly
network models are an immediate extension of the material presented in

Chapter Z. Also continuous time models of assembly and/or disassembly
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networks can be formulated based on Chapter 2 and the two-machine
transfer line model presented in Gershwin and Berman (19?8), and

Gershwin and Ammar (1979).

6.3.2 Extension of Equivalence Results

The results of Chapter 3 and 4 can be extended in several directions.
The conjectures for four-machine equivalence classes in Chapter 4 have
to be proven. This could conceivably be in the context of an equivalence
result for general AMN's or general assembly-disassembly networks., It
is suspected that the idea of focusing on hole motion in parts of the
networks will play an important role in such extensions.

As was mentloned in Chapter 3, there is evidence that the reversibil-
ity results hold for carefully formulated continuous time models. An
important question to be answered is: What common features of these

models make reversibility and equivalence results hold?

6.3.3 Solution Method

In Chapter 5 we make conjectures on how boundary expressions for
three-machine systems might extend to larger systems., One obvious task
that awaits future researchers is to prove or disprove these conjectures,
However, the most crucial step is to find some method of solution that

circumvents the difficulties of the technique in Chapter 5.
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Appendix I

Conservation of Flow and Other Propesitions

Relating to Performance Measures

In this appendix we prove the theorems, and propositicns in
Section 2.6 relating to performance measures of an AMN,

We now prove the theorem stating conservation of flow. Here we
state and prove a slightly more general version of Thecrem 2.,1. First

we introduce some definitions that are needed for the proof,

Definitioné
For all i=1, ... , Kk
ei(t) = 1 if a piece leaves machine i
at time t ,
(1.1)
0 otherwise
For a1l input machines J
dj(t) = 1 if a piece enters machine J
at time t ,
(1.2)

0 otherwise

For all 1 =1, ... k

Ri(t) = number of parts leaving machine i in [0,1]
t
- = e (n), (1.3)
=1
and
_ lim Ri( ¢) T.4
Be T taeo T (1.4
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For all input machines, J

Dy ( t) = number of parts entering machine j in [0,t]
bl
= d.(%). I,
ST 5£7%) (1.5)
and (+)
X D.(t
_ lim i
Dj" t‘?m _t ] (I|6)

Branch (3j,i) of an AMN is the path of machines and buffers, traced by

a part that enters the system 2t input machine J until it leaves machine
i, TFor examples see Figure I.1. It must be pointed out that a branch
(3,1) is completely determined by j and i. Also there exists some j, and
i combinaticns that do not define branches, For example in Figure I.1
branch (2,3) is non-existent.

For all branches (j,1i)

m(s,1) { t) = number of parts in branch (j, i) at time t
?
. = N 1) (1.7)
k, k on (3,1)
N,.. . . s .
(3,1) = capacity of brench {3,i), i.e. the maximum

number of parts that can be held in branch

{j,i) at any time

= Z (1.8)
k, kon (5,1) Tk
We now need ic prove certain lemmas before proceeding with the main theorem.

Lemma 1

For a1l input machines



-134-

‘--.-'-.

- Branch (1,2)
! 7‘”\_,\/

- - 3 )____Bronch (6,3)
5 7
5 —
o -

Figure I.1 Branch Examples
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dy (t) = €, (t) (1.9)

This lemma states the assumption that a machine takes a part
in whenever a part leaves, This assumption is indeed reflected in
Table 2.2, As an example consider Case 3 of Table 2,2, In this case
buffer i has a part added to it whenever machine i is up at time t +1,
and is not starved or blocked. We note that if a machine is up and
neither starved nor blocked it takes a part from its upstream buffer
(Recall X'i =1, ¥ i), as witnessed by Case 1. Considering the other
examples in Table 2.2 equation (I.9) is confirmed.
Lemma 2

For all input machines J

DJ-( t) = Rj( t) : (1.10)

and

D. =R, (1.11)

This follows immediately from the definitions (I.5) and (I.6) and
also Lemma 1,
Lemma

For all branches {(j,i) and all t :} 0:

0K nCs 1) (1) < N(J.’i) (1.12)

Proof:
From (I1.7)

m(j.i)(t) = ik on (5,1) t) (1.13)
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However, we have

0Kn () § N, forallk amd O C(1.1%)
Thus '
0Km . () = & n(t)g & N, = N,
(3,1) 4y K : (3,1)
k,k on (3,1) k,k on (3,1)
(1.15)
which implies
0 £ oy (t) K N, .y forallt o0 1.16
S e, (B (51) % (1.16)
and the lemma is proven.
Lemma &4
For all i=1l,...,k
e.l( Y = (txi( t) if machine i is not starved or

blocked at time t-1, or nj( t1-1)>0,

{ \!J. e L (1)
and  n(t-1)< KN,

\ 0 Otherwise (1.17)
Proof:
The lemma is true because if machine i1 is starved or blocked

at time t-1 it does not produce 2 piece at time t , thus € i(t ) =0,

However if machine i 1s neither starved nor blocked 2t time -1, it pro-

duces a piece if it is up at time t (°‘i(t ) = 1) and if it is down

( &i(t } = 0) no parts are produced, Note that Table 2.2 was constructed

according to this assumption,
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Lemma 5
FOI‘ all 1= l’III" k-l

ni(t +1) = ni( t) + e i( t+1) - edi ( t+1) (1.18)

Where machine di is the downstream machine of buffer i,
This Lemma is proven by considering Table 2,2, The reader is
reminded that we are dealing only with the case where Ki =1,¥1i,

Case 1 - Machine i is not blocked or starved,

Therefore ei( t+1) = x ( t+1). (1.19)
Machine 4, is not blocked or starved, thus

4, ( t+1) =ctdi ( t+1) (1.20)

Hence (I.18) holds.

Case 2 - Only machine di is blocked

thus e (t +1) = Ni( t+1) ' (1.22)
and

ey (t+1) =0, (1.22)
i

and relation (I.18) holds,

Case 3 - Only machine d, is starved. Hguations (I.21) and (T.22)
apply here, so (I,18) helds,

Case 4 - Machine i is blocked and machine ¢, is neither starved

nor blocked thus
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.ei( t+l) =0 | (I.23)

and ey (t+1) = *3 (t+1) (1.24)
i i

and hence (I.18) holds,
Case 5 - Machine 1 is starved, and machine di is neither
starved nor blocked, Hence

0 (1.25)

% (¢t +1) , and (1.18) holds, (1.26)
i 4y

ey ( t+1)

and ey (t +1)

Cases 6, 7, 8, 9 - In all these cases both machines are not

operating (either starved or blocked or both).

Thus ei( t+l) = 0 (1.27)

and ey ( t+1) =0 (1.28)
i

and (I.18) holds. Thus we have proven that (I.18) is consistent with
Table 2.2.
Lemma 6

For all branches {(j,1) of an AMN

m(j, 1) ( t+1) = m(3,1) () + g (1) -e, (t41)  (1.%9)
Proof:
from the definition (I.7) we have
mes gy (£41) = > n ( t+1) (130)

k,k on (j,1)

From Lemma 5 we have

It

m(j,i) (t+1)

2 a)+e (se) - ()

k,k on (j,1) (I.31)
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ST n(t) o+ e (t41) -, (t+1) (1.32)
k k dk
m(j,i) (t) + e.j {(t +1) - ei(t +1) (1.33)

Hence the Lemma is provern.

We now state and prove the conservation of flow theorem. The
proof uses Lemmas 1 through 6.
Theorem

For all branches (j,1) of an AMN

D. = R, (I.3%)

That is, the steady state input rate tec the branch (Dj) is equal to the
steady state output rate from the same branch (Ri)'
From Lemmz 6 wWe can write:
LT (t +1) - mes,1) (v ) = e (t +1) - e, (t +1)
' (1.35)

summing both sides of (I.35)

t t
Z [mgs,0) (410 = mey 4y N -z [e; (¢ +1) ¢ (T+1]]
T t=0 (1.37)

m(j’i)(t +1) - m(j'i)(O) = Rj (t+1) - Ry (t +1) (1.38)

By Lemma 3 we have
0L ™ {(t+1) - m i 1) NS N(j’i)< o0 (1.39)

3n1) (3
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Therefore
< - : o
0 < R (t +1) - Ry ( t+1) < Ns1) < (1.40)
and thus dividing by t+1 and taking the limit as t = oo we have
0 < lim 11.L(t+1) - Ri(t+1) < lim N(. 1)
t—od t+1 tvee 143 (1.41)
but
1m Vg8 -o
t—>e0 4+l (T.42)
Hence lim RJE#+1) - Ri(t+l) 0
t—> e t+1 (1.43)
Therefore
1 R.(t+1) R, (t+1)
im 73 1im i
t—seo {11 t—» o0 t+1 (T.44)
since both limits exist.
Hence
But from Lemma 2 we have
Dy = Ry for all input machines 3 (I.46)
Hence
D. = R, for all branches (j,i) (1.47)

J i
and the theorem is proven.

In particular (I.47) states that

Dj = Ry Y input machines j (1.48)
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Note that (1.48) is the statement of Theorem 2.1,
We now proceed to prove the propositions of Chapter 2.

Proposition 2.1

R, ~1im Mi(r) = Prov[& (1) =1, n(+-1)>0, ¥, € 1(1),

1 o 1

ni(t-l) < Ni ] (I-u’g)

Note that thls is a generalization of the statement of the proposition in

Chapter 2,
Proof's t ,
2. e ()
R = lim T=0

However applyling the law of large mmbers,

R, =E [ei(t)] (I.51)

Where E [-] is the expectation operator,

Thus R.

X 1 . Prob [ei(t) =1] + 0.Prob [e;(1) = 0] (1.52)

oxr

B, = Prob [ei(t) =1] {1.53)

Where Prob [A] is the steady state probability of event A.

From Lemma &4 we have

1 when o(i(t) = and nj('t-l) > 0,
e,(t) -
jGL(i), n, (+-1)< N,

0 Otherwise (T.54)
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Thus

1]

bas}
Il

Prob [Bi(t)

Prob [ % (t) =1 and n, (t-1} > o, Ve L (1),

and n,(t) < N, ] (1.55)

and the proposition is proven.

We now prove a Lemma needed for the proof of the next proposi-
tions.
Lemma. 7

Forall 1 = 1,4ues K

r, Prob [cxi(t) = Q3 nj(t)> O,Hj < L(i); ni(t) < Ni]

= p; Prob[ui(t) =1, nJ.(t)) 0, Vje L(1), ni(t)<NiJ

(1.56)
Proof:
Let event A = { nj('t) 21, ¥ 5&L{1); 0, (1) < Ni} (1.57)
and consider the seis of states |
Qg = s | ®. () =0, &} (1.58)
Sl . fs] e (=t Al (1.59)

The system can leave states in j:Loi_c:nly by the repair of a
machine C, This is because machine ( is down and carnnot produce any parts
until it is repasired., HNote that this is consistent with the construction

of Tables 2.1, and 2.2.
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Therefore the probability of leaving set-flo;is:

r Pmb[ui(t) =0, 4] (1.60)

States in set (1Tican be reached from outside states only from
set.{Ll;, by a failure in machine i, This is because the model assump-
tions as reflecied in Tables 2.1 and 2.2 prohibit the failure of a
machine if it is starved or blockea. The probability of entering states

in sY-O;from outside 1s thus

p; Prob [, (t) =1, 4] (1.61)

and by the steady state assumption we have

r, Prob [=,(t) =0, 4] = D, Prob[v\i(t) =1, 4] (1.62)

and the Lemmz is proven.

Propositicn 2.2

For all 1 = 1,.,.., k

B, = Prob [a,(t) =15 ny(t) >0, ¥V, eLl(1)i n(1)L K]

(1.63)
Note: This is a slight generalization of proposition 2.2 of
Chapter 2, .Here Ri is the preduction rate of any machine in the network
instead of Just the output machine k.
Proos:

Let event 4 = {nj(tb/l . ¥ j € L(i); n, (t) < Ni} (I.64)



Y

Hence ffom Proposition 2.1

R; = Prob [~ (t+1) =1, 4] (1.65)
or
R, = Prob o, (t+1) =1 | & (t) = 0,4 ] Prob [x,(t) = 0, 4]
+ Prob o, (t+1) = 1 \!Xi(’t,) =1, 4] Prob [, (t) = 0, 4]

(1.66)

Using Table 2,1 (I.53) becomes

R, = r, Prob [o(i(t) =0, A] + (1-py) Prob [O(i(t) =1, 4]
(1.67)
Let §, =Prov [«,(t) =1, A \ (1.68)
We need to prove that
Ry =8, (I1.69)
or
Ry -8, = x; Prob [ec (1) =0, 4] - p; Prob [« (t) =1, 4]

= 0 (1.70)
Hovwever by Lemma 7

r, Prob [mi(t) =0, A] =p, Prob[& () =1, 4] (I.71)

N

S

Hence Bi 5

prob [ o, (t); ni(¢)> 0, Vj € L(i); n ()< N]  (1.72)

and the propesiticn is proven,



—145-

Prdposition 2.3

For input machines j

D. = lim EJEEE_
J t-—> 00 t
= Prob [&J(t) =1, nj(t'l) < NJ] (I'?B)

Proof:
Using the same steps as in the proof of proposition 2,1 (I.49

through I.53) we can show

Dj = Prob [dj(t) =1] (I.74)
Hovwever by Lemma 1 we have
a(8) = ey(¥) (1.75)
Thus
D, = Prob [ej(t) =1 ] (1.76)
= R' (Il??)

J

Hence by preposition 2.1 and since an input machine is never

starved we have

Ds = Prod [o-t.j('t), nj(t-1)< Nj] (1.78)

and the proposition is proven,

Proposition 2.4

For input machines J

Dy = Prob [or.j(t) =1, ny(1) < Nj] (1.79)
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Proof:
This proof follows along the same lines as the proof of proposi-
tion 2.2.

. . = . < . .
Here let event As {nJ(t) NJ } (1.80)

Then it can be shown that

Dy = r; Prob [otj(t) =0, Aj] + (’l—pj) Prob[uj(t) =1, Aj]

J
(1.81)
Let
Fj = prob [o(t) = 1, 4, ] (1.82)
We need to show
D, =F.. (1.83)

By the same elements as (I.70), and (I.71) we arrive at the
conclusion that we need to show that

r Prob[ v;j(t) =0, Aj] = py Prob [uj(t) =1 45] (1.8%)

Equation (I.84) holds by Lemma 7,

L3

Hence

]

. = F. = b At) =1, .
Dy = Fj; = Pro [MJ( ) =1 As

-

= Prob [ay(t) = 1, ny(t) < ¥, ] (1.85)

and proposition 2,4 is proven.
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Appendix IT
Proof of the Streng Equivalence Property

In this appendix the strong equivalence property of Systems F3

and A3 is proven,

Recall,

F3=(¢,{1}.{2})

and A3 =(¢,¢,11,2})

and )
3 _ A3 3 _ A3
Nl; *N';E[Ng -Ng (II.1)
IEB = r&B, rgj = rgB, r§3 = rgj (1I1.2)
F3 _ _A3 _F3 _ _A3 _F3 _ _A3
Fy” =By By =Py, Py —P‘; (11.3)

Theorem 4.1 Strong equivalence property

for Systems A3 and F3

P2 (0 my0 %10, 06) = P (ag,nl 00 3, 0) (11.4)
whenever

nl =ny, o = N§3 - n, ' (II.5)

Ry =K, 0 =05, 05 =X, (12.6)

Proof:
The purpose of this proof is to show that if states of System F3 are

relabeled according to (I1.5) and (II.6) the new transition matrix is
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n, (1) > (1) O (t+1) PROBABILITY
- 0 0 1 -1’
- o 1 rfa
N]> 1 0 0
Nf3' 1 1 1
<N’ 1 0 P
en? 1 1 1-p°
a)
n (D 0,00 o, (8) o (t+1) PROBABILITY
- - 0 0 1- 15
- - 0 1 T
- NS> 1 0 0
- Ng> 1 1 1
0 - 1 0 0
0 - 1 1 1
>0 <N’ 1 0 p§3
>0 <my? 1 1 1 -
b)
n,(t) &, (t) ™, (t+1) PROBABILITY
- 0 0 1l - r§3
- 0 1 =
0 1 0 0
0 _ ! 1 1 I?I:Ei-l:niIi'iansition
>0 1 0 P§3 Tables for F3
>0 1 1 1 p

c)
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1 1
nl(t)=nl(t) Di(t)=ﬂ&(t) CT(t+1)=Di(t+1) PROBABILITY
- 0 o : 1 - F3
- Q 1 T
F3
N1 | 1 0
F3
N 1 1
< Nf:’ 1 0
F3 F3
<N1 1 1 1 - Py
a)
a v F3 ! '
ni(t)‘“1(t) nz(t)~N2 -nz(t) D(j(t)=°(2(t) 043(:+1)s><2(t+1) PROBABILITY
- - 0 0 1 - rga
- — 0 1 r§3
- 0 1 0 0
- 0 1 1 1
0 - 1 0 0
0 - 1 1 1
>0 >0 1 0 p1::3
>0 . >0 1 1 1 - pgs
b)
1 F3 1 ] ]
= - = [+ 4 =
nz(t) N, nz(t) o(z(t) "S(t) 2(t+1) ag(t+1) PROBABILITY
- 0 0 1 - r§3
- 0 1 r§3
F3
N, 1 0 0
F3 Table II.2
N2 1 1 1 Modification
< NE3 1 0 o3 of II.l
o) 3
F3 F3
(_Nz 1 1 1 - Py




n;(t) N;(t) ' 0‘1'(1:+1) PROBABILITY
- 0 0 1 r?'a
- 0 1 r‘;‘3
| N8 1 0 0
N 1 1 1
<N?3 1 0 p?s
<VN?3 1 1 1 - p‘;‘j
a)
_n;(t) ,1=1,2 Dt; (t) 0(3' (t+1) PROBABILITY
- 0 0 1 -
- 0 1 1'3
0 for any i 1 0 o]
O for any 1 1 1 1
>0 for all i 1 0 pga‘
>0 for all i 1 1 1 - pgj
b)
n;(t) b(;(t) | D‘:;(t+l) PROBABILITY
- 0 0 1- rf
- 0 1 r‘;j
N5 1 0 0
lNg'B 1 1 1
KN”;‘B 1 0 pr
<Nb 1 1 1 - ph
c)
Table II.3 Machine Transition Tables for A3
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nl(t) nz(t) “1(t+1)
->o,<Nf3 <N§3 nl({’) + A (EH) =24 TEH])
Nf3 7 Nl’; nl(t) + D‘l(t+1)
0 - nl(t) +o<l(t+1)
NfB <N§3 | nl(t) —D(Z(t+1)
N§3 N§3 nl(t)
a)
nl(t) nz(t) nz(t-}-l)
>0 > 05> o mye) ey (eH) - ()
>0 0 n,(t) + & (t+1)
- N12?3 0, (t) = oty (£+1)
0 P . 0, (t) - &y (t+1)
0 0 nz(t)
b)

Table II.4 Buffer Transitions for F3
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p (O () ny (N n, (0 o (64, (641)
>0.<NE2 >0 ny(E) 4 & (£+1) = & (t41)
Ny 0 ny (£) + 5 (£41)
0 - n; (t) + Dgl(t+1)
Nf3 >0 nl(t) - &, (t+1)
Nfs 0 nl(t)
a)
n; (t)-=n1 () n; (t) =N§3-n2 () n; (t+1) =N§3-n2 (t+1)
So >o,<u§3 NgS-nz (£) =00, (£+1) +6 (£41)
>0 N§3 N§3—n2(t)—o(2(t+l)
- 0 N§3-n2(t)+°g(t+1)
0 <& N’§3 Nga—n2 (1:)+l’(3 (t+1)
F3 F3
0 N2 N2 —nz(t)
b)

Table ITI.5 Modification of Teble I1.4
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n;(t) n;(t) n;(t+1)
.>0,<le\3 >0 n;(t) +D§1'(t+1) -"'(3'(t+1)
<N‘i‘3 0 ni(t)_+°\£(t+l)
0 - nl(t) +Ix1(t+1)
N'f >0 n, (t) -OK;(t+l)
N 0 nl'(t)
a)
a, () n;(t) n,(t41)
>0 S0y ny(£) - X (E4) + & (t41)
>0 N‘f n,(t) -D&;(t+l)
- 0 nz(t) +D(2(t+l)
0 <N‘§3 n, () + X, (t+1)
0 ' NgB n;(t)
b)

Table I1.6 Buffer Transitions for A3
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exactly that for System A3. In other words if we let state si be the

relabeled state sy Wwe need to show that

T (s515,) = T(s5,59) (11.7)

Bquation (I.7) says that the transition probability between states s; and

s, in System F3 1s the same as the transition probability between states

2
s! and s} in System A3. This can be shown by showing that the relabelling

1 2
implied by (II.5) and {{I.6) reduces the tables (2.1, and 2.2) for Systems
F3 to those of System 43,

We start by considering Table 2,1 as 1t specializes to the three
machine transfer line, This is shown in Tables II.1l. Note that in
Tables II.1 &), and c¢) only one buffer capacity is relevant since
machine 1 1s never starved and machine 3 is never blocked.

On these tables we now make the transformation implied by (II.5), and
(II.6), The new tables are shown in Tables II.2. We now use the rela-
tionships (II.1) through to (II.3) to produce a final set of Tables
II.3. Upon close examination it can be seen thai Tables II.3 are
indeed the derived machine transition tables for System A3,

We now focus our attention on the buffer transitions tables. For
System F3 there are two such tables one for each buffer. These are
shown in Tables II.4, We now apply the transformations implied by (II.5)
~and (IT.6) to Tables II.4. This yields the new set of tables in Tables

II.5. We now apply the relationship (II.1) to obtain Tadles II.6. These
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under close examination are indeed the tuffer transition tables for
System A3. (Compare with Table 2.2 for general AMN)., Thus the

Theorem is proven,
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 Appendix IIT

Deriving the Parametric Equations for AMN's

In this.appendix vwe derive the general AMN parametric equations
(5.11), and (5.12). This derivation follows that of Gershwin and
Schick (1979), (1980) for transfer lines closely, We start with the
form of the internal equation given by (5.1C). Recall that in this
equation ni(t+l) and ni(t) are related by (5.1).

Equation (5.10) can be rewritten as follows:

_ (1)
K- t+1) - &, (t+l X g
TTJ{:Lr-‘-\i(+) d1+) & 1
1=1 i=1
1-% ()
1 1 1-o=i(t+1) ﬁi(t+l)

_ Z T Z 71% [(l—ri) ry ] *

% (£)=0 o&c(t)=0 i=1

1
D('l U’-)
[ oy (1) 1-% (£+1) ]
(l-Pi) Py Y,
(111.1)
- Where di is the index of the machine downstream of buffer 1. We can

divide both sides of (III.1) by

1-& (441 (t+1 1-04 (t)
[(l—ri) Al riokl T )] (111.2)
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Thi.s yields
°‘i(t+1)-°:i (t+1) o(i(t-i-l)
TKY Xy " ¥y
121 [ (1- ) l-a‘i(t+17 1_ u.i(t+l)
! %, (1)

&, (+1) 1= (1+41)

> ... lz_ -;5\— (1-7,) P, ¥,

A(t) A1) 11 | (1ery) A A l)

[

(111.3)
Where_XK = 1. Recall that X 1s the index of the output machine. We now
make use of Lemma 3.1 in Gershwin and Schick (1979). This states thet

for all sets of real numbers Al,...,AK, '

N TV Ay T = TV (1+Ai) (IT1.4)
% =0 =0 1=1 i=1

We now use (III.4) to write the right hand side of (III.3) as
X, (1) 104 (t+1)
p i

(17 i 1
[1 + - TR (e 1(t+1) ] . (I11.5)

~4

[
il
[}

When (III1.5) 1s substituted in (III.3) the argument t disappears and

thus for simplicity we write ® instead of Dki(t+1).
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K x - ®
i d
i=l =
1.
(1-r.) g r it
i i
X i-
) 4 i
YAy [ - (1-p,) P, Yi.] (171.6)
. 1= Y
i=1 (l—r ) 1 ri 1

Bquation (III.6) can be simplified as

T [x -

i=

1

K =y % 1o
Y1:| (I1I.7)

X[y SRCE R R

i=1

Relation (III.7) has been obtained with no condition on Ki' and thus
holds for all values of U\i.

If Dki=o. for all i=1,.,..,K, (III.7) becomes

K
1= / \ |:1-:.~i + PiYi] . (111.8)
i=1
If o™.=1, and ¢,=0, for i ¥ 3, i=l,...,K. We have o.,=1, then 0=0& &,
J s § J

d.1 J

Thus the factors on the left hand side of (III.7) are either XJ. YJ. or 1
X,
i
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where the latter appears if i1 +$ a buffer upstream of machine j.

Thus (III.7) reduces to

K
X, Y,
3 TV (10,1 [ r+(1-P5) Yj]
T X 1=1
1eL(3) i4j 5=, 00 K

We now use (III.8) to reduce {II1.9) further, obtaining:

xj Yj _ r. + (1-P.) Y.
T = . J 4
X !
el {(3)"1 1-rj + Pj Yj
j=1’lll'K

’

(111.9)

(I11.10)

BEquations (III.B8) and (IIIZ.10) are the desired parameiric equations.
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