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ABSTRACT

A Markov chain, queueing theory model of an assembly network is

presented, of which the transfer line is a special case. Machines are
unreliable and buffers have finite capacities. The aim of the research

is to calculate performance measures of such systems.

Fundamental equivalence properties, which include transfer line

reversibility, are stated and proved. These properties group networks

with different structures into equivalence classes. The relationship

among the performance measures of members of the same equivalence

class are discussed.

A method for obtaining measures of performance of the networks is

presented. This is a systematized and slightly modified version of the

one that appears in Gershwin and Schick(1980). The solution is complete

for two- and three-machine systems, and conjectures are made into how

it extends to larger systems.
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Chapter 1

Introduction

1.1 General Remarks

In this thesis we are concerned with studying manufacturing systems

with the goal of improving their performance. We use the tool of

mathematical modelling of such systems to reach that goal. In this

chapter simple examples of manufacturing systems are given, and

some major issues involved in the design and operation of these systems

are discussed. We also survey past research that investigated models

of manufacturing systems. The contributions of this work are also

discussed in this chapter.

1.2 Manufacturing Systems - An Overview

In many manufacturing processes a final product is composed of

a number of smaller subassemblies. To manufacture such a product it

is necessary to first produce each of its components. These parts

are then assembled into larger subassemblies and so on until the final

product emerges from the system.

We will call all operations in such a process "assembly" operations,

although some may not involve the physical assembly of several products.

That is, unitary operations such as drilling a single hole on a single

piece are, for the purposes of this research, treated as a special

case of assembly operations. All assemblies are carried out in work

stations which are also referred to as machines. This terminology is
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not meant to preclude operations done manually.

In manufacturing processes work stations or machines are subject

to failure. The term "failure" here should be interpreted in the

broadest sense to include all cases where a machine is incapable of

stand-alone operation. In the case of a manual process, this could

include the operator taking a break. We say a machine is a if it is

operational, and down if it has failed.

As an example, we consider a highly abstracted process that

manufactures Formica table tops. A schematic of such a process appears

in Figure 1.1.

In this plant the Formica is cut to the desired size by one machine.

A second machine cuts the wood base to size. The Formica and the wood

base are then pasted together to produce the table top. The latter

operation is a physical assembly.

Suppose that for example, the pasting machine fails. This implies

that the other machines in the system have to stop working although

they are perfectly capable of performing their functions. This is

because they have no place to put their output. This is clearly a

waste in the productivity of the system. Similar wastage is incurred

when one of the cutting machines is down. In this situation the pasting

machine and the other cutting machine aref orced to stop working. This

is because the pasting machine is not being supplied the necessary

parts by the failed cutting machine, and because the other cutting

machine, as a consequence, has no place to put its output.
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The Formica Plant. Figure 1. 1



To reduce the strong coupling effect, a storage capability is

introduced between machines. These storages serve a dual purpose.

First they provide space into which the output of a machine can go even

when the machine that is to accept that output is down. Second, they

provide a backlog of subassemblies, which keep an assembly machine

operating even though one or more of the machines producing the

subassemblies is down. It is also clear that larger storage sizes

decrease machine coupling and hence provide for better productivity.

It is exactly this interplay between the sizes of storages or buffers,

the reliability of the machines and the productivity of the system that

is the subject under study.

A schematic of a manufacturing network of the type we are dealing

with appears in Figure 1.2. The squares represent the machines and

the circles represent the storage devices or buffers. We call these

networks "assembly merge networks" (AMN's). An important special case

of the assembly merge network is where no assembly takes place. This

is called a transfer line (see Figure 1.3). Transfer lines have

become one of the most highly utilized ways of manufacturing large

quantities of standardized items at a low cost (Koenigsberg (1959)).

For this reason they have been the subject of a great deal of study

(see Section 1.4).

The study of ANN's is a significant step towards understanding

flexible manufacturing systems. However, other issues such as routing

of parts through networks and scheduling that are not addressed here
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Figure 1.2 Assembly Merge Network

Figure 1.3 Transfer Line
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have to also be studied to provide a complete understanding of flexible

manufacturing.

1.3 Measures of Performance

In designing a manufacturing process two performance measures are

of great interest. The first measure is the production rate which is the

average number of completed parts that the system produces per unit time.

The second measure is the average in-process inventory, which is the

expected number of pieces in each buffer. That measure coupled with

the knowledge of relevant cost information, such as cost/piece at each

buffer, can provide an average in-process inventory cost.

In the design as well as the operation of a manufacturing network,

one is interested in how performance measures are affected by changes in

the system. Such changes include improvements to the reliability of

machines, increases in the sizes of buffers, and possibly changes in

the network configuration.

1.4 Previous Work

Numerous authors have looked at the problem of modelling of

production systems. In this section a survey of some of the work rele-

vant to this thesis is presented.

Several papers survey the issues involved in the design and opera-

tion of production systems. Those papers include Buzacott and Hanifin

(1978a and 1978b), Hillier and Boling (1966), Koenigsberg (1959), and
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Soyster and Toof (1976). Most of the production systems dealt with in

these papers are of the transfer line variety. Koenigsberg (1959)

mentions more complicated assembly networks which use the transfer line

as a building block.

Most of the literature, however, dealt with specific types of pro-

duction systems. All the studies to be discussed deal with movement of

discrete parts through the system. Because of the economic importance

of this problem, many simulation studies have been performed, such as

Anderson and Moodie (1969) and Kay (1972). However, these studies are

not discussed here, since the work to be reported is analytic.

One classification of the papers is by how they treat the three

most important issues described in our model, namely storage size,

reliability, and processing times.

First, there is the issue of the use and size of storages to be

placed in a production system. Avi-Itzhak and Yadim (1965), Hunt (1956),

Muth (1973), and Buzacott (1968) analyze systems with no buffer storage.

Other authors including Goode and Saltzman (1962), and Hunt (1956)

discuss systems in which the storage sizes are infinite. In fact

Jackson networks are analyzed under the infinite-buffer assumption

(see Jackson (1963), Disney (1975)).

Assuming that the buffers have finite capacity seems to complicate

matters considerably. Several authors including Artamanov (1977),

Avi-itzhak (1965), Buzacott (1971, 1967, and 1972), Gordon and Newell

(1967), Hatcher (1969), Hillier and Boling (1966), Sheskin (1974),



Gershwin and Schick (1978, 1979 and 1980), Schick and Gershwin (1978),

Gershwin and Berman (1978), and Gershwin and Ammar (1979) have considered

the effect of placing finite capacity storages in production systems.

Most have been able to analyze two-stage systems with no success in

generalizing to more complex configurations. Notable exceptions are

Buzacott (1967) in which the author uses approximations to solve a

three stage system, Sheskin (1974) in which a numerical solution to

three and four stage systems is obtained. However, Sheskin had to make

a less than satisfactory assumption on the reliability of machines. As

far as this author is aware, Gershwin and Schick (1979, 1980) present

the only complete solution to a three-stage production system with

finite buffers made under plausible assumptions. The work reported here

is an immediate outgrowth from that work.

The second important issue in production systems is reliability.

Several authors analyze such systems under the assumption that the

machines are totally reliable. Those include Avi-Itzhak (1965), Goode

and Saltzman (1962), Gordon and Newell (1967), Hillier and Boling (1966),

Hunt (1956), Muth (1973), and Neuts (1965). Artamanov (1977), Buzacott

(1967, 1971, and 1972), Sheskin (1974), Gershwin and Schick (1979, 1980)

and Gershwin and Ammar (1979) consider unreliable machines in the

formulation of their models.

The third issue on which authors differ is the modelling of the

processing times of the stages in the production system. The standard

-l?-
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queueing theory assumption of exponential service time is made in the

Jackson network literature. Other authors have chosen to use this model

in the context of production systems such as Buzacott (1972), Gordon and

Newell (1967), Hillier and Boling (1966), Hunt (1956), Muth (1973), Neuts

(1965), and Gershwin and Berman (1978). Some papers deal with more

general service time distributions such as Erlang. These include

Gershwin and Berman (1978), Hillier and Boling (1967), and Berman (1979).

In the model presented here we use the regular or deterministic

processing time assumption. Authors which have chosen to use this type

of processing time include Avi-itzhak (1965), Artamanov (1977), Buzacott

(1967), Goode and Saltzman (1962), Sheskin (1974), Schick and Gershwin

(1978), Gershwin and Schick (1978, 1979, 1980) and Gershwin and Ammar

(1979).

We are aware of only one work,Harrison (1973), that describes a

queueing model of an assembly operation. The assembly machine is allowed

to have a general service time distribution. A general arrival process

is assumed. Harrison's work, however, has a different goal from the one

sought in this thesis.

Also not included in the above discussion are works that deal with

the qualitative behavior of the models of manufacturing systems. One

such issue is the reversibility of transfer lines, that is,

how the order of machines in a transfer line affects performance.

Significant results in this area are by Muth (1979), and Dattatreya (1978).
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In these two works it is proved that production rate of a series of

work stations (a transfer line) remains unchanged when the order of the

stations is reversed. Hillier and Boling (1977) conjecture that this

result is true for their model.

1.5 Contributions of this Thesis

This thesis is a significant step towards understanding production

systems as well as queueing networks with finite waiting room. Specifically

the contributions fall into three main categories:

1 - Modelling: The formulation of a discrete state, discrete-time

model for a general assembly system.

2 - Qualitative Analysis: Equivalence properties of assembly merge

networks are established in this thesis. Specifically it is shown that

there exists equivalence classes of AMN's. All members of the same

equivalence class have related performance measures. Thus one need only

solve for the measures of performance of a single member of a given

equivalence class. These properties are proven in the context of the

model developed. However there is evidence to the effect that such

ideas are extendable to more general models.

. 3 - Solution Technique: We analyze the solution procedure developed

in Gershwin and Schick (1979, 1980) for two-and three-machine transfer

lines. The aim of the analysis is to relate the two-machine solution to

the three-machine one, and to emphasize features that will extend the

solution to more complicated systems.
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1.6 Thesis Outline

In the subsequent chapters, a formal mathematical model of assembly

merge networks is presented, equivalence properties of such networks

are discussed and a method of analysis is proposed.

The model description is carried out in Chapter 2. In

Chapter 3 theorems and corollaries relating to transfer line reversibility

are proven, and in Chapter 4 we extend the reversibility ideas to more

general AMN's. Chapter 5 is an overview of a solution technique for two-

and three-machine AMN's and conjectures on how it might extend to more

complex AMN's. Appendices I, and II contain proofs of some of the

theorems presented in the main text. In Appendix I we prove theorems

presented in Chapter 2 relating to the performance measures of AMN's.

Appendix II has the proof of an equivalence theorem presented in

Chapter 4. In Appendix III we derive the analysis result of Chapter 5.



-21.-

Chapter 2

The Model

2.1 General Remarks

In this chapter a formal description of an assembly merge network

is presented. As was mentioned in Chapter 1, a very important special

case of an assembly merge network is a transfer line, where no assembly

takes place. A model for a K machine transfer line has been formulated

in Schick and Gershwin (1979) and Gershwin and Schick (1980). The

model described in this chapter is an extension of that model and includes

it as a special case. Therefore, it must be emphasized that the term

"assembly" is used here in a general sense, and includes the case where

a machine operates on a single item and thus does no physical assembly.

For example, in this sense all machines in a transfer line are assembly

machines. Also the term "part" (or "piece") refers to items flowing

through an assembly network. That includes subassemblies and assemblies.

At the end of this chapter a discussion of the disassembly operation

is included. The need for this discussion will be apparent in the ideas

presented in Chapter 4.

2.2 Model Assumptions

An assembly merge network (AMN) consists of K machines. Machine i

can be fed by, i.e. receives parts from, a set L(i) of buffers called

the upstream buffers of machine i. Machine i in turn feeds exactly one

buffer, D(i), called the downstream buffer of machine i (Figure 2.1).

A machine takes a specified number of parts from each of its buffers

simultaneously, assembles them, and produces a single part. That part
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Upstream and Downstream Buffers of Machine i

Machine

Downstream
Buffer

Figure 2. 1
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is then put into the downstream buffer.

-There are two special cases of machines. An input machine is one

that does the first processing on the raw material entering the system.

It is assumed that buffers upstream of input machines contain an unlimited

supply of the required raw material. An output machine is the one from

which the final assembled product emerges. It is assumed that the buffer

downstream of the output machine has infinite capacity. In general an

AMN is assumed to have several input machines, but only one output machine.

(Note that this is equivalent to saying that the network is connected.)

Also buffers upstream of input machines and downstream of the output

machine are considered to be outside the ystem of study.

To be able to operate, machine i requires 'C pieces from each of

its upstream buffers -eL (i). If the number of parts in buffer j is

less than W , the machine is said to be starved. Also a machine needs

to have room for one assembly in its downstream buffer to accommodate its

output. If not, the machine is said to be blocked. Because of the

assumptions on the buffers upstream of input machines and downstream of

the output machine, an input machine is never starved and an output

machine is never blocked.

In an AMN with K machines there are exactly K-1 buffers. This is-

because every machine except the output machine is followed by exactly

one buffer. Buffer i feeds exactly one machine, its downstream machine

which is labelled d . Buffer i is fed by exactly one machine, its upstream
a

machine labelled 2, (see Figure 2.2). Buffers are assumed to have finite

capacity. That is, buffer i can hold no more than N. pieces (or assemblies),
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Upstream and Downstream Machines of Buffer i

li dj

. Upstream, feri Downstream
Machine Machine

Figure 2.2
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where N.Iis a finite number. It is precisely this assumption that leads

to blockage of machines, and makes the analysis of such systems difficult.

Nevertheless, the finite-capacity buffers assumption is crucial in making

such a model realistic.

Also assumed here is that all machines have the same deterministic

processing time. This is taken to be the basic unit of time throughout

the following analysis.

Machines are modelled as unreliable, with geometrically distributed times

between failures (TBF), and ties to repair (TTR). This implies that the TBF

and the TTR are integer multiples of the basic time unit. Also implied is

that the probability of failure (or repair) during a given time unit,

given that the machine is up (or down) in the previous time unit, is the

reciprocal of the mean TBF (or mean TTR). The TBF(and TTR) is measured

during times when a machine is operating (or down).

The repair process (or a failed machine) takes place regardless of

the state of any other machine or buffer in the system. In particular,

it is unaffected by the states of its adjacent (upstream and downstream)

buffers. However, it is assumed that the failure of a machine can take

place only when the machine is operating on a piece. Machines do not

operate, and thus cannot fail, when they are starved or blocked.

2.3 Describing the structure of an AMN

Consider an AMN with K machines and K-1 buffers. Without loss of

generality one can impose a labelling scheme as follows:

- Label the output machine as machine K;

- Arbitrarily label the rest of the machines with integers between

1 and K-1, not repeating any label.
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- Label each buffer with the label of its upstream machine.

Figure 2.3 provides an example of the above labelling scheme for an AMN

with seven machines.

For the special case of a transfer line we establish the convention

that machines are labelled in ascending order from input to output. Thus

the input machine is labelled 1 and the second machine has label 2, and

so on until the output machine which has label K (for a K machine transfer

line).

One can describe the structure of an AMN completely by specifying the

list of upstream buffers of each machine. Recall that L(i) is the list,

of upstream buffers of machine i. To describe an AMN with K machines we

need a list of the following form:

(L(l), L(2), ... , L(K))-

Where if machine i is an input machine, L(i)=#, the empty set. For

example, to describe the network in Figure 2.3 we write:

(# ,p j ,g 6[ 9, 14> 9 , 3 ,9 2, 5, 4 i

Two other examples appear in Figure 2.4.

An alternative way of describing the network labelled in the above

manner is by listing the downstream machine of each buffer as follows:

(d1, d2 ' .. , ''d'k-j.'

For example, to describe the AMN in Figure 2.4 we write:

(2,~7, 5, ,7 , 2).

The latter dexcription is more compact than the former. However, it

has the disadvantage of not having the sets L(i) immediately available.

As will be seen in Chapter 5, these sets are important in the analysis of
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A Seven-Machine AMNFigure 2. 3
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Three-Machine AMN'sFigure 2. 4
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the model.

2.4 System Parameters

The following parameters are needed to describe the system: (Note

that a complete system description requires the topology of the network

in addition to system parameters.)

For each machine i,

Pi = probability that a machine i fails in the next time period

given that it is operational and neither starved nor

blocked in the present period.

r,= probability that machine i is repaired in the next time

period given that it is down in this time period.

For each buffer i,

N = capacity of buffer i.

= number of parts that machine d takes from buffer i in

one time unit.

2.6 State Space Formulation

The state s(t), of an AMN with K machines at time t, is described by:

SWt)= (n_(t), og(t)) ,

Where n_(t) -(n,(t), ... , nk-l (t))

and c(t) = (c(t), .. , ok(t))

In the above

n (t) = number of parts in buffer i at time t.

0 \< n.(t) $ N for all i=l, ... , K-1.
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Also 0 if machine i is down at time t

1 if machine i is up at time t

for all i=1, ... , K.

The system is modelled as a discrete state, discrete time Markov

process. This is because the probability of being in a particular state

at time t + 1 depends only on the state of the system at time t.

It is assumed that state transitions occur in the following manner;

- Machines change state from 'c (t) to _(t+l) depending on informa-

tion provided in (n(t), m (t)). In particular, whether a transition is

possible depends on whether or not a machine is starved or blocked.

- Buffers undergo their change of state from n(t) to n(t+l) depending

on o< (t+l) and n(t).

Physically this means that the machines undergo transitions at the

beginning of a period, while buffers change state at the end. This

assumption is made for mathematical convenience, as evidenced in Chapter

5.

An important consequence of this assumption is that a machine cannot

process a part if it is starved even though the upstream machines can

produce the needed parts. Similarly, a blocked machine cannot start

processing even if the downstream machine is ready to take in a piece.

Table 2.1 lists the machine state transition probabilities. For

example, the probability that machine i is down at time t+1 given that it

is up and neither starved nor blocked at time t is equal to p,. Also if

machine i is blocked and operational, it cannot fail. Thus the transition
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n.(t) n.(t) - .)(t+1) PROBABILITY

jeL(i)

O 0 1 - r

O 0 r .

N. 100

N. 1 1

0 for anyj - 1 0 0

0 for anyj - 1 1 1

J <Ni 10Pi

for all j

fo<rN lpj

for all j

Machine Transitions

Prob Ck. (t+1) e. (t), n.(t),n.(t)_,jeL(i)]1 1 1 ]

Table 2. 1
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between oK(t)=1 to C.x(t+l) = 0 has zero probability if n (t) = Ni.

In Table 2.1 the index j in the first column refers to a buffer upstream

of machine i. The index i in the second column refers to the buffer

downstream of machine i.

Table 2.2 describes how the buffers change state after the machines

change state. Recall that the buffer state at time t+l depends only on

buffer states at time t and machine states at time t+l. Therefore the

transitions described in Table 2.2 are of probability one, and all other

events have a zero probability.

In order to understand Table 2.2 consider Figure 2.5. Buffer i is

affected by the buffers in L(i) and L(d.), as well as by buffer d,. It

is also affected by machines i and d. . Machine i is starved if for some

j e. L(i) buffer ,j contains less than '. parts. Similarly, machine d. is

starved if for some j C L(d.) buffer j contains less than j parts. Mach-

ine i is blocked if buffer i is full and machine d. is blocked if buffer

d. is full.

We now consider four cases in Table 2.2 as examples:

Case 1: Here neither machine i nor machine di is starved or blocked.

Then if machine i is up at time t+1 it deposits a part in buffer i. If

it is down no parts are added to buffer i. Similarly if machine d. is

up at time t+l it takes i parts from buffer i. Otherwise no parts are

taken from buffer i. Thus the value of n(t+l) can be obtained from

n . (t)by:

ni(t+l) = n(t) - 0di (t+l) + o( (t+l). (2.1)
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case n(t) nnt) nd (t) - n (t+1)

jCL(i) meL(d

1 )$'m f <2&d <Nd n.(t) -i Xdi(t+1) +%(t+1)

<N

2 > . - ,mi Nd n(t) +<.(t+1)

<Nii

3 >f. 0 for any m - n.(t) +OC.(t+1)

-< N i

4 - > ,mfi <N n (t) - <d.(t+1)m -d i d.
N 

1

5 0 < Nd n (t) -5 (t+1)

for any j fo all di d

6 - - ,mfi Nd n.(t)

Ni

-0N n (t)
for any J d. i

8 -0 0 - n.(t)
for any j for any mI

9 - 0 - n.(t)

for any mfi
N

Table 2.2 Possible Buffer Transitions. For these transitions
p[n.(t+1)l n (t), jGL(i), nm(t), mcL(d ),nd.(t), ti(t+1), xd(;+1)] = 1.

For all other transitions this probability is zero.
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L (i) L (di)

Figure 2.5 A Portion of an AMN
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Case 2: In this case machine i is neither starved nor blocked, but

machine d. is blocked. Therefore machine d. cannot operate and buffer i

has no parts removed from it at time t+l. Machine i can add a piece if

it is up at time t+l. Hence

n. (t+i) = n (t) + 0(. (t+i). (2.2)

Case 5: Here machine i is starved while machine d. is neither

starved or blocked. Thus machine i is not operational and cannot add a

piece to buffer i. However, machine d. can take . parts from buffer

d. if it is up. Hence

n (t+l) = n (t) - Y4 di (t +1) (2.3)

Case 7: In this case machine i is starved and machine d. is blocked.

Hence neither machine can add parts to or take parts from buffer i. Thus

the level of buffer i remains unchanged from time t to t+l. For this case

n. (t+l) = n. (t) (2.4)
1

All other cases are treated in the same manner.

In summary if either of the machines i or d. is starved or blocked

at time t it does not contribute any change to the level of buffer i at

time t+l. However, if machine i is neither starved nor blocked at time

t and is up at time t+l then it adds a part to buffer i at time t+1. If

machine d is neither starved nor blocked at time t and is up at time

t+l then it removes K parts from buffer i at time t+1.
For all the cases in Table 2.2 the following is a summary of the

machine conditions (starvation or blockage)

Case 1 - Neither machine i nor machine d. is starved or blocked.

Case 2 - Machine d. is blocked.
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Case 3 - Machine d. is starved.

Case 4 - Machine i is blocked.

Case 4 - Machine i is starved.

Case 6 - Both machines, i and di, are blocked.

Case 7 - Machine i is starved and machine d. is blocked.

Case 8 - Both machines are starved.

Case 9 - Machine i is blocked and machine d. is starved.

Note that if machine i is an input machine, Cases 5, 7, and 8 are

not applicable. Also if machine d is an output machine, Case 2, 6, and

7 do not arise.. Case 9 is not applicable when L(d1 ) contains only one

element.

2.6 Markov Process Formulation

We are now concerned with using Tables 2.1 and 2.2 to construct a

discrete time, discrete state Markov chain. We define the transition

probability to state S2 at time t+1 given that the system is in state S,

at time t as

T (s 2 ) = Prob [s(t+l) =s2I s(t) =5] (2.5)

= Prob [s(t+l) = (n(t+l), c_ (t+l)) I

s (t) =(n (t) ,o( (t))] (2.6)

K-1
= TT Prob

i=l

K
* T~ \Prob

i=1

[n.(t+l) I neL(), n m(t eL(d3)nd.t'

ki.(t+l),j *(d.(t+l)]

(2.7)[ CK .(t+1)I n . (t) , j Ez L(i) -, n.i( t) , Ck.i(t) ]
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The value of expressions (2.7) can be determined from Tables 2.1 and

2.2 as follows:

Prob [n,(t+l) I n 3(t)

1

0

,j L(i), m (t)jpeCL(d i), n d.(t), :xi(t+1),

Dcijt+l)l
if the quantities n (t+1), n .(t), nM(t),

b(t+i), CKd4 (t+1) conforms to one of the cases

in Table 2.2

Otherwise

(2.8)

A product of such expressions as in(2.8) is 0 or 1. The value of

Prob C(I-. (t+1) n .(t) I, . .L(i) , n.i(t) , C . (t) I

can be obtained from the last column of Table 2.1. Thus
K

T (2 ) @ 17 Prob[%x,(t+l) In (t) , j e L(i) , n.(t), j(t)]
i=1

or

D 0 (2.9)

The pair (s 2, s) is in case D of (2.9) if

Prob ni(t+l) n -(t), j L(i), nu(t), m L(d ),ni(t+),

Sdi(t+1)]

1 ,9 V i = 1,9...0,tK-1

The value of T(S 2, l.) forms the transition matrix T.

is square with dimensions
K K-1

= 2K T I (Ni+1)
i=l

(2.10)

The matrix

(2.11)
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For this to be a valid Markov process we need to show that T is a

stochastic matrix, that is that T possesses two properties. First all

its elements need to be non-negative. This is obvious from (2.9). The

second property of stochastic matrices is that

T ( = 1 (2.12)

S2

From 2.9 we see that
1 1 K

T( TT1 =ProbV(t+t)X n,.(t), j tL(i), n(t),cKJt)]
S2 (s V+s 1)K t1)=

(2.13)

Equation (2.13) can be rewritten as (See Gershwin and Schick (1979)

T(s ,s1)
52.

K 1
=-Th 2

i=l Nx( t+l) =

From Table 2.1 we have

Prob [j (t+l) = 0 n .(t), jeL(i),

+ Prob [c(t+1) = 1 n.(t), jeL(i),

Thus (.14) becomes

T(s 2 'S 1 ) = 1
s2

Prob~~t+a)nj(t), jeL(i), n $(t), cK.,(t)]
0

(2.14)

n.(t), .(ijt)]

n j(t), X(w)I = 1 (2.15)

(2.16)

We have now shown that matrix T is a stochastic matrix. This proof is

similar to the one provided in Gershwin and Schick (1979) for the special

case of a transfer line. In the same work it is shown that the Markov

process under consideration is ergodic. For the more general Markov chain

describing an ANN it can be argued similarly that the process is ergodic.

For the proof the reader is referred to Gershwin and Schick (1979).
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2.6.1 Transient Behaviour

As mentioned before the state of an ANN at time is defined by

s(t) = (n(t), C- (t)) (2.17)

We say

p,(t) = Prob (s(t) = s).(2.18)

That is p,(t) is the probability of the system being at state S at time

t . Also let

Fp1 (t)l

(t) = P2 (t) (2.19)

LM J
wbere M is the number of states (see equation (2.11) ). The probability

vector p(t) is given by:

p(t+l) = T p (t) (2.20)

and the normalization equation

p(t) = 1 (2.21)

i

From (2.25) we can obtain the following relation

p(t) = Tt p() (2.22)

2.6.2 Steady State Behaviour

In analyzing this system it is assumed that steady state has

been reached. That is, all the effects of the starting conditions have

disappeared. This is appropriate for systems that have been running for

a "long" period of time relative to the characteristic system times

(processing failure and repair times). The steady state assumption is
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a good one for manufacturing systems if one is interested in their

behaviour after a sufficiently long time has elapsed since start-up.

The aim of the analysis is to calculate the performance measures

discussed in Chapter 1. These calculations require the values of the

probability of the system being in each state. The steady state

probability of being in state s = (n, J ) is denoted by

p(s) = p(n,a ) = p(nl, .h.a.nk-1 '.at ' 4k). (2.23)

Ergodicity for a discrete time, discrete state Markov chain

implies that the steady state probabilities (2.23) exist. In particular,

p(s)= lim Prob [s(t) = si] (2.24)

The limiting steady state probabilities, p(s.) can be determined

by the matrix equation:

T =(2.25)

p(s1

where p (2.26)

- [P(sQJ

in conjunction with

p(si) = 1. (2.2?)

i=l

Equations (2.25) and (2.27) can be determined by taking the limit, as

t - Co , of equations (2.20) and (2.21).

We can rewrite equation (2.25) as

p (s) = T (si ,s) p (si) (2.28)

i=l
j=. .. , Mv



Equations (2.28) are called the steady state transition equations

describing the Markov chain.

(See Bharucha-Reid (1960), Feller (1966) and Howard (1971))

For the systems at hand the number of states can be quite large

(see equation (2.11) ). This makes a direct solution of the steady

state transition equations by standard simultaneous linear equations

techniques impractical. A method of solution which circumvents this

difficulty, utilizing the special structure of this problem is presented

in Chapter 5.

For the purpose of reducing complexity only the special case

where 6'. = 1 for all i is studied here. This simplifies the analysis

while retaining many of the important features of the model.

2.7 Performance Measures from Steady State Probabilities

In this section we show how the performance measures, discussed

in Chapter 1, can be calculated directly from steady state probabilities.

Only the important results are shown in this section. The detailed

proofs of these results are contained in Appendix I.

First we focus on the production rate of an AMN. Define R., (t)

as the number of parts released from machine k (the output machine) in

the time interval [,t] . We then define production rate as follows:

lim R (t)
R t-= 0(2.29)

-41-



Proposition 2.1

R = lim K = Prob [o (t) = 1, n.(t-1)' 0, (2.30)
t-' tK

. e L (k)3

The proof of proposition 2.1 is presented in Appendix I.

Proposition 2.1 says that the production rate is the same as the

probability of the output machine producing a part at time t . The

difficulty with expression (2.30) is that it depends on the state at two

time instants and thus cannot be calculated from steady state probabilities.

Proposition 2.2 resolves this difficulty.

Proposition 2.2

R = Prob [e-(t) = 1, n.(t-1)> 0, L ()

= Prob [ '(t) =1, n.(t) > 0, ' .E L (k) (2.31)

The proof of proposition 2.2 is in Appendix I.

Expression (2.31) allows for a straightforward calculation of

production rate as follows:

R Prob [ixk(t) = 1, n (t) > 0, ' L()

1 1 Ni N1
see p- n(n 1'...,n ... K-%'1

10 =0 n =O ni jk=vKI
X -1 

(232
.iL(k) L(k) (2.32)

We now define a related measure of performance, the rate at which an input

machine takes parts. Let D .( t) be the number of parts taken in by input

machine j in the interval [o,t] . Define input rate:

-42-
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D urn D .(t)I). = l J-. --- (2.33)
j t-bm t

For the quantity D . the following is proven in Appendix I.

Proposition 2.3

For j an input machine to an AMN.

.m D .(t)
D urn-Do=Prob [( t) =1, n (t-1) < N. 1(2.34)

Proposition 2.4

For input machines j to an AMN

D. = Prob [M.(t) = 1, n.(trl) K N.]

= Prob [Ok.(t) = 1, n.(t ) K N.] (2.35)

In a manner similar to the expansion of R, the production rate as

a sum or probabilities, (2.35) allows us to write:

1 N.-l N.

D. = ... % ... 2 p (n n...nk, , , 1
i=0 n.=O n.=O l, k- 1'10 ,9j-lI,

ifj (2.36)

We now state a conservation of flow theorem. Conservation of

flow certainly holds for a real finite capacity production system, provided

there is no mechanism for part creation or destruction. The following

theorem asserts that conservation of flow does indeed hold for the

present ANN model.

Theorem 2.1 Conservation of flow

For a k-machine AMN

D = R For all input machines j (2.37)

Proof: Theorem 2.1 is proven in Appendix I.



Theorem 2.1 states one possible version of conservation of flow: The

rate of input into input machine j is the same as the production rate

of the system. Note that the intention of the conservation of flow

theorem here is not to show that mass flow is conserved. What we are

concerned with here is that the input rate of each part type, in parts

per unit time, is equal to the output rate in parts per unit time.

The second performance measure described in Chapter 1 is the

mean in-process inventory at buffer i; we denote this by FL. The

value of Ei can be calculated in a straightforward manner from the

steady state probabilities.

= 1s nip(s) (2.38)
all s

2.8 The Disassembly Operation

Assembly merge networks contain machines that perform one type

of operation, namely: an assembly. Recall that "assembly" here includes

single part operations as well as physical assembly operations.

In this section we describe briefly another type of operation:

disassembly. This is needed for the discussion in Chapter 4 to be

complete. Furthermore, the AMN model in this Chapter can be generalized

to include machines that perform disassembly.

Consider the following variation on the Formica plant example

described in Chapter 1. Assume that the ultimate product is not the

assembled table top but two tables of different sizes. After the

assembled top emerges out of the pasting machine it passes through a

sawing machine that cuts the top into two tops of the desired sizes.
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Each then goes to a separate machine where the tables are manufactured.

(See Figure 2.6). The machine where the sawing takes place is an

example of a disassembly machine. (If the pasting and cutting operations

are performed in one machine, then the machine is an Assembly-Disassembly

machine). Generally speaking a disassembly operation involves breaking

up a single part into several smaller parts. Thus disassembly machine

i is fed a piece by its upstream buffer L(i) and as a result of the

operation it puts a predetermined number of pieces in each of its down-

stream buffers j D (i) (See Figure 2.7).

Note that the disassembly operation is basically a reversed

assembly operation. This idea is expounded in Chapter 4.

A machine that combines the assembly and disassembly capabilities

is one that has a set of upstream buffers, L(i), and downstream buffers

D(i). Parts are taken from buffers in L(i), and assembled into one

piece. The machine then takes the assembled product and disassembles

it (hopefully in a manner that does not just reverse the assembly opera-

tion just performed). The output goes to the downstream buffers. Figure

2.8a is a schematic of an Assembly-disassembly machine (ADM). Figure 2.8b

is a typical network constructed using the ADM as a building block. It

is conjectured that such networks are amenable to the same kind of

analysis that is presented in this thesis.
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D(i)

A Disassembly MachineFigure 2.7
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Chapter 3

Transfer Line Reversibility

3.1 General Remarks

Studies on transfer line reversibility Are concerned with investi-

gating the effect of reversing the order of machines in a transfer line on

performance measures. Several works in the literature have dealt with

this issue, (e.g. Muth (1979), and Dattatreya (1978)) . The basic

result of the reversibility studies that prevails in the literature

is that when the order of machines of a transfer line is reversed the

production rate is unchanged.

We show that this is indeed true for our transfer line model (a

special case of the ANN model). We also show that the other performance

measure of concern, namely mean in-process inventory, does change. The

latter result, as far as this author is aware, does not appear in the

literature. One clear implication is that for transfer lines that

can be modelled using our AMN model, reversing the order of machines

can change the performance of the system.

Our basic tool for arguing the above results is the notion of a

hole, or empty space, in a transfer line. (We define this more formally

later). We find it useful to consider the motion of the empty spaces

(instead of parts) in the transfer line. We note that Newell (1979)

also considered hole movement through a queueing network. However, that

notion is not put to the same use as is done in this chapter.
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It should also be noted that some of the Theorems and Corollaries

stated in this chapter are motivated by numerical experience obtained

by Pomerance (1979) for three machine transfer lines.

3.2 Part-Hole Duality

In analyzing production systems (AMN's being an example) one

focuses on the motion of parts through the stages of the production

process. Alternatively one can just as easily analyze the motion of

empty spaces in the system. That is there is a one-to-one correspondence

between the number of empty spaces and the number of parts in a system.

For example consider a finite buffer of capactiy N. If at any time t

the number of parts in the buffer in n(t), the number of empty space

n'(t) is determined uniquely by:

n'(t) = N - n(t) (3.1)

We call the empty spaces, "holes",(borrowing terminology from semi-

conductor physics).

Consider the behavior of the AMN model when one analyzes the

motion of holes instead of parts. When a machine produces a part it

also, at the same time, takes a part from each of its upstream buffers.

By depositing a part in its upstream buffer, the machine decreases the

number of holes in that buffer by one. Also by taking a part from each

of its upstream buffer it increases the number of holes in each of those

buffers by one. Thus a machine could be thought of as taking a hole

from its downstream buffer and performing a disassembly operation on it,

as a result of which a hole is deposited into each of its upstream buffers.
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It has been argued that an event of part production always corre-

sponds to an event of hole production, i.e. adding a hole to an upstream

buffer. Also, in the ANN model, when a machine is down it produces no

parts. Thus it cannot produce holes. Also a machine cannot fail when

any of its upstream buffers is empty because it has no parts to take in

to produce the assembly. However by (3.1) an empty buffer is full of

holes. Therefore a machine that is starved of parts is blocked by

holes and can neither operate nor fail.

Using the same line of argument one can also conclude that a

machine blocked by parts is starved by holes and hence can neither

operate or fail. Therefore we have shown that failure and repair play

the same role in our model whether one considers the motion of parts or

the motion of holes. However, blockage and starvation exchange roles

when one considers the flow of holes instead of parts.

Finally, if one has an infinite storage for parts (as there is

downstream of' the output machine), then there is an infinite number of

empty spaces, or alternatively infinite supply of holes. Similarly,

an infinite supply of parts (which appears upstream of each input

machine) corresponds to an infinite storage capacity for holes.

To summarize, we have shown a well defined duality between parts

and holes in our model for an AMN. See Table 3.1. This duality

suggests that looking at the motion of parts br the motion of holes in

a system should not result in any new information.



Parts Holes

n N-n

'>O room 00 supply

00 supply 00 room

Blockage Starvation

Starvation Blockage

Failure Failure

Repair Repair

Table 3.1 Part-Hole Duality
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3.3 The Strong Reversibility Property

In this section we present and prove several properties related to

transfer line reversibility. This is used as an example of how the

hole concept can be utilized to construct equivalent systems. Recall

that a transfer line is a special case of an AMN in Chapter 2. (See

Figure 1.2).

Let the two AMN's F and R be defined as follows:

F = (1, { I, 21,..., K-1 ) (3.2)

R = ( 4 , 1) n2 } ,..., 1K-1 )(.3)

Both systems are transfer lines.

F F F B B BLet r. , p. , Ni and r. , p. , N. be the system

parameters for F and R respectively.

We say R is the reverse of F if and only if

F Rr rK-i+l (34)

F R
pi = CK-i+l O35)

F RN = N _ (3.6)

In other words, R is the reverse of F, if the machines and buffers

in R are arranged in the opposite order to the arrangement in F.
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To motivate the theorem proving the strong reversibility property,

consider the motion of holes in system F as defined above. Holes in

system F enter the system through machine K, which is identical to

machine 1 in R, where parts enter that system. The holes in F then

proceed through the system until they exit via machine 1, which is

identical to machine K in R where parts exit that system. At any time

t if buffer i contains n(t) parts, it has NF -ni(t) holes. This is

the same as the number of parts in buffer K-i of system R at time t.

It appears that holes go through system F in the same manner as parts

go through system R. The above argument suggests the following theorem.

Theorem 3.1: Strong Reversibility Property

For i = 1, ... , K-1, j=1,..., K

Forall n 1, Q0Kni Ni andfor all "=O, 1

pF (np,... K- , n l ' k) (3.)

when

n= N4 l-nK = N - nK (3.8)

and

0L+ =(3.9)1.K-i +1

Proof:

Consider Tables 2.1 and 2.2 as specialized to transfer lines.
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Table 3.Za contains the transfer line machine transition table, and

Table 3.3a is the transfer line buffer transition table. (These

tables appear in a less compact form in Schick and Gershwin (1978).

In Table. 3.2b we modify Table 3.2.a by conditioning the

Mi(t) - to - CK (t+1) transition on NY-1 -n. 1 (t) and NF - n.(t)

instead of on n1 1 (t) and n (t). For example where Table 3.la states

that n._1 (t) = 0 we have N1_1 - n 1 (t) = _ in Table 3.lb.

Consistently with (3.8) and (3.9) we can define

-+ 1( 1 - n.(t), (3.10)

F-i(t) - n(t), (3.11)

and

-i+1 (3.12)

Also from the definitions of F and R we have

F R
i X-i+1

and

F F
p K-Fi+1.

From the substitutions (3.10) through (3.14) we can obtain Table 3.2.c

from Table 3.2b. Note that Table 3.2c is the machine transition table

for system R. (To see this clearly K-i+l by j in Table 3.2,c.)

We now manipulate Table 3.3a in a similar manner. First find the

FF
value of N - n.(t+l) conditioned on the values of N. - n.

1-1 1-1)

VWOMF -69 -,-.
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ni-i (t) n (t) i(t) oc(t+1) PROBABILITY

S-F

FF

-.- 0 1 r

O - 1 0 0

O - - 1 1 1

F
- N 0 0

-N 1 1 1

iP

0 <N 1 0 pF

0 <Ni 1 1 1 - p1

Table 3.2a Machine Transition Probabilities for a Transfer Line
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N n1 (t) N1 - n(t) c((t) t (t+1) PROBABILITIES
1- -1i i i

F
S0 1-rF

F

N 1-0

N -N1 -1

O 1 0 0

O 1 11

N >0 1

N >0 1 1 -F

Table 3.2b Modification of Table 3.la
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S +(t) nWo(t) K-i+1(t) (t+1) PROBABILITY

- - a a i -Kr K-R +10 rK-i+

R
0+K-i+1

R

-- 1 0 0

-- 111
O 1K-i+

R R

>01

>0 i1 -K-i+1

Table 3.2c Machine Transition Table for R, the Reversed Line
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n M n W n +W " (t+1)

>0 >0,<N (N F n (t) + E.(t+1) - + (t+1)
1+1 1+

F F(t1
>0<N Ni+1 n (t) + N (t+1)

'0 0 - n (t) + iX.(t+1)

F Fn(t - ti)N <N n (t)-(.+)~i+1 . +

0 >0 <NF+ n(
1+

F Fn(t
SN NF+ n(t)

0 -N+1 n()

0 0 - n(t)

Table 3.3a Possible Buffer Transitions for a Transfer Line
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N.F - n. (t), and NF -n1 (t). This yields Table 3.3b. Then we use
1 i 1+1 i+1

equations (3.8) and (3.9) to give us

' 
-,( -t)(3.13)

n' .(t)= N - n(t) (3.14)

n' (t) = + - n+ (t),(3.15)

CX .(t) = .(t) (3.16)

and

= c(.(t). (3.17)

Also from the definitions of F and R we have

N F = R1(3.18)

and

N lF - N R(3.19)i+=1NK-i+1.

Using equations (3.13) through (3.19) on Table 3.3b yields Table

3.2c. This is exactly the buffer transition table for system R.

We have so far shown that by applying equations (3.8) and (3.9) on

Tables (3.2a) and (3.3a) for system F, we get Tables (3.2c) and (3.3c)

which are the tables for system R. In Chapter 2 it is shown how the

probability of transition from any state to any other state can be

calculated from the tables. Thus by constructing the tables for



FF F F

N -.1  >nO(t)N ( > N+ (ni) -W(t+) t1-+

NFNF > 0 N - n(t) C(t+i)+ (t+l)

<NF F
>0 0 N - n ()- (t+1)

<Ni N - NFn (t) - (t+l)

0 >0 N -n(t) +oo<+(t+i)

F
N FF
i- N >0 N - njt) + 'i+1 (t+1)

F0 0 N - n.(t)
1 2.

NF FN - 0 N - n.(t)
1 1

NF F FN. - N. - n.(t)

Table 3.3b Modification of Table 3.3a
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R> R
NK-i+lKi0 nKi(t) K-i+(t+1)+

> 
R0 0 n ()W K +(t 1)

NK-i+l KiKil

R R
c NK-i+l N K-i - n K (t) -p(K-i+l(t+1)

0 >0 ()+ (t+1)
'K-i K-i

. R <NR>0+ tl
NK-i+l ( K-i )0 K-i( t"+ t+1

0 0 n i(t)

NKi+l - n(t)

R R
NK-i+l NK-i K-i

Table 3.3c Possible- Buffer Transitions for R, the Reversed Line
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system R from the tables for system F by using (3.8) and (3.9) we have

shown that

TF(s2 , sl) = TR(s , sj). (3.20)

Where TF (s2', s) is the probability of transition from state sto

state s2 in system F. TR(si sj) is defined similarly. Relation

(3.20) is true provided states s2 and s are related by (3.8) and (3.9).

Also states sl and s' have to be related in the same way.

F
Let pi(t) = Prob (State of system F at time t = s.),

and p (t) = Prob (State of system R at time t = s').

Where states si and s are related by (3.8) and (3.9).i

Also let

p (t) =p()

_FLrPM+(t) 1
and

R -R -
p (t)p(t)

p (t)

Equation (3.20) indicates that by relabelling the states of system

F according to (3.8) and (3.9) one can construct the transition matrix

for system R. This matrix is the same as that for system F. One impli-

cation of this is that if any time t (t) = pR(t), then pF(t+l) = TpF)

= Tp R(t) PR(t+l). Where T is the transition matrix.



In particular, the steady state probabilities are related as follows:

pFs = pRs)(3.21)
p F(S) pR(s') (ol

if s' is the new label of s. The proof of Theorem 1 is now complete.

Consider the following example of an application of Theorem 2.1

Define the following two systems:

F3 =

R3 = ( 1, 1 ,12 ),

where

r 3 F3 F3 R3
1  P3 ' P2  =P2

PF3 __P3R3 92F3 =_P2R3

N F3 = N2R3, N = N R31 2 2 1and

r =3 r R33 13

F3 R3P3 - 1P 3

Systems F3 and R3 are three-machine transfer lines and R3 is the reverse

of F3.

By Theorem 2.1 we have

P9 (n1, n2 ' ' 2 ' x3) W(n, n5 oyp

when

n{ N - n2 =-

n rNF3 - n = NR3 -n,2 1 1 2 1



t li

2

and 3 =.$

For example if

N 3  10,
1

and

N = 10.2

then

PF3( 3 ,2,11,0,10) =PR3-(8,7, 0,0,1)

3.4 Consequences of Strong Reversibility

3.4.1 Measures of performance

Recall that we are actually interested in calculating measures of

performance for AMN's. Two such measures where identified in Section

2.6, the production rate R and the mean in-process inventory in buffer

3, n. Another measure was introduced in Section 2.6 namely D., the

input rate through input machine j. It is proved in Appendix 1 that

for each input machine j, conservation of flow holds. That is

D. = R. (3.21)

In the special case of transfer lines there is only one input machine

(machine 1). Thus for a transfer line (3.21) becomes

D 1= R. (3.22)



-66-

Theorem 3.1 is now used to prove that the production rates of

systems F and R are equal. We call this the weak reversibility property

for transfer lines. Define RF and R as the production rates of systems

F and R, respectively.

Corollary 3.1.1 Weak Reversibility Property

For the two systems F and R

R =

Proof a

(3.23)

Consider the

1 1

0 _0K-i=

formula for RF

n =0 n,-2=0

presented in Section 2.6

-l

K- =1

(3.24)

From Theorem 3.1 we know

F
p B(n. n5''' rW-l'*t@I.ai

=PR (n , n2,I ... , n, CK, v,. .. x )

where n=NL -nK-l 1

in-i

and Ot =K
I K-i+(

Thus (3.23) becomes

i=1, . . .K-

i=2, . . .K

(3.25)

(3.26)

(3.27)
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1 1 N 0 NR

B F= ZI'21 2 K-i1
-t'=0 ~ 0~= n n'=0 n' -0KFK-

p R(nip , tn2''' k-l' ' IXop, , . . . , o k) (3.28)

But from (2.23) the right hand side of (3.28) is equal to DR where DR
1

is the input rate for system R.

Hence

RF = DR (3.29)

But from (3.22) (conservation of flow)

DBR = R (3.30)

Thus the proof of the corollary is complete. It must be noted here that

Muth (1979), and Dattatreya (1978) prove weak reversibility for transfer

lines under more general assumptions.

In the next corollary a relationship between the mean in-process

nF -Rinventories of the two systems is established. Let n' and n . be the

mean in-process inventories at buffer i in systems F and R.

Corollary 3.1.2

For the systems F and R

-R NF N-FN -F
i = K-i K-i i

For all i = 1, ... , K-1.

Proof:

FUsing the formula for n.
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-F F
n = a- n p (n, nK-l' '''''K

I all~ =0,1 (hs~ -s~f3K

all n =O,...,N F

n 1pF (N .- n ,.. . 2-n _, , . ,
all C=o,1

S -F
all N '-n=O0,,,,,N F (3.32)

By Theorem 2.1

1,F(n ,p...,nK- ' ') Rcu(n,...,ni

Whenever

(3.,33)

n =N -_Fi, - nI K-i K-i

Thus (3.32) becomes

n, =z
all C'=0,1

all nv , ee.,N

(3.34)

(3.35)

1=1, ...,K-1

i =1, ... , K

(3.36)

(3.37)N _ -Rn1 j n nK = K-i " -n

We now investigate the usefulness of corollaries 3.1.1 and 3.1.2 in

the design of transfer lines. Suppose a manufacturing process requires

PR
(nt ri.K.K- 1
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K stages to complete and suppose that parts can go through the stages of

the process in any order. One problem the designer of such a system is

faced with is determining the order in which operations are to be per-

formed. Corollary 3.1.1 tells the designer that, once an arrangement has

been found, reversing the order of operations will not change the per-

formance of the system as far as production rate is concerned. However,

Corollary 3.1.2 reveals that if the designer is concerned with keeping

a low in-process inventory, reversing the order of operations might help

in that regard. Note, also, that there are other rearrangements for

which we can say nothing as far as their effect on performance.

3.4.2 Symmetric Transfer Lines

A symmetric transfer line is one which is identical to its reverse.

Formally, System F is symmetric if:

N4 = Ni, i = ,...,K- (3.38)

F R
r r = 1 . ., ,K(3.39)

and

pF p. i = ,...,K (3.40)
1 1

From the definitions of system R we have

NF = NBR3.1i K-i'
F R

r = rK-+' (3.42)

and F R
i PK-i+('



Thus for a symmetric system F:

Nt= i = ,...,K- (3.44)

i '-il
+F F (3.45)

S= PK-i+1

Symmetric lines have appeared in the literature as results of

optimization problems (See Ho et al (1979), Hillier and Boling (1979)).

An example of an optimization for a model of transfer lines is

maximizing production rate given a constraint on the total amount of

buffer storage available e.g.

K-1
N 1 (JM (3.47)

i=l

where M is a constant.

Such an optimization problem has not been attempted for one transfer

line model, but it is suspected that a constraint such as (3.47) under

the conditions (3.45) and (3.46) will yield condition (3.44).

We now proceed to state and prove results based on Theorem 3.1,

relating to symmetric transfer lines.

Corollary 3.1.3

If system F is a symmetric transfer line then

w MWTR-VM . mnlum;5 2 1 - 71,79 - -- 2 TRM 57m . - M. mm m - .- r r .- Ow " , , , - - - m -, - p , '. , t . - .- . - ... ., -.. , , . ,. .
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= 

(n, .F.nata)K-1'n

when n != F
n i K-i

OK. = CK-j+

S= 1, . . .,K-1

i = 1, .. K *

From Theorem 3.1 we know

= PRn (n , _a a, . c )
= 1 n , ., _ ,M , . ,x )

Whenever

= Fni - nK

S=MK-i+1

i = 1,.. .,K- (3.52)

(3.53)

However from the symmetry of the transfer line (F and R are identical)

(3.51) is also true whenever

ng = ny i = 1, . . .,K-l, (3.54)

and

I = 1, . . ., K (1 CK1

and

Proof:

(3.48)

(3.49)

(3.50)

(3.51)

-

(3.55)
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Thus we have

=B (nj,...mnj joju..u, jD ) (3.56)

Whenever

n = _N, - n = - n- i=l,...,K-l (3.57)

and

DCKi= K-i+1 '1'(3.58)

Since R and F are identical systems the R superscripts on the probabili-

ties can be replaced by F and thus the Corollary is proven.

One implication of Corollary 3.1.3 is that if one is solving

for the probability distribution of a symmetric transfer, one only need

to solve fQr about half the probabilities. The number is not exactly

half because (3.48) will cometimes yield a trivial identity indicating

that

P F(s)= PF(s) (3-59)

The next corollary states a result for the mean in-process inventory

of a symmetric transfer line.

Corollary '3.1.4

For a symmetric transfer line F

n. - y.. - n (3.60)i-
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Proof:

F al
all Ix =0,l

all n =0,...,NI (3.61)

From Corollary 3.1.3 we have

P F (n'..,19l' ''K

(3.62)

Whenever

no =NF.-n.
i K-i1

i = 1, .*., K-1

c4 i= l i =l,...Ki K -i+1

Therefore (3.61) becomes by a change of variables:

=(4 k-n1 E1 ) pF(n,,, rl ,... gK)
allcK1=0,1

all n.=0,.

(3.63)

(3.64)

(3.65)

-F F -F
nn= - nK-i = K-i BK-i (3.66)

Hence the corollary is proven.

One interesting consequence of the above corollary is that if a

transfer line is symmetric around a buffer, i.e. if K1is an integer, the
2

following relationship holds.

ni p (nj,..,n K,...,D< )

= F F(n ,.. ,, 99 o ,..., ost I )
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-F = NF F (3.67)n1C NK-K 'K-K

F (3.68)K K

Thus

F = N(3.69)
2K 2 K

Equation (3.69) implies that the expected in-process inventory in the

middle buffer (4) is always half of its capacity. This is independent

of all system parameters.

3.5 Reversibility for other Transfer Line Models

In this section we present evidence that reversibility holds for

other transfer line and queueing models.

1 - The M/M/u/K Queue Kleinrock (1975)

This system has poisson arrivals with rate X ,exponential service

times with rate one server, and a finite queueing capacity for K

customers. If an arrival finds the system full it is lost forever. We

denote the steady state probability of finding k customers in the

system by pF(k). From Kleinrock (1975)

pF(k) = 1 - >-/(1 ) 0 < k) K (3.70)
1 - K+l /A

0 Otherwise
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Define the reversed M/m/l/K system as one with arrival rate

and service rate , and let pR (k) be the steady state probability

of finding k customers in the reversed systems. Thus

p R(k) l-Kl0 < k < K

0 Otherwise (3.71)

By simple algebraic manipulations it can be shown that:

pF(k) = pR(K-k) (3.72)

This is analogous to the strong reversibility property proven for our

transfer line model. (Theorem 3.1).

Note that the M/M/l/K system is a model for a reliable two-machine

transfer line. "Reliable" indicates that the machines are not prone to

failure. The arrival rate is the processing rate of the first machine in

the line. The queue capacity is the interstage buffer of capacity k.

From this point of view (3.72) describes the relation between the steady

state probability distribution of a transfer line and its reverse.

There is further evidence that when queues of the above type are

placed in tandem, strong reversibility properties similar to (3.72) can

be established.

2 - Muth's Proof of Weak Reversibility

Muth (1979) proves that under rather general assumptions the

production rate of a transfer line is equal to that of its reverse.

For the case where each part entering the line has deterministic (and
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in general, different) processing times on each machine. Muth requires

time reversibility in addition to line reversibility. Time reversibil-

ity means that parts have to be fed to the reversed line in the reverse

order in which they are fed to the forward line. This restriction is

not relevant to our model since machines cannot distinguish between

parts, i.e. all parts take the same time to process in all machines.

3.6 Summary and Conclusions

In this Chapter we prove a strong reversibility property for

transfer lines. Implications of this property are stated and proved

for both general transfer lines, and the special case of symmetric

lines. We conjecture that such properties will hold for more general

models of transfer lines.

These results, in addition to being significant in their own right,

provide the ground work for even more striking results and strong con-

jectures regarding more general AMN's. By "reversing" only portions of

ANN's, in the same manner entire transfer lines are reversed, we are

able to show equivalences among systems that seem to bear no relationship

to each other at first glance. This is done in the next chapter.



77--

Chapter 4

Equivalence Concepts for General AMN's

4.1 General Remarks

In this chapter we use the part-hole duality ideas introduced in

Chapter 3 to argue equivalence properties for AMN's. These are a gen-

eralization of the transfer line reversibility properties of Chapter 3,

to more general AMN configurations. The main result is that AMN's can

be grouped into equivalence classes where performance measures of the

members of an equivalence class are closely related.

4.2 Some Definitions

Two AMN's are said to be structurally equivalent if:

1 - There exists a correspondence between machines of each and

buffers of each so that corresponding machines have the same r and p

parameters, and corresponding buffers have the same capacities.

2 - Corresponding buffers are connected to corresponding machines,

although parts do not necessarily flow in the same direction.

An example of two structurally equivalent systems appears in

Figure 4.1, where the tables define the machine and buffer correspondences.

So if we use the superscripts I and II to identify parameters of AMN I

and AMN II respectively we have:

III I II I II I II I II
NN=N N = N4 , N2 = N 3  N3 = N, N 5 = N42 1 4 2 3 3 5 5 1

I II I II I I I II I II I II
1 = r 6 , r 2 = r4 , r 3 = r5 , r4 = r2 , r 5 = r1 , r6
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4

AMN I

i i 2 2 3 3 4 4 6

5

AMNfII

CORRESPONDENCE

Buffers Machines

It -II I II

1 4 1 6
2 3 2 4
3 5 3 5
4 2 4 2
5 1 5 1

6 3

Two Structurally Equivalent AMN's'Figur e 4. 1
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and

I II I II I II I II I II I II
Pi -P6 ' P2 =4 ' 3 ' P4 2 ' =2 l ' P6=3

Also we say that a transfer line and its reverse are structurally

equivalent, by definition.

Two AMN's are probabilistically equivalent when there exists a

one-to-one correspondence between states of each, such that correspond-

ing states have the same probabilities.

Following the above definitions, and using the results of Chapter

3 we can immediately state the following theorem:

Theorem 4.1

A transfer line and its reverse are probabilistically equivalent.

This is merely a restatement of Theorem 3.1.

Also above we argued that a transfer line and its reverse are

structurally equivalent. Thus we have shown that the following

corollary is true.

Corollary 4.1.1

For transfer lines structural equivalence implies probabilistic

equivalence.

This follows immediately from theorem 4.1 and the definition of

the structural equivalence.

Theorem 4.1 and Corollary 4.1.1 illustrate the concepts of structural

and probabilistic equivalence. Also Corollary 4.1.1 motivates the classi-

fication of AMN's into equivalence classes. We say two AMN's belong to



the same equivalence class if they are probabilistically and structurally

equivalent (or just equivalent for short).

In this Chapter we use the part-hole duality ideas introduced in

Chapter 3 to construct equivalence classes. We will also argue that

members of the same equivalence class have the same production rates

and related mean in-process inventories. These results are only in the

form of conjectures for AMN's with more than three machines.

4.3 The Two-Machine Equivalence Class

The only possible configuration of two machines, within the confines

of our AMN model, is that of a transfer line. (See Figure 4.2) Thus by

Theorem 4.1 and Corollary 4.1.1, we, can trivially construct for any given

set of parameters a two-machine equivalence class. This will consist of

a. two-machine transfer line and its reverse.

Formally, define

F2 = (4", 1 )

R2 = (t, $ 1
where

F2 RZ F2 R2
r = r2  r2  r1  (4.2)

and

F2 R2 F2 R2
P1= P2 P2 P1 (*3

-80-
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Figure 4.2 Two-Machine Transfer Line

I I-W ., ... . ..

MEN."
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Systems F2 and R2 are structurally equivalent. Theorem 4.1 states

that they are also probabilistically equivalent, and thus by definition

F2 and R2 belong to the same equivalence class.

4.4 The Three-Machine Equivalence Class

In this section we construct, for any given set of parameters, a

three-machine equivalence class. The fact that there is only one such

class is not immediately obvious. In fact the proof that for a given

set of parameters, there is only one three-machine equivalence class is

the major task to be carried out in this section.

We start by considering the three-machine transfer line. Following

the argument in Section 4.1 we know that a three-machine transfer line

and its reverse belong to the same equivalence class.

In other words define

F3 = ( 1, 1 , 21)

R3 = ( , i , 21)

where

?4f 3 -N Vj3  IT43 - 43 (4.4)
1 2 2 1

r A=R3, r = 3 , rF3= rR3(4.5)
1 3 2 2 3 

F3 R3 F3 R3 F3 R3
Pi =P3 P2 P92 I 3 P1(4.6)

Thus R3 is the reverse of F3. We know that R3 and F3 belong to the same

equivalence class.
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4.4.1 The Strong &uivalence Property

Now consider the only other possible AMN configuration of three

machines and two buffers. This is where machines 1 and 2 produce parts

to be assembled into a final product by machine 3. (See Figure 4.3).

We call this a simple assembly system.

Define a simple assembly system that is structurally equivalent

to system F3 (and thus R3) as follows:

A3 = (#,oJ 1,2 )

wherem

NA3 F3, NA3 {3 (4.7)1 1 2 2

A3 F3 A3 F3 A3 F3
r r 1 ,r 2  r3 ,r3  r2  (4.8)

and

A3 F3 A3 F3 A3 F3
P, -P1 P2 3 'P3 D2 (4.9)

The question to be answered now is whether systems A3 and F3 (and

R3) are 'also probabilistically equivalent.

Claim: Systems A3, F3, and R3 are probabilistically equivalent,

and hence belong to the same equivalence class.

Before presenting a formal proof of this claim, we use part-hole

duality to argue that the assembly system (A3) resembles the three-

machine transfer line (F3). This is done by focusing on the motion of

holes (or empty spaces) instead of parts in the subsystem of A3 consisting

of machines 2 and 3 and buffer 2.
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23

22

Figure 4.3 Three-Machine Assembly System



Machine 3 in System A3 takes one part from buffer 1 and one part

from buffer 2 at the same time. But taking a part from a buffer is

equivalent to depositing a hole in the same buffer. Thus machine 3

can be viewed as taking a part from buffer 1 and at the same time deposit-

ing a hole in buffer 2. Holes that accumulate in buffer 2 exit the

system via machine 2.

Let us now follow the progress of a "work unit" through System A3.

The work unit is a part in the section of the system consisting of

machines 1 and 3, and buffer 1. It then becomes a hole in the section

consisting of machines 3, and 2, and buffer 2. Whether the work unit

is a part or a hole the machines fail and get repaired in the same

manner, (see Table 3.1). This work unit enters the system (A3) via

machine 1, it gets processed by machine 3, and leaves through machine 2.

Thus machines 1 and 2 look like the input machine and the output machine

respectively of a three-machine transfer line.

This argument suggests the statement of a strong equivalence

property for the two systems A3 and F3.

Theorem 4.2 Strong Equivalence Property

For the two Systems A3 and F3

pF3 (n1, n2 ' ' A2' 3  A3 (n{, n5 , c* ,3) (4.10)

Whenever n' = n, (4.11)

n2 = N-n2 (4.12)

-85-
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,A'= Ul (4.13)
1 1

' =<0 (4.14)
2 3

' = (4.15)
3 2

The proof of Theorem 4.2 follows along the same lines as that for

Theorem 3.1. Because of the excessive number of tables involved in the

proof, it has been relegated to Appendix II. Also note that we can

make statements about the transient behavior of the probability distri-

bution in exactly the same manner as was discussed in the proof of

Theorem 3.1.

One important consequence of Theorem 4.2 is that solving for the

steady state probability distribution of Systems A3 and F3 are identical

problems. For example if one has a program that generates the probability

distribution of System F3, only modifications as to how the results are

interpreted are needed to make that same program workable for System A3.

Such a program is actually available (Gershwin and Schick (1979)). In

the next section we show how it can be used to determine the performance

measures of System A3 as well as the steady state probability distribu-

tion.

Theorem 4.2 shows that Systems F3 and A3 are probabilistically

equivalent. By construction A3 is also structurally equivalent to

F3. Thus F3 and A3 belong to the same equivalence class. Note that R3

also belongs to the same class.
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We conjecture that a three-machine disassembly system (Figure 4.4)

that is structurally equivalent to Systems A3, F3, and R3 is also

probabilistically equivalent, and hence belongs to the same equivalence

class. To argue this one can focus on the motion oftholes in System A3.

This hole motion is the same as part potion in a disassembly system.

A formal proof of this is beyond the scope of this thesis, since no

formal disassembly model has been introduced.

4.4.2 Performance Measures

Theorem 4.2 leads one to suspect that it is possible to calculate

the performance measures of System A3 directly from those of System F3.

In fact this is true. We now state and prove corollaries to Theorem 4.2

that establish the relationships between the performance measures of

System F3 and those of System A3.

Corollary 4.2.1 Weak Equivalence Property

For Systems A3 and F3

RA3 = RF3 (4.16)

where RA3 and RF3 are the production rates for Systems A3 and F3,

respectively.

Proof:

We know that

1 1 ii N~'
F33 F3

RF3 = 21 2 =2nF 3=(n2, n' ' 2' 1) (4.17)% 1=O ct2=O n1=O n21 9 11U2
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Figure 4.4 Three-Machine Disassembly System
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However by Theorem 4.1 we have

pF3(n, 3n2 '9 o 1 ) PA3(ninc, ,)

Whenever n = n

no NF3nn =N -n

xo

3K =(

Hence

F3L
RH =0

But since

we have

RF3

1

to

N F
3

n =0

1 = N1i 1

1C 0

1

OK 1
NA3

n =0

0

=NF
3 -1

i = 1,2

PA3(ncn ' 10)
1' 2' ' '

N2-1

n =0

The expression on the right hand side of (4.26) is exactly that for the

input rate into System A3 via machine 2, DA3
2

Therefore

RF3 DA 3

2

(equation (2.36))

(4.27)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)pA3(n~vc l , )
1, 2'l1, )S

-M -
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However by conservation of flow (Theorem 2.1)

DA3 =RA
3

2

Hence

RF3 - RA3

(4.28)

(4.29)

and the corollary is proven.

The next corollary deals with relating the mean in-process inventories

for Systems A3 and F3.

Corollary 4.2.2

A3 F3
Let n. , and n , i=l,2, be the mean in-process inventories at

buffer i for Systems A3, and F3, respectively. Then

nA3 =-F3 (4.30)
S(1

nA = Nf3-Fn2 (4a31)

Proof:

We know

-A32 1n~ -t =0 o=0

1
NA)

n =0

NA)
2

n 20
A3 

(4.32)

By Theorem 4.2

PF3 (n, n2 3 cy3 3 ) = PA(nonoi ,,)

whenever

n{=n1 , n5-42 n2

%'i ="i' xS( 0c3-=%

(4.33)

(4.34)

(4935)
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Where

Thus by a change of variables (4.33) becomes

NA3 NA3
1 233 1 2 F

ni =; . n pF

C1-0 c2=0 =0 n1 =0 n 2=0

n' is related to the summation variables by

For i=1 we have n'=n and since = ,1 1 1i 1i

Equation (4.3?) becomes

-A3 -F3n =1

For i=2 we have n2 = N2  -

therefore (4.36) becomes

-A3 F3 = NF3  -F3n2 =2 N 2  n2  2 n2

Thus the corollary is proven.

3(nl ,n2'9 ' I2'IN3)

(4.34).(4.36)

1=1,2.

(4.37)

(4.38)

4.4.3 Symmetric Three-Machine Assembly Systems

In this section we prove certain statements regarding symmetric

three machine assembly systems. Define System A3 to be symmetric when

NA3 NA3
1 2

A3 A3r1 =r2

p A3 pA3
1 2

(4.39)

(4.40)

(4.41)and
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A symmetric A3 system belongs to the same equivalence class as a

symmetric three-machine transfer line with the same parameters for

corresponding machines and buffers. This can be easily shown by the

following argument.

Consider the three-machine transfer line F3 that belongs to the

same equivalence class as the symmetric system A3 defined above. By

(4.7), (4.8), and (4.9) we have

N - -N = NA = NF3 (4.42).1 1 2 2

F3 A3 A3 = F3r 1=r 1 =r. =r 3 .43)1 1 2 3

PF3 _A3 A3 F3
1 -1 P2 3

Relations (4.42), (4.43), and (4.44) establish that F3 is indeed a

symmetric transfer line. We use this to prove the following corollary.

Corollary 4.2.3

For a Symmetric A3 System we have

a) pA(n=,n2P1A3(nI,n', 1,9,f) (4.45)

whenever

n=n2 , nyn (4.46)

N=% -=A%(4.4?)

b)-A3 -A3 (.8
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The results stated in Corollary 4.2.2 are rather intuitive and

can be argued from the symmetry of the system. Thus, they do not need

formal proof. However, a proof is provided here mainly to check on the

consistency of the results obtained so far regarding reversibility of

transfer lines and equivalence of A3 and F3 systems.

Proof of Corollary 4.2.3

a) We know by Theorem 4.2

PA3 (n,n 2 'cy0 1  %) = PF3 (ninkc1PI1 )(4.49)

whenever ni = n1 , n 2 -n2(4-50)

and cc{ =c, 23 =b x5Nx2  (4.51

But we know that F3 is a symmetric transfer line and hence by

Corollary 3.1.3

PF3 (nFny 9 3(n',n Ijr, Po) (4.52)

whenever

=2- 4 -n{ (4.53)

(4.54)

Thus from (4.49) through (4.54)

PA3(n1 ,n2 F31 9 cc) = P (nin I cqIofR5) (4.)

whenever

n"=N -n2=NF 3 -N2 3 + n2n2(4.56)n12N 2 2 2 N 22



nN F3 - '=NF3-n
2 11

D(c2  c 2 c>

\3 =~

However by Theorem 4 we have

F3 (f xpil pA3 "t '6 W" "631
p (n , no, , ) = (nl, n.', ' %2'4 )

ni = 1ni'

n'" =f3-n"f
2 2 2

= Ck(4.66)

From (4.55) through (4.66) we have

PA3 (n
1, n22M1 , cx% 2'c,43) = p A3(n , nf, a, j,9 )

n =n =121. 1 2
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and

(4.57)

(4.58)

whenever

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

whenever

(4.67)

(4.68

Wl it =C9
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n'" = NF3
2 2

(4.69)- n" =NF3-NF3 + n = n
2 2 1 1 1

(N = 1 by (4.43))

b) Fr 1 C"2ay42. eh

Ix l=M'
R2 3%'N

K3 0%2 0(3

Thus Part a) -of the corollary is proven.

b) From Corollary 4.2.2 we have

-'A3=-F3
n 1 =n1

(4.70)

(4.71)

(4.72)

(4.73)

However since F3 is a symmetric transfer line we have from Corollary (3.1.4)

;F3 = F3 .- F3(4)
1 2 2

However from Corollary 4.2.2 we know

-A3 F3 -F3
n2  =1N2 n2  (4u75)

or -F3 _ NF3-A3 (4.76)
2 2 2

Thus (4.74) becomes

E3 (4 - 7)7n 2
-A (4o77)
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Hence

-A3 -F3 =-A3 (478)
1 1 2

and part b) of the corollary is proven.

4.5 K-Machine AMN Equivalence Classes

We have shown two examples of AMN equivalence classes. In this

section we informally describe how a general K-machine AMN equivalence

class may be constructed. The discussion is based on the intuitive idea

of part-hole duality, and no formal proof is attempted.

For simplicity we take a departure from our usual AMN labelling

convention introduced in Chapter 2. Here two machines from two different

members of an equivalence class have the same label if they are identical

(i.e. have the same failure and repair probabilities). Similarly buffers

with the same label within an equivalence class have the same capacity.

As an example consider constructing, for some set of parameter,

all four machine structural equivalence (SE) classes, where a SE class

is one whose members are structurally equivalent. We claim that there

are two such classes shown in Figures 4.5 and 4.6. In Figure 4.5 the

class which has the four-machine transfer line and its reverse as

members is illustrated. The systems in 4.5 c) and 4.5 d) can be con-

structed from the forward transfer line by considering hole motion in

the appropriate portion of the transfer line. (Note that we can

informally add two disassembly systems to this class. They &.re the

reverse of systems 4.5 (c) and (d)>
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a)

b)

c)

d)

Figure 4.5 One Four-Machine Equivalence Class
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The second four-machine SE class is illustrated in Figure 4.6. The

system in Figure 4.6a), the subassemblies (or parts) are produced by

machines 1, 2, and 3. They are then assembled by the last machine to

produce the final product. Consider the hole motion in one of the

branches that produce the subassemblies, say machine 1, and buffer 1.

The holes leave machine 4 and are then deposited in buffer 1 and leave

the system via machine 1. By making machine 1 the output machine we

construct the structurally equivalent system in Figure 4.6.b). The

systems in Figures 4.6 c) and d) are constructed similarly. (We can

also add to this class four disassembly systems which are the '!reverses"

of systems a), b), c) and d).) We now conjecture that the members of

each SE class are also probabilistically equivalent. We already know

this is true for the case of a transfer line and its reverse, and suspect

that for others table proofs similar to the ones for Theorems 3.1 and 4.2

can be developed.

4.6 Summary and Conclusions

In this Chapter we have shown how two AMN's that are structurally

equivalent can be shown to be probabilistically equivalent. This was

done in a rigorous manner for two and three machine systems. Also an

informal discussion of how one can extend this to larger systems was

carried out. In essence, we have shown that by solving for the probabil-

ity distribution and performance measures of one AMN, one is solving for

the same quantities of several other AMN's. Systems related in this
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2 2 41

3
3

(a)

(b)

(c)

4 31 3

(d)

Figure 4.6 Another Four-Machine Equivalence Class
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manner are said to belong to the same equivalence class.

To put this result in perspective, consider that one of the tasks

that was to be performed for this thesis was a complete solution to the

three machine assembly systems (Figure 4.3). It was thought at the

outset that we had to devise a solution procedure similar to that in

Gershwin and Schick (1979,1980) for the three-machine transfer line.

Instead we were able to prove Theorem 4.2 relating the three-machine

transfer line and assembly system. All that is needed to obtain the

derived quantities in a three machine assembly system from the program

in Gershwin and Schick (1979) is a slightly different interpretation

of the output.

Similar savings of effort are implied by the conjectured results

pertaining to larger AMN's. The immediate usefulness of such results

is hampered by the fact that by present methods we are only partially

able to extend the solution procedure to systems containing more than

three machines.
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Chapter 5

Solution Technique

5.1 General Remarks

In this section we present a technique for obtaining the values of

the steady state probability distribution for AMN's. These probabilities

are to be used to calculate the performance measures discussed in Chapter

2.

The most conceptually straightforward method of obtaining the

steady state probabilities is by solving M linear equations for M unknowns,

where N is given by (2.11). The equations are M-1 of the M transition

equations (2.28) and the normalization equation (2.27). However, for any

moderate size problem, the number of equations is prohibitively large,

thus making a solution of the system of equations by standard linear

equation techniques, impractical.

A method of solution is presented here which circumvents some of

these difficulties. The method, unfortunately is only complete for

two- and three- machine AMN's. It should be noted that the technique to

be presented here is basically the same one presented in Gershwin and

Schick (1979, 1980). The contribution of this thesis to the solution

method is threefold. First we present a complete internal analysis for

general AMN's, the results of which have been conjectured in Gershwin

and Ammar (1979). Second, the results of the boundary analysis for

three-machine systems are related to those found for two-machine systems

L7
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in Gershwin and Schick (1980), and Schick and Gershwin (1979). Furthermore

conjectures are presented on how the three-machine boundary results can be

extended to larger, more complex systems. Third, we use the results of

Chaptexs3 and 4 to recognize that by solving for the performance mea-

sures of a three-machine transfer line, one really is solving for the

measures of all members of a three-machine equivalence classes (See

Chapter 4).

5.2 Internal Analysis

l.2.1 Some Definitions

Internal states s=(n,., rK-l'1l' '' ' 'K) are defined as those

that in which 2(<,ni < N-2 forall ic 11..., K-1l

Internal transition equations are defined to be those involving

only internal states, i.e. the subset of equations (2.28) in chich s .

is internal and, for all s such that T(st ,SO) = 0, s is internal.

When all states are internal, each operational machine can take parts

from its upstream buffers, and can put a part in its downstream buffer.

Internal states are those that conform to Case 1 of Table 2.2.

Hence ni(t+l) = ni(t) - d (t+l) + N(t+a) (5.1)

for all i = ,..., X-l. Recall that is assumed to be 1.

5.2.2 The Internal Transition Equations

The general form of any transition equation is the following:

P-(s(t+l))=T (s(t+l), s(t)) p(s(t)) (5.2)
all s(t)

This is the same as equation (2.28) with s. replaced by s(t+i1) and s
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replaced by s(t).

From the discussion in Chapter 2 we have

T(s(t+l), s(t)) =

K
Prob [cx(t+l) I ni(t), ci(t), n.(t), C-

if (5.1) is satisfied for all

0 Otherwise

For each i we can write (from Table 2.1)

Prob [ . (t+l) n,(t) jC(t), n.(t), j 6 L (i) ]

[(l-ri ) ~ (t+1) r i%.( t+1)

L(i)]

i

(5.3)

( (t)
o [(l. 1) ) CW ( t+1) p

Using (5.4), (5.2) can be rewritten

p(n (t+l), K(t+l)) =

1 1 K

R.(t)=O R K(t)=0 i=1

10 (1-pi)

1- c.c(t)
p.+1 (t+)

Pi

p(n(t) , c (t))

where n (t) satisfies (5.1).

(5.5)

5.2.3 The Sum of Products Solution Forms

It is assumed that the steady state probabilities for internal

states have the following form:
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p(s) = 2. . (sU

S = (n .. , , . , ) KK),

U =(Xi ,j . . ., ,j y , ..j .Y Kj),

K-i n
~T\ x

K
TV

ym
y i

and

(Stu) =

for s internal.

It is also assumed that each term in (5.9) by itself must satisfy

the internal transition equations (5.5). For justification of these

assumptions see Gershwin and Schick (1980), and Gershwin and Berman

(1978).

We now substitute one term of the solution form (5.6) into equations

(5.5) to obtain: (note that the second subscript on X and Y.is

ommitted for clarity).

K-1

1.=1

n1 (t+l)

Xi

K

1=1

((t+1 )

Yi

ft)= [(1-r. )

C r 

(t+J)

l- . ( l) (t) K-i

iXl

ni(t)K(t

(5.10)
where n(t) and n(t) are related by (5.1).

where

(5.6)

(5.?)

(5.8)

(5.9)

1( t) =0

I- %j(t)

Aj(t+i)

0 (1-p) p1.
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By performing algebraic manipulations, the details of which are in

Appendix III the following relations among the X.'s and the Y 's are

obtained (See Gershwin and Schick (1980)).

K (1-r + p Y )=l (5.11)
i=1

X. r. + (1-p.) Y.

TT Xi-r.+pY jl,...,K (5.12)
i & L(.j)

where X,=l, and for L(j) = 4 , as in an input machine, iT1 x. = 1.
X -i Ltj)

These relationships are called parametric equations. They are K+l

non-linear equations in 2K-1 unknowns. Except for the case where K=2,

they have an infinite number of solutions. For any U = (X. ..x-l' Y1165'1

YK) that is a solution to the parametric equations, each J,(s,Uj) of the

form (5.9) satisfies the internal transition equations. Thus any linear

combination of the form (5.6), where U . satisfies (5.11) and (5.12) for

each j, also satisfies the transition equations.

In. equations (5.12) we define

X.

S 7Tr X. (5.13)
iE-L(j)

In the parametric equations only the Q.'s contain information

about the AMN connectivity properties. For each machine j the numerator
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of (5.13) represents the X of the downstream buffer, and the denominator

is the product of the X's of the upstream buffers. Equation (5.11) and

the right hand sides of equations (5.12) summarize the reliability

information of the AMN.

Lemma -.1

K
7T Q.=1(5.14)
j=1

Proof:

i e-L(j)

K X.
j=1

K (5.16)
7T W X

j=1 ie L(j)

Since each buffer feeds exactly one machine, we have:

L(i)fl L(j) =4t for i + j. (5.17)

Also since each buffer must feed some machine we have

K
U L(i) = 1, 1.3.tl, K-1 (5.18)

i=l

FR- . -- , . .
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Thus L(i), i1,..., K are mutually exclusive and collectively

exhaustive sets.

Hence

K K-1 K
Ti~T ~ I = ~T X . = IT X .(5.19)
j=l i&= L(j) j=l j=l(

sinceX K 1

Therefore from (5.16) and (5.19)

K
77 Q. 1 . (5.20)

and the Lemma 5.1 proven.

Lemma 5.1 is useful because it is used as an identity throughout the

analysis of the model.

We note that the results in this section have been conjectured in

Gershwin and Ammar (1979). Also notice that the same results provide a

complete internal analysis for general AMN's.

5.3 Boundary Analysis

5.3.1 Some Definitions

Boundary States are states (n, ) for which at least one n is

equal to 0, 1, N-l, or N. for i. Il, ..., K-1. They are further

classified into inner and outer boundary states. Inner boundary states

are states that have at least one n.=l, or N. -l for i 1l, ... , K-14

and for no it j, ..., K-1 is n1 equal to 0 or N . Outer boundary

states are all other boundary states.
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Transition equations that are not internal are defined as boundary

transition equations. These are in turn classified into inner boundary

transition equations, i.e. those involving only inner boundary states

and internal states, and outer boundary transition equations which are

defined to be all others.

5.3.2 Solution Form

For boundary states, it seems reasonable to assume that the solution

for (5.6) applies. However, for s not internal\(s, U.) may not be of

the form (5.9). This is due to the fact that transition equations

involving boundary states have forms that are different from the internal

transition equations (5.5). Appropriate forms rust be determined for each

boundary state s.

Ideally the set of (s, U ) would satisfy all transition equations

for some U.. This would imply that the summation (5.6) has only one

term. However, experience has shown that this is not possible. There-

fore, more than one term is needed, i.e. 1 jl, and the c .'s are to be

determined by satisfying all the equations not satisfied by the individual

terms (s U.).

In the following sections the boundary analysik is carried out for

simple assembly merge networks consisting of two and three machines.

5.4 The Two-Machine Transfer Line

As was seen in Chapter 4 the only possible two-machine AMN is of

the transfer line type. In this case the parametric equations become
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three non-linear equations in three unknowns. It is found in Schick and

Gershwin (1978) and Gershwin and Schick (1980), that there are two sets

of solutions satisfying the three equations. Thus the solution is found

to be of the following form:

2

p(s) = c (s, U). (5.21)

j=l

Using boundary transition equations, expressions 4(s, U) are found for

boundary states. It is also found that the constant c. associated with

one of the (s, U)'s is zero, and thus the solution has only one term

in the summation.

A complete analysis of the two-machine AMN (or transfer line)

appears in Schick and Gershwin (1978) and Gershwin and Schick (1980). In

addition to being significant in its own right, this solution serves as

a benchmark with which solutions to more complex AMN's are to be com-

pared. Specifically, any solution obtained to the general AMN should

reduce to the two-machine solution. After we get solutions for the

three-machine AMN's we will return to show that the solutions obtained

do in fact reduce to the two-machine solution.

5.5 The Three-Machine AMN's

It is shown in Chapter 4 that there are two possible configurations

of three machines and two buffers that are consistent with the defini-

tions of an assembly merge network. The two networks are shown in

Fugure 5.1.
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Fa

Fiue .a TreMahn TaserLn

Three-Machine Simple Assembly SystemFigure 5. lb)
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From the results of Chapter 4 we know that the above two systems

belong to the same equivalence class. This implies that we only need

to provide a solution technique for one of the systems. We choose to

concentrate on the three-machine transfer line, mainly because it is

the case already solved by Gershwin and Schick (1980).

We should remark here that Gershwin and Schick (1980) go about

finding the expressions (s,U) for boundary states s in a haphazard

manner. The main goal there is to satisfy as many of the transition

equations as possible using one term expressions. The solution method

as it is presented here is a systematized version, and our main goal is

to produce solution steps that are extendible to larger AMN's.

In the context of the three-machine AMN configurations the

following definitions are made:

Edge states are boundary states (inner or outer) that have only

one i for which n. = 0,1, N.-1, or N., for all i = 1,...,K.

Corner states are all other boundary states.

Thus for example, state (1, 1, 1, 1, 0) is an inner corner state,

(0, 1, 0, 1, 1) is an outer corner state, (0, 2, 0, 1, 1) is an outer

edge state, and finally (2, N2-, 1, 1, 0) is an inner edge state.

5.5.1 Transient States

Transient states are those that have zero steady state probability.

The difficulty here is clearly not in finding (s, U) for s transient,

but in finding rules for determining the transient states. (For s
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transient we choose (s,U) = 0.) Such rules are presented, for the

transfer line case, in Gershwin and Schick (1979). We use these rules

as specialized to three-machine transfer lines to determine the

transient states.

We remark here that the problem of determining transient states

for general AMN's has not been solved yet. It has been observed, how-

ever, that if a state s is a transient state, it must be that s is a

boundary state. (This is one of the factors that motivated the classi-

fication of the state space into internal and boundary states),

5.5.2 Inner Boundary Analysis

Using the inner boundary transition equations, expressions for

inner boundary states are found for the three machine transfer line in

Gershwin and Schick (1980). It is observed that all inner boundary

transition equations can be satisfied by these expressions. Here we

investigate the form of these expressions with the aim of gaining

insight that will suggest generalization. Inner edge state expressions

obtained in Gershwin and Schick (1980) are of the following form:

(sU) = (su) f(sU) (5.22)

where I(su)1 2 K YtK2 '43(5.23)
U= X 2 1 23

and B =sU =(5.24)

where Z =l-r+P.Y (5s25)
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Note that form (5.22) only applies to non-transient states. The super-

scripts I and B refer to Internal and Boundary, respectively. We say

the machine downstream of a buffer with one part is almost starved, and

the machine upstream of a buffer with one empty location almost blocked.

The cause of an almost starved machine is the upstream machine of the

buffer with one part, while the cause of an almost blocked machine is

the downstream machine of the buffer with one empty slot. Hence in

(5.24) i is the index of the almost starved or blocked machine, and j

is the index of the causing machine.

The reason for this terminology, i.e. the "cause" machine comes

from the fact that a machine is blocked (or almost blocked) due to a

failure in its downstream machine. Similarly a machine is starved

(or almost starved) due to a failure in its upstream machine.

For example, the state (1,3,1,1,1) is an inner edge state, provided

N2 >) 5. The expression for this state is found in Gershwin and Schick

(1980) to be

(1,3,1,1,1,U) = X1 X2 1 Z2 Y3(5.26)
2

or (1,3,1,1,1U) X X2 Y1 Y23 (5.27)

and B(1,3,l,1,1,U) = Z 2 
(5.28)

F2 n2

For this ,state machine 2 is almost starved and machine 1 is the

cause.
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Also consider the inner boundary state (1,3,0,1,1). It is found in

Gershwin and Schick (1980) that 1 (1,3,0,1,1,U) is of internal form i.e.

(1,3,0,1,1) = X1X 2 2y3 . (5.29)

Note that this conforms to the form established in (5.22) with the

coupling term

.B(1,3,0,1,1,U) = ( 0 1 (5.30)( 22

For inner corner states the expressions conform to (5.22). However

B(Su) for these states take on different forms. We now discuss four

different cases for 3(s,U) for an inner corner state.

Case 1 s 1= (Nfl, 1, A1 , C< 2 '

For non-transient states of this type machine 1 is almost blocked

and machine 3 is almost starved. For both machine 2 is the cause. So

we expect

(s,u) = (ply(5.31)
This does indeed conform to the expressions for these states found in

Gershwin and Schick (1980).

Case 2 s = (1,N2-1' 3

Here machine 2 is simultaneously almost starved and almost blocked.

The cause of starvation is machine 1 and the cause of blockage is

machine 3. For this case
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rz max(t ,
(s,U) = 2 ).(5.32)

Here also the results conform to the expressions found in Gershwin

and Schick (1980).

Case 3 s = (N1-1, N 2-1' 2't (PC3

In this case machines 1 and 2 are both almost blocked. The cause

for machine 1 blockage is machine 2, and for machine 2 blockage is

machine 3. Here we have a chain of events propagating from machine 3

to machine 1. We say that the coupling factor in a chain of this type

is summarized by the last link, i.e. machine 2 almost blocking machine 1.

Thus

1B(s, U) = { l 2 (5-33)

These expressions also conform to the ones in Gershwin and Schick

(1980).

For these states, as well as the ones in Case 4, we encounter an

anomaly. The expression for state (N-11, N2-1, 0, 1, 1) defies the

form (5.22). This state, in conjunction with its counterpart in Case 4,

has the only two unexplained expressions for the inner boundary.

Case 4 s =(1,1,, C)

Here machines 2, and 3 are almost starved. The cause for machine

2 starvation is machine 1, and for machine 3 starvation is machine 1.



-116-

Thus we have the same propagation of events as in Case 3, from machine

1 to machine 3. The last link of this chain of events is machine 2

almost starving machine 3. Hence

B ( KL )= (23)c0'2(5.34)

The anomalous state here is (1,1,1,1,0). Its expression does not

conform to (5.22), and remains unexplained.

The form of the expressions in Case 4 are not the same as those

found in Gershwin and Schick (1980). Specifically the expression for

state (1,1,1,1,1) has to be changed. In their derivation of other

expressions using the transition equations Gershwin and Schick (1980)

used \(1,1,1,1,1,U) to obtain the expressions for other states. Hence

any change in the expression of state (1,1,1,1,1) necessitates changes

in other expressions.

A complete list of the changed expressions is in Table 5.1.

We have shown how one might explain the forms of the expressions for the

inner boundary of the three-machine transfer line. These explanations

can be used, as is done later in this chapter, to form conjectures on

boundary expressions for larger AMN's.

5.5.3 Outer Boundary Analysis

Recall that in deriving boundary expressions Gershwin and Schick

(1980) attempt to satisfy as many transition equations as possible. It

so happens that the expressions they derive for outer boundary states

satisfy all the outer boundary transition equations that describe
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(1,,1,,1,) = X X2 1 2

z3

(1,1,1,1,O,U) = X1X2 1 (1-r2) Z3

2 - r 3r

( -r ) (1 -r 2) z 3
(0,1,0,1,0,U) = X21 1

r p2 ( - r3

(1-r - r2
(0,,r,,U)=XrXp (r + r r r

rpP2pl3r(1 r3

(0,0,0,1,1,U) = X1X2Y (1()rr +r3 -rr3-3r

r2  p2 r 3  -r3
(P2-3r23

(1,0,j111U) =X 1X 2y 1 1 + r 3- r 1r 3 3r 1)

r 1P2 P3(1 -r 3)

(1,0,0,0,1,U) =

3 3 (1-r 2

[ 1-p3  (1-r3-P)(1-r2)(1-r 1) 1 - r3) r1 2
P3 (r2 + r1 - r1r2)

Table 5.1 New Expressions (s,u) for the Three-Machine Transfer
Line
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transitions into inner edge states. The results of such an analysis

for the three-machine transfer line is presented in Gershwin and Schick

(1980). In this section we look at these expressions in the same

manner as was done for inner boundary expressions. Some insight is

gained into the form of the expressions which helps in making conjectures

for larger systems.

For non-transient states on the outer edge, expressions satisfy

(5.22).

The coupling term is now

B(s,U) = f(i,j)(535)

where
Y.

f(i,jQ) = Q Ypr [(1-ri) Q.Z1Qz.-(l-p ) (1-rip )] (5.36)

The indices i and j correspond, respectively, to the starved or

blocked machine and the machine that is the cause. Recall that the

cause of an empty buffer is the upstream machine, and the cause of a

full buffer is its downstream machine.

Outer corner states remain the least understood. Expressions for

those states have been obtained for the three-machine transfer line in

Gershwin and Schick (1980).

5.5.4 Some Remarks on Boundary Analysis

In deriving expressions for boundary states, inner and outer, we

have been trying for two objectives. First, to have a rational, systematic,



-119-

generalizeable set of expressions. Second, to minimize the number of

unsatisfied transition equations. As the solution stands now that

number is linear in N1 and N2@

Gershwin and Schick (1980) had only the second goal in mind while

deriving their expressions. With a few changes to some expressions, we

have shown that there really is some underlying logic to the way they

approached the solution.

5.5.5 Analysis of Unsatisfied Transition Equations

Recall that the steady state probabilities are assumed to be of

the form (5.6). Given the way thej(s,U) expressions are constructed,

probabilities of the form (5.6) satisfy most of the transition equations.

This is true regardless of the choice of the c .'s and . The set U.

can also be chosen arbitrarily as long as U . satisfies the parametric

equations for each j. This freedom is to be utilized to satisfy all

unsatisfied equations.

The error at state s, g(s,U) is defined as

g(s,U) = -1 (s,U) + 7 T(s, s' ) (s',U) (5.37)
all s'

For most states s the transition equations describing transitions into

state s are satisfied by the (s,U) expressions. Thus for these states

the error g(s,U) is identically zero. Other states are called odd states.

These states occur on boundaries only and are thus divided into odd edge

states and odd corner states. A list of odd states for the three machine

transfer line appears in Gershwin and Schick (1980). This list is

unchanged by the changes in expressions in Table 5.1.
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Table 5.2 contains a list of odd edge states. Those states are

of special interest because we have been able to obtain closed form

expressions for their errors. This is done using the appropriate

equations of the form (5.37). The following relations have been

found to hold for the errors at odd edge states:

g(n1 ,0,l,0,1,U) = Yg(n,0,,0,l,U)

g(n 1,N2'1'l'0,U) = Ylg(nN2 ''il,0,U)

g(n ,n2 '0,11',U) = Y3g(0,n2 1 '0'lu)

g(N 1 n2 1 l,0,l,U) = Y3g(N1 ,n2 11,0,0,u)

(5.38)

(5.39)

(5.40)

(5.41)

Also

g(n0,0,0,0,1U)

g(n1 ,N2 ,0,i,0,U)

g(0,n2,0,1,0,U)

g(N11n2 ',' l''U)

n1
=X 1 q(2,3)

n N2
= 1 ix2 2q(3,2)

= X2 q.(1,2)

N n2
= X1 22 q(2,1)

where
y

zz.Q (i j) Y (1- -p (1p ) (1- -)

+Q.Q. (l-r.) (1-r.-Z Z.) ] (46)

(5.42)

(5.43)

(5e44)

(5.45)

(5.46)



EDGE #. ODD STATE

3 (n,, 0, 0, 0O 1)

(n 1 , 0, 1o 0, 1)

2 (n., N2, 0, 1,0)

(n , N20

3 (0, n2, 1 0)

(0, n2 , ,0 , 1)

4 (.N ,n 2P1 l0

(NV, n 2P po.1

2 Cn N1-2

2: n2 ( N2-2

Table 5.2 Odd Edge States for the Three-Machine Transfer
Line
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Note that i and j represent, respectively, the labels of the starved or

blocked machine, and the cause of blockage or starvation.

For all odd states, the set Jc.), j=1,...,f in (5.6) is to be

chosen such that

f
111.c. g(s,U.) = 0. (5.47)
j=l

One straightforward method of dealing with conditions (5.47) is

presented in Gershwin and Schick (1980). The number I is assumed to be

equal to the number of odd states. Thus, for a certain choice of

u4 , j=1,...,f that satisfy the parametric equations, there are

linear equations in c1,.,, . One can then solve the linear system

GCC ='0 (5.48)

where C = (c1,...,c, ) and G is the matrix of errors g(s,U.).

In Gershwin and Schick (1979) the structure of the matrix G is

investigated in detail. It is shown, there, that under certain assump-

tions that G has rank 1-1, which implies that (5.48) has a non-zero

solution. The c.'s can then be determined to within a multiplicative

constant. That constant can be found using the normalization equation

(2.27).

When implementing this method one runs into numerical difficulties

which are caused by limits on computer precision. This tad behavior seems

to improve with certain choices of the U.'s. Another major difficulty

with this method is that the size of the system (5.48) is linear in

the two storage sizes. This restricts the storage sizes that can be
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handled by this method and also limits its applicability.

5.6 Conjectures on Solution Features for more Complex AMN's

In this section we make conjectives on the form of the expressions.

(s,U) for general K-machine AMN's. Recall that this form of the

expressions for internal states has been shown for general AMN's in

Section 5.2.

5.6.1 Inner Boundary

Define a decoupled inner boundary state as one where no machine is

connected (upstream or downstream) to more than one buffer which has

one part or one empty slot. Coupled inner boundary states are all

others.

For example an inner edge state for a three machine system is

decoupled, while, an inner corner state is a coupled state.

For decoupled inner boundary states each buffer i has associated

with it a pair of labels (i, d.), indicating the upstream and downstream

machines. One of the machines is either almost starved or almost

blocked. The other is the cause.

Conjecture 1 For all non-transient decoupled inner boundary states

s

s K-1 n. K z. -d.z -

(sU) = \ nX K ((i
i=1 i=l i =n.=1 pd Y i;n.=N -1

115

(5.49)
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The expressions for coupled inner boundary states will depend very

much on the nature of the coupling. In Section 5.5.2 we have investi-

gated four types of coupling in a three-machine transfer line. It is

clear that the varieties of coupling will increase tremendously as we

go to larger systems. All that can be said for coupled inner boundary state

expressions is that they will behave in a manner similar to those found

for the three machine case.

5.6.2 Outer Boundary

Define a decoupled outer boundary state as one where no machine is

connected to more than one empty or full buffer. Coupled outer boundary

states are all others. As an example, outer edge states for three

machine systems are decoupled while outer corner states are not.

For decoupled outer boundary states each empty or full buffer i

has a pair of labels (i,d.) indicating its upstream and downstream

machines respectively. One machine is either starved or blocked, and

the other is the cause.

Conjecture 2 For all non-transient decoupled outer-boundary

states s

K-1 n r
(s,U) = TV x. T Y f(ild.) f(d.,i)

=i;ni =0 ii .=N. u

(5-50)

where f(i,j) is given by (5.36). No conjectures can be made at this time

for coupled outer boundary states.
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Note that the three-machine transfer line expressions obtained in

Gershwin and Schick (1980) and mofified earlier in this chapter conform

to the conjectures.

5.7 Relating the Two-Machine Solutions to the General Conjectures

In this section we show that the solution for the two-machine

transfer line in Gershwin and Schick (1980) does indeed conform to

our general conjectures in the last section. Note that all boundary

states in a two machine system are decoupled. This is due to the fact

that there is only one buffer.

5.7.1 Inner Boundary

There are six non-transient inner boundary states for a two

machine system; namely, (1,QJ0) (1,0,1), (1,1,1), (N1 -1,0,0), (N1 -lll)

and (N1-l,1,0). According to Conjecture 1, the expressions for these

states should be as follows:

(1,0,) = X(5.51)

X(1, ,2) = X Y2  (5.52)

(1 1) = X1 Y1 Y2  2 (5.53)

N -
(N -1, 0,0) = X1 (5.54)

I(NI-1, 1,0) = X, I Y, (5.55)

N 1-1 Z

(N -1, 1,1) = X1 y1y2 pl(5.56)
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Equations (5.51), (5.52), (5.54), and (5.55) conform to the

solution form found in Gershwin and Schick (1980). We now show that

the remaining two expressions (5.53), and (5.56) indeed are the same

as those found in the same paper.

(1,1,4) = X Y Y2 2(.57)

2
1 1i p 2 (5.58)

From the solutions to the two-machine parametric equations we

have

y = 1+r2 -rlr2 -P2r1

y2 r1+r2 r1r2-plr2
p1 p2-plp2 -p1r2

(5.59)

(5.60)

and

y2
(5.61)

(5.62)Hence Y Z2 r1 +r2-r1r2 -P2 r1

p+p2 -p1p2 -r p2

Thus 1(11111) =

Expression

Schick (1980).

found for state

(1980).

X (r1  2-r1rg2 2r1 ) (5.63)

P2 (p1 p 2 -p1p2 -rlp2 )

(5.63) is the one found for (1,1,1,U) in Gershwin and

Using similar manipulations we can show that expression

(N1-1,1,1) is the same as the one in Gershwin and Schick
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5.7.1 Outer Boundary

For the two machine systems there are two non-transient outer

boundary states (0,0,1) and N,1,0), both are decoupled because there

is only one buffer. Thus according to Conjecture 2:

(0,0,1) = Y2 f(2,l) (5.64)

and

s(N,1 ,O) = X1  Y1 f (1,2) (5.65)

where f(i,j) is given by (5.36).

We now show that (5.64) and (5.65) are the same as those found in

Gershwin and Schick (1980).

Recall that for the two machine systems

Z1 Z2 = 1 (5.66)

and

Q1Q2 = 1 (5.67)

Equation (5.66) is the parametric equation (5.11), and (5.66) is

true by Lemma 5.1.

We have

h(0,0,1) = Y2[Q222 (-r2 z2 Q1z1- (1-p1) (lr2 -2

(5.68)

%p 2r1  [(l-r2) - (l-p 1) (1-r2-p2)] (5.69)

Also recall that

2 1X(5.70)
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Thus
X

(0,0,[1) = 1Ypl+P 2-lr 2-p2p1 ] (5.71)

p2 r1

1 

1 r1+r2-r r2~p2r1] (5.72)

Expression (5.72) is the same as the one found in Gershwin and Schick

(1980). We can handle (5.65) in a similar manner to show that it is

the same as the one found by Gershwin and Schick (1980).

5.8 Summary and Conclusions

In this Chapter we have shown how one might go about finding the

steady state probabilities for two-and three-machine systems. The

details of the method of solution are in Gershwin and Schick (1980).

Emphasis, here, is put on understanding the form of the solution

with the aim of generalizing it. Minor changes are found to be

necessary.

Two conjectures are made on how the solution extends to systems

with more than three machines.
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Chapter 6

Summary and Suggestions for Future Research

6.1 General Remarks

In this chapter we summarize the work presented in this thesis.

Also directions for future research are suggested.

6.2 Thesis Summary

In this thesis we present a discrete time, discrete state Markov

chain model for assembly merge networks (Chapter 2). The model is

intended to contain some of the important features of a manufacturing

network.

Some fundamental equivalence results for the model are presented.

In Chapter 3 we deal strictly with transfer lines. Specifically we

prove a strong reversibility property (Theorem 3.1) regarding the

equivalence of the probability distributions of a transfer line and its

reverse. This is used to state and prove how the performance measures

of a transfer line and its reverse are related. Chapter 4 extends the

ideas on transfer line reversibility to three-machine assembly merge

networks (AMN's). We conclude that the solution of the three-machine

assembly system (Figure 5.lb) is identical to that of the three-machine

transfer line (Figure 5.la). We also conjecture on how the three-

machine equivalence results extend to larger systems.

In Chapter 5 we briefly discuss a solution method for ANN's. The

solution is only complete for two-and three-machine systems. Note that
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this is basically the same method as the one presented in Gershwin and

Schick (1980). However, the discussion in this thesis systematizes the

steps of the solution, and attempts to explain some of the boundary

expressions obtained. Based on these explanations, conjectures are

made as to how the solution might extend to AMN's with more than three

machines. Also using the insight gained into the solution, we are able

to relate the two-and three-machine solutions.

In Appendices I, II, and III we include proofs and derivations that

are too cumbersome to include in the main text. Appendix I contains the

proof of the conservation of flow theorem, and other propositions

relating to the performance measures. Appendix II has the proof of the

strong equivalence property for three-machine systems (Theorem 3.1).

In Appendix III we derive the parametric equations (5.11), and (5.12) of

Chapter 5.

6.3 Future Research Directions

In this section we suggest future research that can be based on the

work in this thesis. The new research directions fall into these cate-

goriesa modelling, extension of equivalence results, and the solution

method.

6.3.1 Modelling

The formulation of a disassembly machine and assembly-disassembly

network models are an immediate extension of the material presented in

Chapter 2. Also continuous time models of assembly and/or disassembly
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networks can be formulated based on Chapter 2 and the two-machine

transfer line model presented in Gershwin and Berman (1978), and

Gershwin and Ammar (1979).

6.3.2 Extension of Equivalence Results

The results of Chapter 3 and 4 can be extended in several directions.

The conjectures for four-machine equivalence classes in Chapter 4 have

to be proven. This could conceivably be in the context of an equivalence

result for general AMN's or general assembly-disassembly networks. It

is suspected that the idea of focusing on hole motion in parts of the

networks will play an important role in such extensions.

As was mentioned in Chapter 3, there is evidence that the reversibil-

ity results hold for carefully formulated continuous time models. An

important question to be answered is: What common features of these

models make reversibility and equivalence results hold?

6.3.3 Solution Method

In Chapter 5 we make conjectures on how boundary expressions for

three-machine systems might extend to larger systems. One obvious task

that awaits future researchers is to prove or disprove these conjectures.

However, the most crucial step is to find some method of solution that

circumvents the difficulties of the technique in Chapter 5.
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Appendix I

Conservation of Flow and Other Propositions

Relating to Performance Measures

In this appendix we prove the theorems, and propositions in

Section 2.6 relating to performance measures of an AMN.

We now prove the theorem stating conservation of flow. Here we

state and prove a slightly more general version of Theorem 2.1. First

we introduce some definitions that are needed for the proof.

Definitions

For all i = 1, ... , k

e (t) (1 if a piece leaves machine i

at time t
J (I.1)

0 otherwise

For all input machines j

d .(t) = if a piece enters machine j

at time t ,
(I.2)

0 otherwise

For all i = 1, ... , k

Ri(t) = number of parts leaving machine i in [O,t]

t
= dII C. ('), (I.3)

(=3

and

R. lim R.( t)
I t-!0O t
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For all input machines,'j

D. ( t) = number of parts entering machine j in [o,t]

t
d.( '). (1.5)

L =1

and

= lirn D (t (1.6)
j t -)cC) o t

Branch (j,i) of an AIN is the path of machines and buffers, traced by

a part that enters the system at input machine j until it leaves machine

i. For examples see Figure I.1. It must be pointed out that a branch

(j,i) is completely determined by j and i. Also there exists some j, and

i combinations that do not define branches. For example in Figure I.1

branch (2,3) is non-existent.

For all branches (j,i)

( t) = number of parts in branch (j, i) at time t
( j,1)

k( t ) (1.7)
k, k on ( j, i)

N(j,i) = capacity of branch (j,i), i.e. the maximum

number of parts that can be held in branch

(j,i) at any time

k, k on (j,i) Nk

We now need to prove certain lemmas before proceeding with the main theorem.

Lemma 1

For all input machines j
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-e

Branchr h,9)

79

2

(e 6
-- Kronch (6,3)

55

Figure I.1 Branch Examples
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d. (t) = e (t) (9)

Proof:

This lemma states the assumption that a machine takes a part

in whenever a part leaves. This assumption is indeed reflected in

Table 2.2. As an example consider Case 3 of Table 2.2. In this case

buffer i has a part added to it whenever machine i is up at time t +1,

and is not starved or blocked. We note that if a machine is up and

neither starved nor blocked it takes a part from its upstream buffer

(Recall 'K. = 1, ' i), as witnessed by Case 1. Considering the other

examples in Table 2.2 equation (1.9) is confirmed.

Lemma 2

For all input machines j

D(t) = R.(t) (1.10)

and

D = (1.11)

Proof:

This follows immediately from the definitions (1-5) and (1.6) and

also Lemma 1.

Lemma 3

For all branches (j,i) and all t 0:

0 1i(m ) ( t) i N (I.12)

Proof:

From (1.7)

m ) =k:k on ( j, i) k 't
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However, we have

0 nk(t) $2 for all k, and 0. (I.14)

Thus

nk(t)NC Nk =N
k,k on (,1) kk,k on (j,1)

(I.15)

which implies

0 ( m..(t ) (

and the lemma is proven.

Lemma 4

For all i=l,...,k

e.( t) = (jt)

0

N .j. for allt)1 0(j,i)/
(1.1.6)

if machine i is not starved or

blocked at time t -1, or n t.( t -1) 0

I .- U ( i).

and n.(t -1)K< N..

Otherwise (I.17)

Proof:

The lemma is true because if machine i is starved or blocked

at time t-1 it does not produce a piece at time t , thus e .(t ) = 0.

However if machine i is neither starved nor blocked. at time t-1, it pro-

duces a piece if it is up at time t ( (t ) = 1) and if it is down

(o( (t ) = 0). no parts are produced. Note that Table 2.2 was constructed

according to this assumption.

Nk

0m . .)(t)
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Lemma 5

For all i = l,..., k-1

n.(t +1) = n.( t) + e ( t+) - ed ( t+i)

Where machine d1 is the downstream machine of buffer i.

Proof:

This Lemma is proven by considering Table 2.2. The reader is

reminded that we are dealing only with the case where = iN/ i.

Case 1 - Machine i is not blocked or starved.

Therefore e ( t+1) = % ( t+l).

Machine d. is not blocked or starved, thus

ed ( t+') =d ( t+l) (i.
1 2d

Hence (I.18) holds.

Case 2 - Only machine d. is blocked

thus e (t +1) = C< .( t+1)

and

e d. (t+1) = 0.
1

19)

20)

(I.21)

(1.22)

and relation (1.18) holds.

Case 3 - Only machine d. is starved. Equations (1.21) and (I.22)

apply here, so (1.18) holds.

Case 4 - Machine i is blocked and machine d. is neither starved

nor blocked thus

(I.18)
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ei( t+i) = 0 (1.23)

and ed ( t +1) = Md (t+i) (1.24)
i i

and hence (1.18) holds.

Case 5 - Machine i is starved, and machine d is neither

starved nor blocked. Hence

ei ( t+l) = 0 (I.25)

and e d (t +1) = cd (t +1) , and (1.18) holds. (1.26)

Cases 6, 7, 8, 9 - In all these cases both machines are not

operating (either starved or blocked or both).

Thus e ( t+l) = 0 (I.27)

and ed ( t+') = 0 (1.28)

and (1.18) holds. Thus we have proven that (1.18) is consistent with

Table 2.2.

Lemma 6

For all branches (j,i) of an AMN

m(j, i) ( t+l) =m ( t) e. ) + ( t+1) - e ( t+1) (1.29)

Proof:

From the definition (1.7) we have

m ( t+1) = 211.nk( t+l) (1.30)

k,k on (j,i)

From Lemma 5 we have

k ( tj+1) = ,ink (11)
moxik,k on (j,i) k( )4 k 1 l

--- - -.. ..- 1.
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= 1 nk(%t) +

k

e k (t+l) - e (t +)

kd

= m(0( t) + e (t +1) - e (t +1)

Hence the Lemma is proven.

We now state and prove the conservation of flow theorem.

proof uses Lemmas 1 through 6.

Theorem

For all branches (j,i) of an AMN

D. = B.

(1.32-)

(I.33)

The

(1.34)

That is, the steady state input rate to the branch (D ) is equal to the

steady state output rate from the same branch (R ).

Proof:

From Lemma 6 we can write:

11.j. (t +1) - mh..) (t ) = e. (t +1) - e (t +1)

(I.35)

summing both sides of (I.35)

t

[mq (=.7 11o
+:) - m ji) ('t )] [e. ( +1) -e

= Ill z= o (1.3?)

m .. (t
(I, i)(

3 we have

( m I i)

+1) - O . . (0) = R . (t+1) - R.i (t +1)
( ,i) 3N i

(t +1 ) - m ji (o)( N( 1)K ot

or

By Lemma

0

(I.38)

(I.39)
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Therefore

0 c (t +i) - R( t +1) < $ N Koci

and thus dividing by t+1 and taking the limit as t -+ -oo

0 lim B. (t+u) - B1(t+l)

t+l

lim N(ji = 0
t-+ o t+l

lim R (t+l) - R(t+l)

t---# Ot+l

Therefore

lim R.(t+l)
t-+0 t+l

lim
t..N D

N .

t+l

(I.42)

=0

(I.43)

= lim Ri(t+l)

t -+oo t+l

since both limits exist.

Hence

R.= R

But from Lemma 2 we have

V. = B.

V. = B.

for all input machines

for all branches (j,i)

and the theorem is proven.

In particular (1.47) states that

D Rk N input machines j

but

(I.40)

we have

(1.41)

Hence

(I.44)

Hence

(1,45)

(1.46)

(I,47)

(1948)
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Note that (1.48) is the statement of Theorem 2.1.

We now proceed to prove the propositions of Chapter 2.

Proposition 2.1

R lim R.t) = Prob dj(t) = , n (t-l)>0,9 - L(i),
t WOQ t

n (t-1) < Nl(1.49)

Note that this is a generalization of the statement of the proposition in

Chapter 2.

Proof:

B. = 1iw

e' ('o

t (1.50)

However applying the law of large numbers.

R= E [e(t)]

Where E [KI is the expectation operator.

Thus = 1. Prob [ej(t) =a] + 0.Prob [e.(t) = 0]

or

R2=Prob.e (t)=1

Where Prob A] is th

From Lemma 4 we have

e.(t) =

0

(I.5')

(I.52)

(I.53)

e steady state probability of event A.

when ct(t) = and n.(t-l) 0,

L- Ni

Otherwise (1.54)



Thus

R = Prob [e (t) = 1

= Prob (A(t) = 1 and -n. (t-1) > 0, y gL i

and ni(t) 4 N) (1.55)

and the proposition is proven.

We now prove a Lemma needed for the proof of the next proposi-

tions.

Lemma 7

For all i = 1,..., K

r. Prob [rt.(t) = 0; n.(t) > 0, c L(i); nj(t) < NK ]

=P i Prob [ N (t)= 1, n (t) > 0, L (i). n (t)(<Nil

(I.56)

Proof:

Let event A = n.(t) >: 1, e L(i); n,(t) < NJ (I.57)

and consider the sets of states

i= js( K(t) =0, A (I.58)

I = S o (t)= i, A (1.59)

The system can leave states in DaoL only by the repair of a

machine L. This is because machine . is down and cannot produce any parts

until it is repaired. Note that this is consistent with the construction

of Tables 2.1, and 2.2.
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Therefore the probability of leaving set is:

r. Prob[ .(t) = 0, A] (1.60)

States in set (t 0Lcan be reached from outside states only from

set..L., by a failure in machine i. This is because the model assump-

tions as reflected in Tables 2.1 and 2.2 prohibit the failure of a

machine if it is starved or blocked. The probability of entering states

in Lo;from outside is thus

Pi Prob [iX1 (t) = 1, A] (I.61)

and by the steady state assumption we have

r Prob [Oki(t) = 0, A] = p. Prob 1(t = 1, A] (.62)

and the Lemma is proven.

Proposition 2.2

For all i = 1,..., k

R= Prob[0i(t) =1; n.(t) > 0, V.eL(i); n.(t)4 N.]

(1.63)

Note: This is a slight generalization of proposition 2.2 of

Chapter 2. Here R is the production rate of any machine in the network

instead of just the output machine k,

Proof:

Let event A = n.(t)>j , a L(i); n.(t) Nid (1.64)
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Hence from Proposition 2.1

RB = Prob [O 1(t+1) = 1, A] (1.65)

or

R =Prob [K(t+1) = 1 D eri(t) = 0,A ] Prob [cj(t) = 0, A]

+ Prob [oC (t+1) = 1 %i(t) = 1, A] Prob [x i(t) = 0, A]

(1.66)

Using Table 2.1 (1.53) becomes

R1  r Prob [c%(t) = 0, A]

Let S = Prob I[cf (t) = 1, A]

+ (i-p1 ) Prob [4<,(t) = 1, A]

(I.67)

(I.68)

We need to prove that

RI = Si

or

R - S = r Prob Li OA(.) = ,A - p rb <(t = 1,A

However by Lemma 7

r Prob [cKj(t) = 0, A] = p1 Prob[c\J(t) = 1, A)

Hence R = S

= Prob [c((t); n.(t)> 0, 9 L(i); n (t)< NJ

(I.71)

(I.72)

and the proposition is proven.

(I.69)
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Proposition 2.3

For input machines j

D .(t)
D. = lim

t- t

= Prob [x.(t) = 1, n.(t-1) K N.]
3 3

Proof:

Using the same steps as in

through 1.53) we can show

D=Prob [d.(t) =1]

However by Lemma 1 we have

d.(t) = e.(t)
3 3

Thus

D. = Prob [e .(t) = 1 ]

= R.

Hence by proposition

starved we have

D . =Prob [O(t),
3 3

the proof of proposition 2.1 (1.49

(I.74)

(1*75)

(I.76)

(I.77)

2.1 and since an input machine is never

n .(t-J.)K N .]
3 3 (I.78)

and the proposition is proven.

Provosition 2.4

For input machines j

D. =Prob [4x.(t) =1, n.(t) < N

(I.73)

(I.79)
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Proof:

This proof follows along the same lines as the proof of proposi-

tion 2.2.

Here let event A. = In.(t)C<N. (I.80)

Then it can be shown that

D = r. Prob [ct(t) = 0, A + (l-pj) Prob o (t) = 1,A

(I.81)

Let

F. =Prob [0<.(t) =1, A (1.82)

We need to show

ID. = F.. (I.83)

By the same elements as (1.70), and (1.71) we arrive at the

conclusion that we need to show that

r Prob[ c (t) = 0, A] = p Prob [c<.(t) = 1, A. (I.84)

Equation (I.84) holds by Lemma 7.

Hence

D. = F. = Prob [cx.(t) = 1, A. ]

= Prob [C(z(t) = 1, n <(t)K N.] (I.85)

and proposition 2.4 is proven.
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Appendix II

Proof of the Strong Equivalence Property

In this appendix the strong equivalence property of Systems F3

and A3 is proven.

Recall,

F3 = (4 1 1 ,121)

and A3= (#> l1,21)

and

NF3 = NA3  N 3 = NA3  (II.1)
1 1 2 2

r = rA3 3= A3 r 3  rA3  (11.2)
1 r1 1 r2  r3  3 '2

PF3 A3 PF3 _ A3 pF 3  pA3  (1.3)
1 1 2 3' 3 2

Theorem 4.1 Strong equivalence property

for Systems A3 and F3

PF3(nln2,9, V) = P 3 (n,n?,, at3 ) (II.4)

whenever

n{ = n, n=N4 3 - n2  (11.5)

ix{=ct~~=c~, =%(11.6)

Proof:

The purpose of this proof is to show that if states of System F3 are

relabeled according to (II.5) and (11.6) the new transition matrix is
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n jt) (t) m(t+1) PROBABILITY

- -F3

- 1 F3

N 1 0 0

F3N F 1 1 1

F3 F3<N 1 0 p1

NF3 F<Ni7  11P3

a)

n1 () n 2  2 t) o (t+1) PROBABILITY

- - 0 0 2 7
3

- 0 1r
F33

'N 1 0 02
NF3- N 1 1 12

0 - 1 0 0

O - 1 1 . 1

>0 <NF3 1p Fp
2  12P

>0 <N2 1p

b)

n 2(t) ( t) (t+1) PROBABILITY

- 0 1 F30. -1a F3
3

0 1 0 0

0 1 1 1

0 0 pF3
>0 ~ .P3

> 6-F3

Table 11.1
Machine Transition
Tables for F3
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n (t)=n(t) o(t)=(t) O(t+1)=%(t+1) PROBABILITY

S0 1-

-0F3

NF3 1 0 0

NF3 1 1

<NF3 1 0 p1
<1  P3

<NF3p3

a)

F3-n'(t)=n (t) n(t) =N n -(t) x.(t)=(2(t) (t+j) (t+1) PROBABILITY1 1 P2 322(+) (t1

F3O 0r1

0 F3

0 1 0 0

0 1 1 1

>0 >0 1 0 p

>0 . >0 1

b)

F3
n2 (t)=N2 -n2 (t) 0 2 (t)=%(t) 2(t+1)=C (t+1) PROBABILITY

0 0 r 3

F3
3

NF 1 0 0N2

NF3 Table 11.2
2  Modification

1 

NF3 0 pF3 of II.1
.2 P3

(NF32
F3

c)

i
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n (t) 0 (t) %(t+1) PROBABILITY

0- 0 1 A3

-0 1 rA3

N3A

N 1 0 P
1 1

S1 1 1  A3

a)

n (t)q,=1,2 0(t) X(t+1) PROBABILITY

O 0 1-r
A3

O 1 r
3

O for anyti 1 0 0

0 for anyi 1 1 1

>0 for all i 1 0 p3

>0 for all i 1 1 1 -3

b)

n2 (t) oC22t) 03(t+1) PROBABILITY

O 0-r

S1rA3

3 1 0 0

NA3 1 1N2
NA3 A3

21 0 P2

2 2

c)

Table 11.3 Machine Transition Tables for A3
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1 Ct) n2() - n1 (t+1)

n n(t2) )t+1) -d2(t+1)

F3 NF3  ( +%jt+1)
>0 -< n (t) + A(t+l) tl

1 2 n2t

oF -NF nj(t) +- CK(t+i)F3 F3

n (t) n2 (t) n2(t+1)

>0 0 n2 (t) + tK2 (t+1)

- NF< n2 (t) - CK(t+1)

0 10 n2 (t) -ot+1)

0 0 n2(t)

b)

Table 11.4 Buffer Transitions for F3
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F3n (t) =nn(t) n(t) =N2-njt) n(t+)n(t+l)

F3
1>n 1(t) DI jti-) D2

N F3 0 njt) + '5(t+1)

0 n1 (t) + N (t+1)

N F3 >0 n 1(t) - 2 (t+i)N1 1 2
NF3

N0 n1 (t)

a)

F3 FF3

[n (t) =nI (t) n (t)=N - n 2(t) n (t+1) =N 2-n2 (t+1)

>0 0,N23NF-n2 2 ( +)+(t+ )

2 2 2

0 NF3 NF3-2 (+)
0 N 2 N 3-n 2 (t)+-X2(t+')

F33
0 N -n2 t)+O (t+1)

N F _2
N 2 - 2(t

b)

Table 11.5 Modification of Table I.4

- U. - ~.
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n1 (t) n2t) nI(t+1)

0,NA3 >0 n (t) + (t+1) -I (t+1)
A3<0,N 1  0 n1 (t). + (t+i)

<NA+ 0 n(t) + (t+1)

0 - nt) + (t+)

A3
1 > 0 nj(t) - %3 (t+1)

N n(t)

a)

nj(t) n t)n2 (t+1)

>0 >0,<NC n(t) - c3(t+1) + %'K(t+1)

>0 2n ()M . (+ 2

- 0 nI(t) +ixI(t+1)

KN0 n2(t) +Ix 2 (t+1)

0 N n(t)

b)

Table 11.6 Buf fer Transitions for A3
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exactly that for System A3. In other words if we let state s' be the

relabeled state si we need to show that

T F33'O)=TA3(s , s ) (II197)

Equation (I.7) says that the transition probability between states s and

s in System F3 is the same as the transition probability between states

s' and s' in System A3. This can be shown by showing that the relabelling1 2

implied by (11.5) and (II.6) reduces the tables (2.1, and 2.2) for Systems

F3 to those of System A3.

We start by considering Table 2.1 as it specializes to the three

machine transfer line. This is shown in Tables II.l. Note that in

Tables I1.1 a), and c) only one buffer capacity is relevant since

machine 1 is never starved and machine 3 is never blocked.

On these tables we now make the transformation implied by (::.5), and

(11.6). The new tables are shown in Tables 11.2. We now use the rela-

tionships (1.1) through to (I.3) to produce a final set of Tables

11.3. Upon close examination it can be seen that Tables 11.3 are

indeed the derived machine transition tables for System A3.

We now focus our attention on the buffer transitions tables. For

System F3 there are two such tables; one for each buffer. These are

shown in Tables 11.4. We now apply the transformations implied by (II.5)

and' (1I.6) to Tables 11.4. This yields the new set of tables in Tables

11.5. We now apply the relationship (II.1) to obtain Tables ii.6. These
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under close examination are indeed the buffer transition tables for

System A3. (Compare with Table 2.2 for general AMN). Thus the

Theorem is proven.
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Appendix III

Deriving the Parametric Equations for AMN's

In this appendix we derive the general AMN parametric equations

(5.11), and (5.12). This derivation follows that of Gershwin and

Schick (1979), (1980) for transfer lines closely. We start with the

form of the internal equation given by (5.10). Recall that in this

equation n,(t+l) and ni(t) are related by (5.1).

Equation (5.10) can be rewritten as follows:

_K-l

i=J-

1

Xi
K

i=l

I

C i(t+l)

yi

K lx. ( t+l)

i (1-r) .

t+l

N (t+l)
Pi

i-

Where di is the index of the machine downstream of buffer i.

divide both sides of (III.1) by

1-r (t+l) Ok (t+1)

y

(IIc.1)

We can

(III.2)

......... ........ .....

cx: ( t+1 ) - O<d ( t+1)

0

I (1-P i)
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This yields

(t+1)-% (t+l) ,1 (t+i)
K X Y

1=1 [(i-ri) t.-ojt+l) r1 i(t+l) J~t
i~l L ri j C, t) ,

C (t+1) 1- PQ (t+1)

%i(t)=1 (t)=1 i=1 ( l-j(t+l) rjj(t+1)

(III.3)

Where X = 1. Recall that K is the index of the output machine. We now

make use of Lemma 3.1 in Gershwin and Schick (1979). This states that

for all sets of real numbers A1, ... ,AK'

1t K K
* - 2I TT A1  = T(l+A ) (111.4)

Cot =0 Cv =0K~1 K =1=

We now use (111.4) to write the right hand side of (111.3) as

X( t+1) 1-05 (t+1)
K (1-P) P Y

R 1 1 (t+:1) (t+1)J- (III.5)
[1 + (1-r1 ) i r

When (II,.5) is substituted in (111.3) the argument t disappears and

thus for simplicity we write instead of >j(t+1).



K
ii

(l-r.)

K

i=l S1+

m -
C

(i-p.
(1-ri)

i

1=
L

~txj~

2

Equation (I11.6) can be simplified as

i=l

K

7~ [(1-ri)

i=l

Relation (HII.7) has been obtained with no condition on Ki, and thus

holds for all values of Ck.

If M$ =0, for all i=l,...,K, (iii.7) becomesi

K

=2.
1-r + ipYi]

If cA.=l, and o,.=0, for i # j, i=l,...,X.

Thus the factors on the left hand side of (

(I1.8)

We have c&.=1, then O=X 4 .
d. 3

[II.7) are either X. Y. or 1
X."
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-q M

FJi Iii
- Ni mI

(11196)

N 1=

l1-Q 1

r + (1-P ) P Y
(11197)
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where the latter appears if i S a buffer upstream of machine j.

Thus (III.?) reduces to

x. Yj.

T X1
iGL(j)

K

p4

[1-r sP1Y] , (111.9)

We now use (111.8) to reduce (111.9) further, obtaining:

X. Y.

iCL(j)Xi

= r. + (1-p.) y.

J.-r. + P. Y.

j=1, ... ,

Equations (111.8) and (III.10) are the desired parametric equations.

[ rj+(l-pj) y )

j=1,...,a K

(III810)
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