S TN

JUL 6 1506

/
J&Lﬁ?;a:vh'ib///

—

TRAFFIC CONTROL IN A MULTIPLEXED COMPUTER SYSTEM

by
JEROME HOWARD SALTZER

S.B,, Massachusetts Institute of Technology
(1961)

S5.M., Massachusetts Institute of Technology
(1963)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1966

Signature of Author —
DepartmentJof Electrical Epgimkering, May 13, 1966

Certified by

v P—— | Thesis Supervisor
Accepted by

EﬁaIrman; ﬁeparEmenEaI Comm1£€e37on Graduate Students

U Lr NI

TRAFFIC CONTROL IN A MULTIPLEXED COMPUTER SYSTEM

by
JEROME HOWARD SALTZER

Submitted to the Department of Electrical Engineering on May 13,
1966, in partial fulfillment of the requirements for the degree
of Doctor of Science.

ABSTRACT

This thesis describes a scheme for processor multiplexing in a
multiple user, multiple processor computer system. The scheme is
based upon a distributed supervisor which may be different for
different users. The processor multiplexing method provides
smooth inter-process communication, treatment of input/output
control as a special case of inter-process communication, and
provision for a user to specify parallel processing or
simultaneous input/output without interrupt logic. By treatment
of processors in an anonymous pool, smcoth and automatic scaling
of system capacity is obtained as more processors and more nsers
are added. The basic design has intrinsic overhead in processor
time and memory space which remains proportional to the amount of
useful work the system does under extremes of system scaling and
loading., The design is not limited to a specific hardware
implementation; it is intended to have wide application to
multiplexed, multiple processor computer systems. The processor
traffic controller described here is an integral part of Multics,
a Multiplexed Information and Computing Service under development
by Project MAC at M.I.T., in cooperation with the Bell Telephone
Laboratories and the General Electric Company.

Thesis Supervisor: Fernando J. Corbaté
Title: Professor of Electrical Ei _ineering

ACKNOWLEDGEMENT

This thesis describes research done as part of the Multics
development effort of Project MAC at M.I.T. The author ig
indebted to numerous people from Project MAC, the Bell Telephone
Laboratories, and the General Electric Company who listened
patiently to early iterations of this work and pointed out many
overlooked difficulties. Chapter four, in particular, describes
a problem which was worked out jointly by R.C. Daley, R.L.
Rappaport, and the author.

Project MAC provided the environment and support for this
thesis, and access to its interactive computer system as an aid
in the composition of the actual document. The thesis was
composed and reproduced on-line with the TYPSET and RUNOFF
programs of the M.I.T. Compatible Time-Sharing System, and exists
in computer accessible form.

A note of thanks is especially due the thesis committee,
consisting of Profs. F.J. Corbaté, R.M. Fano, and D.A. Huffman,
as well as Prof. M. Greenberger. The time and effort taken out
of such busy schedules to supervise the thesis are deeply
appreciated.

Finally, and perhaps most importantly, an acknowledgement is
due the author's wife Marlys, and daughters Rebecca and Sarah,
who for several years have withstood the many problems of 1living
with a graduate student who is a doctoral candidate.

J.H.S.

Waban, Massachusetts
May, 1966

ey

CONTENTS

-ABSTRACT

ACKNOWLEDGEMENT

I. INTRODUCTION
Background

Method

II. ORGANIZATION OF THE COMPUTER UTILITY
Hardware management
Resource management
Dynamic linking, hierarchy search, and the library

Summary

ITI. TRAFFIC CONTROL IN THE COMPUTER UTILITY

1. The concept of process

2, Traffic control with dedicated proéessors
Inter-process control communication
The two-process system
An example of a two-process system
Channel logic
A critical race between processes
Summary of traffic’'control needs so far

3. Processor multiplexing

13

14

16
18
25
29
32

34
34
37
38
40
42
43
44
46
47

System interrupts
Processor switching
Processor dispatching
Processor scheduling
Pre-emption scheduling
The Quit module
Review
4., The system interrupt interceptor
Flow within the system interrupt interceptor

Procedures for internal interrupts

IV. TRAFFIC CONTROL WITH LIMITED CORE MEMORY
Core memory needed by a running process
Core memory needed by a ready process
When blocked processes must be active
Core memory management with processor multiplexing

Summary

V. SYSTEM BALANCE AND SCALING
System balance

System scaling

VI, SUMMARY OF IDEAS

ILLUSTRATIONS AND TABLES

REFERENCES

EIOGRAPHICAL NOTE

48

50

55
60
63
64
66
68

69

71

73

75

79

84

87
87
93

99

102

117

119

w w 9
. ° .
[\S) = N

I.

ILLUSTRATIONS

Typical hardware configuration

Apparent configuration after hardware management
Flow diagram of a two—-process system

Two-process system with "full queue® provision
Flow of control in Swap-DBR

Flow diagram of Block and Wakeup

Execution state transitions

Block diagram of process exchange

Flow diagram of the system interrupt interceptor
Schematic diagram of a running process

Swap-DBR flow, to recreate descriptor segment
Swap-DBR flow, including process bootstrap module
Complete flow diagram of Swap-DBR

State transitions of a process

TABLES

Catalog of multiplexing tables

102
103
104
105
106
107
108
109
110
112
113
114
115
116

111

Traffic Control in a Multiplexed Computer System

CHAPTER ONE

Introduction

In designing a computer utility, one is faced with two
distinct classes of problems. The first class of problems is
that of communication between people, by sharing algorithms and

information, and of communication between the human and the

T~— computer. We term this class of problems intrinsic. The second

class of problems is sharing of resources to lower the cost per

user., We term this class of problems technological. Our choice

of terms is deliberately intended to convey the notion that with
appropriate advances in technology problems lying in the second
class would not even exist; on the other hand, technological
advances can only ease the solutions to the first class of
problems.

The technological problem of resource multiplexing in a
computer utility can be stated briefly as follows: Given a large
computer system consisting of core memory, secondary storage,
many input/output devices, and several processors; to design an
operating system which allows effective multiplexing of resources
among many independent users. The design must be flexible enough

to allow for specialized needs of many computer installations

“v

L AN A ANV UN A AR ['e)

without significant reprogramming, and it must scale up and down
smoothly to allow easy growth of a computer installation.

The intrinsic problems of man-machine communication and
information sharing in a computer utility can similarly be stated
briefly: Given many users, and their private stores of data,
algorithms, and other information; the system must provide access
to, ability to manipulate, and controlled sharing of this
information as flexibly as possible, while providing privacy for
users or groups of users and protection of information against
the accidental blunders of others.

In this thesis we describe a design for a traffic
controller: the processor multiplexing and control communication
section of an operating system. This traffic controller provides
a workable solution, in a single package, to each of the
following problems of the computer utility:

1. Multiplexing processor capacity among independent users.

2. Organizing multiple processors to allow reliability and
expansion.

3. Keeping multiplexing overhead to a fraction of system
capacity which is independent of system size.

4. Arranging for idle processes (1)* to contribute zero
overhead in processor multiplexing time and core space.

5. Allowing different users to see different operating

systems while running simultaneously.

* Footnotes, indicated in parentheses, appear at the end of
each chapter. References, indicated in brackets, are
collected together starting on page 117.

LNTRODUL L LUN B

6. Permitting parallel processing (including input/output)
to a single user,
7. Allowing communication of control signals between users.

The first four of these problems have to do with resource
sharing, and we therefore class them as technological. The 1last
three problems are examples of intrinsic problems.

Before going any further, we should first consider the
reasons why the problems tackled by the traffic controller are
interesting. First, multiplexing a processor among many
independent users is an effective way of achieving an interactive
\ but economical computer system. It is also a powerful technique
which speeds production time of input/output limited jobs, and

permits balancing of resources across a spectrum of jobs, none of

S ~—
which may be individually matched to the computer system,

Secondly, organized control of identical, multiple
processors provides a technique for expanding system capacity
without the need to over-reach whatever is the currently
available technology in processor speed. Also, a properly
organized multiple processor system provides great reliability
(and the prospect of continuous operation) since a processor may
be trivially added to or removed from the syétem. A processor
undergoing repair or preventive maintenance merely lowers the
capacity of the system, rather than rendering the system useless.

Third (and fourth), the ability of the basic design to scale

‘over a wide range of system capacity, load, and number of
processes, means that it may be used without modification as the

basis for a one-processor, three-user time-sharing system, a

LNILERKUDUCLALUN 10

multi-processor airline reservation system with 5000 agent sets,
or a weather-prediction system performing dependent but parallel
computations at thousands of "grid points."®

Fifth, an organization in which each user sees a private
supervisor, which may be different for different users so long as
it follows the ground rules of traffic control, means that the
system is easily applicable to so-called real-time or process
control functions while simultaneously serving more standard
interactive or over-—the-counter users. This feature also aids
greatly in debugging new versions of a supervisor while
maintainirg continuous operation of the system for reqular
customers,

Sixth, smooth inter-~process control communication features
open the way for implementation of languages which take advantage
of, or allow expression of, parallelism in algorithms. With the
same facility, the final requirement of intercommunication among
otherwise independent users also becomes possible. Immediate
applications abound; for example, a group of persons may work on
the same project from typewriter consoles in different buildings.
Viewing input and output initiation as another example of
inter-process communication places all parallel operations on a
symmetrical and identical basis. The complexity of organizing a
large problem requiring parallel processing capabilities is
thereby greatly reduced.

The interest in solutions to these problems is clear. The
significance of the proposed traffic controller is that workable

solutions to all of these problems are presented in a relatively

LNTRODUCTLON 11

small collection of interacting procedures.

The traffic controller and operating system described here
are being implemented as an integral part of the "Multics" system
(Multiplexed Information and Computing Service), which, as its
name implies, is a computer system organized to operate as a
public utility. The general organization and objectives of
Multics have been described in a group of six papers given at the
1965 Fall Joint Computer Conference [1, 2, 3, 4, 5, 6]. The
reader interested in exploring further the economic and
technological justifications for the notions of a multiplexed
~\ computer system is referred to these papers, especially [1]. In
this thesis we will make the assumption that the reader is
familiar with issues such as reliability, accessibility, and a

S~
shared, community data base which underly the Multics concept.

In particular, we assume a two-dimensional segmented address
space implemented within the system hardware (2).

In a segmented address space, a processor generates a
two-part address for all instruction and operand fetches. The
first part of the address is a segment number, the second a word
number within the segment. The segmented address space is
implemented by means of special processor hardware, which refers
to a map stored in core memory that gives the absolute core
address of the base of each seqment. This map is itself a

segment, the descriptor segment; its absolute address is stored

in a descriptor segment base register in the processor. The

descriptor segment may contain missing-segment bits for some

segments. If a program attempts to refer to one of these missing

INTRODUCTION 12

segments, the processor will fault to a supervisor procedure
which can find the segment, load it into memory, and continue the
interrupted program.

We further assume that the memory is paged. Paging allows
each segment to be broken up and thereby fit into core memory
wherever space is available, without the need for contiguous

locations. Paging is accomplished by processor hardware which is

very similar to the segmenting hardware described above. For a
thorough discussion of the techniques of and motivations for
scgmentation and paging, the reader is referred to several recent
f\ papers (2, 7, 8]. The crucial feature provided by a
two-dimensional address space is that a single segment 1in core
;_way appear simultaneously in the address space of two different
| processors, with distinct segment numbers. The ability of
independent users of the computer system to share segments of
addressable memory is a cornerstone assumption in the design of
the operating system.

In order to successfully make use of shared procedure
segments, we assume that all procedures (at least those of the
operating system) are pure, that is, they do not modify

themselves. A segment containing only pure procedures can then

safely be shared by any number of processes. Data used by a

procedure appears in a distinct segment which may or may not be
shared among processes, depending on the purpose of the
procedure. As we will see, the operating system is made up of
closed subroutines which call on one another. When a =subroutine

has finished executing it returns to its caller. A private data

s 2

segment is used as a call stack to store the return location when

a subroutine is called. If that subroutine calls another, the
return location is placed ecn top of the call stack so that
returns will be made in the proper order and to the proper
location. The call stack may 2lso be used for temporary storage
needed by a procedure. By using pure procedures and a call stack
thrbughout, ary procedures in the supexvisor may be called

recursively, if such usage is appropriate.

Background.

Multiplexed computer systems are not new, but general
organizations for such systems have not yet been described.
Critchlow, in a review article [9) traces the evolution of
multiprogrammed and multiprocessor computer systems, so we will
not need to do s0 here. Most published work on processor
multiplexing falls into three categories:

l. Techniques by which a programmer may specify parallelism
in his programs (10, 11]. These papers offer suggestions
for implementation of a system to make use of such
parallel specification, but not a complete design.

2., System designs to multiplex one or more processors among
strictly independent jobs, Codd [12] and Thompscn [13]
describe multiplexed operating systems designed to speed
processing of batch jobs on the IBM 7030 and the
Burroughs D825 computers, respectively. A similar system
has been designed for the GE 635 computer. Several
time-sharing systems (see, for example, [l14])) have been

designed to multiplex a single processor among

interactive console users. Although some of these
designs allow inter~user procedure or data sharing, there
is no provision for inter-process control communication.
Ad hoc additions to these systems (3) have provided some
means of inter~process control communication, but no
general structure.

3. Highly specialized "real-time" systems in which the
specific application of the system heavily outweighs
other features of the design. Examples of system designs
in this latter category are the SABRE airline reservation
syscem, and Project Mercury control, both descriked in
[15]. As would be expected, such designs solve their
intended multiplexing problems, but unfortunately leave
no general structure on which to build a system for a
different application.

The proposed multiprogrammed operating system for the IBM
system/360 series of computers [16] 1is probably the system
appearing in the literature which is closest in concept to the
work taken up in this thesis. That system permits a restricted
inter-process control communication facility for processes
working under the same job; it remains to be shown that it can be
extended to a multiple processor configuration since details of

the design have not yet been published.

Method.
In chapter two, we first briefly describe the organization
of the entire Multics operating system, so that we may view the

later discussion of processor traffic control in an appropriate

INTRODUCTION 15

perspective.

We will then study traffic control in three stages. First,
we assume an abundance of core memory and processors so that
multiplexing is not needed. This assumption makes it possible to
isolate the fundamental problems of inter-process communication.
Then, we study the technological problem of multiplexing a
limited number of processors among many competing processes,
again assuming sufficient core memory to carry out the
multiplexing. Chapter three concludes with a complete design for
the traffic controller. Finally, in chapter four, we explore a
second technological problem, the consequences of core memory
size limitations on processor multiplexing.

Chapter five reviews the entire traffic controller design
and discusses techniques by which it may be evaluated when in
operation. Included here is a discussion of the crucial issue of
how the system "scales"; that is, the effect of expansion of the
number of users, the presented load, the size of memory, and the

number and speed of processors.

(1) A process may be loosely defined as a program in execution; a
more careful definition will be given at the beginning of
chapter three.

(2) The field of computation systems, and this thesis, are
replete with technical jargon. This thesis uses wherever
possible terminology consistent with current 1literature as
exemplified by the cited references.

(3) For example, by allowing one process to appear to be an
input/output device to another process, as in the CTSS
inter-conscle message facility [17].

CHAPTER TWO

Organization of the Computer Utility

The term “computer utility" by its very nature implies

marketing of a useful resource in a wusable form. Although
immense computing power, sharable secondary storage, and flexible
access to input and output devices are indeed useful resources,
the primary function of the computer utility is to organize such
resources intoc a usable, and thereby markétable, form.
;_ From one point of view the marketing of computer resources
is much the same as the marketing of candy bars. The man on the
street would be quite pleased to purchase his candy bar direct
from the factory at the candy jobber's prices. On the other
hand, his enthusiasm wanes when he discovers that he must take
not one candy bar but a carload, and delivery will require six
weeks. In much the same way the ordinary computer user is quite
unprepared to tackle the problems of managing several processors,
I/0 interrupts, and disk track organization, even though his
particular problem might require sizable amounts of computer
time, input-output, and secondary storage space.

Again using the candy bar example, we observe that the candy
bars pass through several handss: the jobber, the wholesaler, the
distributor, before they turn up on the drugstore counter. At

each of these 1levels the product of the previous level is

ORGANIZATION OF THE COMPUTER UTILITY 17

transformed into a resource with a wider market. The carload of
candy bars is wholesaled in gross cartons; the distributor once a
week provides the drugstore with boxes of 24 candy bars.
Finally, the man on the street wanders in and purchases just one,
whenever he likes. In a very similar manner, we may view the
resources of the computer utility as being transformed three
times, each time producing a resource that is successively more
"marketable":

1. Starting with the basic hardware resources available, the
"hardware management® procedures have the function of
producing hardware independence. They do so by
simulating an arbitrarily large number of
"pseudo-processors” each with a private segmented address
space (which may contain segments shared with other
pseudo-processors), easy access to a highly organized
information storage hierarchy, and smooth input/output
initiation and termination facilities. The resulting
resource is independent of details of hardware or system
configuration such as processor speed, memory size, I/0
device connection paths, or secondary storage
organization.

2, Working with these pseudo-processors and the information
storage hierarchy, the "resource management" procedures
allocate these resources ameng "users", providing
accounting and billing mechanisms, and reserving some of
the resources for management services, such as file

storage backup protection, line printer operation, and

detail.

ORGANIZATION OF THE COMPUTER UTILITY 18

storage of user identification data.

Finally, these allocated and accounted resources can be
used by the ultimate customer of the computing utility
either directly by his procedures or to operate any of a
large variety of 1library commands and subroutines.
Included in this library are a command language
interpreter, a flexible I/0 system, procedures to permit
simple parallel processing, language translators, and
procedures to search the information storage hierarchy

and dynamically link to needed programs and data.

*\ We now wish to study each of these transformations in more

~ardware Management.

1.

2,

The basic hardware resources available to the utility are

the following:

One or more identical processors.

Some quantity of addressable primary (probably core)
memory. The processors are equipped with hardware to
allow addressable memory to appear to be paged and
segmented. It is not necessary that all possible memory
addresses correspond to core locations. One might expect
to have 100,000 words of core memory for each processor.
A substantial amount of rapidly accessible secondary
storage. This secondary storage might consist of a large
volume, slow access core memory, high speed drums, disks,
data cells, or any combination thereof which proves to be

economical. The total amount of accessible secondary

ORGANIZATION OF THE COMPUTER UTILITY 19

storage might be on the order of 100 million woxrds perx
processor, although this figure can easily vary by more
than an order of magnitude.

4. Channels to a wide, in fact unpredictable, variety of
input and output devices, including tapes, line printers
and card readers, typewriter consoles, graphic display
consoles, scientific experiments, etc. In an
installation committed primarily to interactive usage,
one might find 200 typewriter channels, plus a few dozen
other miscellaneous devices. Each of these channels can
produce signals indicating completion or trouble. The
signals are transmitted to the system in the form of
processor interrupts. |

5. Various hardware meters and clocks suitable for measuring
resource usage.

The hardware management routines must do two very closely
related jobs. First, they must shield the user c¢f the system
from details of hardware management. The user should be
essentially unaware of system changes such as addition of a
processor, replacement of processors by faster models, or
replacement of a data cell by an equivalent capacity disk memory.
Except for possible improvements or degradations of service

quality, his programs should work without change under any such

system modification. Second, the hardware management routines
must handle the multiplexing of system resources among users in
such a way that the wusers may again be wunaware that such

multiplexing is going on. 1Included in this second job is the

o -

Y

1
'
1 \

ORGANIZATION OF THE CCMPUTER UTILITY 20

necessary protection to insure that one wuser cannot affect
another user in any way without previous agreement between the
two users.

The strategy chosen here to implement +this hardware
management is the following. Using the hardware resources listed
above and two major program modules, the traffic controller and
the basic file system, simulate (by multiplexing processors and
core memery) an arbitrarily large number of identical
pseudo-processors, and an information storage hierarchy in which
data files are stored and retrieved by name.

The information storage hierarchy is a tree~like structure
of named directories and files which is shared by all users of
the system. Access to any particular directory or file is
controlled by comparing the name and authority of the user with a
list of authorized users stored with each branch of the tree.
This structure allows sharing of data and procedures between
users, and also complete privacy where desired,

The pseudo-processors look, of course, very much like the
actual hardware processors, except that they are missing certain
"supervisory" instructions and have no interrupt capability.
Each pseudo-processor has available to it a private
two-dimensioral address space. Within the address space are a
number of supervisor procedures capakle of carrying out the
following basic actions upon request:

l. "Mapping” any named file or directory from the storage
hierarchy into a segment of the address space. Files

appearing in the information storage hierarchy are

ORGANIZATION OF THE COMPUTER UTILITY 21

identified by a tree name which is a concatenation of the

name of the file within its directory, the name of the
directory, the name of the directory containing this
directory, etc., back to the root of the tree. As we
will see below a utility program named the %search
module” may be used to establish the tree name of a

needed segment so that the map primitive may be used.

The search module itself operates by temporarily mapping
directories into addressable storage in order to search
them. Use of the map primitive does not imply that any

part of the file is actually transferred into core

storage, but rather that the file is now directly

addressable as a segment by the pseudo~-processor. When

7

the pseudo~processor actually refers to the segment for
the first time, the basic file system will gain control
through missing-segment and missing-page faults and place

part or all of the segment in paged core memory. Except

for the fact that the first reference to a portion of a

segment takes longer than later references, this paging
is invisible to the user of the pseudo-processor. The
same file can appear as a segment in the address space of
any number of processors, if desired; options allow the
processors to share the same copy in core, or different
copies.

2. Blocking, pending arrival of a signal from an I/O channel
or some other pseudo-processor. A pseudo-processor

blocks itself because the process which it is executing

: /..__‘ R AR MR S R s . "y -

>
.

ORGANIZATION OF THE COMPUTER UTILITY 22

cannot proceed until some signal arrives. The signal
might indicate that a tape record has been read, that it
is 3:00 p.m., or that a companion process has completed a
row transformation as part of a matrix inversion.
3. Sending a signal (here known as a “wakeup®) to another
pseudo-processor or to an input/output channel. (From
the point of view of a pseudo~processor, an I1I/0 channel
looks exactly like another pseudo-processor.) The wakeup
facility, in combination with the ability for
pseudo-processors to share segments, permits application
of several pseudo-processors simultanecusly by a single
user. A user may thus specify easily parallel processing
and input/output simultaneous with computation.
Forcing another pseudo-processor to block itself. This
primitive, named "Quit", allows disabling a
pseudo-processor which has gotten started on an unneeded
or erroneous calculation.
All of these primitive functions are constructed as closed
subroutines which are called wusing the standard call stack
described in chapter one.

Figure 2.1 shows a typical hardware configuration of the
utility, while figure 2.2 indicates the apparent system
configuration after the hardware management procedures have been
added. An important difference between these figures is that
while figure 2.1 may change from day to day (as processors are
repaired and a disk is replaced with a drum) figure 2.2 always is

the same, independent of the precise hardware configuration.

ORGANIZATION OF THE COMPUTER UTILITY 23

When a pseudo-processor calls the "map” entry of the basic
file system, the file system establishes a correspondence between
a segment number of the pseudo-processor address space and a file
name on secondary storage by placing an entry in a segment name
table belonging to this pseudo-processor, It does not
necessarily, however, load any part of the file into core memory.
Instead, it sets a missing-segment bit in the appropriate
descriptor word in the descriptor segment of the
pseudo-processor. This bit will cause the pseudo-processor to
fault if a reference is made to the segment.

Sometime after calling the "map" entry, the pseudo-processor
may attempt to address the new segment. When it does so, the
resulting missing-segment fault takes the pseudo=-processor
directly back to the segment control module of the basic file
system, which now prepares for missing page faults by locating
the file name corresponding to the segment number in the segment
name table, placing the secondary storage lccation of the file in
an active segment table, and creating in core memory a page table
for the segment. This page table is filled with missing-page
bits, and none of the file is actually loaded into core memory
vet,

The pseudo-processor is then allowed to continue its
reference to the segment. This time, a missing—-page fault takes
the pseudo-processor to the page control module of the basic file
system. Page control must locate two items: a space in core
memory large enough for the missing page, and the 1location on

secondary storage of the missing page. Establishing a space in

ORGANIZATION OF THE COMPUTER UTILITY 24

core memory may require unloading some other page (possibly
belonging to some other pseudo-processor) onto secondary storage.
A policy algorithm in the "core control®™ module decides which
page or pages in core are the best candidates for'luﬁloading, on

the basis of frequency of usage of the pages.

Having established space in core memory for the page, and

initiated the transfer from secondary storage, page control
blocks the pseudo~processor pending arrival of the page. When
the page is in, this pseudo-processor is re-awakened by the basic
file system operating for some other process, page control
returns to the point at which the missing-page fault occuzrred,
and the pseudo-processor now completes its reference to the
segment as though nothing had happened. Future references to the
same page will succeed immediately, unless the page goes unused
for a long enough time that the space it is holding is reclaimed
for other purposes by core contxecl. If the space is reclaimed,
core control sets the missing-page bit in the page table on, and
writes out the page onto secondary storage. A later missing-page
fault will again retrieve the page.

As we will see in chapter four, some segments cannot take
part in the paging in-and=~out procedure; these segments must be
"wired down" (that is, they are nct removable) since their
contents are needed, for example, in order to handle a
missing-page fault. A general property of the file system
organization is that a missing=-page fault cannot be encountered
while trying to handle a missing=-page fault. The reason for this

organization is not that a recursive missing-page fault - handler

ORGANIZATION OF THE COMPUTER UTILITY 25

is impossible to organize, but rather that the depth of recursion
must be carefully controlled to avoid using up all of core memory
with recursion variables (at least the call stack mus’. go into a
wired down segment.) The method chosen here to control recursion
depth is to prevent recursive missing-page faults in the first
place.

The method of implementing the secondary storage hierarchy,
the "map" primitive, and core memory multiplexing has been
described in a paper on the basic file system by Daley and
Neumann [4] and the reader interested in more detail is referred
to that paper. The multiplexing of hardware processors to
produce many pseudo-processors is the function of the traffic
controller, and is the subject of the remaining chapters of this

thesis.

Resource Management.

The hardware management programs transform the raw resources
of the computer system into facilities which are eminently more
usable, but these facilities must be made available (allocated)
to users of the system before those users can accomplish
anything. Also, certain of the transformed facilities must be
reserved for the system's own use in operation, administration,
and preventive maintenance. Finally, a flexible, fairxr, and
accurate accounting mechanism must be provided to determine how
and by whom the system is actually being used.

The most important function of resource management is to
define the concept of a "user™ of the utility. A user, is,

roughly, a person, working on a project, who signs out a portion

ORGANIZATION OF THE COMPUTER UTILITY 26

of the system facilities by "logging in." He may work in concert
with other users of the system on a single larger project, but
his coming and going is independently noted in system logs. The
definition of a person working on a project must be relaxed
slightly to include the possibility of a so-called "daemon®" user
(1) which is not directly associated with a person. The
definition of a daemon user is that it is automatically logged in
to the system when the system is initialized; one cannot identify
any particular person who claims to be this user. The daemon
generally performs periodic housekeeping functions. (Most
daemons, in fact, are creations of resource management, but there
are also applications for customer-provided daemcns.)

To get the flavor of the techniques wused by resource
management, we may consider the path followed in logging in from
a typewriter console. One pseudo-processor is reserved for a
daemon user to which we give the name "answering service". This
pseudo-processor is given access to every typewriter channel
which is not presently in use. The prccess operating on the
pseudo-processor activates every attached typewriter channel so
that the channel will return a signal when a console dials up, or
turns power on in the case of direct connections. The process
then blocks itself awaiting a signal from some typewriter
channel. When a berson dials up to a channel, that channel wakes
up the answering service process which immediately brings into
play two more pseudo-processors. One pseudo-processor 1is
assigned the typewriter channel and a typewriter management

process is initiated on that pseuvdo-processor. A "listener"

ORGANIZATION OF THE COMPUTER UTILITY 27

process is initiated on the other pseudo-processor. The listener
process reads from the typewriter by asking the typewriter
manager process for the next line of input. The listener may
have to wait if a line has not yet been typed. The listener can
take any desired action upon the line, including establishing a
process on yet another pseudo-processor to perform sone
computation. The programs executed by the listener and the
typewriter manager come from the library, which is discussed in
the next section, so we will not go into any further detail here.
Their first action is, of course, to execute the "login" command
to establish the identity of the user and his authority to use
the system.

Logging in is accomplished by comparing the typist's
credentials with a list of all authorized users which 1is stored
in the secondary storage hierarchy. (As we will see, the storage
hierarchy is used extensively for administrative purposes.) When
a match is found, information stored there indicates this wuser's
access privileges, authorities, and the section of the directory
structure in which he keeps his private files. The system log (a
file in the storage hierarchy) is updated to show that this wuser
is logged in, and the typist may now begin typing commands.

The point of the description of logging in is to illustrate
the techniques used in resource management, not the details. The
most important feature of these techniques is that they are based
on usage of the pseudo-processors and information storage
hierarchy provided by the hardware management programs. They

may, therefore, be debugged and replaced while the system is

ORGANIZATION OF THE COMPUTER UTILITY ' 28

operating, in exactly the same way as any user program. They are
also relatively independent of the configuration of the system.

A number of similar operations are carried out by resource
management in other areas. For example, a daemon user
continually copies newly created files in the storage hierarchy
out onto tape for added reliability in case of some catastrophe.
Another daemon user periodically wakes up and "checks out the
system" by running test and diagnostic procédures. An example of
an ordinary user dedicated to resource management is the operator
in charge of detachable input and output devices such as tape and
disk packs. At his typewriter console he receives mescages
requesting him to mount reels; he may reply when the reel is
mounted or it cannot be found.

Finally, within every address space, certain resource
management procedures are inserted in the path between a wuser
procedure and the supervisor routines described under hardware
management. These resource management procedures perform
resource usage accounting for this process. A system of accounts
is maintained within the storage hierarchy, which allows a
project supervisor to allocate resources to group leaders who can
in turn allocate to individual users. Every pseudo-processor
draws on some account in this hierarchy. Also, among the library
procedures available to any process are "system transaction
programs”™ which allow the user to arrange special classes of

service, sign up in advance for tape drives, etc.

ORGANIZATION OF THE COMPUTER UTILITY 29

Dynamic Linking, Hierarchy Search, and the Library.

So far, the hardware management procedures have insulated
the user from the details of the system configuration und
secondary storage management, and resource management procedures
have established doors through which a user may enter and leave
the system, and have his resource usage accounted for. Before
the system is useful to the average user, however, a variety of
utility and service (library) programs must be available to him.
The library is merely a collection of procedures stored in one
section of the information storage hierarchy. This library is
built upon the foundations laid by hardware and resource
management. It is flexible and open-ended, and procedures drawn
from the library operate in exactly the same way as any user
provided procedure drawn from elsewhere in the information
storage hierarchy.

Fundamental to the usage of the system are dynamic 1linking
and storage hierarchy search procedures. The pseudo-processor
provided by hardware management has the capability of producing a

linkage fault when a procedure attempts to refer to a segment

which has never been mapped into addressable storage. When
establishing a new pseudo~-processor, one normally places a
linkage faulit handler in the new address space. When the new
pseudo~-processor encounters a linkage fault, the 1linkage fault
handler (linker) locates the needed segment in the information
storage hierarchy by calling the search module. The linker then
maps the segment into addressable storage with the "map"

primitive discussed earlier, and resets the inter~segment linkage

ORGANIZATION OF THE COMPUTER UTILITY 30

pointer which caused the fault so that faults for that reference
will not occur in the future.

By providing an appropriate alcorithm to search the
information storage hierarchy for needed segments, the user can
arrange that a newly established pseudo-processor execute any
desired sequence of procedure. The search may, of course,
include those sections of the information storage hierarchy
containing library procedures provided by the utility.

For example, consider the sequence of linkage faults and
searches implicit in the logging-in procedure described earlier.
The answering service establishes a new pseudo-processor to run
the "listener" process, initially mapping into its address space
the standard system linker, a search algorithm which looks at the
system library, and a one-instruction procedure which attempts to
transfer (through a linkage fault) to a program named ®listen".
The pseudo-processor is started at the planted transfer
instruction. Of course, it immediately gets a linkage fault, and
the linker calls the search module to locate the "listen"
program. The search module finds a procedure by this name in the
system library, the linker maps it into addressable storage, and
the transfer instruction is continued. This time it completes
execution, and the “listen" procedure is now in control of the
pseudo-processor. As it <calls on various subroutines, for
example to communicate with the typewriter manager fprocess, it
gets more linkage faults, and triggers appropriate searches
through the library. As needed, the address space of the

pseudo-processor collects the subroutines and data segments

ORGANIZATION OF THE COMPUTER UTILITY 31

required to operate a listener process.

An important library procedure is the "Shell®”, a command
language interpreter which is called by the listener to interpret
the meaning of a command line typed by the user. The Shell takes
a typed command to be the name of a subroutine to be called with
arguments, e.g., if the user types the command

PL/I ABCD

the Shell would take this to mean that it should call a
subroutine named "PL/I" with one argument, the character string
"ABCD". It therefore sets up linkage to a subroutine named PL/I
(with a linkage fault in the path, of course) and attempts to
call the subroutine. The resulting linkage fault causes a search
of the library for, and linkage to, a procedure segment named
"pPL/I". When the PL/I compiler ultimately begins execution, it
will similarly search for and link to the file named ABCD and
(presumably) translate the PL/I program found there.

Among the library procedures commonly executed as commands
are procedures to help type in and edit new files to be stored in
the information storage hierarchy, translators for program files,
and commands to alter the search algorithm, for example tc search
a portion of the hierarchy containing the wuser's own data and
procedure segments. Note that through the mechanism of the
Shell, any procedure segment, public or private, appearing in the
information storage hierarchy and to which a wuser has access
rights can be called as a command from the console.

Other library procedures include an input/output control

system which allows symbolic reference to input and output

ORGANIZATION OF THE COMPUTER UTILITY 32

streams and a substantial measure of device independence. These
procedures include necessary inter-process communication
facilities required to overlap input/output with other
cocmputation. |

Through the mechanism of the linker and the search module an
arbitrarily elaborate collection of utility programs may be
established, yet all such programs are on an identical footing
with the user's own programs. That is, they may be checked out
and replaced while the system is in operation wusing the full
resources of the system to aid in the checkout. The
open-endedness of the library means that it is likely that there
will be some users who never execute anything but procedures from
the library. It is even possible, through the mechanism of
access control provided in the information storage hierarchy, to
have a user who, since he has no access to any compilers or input

editors, can only execute commands found in some library.

Summa;z .

We have in this chapter seen a brief overview of several
aspects of the organization of a computer utility. In this
overview, we have seen how the raw resources of the system are
successively transformed, first into configuration- and detail-
independent resources consisting of pseudo-processors and an
information storage hierarchy, secondly into allocated and
accounted resources ready to be put to work, and finally, through
a linker, search module, and system library, into a full scale,
flexible operating system with a multitude of readily accessible

utility procedures. Our overview har necessarily been too

ORGANIZATION OF THE CCMPUTER UTILITY 33

broad-brush to go into much detail on how these various
techniques are implemented. The reason for the overview has been
to give enough of a framework so that we can study in detail the
particular problem of processor multiplexing, one of the
fundamental aspects of hardware management. Chapter three begins

our study of this topic.

(1) "dae-mon, n. in Greek mythology, any of the secondary
divinities ranking between the gods and men; hence, 2. a
guardian spirit." (Webster's New World Dictionary, 1958.)

CHAPTER THREE

Traffic Control in the Computer Utility

In chapter two we divided the operating system of a computer

utility into three layers: hardware management, resource
management, and the library. In this chapter we split the layer
of hardware management into memery (core and secondary storage)
management and processor management. We take up the detailed
study of processor management, assuming that the memory
management modules--the basic file system--already exist and
operate as was briefly described in chapter two. Our general
strategy here will be to begin by assuming that there are no
technological problems of processor multiplexing. After
examining the intrinsic problems which remain, we introduce the

technological problems one by one.

SECTION ONE: THE CONCEPT OF "PROCESS"

In the sections which follow, "traffic control" will be

described as the problem of multiplexing a limited number of

processors among many processes and providing inter-process

communication. We should therefore first define precisely our

use of the term "process."

THE CONCEPT OF "PROCESS" 35

A process is basically a program in execution by a processor
(1). This definition, while it appears to be precise, is in fact
somewhat vague because the terms "program” and "processor" can be
given widely varying interpretations. Although the 1IBM 7094
central processor, and a program coded in the FAP language, are a
good example of the terms "processor” and “program” (and could be
used to help provide one concrete definition of a process) we may
observe other examples of "processors” and "programs."”

For instance, one can consider the M.I.T. Compatible
Time-Sharing System [17] to be a "processor® w!ose instruction
set consists of system commands. One may give this processor a
program in the form of a list of commands (RUNCOM); he may then
talk of his "process"” proceeding from command to command in his
program. The fact that the implementation of each of his
commands may actually cause five data channels and two central
processing units to execute instructions simultaneously is
irrelevant to this particular definition of a process.

We may thus conclude that the essential element in the
definition of a process is a statement about the capabilities of
a processor; the processor is not necessarily bcne implemented in
hardware, but rather a composite processor made up of the
hardware and programs of the system in which the process 1is
executed. The composite processor may have either more or fewer
apparent capabilities than the actual hardware processors which
are the basis of the system.

As was described in chapter two, the fundamental technique

of the traffic controller is to simulate an arbitrarily large

THE CONCEPT OF "PROCESS® 36

number of pseudo-processors, each with its own two-dimensional

address space. Each pseudo-processor is given the following

capabilities:

1. Accessibility to a private segmented address space for
instructions and data. This address space may include
segments accessible to other pseudo-processors.

2. An instruction repertoire including the usual arithmetic,
logic, shift, and conditional branch instructions.

3. Ability to "fault" (a type of conditional subroutine
jump) upon execution of certain instructions.

4., Ability to call on supervisor procedures to extend the
defined address space of the pseudo~processor, and to
communicate control signals with other pseudo-processors
and input/output channels. |

If one likes, the last ability can be described as an extension
of the instruction repertoire of the hardware processor.
The one capability of commonly described operating system
pseudo-processors which is not included in our pseudo-processor
is the "interrupt," or "courtesy call," a jump to a special
subroutine in response to an arbitrarily timed (asynchronous)
signal, for example, from an input/output channel. As we will
see, the ability to use several communicating pseudo-processors
provides a flexible and easy to use facility to replace the
interrupt.

our definition of a process is now clear. A process is a

program in execution by a pseudo-processor. The internal

tangible evidence of a process is a pseudo=processor stateword,

THE CONCEPT OF "PROCESS" 37

which defines both the current state of execution of the process
and the address space which 1is accessible to the processor.
There is, then, a one-to-one correspondence between processes and
statewords, and also between processes and address spaces. It
will in fact be convenient to make use of this correspondence and
identify a process with its address space. In terms of the
two-dimensional segmented address space hardware described in
chapter one, every process is identified with a descriptor
segment, If we further assume for simplicity that descriptor
segments are not shared between processes, we may establish a
one-to-one correspondence between processes and descriptor
segments. The stateword of a process includes a pointer to the
descriptor segment of the process.

To maintain our definition of a process despite the
realities of processor and memory multiplexing, we will place
within the address space of every process a set of
procedures--the traffic controller-~-which exercise further
capabilities of the actual processor. Most of the instructions
of the traffic controller will in fact be carried out within the
address space of this process, but they are viewed as part of the

implementation of the pseudo-processor.

SECTION TWO: TRAFFIC CONTROL WITH DEDICATED PROCESSORS

Our strategy of discussion of the general problem of

processor multiplexing is to start by assuming an abundance of

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 38

actual processors and of core memory. In particular, we assume
that there is a processor available to assign to every process,
and that there is enough core memory available so that at least
the current procedure of every process is resident in core. We
will discard these assumptions later, but for the moment they
allow us certain insights into the problems of traffic control:
we are able to separate the intrinsic problems of inter-process
control communication from the technological problems of

processor and core memory multiplexing.

Inter~Process Control Communication.

The intrinsic problem of inter-process control communication
is to provide a means for two or more processes to work 1in
-parallel, cooperating on a single computation. This cooperation
requires that the processes be able to synchronize their
operation, that is, one process must be able to wait for a signal
from another. The signal, when it comes, means that the first
process may continue, for example because some input data it
needs has now been prepared. (Another problem of inter-process
control communication is that of turning off a process which has
gotten started on an erroneous or unneeded computation. We
postpone consideration of this problem until section three of
this chapter.)

We start by considering a single process. This process
follows a programmed path in its procedures, performing whatever
computations are indicated there. Let us formalize slightly the
structure of the program being executed by the process to see if

we can determine what are its needs for traffic contrcl. We may

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 39

picture the process as having a work queue which is a 1list of

"tasks® to do stored in a segment accessible to the process. We

envision the process looking in the work queue, discovering a
task there, and performing the computation indicated. When
finished with this task, it goes back to its work queue for the
next task. Let us assume that there is some mechanism by which
some other process can add tasks to the work queue. If the
second process should add a task to the work queue while the
first process is executing another task, it is apparent that the
first process will not discover the existence of thne new task
until it has completed its previous task. According to our
assumptions about the capabilities of the processor executing
this process, there is no way for the second process to force the
first one to stop what it is doing and look at its work queue. A
process can only follow its program.

Suppose the process should finish executing the last task in
its work queue. What should it then do? It could loop by
continually looking in the work queue, and finding nothing look
again. When another process adds a new task, the process will
discover it immediately and begin computation. A different
solution is for the process to block itself until some new work
arrives. The ability to block a process is a traffic control
function which we will conceive as a closed subroutine:

call block;
In the dedicated processor system this subroutine can be
implemented in hardware by a halt instruction. We will see

later, when we study processor multiplexing, that the call to

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 40

block will be taken to be an opportunity to give the processor to
another process.

An immediate complication arises if a process blocks itself.
When a new task is added to the work queue of a process which has
blocked itself, the process must sonmehow be unblocked
("wakened".) Unblocking means that the closed subroutine "block"
returns to its caller.

We thus conclude that for a single process, the only
"t+raffic control" feature which is needed is the ability for a
process to block itself, and for another process to be able to
waken the blocked process. We may define two execution states of
a process, running and blocked. A process is running if it is

executing instructions, it is blocked if it is waiting for a

signal to continue execution.

The Two-Process System.

The next level of complexity we wish to consider is the
two-process, two-processor system. Since each process has its
own processor, we do not yet need to become involved in issues of
processof~multip1exing. Assume for the moment two identical
one-process systems as described above are placed side by side.
If the two systems are independent, there are no particular
complications. The two-process system is of interest, however,
because we wish to provide some means of communication between
the two processes. We provide this communication by means of an

area of core storage which appears in the address space of both

processes--a common segment. If the common segment 'is read-only

(neither process can alter its contents) then there is still no

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 41

communication between the processes. They are however, sharing a
section of memory which may contain either data or procedure.

If either process can alter the contents of the common
segment we have a means of communication between the processes.
Let us name the two processes "A" and "B", and assume that "B's"
work queue is a common segment between "A" and "B". Suppose that
"B" is running, working on some previocus task in the work queue,
and "A" adds something to the work queue. Then, when "B" is
finished with its earlier task it will discover the task from "A"
in the queve, and perform it.

Suppose "B" finishes its last task and calls block. If "A"
now comes along and places new work in the queue, "B" will not
look at the queue, because he is blocked. "A" must do something
to cause "B" to wake up. In addition to data communication, an
inter-process control communication function is needed. We claim
this as a traffic contrcl function, and provide another closed
subroutine named wakeup.

Wwith the two-process systen,

call wakeup;
means unblock the other process. Again, it is simple to wire
such a function into the hardware of the system, and "call
wakeup® becomes the execution of a single instrnction by "A". To
generalize to a system with many processes anc an equal number of
processors, we need merely add the concept of a process (or)
identific;tion tag, and generalize the traffic controller entry

(or hardware instruction) to:

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 42

call wakeup(B) ;

if "B" is the identification tag of the process to be wakened.

An example of a two-process system.

We consider now a specific example of a two-process system.
In this example, process "A" is performing a lengthy computation,
and occasionally produces numbers to be typed on the typewriter.
Process "B" is operating the typewriter. The work queue of
process "B" is a buffer into which "A" puts the results he wishes
to have typed. To operate the typewriter, "B" executes a
"type-out®” instruction, which takes 100 milliseconds, and types
one character.

If "A" falls behind, "B" will type out everything in its
work queue, and block itself. Then, if "A" puts a new message in
"B's" queue, he must wake up B. For simplicity, he always wakes
up "B"; we make the convention that the wakeup call does nothing
if "B" is already running. Figure 3.l is a flow diagram of the
two-process system.,

What if process "B" falls behind? This means "A" is
producing results at an average rate faster than "B" can print
them. If the work queue is 1long enough, this does not hurt
anything. The situation is detected when "A" discovers that the
work queue is full. ("Full" is a relative concept, based perhaps
on a consideration of how far ahead of the typewriter we wish the
computation to get.) A solution is to put as the last entry of
the queue, not a piece of data, but a special flag, which means
“help, I am blocked;” after which "A" blocks itself. By

agreement between "B" and "A", when B discovers this flag at the

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 43

end of his queue, he will wake up "A". We may redraw the flow
diagrams of "A" and "B" as in figure 3.2 to take into account
this possibility.

We may now ask, "Why use two processes instead of one?® One
reply is that after the computation of a result and a decision to
print it, we can logically do

1. computation for typewriter code conversion, and

2. waiting for the "type-out” instructionms,
simultaneously with the computation of the next result. If we
were satisfied to do everything serially, we could do so by using
only one process. The serial approach would mean that the total
job time would be longer, and that the typewriter would often
pause while awaiting the next computation.

There are, of course, many other applications for a
two-process system. In our example, we have the ability for the
process computing results to get ahead of the slower typewriter.
Another example Qould be typewriter input in which a typist can
type requests to a computing process; by wusing two processes,
the typist can type ahead in those cases where he has requested
an exceptionally long computation. Such a facility is extremely
important for smooth man/machine interaction since the human
being is rarely matched perfectly with the computation rate of

his program.

Channel Logic.

It will be profitable to introduce one further complication
to our example, since we have begun a discussion of input/output.

If we require that "A" do typewriter code conversion on his

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 44

computed results and place in the work queue for "B" only numbers
"ready to go", it is then possible to replace process "B" with a
channel. A channel is really nothing more than a simple
processor with a wired-in program such as the one that process
"B®" was following. It is activated by placing work in a queue
and sending it a wakeup signal. The channel 1is capable of
returning a wakeup signal when it is done, or when it runs into
trouble, if appropriate entries are made in its queue. We will
learn in the next section that one of the Jjobs of the traffic
controller in the complete, multiplexed system is to translate
processor interrupts originating from hardware devices attached
to the system I/O channels into wakeups for the appropriate

processes.

A Critical Race Between Processes.

Before going on to a more complex system, we may examine an
especially awkward problem of multi-process traffic control which
shows up even in our two-process, dedicated processor model.
Looking again at the method of communication between "A" and "B",
we find that process "A" goes through two steps:

1. Put task into work queue of process "E".
2. Wake up process "B".
Process "B", when it needs work, also goes through two steps:
1. Look in work queue, find it empty.
2, Call block.

Since process "a® and process "B" are running

simultaneously, there is a distinct possibility that the order of

events in time is the following:

TRAFFIC CONTROL WITH DEDICATED PROCESSORS “4 0

1. "B" finds work queue empty.

2. "“A" places task in gqueue.

3, "A" wakes up "B".

4, "B" calls block.
By our convention that wakeup does not affect a running process,
process "A's" attempt to wake up "B" was ignored. Unfortunately,
"B" has blocked itself and missed the signal intended to wake it
up. This problem is similar in nature to the “critical race” of
switching networks. Its resolution requires some help from the
traffic controller; the primitive functions block and wakeup so
far specified are not sufficient to resolve the problem. Our
solution is to invent a ‘"wakeup waiting" switch which is
associated with process "B". Whenever process "A" calls wakeup,
whether "B" is running or blocked, "pis" wakeup waiting switch is
turned on. When "B" calls block, block returns immediately 1if
the wakeup waiting switch is on. In addition, "B" is given
access to its wakeup waiting switch to reset it.

With this addition to the machinery of the traffic
controller, process "A" goes through the following two steps:

1. Put task into work queue of process "B".

2., Wakeup piocess "B", turning wakeup waiting switch on.
while process "B" does the following:

1. Reset the wakeup waiting switch to off.

2. Look in queue, find it empty.

3. call block, which returns if wakeup waiting is on.
It does not matter now what the specific time relationships of

"A®" and "B" are, process "B" will never miss a wakeup signal.

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 40

The essential requirement of any solution to this race problem is

some way for process “B" to check a variable accessible to both

processes, then get blocked before the other process can possibly

change the value of the variable. This requirement dooms all

attempts of the processes to arrange interlocks themselves
without the aid of a special feature in the Traffic Controller.
(This last statement is not quite true; it is possible for
process "A" to delay by doing busy work for a fixed length of
time at an appropriate point so as to permit "B" to get blocked.
This type of solution lacks generality, since any change in the
characteristics of the system might require a new delay value to
be inserted for every such timing dependent interlock.)

One of the reasons for choosing the particular pair of
primitives block and wakeup is that all critical races which
might occur in inter-process control communication are
concentrated in a single race, which is resolved by a single

simple mechanism.

Summary of Traffic Control Needs So Far.

Up to this point, since we have only considered dedicated
processor systems, we have been able to restrict the traffic
control needs of these systems to that of inter-process control
communication. The problem of inter~process control
communication is, briefly, that there must be a way for one
process to signal another that there is work to do; there must
also be a way for a process to wait for such a signal. We have
proposed that the traffic controller provide three facilities for

inter-process control communication:

TRAFFIC CONTROL WITH DEDICATED PROCESSORS 47

1. Entry point block, to wait for a signal.
2. Entry point wakeup, to send a signal.
3. The wakeup waiting switch, to resolve signaling races.
In passing, we also introduced the concept of a process
jdentification tag; this latter feature is needed in systems of
more than two processes to identify the process being wakened in

a call to wakeup.

SECTION THREE: PROCESSOR MULTIPLEXING

In this section we discard the assumption that a separate
processor is dedicated to every process in the system. Instead,
we assume that a limited number of processors must be shared
(multiplexed) among the many processes. The job of the traffic
controller is to make the multiplexed system look like a
dedicated processor system by creating one pseudo-processor for
each process. To this end, it will need to wuse two system
facilities not directly available to a process: the ability to
switch a processor from the address space of one process to that
of another, and the ability to snatch a processor away from a
running process and give it back later (the system interrupt.)
Since there is competition for processors, the ideas of queuing,
priority, and pre-emption must be introduced. Finally, an
important task of the traffic contréller in a multiplexed system
is to provide an interface with input/output channel hardware to

translate I/O signals into wakeups for the appropriate processes.

PROCESSOR MULTIPLEXING 20

As we proceed, we will discover that the traffic controller
logically splits apart into two major pieces: the "systen
interrupt interceptor,” which provides the interface with the
processor interrupt hardware, and the "process exchange,” which
actually performs processor multiplexing.

In the previous section, we made the observation that in a
dedicated processor system inter-process communiication could be
implemented easily in hardware. When multiplexing is introduced,
however, the desired flexibility of implementation--the
scheduling algorithm, for example--precludes any realistic
h\\ opportunity of avoiding a traffic controller based partly on
hardware and partly on program. This is not to say that hardware
_ implementation of the traffic controller described here 1is
\\\zmpossible, but rather inadvisable.

In this section, we continue to make the assumption that
sufficient core memory is available for at least the current

procedure of every process. In the next chapter we will explore

the added complications when this assumption cannot be made.

System Interrupts.

A system interrupt is a hardware signal directed to a
specific processor which causes that processor to interrupt its
activities, store its state in an interrupt stack (similar to the
call stack described in chapter one), and begin fetching
instructions from a special subroutine corresponding to the
interrupt. Connected with system interrupts are several features
which are indispensable to operation of a multiplexed,

multi-process system. We describe these features briefly here.

PROCESSOR MULTIPLEXING 49

Associated with each processor are one or more interrupt
cells. When a condition arises which requires that a processor
be interrupted, one of these interrupt cells may be set on by
some active device--an I/0 channel or a processor. Each
interrupt cell has an established priority relative to every
octher interrupt cell. It is possible for a processor to set one

of its own interrupt cells on,

Whenever an interrupt cell is set on, an interrupt signal is

sent to the processor. The processcr may choose to ignore
temporarily, but remember, the interrupt signal by operating in

inhibited mode. Upon arrival of an interrupt signal, or if

inhibited, when the processor leaves the inhibited mode, the
interrupt signal causes the processor to reset the highest
priority interrupt cell which is on, store its state, and jump to
a special procedure corresponding to the interrupt cell which was
reset.

In addition to the general inkibiting mode mentioned above,
a processor may mask individual interrupt cells to prevent
generation of an interrupt signal when the masked interrupt cell
is set on. If an interrupt cell which is on is unmasked, it
immediately generates an interrupt signal.

We will often refer to a hardware device known as an

interv:l timer. This device has the following properties:

l. There is a separate interval timer for each processor.
2. The interval timer is a register which may be lcaded and

stored by the supervisor program.

PROCESSOR MULTIPLEXING U

3. The interval timer counts down on a regular basis, for
example at a fixed time rate, or whenever the processor
makes a memory access.

4. Whenever the interval timer counts to zero it sets a
system interrupt cell belonging to its processor; it
continues counting into the negative numbers.

5. It is possible to disable the timer interrupt mechanism
so that no interrupt will occur if the timer register

passes zexo,

\ Processor Switching.
If there are many processes and few processors, it follows
that there must be some mechanism by which processors are
~~—switched from one process to another. We ignore for the moment
the problem of deciding that a particular switch should be made,
and concentrate instead on the mechanics of switching. An
implication of switching a processor from one process to another
is that somehow the address space of the new process must be
acquired by the processor. This acquisition requires saving and
reloading a portion of the processor stateword by a special
hardware instruction.
Recall from chapter one that the address space accessible to

a processor is defined by the contents of a descriptor segment

base register in the processor, which contains the absolute

address of the base of a descriptor seament. The descriptor

segment, in turn, contains the absolute address of the base of

each segment accessible to the processor.

PROCESSOR MULTIPLEXING 51

A processor must be very careful when acquiring a new
address space to make sure that it does so in an orderly manner.
Consider, for example, what happens if a processor is executing
instructions from segment number 28, and is fetching an
instruction from location 1172 in that segment. If the
instruction orders the processor to reload its addreass space
pointer (descriptor segment base register), the processor will do
so, and then go on to fetch the instruction in location 1173,

segment 28, in the newly acquired address space. Unless we have

planned ahead, the instruction found there may not be the

\ appropriate one at all. There are at least three alternative

ways of planning ahead:

- 1. Build a special address-space-switching instruction into
the processor. This instruction would deposit the
complete processor stateword, including instruction
location counter, and reload a complete new stateword,
including an instruction location counter.

2. Simulate the address-space-switching instruction by pro-
gram. This can be done by disabling the two-dimensional
address space hardware (switching to ®absolute"
addressing mode) completely for long enough to reload the
descriptor segment base register and transfer to the
proper point in the new address space.

3. Arrange that the procedurc containing the address space
acquisition instruction be a common procedure appearing

in every address space in the system, and that it have

the same segment number in every address space.

PROCESSOR MULTIPLEXING 52

The third solution is completely adequate as long as we
assume that there is a one-~to-one correspondence between address
spaces and processes in the system, For simplicity, we adopt
both this assumption and the thirxrd alternative. In every
process, then, one segment number is reserved. It contains a
procedure we will name “Swap-DBR", short for “swap descriptor
segment base register." This procedure is called with one
argument, the identification tag of the process to switch to:

call Swap~DBR(J) ;

Swap~-DBR is a closed subroutine, called with a standard call
stack as described in chapter one, Figure 3.3 illustrates the
operation of this subroutine in the case where process "K" calls
to switch control of the processor to process "J". The blocks
representing steps of Swap-DBR are drawn twice for clarity, once
in process "J" and once in process "K". It is understood, of
course, that Swap-DBR is really a shared common procedure. The
dotted line indicates the path of the processor; at. the step
"LDBR" (Load Descriptor Segment Base Register) the processor
jumps to the address space of "J%.

Note in this figure that since Swap-DBR obtains its return
location from the top of the call stack in process "J", it
returns to the location at which "J" called Swap-DBR. This
location clearly does not have to be the same as the location
from which *K" called Swap-DBR. If any other process ever
subsequently calls Swap-DBR(K), contrcl will reappear in process
K immediately following the LDBR instruction in the address

space of "K". It is clear then, that Swap-DBR, now operating for

PROCESSOR MULTIPLEXING 53

process "K®, and using "K's® call stack, will return to the point
in process "K" from which Swap-DBR was originally called.

One further question needs to be answered before ending our
consideration of process switching: how does Swap~DBR know how
to acquire the address space of process "J"? There must be a
table relating process identification tags and descriptor segment
base register values. This table, a segment common to all
processes, is known as the process table., It contains an entry
for every process in the system. The process identification tag
is the index key to this table. As we explore the implications
of processor multiplexing we will find that this table 1is the
primary data base of the traffic controller, and that it contains
considerably more information about a process than just the
location of its descriptor segment. With one item stored here we
are already familiar: the wakeup waiting switch, which was

described in section 2 of this chapter.

Processor Dispatching.

If there are many processes and few processors, it follows
that not all unblocked processes can really be running. We must
expand our notion of execution states of a process to include a
third possibility: a "ready" process. Thus a process may be in
one of three execution states:

1. Running. s running process is executing on some
processor.
2. Ready. A ready process would be executing if only a

processor were available.

PROCESSOR MULTIPLEXING 54

3. Blocked. A blocked preocess has no use for a processor at
the moment; it is waiting for a wakeup signal.

From the notion of a ready process, we may invent immediately the
"ready list", a list of all ready processes. This 1list is the
basis for dispatching a processor when it is released by another
process. We can now begin to perceive the dim outlines of an
implementation of processor multiplexing within the framework of
"block®™ and "wakeup®. A call to the traffic controller to wake
up a blocked process means "put it on the ready list.” When a
process calls to block itself it means "I am temporarily
abandoning the processor. Switch it to some process on the ready
list,"”

If we place in the process table entry for each process a
three-way switch to indicate the execution state of the process
(the running/ ready/ blocked switch) we may then draw a flow
diagram of the closed subroutines Block and Wakeup as in figure
3.4. In the implementation of Block, once a decision has been
made (in the example, by process "K") as to what proces:z should
be run next (process "J"), "K" calls Swap-DBR to execute the
switch. Recall that control vanishes from process "K" somewhere
in the middle of Swap-DBR. Not until

1. some other process puts "K" back in the ready 1list (by

calling Wakeup(K)), and

2, some other process, calling Block, switches control to

'
will Block, in process "K", receive a return from Swap-=DBR. At

that time, Block returns control tc the program in process “K*"

PROCESSOR MULTIPLEXING 55

which originally called it. Thus every process in the system
moves back and forth among the running, ready, and blocked
states, as indicated in figure 3.5.

One further comment may be made about the organization of
the procedure named "Block.® The last three steps of the flow
diagram (in which we locate a ready process, change its execution
state to running, and switch to it by calling Swap-DBR) can be
collected together into a closed subroutine, named “Getwork”.
Although at this point such modularity simply places these three
steps under a mnemonic name, we will find in the next section
that the subroutine named Getwork is again needed to implement
scheduled processor pre~emption, We emphasize again that Block,
Getwork, and Swap-DBR are closed subroutines using the standard

call stack.

Processor Scheduling.

Within the framework of processor multiplexing so far
described, we can begin to look at the problem of processor
scheduling; that is, deciding which processes should be allowed
to run at any given time. We are not interested here in deciding
particular questions cof scheduling policy, but rather in
providing a framework with as much flexibility as possible in
which to establish scheduling policies.

There are clearly two opportunities to make scheduling
decisions in the administration of the ready 1list:s when a
process is placed in the ready list, and when the time comes ¢to
take one out. Arranging an appropriate scheduling mechanism must

be a -~ compromise between the interests of flexibility of

PROCESSOR MULTIPLEXING 56

scheduling policy and efficiency of administration. An

organization in which a processor spends 40% of its computing

capacity deciding what to do next is undesirable. We may thus
dismiss immediately any schemes which require any significant
computation which is proporticnal to the number of processes on
the ready list. This requirement tends to exclude computation at
the time of choosing a process to run., Instead we will consider
only techniques of scheduling in which the priority of a process
is established at the time it is placed in the ready list. We
will maintain the ready list "in order" so that the dispatcher
(Getwork) need merely choose the process at the head of the ready
list.

There are still at least three alternative forms of
scheduling, and our present objective is to determine what
framework is appropriate to allow all of these alternatives. The
simplest scheduling technique is first-—come, first-served; it is
implemented by placing new processes at the end of the ready
list, in order of arrival. If in figure 3.4 we change the step
"put J in ready list" to "put J at end of ready 1list® we have
established this technique. The next more elaborate scheduling
technique is "fixed priority."” Here, every process in the system
has a fixed priority number relative to every other process.
(The priority label can be stored in the process table.)
Procedure Wakeup places a process in the ready 1list in orxder
according to the value of its priority label. Neither of these
two alternatives makes any great demand on the organization of

the traffic controller.

PROCESSOR MULTIPLEXING 57

The third scheduling technique, however, does. We may name
this technique the "computed priority" technique. Here, whenever
a process is placed on the ready list, its priority is computed
according to some algorithm which may, for example, take into
account the amount of system resource that the process has

already used, or the length of time other processes have been

waiting in the ready list., In this case the process is placed in
the ready list in order according to the value of its computed
priority label. We may now make the observation that each
process shculd schedule itself, since each process knows factors
which influence its needs for a processor. Strictly speaking, it
is impossible for a process to schedule itself, since it cannot
be allowed to execute until it has been scheduled. We can,
however, again take advantage of our assumption of a one-to-one
correspondence between address spaces and processes. We do so by
making the convention that the priority computation algorithm for
process "A" is a closed subroutine named "Schedule" within the
address space of process "A®, Process "B" may then wake up "A"
by switching temporarily to the address spacé of "A", calling the
procedure named Schedule (which will put "A" in the ready list at
an appropriate point) and then switching back to the address
space of "B",

The intent to allow a process to provide its own scheduling
algorithm should not be construed to mean that the wuser of the
system is to dictate his own scheduling policy; such an
arrangement would surely be putting the rabbit in charge of the

lettuce. We intend instead to obtain two important features:

PROCESSOR MULTIPLEXRING 58

1.

By

The data base on which scheduling decisions for a process
are made can be private to the process; the alternative
would be system-wide accessibility to every scrap of
information which might possibly be needed to make the
scheduling decision. With a private scheduler it becomes
that much easier to modify the scheduling algorithm to
use an additional piece of data without relocating the
data tc a system—-wide table.

It becomes possible for two different processes to use
totally different scheduling algorithms. While Dboth
scheduling policies are certainly provided by the system,
an administrative authority to use a non-standard
scheduler is a very flexible and powerful tool to obtain
easily a special grade of service. A process tending a
real-time experiment, for example, might be allowed to
use a scheduler which always puts it at the head of the
ready list. Conversely, a process which is purchasing an
extremely low grade of computer service (presumably at a
less expensive rate) might be assigned a scheduler which
habitually places him at the end of the ready list. It
is also possible to try an experimental scheduling policy
on one or a few processes without forcing this policy on
all users of the system.

analoegy, we might consider the "traffic control®

techniques used in regulating automobile traffic on an

expressway. One could attempt to impose a "master contrcller”

which keeps track of the position of every automobile and orders

PROCESSOR MULTIPLEXING 59

lane changes in an optimum fashion. It is much more practical
instead to allow each driver to make such decisions on the basis
of some standard laws, the position of his automobile relative to
a few others nearby, and his own dezires as to speed and which
exit to take. In this analogy we see both the "limited overhead”
aspect of each decision, and also the ability for different
drivers to use different policies, as long as they fit into the
same general legal framework. By requiring that even
non-standard schedulers be provided by the system the chances of
extending the analogy to an irresponsible driver who ignores the
legal framework are minimized.

We may implement our rule that "each process schedules
itself® by complicating the Wakeup procedure slightly. In place
of the step (in figure 3.4) containing "Put J in ready list" we
substitute "call Ready-Him(J)". "Ready-Him" is a second entry
into the segment containing procedure Swap-DBR. (Remember that
this segment takes care of all address space switching, and is
therefore in a fixed location in every process.) Ready-Him goes
through four steps (assume that "J" is waking up "K?) s

1. Load descriptor segment base register to switch to the
address space of “K".

2. Call procedure Schedule in the address space of "K".

3. Load descriptor segment base register to return to the
address space of "J".

4., Return to caller (Wakeup) in "J".

Process "K" has been successfully scheduled; process “J" may now

go about its business.

PROCESSOR MULTIPLEXING 60

At the risk of disclosing the existence of modules not yet
discussed, figure 3.6 is a block diagram of the complete process
exchange., 1In this figure, the solid arrows represent closed
subroutine calls; dotted lines are data puths. The two modules

named "Restart® and "Quit® will be explained shortly.

Pre-emption Scheduling.

Our traffic control framework is now almost complete. The
one major piece of machinery left to install comes from the
answer to two closely related questions:

l. What if when a process begins to run, it merely runs and
runs, without ever calling Block? If this happens one
processor does not take part in the multiplexing,

2. What if a process is added to the ready 1list by a
scheduler which thinks that this process is far more
important than any process presently running? Must the
important process wait uwatil some other procesa decides
to call Block?

A first reaction to these question might be, *"so what?" The
real problem these questions raise, however, is significant: how
to guarantee adequate response time to requests for processor
time. The priority scheduling mechanism so far described is not
sufficient to provide guaranteed response in an environment where
running time of a job cannot be predicted. In addition to
priority scheduling, a mechanism must be available to xeturn a
running process to the ready state;. a processor must be
pre-empted. The mechanism wused is, of course, the system

interrupt.

PROCESSOR MULTIPLEXING 61

For traffic control purposes we will reserve three interrupt
cells from each processor and name them internal interrupts to
distinguish them from interrupt cells set by input/output
devices, the external interrupts. For reasons we will see below,
the internal interrupts are given lowest priority. Since the
traffic controller may decide to trigger an internal interrupt, a
processor always masks internal interrupts whenever it enters the
traffic controller. (The reason for this masking will becone
clear later.) The three interrupt cells are used for:

l. Processor interval timer runout.
2. Pre-emption by the scheduler.
3. Quit~--one process turns off another.

The problem of a long-running process is solved, then, by
having the processor interval timer trigger an interrupt cell if
a process runs "too long." What constitutes "too long®™ is left
up to the scheduler of that process. We extend the ready list to
contain pairs of entries: a process to run, and a running time
limit. When the dispatcher (Getwork) chooses a process from the
head of ﬁhe ready list, it loads the processor interval timer
with the specified time limit. When the interval timer runs out,
it sets the internal interrupt cell reserved for it, thereby
interrupting the processor.

If the timer runout interrupt should occur, the processor
will suddenly find itself in the system interrupt interceptor, a
traffic control module. This is an indication that the process
should return to the ready state. We therefore provide a

procedure named "Restart® which is to be called by the system

PROCESSOR MULTIPLEXING U &

interrupt interceptor whenever a timer runout interrupt occurs.
Restart merely
1. Calls the scheduler to put this process back on the ready
list.
2. Calls Cetwork to turn the processor over to the highest
priority process available.

The other problem, that of a scheduler convinced that the
process it has just placed at the top of the ready list 1is more
important than any presently running process, is solved with the
same mechanism: force the process to call Restart, by causing an
\ interrupt. A scheduler, then, when it schedules a very
high-priority process may wish to inspect even the list of
_running processes, and set the pre-emption interrupt cell of one
of the processors. Since we have been careful to arrange that:

1. All processors are equivalent ("anonymous") , and
2. the particular processor executing the scheduler is
masked for pre-emption as long as it is in the traffic
controller,
the scheduler need merely pick the lowest priority process from
the list of processes currently running. It is entirely possible
that the scheduler will choose the processor on which it 1s now
executing. If so, the instant that this processor exits from the
traffic controller it will be interrupted; the system interrupt
interceptor will call Restart, and the high-~priority process will
be on its way. If the scheduler chooses a different processor,

some other process will meet the same fate.

PROCESSOR MULTIPLEXING 63

It has not been our intent here to become involved in issues
of scheduling policy, but rather to provide a framework within
which many policies can be implemented. Among the scheduling
policies which may be easily incorpeorated within this framework
are a simple round robin or a multi-level priority queue based on
processor or total resource usage. Any priority~computation
algorithm which calculates a fixed queue number or priority label

can be used.

The Quit Module.

In a practical system it often turns out that a process gets
into a 1lcop, begins producing large quantities of unneeded
output, or uses up more resources than its owner has agreed to
pay for. In any of these cases, it is necessary to "turn off"
the process. The Quit module is provided for this purpose; it
can force a running or ready process into the blocked state. If
one process makes the observation (we do not ask how) that
another process should be turned off, it may

call Quit(K)
to shut off process "K". The procedure Quit follows is
straightforward:

1. If the process in question is already blocked, nothing
need be done. Quit returns to its caller.

2, If the process in question is running, the Quit module
resets the Wakeup Waiting switch for the process, and
generates a system interrupt, the "Quit interrupt," for
the appropriate processor. The meaning of the interrupt

is that the process should call Block; in the description

PROCESSOR MULTIPLEXING 64

of the system interrupt interceptor below, we see exactly
how this call comes about.

3. If the process being blocked 1is ready, it is merely
removed from the ready list and its Active Process Table
entry modified to show that it is blocked.

If a later change of heart occurs, the process which has
been quit can be restarted by calling Wakéup for it.

One of the responsibilities of the resource management
procedures of the operating system is to insure that a typewriter
user, for example, can always get a signal through to some
process requesting that a looping process be "quit".

Although the Quit module does not call other process
exchange modules, it should be considered part of the process
exchange because its activities must be coordinated and

interlocked with other process exchange modules.

Review
In section three we introduced a wide variety of ideas and
it may be useful to review them briefly here before proceeding.
The problems of processor multiplexing are technological.
That is, they stem from the fact that we wish to share resources
for economy. A solution to the problem of processor sharing must
be able to:
l. Dispatch processors to waiting ("ready") processes when a
process blocks itself.
2. Provide a technique of priority scheduling of processors
among processes whose running times are unknown a priori,

with pre-emption to help guarantee response time.

PROCESSOR MULT1IPLEXANG 6>

3. Perform the mechanics of switching from one process to
another in such a way that each process may have a
different operating system, including a private
scheduler, if desired,

4, Control the overhead cost of multiplexing so that it does
not grow combinatorially with the complexity of the
system.

In order to achieve hultiplexing of a few processors among
many processes, it is neééssary to use two special hardware
devices, the system interrupt and the ability to switch a
processor from one address space to another. Processor switching
is accomplished by a module named Swap-DBR, which must appear in
the same segment in all address spaces. When a process calls
Swap-DBR(K) , the processor disappears from this process, to
reappear in module Swap-DBR in the address space of process K.
The processor then returns to the last place in process K which
called Swap-DBR. The process table contains a 1list of process
tags and descriptor segment base register values for Swap-DBR.

A scheduler maintains a ready 1list, an ordered 1list of
processes ready to execute, each with a time limit. A process
leaves the running state by calling the module Getwork, which
locates the highest priority process in the ready list and calls
Swap~-DBR. There are two reasons why a process may leave the
running state: it may desire to block itself, or it may be
pre-empted by another process. 1In the first case the process
calls the Block module voluntarily. In the second, a system

interrupt forces it to call the Restart module.

PROCESSOR MULTIPLEXING 66

Scheduling of a process (placing it in the ready 1list) is
accomplished by a module named "schedule” in the address space of
the process. If a process wishes to wake another wup, it calls
the module named Wakeup which, by calling the subroutine
Ready-Him, switches to the address space of the awakening
process, calls schedule, and switches back to the address space
of the caller This technique allows each process to be scheduled
by a scheduler which makes a limited overhead decision which may
be based in part on factors known only to the process being
scheduled. One option available to a scheduler is to pre-empt a
running process by triggering a pre-emption interrupt in the
appropriate processor.

Finally, an entry named "Quit" is provided to allow one
process to turn off another which has gotten into a 1loop or is
otherwise performing a valueless service.

All of these modules are closed subroutines which are
called, and call on one another, using a standard calling stack.
These modules together form the process exchange. We next wish
to examine that part of the traffic controller which interfaces
with the system interrupt hardware, the system interrupt

interceptor.

SECTION FOUR: THE SYSTEM INTERRUPT INTERCEPTOR

The traffic controller becomes involved in interrupt

handling for two reasons:

1. The system interrupt is the tool by which pre~emption
decisions of the scheduler may be enforced.

2, In order to allow a process to communicate with an
input/output channel, the traffic controller must
intercept signals coming from the I/O channel and direct

* them to the correct process.

In the discussion of the process exchange, we saw that three
kinds of system interrupts were generated by the process exchange
itself:

l. Timer runout interrupt (ordered by scheduler).

2. Pre-~emption interrupt (ordered by scheduler).

3. Quit interrupt (signal from another process).

These three system interrupts are internal interrupts. In
addition to the three internal system interrupts, the hardware
input and output devices of the system generate a large variety
of interrupts to indicate completion, progress, or trouble.
These are external interrupts. An important distinction between
the interrupts generated by the process exchange and the
externally generated interrupts is that the former are directed
to the process running at the time while the latter are wusually
of interest to some other process, the one which initiated the
I/0 action, for example.

Since the external interrupts generally "belong" to some
other process of unknown and possibly higher priority, they are
given priority over the internal system interrupts. All system
interrupts are given priority over scheduled work. By

appropriate arrangement of procedure, the effect of this

arbitrary priority assignment on scheduling and response times
can be minimized. The procedure executed at the instant of the
external system interrupt is only enough to determine which
process has the real interest in this interrupt, and to reflect a

wakeup signal to that process.

Flow within the system interrupt interceptor.

The system interrupt interceptor is automatically entered by
all system interrupts. After passing through a short piece of
code which saves the processor state in an interrupt stack, the
interrupt interceptor masks further interrupts of equal or lower
priority. Up to this point, execution has been in inhibited
mode. Once the processor state is saved and the mask is set, the
unmasked interrupts may be permitted; the processor leaves
inhibited mode.

The system interrupt interceptor now calls an appropriate

procedure, known as an interxrupt handler. Upon return from the

interrupt handler, the processor state is restored (including the
previous state of the interrupt mask) and control returned to the
point at which the interrupt happened. Figure 3.7 is a flow
diagram of the system interrupt interceptor.

The interrupt handlers are brief and they must be carefully
coded with certain restrictions. They cannot contain programmed
faults, including page-not-in-core faults, or depend on further
interrupts (for example by calling Block.)

It is important to realize that the system interrupt
interceptor is executed as a part of the process which happens to

be running on the processor at the time of the system interrupt.

THE SYSTEM INTERRUPT INTERCEPTOR 69

A system interrupt interrupts the processor, not the process; the
| internal system interrupts do, however, imply that the traffic
controller should change the execution state of the process. The
distinction between a processor interrupt and the change of
execution state of a process cannot be over-emphasized. We may
note, however, that the processor time used to service an
external system interrupt can be metered, and charged to the
process responsible rather than the one which answered the
interrupt.

The handler invoked for an external interrupt 1is in
\ principle fairly simple: decode the meaning of the external
interrupt and call wakeup for the appropriate process or
__processes. T'-(_];t is entirely possible that a single system
interrupt may- represent an event of interest to several
processes.) Since the external interrupt decoding procedure is
executed as a part of the interrupted process, all procedures and

data necessary to decode the meaning of the interrupt must be

available to all processes.

Procedures for internal interrupts.

The internal interrupt handlers are more complex since
internal interrupts;imply that some special action by the Traffic
Controller itself is needed. The internal interrupts are given
the following priority:

l. Pre~-emption interrupt.
2. Time-out interrupt.

3. Quit interrupt.

THE SYSTEM INTERRUPT INTERCEPTOR 70

The pre-emption and time-out interrupts are handled identically.
The handler for the pre-emption interrupt calls the Restart entry
of the process exchange. The Restart entry changes the state of
the process to ready, reschedules the process, and calls Getwork
to give the processor to the highest priority process available.
Sometime later, the process which called Restart will come to the
top of the ready list, and obtain a processor. At that time,
Restart will return to the system interrupt interceptor. The
system interrupt interceptor then returns directly to the point
of the pre-emption interrupt.

The lowest priority system interrupt is the quit interrupt.
This interrupt means that the process now running should
immediately revert to the blocked state. The procedure for this
interrupt is straightforward:

1. Unmask the processor.

2. Call entry point Block in the process exchange.
The process which has just blocked itself is now at the mercy of
the originator of the quit interrupt. A wakeup signal from
another process will cause a return from Block to the quit
interrupt handler in the system interrupt interceptor. This
return is interpreted to mean that the process should be - allowed
to continue, so the system interrupt interceptor returns directly

to the point of the quit interrupt.

(1) Dennis and Van Horn [l1])] have used the words "locus of
control within an instruction sequence,” to describe a
process; the alternative term "thread®” (suggested by V.
Vyssotsky) is suggestive of the abstract concept embodied in
the term "process.,"

CHAPTER FOUR

Traffic Control with Limited Core Memory

The traffic controller design of chapter three is based on
one very important premise: that sufficient core memory 1is
available for the procedures and data bases required to do
processor multiplexing. The procedures of the traffic controller
constitute a trivial issue since they are shared among all or
nearly all processes. The data bases are another matter,
however, since they tend to be repeated once for every process,
or are proportional in size to the number of processes. For
every process with its own private address space there must be a
descriptor segment and data about the process. This data base
consists of the process stateword, the call stack, and the wakeup
waiting switch; a centrally located table of descriptor segment
pointers is also necessary.

In this chapter our objective is to find out what special
efforts are required to minimize the quantity of such data which
must be kept in core memory at all times. We will see that with
appropriate and carefully designed intercommunication between the
traffic controller and the basic file system, it is possible to
reduce the core requirements of most processes to zero when they
are blocked, thus opening the way to an almost wunlimited number

of processes "in the system." Similarly, we will find that the

21

TRAFFIC CONTROL WITH LIMITLED CORE MEMORY 72

core memory requirements of even a ready process consist of only
a few table entries.

The reasons for such an objective are two-fold. First, we
wish to be able to balance the capacity of the processors with as
small an amount of core memory as possible. Secondly, we would
like to be able to have an arbitrarily large number of processes
"in the system", but' not presently demanding processor time,
without increasing the core memory size needed to balance the
processor capacity.

Since ccre memory multiplexing is within the province of the
basic file system, it may be profitable to review briefly the
techniques used in core memory management. The reader is advised
to reread the section on core memory management in chapter two if
he is not thoroughly familiar with the basic file system, In
that section, recall, we noted that the basic file system
operates with one system-wide table, the active segmenc table,
and one table per process, the segment name table. The active
segment table contains pointers to the secondary storage location
of each segment for which a missing-page fault might occur (each
"active" segment); it is the primary source of data when)
missing-page fault occurs. Since as mentioned in chapter two the
organization of the basic file system precludes recursive
nissing-page faults, the active segment table is a segment which
is "wired-down". That is, it must not take part in core
multiplexing; it remains in core at all times.

The segment name table belonging to *a process contains a

list of all segments belonging to this process; it provides a

TRAFFIC CONTROL WITH LIMITED CORE MLEMORY 73

correspondence between the segment number used to address the
segment and the tree name of the file in secondary storage. The
segment name table does not need to be wired-down, but it must be
active, since a missing-segment fault encountered when looking in

the segment name table would be impossible to handle.

Core Memory Needed by a Running Process.

with this background, we can now outline the core memory
requirements of a running process. (For reference, table I is a
catalog of the data bases mentioned here.) First, the process
must be capable of handling a missing-page fault 1in order to
retrieve pieces not in core; this implies that the part of its
descriptor segment describing the page control and traffic
control modules of the file system is in core, as well as the
procedures of page and traffic control. Since page control
refers to tiie active segment table to find pointers to pages on
secondary storage, that table must be in core. Since page
control wishes to block the process while awaitinag the arrival of
the page from secondary, it must be possible for it to call Block
in the traffic controller without getting a missing-page fault.
Since Block calls Getwbrk, which looks at the ready 1list, the
ready list (and process table entries for processes appearing in
the ready list) must be in core memory.

Before giving the processor away to another process,
Swap-DBR must save the process stateword including the status of
the call stack which represents the trail by which the process
got to Swap-DBR. This information is needed so that when this

process regains a processor it can return to its work. This

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 74

information could be saved in the process table entrxry for this
process. We will find, however, that once the process leaves the
running state, its stateword does not need to stay in core
memory. We therefore make up a special segment private to the
process, the process data segment. Whenever a process 1is
running, its process data segment must be in core memory so that
the process can deposit its stateword and leave running status if
necessary. When executing in the hardware management procedures,
the process data segment is used as the calling stack.

It is also necessary that a running process be able to
handle a missing-segment fault. Since segment control must look
at the process' segment name table to interpret the meaning of
the missing-segment fault, it must be able to access the segment
name table without getting another missing-segment fault. It
follows that the segment name table of a process must be "active"
whenever the process is running. By definition, "active®" means
that there is an entry in the active segment table and a page
table in wired down ccre.

Summarizing, then, a running process must have the following
information in core:

l. Certain pages of its descriptor segment, containing
descriptors of traffic control and page control.

2. A page table for the segment name table.

3. A process data segment, to receive the process stateword.

4. Entries in the active segment table for the segment name

table and the process data segment.

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 75

5. Process table entry for itself.
In addition, we found that the ready 1list and process table
entries for processes on the ready list must also be in core, so
that the running process can leave the running state if it has
to, following a missing-page fault.

When a process has all five items mentioned above in core
memory, we say it is loaded; we may summarize the core
requirements of a running process by saying that & running
process must be loaded.

Figure 4.1 is a schematic illustration of a loaded process.
This fiqgure is simplified for intelligibility; for example, the
traffic controller and basic file system would probably consist
of several segments instead of one each as shown. Page tables
are not shown; it 1is assumed that all segments are paged,
however. Abbreviations are explained on the diagram. The arrows
leading out of tables represent table entries containing pointers
to the objects indicated. The descriptor segment is divided into
universal descriptors shared by all processes, and private

descriptors belonging to one or a few processors.

Core Memory Needed by a Ready Process.

The core memory requirements of a ready process are
\determined by our ability to change its status to running and
switch to it, when it comes to the top of the ready list. If the
process happens to be loaded, there is certainly no problem in
switching to it. We can, however, switch to a process which is
nissing part of the list of loaded items, if we can arrange to

recreate them at the instant of the switch or to have the process

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 76

retrieve them itself.

Let us examine each of the pieces of information making up a
loaded process to see which, if any, a ready process can get
along without. Consider first the descriptor segment. The
segment descriptor words appearing in the descriptor segment of
any process may be divided into three classes, namely

l. Descriptors pointing to traffic control and basic file
system segments which are shared by all processes in the
system.

2. Descriptors pointing to segments known to this particular
process by virtue of their appearance in the process'
segment name table.

3. Descriptors containing missing-segment bits. Unused
segment numbers and segments which have not been used for
a long time will have a missing-segment bit.

We may observe first that any descriptor of the second category
can by replaced by one containing a missing-segment bit; if the
missing=-segment bit later causes a fault, segment control can
rebuild the descriptor by reference to the segment name table.
We may observe next that all descriptor segments will have an
identical set of descriptors of the first category. From this
line of reasoning, it follows that we may discard the descriptor
segment of any process which is not running, and recreate its
descriptor segment whenever it becomes necessary to change it to
running state. The descriptor segment may by recreated (in
Swap-DBR) by creating an empty, wired-down ségment from a pool of

free core, and copyinc into it the contents of a descriptor

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 77

segment "template". This template, built wup at the time the
system is initialized, is a data segment accessible to all
processes in the system. It contains all the descriptors of the
first category, above, plus missing-segment faults for all other
descriptors.

We have complicated slightly the subroutine Swap-DBR, which
must now check to see if the process it is switching to is loaded
and, if not, establish a new descriptor segment for the process.
We place in the process table a flag which, if on means that the
process is not loaded. Figure 4.2 is a flow diagram of Swap-DBR
including the added complication of checking the loaded flag.

Consider next the segrent name table of a ready process. We
must preserve the ability for the process to take missing-segment
faults when we switch to it, so it can fill in the rest of its
descriptor segment by itself. When a missing-segment fault
occurs, segment control looks into the segment name table tec look
up the file name corresponding to the segment number which caused
the fault. For this reference to the segment name table to
sucéeed, there must be a page table in core for the segment name
table. (Page control can retrieve the individual pages of the
segment name table on missing-page faults as 1long as the
secondary storage location of the segment name table appears in
the wired-down active segment table.) However, we can again
arrange to discard this page table when the process is not
actually running by the following strategy: After switching to
the process, but before any missing-segment faults can occur,

Swap~DBR can call segment control directly (at a special entry

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 78

point) and ask it to make up a page table for the segment name
table., This is possible only if the location of the segment name
table on secondary storage is still in core in the active segment
table so that segment control does not have to search for it in
the directory hierarchy (using missing-segment faults).

Again, we have complicated Swap-DBR in order to cut down on
the minimum core requirements of a ready process. After
switching to the process, Swap-DBR must check to see if it is
loaded and, if not, ask segment control to create a page table
for ("activate") its segment name table. Figure 4.3 1is a flow
diagram of Swap-DBR showing this latest addition. As an
indication of things to come, we have drawn the block containing
"call segment control to activate the segment name table" outside
Swap-DBR in a special module named the process bootstrap module.

Consider finally the process data segment. This segment is
needed for two reasons: as a call stack when executing in the
traffic controller, and to provide a place for Swap-DBR to leave
the stateword when the process leaves running state. Again,
there is a strategy by which we can remove this data base from
core when the process is not running. The strategy works as
follows: suppose we try to switch control to a process which
does not have its process data segment in core. We do so
planning that the process BOOtstrap module should retrieve the
information itself by means of missing-segment and missing-page
faults after activating the segment name table. This would work
except for one details when the bootstrap module gets a

missing-page fault, page control will want to block the process

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 79

until the page arrives from secondary storage. Blocking the
process requires depositing its stateword in the process data
segment, which is the very thing being retrieved. We can resolve
this problem by having Swap-DBR create an empty "interim" process
data segment before switching to an unloaded prccess. The
interim process data segment is used by the process bootstrap
module as a call stack, and by Swap-DBR to store the process
state whenever the process leaves running status while trying to
retrieve its real process data segment. Figure 4.3 is a complete
diagram cf Swap-DBR.

In review, then, a ready process must have the following
personal information in core so that it can bootstrap itself back
toc the loaded state:

l. An entry in the active segment table for its segment name
table.
2. An entry in the process table for the process.

When a process has these two table entries in core, we say
it is an active process. We can summarize the core requirements
of a ready process by saying that a ready process must be active,

but it does not have to be loaded.

When Blocked Processes Must Eg Active.

A line of reasoning essentially the same as that above leads
us to the conclusion that a blocked process must also be active
in order to accept a wakeup signal. The information in core for
an active process is the minimum quantity of information which
must remain in core such that the process can survive by itself

and bootstrap itself in. If the information in the process table

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 80

and active segment table is removed from core, it is inevitable
that some other process will have to provide substantial aid in
getting this process back in operation. Reconstructing either of
these table entries requires retrieval of information from the
secondary storage hierarchy, by means of missing-segment and
missing-page faults. As shown in the previous section, when
switching to a ready process it is not in general possible for
the preceding user of a processor to provide this help, so we
require that all ready processes be active.

The situation for a blocked process is quite different. In
most cases, there is no reason why a process calling the wakeup
entry cannot first check to see if the process being awakened is
active and, if not, retrieve the information necessary to
activate it. The cases in which the calling process cannot
provide this aid, in fact, are cnly two:

l. The calling process 1is operating in the basic file
system, has discovered a previously requested page is now
in core, and is attempting to wake up the blocked process
to inform him of this fact.

2. The calling process is operating in the system interrupt
interceptor, and is attempting to wake up the other
process because a system interrupt has arrived.

Both of these cases represent situations in which the basic
file system cannot tolerate a missing-page fault, the first
because a missing-page fault has already occurred for the process
doing the call, and the second because the interrupt may have

occurred while handling a missing-page fault. (Recall our

TRAFFIC CONTROL WITH LIMITED CORE MEMORY ' 81

restriction of no recursion on missing-page faults.)

We therefore make a note in the process table if a process
is expecting a wakeup from either of these two sources, and agree
to leave such processes active. We may, however, safely

deactivate any blocked process which is not waiting for such a

wakeup. When a process is deactivated, there is no 1longer any
information whatsoever in wired-down core memory pertaining to
the process; the number of deactivated processes in the system is
limited only by the amount of secondary storage the system is
willing to devote to the tables needed to remember them.

As a summary of the various state transitions which a
- process can undergo, we repeat the state diagram of figure 3.5

 taking cognizance of unloading and deactivation in figure 4.5.

Core Memory Management with Processor Multiplexing.

Processor multiplexing adds a new dimension to the problem
of multiplexing core memory usage. In addition to the ability to
write out little-used pages it is now possible both to unload and
deactivate processes to free up core sSpace. We will also
discover that it is possible to postpone the loading of a process
if there is insufficient free core available.

The first step in managing the core requirements of the
traffic controller is to divide the process table into two
tables: the active process table and the known process table.
The acgive process table is wired-down to core and contains an
entry fOr every active process. All other processes appear in
the known process table, which may be paged out on to secondary

storage. To activate an inactive process prior to waking it up,

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 82

one must first locate the information describing the process in
the known process takle and copy it into a vacant slot in the
active process table. This oparation, of course, will generally
result in one missing-segment fault for the known process table
and any number of missing-page faults. The next step 1in
activating the inactive process is to call the basic file system
and ask it to find the segment name table of the process being
activated. Locating in secondary storage the segment name table
will again, in general, require missing-segment and missing-page
faults.

Management of a wired-down table requires some guarantee
that the table will not grow without bound. In the case of the
active process table, we may control its size by assigning an
upper limit to the number of allowed active processes. Once this
number is reached, if someone wishes to activate a process he
must first look through the active process table for a blocked
process to deactivate. The activation and deactivation 1is, of
course, part of the responsibility of the traffic controller and
is actually carried out by the Wakeup module when it discovers
that it has been asked to wake up an inactive process. The
decision as to which blocked process to deactivate 1is in the
province of a policy module called by Wakeup. The active segment
table i~ managed in a similar fashion.

Unloading of a process is carried out by the core control
module of the basic file system when it needs space in a fashion
similar to unloading a single page. The decision to unload a

process rather than a page, and which process to unload, is again

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 83

handled by a policy module called by core control.

Reloading an unloaded process, recall, is done by Swap-DBR
when the process comes to the top of the ready list. This action
poses a most interesting problem. Suppose that at the top of the
ready list are a large number of unloaded processes. If left to
its own devices, the traffic controller will begin loading the
first one, only to have it immediately block itself waiting for
its process data segment to come in. The traffic controller will
then assign the again free processor to the next process, and
begin it loading also, and the next, and the next. In the
fashion of a sorcerer's apprentice, traffic control will rapidly
fill up all of available core memory with processes trying tc
load themselves.

We can forestall such a circumstance by realizing that the
decision to reload a process 1is really a commitment of a
considerable amount of core memory resource, both for the special
segments needed to load it, and also for private segments which
the process will begin to use as soon as it |is loaded. We
therefore give to core control, the submodule of page control
which is in charge of core resource commitments, the privilege of
responding "no" when Swap~DBR requests core memory space to build
a descriptor segment in preparation for loading a process. Core
control can make a decision to give a "no" response on the basis
of the amount of available core and the number of processes
already loaded.

What should Swap=DBR do if it receives a "no" response from

core control? The meaning of this response is that core is too

TKRAFFIC CONTROL WITH LIMITED CORE MEMORY 84

full to reasonably commit resources to load another process.
Swap-DBR therefore gives an error return to its caller, CGCetwork.
Getwork, upon receiving this error return, can then run down the
recady list looking for a loaded process to run instead. If no
loaded process is found, we have a situation similar to that when
the ready list is empty: there 1is no wuseful work for the
processor to do at the moment. As we will see in chapter five
this condition may indicate that the resources of the system arc
not well matched to the load.

The simplest way to handle this condition is to place the
processor in some sort of a busy loop, for example searching the
ready list over and over for a loaded pro-ess. Eventually some
other processor, or this one upon taking a system interrupt, will
add a loaded process to the ready list. This 1last strategy
depends upon the fact, not previously mentioned, that the basic
file system uses a daemon process to manage the secondary storage
devices (the "drum daemon") and it is careful never to unload
this daemon process. If core is overcrowded to the point that
core control refuses the loading of any new processes, it will
have already begun output to free up some core memory.
Therefore, whenever a processor goes into a busy loop because it
cannot load a ready process, it is guaranteed that there will
soon be an output completion interrupt from the secondary storage

device asking to wake up the drum daemon.

Summarx

Again, we have introduced a host of ideas and would do well

to pause and summarize them. The fundamental problem addressed

TRAFFIC CONTROL WITH LIMITED CORE MEMORY 85

in this chapter has been to discover techniques by which
processor traffic control can be accomplished without usurping
all of core memory for the traffic controller and its data bases.
The procedures of the traffic controller are fixed in size and
shared among all*processes; the real concern 1is with the data
bases. We identify two kinds of data Dbases which cause
difficulty: those private tables which are repeated once for
every process in the system, and shared tables which contain
entries for every process.

For a process to be running, it nmust be loaded. A loaded
process has a descriptor segment in core, and other private
tables necessary to allow it to take missing-segment faults. It
also appears in wired-down tables so that it may properly handle
missing-page faults.

A ready process does not need to be 1loaded, but merely
active, meaning that it still has in core the wired-down table
entries permitting it to take page faults. In this way, the
process can be switched to running status in short order when it
comes to the top of the ready list; it can then retrieve on its
own the other tables it needs to operate outside the traffic
controller. 1In order to switch control to an unloaded process,
Swap~DBR must first create empty descriptor and process data
segments from a pool of free core memory and copy a descriptor
segment template ipto the descriptor segment. The template
contains descriptoks for the traffic controller, basic file
system, and the process bootstrap module, which bootstraps the

rest of the process back into core memory.

TRAFFIC CONTROL WITH LIMITED CORE MEMCRY 86

Blocked processes do not even need to be active unless they
are to be reawakened by arrival of a system interrupt or by the
basic file system. An inactive process requires no information
whatsoever to be stored in wired-down core tables, but it
requires some effort and missing-page faults by another process
to reactivate it.

As demand for core fluctuates, policy algorithms determine
which pages to write out, and processes to unload or reactivate.
One important policy algorithm refuses to allow too many
processes to be logded at once; when the traffic controller is
told by the basic file system that it cannot run an unloaded
process, it instead searches for a loaded one to run. It 1is
possible that a processor may not be able to find any useful work
to do even though the ready list is not empty, since beginning to
work on an unloaded process would merely tend to overload the

core memory resources.

With this examination of the interaction between core memory
and processor multiplexing, our detailed design of the traffic
controller is complete. As a final step, we next wish to
consider some properties of this particular traffic control
design: how it reacts to a mismatched load, and how it scales in

size.,

CHAPTER FIVE

System Balance and Scaling

In the previocus chapters we have been concerned exclusively
with the organization of a computer wutility, stressing the
detailed requirements of processor multiplexing. In this chapter
we stand back from the resulting design and look at it from two
related aspects: system balance and system scaling. We use a
limited definition of system balance, namely the relation between
processor capacity and memory size for a given presented load.
System scaling is the ability of the design to scale in capacity
up or down over a wide range of presented loads.

In doing so, we purposely raise many more questions than we
attempt to answer. One intent, in addition to indicating
implications of the design, is to indicate interesting areas of

exploration for the future.

System Balance.,

One of the first problems confronting the administrator of a
computer system is to find out how well his system is working.
In this section we propose some simple tests which help answer
whether or not processor and core memory are being used
effectively. Our comments only scratch the surface of a

difficult problem, and completely ignore many impecrtant aspects

SYSTEM BALANCE AND SCALING 88

of system balance such as whether or not the input/output channel
capacity of the system is appropriate. A very simple model of
the system consisting only of processors, core memory, and a
;iarge enough” secondary storage and I/O capacity 1is the basis
for the following comments. It 1is assumed that the load
presented to the system is somehow homogenous and non-~varying.
The particular balance problem we are concerned with here is
to determine whether or not a system's core memory and processors
are balanced relative to each other, and to the presented load.
In addition to measurements of the characteristics of the
presented load and of the operation of the system, we can perform
certain simple but very revealing experiments. For example,
since the core memory 1is paged and allocation 1is extremely
flexible, it is possible to vary its effective size almost
continuously by removing a page at a time from the pool of
allocatable pages. One problem is that to a certain extent, it
is possible for a shortage, say of core memory, to be taken up by
a surplus of processor capacity. One other problem which is
characteristic of the paged memory strategy used by the basic
file system is that no matter how much memory is available, it
will all be used. Finally, one must realize that the solution to
a recognized imbalance may lie in any of several directions. For
example, a shortage of core memory might be corrected by 1)
purchasing more core memory, 2) readjusting a core memory
multiplexing algorithm, 3) discouraging large programs by
appropriate charges, or 4) improving a popular translator

program to produce shorter object code. Any or all of these

SYSTEM BALANCE AND SCALING 89

techniques, plus others, may be appropriate for a given
situation.

The problem of deciding whether or not balance has been
achieved is complicated by the possibility that a mis-tuned
policy algorithm is causing "thrashing”, that 1is excessive
overhead caused by unnecessary processor switching or page
swapping. Such thrashing can turn a resource surplus into a
resource shortage. Before meaningful measurements can be made of
system balance, it is necessary to convince oneself that the
balance measurements will not be distorted by thrashing.

Thrashing can be detected by an appropriate set of
measurements also. Consider first the case of core memory. If
the core multiplexing algorithm permits too many processes to be
loaded for the size of core memory available, those processes
will fight very hard for the remaining core space for their
private pages; as a result the average age of a page being
written out for "lack of usage" may become gquite short. If pages
are written out only to be read in again an instant later,
thrashing exists. We may postulate the following rough rule of
thumb to indicate whether nor not core thrashing is occuring: If
the average age of pages being written out is 1less than the
average time vhat a process remains 1loaded, the chances of
writing out a page which is still in use are very high, and we
have prima facie evidence of thrashing caused by the core
management algorithm. One appropriate correction to make for
this situation might be to reduce the averéée number of loaded

processes, as was described in chapter four.

SYSTEM BALANCE AND SCALING 90

A similar thrashing problem exists for processors. If, in
an effort to improve response time to short requests, the
processor scheduling algorithm places too short a time 1limit on
most processes, the predominant cause of processor switching will
be timer runout rather than release of a processor by a process
blocking itself. Fach timer runout introduces one extra
scheduling operation and an extra dispatching operation later,
when the process is picked up again. In addition to increasing
overhead, if timer runouts are the predominant cause of processor
switching, it is possible that average response time is actually
degraded. For an intuitive notion why this is true, consider 10
processes each of which need 5 seconds of processor time. If
each is run to completion, followed by the next, the first
process will be served after five seconds, the second after 10,
etc., the last after 50. On the other hand, suppose that each
process is served for only 1 second, then the processor is
switched to the next, etc., in a round robin. In this case, the
first process to enter the system will not get out until 46
seconds have passed, the last still leaving at 50. If processor
switching adds overhead, the delay times would be even more.

We conclude that it can be unprofitable to have pre-emption
occur very often. Again, we may postulate a rough rule of thumb
to detect processor thrashing: If more than half (or some other
appropriate threshold) of processor switching operations are
generated by running out of scheduled time, we may claim prima
facie evidence of"processor thrashing. Again, one possible

correction to reduce thrashing is clear: adjust the processor

SYSTEM BALANCE AND SCALING 91

scheduler to increase the average time limits it sets.

On the other hand, timer runouts are the primary technique
available to the processor scheduling algorithms to improve
response time on short requests. To guarantee adequately short
response time for short requests for processor time it may well
be necessary for the scheduler to push the system in the
direction of processor thrashing by shortering its time limits.
The tradeoffs required to produce a given quality of service
while avoiding excessive overhead and wundue delays for some jobs
are an interesting area for exploration.

Once one is convinced that neither the core multiplexing nor
the processor multiplexing algorithms are thrashing
unnecessarily, it becomes possible to ask questions about system
balance. To a certain extent, the importance of having processor
and memory capacity balanced depends on how closely the presented
load exhausts total system capacity. In a very underloaded
system, severe imbalance may have little effect. In a system
operating at the threshold of overload, a slight mis-allocation
of resources can be very damaging. In order to talk sensibly
about the state of balance of core and processor capacity, let us
assume that the 1load on the system has been adjusted (by
regulating the number of logged-in interactive users, for
example) to the point that response time is just adequate. We
can then look at the state of balance of the system. The primary
tool to use here is the measurement of processor idle time.
Recall from chapter four that a processor may be idle for one of

two reasons:

SYSTEM BALANCE AND SCALING 92

1. There is actually no work to do.

2. The ready list contains work, but the core multiplexing
algorithm refuses to allow any more processes to be
loaded.

When a processor 1is 1idle for the first reason, we have a
potential case of processor overcapacity. On the other hand, a
certain amount of processor overcapacity may be essential to
provides responsive service under peak load conditions. Again,
the desire for service quality must be carefully weighed against
the desire to maintain only enough processor capacity.

If the percentage of total time spent by processes in idling
for the second reason is very great, we have evidence that the
allowable load is being limited by the amount of core memory
available. Reducing processor capacity will have very little
effect on total system capacity or service quality under these
conditions. On the other hand increasing only memory size will
increase total system capacity or service quality.

The related problem of detecting core memory overcapacity is
a little bit trickier since, as mentioned before, a paged core
memory multiplexing strategy tends to use up all available
memory, no matter how much there is. On the other hand, this
very flexibility of allocation of memory caan be turned into an
experimental tool. One need merely "turn down" the size of core
memory a little at a time by removing small blocks of memory from
consideration by the core multiplexing algorithm. As the
appropriate memory size is reached, processor idle time will

begin to mount and the desired information of where memory

SYSTEM BALANCE AND SCALING 93

"undercapacity® begins has been obtained.

We thus have several simple handles and tools available for
detecting whether or not the resources of the system are well
matched to the job they are ¢trying to do. First, simple
measurements indicate whether or not the scheduling algorithms
are thrashing; after they are appropriately adjusted, and the
load is adjusted to give reasonable response time, one can
determine the state of balance of the system by measurements and
an appropriate experiment. It is essential, of course, that the
necessary performance monitoring "meters" be included in the
traffic control and core control procedures. It 1is most
important to realize that tuning a system requires consideration
not only of hardware efficiency, but also of service quality as
measured by the distribution of response times for various size
computation requests. One must also be prepared for the
possibility that the presented load will change, either in total
resources used or in aetailed character. In either case, the

picture of system balance would be expected to change also.

System Scaling.

Our final area of inquiry is the range of system capacity
and organization is permitted by the traffic control scheme. Two
specific features in the traffic controller are directly
concerned with the problem of scaling. First, the decisions of
the scheduler are limited in overhead; that is, the amount of
computation required to schedule a process doegs not depend on the
number of other processes or processors in the system. Secondly,

the interface with the basic file system has been organized in

SYSTEM BALANCE AND SCALING 94

such a way that a process not presently making demands on the
system can be effectively ignored. An idle prccess requires no
space in core memory, even in tables, and does not increase the
overhead of processor multiplexing.

What then, are the 1limitations on scaling which remain
inherent in the design of the traffic controller? There are at
least two distinct kinds of limitations which arise.

First, an important "constant" of the traffic controller is
the total amount of computation required to schedule a process by
a call to wakeup, plus the amount of computation involved in
dispatching a processor by a call to Block. We will use the term

process switch time to denote this sum, while recognizing that it

may be more appropriate to measure computation by counting
processor instructions rather than measuring the time required to
execute the instructions. The average amount of computation a

process does before it calls block, (average running time) which

is a characteristic of the presented 1load, coubines with the
process switch time to determine the overhead of processor
multiplexing. (We are ignoring as a trivial complication the
fact that extra process switching caused by pre-emption increases
overhead also.)

If we claim that an idle processor is not contributing to
the total computation performed by the system, it is clear that
the fraction of total computation spent in multiplexing overhead
does not depend on the size of the system in any way, or even on
the speed or number of processors. It depends only on the

relative values of these two "constants", one a characteristic of

SYSTEM BALANCE AND SCALING 95

the traffic controller, the other a characteristic of the load.

From this fact we glean one clue about the way the system
scales: it may not be profitable to split a single computation
among several parallel processes if each of the parallel
processes will have a run time short relative +to the process
switch time. We have here a limitation on the nature of the
presented load, rather than the total computation required by the
load; acquiring extra processor capacity, for example, will not
reduce the fraction of overhead, although it will provide the
ability to absorb the overhead.

The second kind of limitation inherent in the design of the
traffic controller is found in the accessibility to the ready
list. When the scheduler places a process in the ready list, and
when the dispatcher (Getwork) removes a process from the ready
list, there is a brief period during which the contents of the
ready list must not be changed by another processor. During this
period, the processor which is using the ready 1list locks the
list by setting a lock cell non-zero. Each processor checks the
lock cell before accessing the ready list, and if it finds the
lock on, it must loop, waiting for the cell to go off, which
signifies that the first processor has finished with the ready
list. (Programming a multiprccessor interlock is a non-trivial
task, and is usually done with the aid of special processor or
memory hardware.) Since the ready list is only available on a
one-at-a-time, first-come, first-served basis, it represents a
potential bottleneck if there is more than one processor. The

seriousness of the bottleneck depends on the amount of

SYSTEM BALANCE AND SCALING 96

computation performed while the ready 1list is 1locked and the
frequency of scheduling and dispatching operations. If, for
example, it is observed that for a certain presented load
processors do 1% of their computation with the ready list locked,
it is clear that in a 100-processor system the ready list 1is
virtually always locked by some processor and it represents a
major bottleneck. On the other hand, in a two processor system
only one scheduling operation out of 100 would result in a wait
for the ready list to become free.

Competition among processors for the use of the ready 1list
presents a problem similar to the problem of competition for the
use of memory ports. One avenue of solution to this problem
might be to break up the ready list into a number of sublists,
each of which is locked separately, and arrange some strategy to
insure that low priority processes from one list are not served
before high-priority processes from another.

There are at least two important directions in which the
system may scale almost indefinitely without any hindrance from
the traffic controller whatsoever. First, the number of idle
processes in the system may grow to a quantity bounded only by
the amount of secondary storage required to remember them. By
design, idle processes cost the system nothing in the way of core
memory space or processor time. Scaling in this direction allows
construction, for example, of an airline reservation system with
5000 agent sets in which each agent set is serviced by one

process, and at most several hundred are active at once.

SYSTEM BALANCE AND SCALING 97

Secondly, if one adds the needed processor and memoxry
capacity, there may be any number of so—-called "scientific" jobs
in the system--processes with extraordinarily long average
running times. Such processes do not bring into play either of
the fundamental limitations of the traffic controller since they
generate virtually no scheduling operations themselves.,

The important conclusion to be drawn from our discussion of
scaling is that the basic scheme for traffic control can be useqd
as the basis of a wide variety of types and sizes of computer
Systems; real-time, production, payroll, interactive work, etc.
As technology of computer hardware evolves, the traffic
controller represents a starting point for future designs; its
fundamental limitations in scaling will need to be re-evaluated
in the liéht of such hardware evolution.

A few final comments are in order concerning the
"distributed supervisor" concept on which the traffic controller
has been based. Recall that the hardware management procedures
are segments appearing in the address space of each
pseudo-processor. Although these procedures can be shared among
all processes, there is no reason why every process must use the
"standard version" of any procedure except Swap-DBR, which
carries out mechanics of process switching, As long as the
procedures respect the conventions of the system-wide data bases
(process table, ready list, etc.) they can be distinct and can
carry out distinct policies.

This organization is of interest to our discussion of

scaling for two reasons. First, it provides the means of

SYSTEM BALANCE AND SCALING 98

limiting the c&st and complexity of decisions made by even a
"standard version" of some supervisor policy-making module, by
limiting the amount of information about a process which must
appear in a system-wide data base. The processor scheduler, for
example, by always executing in the address space of the process
being scheduled, has access to the process data segment and any
other private information about the process needed to make a
scheduling decision. This information does not need to be placed
in a table accessible to all processes.

Secondly, the distributed supervisor organization permits
different processes to have different copies of the hardware
management modules, and therefore to see radically different
operating systéms. This flexibility permits a system to be used,
for example, for real-time or prccess control applications while
simultaneously serving more routine customers. Again, since the
scheduler for a process is the one provided by the process, the
relative priorities of different operating systems can be
distinct and independent. This same organization permits simple
checkout of a "new" supervisor by one or a few system programmers
without affecting continuous operation of the "0ld" supervisor to
regular customers.

The distributed supervisor, then, contributes to the range
and variety of customers and applications to which a single

computer installation may be applicable.

CHAPTER SIX

Summary of Ideas

In the words and flow charts of chapters three and four we
have described a relatively brief collection of algorithms,
collectively known as the traffic controller, which are intended
to provide workable solutions to each of the following problems
of processor traffic control raised by a computer utility:

l. Processor multiplexing. This includes both sharing of
processors among many users to provide interactive
response (sometimes called time-sharing) and switching
among procedures in response to interrupts so as to keep
both processors and I/O equipment as fully utilized as
possible (sometimes called multi-programming.)

2. Multiple processor organization. The problem here is to
organize the system so as not only to increase its
capacity by adding processors, but also to insure that
operation can continue without program changes in the
event that a processor breaks down.

3. Size and overhead. The overhead cost of processor
multiplexing should not grow out of proportion to the
size of the system as that size is increased.

4, Distributed supervisor. If each user can see his "own"

supervisory system which may be different than the one

SUMMARY OF IDEAS 100

others see, the way is opened for simultaneous service to
_real-time or process control functions, regular computing
hcustomers, and a system programmer checking out a "new"
system.

5. Parallel processing ability. Any user of the system
should be able to specify parallelism in his algorithms,
both to speed a compute-bound algorithm, and to provide
input/output simultaneous with computation.

6. User control communication ability. Independent users
should be able to send control signals back and forth to
each other so as to be able to utilize effectively the
data-sharing facility provided by the file system.

We have described the first three of th2se problems as
technological, with the implication that the problems would not
exist in a sufficiently advanced technologv. The last three we
describe as intrinsic, meaning that these problems will exist in
some form in the computer utility no matter how advanced a
technology is reached.

To meet these objectives, we have designed a traffic
controller which simulates an arbitrarily large number of
pseudo~processors, each with its own two-dimensional address
space. The traffic controller appears as a group of segments in
that address space; it contains entries which furnish the
inter-process control communication necessary for paraliel
processing and inter-user communication. It also intercepts
interrupts from I/OC devices ard converts them into inter-process

control signals.

SUMMARY OF IDEAS 101

The multiplexing of the traffic controller is organized
around a ready list, an ordered queue of processes ready to run,
and a priority scheduler which places processes in the ready list
in response to control signals. MAll processors service the ready
list independently. Time limits on tasks in the ready 1list are
used to trigger processor pre-emption; by setting appropriate
time limits the processor scheduler can control response time to
requests for computation. For fast response a scheduler can
pre~empt a processor directly.

To limit the processor overhead cost of multiplexing, the
scheduler is a procedure in the address space of the process
being scheduled. An intricate interface between the traffic
controller and the basic file sysﬁem limits the core memory
overhead cost of multiplexing in such a way that there may be an
indefinitely large number of idle processes in the system.

Together, the procedures of the traffic controller can form
the basis for a wide variety of operating systems on a wide
variety of computers. As computer technology advances, the basic
scheme described here may be used as a starting point for more

advanced designs.

CPU
DRUM
Core
Memory
CPU DiISK
1/0
Controller
1/0
device
CPU
1/0
1/0 device
Controller
1/0
device

(lines show communication paths.)

Figure 2.1 -- Typical hardware configuration.

*juswadeuew adempuaey i3l je

*1043uU0d

10ss3d04d-0opnasd J43pun | gqepuIIXI
‘AydaeIu3iH 98R401S UCIIBWIOLU|

A

~

£1032341(

0 & el

K103123341Q

K103122419

-1

K 1010341

~

(0/1 °dutl)
’ sut
* uol3ed|unuwwod
* S$S3204d-431U}

e

A 10Waiy

a|qessasppy
paijuaw3asg

K10329.41t(

SIU3W33S

1G6S | Ad3dNS

10SS320.4
-opnasy|

K a0owsy

91qessaippy
pa23iuawaag

S3IUldW39S

40S 1A 43dNS

10SS9304y
-opnasy

uoiiedndjucd wWaIsSAS juaiteddy -- z°z 34n3 14

|O043UGCD
40ss330.4d
-opnasd
49pun

3| qepuaixa
‘pasisap
se Auew sy

*W3)SAS SS3204d-0M] B 1O wesdeip MO[4 =-- 1°¢ 334n3i4

*aeyd/*suw 90T

Ino 11 8dAj
N
Suop
4330e40YD LLe
—B I1xau 133
d g dn ajem
SS920.4d|
4 104
snany
483 1aM3dA] 403 jaom - -)
.. UO 1 SI3AUOD 3pOID 0O(] Tt e~eo L ananb
Co ’ ul 3{nsad Ingd
\\\
. -
| ’
A3duw anN3anb JYaom) o
32019 wouty ejep 13 3 1NS34 3I3ndwo)

T

w8, Ssadoud WV. SSa20u4d

‘uotsiAodd ,,3n3nb | [N}, YIIM WIISAS SSIJ04d-0OM] -- 7°¢ 34n3t4

sdeys/sw Q0T ino 11 3dAl

% uop

13312e184d e
— 1x3u 1238

% g dn ajep
131 14M3dA] 104 _

1O 1SA3AUO0D 3POD O p
q 3}201ig ananb =
\ $S3204d| ulr 3insads in
103 k-
ananp [~ \W, Y
sak iy 404 3e 3 40M ﬁ
y dna)em €] dnasjem e A131us S| v~ ananb S3A

A

) ur 2es uﬂA&lllm_—:m ananb s|
A3dwa ananb Jom]

3o0|g wo44 elep 33 1nsa4 a3ndwo ¥

ij

9, SSado0ud WV, Ssadoud

in process 'K" In process ‘'g"

Cail Swap-DBR(J)

;

ave return location
t top of call stack

Get base of J's
address space

! !

] § 1

Reload Descriptor Reload Descriptor
Base Register |= = = = = B Base Register

{

Load return location
at top of call stack

!

return to caller

Figure 3.3 -~ Flow of control in Swap-DBR.

TanNnc

*dnayem pue d0|g J0 weddelp MO|4 -- #°¢ 34ndi4

N oul
] 43182 031 uaniau

1

43182 ygg-dems (r)yga-dems —_NL
03} u4nlau

%

wApeaa,, 03 a3utuuna,, 03
zvvnwxuo_n\>ummg\mc_c::¢ (rypaNd01q/Apeausj3uuun 3 40M133Y)
39S 13S
i i :
1S1| Apeads uo p usL r “ssadouxd Apeda e Uc_u\
iuP3%201qg,, 031 219S ou JaajLed wpP33201q,, 03
}ﬁvvmxoo_n\>vmw»\wcm:::hﬁILV 02 (X)paxd0L3/&pead/3uuund
S| uianiau 19S
w [Y
ou
431122 _S3A
U0 = (M)3usliem dnaye o} ATIIJ&x Acy 3ujijiem dnayem s|
uanlad

T T

(X Aq patled) (r)dnayem (¥ Aq pagied) }20ig

Running

TN

top o waiting for a

ready waKeup
lisf used up

S signal
Z// tife 1imit \\\

another process called "Quit
Ready 1 Blocked
Wakeup signal arrived
Figure 3.5 -- Execution state transitions.

10 R

Swap-DBR

ready \
Getwork -\ list /1 Scheduler Ready-Him
N
\k
Restart Quit Wakeup

106Q

Figure 3.6 =-- Block diagram of process exchange.

— e m e e e e e e e e - o e e e— - — —

Inhiblt mode System Interrupt

! l

Save Processor
on State

:

Mask Processor for
further interrupts
of same or lower

prinrity.
[—btWakeup
off Call Handler for interrupt —¥Restart
this interrupt <3 Handler

jl —— Block
% Restore Processor

state and return

on

Figure 3.7 == Flow diagram of the system interrupt interceptor,

110

soeds ssasppe

ssasoud £q

pajusw3as 3plAcad 01 3dem 4aqunul pasn aaqunu JUSW3S S
_paey 410ss3d04d Agq pasn deuw pJaomM 403d14DS3p JUdWIIS julawias JUaW33sS /1| 403d | 4102S3P
*3ineyl ssv9204d Aq aiqel
juswdas-Fuissiw e 3utanp 43qunu| pasn J4aqunu aweu
Juswdas Jo 3weu pull O3 Juaw3as jJO Iweu juawildas iusdw3das/T juawla s
Julaw3a s
3utuundt 10U U3YM elep
$s3d204d 40 31B1S S3U4SP pDiaOMI3IRIS SSI8d04d 1 ssado4d|
Aq S9143uU3
a3esn AJ13u?@ 3jO0 S3ul3juod paxapul 40 J43qunu 3weu
ssaooad 43d 3d2u0 paleadads ‘sajqel I3IeAidd
9402 Ul S|
1|nej 93ed a|qel a3ded 3|qel
-3uyissiw 3utanp uolledo| Jjuaw3das aweu yatym 403 JUlWw3a s
23240315 A4BPUOCDdS pul} 01|30 uoiledo| 33ea03s AJIepuodas jusaw3as Julawdas /T aA130¥
13qunu
ya3ims Jujytem dnaxyem uoiled
Yol IMs paydo0|q/Apess/3uiuund|-1413uap! alqel
eiep Suixaldillnu JO0ss3azoad juaw3as 1203dj42s3ap 03 J3djuiod ssado4d ssadoud /T ssadoud
Aq S3143U3
?desn A413Ud@ 3JO S3U33uU0d paxapu] 30 43qunu aweu

*3ugxa|diliny 940D pue 10ssadodd uy pasn s3j|qel jo doieie)d

$9|19q2] 9P IM-WIISAS

-/

‘I 9lqel

111

Traffic Basic
Controller File
(TC) Sysiem
(BFS)
Secondary
Storage
Process Active Segment
Table (PT) Table (AST)
P4
. . L~
Process i PDS ~—”////////
i,D, SNT
o~ T

Descriptor MN‘\”\ude Segment

Segment Name

5 Table (SNT)
IC -
Universal BFS ’/S .
Descriptors PT -///7tj .
AST - .
. | 101 PDS
. 102 cP
SNT - .
Private 101 | PDS] .
Descriptorsy 102 | CP .
w
Process
Data
Segment
(PDS)
- Figure 4.1 -- Schematic diagram of a running process.

112

Swap-DBR(K) (called by J)

l

Save J's stateword
in his process
data segment

|

Is K loaded? BCreate a descriptor
no |segment for K
_lyes

LDBR K »

i

Get K's stateword
from his process
Fata segment

return to caller in K

Figure 4.2 -- Swap-DBR flow, to recreate descriptor segment.

113

Swap-DBR(K) (called by J)

y

Save J's stateword
in his process
data segment

1

Is K loadéd? BFCreate a descriptor
no |segment for K

Process Bootstrap
is K loaded? ‘ Call Process Module
no | Bootstrap Module

P !

Get K's stateword activate segment
from his process F name table
data segment

& return to
return to caller in K caller

Figure 4,3 -- Swap-DBR flow, including process bootstrap module.

114

Swap=DBR(K)

;

Save J's stateworJ
in his process
data segment

!

(called by J)

Is K loaded?

aﬁCreate a descriptor

segment for K

b

create interim
process data

Process Bootstrap
Module

j

Process
Bootstrap Module

activate segment
name table

!

no
yes
LDBR K
JL segment for K
Ils K loaded? no Call

% yes
Get K's stateword |[g
from his process
data segment
return to caller in K

retrieve real
process data
segment

return to
caller

Figure 4.4 -- Complete flow diagram of Swap-DBR.

19186

Running
processor
available canpot Loaded
processor proceed
pre-empted
someone called Quit
-
A Ready g _J] Blocked
c wakeup arrived
.
i temp]ate
v|descriptor descriptor descriptor
el used vith segpent segment
available paged paged N
processor out ou't
someone called Quit
-
Ready Blocked
wakeup arrived
Unloaded
(wakeup space
o t
coming needed
in] APT
lnactive ﬂ
L Blocked
/

Figure 4.5 -~ State transitions of a process.

116

REFERENCES

Abbreviations used in the references:

AFIPS

FJCC

American Federation of Information Processing Societies

Fall Joint Computer Conference

SJCC Spring Joint Computer Conference

ACM Association for Computing Machinery

Refere

[1]

(21

(3]

[4]

(5]

(6]

[7]

nces, in order cited:

Corbaté, F.J., and Vyssotsky, V.A., "Introduction and
Overview of the Multics System," AFIP3 Conf. Proc. 27 (1965
FJCC), Spartan Books, Washington, D.C., 1965, pp. 185-196.

Glaser, E.L., et al., "System Design of a Computer for Time
Sharing Application," AFIPS Conf. Proc. 27 (1965 FJccec),
Spartan Books, Washington D.C., 1965, pp. 197-202.

vyssotsky, V.A., et al.,, "Structure of the Multics Super-
visor," AFIPS Conf. Proc. 27 (1965 FJCC), Spartan Books,
Washington, D.C., 1965, pp. 203-212.

paley, R.C., and Neumann, P.G., "A General-Purpose File
System for Seccndary Storage," AFIPS Conf. Proc. 27 (1965
FJCC), Sparten Books, Washington, D.C., 1965, pp. 213-229.

Ossanna, J.F., et al., "Communication and Input/Output
Switching in a Multiplex Computing System," AFIPS Conf.
Proc. 27 (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp. 231-241.

pavid, E.E., Jr., and Fano, R.M., "Some Thoughts About the
Social Implications of Accessible Computing," AFIPS Conf.
Proc. 27 (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp. 243-247.

Dennis, J.B., "Segmentation and the design of Multipro-
grammed Computer Systems,"” Journal of the ACM 12, 4 (Oct.
1965), pp. 589-602.

REFERENCES 118

(8}

[91]

(10]

(11]

(12]

(13]

[14]

{15]

(16]

[(17]

Arden, B.W., et al., "Program and Addressing Structure in a
Time-Sharing Environment,"” Journal of the ACM 13, 1 (Jan.
1966)1 PP. 1“160 -_

Critchlow, A.J., "Generalized Multiprocessing and Multipro-
gramming Systems," AFIPS Conf. Proc. 24 (1963 FJCC),
Spartan Books, Baltimore, 1963, pp. 107-126.

Conway, M.E., "A Multiprocessor System Design,"” AFIPS
Conf. Proc. 24 (1963 FJCC), Spartan Books, Baltimore,
1963, pp. 139-146,

Dennis, J.B., and Van Horn, E.C., "Programming Semantics
for Multiprogrammed Computations,” Comm. of the ACM 9, 3
{March 1966) pp. 143-155.

Codd, E.F., "Multiprogramming®, in Alt, F., et al.,
Advances in Computers, Vol. JII, Academic Press, New York,
1562, pp. 77-153.

Thompson, R.N., and Wilkinson, J.A., "The D825 Automatic
Operating and Scheduling Program," AFIPS Conf. Proc. 23
(1963 sJccC), Spartan Books, Washington D.C., 1963, pp.

Corbaté, F.J., et al., ®*An Experimental Time-Sharing
System," AFIPS Conf. Proc. 21 (1962 SJCC), National Press,
Palo Alto, 1962, pp. 335-347

Desmonde, W.H., Real-Time Data Processing Systems, Pren-
tice-Hall, Englewood CIliffs, N.J., 1964,

Witt, B.I., "The Functional Structure of 08/360: Part II,
Job and Task Management," IBM Systems Journal, 5, 1 (1966),
pp. 12-29.

Crisman, P.A., editor, The Compatible Time-Sharing System:
a programmer's uide, second edition, M.I.T. Press,
Cambridge, 1965, section AG.1.04.

BIOGRAPHICAL NOTE

Jerome Howard Saltzer was born in Nampa, Idaho, on October
9, 1939, He attended public schools there, graduating from Nampa
liigh School in May, 1957. He entered the Massachusetts Institute
of Technology in September, 1957, where he studied Electrical
Science and Engineering, receiving the degrees of S.B. (June,
1961) and S.M. (September, 1963). In June, 1961, he was married
to the former Marlys Anne Hughes of Nampa, Idako. They have two
children, Rebecca Lee and Sarah Dawn.

Mr. Saltzer 3joined the staff of the M.I.T. Electrical
Engineering department in February, 1961, as a teaching
assistant; in July, 1963 he became an Instructor. He has taught
subjects on circui+ theory and computer programming systems; in
June, 1965 he received a departmental teaching award. During the
summers of 1961 and 1962 he was a staff engineer at M.I.T.
Lincoln Laboratory, working in the area of computer waveform
processing; since then he has been a consultant to the Lincoln
Laboratory. In June, 1964, he became associated with M.I.7T.
Project MAC, where his research in multiplexed computer systems
was the subject of his doctoral dissertation.

Mr. Saltzer is a member of Sigma Xi, Eta Kappa Nu, Tau Beta

Pi, and the Association for Computing Machinery.

Publications

Advanced Computer Programming, M.I.T. Press, Cambridge, 1963
(With F.J. Corbatb and JZW.‘FgBuska)

»cTSS Technical Notes," Project MAC Technical Report TR-16, June,
1965,

119

