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ABSTRACT

The statistics of acoustic signals propagated to long
ranges in the ocean are investigated in detail in this
thesis. The phase random model of multipath propagation
is extended to include finite bandwidth and/or modulated
sources as well as multiple source configurations. The
theoretical analyses include the derivation of many new
probability density functions for these new cases as
well as for the single narrowband source.

The probability density function for A, the time
rate of change of the level in decibels for the single
narrowband source is derived. P; (A) depends only upon v?,
the single path mean square phase rate, which can be
related to certain ocean dynamical processes. The analysis
of finite bandwidth and/or modulated sources reveals that
the amplitude and amplitude rate densities (including
PA(A)) are independent of the finite bandwidth and
modulation effects, but the density of the time
rate-of-change of the multipath phase ¢ is sensitive to
these effects. Thus, fitting P; (A) to histograms from
data to find v? is the preferreé method for determining
this important parameter. Bandwidth effects in ¢ can be
neglected, however, if B << 2v where B is the signal
bandwidth. The analysis also reveals a potentially
powerful technique for determining parameters of the



modulation or bandwidth of a source from the received
multipath signal.

The analysis of multiple sources, applicable to noise
problems, includes important approximations to densities
which are intractable analytically, and would involve
significant computer time to solve exactly. In addition
to studies of the amplitude densities, significant progress
has been made in solving for the amplitude rate densities
and the joint densities of amplitude and amplitude rate.

In addition to providing valuable confirmation of
much of the theoretical analysis, a computer simulation
of phase random multipath propagation also confirms that
for N > 4 paths phase random multipath conditions begin to
closely approach the asymptotic conditions for N + «.

Data at 220Hz and 406Hz received by drifting
sonobuoys in the Atlantic at approximately 300 km in range
were analyzed. Values of v? obtained support an internal
wave model for the relevant dynamical process. The
modulation theory uncovered a heretofore unrecognized
modulation in the data due to an error of the Doppler
tracking system. Predictions of crossing rates including
this modulation effect are in good agreement with the data.

Other data at 15Hz and 33Hz propagated to ranges
between 250 km to 450 km in the Pacific in which deliberate
modulation was introduced, once again provide excellent
confirmation of the theory. Measured values of v2 vary
significantly from run to run and are not consistent with
an internal wave model, indicating some other mechanism
(i.e., tidal, rough scattering) must account for the fully
saturated phase random nature of the data. The technique
for determining modulation parameters was used, and for
the 76 modulated runs analyzed, the average error in
determining the actual bandwidth of the modulation of the
source from the received multipath signal was 8%.

Thesis Supervisor: 1Ira Dyer

Title: Professor of Ocean Engineering
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INTRODUCTION

Acoustic signals propagated to long ranges in the
ocean, tens to hundreds to thousands of kilometers, via
all modes of propagation including surface ducts, the
deep sound channel, or sea-surface and ocean-bottom
reflections exhibit fluctuations in amplitude and phase
which are now recognized to be dominated by the multipath
interference of the acoustic field. The statistics of
these fluctuations as well as their relationships to the
dynamics of the ocean has been one focus of recent research
in understanding this important physical process. The
optimum design of sonars (e.g., the receiver operating
characteristics), underwater communications devices, and
in fact any system which operates via acoustic
transmission in the sea depends upon the knowledge of the
statistical behavior of these transmissions.

The recognition of the dominance of the multipath
structure on the statistics, or the assertion that long
range multipath acoustic propagation in the ocean can bé
modelled as a phase random process has been estéblished
only within the last ten years, although the phase random
process or random walk problem has been under study since
Rayleigh (1880) [1], and is one of the classical problems

of mathematics and physics. Bergmann (1946) [2] was among
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the first to speculate that observed fluctuations in
signal intensity might be attributed to the interference
of many paths summing in random phase. Dyer (1970) [3]
formally applied the theory of a phase random process or
random walk problem to long range acoustic multipath
propagation in the ocean, and was the first to investigate
the statistics of log transformed variables. Dyef also
showed that even in the presence of scattering randomness
multipath interference would dominate the statistics.
This research in fact indicated a basic shift from the
scattering models of earlier research which are more
appropfiate for high frequencies and short ranges when
multipath effects are less important. Dyer also proposed
a model of distant shipping noise based upon the precepts
of phase random multipath propagation and continued this
research in a later paper (1973) [4], and most recently in
Mikhalevsky and Dyer (1978) [5], results of the latter
being included as part of this thesis. This model,
appropriate to distant shipping noise, assumes the noise
in a band is dominated by narrowband lines discrete in
frequency.

Mark (1972) [6] investigated the statistics of the
multipath propagation of finite bandwidth signals.

Employing a systems approach, he derived general expressions
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for the meah and variance of the received signal energy
in terms of the correlation function of the time varying
impulse response of the medium. He also showed that the
gamma or Erlang probability density function is often a
good approximation to the real pdf of the received
energy. Much earlier, Nakagami [7] had noted the
utility of an appropriately transformed Erlang pdf in
approximating the densities of received HF electromagnetic
radiation undergoing rapid fading, indicating the
broadness of scope of the phase random model and its
general applicability. All these efforts, however,
concentrated on the amplitude (or related quantities) of
the signal and did not address the amplitude rate or
phase rate of the signal.

Longuet-Higgins (1975) [8] in connection with research
on random sea surface waves (another phase random process)
introduced the joint pdf's of amplitude, amplitude rate,
phase, and phase rate as weil as the marginal densities to
the growing body of knowledge of phase random processes.
It remained for Hamblen (1977) [9] to formally extend the
phase random analysis to the multipath acoustic propagation
process, incorporating the results of Longuet-Higgins [8]
and also S.0. Rice [10] whose extensive research on noise

statistics were also applicable to the long range acoustic
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propagation problem. Hamblen [9] also established the
dependence of the probability density functions for a
single narrowband acoustic source on the two parameters
ci, one-half the mean square pressure at the receiver,
and v2?, the single path mean square phase rate. He also
verified the basic results with data from an ocean 4
acoustic propagation experiment.

Concurrent with the development of the phase random
model of multipath acoustic propagation, much research
was and is being conducted on another‘important aspect
of the problem, namely to discover what ocean dynamic

processes are the driving mechanisms and how parameters

of these ocean dynamic processes are related to the

2
1

notable perhaps is the recent research of Dyson, Munk,

parameters of the acoustic field, o2 and v?. Most
and Zetler (1976) [l11l] who have proposed a theoretical
model relating the dynamics of internal waves in the ocean
to the fluctuation of the acoustic field. However; this
model appears to have serious limitations at low.
frequencies. In fact, little research has been reported
on the low frequency cases.

In the following péragraphs I will introduce the
research reportéd on in this thesis. There are three

basic areas in which significant progress has been made in
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understanding the statistical behavior of multipath
acoustic propagation: (1) the single narrowband source,
(2) finite bandwidth and/or modulated sources, and

(3) multiple sources or receptions. An extensive

analysis of data from acoustic experiments in the ocean

as well as a computer simulation of phase random multipath
acoustic propagation not only increase our confidence in
this new understanding, but reveal new information for low
frequency signals about the driving mechanism of v?, the

single path mean square phase rate.

The Single Narrowband Source

I derive for a single narrowband source the pdf's
for the time rate of change of the sta (short time average)
mean square pressure, %, and the time rate of change of

the level in decibels, A, results which are unique to this

2
1

function only of v?. This result is of particular

thesis.. The pdf for i is independent of of and is a
importance as it affords a method of measuring v? from
ocean acoustic data without error due to uncertainties in
the signal carrier. Included in this analysis are the
joint densities P_ . (x,%) and P - (A,A) and their

XX A, A
characteristic functions, also unique to this thesis.

This analysis in fact completes the family of first order
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and joint pdf's for a single narrowband source.
Appendix A contains a list of all the first order pdf's,
their characteristic functions, means, and variances as
found by me, and earlier as found by others, so that a

complete set can be referred to.

Finite Bandwidth and/or Modulated Sources

Many acoustic signals of interest received in the
ocean have bandwidths which are not narrow, and carriers
that may not be stable or may be deliberately modulated.
In applying the phase random model of multipath acoustic
propagation, it is necessary to assume that the spectrum
of the received signal is narrow, and that in homodyning
the signal the spectral mean is zero [8,9]. Clearly,
the signals mentioned in the beginning of this paragraph
would violate these assumptions. I show, however, that
the amplitude and amplitude rate statistics (including
PA(A) are independent of finite bandwidth and/or carrier
modulation effects. The multipath phase rate, &, is
sensitive to these effects, and it is the pdf for $ which
must be modified.

The pdf for $ is in fact a function of v?, as well as
the bandwidth, and/or parameters of the modulation.

Bandwidth effects can be neglected when B << 2v, which is
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therefore a criterion for what is meant by "narrowband"
in the ocean. Furthermofe, this analysis reveals a
method of separating and understanding the source induced
modulation independent of the ocean induced modulation

or vice versa. In addition to solving for the pdf's of

& in the presence of bandwidth and/or modulation, I solve
for the crossing rate statisﬁics of phase for these cases

as well.

Multiple Sources or Receptions

The statistics of the received signal amplitude and
amplitude rate when there is multiple source structure
depends on the exact nature of the received multi-source
signal and the anélysis performed by the receiver. I
consider two basic cases. First, I assume the
receptions (one per source) are disjoint in frequency in
the analysis band and can be separated and summed
incoherently (that is, without concern for phase). I
assume, therefore, that each of the receptions/sources
are independent, thus the analysis band should not include
harmonics of a signal already in the band. This type
of analysis is motivated by the structure of distant
shipping hoise [4,5]. For the second case, I consider

the receptions to be at or so close in frequency that they
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hust be summed coherently. Note that the dividing line
between case one and case two depends upon the resolution
of the receiver. Most all of the pdf's I derive for the
amplitude and particularly the amplitude rate for these
cases are unique to this thesis. Where I have been
unable to derive the exact pdf analytically or in which
the exact solution is extremely time consuming to obtain
even with the aid of a computer, I have in most cases
found an approximation based upon Edgeworth's series.
This approximation is shown to be excellent in the main
lobe of the density but performance is degraded in the
tails.

I use the analysis of coherent sources to model the
effect of ocean ambient noise on the pdf's for a single
narrowband source. The pdf's are expressed in terms of
the SNR (signal to noise ratio). In light of this
analysis, I am able, as well, to extend with only slight
modification all the frequency disjoint multiple source
solutions to include the cases when both coherent and
disjoint source structure is present in the analysis band,
or for noise which is continuously distributed over the
passband.

The reader is forewarned that the sections of this

thesis on multiple sources (see Table of Contents) are
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lengthy and in many cases quite tedious due to the
complexity of the analysis. Table III is provided (page 143)
to aid in understanding the organization of this material
and to aid the reader in finding that analysis which

is most perfinent to his problem. The analysis of the
statistics of multiple sources which is not immediately
motivated by any current ocean acoustics problem of
interest is presented for completeness with potential for
application to future problems, even perhaps in areas
unrelated to acoustics. For example, the solutions for
PX(X), using the terminology of Queuing Theory, are in
fact the pdf's for the interarrival times of cascaded
Poisson processes which are unique to this thesis and,

to my knowledge, not to be found in Queuing Theory

literature.

Computer Simulation and Data Analysis

A computer simulation of phase random multipath
propagation is developed to assist in and to check the
theoretical analysis. The simulation demonstrates the
independence of the exact nature of the pdf for én
(the single path phase) to the statistics when there are
at least four propagation paths from the source to the

receiver. Of importance is the confirmation of the
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generally accepted criterion that N > 4 paths results in
an almost fully saturated phase random process, and pdf's
for the limiting case as N » = suffice. The simulation
allows me in Appendix C to compare the theoretical

pdf's, many which I derived, for N < 3 to the computer
generated histograms with excellent results.

I analyze data from two ocean acoustic experiments.
One was conducted near Eleuthera in which two CW signals
at 220Hz and 406Hz weie transmitted approximately 300 km
northeast towards Bermuda and received by drifting
sonobuoys [12]. 'These data support the theoretical
pdf's derived in Chapter 1. Furthermore, the modulation
theory uncovered a heretofore unrecognized modulation
in the phase rate data due to errors in the sonobuoy
tracking system that has dramatic results on the
statistics for the phase crossing rates. These data are
also consistent with a model of phase random multipath
propagation resulting from the interaction of the acoustic
field with internal waves [11].

I also analyze data taken in the Pacific in 1973
known collectively as the CASE experiment [13] in which
CW signals at 15Hz and 33Hz were propagated to ranges
varying from 250 km to 450 km. These data were

deliberately modulated and the predictions derived
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theoretically in Chapter 1 are once again confirmed. The
analysis I used was capable of determining the bandwidth
of the modulation from the received multipath signal

with an average error of 8%. Where previously there had
been some problems in the consistency of the data with the
phase random model, the modulation theory successfully
lays these problems to rest. These data, hdwever, are

not consistent with the internal wave model and this
analysis has brought sharply into focus a shortcdming

in our current understanding of the driving mechanisms of
v2, particularly for low ffequency signals. Correlations
I'have derived appear to support, though tenuously without
additional research, either a rough scattering or tidal
mechanism to account for the fully saturated nature of

the CASE data.

In Appendix D, the effects of amplitude parameter
variation are discussed. This analysis is aimed at
uncovering the effects of temporal variations in the
total energy of the signal during the observation period

on the statistics of the received multipath signal.
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CHAPTER 1

ANALYTICAL TREATMENT

1.1 Single Narrowband Source

For a narrowband signal the phase-random model of
multipath acoustic propagation predicts that the sta root-

mean-square pressure, p, is a Rayleigh distributed random

variable [3,9], its rate, P, is Gaussian [9], the multipath

phase, ¢, is uniform, and its rate, é, is distributed

according to a density first given by M.S. Longuet-Higgins

[8,9]. The transformation y = p?

yields the density for
the sta mean-square pressure which is exponential [3],
and following Dyer ([3] the transformation A = 10 lOg1oX
gives the density for the level in decibels which is
Log-Rayleigh. To complete the family of first order

densities for a single narrowband source, I have derived

the densities for % and A.

1.1.1 Derivation of P-(X) and P; (i)
For phase random multipath propagation the joint
density of the sta rms pressure o and its rate p is given

by [8,9],

Gl TfO’l A\
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where v? is the single path mean-square phase rate,
0.2 = NE? _ou (1.2)
1 2 2 :

and N is the number of propagafion paths, r is the single
path amplitude, and u is the long-time average mean-square
pressure.

For X = p® we have ¥ = 2pp. To find the pdf

(probability density function) for ¥ I first solve for

J

. the cumulative distribution function [4 of ¥ by

integrating over the joint density of p and p,

Equation (1l.1).

P = J J P, plesP)dedd , % >0 (1.3)
O -

oo}

The pdf for ¥ will be given by g% P<X(X)' Combining this
result with Equations (1.1) and (1.3) differentiating
under the integral sign and integrating once, I obtain

the result

| %

P.(x) = e
5 (0 2XP

chzv

} ,  —eo<i<w (1.4)
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The absolute value results from the analysis for %< 0.

Equation (1.4) is the Laplace pdf [14. The variance of ¥

is given by

The pdf for A is solved in the same manner. First I .
find the pdf for ¥ where y = 1lnp? and thus ¥y = 2p/p,

therefore,

P o(p!b)dpdé 7 S/'>O (1.5)

PrP

. a
Po = =
y oy f
0

OL——-.

As before, I differentiate under the integral sign and

perform the remaining integration to obtain

. (§) = 1/2v , —e<g<o | (1.6)

Y 2[% + X |3/2
4v2

Making the final transformation A= ey, where
e = 10 logloe = 4.34... (this notation will be adhered to

in the remainder of the thesis), I obtain the final result
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p;(h) = 2 P (3) L me<h<e (1.7)

This density is in fact of the same form as Pé(é) (see
Equation A8 in Appendix A). The second moment of this
density is infinite. Physical insight of this phenomenon
can be obtained if one visualizes the random walk.problem.
The amplitude of the vector is p and its phase ¢. When
the amplitude of p goes to zero as in a deep fade it is
easily seen that the phase can undergo very rapid changes.
Likewise because A = e2p/p it is also clear that A can
assume Qery large values when p is small. Thus both A
and é are governed by the same form'of pdf and their
variances are infinite. It is also noteworthy that

while the pdf's for § and ¥ depend upon both oy and v,

Equation (1.7) depends only on v.

1.1.2 Joint Densities of Amplitude and Amplitude Rate
and Crossing Rate Statistics

In order to complete the family of joint densities
of amplitude and amplitude rate for a single source, I
have derived P_ .(Xx,%) and P '(A,A). This analysis also
XX A, A
provides an alternative method for deriving Pk(i) and
PA(A) to check the calculations of the previous section.

In addition, I derive the two-dimensional characteristic
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o~
functions [14] which will be of significant importance when
I investigate multiple sources.
- For x = p? we have p = xl/2 and § = % kx_l/z. In
order to solve for Pyi(xk) I make a two dimensional
[4
transformation on Pp 6(p,é) (Equation 1.1) as follows:
_~
/2 1 _-=1/2
P . X) = =—= . 6)dpdp 1.
X:X(X'X) e Pp'p(p,p) pap (1.8)
[e] - 00
-~
By differentiating under the integrals in Equation (1.8)
- I obtain
. 1 %2
~ Py g %) = — exp[- —— - —X—17,
401 v/2my 201 8xal v
- X > 0, and =wo<y<ow (1.9)
-~ The two dimensional characteristic function or two
dimensional Fourier transform can be defined as
o,
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e o] o] N .
iwy, +iox,
M w,q) = P d 1.10
XLXZ( ) J f XDXZ(XBX2)e dx,dx, )
=00 =00
For P_ . X
or X:X(X'X)
o] o
M * ,G = P . 7 d d l-ll
er(“’ ) J J X’X(x X)e xdx ( )
-0 o]
Performing the double integration yields
1
M :(w,0) = (1.12)
XrX 1- iZGizw + 4ol“v202
Recalling that y = lnyx, we have x = e¥ and % = yeY.
Thus,
, e¥ er _
ey _ 0 . . .
P, WY = gosg | P 5 () dxa (1.13)
Q =

As before I differentiate under the integrals, and make the

final transformations A = ey and A = €y to obtain,
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3
. exp (5= A7) 72
PA A(A,A) = 28. exp -exp(g)[ 1 + A
' 4e %0, vV/2T 20, 2 8e 20, 2v?
1 1 1
-wo<<®o, and —0< <o (1.14)

The two dimensional characteristic function of PA A(A,A)
7

(Equation 1.14) is

(w,0) = 2€v|o](8€3!0[012v2)i€wK (2ev]a])

=N
e

l+icw

« « . (1.15)

where Kz(x) is the modified Bessel function of order z.
Performing the integrals over x and A in Equations
(1.9) and (1.14) respectively yields the marginal densities
of X and A which are given by Equations (1.4) and (1.7)
respectively as expected.
Following Rice [10] and using Equation (1.14) I
derive the mean axis crossing rate for the amplitude of
the signal expressed in decibels.

G(AO) =ZJ AP
0

A’A(AO,A)dA = E[AIA=AO] (1.16)
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Thus,
® Aexp(é%Ao) Ao i A2 .
G(Ao) = jz S, exp -exp(Er)[ " + - 2] dA
o 4¢ 01 vvyam 201 8¢ cl Vv
and
Ao AO
Zvexp(§€ ' exp(zf)
G(AO) = ———exp |+ —m—— (1.17)
0 V2T 2012 »

If we transform Equation (1.17) to determine the axis

crossing rate for °s = exp(AO/Ze)

0 2
Glo ) = ©  exp |- =2 (1.18)
© o,v2T [: 20 ;}

Equation (1.18) was previously obtained by Dyer and

Shepard [15], and Hamblen [9].

1.2 Multiple Sources

In this section the statistics of the amplitude and

amplitude rate variables are analyzed when the source
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structure consists of many independent acoﬁstic generators
distributed at various frequencies across the bandwidth

of the receiver. It is assumed that propagation from each
‘source is phase random and multipath. An initial assump-
tion is also made that each source radiates at a different
frequency. This problem is applieable to the case of deep
ocean ambient noise due to distant = shipping [4]. For
this case the spectrum of ship radiation is assumed to be
dominated by lines disjoint in frequency, so that each
ship contributes as many independent sources as

there are lines within the observational bandwidth.

(Note, the observational bandwidth cannot be so large as
to include harmonics.) Henceforth line and source will

be used interchangeably. Furthermore, the analysis
assumes that the Fourier components of the received
signal over the observational bandwidth are squared and
summed. Thus, by Parseval's theorem it is the square

of the signal amplitude, in this case x = p? which is

L

summed for each source, = nél Xn for L sources.

or Xtotal
As noted in Reference [4], this model breaks down when
sources cannot be separated in frequency, and then the
model must be modified to include the effect of two or

more sources which may be radiating at the same frequency.

This coherent problem is treated in Section 1.2.3.
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1.2.1 Amplitude Densities

Dyer [4] first investigated the amplitude statistics
for the multicomponent case and developed the framework
for the problem which will be followed here. Three
categories are defined: (a) all line components, L in
number, arrive with the same long-time average intensity;
(b) vall line components, M in number, arrive with different
intensities; and (c) N groups arrive, each with Li equal
intensity components. As an example, Case (c) was
applied in Reference [4] to noise as might be measured
at low frequencies in deep water near Bermuda.

As pointed out in Reference [4], and as will be

‘shown in Section 1.2.1.3, use of the models describing

line component noise often entails considerable
coﬁputational tedium. This complexity often motivates
adoption of approximate methods, which will be discussed
in Section 1.2.1.4. Cases (a) and (b) a?e treated in
Reference [4]. Exact solutions for N=2 and N=3 of
Case (c) are derived in Sections 1.2.1.1 and 1.2.1.2
respectively. It is true that the exaét solutions of
N=2 and N=3 may be of little practical value as most
cases of interest will probably contain many more than
three groups. The analysis is performed, however, to

build the theoretical framework of this problem, perhaps
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enabling someone else to solve it exactly in all
gener;lity, and more importantly in relation to this
thesis research these exact solutions will provide a check
for the approximate solution which is presented in

Section 1.2.1.4.

1.2.1.1 Exact Solution for N= 2, Case (c)

Consider L line components, each with the same
long-time average mean square pressure U. The

probability of the sta mean square X is [3 A4 ]

L L-1_-ax
a”y" e
P (x) = — r x>0, a>0 ;
. XiE (L-1)!
L=1,2,... (1.19)
where a = 1/u, the mean W, = Lux, and the variance
L
o* = Lu? = ¥ /L. Equation (1.19) is the Erlang or
XL XL ‘

gamma pdf (see Appendix B).

Let X; and X2 be distributed according to
Equation (1.19) but with different Wy and different Li
(i=1,2). Further, let X = Xyt Xge Then

X
P X(x) =/ Py(z) P,(x-z)dz. If we make the change of
2 o}
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Py

variables ¢ = xt,

L L, —-a 1

-~ a, la “2e7%2X 1 _41.-1 L,-1 L,-1

'P-x(x) _ 71 %2 21 Jtl (1-t) 2 efx(az-a1)q¢

2 I (L) T(Lz) 0
-~
.« .(1.20)

The integral is the confluent hypergeometric function

defined in its integral form [16,17]:
-~ 1

M(a,8,2) = —=il8) J e2® ol 1oy 0ol g (1.21)
A,

This is a well tabulated function [18 ,19,20] alternatively

defined by Kummers series (absolutely convergent):
-

(o) 2 (o) n
02 2 2 n Z
M(a,8,2) =1 + 5t (6)2 ST *oeee + TSy nT + .. (1.22)
n

.

where (OL)n = g (a+l) (a+2) ... (a+n-1), (a)o = 1.

- Applying Equation (1.21) to Equation (1.20) I obtain
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the desired result:

L

. azLZXL2+Ll-le—xa2

a

sz(x) = M [Ll,Ll+L2,x(a2-al)] (1.23)

F(Ll+L2)

with

H = U + U = Lllll + Lz“z

2 2 2 2 2
o} = q + a = L,us + L,
2X Xl X2 171 272

If a; = a, then as expected, Equation (1.23) reduces to

Equation (1.19) with L = L; + Ly, upon noting from
Equation (1.22) that M(a,8,0) = 1.
To obtain the density of the level in dB I make the

now familiar transformation A = ¢ 1lny in Equation (1.23):

alLlasz
2A ET(Ll'PLZ) 171 72 2 71

(A/e)]

exp[g (L,+ L) - a, e(A/g{} (1.24)
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The statistics for A are:

My = ellny, - v + Sy (Ly +Ly) + Q(ay,a5,Ly,L,)]
(1.25)
g2 =¢? Ir-i--S (L. +L.) - 0%(a.,a~,L.,L,)
A 3 2\ Ty N A XA RA)
+Q2(al,a2,Ll,L2)]
where
L-1
S. (1) = 0, S.(L) = =
1 1 wel w
Lil 1
s,(1) = 0, s,(L) = e
2 2 wel w2
L n
l -
Q;(ajray/LysLy) = - (I;ll')n aza 1 nZl 7 +%. .
a2} n=1 o 2 k=0 “17"2
‘ a. 1M « (L) _{a,-a, | "M+n-1 k-1
_ 1 1'n|3272%1 1
Qy(ayray Ly Ly) = 2171 ) =4 a L oK
2] n=2 : 2 ) k=M+l p=Mm P
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where M = Ll + L2, and y = Euler's constant = .5772... .

Note that if a; = ay, Equations (1.25) reduce to

Equations (4) of Reference [4] as expected.

For non-integer values of L, and L2, Equations (1.25)

1
can be expressed as follows:

a )" = (L), [ag-a)”
uA/s lny, + E; nzd = 3, [¢(L2+Ll+n)]
(1.26)
L n
a l o (L,) la,-a
(o2 +ul)/e? = {gﬂ nzo nl! n{ 2a2 1] [ (Ly+L+n) = 1na,]?

+ wl(Ll+L2+n)

where
Y (x) is the Euler Psi function [21]

and where

VX = = 00
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Equation (1.23) can also be expressed in terms of the
incomplete gamma function [22,23] which is a special case

of the confluent hypergeometric function.

1.2.1.2 Exact Solution for N= 3, Case (c)

I now consider three groups with Li (i=1,2,3) sources
in each group. Let 3X = Xl-+x2-+x3 = ZX'+X3 where the
X3 (i =1,2,3) are distributed according to Equation (1.19)

(with different means and Li) and 2X is distributed

according to Equation (1.23). Then:
X
P_(x) = f P _(z) B, (x-tz)dc
3% , 2% X3

As before, let ¢ = xt and

-

L; L
1 32
X

3 T Ll+L2) P(L3)

L, L,+L,+L.-1 =-a.x
2a33 LT s
(

- I (1.27)

and
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1
L3-1 L1+L2—l tx(a3—a2)

I= [ (1-t) t e 'bd[Ll,Ll+L2,tx(a2-al)]dt
0 :

o« .(1.28)

Equation (1.28) is evaluated by expanding the confluent
hypergeometric junction in its series form (Equation 1.22),
and integrating term by term. When I combine this

result with Equation (1.27) I obtain the result

L, L, L L,+L,+L,-1 =-a,x
2 2
0 aytay’a’ x e 7 X'agmap® (),
P _(x) =
3X T (Ly+L,+L) n=0 n! (Ly+L,y+L3)
. M[L1+L2+n, Ll+L2+L3+n, x(a3~a2)] (1.29)
with
Max T Liug + Louy + Laug
2 — 2 2 2
Tx T Liuy + Louy + Laug

Deriving numerical results from Equation (1.29) is

straightforward by rewriting the summation
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= n£0 c m. (1.30)
where
®n = n Ly+Lo+Ly+n-1 “n-1 4 =1 (1.31)
and [18],
b{(l+b-2) b (b-1)
m =—m . + —m__ (1.32)
n az n-1 az n-2

In these I define,mn Z M(a+n, b+n, z) and, a = L.+L

1 72'

b = Ly+L,y+Lg, and z = x(a3-a2).
From Equation (1.29) the density of the level in dB

is obtained as before:

e¥p  (&Y) (1.33)

1
€ 3X y = MAe

P ,(A) =
3A

The statistics of the level are:
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Moy = e[lnu3— y+-sl(Ll+L2+L3) + Rl(al’aZ'a3'Ll’L2’L3)]

2
2 = 2| - R2
0"y = € [:6 S, (Ly+L,+L3) Rl(al,az,a3,Ll,L2,L3)

+ Rz(al,az,a3,Ll,L2,L3{] (1.34)
where:
Ry (ajraysa53,Ly,L,,L,) = [Zﬁ]Ll(gf]szio (ti)p [ai;;l i
o2 (L +Ly+p) [a3—a2]np+n—l )
n=0 n! ag k=0 LptLhotLs+k

for p+n > 0, and.

e @) g
a a L a,—a
1 2 l'p 2 71
R (a ,a 'a ,L ,L ,L ) = 2 — — Z
2171720737123 [a3] [a3] p=0 p! a, ]
n
© (L1+L2+p)n az-a, L+p+n-1 2-1 1

n!

n=0 a3 g=f+1 m=g T
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for p+n > 1, in which £ = Ly+L,+L,.

Note that for both N=2 and N=3 one can judiciously
choose which ai,Li will be designated al,Ll; a2’L27 or
a3,L3 so as to insure the fastest convergence of the terms

involving infinite series.

1.2.1.3 Solution for Arbitrary N, Case (c)

In this section I will derive an expression for the
pdf of the sta mean square pressure ¥, for an arbitrary
number of groups N, using Laplace transform techniques.

Let
N .
= Z Xp (1.35)

where NX denotes the random variable whose pdf we seek
and the X, are Erlang distributed random variables,
distributed according to Equation (1.19) with

arbitrary order Ln. The Laplace transform of Xn is

L

n
a
R s = |—2—| , s> -a (1.36)
Xp s+ a n

where a, = l/un. From the properties of Laplace transforms
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and independent random variables

N a L

P = T " (1.37)

N n
and thus,
joo
N a L
1 n n _sy
P _(X) = 5= J I (=) e ds (1.38)
NX 27] L n=1 S t a,

Though Equation (1.38) is attractively compact, it is
computationally tedious for most cases of interest, i.e.,
large N and large Ln as you might expect with many ships
and many lines. To carry the analysis a bit further, I

make a partial fraction expansion of Equation (1.37),

L

N L N n C
(s) = (I a_ ™y 7v § ——2D1k (1.39)
pNX n=1 D |p=1 k=1 (8 *ay)

It is clear from this expression that P X(X) is a linear
. N
sum of weighted Erlang distributions, and the problem is
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reduced to finding the coefficients <y I take the

k.
inverse transform of Equation (1.39) by applying the

calculus of residues to obtain

k-1
- 1 d k
Cax T DT T [stay) P, s1 (1.40)
s N .
S n
and finally,
L k-1_-anXx
P _(x) = (?II anLn) I§ zn cnkik_l‘:' (1.41)
NX n=1 n=1 k=1 !

The generally intractable nature of Equation (1.40) leads
to the introduction of approximate methods discussed in

the following section.

1.2.1.4 Edgeworth's Series Approximation, Case (c)

As before,

where the X; are independent random variables distributed
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according to Equation (1.19) and in general with

different long ‘term average means My and different

number of line components Li. Although PNX(x) cannot-be
solved exactly for N > 3 without considerable computational
tedium, it can be approximated in the main lobe, and as

we shall see, quite accurately and easily by an

Edgeworth's series [M4]:

- B} (3) (4)
P = 5 AR = gy ¥ 2N E) + gy 2 ()

- ST y;z(g)(g) + ... terms in higher order

moments; - , e o (1.42)

where
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-

- : -2
_ X7 Hax _ 1 2°
& = — z2(g) = 177 e ’
nX (2m)
Z(n)(E) = nth derivative of the Gaussian pdf,
Y = coefficient of skew = o= - (1.43)
o o
X X
uu K4
Yo = coefficient of excess =~—jx- 3 = — (1.44)
g o}
X X
nux = nth central moment, and
Kn = nth order cumulant or semi-invariant.

The point-by-point error in the approximation of
Equation (1.42) is of the same order as the first term
neglected [14].

A computationally more efficient expression of
Equation (1.42) can be derived by actually taking the
derivatives of Z (&) as indicated with respect to £ and
collect terms in powers of £. I have used only the first
four terms in Equation (1.42) and as will be demonstrated

later, this will be entirely adequate for practical
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computations.
3y, 5Y2 ¥
- _1L e _ s _ s
PNX(X) i z2(g)41 + T "33 - 75 &
- nX

7 g8 (1.45)

It should be noted that because Equation (1.45) is an
approximation, negative values may be obtained for some
regions in the tails. 1In fact, the Edgeworth's series
performs best in the main lobe of the density and worse
in the tails. The mean and variance is respectively
(evoking the properties of sums of independent random

variables f[4]):

N
Mo, = ) L.u. (1.46)
N oi=1 bl

2 Ig 2
% = L.y, (1.47)
N  i=1 t 1
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For the gamma pdf [14]:

K, = LT (n) (1.48)

Furthermore, for a sum of indepeﬁdent random variables [14]:

Kn = lKn + Kn + Kn + ... + K ) (1.49)

2 N''n

3

I use Equations (1.46) through (1.49) to obtain the

coefficients of skew and excess for P X(x):
N

1 ? .
vy, = = 2L, u? , (1.50)
S o} i=1 1
X
1 X .
Yo = = .E 6L ug - (1.51)
GX i=1

g and yé are zero for the Gaussian pdf and attain maximum
values of 2 and 6 respectively for the exponential pdf
(which is the case of N=1 and L=1).

Before examining the nature of Yq and Yo more closely,
let me return to Equation (1.42) and make the log

transformation’ to obtain the Edgeworth's approximation for
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the level in dB:

2
A/e Ts (3 Ye (4 ¥ 10
PNA(A)%EUXe/ z) =53 2+ 2 2 s Sz
N

. (1.52)

or alternatively,

, NX
+}—fn3+(%?—521;)n +«l—2——:§n6 (1.53)
where
noNX = exp (A/e) - uNX.

As a result of the fact that the transformation
A =10 loglox is nonlinear, the statistics of A cannot be

found without exact knowledge of P A(A):
N
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o2}

U, =€ j Iny P _ (x)dx
N nX
0
(1.54)
0%, + u?, =¢? J (Iny) 2 P _ (x)dx
N N NX

o

Using Equation (1.41) in the previous section and inter-

changing the order of summation and integration I obtain:

N N Ln ®

C
L nk k-1 _-apX
po,o= (e I.am § ) a—r j Iny-x e "MAdy
NA n=l "n =1l k=1 (k=1)! .
(1.55)
L
N N n C
k-1 -a
o2, + u?, = (e2 T afm) 7 T ——2K_ (1ny)24871 ¢73nXg,
Nt N n=1 D ‘n=1 k=1 (kLMY
Evaluating Equations (1.55) yields [24]:
L
N N n C
W= e Tarm )y —%? [v(k) - 1n a]
N n=1 n=1 k=1 a,
(1.56)
L
N N ncC
o +u?, = (ef nlaﬁn) ) Z—%{[W(k) - 1n a]%+y (k)}
N n=

n=1 k=lan
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Though Equations (1.56) are exact, they are predicated on
the knowledge of the C_.'s given by Equation (1.40),
which in turn motivates an approximate solution.
Unfortunately, direct integration of the Edgeworth's
series is not possible because term by term the integrals
diverge. An approximation can be madé, however, using
the first term only, that is, to integrate the log

transformed Gaussian. Thus,

(o]
(x=u,)
By £ J 1ny exp{; —X_ |3y
N GX/2ﬂ o 5 202

(1.57)

[o<]

2 (x=u,)
02A4-u2A AT J (lny) 2exp|- —X—|dy
N N ox/EF o ' Zoi

The integrals in Equations (1.57) are not straightforward
but can be evaluated as follows. . First, the square in the
exponential is expanded, and the constant term removed
from under the integral sign. Second, the change of

1/2

variables y = u is made:
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(1.58)
u
" eze-zgx - -% u M
02A4'“2A N — J u “(lnvu) lexp(- ——:n&—é /a) du
2
X 0 %% %

Third, the radical is removed from the 1ln and the
exponential of Yu is expanded in its power series.
Fourth, the order of integration and summation are

interchanged and finally I have,

2

%3& 11
noee <9 (Fm-3)
b v Z

uZ
2 202 boom 7 (Bnedy
G2 +p2 e’e "X ) J;._X) J a % 2
1
Aot 80, /2T m=0 ™ o

o

2
X 0 X

The integral in Equations (1.59) can be evaluated [24] and

the final result is obtained:
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u
-202 o 1 /EU m 1
A::EL_l ) HT[TT% r§m+%%¢ém+%+dn2oﬁ
N 4vym m=0 ° X X
and (1.60a)

2

U _

e 20% = 1 (Zuam oo

TR e ) E‘P?l]rﬁm+?
N N 8/m m=0 " X

. {W(%—m%-%-) + 1n202]°% + wl(%-m%)}

Although the Edgeworth's series will provide an accurate
approximation to the density we seek, the best approxiﬁa-
tion for the moments of A are those of the log transformed
Gaussian given by the statistics of Equations (1.60).
Though not immediately derivable from Equations (1.60)
when c; is small, Dyer [4] obtains, by taking an expansion
around the peak of the density,

uNA ='-[lnux - (c;/Zu;)]s

(1.60Db)

~ (2 2 2
a7 (ox/ux) £
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Returning to the Edgeworth's series, and to gain more
insight into the way the coefficients of skew and excess
(7; and yé) behave, depending upon the number of groups N,
and number of line components in each group Li’ I have
plotted Yg VS L in Figure 1 for N=1 and N>3. 1In like
manner, Y, is plotted in Figure 2. Each was constructed
as follows: Each group N has the same number of line
components L, and the long term average mean uy of each
group is gquantitized in 3dB steps, i.e.:

i-1 3
[7] relative units

=
]

ri=1,2,3,...,N

For the case N=1, Equations (1.50) and (1.51) yield:

_ -1/2
Yg = 2L

= ¢r-1
Yo = 6L

In the limit as N+ «, Equations (1.50) and (1.51)

converge to:

Y, = (1.4810"1/2
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T l
| 5 9 13 |7 2! 25
L, NUMBER OF. LINE COMPONENTS

Fig.2 The coefficient of excess, ¥, for one group (N=1)
and three or more groups (N>3) as a function
of L, the number of line components in each group.
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= -1
Yo T [3.60]L

The convergence is very rapid. As evidence, the exact
value for N=3 is only about 10% greater than the limiting
value.

From Figures 1 and 2 it can be seen that when N=1,
the coefficient of skew and excess closely approximate
Gaussian values when L> 6. When N> 3 they closely
approximate Gaussian values for L>3. More justification
for this conclusion is given in the next several
paragraphs.

For further illustration of significance of the wvalue
of Yg and Yo I consider the case N=1 and L=2. For

simplicity, I let u=1. Then,

B (X) = xe X (1.61)
= 2
My
g2 =2
X
Yg = V2
Yo T 3

Equation (1.61) is plotted with the Edgeworth's series,
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Equation (1.45), and its corresponding Gaussian in
Figure 3. Note that the large values of Y and Yo would
predict the Gaussian to be a poor approximation, and so
it is. The Edgeworth's series, on the other hand, is
quite good except at the tails.

Taking the log transformation of Equation (1.61) for
the same simple case (N=1 and L=2), I have the density

of the level in dB:

P, (h) = é exp{%% - exp (A/s)} (1.62)

Equation (1.62) is plotted with the Edgeworth's series as
given by Equation (1.53) in Figure 4. Again, the values
for Y and Yo suggest the log transform of the Gaussian

to be a poor approximation, and indeed it is. But the
Edgeworth's series for the density of the level is
remarkably close. Thus, I conclude than when Yg and Yo
are large, the Gaussian is not a useful approximation,

but the Edgeworth is, especially when dealing with the pdf
of the level. Also, it is interesting to compare
estimates of the mean level. Equation (1.60a gives

By = 2.28dB while the exact value given by Equation (1.25),
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0.401— | —
EXACT

0.35— EDGEWORTH _

0.301—

~ o~ GAUSSIAN
e

0.25—

Py(X)

0.20—

0.15—

0.10—

0.05—7

| | | I
Q-l o | 2. 3 4 5 6
X, SHORT-TIME AVERAGE MEAN SQUARE PRESSURE

Fig.3 Probability density for the case N=1, L=2,and p=I.
Ys=v/2 and ye=3.The exact density is shown
with its Edgeworth approximation and its

corresponding Gaussian.
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| N

/N
0.14— /\ LOG —
| / - TRANSFORMED
0.12— « | GAUSSIAN  —
\
__ LOG |
0-10 TRANSFORMED

\ EDGEWORTH

0.04 — | _

0.02 — —

N et T R N
%8 6 4 -2 0 2 4 6 8 10

A,LEVEL OF SHORT-TIME AVERAGE MEAN SQUARE PRESSURE dB (arb. ref)

Fig.4 Probability density of the level for the case plotted in Fig. 3.
Shown with the exact density are its transformed
Edgeworth approximation and its transformed Gaussian.
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setting Ll = L2 1 2

As a second example, I consider Case (c) of Figure 2

= a, = a, = 1, is My = 1.83dB.

of Reference [4], with the specification N = 2, a, = 0.3;

a, = 0.6, and Ll = L2 = 2. For this we have Yg = 1.14
and Yo = 2.04. The log transformed Edgeworth approximation,
Equation (1.53), is plotted with the exact density in
Figure 5. Here, Eguation (1.60a) gives My = 9.16dB while
the exact value given by Equation (1.25) is My = 9.39dB.
The log transform of the Gaussian is not a good approxima-
‘tion, but here again the Edgeworth and the exact density
are for all practical purposes identical.

For a final example I examine a three group problem
(N= 3) using the reéults of Section 1.2.1.2 to compare
with the Edgeworth's approximation and the Gaussian.

In this ekample, a; = l, a =8, L, = 2, L, = 4,

2 3 1 2

and L3 = 16. Using Equations (1.49) and (1.50), I find

.86 and Yo = 1.28. Eguation (1.53) and the exact

= 2, a

Yg =
density of the level as given by Equation (1.33) are
plotted in Figure 6 with the transformed Gaussian. Once
again, Equation (1.53) is exact for all practical purposes
while the Gaussian assumption will result in some error.
Thus, from our examples for Yg and Ye not too large,

i.e., < 1.5 and 3 respectively, the first four terms of

the log transformed Edgeworth series adequately represents
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Fig.5 Probability density of the level for the case N=2,
L,=L2=2,;L‘=.IO/3jond o573, Ys* I.l4.ond
Ye =2.04 . Shown with the exact density are its

transformed Edgeworth approximation and its

transformed Gaussian.
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LOG
TRANSFORMED
GAUSSIAN

LOG
. TRANSFORMED
EDGEWORTH

EXACT

N

A LEVEL OF SHORT-TIME AVERAGE MEAN SQUARE PRESSURE,

dB (arb. ref.)

Fig.6 Probability density of the level for the case N=3,
L':Z, L2=4, L3:‘6 ’ /.L':, ,/.L2=|/2, Ond
p3=1/8. ys=.86 and yg=1.28. Shown with the
exact density are its transformed Edgeworth
approximation and its transformed Gaussian.
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the levels, while the log transformed Gaussian requires
Yq y Yo % 0 for it to be adequate.

I now apply the foregoing analysis to the N= 15
problem of Reference [4]; This problem involves
estimates of ocean traffic in the North Atlantic.
Components from each of the ships are grouped with 3dB
quantitization in N= 15 steps, with components within each
group numbering as high as Li = 57, as is shown in the
first three columns of Table I. With the use of
Equations (1.50) and (1.51) I find vy, = 1.025 and
Yo = 1.743. 1In Table I, the contributions of each of the
groups to the mean, variance, and coefficients of skew
and excess are also tabulated. As is clear from the
table, groups 9-15 contribﬁte very little to the overall
density, since the variance, skew, énd excess do not
change (to within three decimal places) beyond N= 8.
Reduction to an eight group problem, however, is not
much of an improvement over the i5 group one. But,
Equations (1.46), (1.47), (1.50), and (1.51) are very
simple for any N, and in comparing Y and Ye for this
case with those of our previous examples, we can expect

the density of the mean square pressure to be closely

approximated by Equation (1.45). Similarly, Equation (1.53)

should yield the density of the level in dB, which for all
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practical purposes would be exact. Equation (1.45) for
this case is plotted along with the Gaussian in Figure 7,
and Equation (1.53) is plotted with the transformed
Gaussian in Figure 8. The Gaussian pdf is seen to depart
significantly from the Edgeworth pdf, even for a case
having a very large number of line components such as

may be appropriate to an actual oceanic situation.
However, with reference to the examples above and

Figures 3-6, we are justified in expecting that the
Edgeworth pdf is virtually exact.

As noted earlier, an analytical expression has not
yet been derived for the statistics of the log transform
for N > 3. However, I can estimate the mean from
Figure 8 to be (supported by a numerical integration of

Equation 1.53)

My N 7.2dB

The Gaussian assumption used in Reference (4] led to a
slightly higher value for the mean (¥ 7.5dB) as a glance

at Figure 8 would explain. Equation (1.603 gives

Hp ¥ 7.51dB affirming the result obtained by Dyer [4]. The
standard deviation as computed in Reference [4] of 1.2dB
appears reasonable, again by inspection of Figure 8, while

Equation (1.60a)yields oy = 1.404B.
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Fig.7 The Gaussian and Edgeworth approximations of the
probability density of the short-time average mean
square pressure of the noise that may be sensed
in deep water near Bermuda in winter, for a [/3-oct
band at 60 Hz and an omni-directional hydrophone.
The ships have been grouped in 3dB steps in
fifteen groups, with overall mean, variance, and
coefficients of skew and excess as specified in
Table I.
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Fig.8 The transformed Gaussian and the transformed
Edgeworth approximation of the probability density
of the level for the case plotted in Fig.7.
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We may conclude that when the number of groups which
add significantly to the overall density is greater than
3, then use of the Edgeworth series approximation can be
guite valuable in estimating the pdf of the received
signal. While it may be tempting to use a Gaussian pdf

for values of Yg £ 1 and Yo X 2, significant differences

Y
in the pdf for the mean square pressure or the level
should dissuade us from this course. It is true that
the mean and standard deviation of the levels are less
sensitive to the differences between the Edgeworth and
the Gaussian approximations, but the Edgeworth is not
much more difficult to use and is thus to be recommended.
The Edgeworth's series approximation therefore
provides an easily implemented method of (1) estimating
the statistics of the level in dB for even the most
complicated realization of Case (c), and (2) revealing
the extent to which the Gaussian assumption is a valid one.
This is particularly valuable because one cannot merely
assume on the basis that N is large that the Gaussian
assumption will be a valid one. The critical factor is
the amount of energy in each group. If one or two groups
contain most of the energy, then the governing density

will be significantly different from the Gaussian and, in

fact, will more closely resemble the density that would be
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associated with the most energetic group.

If the tails of the pdf are the primary regions of
interest, then exact computer solution may be a viable
alternative for a complicated realization of Case (c).
It should be noted, however, that more terms in the
Edgeworth's series can be taken to obtain any arbitrary
accuracy desired, or alternative methods such as the
Chernoff bound or "tilting" the density can be applied

[25]. These methods will not be discussed in this work.

1.2.2 Amplitude Rate Densities

In this section of the thesis I will derive the
pdf's of p, %, and L for the multiple source case.
These rate variables are dependent variables with respect
to the amplitude variables exéept for certain special
cases. This fact introduces a great deal more
complexity than has been encountered up to now. Solution
for the joint densities of amplitude and amplitude rate
are generally required before the marginal rate densities
themselves can be found. Solution of the rate density
for one variable does not lead by simple transformation
to the solution for the rate densities for the other two

variables as was the case for the amplitude.

2

In general, the rate variables depend upon both o1



-82-~

a measure of the intensity, and v?, the single path mean
square phase rate. This implies that there are a plethora
of different possible combinations of multiple sources
with different or same ci and/or different or same v?2.
The breakdown into the same cases employed in Section 1.2.1
will be followed here, though their definitions must be
expanded to include v?., In Section 1.2.2.1 I examine
Case (a), the case of multiple sources or lines in which
ci and v? are the same for all source/receiver péirs.
This would apply, for example, to noise which is flat
across the passband of the receiver from a small
geographical area or sector. 1In Section 1.2.2.2 I
investigate various special cases when the ci's and the

2

v® may be different for each source/receiver pair, with

more general applicability, including Cases (b) and (c).

1.2.2.1 Multiple Components of Equal Intensity
and Equal Single Path Phase Rate

I will first solve for Pk (%¥) which is the pdf for

LE
¥ from L sources or components of equal ci and v®. From
: L L
Xeotal = nil Xp ! it is clear that Xtotal = nzl Xp* Thus

for this, and only this variable, we can employ all the
very nice properties of sums of independent random

variables. For the pdf of XLE



XLE

or
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Yy ¥peeo X
= j J ce Pk(yl)Pk(yz-yl)...Pi(x-yL)dy...dyL'
-0 = ., ,=0
. . .(1.63)
® 2L .
= f% f b = %% au (1.64)
(b? + w?)

-CO

by making use of Mk(w) (Equation A6), where b = l/Zoiv;

For x >

0, therefore,

d

L-1

1t
ewX

T d

L-1
w

l:(w+ib)

i

w= ib

(1.65)

Applying contour integration around the lower half plane

for ¥ <0 yields, as expected, the identical result given

by Equation (1.65) because Y is symmetric. Applying

Equations (1.63) and (l1.65) for L

P'

X1E

(x) = 2 exp(-b[%])

1-6 7

I obtain
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P, (%) =3 {b%[%|+b} exp(-b|%|)

X2E

UGS T {b*| %]+ 3b2|%| + 3bYexp (-b|%|)
E

S s {b*[%]®+6b°|%|2+ 1507 |%| + 15bYexp (-b| %)
E B

2 +105b%| %

P, (%) = gigw (b%[X|*+10b%|%|®+ 450 |%

+ 105b} exp(-b|%]|)

o
><e
~

I

g%?{ {b®|%|®+15b%|%|*+ 105b" | %] %+ 420b°% || 2

+ 945b% || + 945b} exp(-b|¥|)

.(l.66a-f)

Upon inspection of Equations (l1.66) the general form of
the density for arbitrary L emerges (which will be proven

below) :

—

L

B. (1) = 1 o~blx| (L+k=-2) !

XLE (L-1) 1 2 k=1 (k-1)! (L-k) 12K

g

L—kbL—k+l

1

« . . (1.67)
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Clearly, u. = 0, and in general
XLE
o 1 ¥ (m+k-2) 16" Y noken  -by ..
Elkpgl = L-1 k-1 | X e " X
(L-1)12 k=1 (k-1)!(L-k)!2

o

. (l'68)
which, for n odd is 0, and for n even:
.n 1 N (L+k-2) ! (L-k+n) !
Elk;gl = =T L T (1.69)
(L-1)!2 b k=1 (k=-1)!(L-k)!2
Using the independence property‘[lﬂ I get
e 2 — 2 _ .2
E[XLE] =g = 8Lclv ~ (1.70)

XLE

This result is identical to Equation (1.69) when n=2.

A much more elegant solution for Pi (¥X) will now be
LE
developed. The approach yields the complete solution for

the equal o2 equal v? case including P, (p), P, (A), and
1 °LE Ay
all the joint densities of amplitude and amplitude rate.



L
I begin with Equation (1.12). Because y . = ) Xy
n=1

L
iLE = nzl Xn’ the xn's are independent of
each other, and the kn's are likewise independent of

other the joint density PX % (x,%) can be expresseéd
"ALE
follows:

L

. i 1 e—iwx e-icxdwdc
P . (X,%) = —ir -y I {
X1 X1,E 201 4T

[w+ i(5%7+-20iv202)]L
1

- 00 - 00

which is just the inverse transform of the Lth power

Equation (1.12). I use the calculus of residues and
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each

as

(1.71)

of

perform the integration over w first, which has a pole of

order L:
L [e ¢}
. . L-1 . ..
. 2mi d -iwy -ioY%
Xrkpg © 201) (n-1)1an? ) aqutt LD
S B | 2.2 2
w = -1{73{ + Zolv o ]

and
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L - © 1 2,22y _ 3t
1 ] L-1 f . (EE{ + chv c%)x = 10¥

P. . (X,%) = [202 X do

1 2m(L-1) !

e . . (1.73)

Pefforming the final integration I obtain the desired
result, the joint density of the sta mean square pressure

x and its rate ¥ for L sources with equal oi and equal v:

3

L-=
o2
P . (X, %) X exp |- Xz - 25T
XX (L—l)!2L+10§L+lv’§Fr 20 8osvey

< e . (1.74)

To find the marginal density PX (X) I integrate over ¥
LE
in Equation (1.74):

(x,%)dx (1.75)

to obtain:
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L_1
L s 2 4
P, (%) = 2;2 1 —— X “ K dxl
XLE 1] T (L) ZﬁGiVZ 4v? L-5 ZGiv
. . (1.76)

where T (L) is the Gamma function and KV(Z) is the modified
Bessel function of order v. If we make use of the

identity [20]

L

K (z) = L e Z Lol
L-% 22 k=1 (k_l)g(L—k)!(ZZ)k‘l

it is easily proven that Equation (1.76) is identical to
Equation (1.67). When Y is integrated out in
Equation (1.74), I obtain PXLE(X) which confirms the
result first obtained by Dyer [4].

The next step is to solve for the joint density of

p and p. This is easily accomplished b? the following two

dimensional transformations of Equation (1.74):

32 (PT (2pb ;
P . (QIF.J) = == f J P Y (er()dxdf( (1-77)
pIpLE
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which yields:

p2t-1 o? b2
P . (p,p) = - = - exp - 55 (1.78)
PrPrp (L-1) 1223y yzw 207 207V

This result is rather remarkable. One can see immediately
that p and §p are independent as they are for the single
source case and furthermore that p is independent of L,
and PbLE(b), the density for L equal receptions is in fact

identical to Pﬁ(é), the density for the single source.

Integrating over p and p respectively in Equation (1.78),

I obtain:
p2L-1 ' ‘ 02
P (p) = - exp|- =— (1.79)
°LE (L-1) 12 1ciL 202

The mean and variance are respectively

u =
PLE 2

(L-1)!
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where (2L-1)1!! = 1le3+¢5+¢¢(21,-1)
2 2 2
o} = 205L - u
PLE L PLE
and
. 1 B 52
Pb (p) = —— exp |- (1.80)
LE 2mo2v2 202v2
1 1
u =0 and o? = g?y?
PLE PLE 1

To complete'the statistics for this case, I make the
final transformation A = e 1ln x and A = e%/x in

Equation (1.74):

A/e A Me
. 32 € . .
P, 2 (AA) = z5=i- f J P, . (x,%)dxdyx (1.81)
A,ALE 3/\3./\ o - XIXLE A’

to obtain:
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1. A
. exp [ (L+35) =] ' 2
Ppoh (M) = gy — exp| -e™/* 2;2 * ezsAcyZvZ
'“LE 2 o] v/a2m (L-1)! 1 1
« . .(1.82)

3

Integrating over A in Equation (1.82) I obtain

1 LA 1 Al
P (A) = exXp |=— = = exp(=) (1.83)
ALE ZLoiL(L—l)! [e 20 €

u = ¢[ln 202 - v + S,(L)]
ALE 1 1

and
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S,(L) = ] 70 S,(1) =0

Again this result was previously obtained by Dyer [4].

Integrating over A in Equation (1.82), I obtain

p; (b =112l M (1.84)
LE 27 (L-1)! (1 + W)

The moments of A for the equal reception case are

interesting:

.

0 ; n odd
. n,n-L+% _ . oY 1
E(AD ] = { & X2 ﬁ(‘g‘_ll)’l“m pm2)t B (1.85)
] ' %z]’_,

Note that the single source case yields an infinite second
moment as reported in Section 1.1, however, for L > 2

the variance always exists.
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1.2.2.2 Multiple Components with Different
gi's and Different v¢'s

The most general case of this problem is Case (c) of

Section 1.2.1, i.e., there are many groups N, and within

each group there are Li receptions with identical oi and

v2. Because there are now two parameters which can vary
fo; each source, this impliés that in general for
multiple sources the number of groups will be larger for
the rate variables than the amplitude variables. I
~define cij
receiver pair. Considering the most general case and

and v§ to be oi and v? for the jth source

using Equation (1.12) I find the characteristic function

N NL4
1 J, 1 1
M, o(w,0) = 0 (57) (=) 17 (1.86)
NXr X j=1°21 913 (w=i[my—+ 202,v202]) 3
205 . 1573
13
Taking the inverse transform
N NL =7 iwy_ioy
. 1 1,773, 1 e e “dwdo
P0G =3 I G TG If 1~ (1.87)
NGX 4 §=1 24 Olj (w-i[zlz + 202 V2021 d
e COmeCO o’lj 13 3

Unfortunately, I have been unable to evaluate this integral;

thus a retreat for the moment from the most general case
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is in order. Much more progress can be made in solving
for the density of % because here we are dealing with a
sum of independent random variables, and it is not
required that we know the joint density; This analysis
will ultimately lead to a very simple and useful
approximation of the density for ¥ under the most

general case. Upon completion of this analysis I will
return to the problem of ﬁhe joint densities and the pdf's

of 6 and A.

1.2.2.2.1 Solutions for P, (%)

First I will consider the exact solution when the

2
1

Case (b). I apply Equation (1.63) for L= 2:

product oiv is different for each source/receiver pair,

2 :
* =5 e (1.88)

where bi = l/ZGiiyi, and the * denotes convolution.

Performing the convolution

(1.89)
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Rewriting Equation (1.89) in a slightly different way,

by =by|x] b}  |b, =b,|x|
P)‘( ()‘() = —-;—--g—-7 _2!'.. e 1 - _._2.__1'__2 —2—2— e 2 (1.90)
2D b2—bl bz—b:L
. ., b3 ~bslxl o
Now P, (%) = P, (%) * -5 e . Examination of
X3p X2p
Equations (1.88 - 1.90) reveals that successive
convolutions can be done by inspection:
b2 [, b.b b, % b, |
_ 2 1 °1°3 1'X 31X
PX Oa = 2 > 12 2 2 bse A
3D bz—bl \ b -bl
b? b.b -b, | x -b,| ¥
-t {23 b.e 2 - be ° (1.91)
pZ-p2 [ p2-p2 | 3 2
2 1 3 1

Rewriting this result so that the method of inspection can

be applied again,

21.2 _
bib3 by bl[Xl
P (X) = T e -
X3Dp (b§ - bi) (bg bi)
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2,2 .
- bib3 by Palxl
2 _ 12 2 _ 2 2
(bZ bi) (b3 -b3)

b2b2 b, =-b.|x|
+ 1.2 Se ° (1.92)

2 _ 12 2 _R2
(b3 = DbJ) (b3 - Db3)

and thus,
2212 1ot
P, (%) = 222374 121 blm}
X4p (b2 - b2) (b2 - b2) (b2 - b2) | 2
2~ Py)(by=1Dy) (b - by J
r 3\
21.21.2 -—
) bibip; <EZ . b2|xly
2 _ 12y (R2 _ W2 2 _ 4.2 2
(b2 - %) (b3 - b2) (b3 - b3) |

21,212 e o)
. b1PoPy JE; e‘b3IXIr
2 _ 2 2 _ .2 2 _ w2 2
(b - b2) (b2 - b2) (b2 - b2) J
b2b2p2 b, -b ]xl\
S — i 2 2 — Jote 400 (1.93)
(by = by) (by = by) (by - b3)

etC...

Thus it can be seen that Pk (%) is a weighted sum of
LD
the individual single source pdf's of ¥. It is also




evident from the L= 2-4 cases that in general

L 2
H b 3 »
S T S St ~by [X]
P, (%) = 5 ) 5 I e
ALD i=1 i 2 _ 2
I (bZ=-Dbs)
m i
m=1
m#i
or more simply in terms of cii and Vi

XLD i=1 L [N 2 y 2 20’2 V
§ (clivi - Olmvm) 1i71
m=1
mFL
Solving for the moments,
(
0 k odd
.k L
Elxgpl = Y
L j=1 3 1
k! ) £ %rT k even
i=1 ~i L 2 2 b. +
L I (b%2 - b?) i
m i
m=1
mFi

Making use of the properties of sums of independent

-97-~

(1.94)

(1.95)

(1.96)
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random variables,
L
c)?( =8 ) og*.v? (1.97)

Equation (1.96) with k=2 confirms this result.

An exact solution for Pxﬁ(i) for the most general
case considered in the beginning of this section would be
an N-fold convolution of Equation (1.67) or (1.76) with

itself. An exact solution for N=2 will now be presented.

L

1 (L. +k=2) ! L. —k+1
P (%) = L ] L —T b, ©
2% (Ly=1)1271 k=1 (k=1)!(L; - k)12
L
2 (L,+m-2)! L.-m+1
. 1 2 L 2
(L2—1)12L2 m=1 (m-1)! (L, - m) 1207 2
® -bylyl -b,yl%-y| L,k L,-m
f e L2 vl Y Jg-y] 2 ay (1.98)

- OO

I will now evaluate the integral. I consider ¥ >0

(we know the result for ¥ < 0 must be identical), y> 0, and
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then y < 0:

For ¥>0 and y> 0,

let y = %t
® L +L,-k-m+l [ =-b.%t =-b,%|l-t| L -k L,-m
[ = ¥ 172 f e o 2 £ 1 |1-t | 27 at
o] o]
° . L] (1.99)

To remove the absolute values this integral must be further

subdivided for t< 1, and t> 1:

* L.+L,~k-m+l | -b.% (! =(b,-b,)%t L.-k L,-m
J=>.<12 ezJe 1772 e 1 (1me) 2 ar
0 o]
b,  =(b,+b.,)%t L, -k L,-m
+e 2 f e T T Tl ? 0 a (1.100)

The first integral in Equation (1.100) is the confluent

hypergeometric function encountered in Section 1.2.1.1.
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The second integral is a degenerate hypergeometric

function known as Whittaker's function [18,24]. Pefforming
a similar analysis for y< 0 also yields Whittaker's |
function. Simplifying to as much an extent as possible,

I obtain for the final result:

L, L 8. a+d-1
12 (Ll+k—2)!(L2+m—2)!b(ibzlx|a |

k+m-2

P .()’() = 1 -

2X r(Ll)r(L2)2L1+L2 K51 m=1 (k=1) (L ~k) ! (m=1) 1 (Ly-m) 12

+ 1 exp-by %) L) wie, a8, (5,-b)) [x]]

o+8

2

+ expl- 5 (b= b)) [X[ 110, +5,) [X]] o)

Wy 1o [y +0)[5I1 + D expl- 3 by -1 [%]]
2 2

_(a+6
. . 2 e
[ (b +b,)%]] PO W o gasol ®1+ B 1K1 (1.101)

2 2
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where,
u=Ij-k+l
8 =L2—m+1

M(o,8,2) is the confluent hypergeometric function,

and Wv u(z) is Whittaker's function.
14

In order to check Equation (1.101), if I let

t

I
[
[

= 1, then I should obtain Equation (1.89). For

1 2
Ll = L2 =1
. _ Dibylxl : :
P2>‘<(X) = ——=—— Jexp(-b, [%[IM[1,2, (b,-Dby)|x]]
+ expl= 3 (by = by) [T Loy +5,) |17 Wy _ [ (b +by|%]]
+ expl= 3 (b= b)) [X]11(by +b,) [X[171 Wy [(by +by) 7]

.(1.101a)
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I now make use of the following identities [18,24]:
o2
M(1l,2,2z) = - sinh z ,

W A(z) =W (z) ,

U, H,=A
= Z
WO,A(Z) = JVz/7 KX(Z) , and

K, (w) = /T/2z e ¥
%

where Kv(z) is the modified Bessel function of order v.

I obtain

(z) =Wy ,(2) = exp(- 3)

1
Or"/z

and applying these results to Equation (1.101la):

P (%) = —5 bz}bl [exp(-by [%]) - exp(-b,|%|)]

5B [exp by K1) + exp (b, kD)




-103-

It is easily shown that this result is identical to
Equation (1.89). However, though Equation (1.101) may be
exact, it is of significant complexity and thus of
limited engineering value. For arbitrary N it is
therefore clear that PNX(X) is analytically out of hand
at this time. The complexity of the result, however,
once again motivates an approximate solution. An
Edgeworth's approximation turns out to be gquite simple
and very useful for even the most general case. Recall
the Edgeworth's series is given by Equation (1.42). 1In
the present case, however, because ¥ is symmetrid about
the origin, the coefficient of skew, Ygr is identically 0.
Thus it remains only for me to solve for Yar the coeffi-
cient of excess. First I solve for K4, the fourth order

cumulant or semi-invariant [14] of ¥:
N 2
Ky = E[x"] - 3(E[%?]) (1.102)

Performing the required calculations on PX(X) given by

Equation (1.4) I obtain

Ky = 19203\)“ (1.103)

Recalling Equation (1.49) and considering N groups of‘Li
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identical sources each, the most general case, I have:

N

K, =192 § ©L.,o% v} (1.104)
N4 j=1 1 1i71i

From Equation (1.70) I have for N groups of Li sources,
o, = ] 8L.o%.v? (1.105)

Applying Equations (1.44), (1.104), and (1.105), I obtain

the result
N 8 .4
.zlLi 91iVi
Yo = 3 - — (1.106)
L.o,.V5%
(jzl 3913V5)

and the Edgeworth's series is then:

P (X)) = = {z(n) + vz (n)} (1.107)

or
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-2

n° + T (1.108)

It is clear from Equation (1.106) that as N becomes large
or the Li become large, PNX(X) approaches a Gaussian.

The maximum value of Ye is 3 for a single source/receiver
pair and for L identical ones Yo goes to zero as 1/L. 1In
Figure 9 I have plotted the exact density for N=1, L=1
given by Equation (1.4) with its Edgeworth's approximation
given by Equation (1.108). This is clearly the worst
case. I have let civ = 1 for convenience. 1In order to
gain some understanding of the behavior of Ye for this
case, in Table II I have listed Ye and PX(O) from the
exact density, and its Edgeworth's approximation for
various values of L identical sources. The percent error

is also tabulated. From Figure 9 it is evident that the

error shown in Table II will be the maximum error of the
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Fig.9 Comparison of Edgeworth’s approximation for X when
N =L =1 given by equ. (1.108) to the exact density for
X given by equ. (1.4). This is the worst case.




-107-

TABLE IT

The maximum point by point error of the Edge-
worth's approximation to P, (x) for various
values of L. XLE

Also listed is the value of vy
of excess for each L.

o’ the coefficient

P. (0)
L y XLE 3
e Error
Edgeworth Exact
1 3.00 .1939 .2500 22
2 1.50 .1184 .1250 5
3 1.00 .0916 .0938 2
4 0.75 .0771 .0781 1
5 0.60 .0678 .0684 1
6 0.50 .0612 .0615 .5
10 0.30 .0463 .0464 .3
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approximation in the main lobe. From the table
convergence to the Edgeworth's is very rapid and it
appears quite reasonable to assume that the Edgeworth's
approximation will be a very good one when Ye N 1. It is
true that the Gaussian assumption will also be reasonable
for Yo < 1, however, because the corrections required by
Equation (1.108) are trivial, accuracy need not be

sacrificed for expediency.

1.2.2.2.2 Solutions for the Joint pdf's,
gé(b) and PA(A)

In this section I will first solve the problem of
two different source/receiver pairs, i.e., the oi»and v2
are not the same. I will then generalize the analysis
and solve for N=2 of Case (c¢). Finally, I will indicate
the analysis required for arbitrary N.

For two independent pairs, the joint density of
Xl’kl’xz and iz.is given by taking the prpduct of

Equation (1.9) with itself with different ci and v?:

1
P . o (X1rXqsXnsXo) =
Xy3Xq3Xas Xy 171712242 2 2 2 2=
1°A1272° 72 40102 /2ﬂ4xlollvl 2w4x2012v2
. 2 . 2
X X X X
. expl[- i - z ] exp[- i S z 2} (1.109)
207, 209, 8X1971V1 89127
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Now, the pdf we are after is the joint density of yx and

¥ where y = Xy t Xy and ¥ = Xl + Xz. I note that in
Equation (1.109) kl and 22 are jointly Gaussian. Because
the density of their sum is given by convolution, the

following can be done by inspection:

U 1
P o (Xy3XosX) =
Xq13XpsX 1772 2 2 22 o
1’72 4ol0; /2n(4xlollvl + 4%,015V5)
X X .02
. explz' i - i - 2 ,ZX 2 2 ] (1.110)
2011 2012 2(4chllvl + 4x2012v2)

The final result is obtained using the convolution again:

. X 1
PX,X X% = exp(- 2 ) J 2 52 272 2=T27
2D 2012 o 4011012 2w[4xlollvl + 4(x-xl)012v2]

2
. exp[_xl ( 12 - 12 ) - — X - Z]dxl (1.111)
2077 2035 - 8IXO0p3vp F (XXp)oypv,]

I now let Xy = xt:
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1
Xfexp(-x/202)) )
P OGLXY) =
X’X 2 2 — o= - p—o—
2D 8011012/§F 0 JEizvz * t(cllvl a,V5)
2 2\ ‘
x(05, = 07.) .2
. expl}t( 13 - Ly —— * Z]dt (1.112)
201197, 8xa1 vy + 8xt(oyyvy = 07,V5)

I have not been able to evaluate the remaining integral in
Equation (1.112), however, as will be demonstrated below,
numerical integration is very simple. Making the

transformation to p space I obtain:

3 A2 /02
P, (00 = - exz( - 0 .
) 2 2 S A 272y
2D 2011012/7F 0 /Eizvz + t(ollv olzvz)
2, 2 2 '
p° (o3, = 051) .2
. expli—t( 13 - L, _ — pz — z}it (1.113)
2011912 2075V, + 2t(07 V) = 07,V5)

Integrating Equation (1.113) over p I obtain the marginal

density of p for two different sources:
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2 2
;.0 1
P, (P) = ii_}z { |
. N G GG PN “blz o T E(03V] - 93,V)
52 :
. exp |- it (1.114)
207,v5 *+ 2£(97,V] - 07,V))

The integral in Equation (1.114) can be evaluated by
expanding the exponential in its power series and

integrating term by term. After significant labor

I obtain:
|6lo2. o v2 - g2 v2) o
P, () = ,”}l 12 11 1 13 227 (D) (atD)
2D (Oll 1 olzvz) n=0
(02, -c2)p? " 2 2
. [ 12 1l I(-n - 2, -———f ) - I(-n-7, f )
chlvl - Zolzv Zollvl 2012v2

< . .(1.115)

where I'(a,z) is the incomplete gamma function [23,24]. The
appearance of |p| does not mean that Pé (0) = 0 because

2D
the limit as p+ 0 of the incomplete gamma function is

infinite. If the incomplete gamma function is expanded in
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its power series, I get:

P

2 2 2 2 2 2
02,05, (0%, v - g%, v2) o=

. 1712 2°2

5 @) = 1112 111 12 2° ¥ (1) (atl)

o2 b2 b
2D ol (07, =07,V  0=0

2 _ -2 —n
912~ 11 s = p2 T 2n-2m+l 2n-2m+1
S erewesmsreny ) , 1 ) %12% RSN
Ollvl - Glzv m=0 m.(m—n—i)
. . 0(1.116)

In obtaining numerical results from Equation (1.116) I
encountered overflow problems in computing successive
terms of the series before an accurate result could be
obtained. 1In order to avoid this problem, Equation (1.116)

should be rewritten as follows:

2 2 2 2 2 2
os.vs (0f.v: = 0% v2)
P, (p) = 11°12771171 1272

0 o2 _ b 272
2D J2m (ollv1 olzvz)

2 _ 2 y.2
019 = 919%,V| ¥ ()™ 0 )m
in 2 2\)2

© (
o, v, L (=1 (n+D)
1272 Lo ot v

a 11°1 122

-~k 2 = t ___l
Olzvz m=0 m! (m-n 2) 20
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® (02, - 02.)0%2 V7] = m .2 m
2 11 171 -1
T 911V z (-l)n(n+l)[: - 2 _ b 12 z = 1 ( S 2)
= - = | (m-p—=
0 Gllvl clzvz m=0 m! (m-n 2) ZGllvl

.(1.117)

Values for PbZD(b) were computed by numerical integration
of Equation (1.114) and from Equation (1.117). Depending
upon the value of p desired, the numerical integration
of Eguation (1.114) to three place accuracy was about
40 times faster than use of Equation (1.117). The value
for p = 0 is obtained from Equation (l.114) analytically

and exactly to aid in these comparisons. Performing the

integration and simplifying as much as possible:

=3 _ 3
. (o) = L 911%1 7 910V
2 - L 12 o ~4 2
) /am1%11Y1 T %12V2

1

2 2

2 2 2 2 _ 2 .2 _
. 011975 (071Vy = 97,V)) 912791
2 _ 2 b2 b2 b2 _ b2
(07, = 071)2/2T (o7,v] = 971,v)) (91,v9 = 971V7)
F13%3 =011V
b2 2 _ 0B 2 w2 2 _ 2 .2 _ 2 %
» 10 |011%12% T 2%19% T 915911 T 91,09 T 910)2%5Y, J 91,- 93,
208 V2 - g% 0% v2 - g% 02 v? - 0% (02, - 6%2.)20..v OiZUE"011“§“
11V1 T 911%12Y2 T 911912Y1 T 911091 T 91174911V
g?. - g2
12 7 %11

. .+ . (1.118)



-114-

The mean of § is zero and the variance of p is obtained
by interchanging the order of integration in

Equation (1.114), integrating over p first, then t:

2 2 2 2 2 2 2 2 2 2 2
> _ 911%02 O12V2  911V1  9311V1 T 912V3 012
Gb T 2 o2 T 752 + 02, = 02 in o2
20 0%, - 0%, 11 12 12 11 11
. . .(1.119)

Despite the complexity of Equations (1.114) and (1.117)
it appears as though a Gaussian approximation is an
exceptionallylgood one. For values of Oil’ vi, oiz, and
v; taken from data, which will be discussed in more
detail in Chapter III, the values of PQZD(b) from
Equations (1.114) and (1.117) deviate from the Gaussian,
using the value of GEZDfrom Equation (1.119), only after
the fourth significant figure. A more formal
calculation with equivalent results is obtained if the
coefficient of excess, Yor ié solved for. I apply the
definition of Yo from Equation (l1.44 ), perform the

two integrals required, and obtain Ye for p for two

different sources.
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1 6 (b _. a6 b 2 .2 2 .2y .2 4
Y = ———=— [30], v, =307 v + 6(c7,vy - 0l v )o: ]-30,
e 012 011 12°2 111 111 1272 p2D QZD

.« .« .(1.120)

Applying the values of the parameters used above and
Equation (1.119) in Equaﬁion (1.120) I obtain for this
example that Yo = 2.4 x 10-7 which certainly warrants the
Gaussian assumption! Coupled with the result ofﬂ

Section 1.2.2.1 in which it is proven that P () remains

6
LE
identically Gaussian and independent of the number of
sources, it appears quite reasonable to state that even
for the most general cases, Pb(b) will for all practical

purposes be Gaussian.

Making the transformation A = elny in Equation (1.112),

I obtain
S5, éA/s 1
iy x5 - 55751 1
P . -
A A ’ Q.22 2 72 oy
2D 8e?0],07, /2T ‘o Voi,vy + e(o] v - oV

Ne, » 2 .
e ' T(of, - 0%) Aess
texp [_t[ 1-2 2 11 } - 2.2 2 eZ A2 2 2 2 de
2011012 8e“os v, + 8e“t(ogf. . vs -0 sz)

1272 1171 1

. (1.121)
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Integrating over A I obtain

1 2 .2 2 .2 2 .2 2
+ -
. (b = 12[0) vy + t(oy;vy - 07,v5)] de
Aop €02 02 d [ + t(=— - =) 11402 V2 + 4t(0? v? - o2 \)2)]-|-Ai %
0 11712 Uiz 612.1 Oiz 1272 1171 1272 g2

« . . (1.122)

Making an enlightened change of variables allows the final

integration to be performed, and

. A | 2\); -C A%/e? + 4\);
PAZD(A) = (Ai N 4v2)3/2 -4ollvl + B+ E[1 + 7 1¢
82 1 \ : J
4 . 3
A ) c - 2v§ A2/€2-+4v§
-?ﬁm*"“uvz‘LB*TE[lJ’ F It
82 2 L )
. . . (1.123)
where:
3 1
A= gc 57 - o2
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L 4
g -2 1171~ %1272,
3 2 _ 2
12 7 %11
L 2 2
S 8 05 N 9123
2
12911
2,2 2 2 . b2 b2
D= a(y2 - 22171 T12%2 |, A2 °11¥1 T %912Y2,°
= \)1 - - + \)2)—7 4( )
O,Z O,2 € O_2 Gz
12 11 11%12
(o . v2 = gh.v2) 2
_8 111 12V2 8 2 _ 2
E =3 [jgz ~ . 2 + 3 (071v] ~ 91,V))ET
11%12 7 911%12
Y G (911v] 1 - 01,93
- Y 2 z = vl ) >
2¢ 2 1071097, (07, 1) (971V] — 91,V3)

Though arithmatically messy obtaining the

from Equation (1.123) is approximately 50

than numerical integration of Equation (1.

results in three place accuracy.

exact solution
times faster

122) which

The mean of A is of

course zero and integrating Equation (1.121) first over

A and then t, I obtain the variance,
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v 2 2 _ % 2 2 6 2 .2 _ 6 2 2
o2 =22 [T11%12%1 7 T10%11% | %1211 T %10, 12
A 2 .2 2 _ .2 b _ 92 2 4 o
2D 03192 912 = 911 912 = 2911%12 * 1y =
.. . (1.124)

Unlike the single source case; the variance is finite
though the next nonzero moment E[A;D] is infinite.
The rule derived for equal source/receiver pairs appears
to apply to unequal ones as well. Namely; E[AQD] exists
only for n even and n < 2L, where L is the number of
sources. An example of PAZD(A) is plotted in Figure 10
il’ vi, Oiz, vé taken from data. The

Gaussian using the variance given by Equation (1.124)

using values for o

is also plotted. The Gaussian assumption is clearly not
warranted in this case, and in fact because densities
for A for all cases are related to the Longuet-Higgins
type density, the Gaussian assumption will be a poor one
in general even when the densities are appropriately
normalized (see Figure 1, Reference [9]), in which case
the variance of the Gaussian will not be relevant to any
of the source parameters.

I will now generali?e the approach used to solve the
two source/receliver case to solve the N =2 case. That is

two groups of pairs, with Li pairs each, with the same
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Fig. IO The pdf of A for two different sources, equ.(1.123)

is plotted with the Gaussian using the variance
given by equ. (1.124).
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Gii and vi (i=1,2). I start by considering the joint
density Of'XLlE, XLlE’ XLZE’ and XLzE given by the
product of Equation (1.74) with itself with different Li,
Uii and v; (i=1,2), rewriting it slightly to make the

first operation obvious:

. . (X, XX 2% 5)
Xr mr¥r mrXe mrX 1X X 2% o
L B’ XL B XL B/ XL, E
L-1 Ly-1
X1 X2 |
- - L1+l g2 2——2— 2L3 2L3
(Ll l)!(L2 1)12 2n4xlollvl /2ﬂ4x2012v2 9117915
.2 .2
X X % % -
. exp[} 1 - =2 - 2 12 - — 22 ;} (1.125)
2017 2095 897yviXp  89p,VoX

As before, I seek the joint density of ¥, and % where

X=Xy, g t Xy g and ¥ = XL gt XL B A double convolution
1 2 1 2
will yield the desired density and because ¥ and ¥
LlE L2E
are jointly Gaussian as before the first convolution

can be done by inspection:
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2 (X7, X %)
X ' X 142
XL EXLE
L,-1 L,-1
Xy X5
L +L2 2Ll 2L2 2 2752y
T(L)T(Ly) 271 2077 0752 Vo (dx 0] V] + 4x,03 ,V3)

Xl X2 Xz
=P 202 ) 202 ) 2 (4 2. 92 4+ 4y, 02, v2)
11 12 X1911V1 2912V2

Setting up the final convolution after making a change of

variables leaves the following result:

3
L +L_ -2
17272 o X
Py g0 = T, +L,+1 %i 2L
2 X7 X (L) ()21 27 /2m of 1 0752
1 L.=-1 L.-1
, J £t (-t 2
22 ——2~27
/ol,vy + B0 V] — 91,V))

x(o2, =02 ‘2
%mpEt( 12 1% - 2 x2 , ]dt
202 8x0o 12V + 8xt(oi,vi = 12V2)

.(1.126)
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This is a key result and is essentially the solution
of the entire N= 2 problem because this joint pdf
contains all the information required for the solution
for the pdf's of x, p, A, X, 0., A. as a quick check,
if I inteérate Equation (1.126) over % (which can be
done by inspection), I obtain Equation (1.20) and hence
allvthe amplitude densities for N=2 follow directly.

Integrating over ¥ in Equation (1.126),

2 T(Ll)P(L2)2 c 011 915° 8
. L.-1 L,-1
. t T (1-t) 2
M+1y /2, 1 o1
S0 lofpvi +e(o] V] m01,v3)] [20j2+t(26{1 2075
52 - o2 i
o Ll °11 * t("lz 1) 2
[ 2 2 -
W2 Toj,0f vi + B(07105,V] - 97,071 V5)

. (1.127)

_ 1
where M = L1+L2 5

The remaining integral is clearly not a straight-
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forward one, however, we have already solved for
- (X) in the previous section given by Equation (1.101)
aid its complexity has been.noted. Clearly the ¥
densities were handled by much more efficient means in
the previous section. If I transform Equation (1.126)
into p,% and A,A space, than I can obtain expressions for
the densities P b(E)) and P A(A) and their moments which

2 2
have been unattainable until now.

2L.+2L.-1 2
1Ly
P exp (- -2%2—)
12
- (p,P) =
0,0 L1+L,-1 2Ly 2L,
2 T(LT(L,)2 /2w ostlo
. L.-1 L.-1
. J el (- ?
Z 4 2
0 YOI,V + £(O] V] = 07,V))
2 2 2
p“ (07, =-0%,) .2
. exp]:_t[ 12”7 "11 ] _ 8 ]dt
2011910 7 203,v3 + 2t(o};v] - of,v3)

. .(1.128)

Integrating over p I obtain:
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2Ly ZL]_
- 1
(L +1,- 1! °11"%12

(LT (L,) yam

P,(P) =
2‘5

1 Ll—l L.,~-1
. J t = (1-t)
- 2 L1+L2
0 VO1Vy + €(07;V] = 07,vp) [07; + £(o], - 07p)]
62
* exp|- dt (1.129)
207,V + 2£(03;V] = 1,V3)

As a check, if I let Ll==L2==l I obtain Equation (1.114)

as expected. Numerical integration of Equation (1.129) is

not difficult. Solving for the variance, I obtain

2y 2y Ll Ll
g, o 2ty m Doy 9y J £ @A) 7 [ofyv; + elogyV] - o w1
6 - L1+l
2 2/2 T(LT(L,) 0 [03, + t(o}, - 03]

. . -(l~l3o)

dt
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To obtain the final rate density for this case, I

transform to log variables:

Ale

A s e
exp[Z (L +L,Hs) - 5—]
P /'\(A’]D = Li+Lo-1 122L1 2L,
2 e®T (LT (L,)2 V2r o011t 975
1 L -1 L. -1
. J e
< < P4 & - 2 Z
0 VO7pVy + £(073V] = O7,V))
Me, o _ ' .
e (9, - 9y iz Me
"oexpi-t 2 2 T o222 2 2.2 .2 2 .2 de
2011012 8¢ clzvz + 8¢ t(cllvl - clzvz)

. . . (1.131)

and integrating once more over A, I obtain the desired

result:
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. I’(L + L. + l) 1 L-1 L-1
P (A) = 2 t — (1-t)

A L]_+L2+l 7L; 2L, po—
el (L IT(L,)2 /2m o)1 07,2 o VoI,vy + £(01,V] - 07,V5

1

I S

) “L17Ly73

(02 ,-0? ) 2
207, ZCI11"12 8e*07,v) + 8e*t (0] V] - 0,V3)

. . .(1.132)

Equations (1.131) and (1.132) reduce to Equations (1.121)
and (1.122) for Ll==L2==1. The integral for the variance
of AZ is not straightforward and cannot be performed
unless Ll and L2 are known. This completes the analysis
for the rate densities for Case (c) when N=2.

The solutions for arbitrary N are very complicated.
Fortunately, an Edgeworth's series approximation has been
derived for P >.(()‘() (Equation 1.108) and it has been shown
that P b(p) wfll be accurately approximated by a Gaussian.
Unfortunately, p A(A) cannot be successfully approximated
by either an Edgeworth S series or the Gaussian. The
coefficients of skew and excess cannot be found for A
for arbitrary N, thus ruling out the Edgeworth's series,

and though one can certainly fit a Gaussian to A, as
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noted earlier, the fit will not be good, and the variance
obtained from the Gaussian will not be relevant to any
physical parameters of the problem.' For realizations
with N> 2 in which P A(A) is needed, and/or approximations
for P b(b) or P .

N N
procedure can be used for arbitrary N provided ‘computer

i(i) are not good enough, the following

time is available.
For arbitrary N, following the approach used for

N=2, I can write:

P Y J (X X * o 0 X X ) =
e Xe X1 » XNfy
XL XL E, 0 AL BN E
L -1
n
1 “n

— Ln 2702 2L
n=1 P(Ln)z 2w4xnclnvn Glnn

* 2 R
X X
. exp E— ’2‘ - — na - (1.133)
chn Solnvnx

As before, the sum of the xn's involves the convolution of
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Gaussians which can be done by inspection and

P

. (X cee X wX)
Xp Bttt aXp mKC TR LBl

52
- N —_— N
y8m L x.02.V 8 .Z =

2 2 2
o MiT1iVi i21 X3191iVi
Ln—l
N Xn Xn
e I Tn 2Ln exp |- > (1.134)
n=1 F(Ln)z Gln 201

Unfortunately, this is as far as the analysis can be
taken without considering a specific N. Thus, the
procedure would be to numerically compute N convolutions
with respect to the xn's to obtain PNXri(X'k)' Then one
more integratiop over x yields the exact density for

XN; likewise, integration over p and A after simple
transformation yields the exact density for bN and AN

respectively. Perhaps an easier route to P X >.(()(,)()
N 14
can be taken by numerically performing the two

integrations required by Equation (1.87).
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In summary, the solutions for the rate densities
for Case‘(c) with N> 2 are of sufficient analytical
complexity that approximate methods or numerical
techniques must be employed. The densities for even the
most complicated realizations of Case (c) for p and ¥
are well in hand with the Gaussian and Edgeworth's
series approximations respectively. For A, however,

complicated multiple source configurations must be

handled numerically.

1.2.3 Coherent Source Addition

In this section of the thesis, I investigate the
statistics of the received signal when two or more sources
are radiating at the same frequency or so near in frequency
that the receiver is unable to resolve them. The
application of this analysis is therefore dependent upon
parameters of the receiver; i.e., its resolution R, which
is a function of its averaging time T (R % 1/T), and
the source bandwidths, specifically R> Af, and R:>Bi,yi,
where Af is the frequency separation, if any, of the
sources and Bi is the source bandwidth of the ith source.
With these conditions, the procedures used in previous
sections are not applicable, and coherent addition

of the signals must be considered. This analysis will
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-
model random, narrowband, sea noise from biologics,
weather, distant shipping, etc. that overlap in frequency
- in a small band of interest.
The multipath signal, p(t), under the assumptions
of phase random propagation can be written for a single
-~ source as
N
-~ p(t) = r zl cos (wt + 8 ) (1.135)
-~ where r is the single path amplitude, N is the number
of paths, an§ en is the single path phase, whicﬁ is
distributed uniformly between 0 and 2m. For many
- sources at or very near in frequency as indicated
above,
- L N,
p(t) = i: r; f- cos(wt + 6) (1.136)
i=1 =1
-
where LC is the number of coherent sources. If this
anal?sis is applied to random sea noise, then
- Equations (1.135) and (1.136) imply that each radiator
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is CW with essentially constant mean output levels. This
is perhaps not too bad an assumption if integration

times and record lengths are not very long. It is
assumed that Ni354' Vi’ such that phase random propagation
is obtained for each source. Thus, Equation (1.136)
reveals that the problem is one of solving for the
statistics of a rahdom vector which is the sum of L,
random vectors, each with Rayleigh distributed magnitudes
with different means, and uniformly distributed phases.
Forming the envelope of Equation (1.135), I obtain the
quadrature components for one source, and applying
Equation (1.136), I obtain for the quadrature components

of the total wvector:

L
c
X = pcos¢ = | p_coso
hip °m n
and (1.137)
L
o zc . ¢
Y = psin¢g = p_sin
2y 'n n

where p is the rms amplitude of the total vector, ¢ is the
total multipath phase, on is the rms amplitude of the nth

source, and ¢n the multipath phase of the nth source.
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The quadrature components for the single source are
Gaussian [8,9], thus from Egn (1.137) it is clear that X

and Y are Gaussian as well:

1 X
P,(X) = ———— exp |- 5=
X V2mo 2 { 207
(1.138)
PY(Y) = PX(Y)
2 LC 2
where ogf = I o ’ and
I n=1 1n
(%) x?
P, (X) = exp | = s—r
X VZnGiI 2GIIII
(1.139)
PY(Y) = PX(Y)
L
2 ¢ 2 2
where OII = nil Gln Vi

Note that the short hand notation for Y and i is meant to
show that the form of the densities is identical. The
quadrature components are in fact independent. Egns (1.138)
and (1.139) illustrate that no conditions need be placed on

the strengths of the sources or relative values of the

2

n  S- At this point, however, I should caution that if

V

one Or two sources are propagating energy via 3 or fewer
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paths, and they are strong relative to the other sources,
dominant path affects must be considered. Please refer
to Appendix C, and for dominant paths plus diffuse
(Rayleigh) noise see Reference [26].

Continuing from Equations (1.138) and (1.139), the
analysis is straightforward. The resulting densities are
in fact identical in form to the densities for the single

narrowband source as given in Appendix A. The functional

2
I

(Al-A8) they must be replaced by oi and d§1/0§ respectively,

difference is that wherever ¢2 and v? appear in Equations

e.g.,
\
0 p? 5> 0
P (p) = =5 exp|- 5=x|
PL 91 207
c 3
_ V2T 2 _ 2 ™
UQL =5 OI ’ GpL = GI(Z 5) (1.140)
C C
. o_/o .
1 I’°IT
P: (A = = [A] <
A 4e 1 0T .\ 2:,,3/2 '
L [1+—— ( ) A“]
c 4c2 UII
u: =0 , 0% = ® (1.141)
AL AL
(o] (o]

The most important difference, however, is that now the

2
1n

single source they do not. It should be noted, however,

densities for A and & depend upon the 07 _'s while for a

that if v? is the same for all the source/receiver pairs,
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then once again A and ¢ are independent of the amplitude
parameters, Gin's, and are in fact equivalent to the
densities of A and & for a single source. Even though all
the sources are at the same or near in frequency the
likelihood that v? is the same or almost the same may not
be a good one given v2's range dependence [11l] (when the
internal wave model applies, see Section 3.2).

I now consider a narrowband experiment in which random,

background sea noise is present. From the analysis above,

I can write:

L
2 2 ¢ 2
o7 = o] + I 91,
n=1
and (1.142)
L
2 2.,2 c 2 2
ofr = ojv? + ) oInVa
n=1

where Lc is now the number of noise sources in the analysis

2

band and o] and v? are the signal parameters, and the o2

1n
and v; are the noise related parameters. I now make the

assumption (perhaps bad) that v? is a constant for the

2,2

signal and the noise. Thus, GiI =0V, and I define

Lc
g2 = . 02 , which is one half the sta mean square noise,
NO n=l "1n

and therefore:
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2 2 L -2
ol = 0% + 0
I 1 NO
(1.143)
2 _ 2,2 2 2
OI1 gyv: 4+ oy v
o
or
2 2 1
or =9 Gwr*t Y
(1.144)
02 = g2v2 (2o + 1)
IT 1 SNR
2
- 1 _ long time average mean square signal
where SHR 2 d§ ~ "Iong time average mean square noise °

Applying Equations (1.144) to the densities and statistics,
e.g., Egns. (1.140) and (1.141), the effect of background noise
can be accounted for. It is clear that SNR will be a fgnction of
the analysis bandwidth, and that noise levels should be

measured in the absenpe of the signal. By narrowband I mean

the signal bandwidth B should be <<2v which in turn should be’
<< 1/T where T is the observation time and the analysis band-
width BA should not be so large that the frequency dependence

of v? would cause v? to vary significantly across the band.

If for other reasons, i.e., range dependence, the

v; # v2, then

2 .
or =91 (Grp) * 1
but (1.145)
2 _ 2.2 1
011 = 01V (gggm * D)
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L
2 2

c
1 2.,2
where SNR olv /nzl ol Vo -

11}

Finally, if one is analyzing over a wide band and the
components are disjoint but each is a sum of one or more
sources at that frequency, then all the results of the

frequency disjoint analysis can be applied with oi replaced

2
I

defined as given in Equations (1.138) and (1.139).

by o2 and v? replaced by 0%{0% where these parameters are
For noise which is continuous over the analysis band,
the statistics will be a function of the total bandwidth
and the receiver resolution. All the analysis of coherent
and incoherent (or more correctly, frequency disjoint and
independent) sources apply except now the number of groups

N is given by BA/R where B, is the analysis bandwidth and

A

R is the receiver resolution. Because the sources within

; and OiI must be found for each

group using Equations (1.138) and (1.139). The groups can

each group are coherent ¢

now be considered for purposes of applying the results of
Sections 1.2.1 and 1.2.2 as individual sourée/receiver pairs,

with the o02's given by the o2's and v?'s given by the

1 I
o%I/Ui's. In conclusion, therefore, the statistics of the
received signal are a function of receiver parameters as
well as source parameters. For large observation or analysis

time T, and consequently higher receiver resolution, the

analysis of Sections 1.2.1 and 1.2.2 will most probably apply.
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As T becomes smaller, however, coherent effects must be
considered as developed in this section. Carefﬁl regard for
the inequalities stated in the beginning of this section
must be applied, case by case, to the data set of interest
and the receiver characteristics, in determining which

analysis applies.

1.2.4 Crossing Rate Statistics

In previous sections I have solved for the joint
densities of amplitude, and amplitude rate for many multiple
source cases. This
allows me, therefore, to solve for thg theoretical
amplitude crossing rates for these cases as well.

Following Rice [10] and Dyer and Shepard [15], the
mean crossing rate for the sta rms preséure p can be

defined as

G(py) = J lo|P 5 (porB)ad (1.146)

wherepO is the axis crossing level. For L equal
source/receiver pairs, Equation (1.78) is used in

Equation (1.146) and I obtain:

2
2 -
vaL lexp(- §§%)

G
2L"3/2)F(L)oiL‘l/ﬁ

)

LE (o (1.147)
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Equation (9) of Reference [15] is obtained for L=1.
(Note that uj = Ui, Hy = civz.) For two different
sources/receptions Equation (1.146) is applied to
Equation (1.113):
2
3 (]
p> exp(- =) 1
le) 2012 1
G, (p.) = (o + 8t)? exp(-ct)dt (1.148)
2D "o o2 02, /27
11712 0

where a = olzvz ’

If I make the change of variables Z = a+ 8t the integral in

Equation (1.148) can be evaluated:
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= v% (1.149)

where y(v,u) is the incomplete gamma function [23,24].
Finally, for Case (c) N=2 I apply Equation (1.146) to

Equation (1.128) and

2
12

Li+L2-2 2L1 2L2
F(Ll)F(Lz)Z vam o11" 915

Gz(po) =

Ly-1 L,-1 .
. J t (1-t) (0 + 8t) 7% exp(-ct)dt (1.150)

where o, 6§, and ¢ are the same as above.

Integrating I obtain [24]:

2

2L3+2Ly-1 _ o
o exp (= 5=7-)
12
G,(p) = :
270 Li+Ly-2 2L1 _2L»
F(Ll-bLz)Z vam Oll 012
02 v2 p2
1 1171 o, 1 1
e O [L ,-=, L, +L,; l"’f‘“?l'—"( - )]
171 2 1 2 012V5 2 ciz i3

.(1.151)
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where T (x) is the gamma function [24], and @l(a,B,y;x,y) is

a degenerate hypergeometric series in two variables [24].
For coherent sources, phase crossing rates as well

as amplitude crossing rates can be found. As with

amplitude, for the multipath phase [10,15]

[+

G(o,) = f 612, 4 (05 0)ab . (1.152)

- CO

Following Dyer and Shepard [15] but allowing for the

effect of many sources at the same frequency, it is easily

shown that
91 P
GL (po) = Vz;'ﬂt <z po exp(-. W) (1.153)
c I I
and
o
B
GLC(¢O) = < 3n (1.154)
Thus,
G(p_) e pZ
o’ _ % To _ Yo ' |
G(¢'o) (8m) C exp ( —2—(3?%') (1.155)

where 0% and 0%1 are given below Equations (1.138) and

(1.139) respectively. Allowing for the normalization
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2 2
I and GII’

the form of Equations (1.153 - 1.155) are identical to

employed in Reference [15], and the parameters o

Equations (9) and (10) in Reference [15]. It is also
noteworthy that Equation (1.153) remains
unchanged whether the v?'s for all the coherent sources

are the same or not. In terms of the SNR then

G(po) % sNR . o pé SNR

I now consider the ratio of Equation (1.155) with
Equation (10) of Reference [15] (the limit of Equation 1.156‘

as SNR » =),

2
0
_SNR o 1
R = T75%R exp[%i (l+SNR)] (1.157)

Thus the effect of noise on the ratio of amplitude
crossing rates to phase crossing rates is a multiplicative
factor given by Equation (1.157) which depends on both the
SNR and the axis crossing level selected.

Finally, if one desires the crossing rates for the
mean square pressure ¥ or the level in decibéls A, the

7
%
o]

simple substitutions Po = Xgor and oo = exp(Ao/Zei, respectively

is all that is required.
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1.2.5 Summary of Results

Because of the many cases, the notational difficulties,
the complexity of the equations, and the plethora of
random variables involved, I will attempt a summary in
the form of a table of the multiple source section to aid
the reader in gaining a little perspective on what exactly
has been accomplished. 1In Table III, I have compiled
the overall results of the analysis for the various pdf's
of interest in the multicomponent and single source cases.
On the left is the breakdown into cases based on'source
structure and signal analysis. Across the top are the
random variables whose pdf's we seek. When a number
appears alone in a box, it indicates the equation number
of the pdf and also that the result is unique to this
thesis. Superscripts (circled numbers) appear in boxes
for comments below, and numbers in brackets refer the
reader to those references in which the equation appeared

previous to this work.

1.3 Finite Bandwidth and/or Modulated Source

In many actual oceanic situations the source does not
exhibit stability in frequency but in fact oscillates or
wobbles about a center frequency which can be characterized

by either frequency or phase modulation. The effect of
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this moduiation on the family of single source densities
is analyzed. Even "narrowband" signals have finite though
small bandwidths. I have determined a criterion for
smallness, as well as the bandwidth effect when this
criterian is not met. Furthermore, the analysis presented
in this section reveals a method by which finite
bandwidths and/or source induced modulation can be

determined from the received signal.

1.3.1 Amplitude and Amplitude Rate Densities

In the absence of modulation we can write the multi-
path signal, p(t), under the assumptions of the phase
random model as given by Equation (1.135). When the
source is frequency or phase modulated, we can write
p(t) as

N
p(t) = r ] coslut - M(t) - 6_] (1.158)
n=1 .

where M(t) is a function of time which may be random that
represents the modulation. As indicated in Equation
(1.158), it is assumed that source induced modulation

will be path independent which implies that any change in
signal propagation characteristics (i.e., path structure,

or volumetric absorbtion) will be independent of the
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"instantaneous" carrier. This is apt to be so unless the
modulation is extreme. This assumption also applies to
the finite bandwidth effect. The bandwidth cannot be so
iarge that different propagation characteristics obtain
for the extremities of the signal; Further, it is
assumed that none of the energy in the signal is rejected
because the "instantaneous" carrier is outside the
bandwidth of the receiver. Likewise, for a finite
bandwidth source, it is assumed that the entire signal
bandwidth is within the bandwidth of the receiver. Note
that depending upon the specific temporal dependence of
M(t) the modulation would be classified as either frequency
modulation or phase modulation. This distinction,
howéver, does not alter the analysis to follow.

I perfdrm quadrature demodulation on p(t) and obtain

the quadrature components:

N
X = pcos[M(t) + ¢] = r | cos[M(t) + 0,
n=1
(1.159)
N
Y = psin[M(t) + ¢] =r ] sin[M(t) + 6 ]
n=1

where p and ¢ are the amplitude and phase respectively of
the complex envelope, or alternatively in the terminology

of phasé random acoustic propagation the sta rms pressure
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and multipath phase. Taking the derivatives with respect

to time,
) N :
X = -rnzl [M(t) + 6 1sin[M(t) + 8 ]
(1.160)
. N, .
Y=1r ) [M(t) + 8 lcos[M(t) + 6_]
n=1 n n

In terms of the quadrature components, Equations (1.159)

and their derivatives, Equations (1.160), I can write:

(X% + Yz)%

©
|

(1.161)

_1
%

(XX + YY) (X% + Y2)

e
1

As given in Section 1.1, %, %, A, and A can be expressed
in terms of p and p. By applying Equations (1.159) and
(1.160) to Equations (1.161) and making use of
trigonometric identities, it is easily proven that
Equations (1.161) are independent of M(t) and, in fact,
are equal to the result obtained when M(t) =M(t) = 0.
Thus, the amplitude, and amplitude rate variables are in
fact independent of the modulation. It also follows,
therefore, that the joint densities of amplitude and

amplitude rate are independent of the modulation.
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1.3.2 Multipath Phase Rate Densities

For the multipath phase rate, the modulation plays a
critical role. From Equations (1.159) it is clear that

the multipath phase with modulation, ¢ is given by:

MI

_ -1 Y _ '
¢M = tan X" M(t) + ¢ (1.162)
and, therefore:
by = M(E) + D (1.163)

This result can also be obtained from the single path
variables alone [the extreme right-hand side of

Equations (1.159)] from which,

. 2 N ' N .
by = XTE%_?T {nzlcos[M(t) + en1n£l[M(t)-+en]cosen
N N .
+ I sin[M(t) +6_1 ] [M(t) + 6 _1sing } (1.164)
n=1 n=1 - n

Again, using trigonometric identities, I find that
Equation (1.164) is equivalent to Equation (1.163), in
which ¢ is given by Equation (1.164) with M(t) =M(t) = 0.

Note that from Equations (1.159), Equation (1.164) is
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independent of r.

M(t) can be either a known deterministic function of
time or a random process governed by a pdf PM(M). In
the latter case, because M(t) is independent of ocean
parameters, Equation (1.163) reveals that éM is the sum

of two independent random variables. Therefore [14],

Roy,(#) = P00 *Py(8) (1.165)

where * denotes convolution. The mean u ==uﬁ, and as

¢
M
with an unmodulated source, the variance Gi = o,
M
If M(t) is a known deterministic function of time,
I define:
Ts
< -1 1/2v
H: (¢) = 7/ J §— vl dt (1.166)
0

where Tq is the length of the time series (not to be
confused with T, the averaging time of the receiver).
HéM(é) is a continuous histogram and has all the properties
of a pdf, i.e., it is always positive and integrates to
one. This function or pseudo pdf can be employed when

ﬁ(t) is deterministic but not periodic for a given ensemble

of time series. Equation (1.166) also applies for

periodic deterministic M(t). However, for periodic
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deterministic M(t) in which there is exactly one or n
integral number of periods M(t) can be randomized, treated
as if it were a random variable, and its pdf found
enabling use of ﬁquation (1.165). If there are many
.periods in the record, then an integral number is not
required; however, some error will be introduced. As will
be demonstrated by examples below and in Section 1.3.3

for periodic modulation functions, Equatiors (1.165) and
(1.166) yield identical results. For many interesting
problems in the ocean, M(t) may be deterministic but
unknown, thé real (nonrandom) parameter estimation
problem [25]. 1In these situations one will obtain
: (é) from which one is

(¢
M
able to learn characteristics of M(t), as will be

experimental realizations of H

demonstrated in Chapter 3. Also, as will be shown in the
figures, some deterministic modulation functions will have

easily recognizable histograms, Hé ($), and in fact
. M

é (¢) is by itself a valuable piece of

M

information to have.

knowledge of H

I shall now consider three analytical examples
illustrating the effect first of sinusoidal phase
modulation, second of uniform frequency modulation, and
third of Gaussian frequency modulation on the pdf for &.

For sinusoidal phase modulation,
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M(t) = Bsin(ot + ¢s)
and thus, (1.167)
M(t) = Bocos (ot + ¢s)

I have randomized the phase with ¢s (uniformly distributed
between 0 and 27), which indicates uncertainty in initial

conditions. I obtain the pdf for M(t) [31,

, M| < Bo (1.168)

1 1
T (202 - M2)1/2

PM (M) = S

Combining Equations (1.168) and (A8) in Equation (1.165),

I find

2
P o(x) = L J dy (1.169)

— ) —— ) w7} i £} sge

An analytical expression has not been found for this
integral; however, numerical integration is straightforward.
Applying Equation (1.166) with Ts = 2mn/o (ﬂ is any
integer) and M(t) as given by Equation (1.167) with ¢S==O

(don't forget to exploit the symmetry of the cosine)
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yields Equation (1.169) as well. When x=0 in
Equation (1.169), the integral can be evaluated:
P; (0) = 1l I A (1.170)
M T/v2 ¥ B2G? /2, /v + B25?

where E[1/2, k] is the complete elliptic integral of the
second kind.

It is possible to make some progress in solving for
PiM(x) if I make use of the convolution property of

Fourier transforms or characteristic functions. For

independent random variables [14],

Mo

¢M(w) = Mﬁ(w)M$(w) . (1.171)

where Mx(w) is the Fourier transform or characteristic
function of the pdf of random variable x [14]. Mé(m) is

given in the Appendix under Equation (A8), and for the

sinusoidal density Equation (1.168) [24], -
MM(w) = JO(wBG)

where Jo(z) is the Bessel's function of zeroth order.
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Thus, by exploiting symmetry and taking the inverse

transform of Equation (1.171);

co

P&)M(x) = % J WKy (w0)J_ (wBo)cos wx dx (1.172)
. |

where Kl(z) is the modified Bessel function of order one.

Expanding the cosine and integrating term by term [24],

n 2n

] (1.173)

Hi

where (2n-1)!! = 135 ... (2n=-1); (=1)!! 1, and
F(a,b;c;z) is Gauss's'hypergeometric series [24].
Unfortunately, Equation (1.173) converges only for

Bo<v and x<v. When Bo=v,
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© _ n 2n 2
P, (x) = /772 ] & en-ni
M n=0 2" (2n)!
1 1
. - : (1.174)
n,1l l n n, 3 n 1
Pe+plig-3) TE+Pri3-7

As with Equation (1.173), Equation (1.174) converges only
for x<wv. P&(&) is plotted in Figure 11 for the case of
no modulation, Equation (A8), and for various values of
Bo relative to v using Equation (1.169). Applying
Equations (1.170), (1.173), and (1.174), when applicable,
revealed that the error of the numerical integration of
Equation (17169) is approximately 1%.

For uniform frequency modulation, M(t) = Mt and

M(t)==M, where M is a uniformly distributed random

variable:

1/2A IM| <A
PM(M) = (1.175)
0 otherwise

and A is the maximum excursion from the carrier in Hz,
thus, 2A is the bandwidth of the modulation. This

characterization of M(t) would apply, for example, to a
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deterministic M(t) such as a saw tooth. As before, I
apply Equation (1.165) using Equation (1.175) and (A8), to

obtain:

X+A _ X=A
V2 + (x+A)2  NPF (x-A)?

P (x) =

» (1.176)

L
A

Equation (1.176) is plotted in Figure 12 with no modulation
(Equation A8) and for various values of A relative to v.

For the final example, Gaussian frequency modulation, -

, M2
P. (M) = ——— e ’ EE (1.177)

where cé is the variance of the modulation. As before,

I convolve Equation (A8) this time with Equation (1.177)

and
(x-y)?ldy
.(1.178)

As with sinusoidal phase modulation, I have been unable to

solve the convolution integral analytically. However,
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applying the characteristic functions, I obtain an
alternate expression of Equation (1.178):

o] —7/2w
P: (x) = % J we Kl(wv)cos wx dw (1.179)

Expanding the cosine, I obtain,

o 2n
1 -7 x 2n+3,..2n+1
P: (x) = ) (=) I( )T ( )
Op 0sT/2 n=0 (2n) 1 “og 2 2
\)2 \)2 .
+ exp (Z_OT) W 1 1(567) (1.180)
-n-3:3 G

Or, alternatively, expanding the exponential in

Equation (1.179):

1 % 1 9% n+3,.,n+1
P: (X) = — ] = (—) T{ )T ( )
¢M ™ n=0 n! v 2 2
n+3 n+1 1  _ x°
Fle5= , == 7 5 i ) (1.181)
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where Wv,u(z) is Whittaker's function, and F(a,b;c;z) is
Gauss's hypergeometric series.

Finally, Equation (1.176) will also model the effect
of a nonmodulated, but finite bandwidth source if the
conditions stated in the beginning of this section hold.
It is clear that as long as the energy is uniformly
distributed on the average between fc-A and fc-kA.

Where fc is the carrier frequency, then Equation (1.176)
applies, and the bandwidth, B, is given by B=2A. A
glance at Figure 12 reveals that the effects of the
bandwidth on the pdf for é can be neglected if B << 2v.

The above analysis also reveals that modulation coupled

with bandwidth effects are additive. Thus,

P,  (§) = P:

dus ¢M(¢)*P$B(¢)*P¢(¢> | - (1.182)

where Pé (&) is the pdf of the bandwidth which we have
B

assumed is uniform between *B/2, and Pé

. MB

for ¢ when a narrowband signal is modulated and the

() is the pdf

criterion B << 2v is not satisfied.
Taking the three examples of modulation used above,
and coupling them with the bandwidth effect, I obtain for

sinusoidal phase modulation,



Bo

. _ 1 1 X + B/2 - vy
Py (¥ = 5Em e —— ~ =
MB lag VB2o2 = y? [N2F (x+B/2-y)2
- X - B/2 -y gy
V¥ (x - B/2 - y) 2
or,
. A . wB
PchB(x) = &7 J Kl(w\))Jo(mSG)cos wx sin 5 dw

o

For Gaussian frequency modulation,

[ee]

1 1 2
P: (%) =———-———-—j expl- 5= (x-y)°]
*mp 2BVZ7og ! 29¢
. y+B/2 _ v=-B/2 dy
YWEF (x+B/2)2° NP F (x-B/2)%
orxr
® _%wzgz
P (x) = 2v j e G K. (wv)coswx sin wB dw
¢MB Bm 1 2

-159-

(1.183)

(1.184)

(1.185)

(1.186)
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and for uniform frequency modulation,

P: (x) =

{N’+(x+A+&QV”-v62+(x+A—mQV_
Omp

L
4AB

+ NV F (x-A-B/2)% - N F (x-A+§/2)2_}
« .« +(1.187)

Finally, it should be noted at this point that because
a finite bandwidth signal is indistinguishable from a
"narrowband" signal which is experiencing extremely rapid
uniform frequency modulation as indicated above, the effect
of the bandwidth, as with modulation, is felt only by ¢,
the phase rate, and the amplitude variables remain

unaffected.

1.3.3 Crossing Rate Statistics

- For path independent source induced modulation, I
have shown that the amplitude, amplitude rate, and joint
densities of amplitude and amplitude rate are unaffected
by the modulation. It follows, therefore, that G(po)
will be independent of the modulation and will be equiva-

lent to the nonmodulated single source result given by
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Equation (1.18).

For a modulated or finite bandwidth signal, G(¢O)
is as expected critically dependent on the parameters of
the modulation and the bandwidth. To find G(¢O) it is
necessary first to solve for P¢'$(¢,$) and this in turn
is crucially dependent upon the exact nature of the
modulation or bandwidth. For.deterministicAmodulation,
I consider Equations (1.162) and (1.163). The joint pdf

for ¢ and $ without modulation is éiven by [8,9]:

. sy oo 1 1
P¢,¢(¢'¢) T 4mv 52 372 ! 0<¢<2m (1.188)

<
1+ 5% ¢

Making the change of variables given by Equations (1.162)

and (1.163) I obtain

1 1

H . (¢ré) il pever—a . )
b1 oy 4mvTg o ofedes bvazgt))zﬁ/z

dt (1.189)

For the interval 0 to TS: min[M(t)] < ¢ <27 + max[M(t)]
and |¢| < ». Note again that the H function has all the

properties of a pdf. To find the phase crossing rate
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GM(¢O) I apply Equation (1.152) and

_ 1 o] - |
GM(¢O) = ITnuT j [ 7373 dt d¢ (1.190)

S w L d

2 .
Gy () = T J j 2 do
Mol T ATy JIVEHB(E) 2+ 2M(0) § + 321372

¢ .
+ j ' SST— asétat (1.191)
o V()2 = 2i() )+ 62132

Performing the integrations over &:

_ 1 e & ey
Gy (0.) = J VAT M(t) dt (1.192)

This is as far as one can proceed without the exact form
of M(t). (Note that if ﬁ(t) + 0 I recover the no

modulation result.) Equation (1.192) can also be used to
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find the phase crossing rate when nonstationarities make
v a function of time as well. Obviously, however, v(t)
must be known. If ﬁ(t) is a random process or the
modulation is periodic and exactly one or more integral
number of periods are on the record (if there are many
periods the number need not be iﬁtegral), then the
probabilistic approach used in the previous section can
be applied here as well. From Equations (1.189), (1.165),
and (1.166), |

P, : (8,8) === P, (§) (1.193)

¢ by 2m "oy

For sinusoidal phase modulation, I use'Equation (1.169)

in Equations (1.193) and (1.151) to obtain

, _ vl BG‘ 1 - o x
GM(¢’0) T 272 IBG‘/EZEZTS;Z—'- Jo RS A dxdy
.(1.194)
Integrating first over x I obtain
v? % dy
Cpl05) = 77 J = (1.195)

o
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The remaining integral is a complete elliptic integral

of the second kind:

Gy (8,) = 27 VB*T*Fv2T B[} , 1) (1.196)
where
r = Bg
VYB2or+ Vv

For either B or o - O, GM(¢O) for no modulation is
obtained.

To demonstrate the equivalence of the probabilistic
approach and the deterministic approach given by

Equation (1.192), I consider again sinusoidal phase

modulation:

M(t) = Bsin(ot + ¢S)
and

M(t) =

Bocos (ot + ¢s)

Assuming I have exactly n cycles,

2nm
o
-1 TR T2 T
GM(¢O) = 5 Ip7 j YV¢ ¥ R%02%cos?ot 4t (1.197)

0
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I observe that the integral over one cycle of a cos?x is
equal to four times the integral over 0 to m/2. Applying

this observation to Equation (1.197),

n/20
- 1 4no RTINS T
GM(¢O) = 5= 3nn J YVv2 ¥ B%5%cos?ot dt
o
and therefore
m/20
— c 2T T2 w2
GM(¢O) = =7 J YVv2 ¥ B%5%cos?ot dt (1.198)

I make the change of variables x =0t and apply the
trigonometric identity cos?x = 1-sin®x in

Equation (1.198) and simplifying,

/2
Gy (o) = L RPFREET f /T = [B20%/v2+ B?0?)Isin’k dx

T2
o}

.(1.199)

The integral in Equation (1.199) is the definitive form
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of the complete elliptic integral of the second kind and
Equation (1.196) is recovered exactly.
For Gaussian frequency modulation, Equation (1.178)

is applied and

2
V 1l 1 2
G,(¢ ) = ——— J J X expl- s=5(x-y)“ldxdy
M.To 2m/2mol L (\)2+y2)3/2 o 204

.« . .(1.200)

Performing the integration over x yields

2

vzoG ©  exp(- f%g) v . N
G, (¢ ) = ————= : D ,(- %*) + D , () td
M % (21 372 (viey?)3/2 | -2 o -2°0 Y

- CO

. .(1.201)

where Dp(z) is the parabolic cylinder function [24]. I

now apply the identity [24]
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to Equation (1.193) and I have

Yy
2 © exp(- =)
> % 2% M(1,% éf} a 2
3/2 ( :'Z'IZOG) Y (1. 02)

Gy (o ) =
Mo m/2m J (v2+y?)

where M(a,b,z) is the confluent hypergeometric function.
The final integral in Equation (1.202) must be performed
numerically.

For uniform frequency modulation, direct use of
Equation (1.176) yields a value for G(¢o)=(». This
result is not a physical characteristic, but rather a
consequence only of the mathematical form of
Equation (1.176). The integral leading to Equation (1.176)

is

2
1
PT(x) = L f ~ dy (1.203)
O B (v s (x-y)2)3/2

Applying Equation (1.203) to Equations (1.193) and (1.152)

yields

2
- X
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o
I make the change of variables t = x-y and
-~ ) A
\% t+y
. M'7o 4TA N CEETE
-~
Performing the integration over t yields
= A
2 2
\ 1 y
G, (¢ ) = == I — + —|dy
M o 4TmA " !;G-z_,_yz v2/32+y2:‘
)
and finally I obtain the result
i
G, (6 ) = 2 1n v + A= APTRE (1.204)
M (o] 4TA Nz +A2— - A 4
In the limit as A » 0 Equation (1.204) converges to the
no modulation result. Note if I let A=B/2 in
-~ Equation (1.204) then I have exactly the phase crossing
rate for a finite bandwidth non-modulated source.
The crossing rates for modulated signals with band-
- . width have not been solved; however, the procedure is quite
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P
straightforward, though the integrals may not be.

I now consider the ratio of amplitude crossing rates

- to phase crossing rates. Dyer and Shepard [15] obtained
this ratio for the narrowband, no modulation, single
source:

- 2

2P (am% 20 exp(- Loy (1.205)
G(¢o) 9y 201

- Equation (1.205) is independent of v and depends only upon
ci which, being a measure of the energy in the signal,
is a controllable parameter unrelated to oceanic phenomena.

-~ However, non-stationary behavior of ci due to ocean
dynamics will affect the ratio given by Egquation (1.205).
Likewise, if the source is modulated or has a bandwidth.

- which is not << 2v then the ratio given by Equation (1.205)
will be affected. For these cases, the ratio G(po)/G(¢o)
will be a function of oi, v2, and parameters of the

~ ' modulation. Adopting the approach in Reference [15],

I obtain
- Moo) _ (87) %oy B_(p,) ' (1.206)
o) ©e
where, for sinusoidal phase modulation,
-~
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c = AL . r = — B0 (1.207)

2/B252F VT Elgz, r] /B252F V2T

for uniform frequency modulation,

c = - 2Ry . (1.208)
vZ 1In| —] + ANV F A
C YVEFA2T - A

for Gaussian frequency modulation,

-1
c = 2 g, (6,)] (1.209)

where GM(¢O) is given by Equation (1.202), and finally
for a finite bandwidth, non-modulated source C is given
by Equation (1.208) with A=B/2. Except for the finite
bandwidth'result, great care should be taken in applying
the formulas in this section to insure that the actual
modulation fits the kinds of modulation assumed here.
However, the procedure developed in this section can be
applied on a case by case basis to any kind of frequency
or phase modulation to determine the phase crossing rate

factor.




-171-
CHAPTER 2

COMPUTER SIMULATION

A computer simulation of phase random multipath
propagation was originally developed for two reasons.
First, in the course of analysis of the multiple source
cases it was felt that a computer simulation would provide
confirmation of the rather complicated analysis when
dataﬁg}é unavailable or difficult to obtain for the case
in question. Second, when an analytical impasse was
reached the simﬁlation could provide insight into the
nature of the solution, thus aiding in the analytical
process. The simulation fulfilled these two objectives
not only as originally intended in the area of multiple
sources but in all aspects of the theoretical development
presented in this thesis, as well as providing confirmation
of some of the basic, precepts of the phase random model

of acoustic propagation.

2.1 Computer Model of Phase Random Multipath Propagation

A computer simulation which generates random samples
from a phase-random multipath process has been developed.
Currently there are two versions. The first, called
RANDPHASE, simulates up to 50 equal intensity, equal v°?

components, including sinusoidal phase modulation, uniform
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frequency modulation, and bandwidth effects on phase rate
for a single source. The sécond, called BURMRAN, is
capable of handling an arbitrary number of groups of
unequal intensity but equal v?, for the amplitude and
amplitude rate variables. Both programs are written in
FORTRAN IV and were run on an Interdata Model 80 computer
with an. IMLAC display processor. The FORTRAN listings
for RANDPHASE and BURMRAN are contained in Reference [27].
The following algorithms are applied to generate

samples for the amplitude and amplitude rate variables:

b st Eoine,
X, = 2rs sin® 8_ cosb
L421 pms in=1 M4 0Dy
N N
- ] cosb ) 6 _ sin®
n=1 in=1 M4 i
12
. T Xy
. _ 1 =172
. T 2 Xg AL
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=
|

L = 10 loglo XL

=
I

L= [10 logloe] XL/XL (2.1a-£f)

where ry is the single path amplitude for the ith source,
L is the number of sources, N is the number of paths,
en' the single path phase, and éni the single path phase
rate. For L=1, the single source, samples of the
multipath phase ¢ and the multipath phase rate ¢ are
generated. Equation (1.164) is used to generate the
samples of ¢é. The input parameters to the program are
v2, L, N, & (or equivalently, B/2), B8, o, and I, the
number of samples desired. For RANDPHASE the r, are
equal and are set to one for convenience, though
initialization to some other value is straightforward.
For BURMRAN the array r must be specified.

Each program uses two random number generators
employing a machine independent congruence technique [28].
One is used to generate uniformly distributed random
numbers betweep 0 and 21 for en, and the other is used to
generate samples of én. It is assumed that én is
uniformly distributed between * V3 v, thus in the limit

as N-»«, E[én] = 0 and E[é;] = v?, Application of the
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program revealed that if the number of paths is greater
than three, phase random multipath properties are
obtained. Because of the central limit assumptions
inherent in the phase random model [%] (e.g. N> 3), the
exact nature of the density for én is unimportant.
RANDPHASE was run with én distributed normally without
any change in the results.

The number of independent samples of Sn and én
required for any given simulation is given by the product
of L, N, and I. For most of the simulation runs
I = 600 éamples. Where L and N are large, the number
of independent samples of en and én can become quite large.
One run of BURMRAN simulating the N=15 problem of
Reference [4] required ~ 400,000 independent samples of
en and én' The maximum integer that can be éccommodated
on the Interdata 80 is 32,767. I performed a run test
on the system random number generator (which employs the
linear congruence method) and for some primes the maximum
string of unrepeated numbers was 8192, clearly inadequate.
In order to increase the cycle lengths the machine
independent congruence method is used. This technique
artificially increases the maximum allowable integer
number with factors appropriately segmented so that

numerical overflows can be computed without machine
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overflows. The cycle length is greater than 107, and for
1.5 x 106 samples generated by this method, the
Chi-square goodness of fit test [29] for uniformity was
passed at the o = .05 level of significance, though only
by a small margin. It is true that the leftmost digits
are the most random and that for large numbers of samples
some correlation occurs as more of the rightmost digits
are repeated. Table IV, reproduced from Reference [28],
gives the repeat characteristics for the two sequences

or generators used. Table IV indicates the randomness

of the generator as a function of cycle length or number
of samples. As more and more samples are taken, i.e.,
the cycle length becomes larger, more and more of the
rightmost digits are repeated which can résult in a
lcorrelation that will introduce some error in theA
overall simulation results. Because the repeat cycle
length is so large, however, for most simulation runs
this error is small.

When modulation or finite bandwidth effects are
simulated, the Interdata 80 random number generator is
used in addition to the two described above. Because L=1
for these simulations the large number of samples for en
and én is not required.

When the programs are executed, histograms are
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Repeat characteristics of the random number
generater for the two sequences used.

Sequence Two

Cycle Sequence One

0 735776465527 311037552421,
gl 062221556427, 113326416521,
g2 650107434527, 655503553421
8> 617512155527 514633562421
gt 65527 52421

8 8
g° 465527 552421

8 8
g® 6465527, 7552421,
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produced by separating. the range of samples for each of
the variables specified by Equations (2.1) and (1.164)
into 25 equally spaced bins. In RANDPHASE each histogram
is then plotted along with its respective theoretical
'density and the Chi-square goodness of fit test is
applied. The area under the theoretical curve is
computed numerically using the trapezoidal rule, each

of the twenty five bins being further subdivided into

16 intervals each. The expected frequency is then equal
to the number of samples times the area. Bins in the
tails are grouped such that the minimum expected
frequency is 7. Thus the number of independent class
intervals (a function of the variable, number of sources,
paths, etc.) usually varies between 15 and 25 which is
close to the criteria specified by Bendat and Piersol [29]
for ~ 600 samples. The Chi-square statistic (x?2) is
computed and compared to the pass/fail value (x;: .05),
where n indicates the number of degrees of freedom of

the statistic and .05 is the level of significance. The
hypothesis is accepted if x? < x;: .05. The number of
degrees of freedom n is obtained by taking the number of
class intervals and subtracﬁing 1+ B where R is the number
of independent parameters that are varied to fit the pdf

to the histogram (e.g. 8=0 for the uniform pdf and g=1
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for the Rayleigh, Gaussian, and Longuet-Higgins pdf's).
It should be noted that the theoretical densities

were not least-squares fit to the histograms. Given the

2
1

v is obtained by taking the expected value of é; from

input parameters, we know o from Equation (1.2), and

the computer generated én's (which is always within a

féw percent of the input value of v). The theoretical

densities are plotted and the samples fall where they may.
In addition to the output on the graphics display

a printout for each variable for each run of the simulation

includes: the variable simulated, the number of sources,

paths, samples, number of expected and observed frequenciés

for each bin, including an overflow bin, the observed

and theoretical mean and variance, the range of values

obtained, and the actual Chi-square statistic and the

pass/fail value.

2.2 Simulation Results for a Single Narrowband Source

Examples of the results of the computer simulation
RANDPHASE for a éingle, narrowband, non-modulated source
are given in Figures 13-36. The figures are plotted by
variable for N = 4, 5, and 12 paths. For all these runs,
the input value of v is .007 rad/sec and I = 700 samples.

Table V compiles the Chi-square statistics (x2?) for each of
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TABLE V

Results of the hi-square test for the RANDPHASE
simulation of a sin?le narrowband, non-modulated
source. For x? < xZ: .05 the theoretical pdf
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passes the test at the .05 level of significance.

The units are the same as in the figures.

Mean Std. Dev.
Fig. Variable x 2 x%: .05 N — .

' n Theory Data Theory Data
13 X 19.36 25.00 4 4.00 3.64 4.00 3.24
14 X 18.59 25.00 5 5.00 4.85 5.00 4.31
15 X 8.62 25.00 12 12.00 11.19 12.00 11.34
16 % 27.44 23.68 4 0.00 0.00 0.04 0.03
17 % 19.93 23.68 0.00 0.00 0.50 0.46
18 % 7.84 23.68 12 0.00° 0.00 0.12 0.11
19 0 24.02 28.87 1.77  1.71  0.93 0.84
20 0 27.68 28.87 1.98 1.98 1.04 0.97
21 o 12.85 28.87 12 3.07 2.96 1.60 1.56
22 b 14.37 18.31 4 0.00 0.00 0.01 0.01
23 b 9.79 23.68 0.00 0.00 0.01 0.0l
24 ) 6.50 26.30 12 0.00 0.00 0.02 0.02
25 A 21.29 22.36 3.51  3.30 5.57 5.63
26 A 11.24  22.36 4.48 4.55 . 5,57 5.43
27 A 9.00 22.36 12 8.28 7.99 5.57 5.46
28 A 10.61 26.30 0.00 0.01 o 0.20
29 A 15.36  26.30 0.00 0.00 % 0.11
30 A 25.96  26.30 12  0.00 -0.01 m 0.11
31 ® 20.64  36.42 4 m 3.16 1.81 1.76
32 ¢ 37.43 36.42 5 u 3.21 1.81 1.78
33 ¢ 13.07 36.42 12 T 3.20 1.81 1.80
34 b 23.64  26.30 4  0.00 0.00 % 0.01
35 & 24.60  26.30 5 0.00 0.00 o 0.01
36 b 9.36 26.30 12  0.00 0.00 % 0.02
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the figures and the x;: .05 in which n is the number of

degrees of freedom, which is equal to the number of

class intervals minus one (recall that the densities

were not fit), and .05 is the level of significance.

For yx? < x;: .05 the theoretical density passes the

Chi square test. Also shown in Table V is the

theoretical value of the mean and standard deviation and

the measured values from the computer generated "data".
First, note that all the theoretical densities match

the histograms very well as indicated by results of the

Chi-square test. Particularly note that the pdf's for

% and L given by Equatioﬁs (1.4) and (1.7) respectively

are indeed supported by computer simulation. Of the

24 examples shown, only two fail the Chi-square test.

All the pdf's in Figures 13-36 are the limiting densitiesv

as N+ », The results of the simulation for N=2 and 3

paths (including further analysis of this case) are

~given in Appendix C. Upon comparison with the results of

Appendix C, it is quite acceptable to assume that for

N > 4 paths phase random multipath propagation is

obtained. It is true that ¥ for N =4 paths did fail

the Chi-square test but this is only one out of eight

variables. It should be noted that for N =2 and 3 paths

the limiting densities for seven out of eight of the
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variables (the multipath phase ¢ is always uniform)
failed the Chi-square test (see Reference [271), thus the
justification for choosing N >4 as the required number of
paths is evident. The failure of ¢ for the 5 path case
indicates perhaps a lack of randomness or a correlation
for that particular cycle length in the random number
generator. Though the results on the average get better
as N becomes large, as indicated in Table V, (except
curiously enough for A), after 12 paths the results

are approximately constant indicating that the
correlation in each of the random number generators is
now the limiting factor. This assertion follows from
consideration of N =30 [27] in which by the way x? for

A is 4.49, and X;= .05 = 26.30. 1In addition to
containing the other simulations not shown in the figures
nor mentioned above Reference [27] also includes the

more detailed printout mentioned earlier. It is
interesting to note that even when phase random conditions
are met for the single source the pdf for p always appears
to be among the worst performers while p is always émong
the best. This result was first noted by Hamblen [9]
when he investigated ocean acoustic data. Because this
result is repeated in the simulation, it appears to be

a function of the statistical nature of the variables, as
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2

1 when.analyzing real

well as the non-stationarity of o

data.

2.3 Simulation Results for Multiple Sources

Figures 37-42 are the results of a simulation run_
with 20 equal intensity, equal v? receptions, 5 paths,
and I = 600 samples. The theoretical densities are given

by Equations (1.19), (1.67), (1.79), (L.80), (1.83), and

(1.84) respectively. The results of the Chi-square test

are tabulated in Tablé VI. Also shown are the means
and standard deviations as predicted by the theory and
observed in the simulation. With one exception, the
computer simulation agrees well with the theoretical
predictions. One of the important results of the
analysis of the equal intensity, equal v? case
(Section 1.2.2.1) is that Pb(b) is.independent of the
number of sources. Figures 24, 43, 44, and 40 are
examples of Pé(b) for 1, 3, 4, and 20 equal intensity
(oi'= 2.5), equal v? (v = .007 rad/sec) sources.
Figures 43 and 44 passed the Chi-square test, and the
histograms clearly support this prediction as well.

As a final example of multiple source simulations,

I treated the N=15 group problem of Reference [4]. As

was noted in Section 1.2:1.4, and illustrated in Table I,
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TABLE VI

Results of the chi-square test for RANDPHASE
simulation of 20 equal intensity (02 = 2.5),
equal v? sources with N = 5 for each. The input
v was .00700. Actual v was .00699 rad/sec.

The units are the same as in the figures.

Mean Std. Dev.
Fig. Variable x 2 X;: .05

Theory Data Theory Data
37 X 9.26 26.30 100.00 99.86 22.36 20.81
38 X 17.01 23.68 0.00 -0.01 0.22 0.20
39 0 11.08 26. 30 9.94 9.94 1.11 1.40
40 0 19.62 18.31 0.00 0.00 0.01 0.01
41 A 15.26 25.00 19.89 19.90 0.98 0.93

42 A 13.53 26.30 0.00 0.00 0.01 0.01
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the first eight groups are the most energetic. I

apélied BURMRAN therefore, with 123 sources, the
appropriate r array, 5 paths, I = 600 samples, and an
input v of .007 rad/sec. The results are shown in

Figures 45, 46, 47, and 47a for %, %, A, and o
respectively. In Table VII I have listed the Chi-square
results and other pertinent data. The theoretical
densities are given by the Edgeworth's series approximations
Equations (1.45), (1.108), and (1.53) for %, %, and A
respectively. For ) I have plotted the Gaussian using

the variance obtained from the data (the curve was not fit).
The excellent performance confirﬁs the assertion made

in Section 1.2 that even for the most complicated
realizations of Case (c) the pdf for § will be Gaussian

in which the variance is in fact = E[p?]. The results

for x and A are not very good (once again the rate
variables out-perform the amplitude variables). The error
appears to be in underpredicting the mean as indicated

in Table VII. However, these results should be inte;-
preted in light of the very large number of samples
required for en and én (369,000 for each) certainly
introduced some correlation error due to the repeat
characteristics of the random number generator (see

Table IV). Both en and én barely passed the Chi-square
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TABLE VII

Results of the chi-square test for BURMRAN
simulation of 123 different source problem.
The units are the same as in the figures.

: Mean Std. Dev.
Fig. Variable x? xé: .05
A Theory Data Theory Data

45 X 36.46  23.68 5.72  5.80 1.65 1.43
46 X 18.72  23.68 0.00 0.00 0.02 0.01
47 L 36.34 27.59 7.36% 7.51 1.46% 1.07
47a 5 13.05  30.14 0.00 0.00 --  0.003

*From equ. (l1.60a) which is the Gaussian assumption. Note
that these numbers should not be compared with those given
in Section 1.2.1 because this simulation included only the
first 8 groups so there will be a slight difference in the
mean values (see Table I).
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Fig. 47a Computer generated histogram of p for the
L=123 different source problem modelling
distant shipping noise of f Bermuda, andthe
Gaussian using a variance given by E[,éz]
obtained from the computer generated
samples.
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test with results of Xz = 994.16 and 981.53 respectively,
and X;: .05 = 1019.94. 1In any case, the non-Gaussian
skew is certainly evident in the histogram in Figure 45,
once again dissuading the Gaussian assumption in favor

of the Edgeworth's series.

2.4 Simulation Results for a Finite Bandwidth
and/or Modulated Source

Figures 43-51 are examples of the RANDPHASE
simulation of éM when the source is undergoing varying
degrees of sinusoidal phase modulation. The histograms
are plotted with Equation (1.169) (Note that v and Bo
are both given in rad/sec). Figures 52-55 are examples of
varying degrees of uniform ffequency modulation, or
al%ernatively varying amounts of bandwidth on éM' The
histograms are plotted with Equation (1.176) (Note that
v and A are both given in rad/sec). In Table VIII I
have compiled the results of the Chi-square test, and the
values of Bo, A, or B, as appropriate. All these
simulations were run with an input value of v = .007 rad/sec,
5 paths, and I = 700 samples. With the use of Table VIII
compare Figure 52 (for B=v) and Figure 53 (for B=2v),
with Figure 28, the non-modulated pdf for ¢. This shows
quite clearly égain that only for B << 2v can bandwidth

effects be neglected. As with the other simulation
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TABLE VIII

Results of Chi-square test and other data for the
RANDPHASE simulation of ¢y for varying degrees of
modulation and bandwidth with N = 5 paths.

Fig. x* X§= -05 rad}sec radéseq rad?sec raé?gec
48 19.30 23.68 .0070 - - .0011
49 31.55 - 23.68 .0070 - - .0070
50 12.13 23.68 .0070 - - .0210
51 22.39 28.87 .0070 - - .0840
52 25.82 26.30 .0070 .0035 .0070 -
53 12.72 23.68 .0070 .0070 .0140 -

54 17.62 23.68 .0070 .0210 .0420 -

55 22.76 28.87 - .0070 .0700 .1400 -
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results, the fit of the theory to the computer"aata is
quite good with only one of the eight runs failing the

Chi-square test.
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CHAPTER 3

DATA ANALYSIS

I have analyzed two sets of data from acoustic
experiments in the ocean. These data‘are compared with
the theory presented in Chapter 1. In Section 3.1, data
from an experiment performed by R. Porter and R. Spindel,
near Eleuthera [12] are shown among other successful
comparisons to support the theoretical pdf's for
amplitude rate and level rate derived for the first time
in this thesis. Also, the analytibal results of the
modulation theory derived in Section 1.3 explain heretofore
unobserved phenomena of the Eleuthera data accurately.

In Section 3.2, data from the CASE experiment [13]
conducted in the Pacific are investigateé in general,
with special emphasis in light of the modulation-theory
of Chapte; 1. Furthermore, these data provide more
insight into the parameter v? and reveal, as well,
shortcomings of our current understanding of this vital

ocean acoustic parameter and its driving mechanisms.

3.1 The Eleuthera Experiment

Data made available by the Woods Hole Oceanographic
Institution were acquired during a long-range acoustic

propagation experiment conducted near Eleuthera [12].
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The data analyzed consisted of four records (see Table IX)
in which two cw signals, one at 220 Hz, and one at 406 Hz,
for each record were transmitted from Eleuthera to
drifting sonobuoys approximately 300 km northeast towards
Bermuda. A Doppler position-tracking system [30] was
used to remove mean multipath phase-rates due to

sonobuoy motion. These data were also analyzed by Dyer

and Shepard [15] and Hamblen [9].

TABLE IX

Log of the W.H.0.I. Fluctuation Data

Record Date ' Time (GMT) Record Length (h)
447 13 Sept. 74 1900 - 0310 8.16
443 12 Sept. 74 0402 - 1204 8.05
449 11 Sept. 74 1800 - 0145 7.75
424 11 Sept. 74 0644 - 1527 8.72
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3.1.1 Analysis of the Single Source

From the original digitized time series of pcos¢ and
psin¢, time series of A, ¥, and é for the two frequencies
are produced for each record. The phase data were
analyzed previously by Dyer and Shepard [15] and
Hamblen [9]. Details of the phase unwrapping routine
can be found in Reference [15]. Histograms are then
generated from these time series. For the histograms of
A and i, Equations (1.7) and (l1.4), respectively, are fit
such that the value of v? and oiv, respectively, minimize
the Chi-square statistic. The value of v? for each run
is also obtained by fitting Equation (A8) to thé
histograms of ¢. The values of v? obtained from ¢
agree closely, as expected, with those obtained previously
by Hamblen [9]. However, ﬁhe'value of v? obtained from
A by fitting Equation (1.7) is smaller by a factor of
almost 2 in every case. This can be understood as
follows. As the analysis of Section 1.3 shows, any
finite bandwidth effects or carrier instabilities, or in
this particular case, any errors in the Doppler
position-tracking system, would manifest themselves in
"spreading" or increasing the variance of ¢ while leaving
A unmolested.

2

To test this explanation further, v° is obtained for



-216-

2

each record by taking the ratio of Oiv to oi, parameters

which were found previously [9] by fitting Equation (Al)

and (A5) to histograms of o and p, respectively. Also,

2 is obtained by taking the value of o2v from the fit

1
of Equation (1.4) to the histograms of % and dividing

vV

by the previously found values of ci [9]. If the
reasoning is correct, then these values of v? should agree
with the values of v2 obtained from A for each record as
they are all derived from densities which are insensitive
to angle modulation or finite bandwidth effects. The
results are tabulated in Table X, which shows that
without exception these values of v? agree to within 33%
or less and, furthermore, they are all as hypothesized
less than the values of v? obtained from é.

Except for Record 424, the values for v obtained
from A, noting the square root range dependence predicted
by Dyson, Munk, and Zetler [ll], are reasonably consistent
with the values for v obtained previously by them for
the Eleuthera to Mid-station and the Eleuthera to Bermuda
transmissions for the 406 Hz source, while the values
of v obtained from $ are not as consistent (see Table XI).
Why run 424 exhibited the larger values for v in all
cases (see Table X again) is unknown.

In order to obtain a measure of the bandwidth of the
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TABLE X
The values of v? obtained from the time'series and
- histograms of the amglitude densities are compared
with the values of v*® obtained in fitting
Equation (A8) to the histograms of . The values
of A, the half-bandwidth measure of the
"modulation" is tabulated for each run in the last
column.
£,
Freq v? rad?/sec? (x 10-4)
Record ., %' 2.2 .2 27272 H :
(Hz) o1V /cl (olv/cl) , A o) A, mHz Og» THz
220 1.8 1.5 2.0 4.7 3.3 2.0
447 :
406 3.5 3.6 4.1 7.9 4.3 2.6
A~
220 6.7 8.3 6.1 8.7 2.2 1.3
448
406 2.9 2.4 3.0 7.1 A 2.7
- 220 2.4 2.4 2.7 4.4 2.6 1.6
449
406 3.1 2.4 3.6 7.6 4.4 2.7
220 10 12 11 15 2.8 1.7
- . 424
406 11 11 15 24 5.8 3.6
m
A~
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TABLE XI

The average values of v in mHz for the 406Hz
source for Records 447, 448, and 449
obtained from ¢ and A are compared to the
values of v obtained by Dyson, Munk, and
Zetler (DMZ).

é A DMZ DMZ
Mid-Station ) Bermuda

Range (km) 300 300 550 1250
Measured Equ. Ray Mix Measured

v in mHz 4.4 3.0 2.8 (18) 2.6 4.0

2.2
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moaulation in these data, I fit Equation (1.176) to the
histograms of ¢ using‘the values 6f v? obtained from the
histograms of A. I determine the value of A, the half-
bandwidth of the modulation, that minimizes the Chi-square
statistic. I likewise fit Equation (1.178) which assumes
a Gaussian rather thaﬁ a uniform modulation function

and find o the standard deviation of the carrier

GI
fluctuations. Note that the half-bandwidth of the

modulation as given by 1l/e of the best fit of
Equation (1.178) is approximately equal to the value of

A obtained from fitting Equation (1.176). The values of

v? from the A histograms are used because A, as revealed

2
1

sensitive to its non-stationary behavior. 1In Table X,

by Equation (1.7), is independent of o7 and is less

the least Chi-square value of A and o, are given for each

G
run. Because the frequency stability of both sources

is many orders of magnitude less than v, the modulation
as measured by A or.dG can be attributed to the error in
the Doppler pdsition—tracking system. An error of *.017
m/sec in measuring the velocity of the receiving
hydrophone itself results in a half-bandwidth value for
the modulation of 2.5 mHz at 220 Hz and 4.5 mHz at 406 Hz,

consistent with the values tabulated in Table X. The

velocity error is consistent with the experimental setup
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and the performance characteristics of the Doppler
position-tracking system [31].

In Figures 56-59, the histograms of ¥, A, and $ and
the least squares fit of Equations (1.4), (1.7), and
(1.176), respectively, are shown for all the records.
Table XII lists the Chi-square statistics for A and X
and Table XIII lists the Chi-square statistics for é when
fit by Equation (A8) (which assumes no modulation),
Equation (1.176), and Equation (1.178). With a few
exceptions, the fit of the theory to the data is
excellent. Of the three runs that failed the Chi-square
test, two were the result of fitting the no-modulation
density, Equation (A8), to ¢ which, in light of the
foregoing analysis, is suspect from the start. As
Table XIITI shows, while Equation (1.176) performed better
than Equation (A8) in five out of the eight runs,
Equation (1.178) performed better than both Equations (A8)
and (1.176) for all cases except Run 424 where performance
was better than Equation (1.176) but slightly worse than
Equation (A8). In fact, a Gaussian-like error in
extrécting the mean phase rate is characteristic of the

Doppler position-tracking system [31].
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TABLE XII

Results of the Chi-square goodness-of-fit test
of ¥ and A to Equations (1.4) and (1.7),

respectively.
Freq. C L2 2, Aoy2 2,
Record Hz X:X xn..OS A:x _ Xn..OS
220 1.81 16.92 3.45 21.93
447 ‘
406 3.52 23.68 1.86 23.68
220 1.45 31.41 11.61 28.87
448
406 2.61 19.68 4.51 ©23.68
220 1.65 21.03 1.20 23.68
449
406 2.96 21.03 6.44 23.68
220 2.30 31.41 32.31 28.87
424

406 6.04 31.41 16.38 28.87
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TABLE XIII

Results of the Chi-square goodness-of-fit test
of ¢ to Equations (A8), (1.176), and (1.178).

Freq. Eq. §A8): Eqg. (%.176): Eqg. (%.178): 2

Record Hz X X X Xn:.OS
220 16.24 3.19 2.78 15.51

447
406 16.54 4.13 1.19 21.03
220 10.57 21.10 7.06 23.68

4438
406 22.95 6.84 3.68 21.03
220 5.43 3.26 2.67 21.03
406 14.87 7.02 3.67 21.03
220 10.45 23.84 12.07 26.30

424

406 9.78 14.61 12.71 26.30
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3.1.2 Multiple Sources

Because the 220 Hz and 406 Hz sources were transmitted
and recorded simultaneously for each record and were each
quadrature demodulated about their respective center
frequencies and summed incoherently, this affords an
opportunity to check the equations derived in Section 1.2.2.2
for two different sources. For each record, the 220 Hz
source was designated Source one, and the 406 Hz,

Source two. The values for Gil and oiz were obtained

from Hamblen's [9] previous analysis. The values for vi

2 are obtained from Table X. In

and v§ in radz/sec
Figures 60-63, I have plotted representative results.
In Figure 60 the histograms for ¥ and p are plotted with

the following equations:

1 X X
P (x) = - exp (= =x5—) - exp (- ) (3.1)
X2p - 202, - 202, [ 2093 2015
2 2
P (p) = —E— lexp(- 555—) - exp(- 52) (3.2)
Pop o2 o2 201 201
11~ %12

Equation (3.1) was first derived by Dyer [4], and

1
%

Equation (3.2) is simply the transformation p=yx° of

Equation (3.1l). 1In Table XIV, I have listed the results of
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Fig. 60 The histograms of X and p for two different sources from Record
447, plotted with equs (3.1) and (3.2) respectively.
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Fig. 63 The histogram of A for two different sources
from Record 447 plotted with equ. (1.123).
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2
1li

used. Note that the theoretical pdf's for these plots

the Chi-square test and listed the values of o and vi
were not fit to the histograms. Also in determining the
Chi-square statistic, I have approximated the area under
the theoretical pdf for each class interval by taking the
value of the pdf at the center of the interval times the
width of the interval. Figures 61-63 are the histograms
for ¥, p, and A, plotted with Equations (1.95), (1.114),
and (1.123), respectively.

In general, the amplitude densities perform rather
poorly as expected, while the rate densities perform
exceptionally well supporting the theofy in

Section 1.2.2.2. As noted earlier, the non-stationarity

2
1

the apparent statistical stability of the rate variables

in 0% discovered by Hamblen [9] in these data, as well as

accounts for the difference in performance of the

amplitude and amplitude rate variables.

3.1.2 Crossing Rate Statistics

Following Dyer and Shepard [15]1, I have analyzed'
the crossing rate statistics for each of the frequencies
of the four records of the Eleuthera experiment. Even
though the "modulation" in these data are very small

(see Table X), the effect on the crossing rate statistics
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is dramatic. From Equation (1.18), I have [15],

2

c(o) = 209 eyp- %1 (3.3)
© o v2m 91
and [15],
G(6,) = 5= (3.4)

Equation (3.4) assumes no modulation. When the ratio
of Equation (3.3) to Equation (3.4) is taken, v cancels,

i.e. [15],

G(po)

G(¢O)

(8m) % P _(0,) o) (3.5)

However, if the source is modulated or has a finite
bandwidth (i.e., B R 2v), then in fact v does not cancel

when the ratio of the two is taken:

.V
= Bm* 2P (o) 0y (3.6)

¢

G(po)

G (9,)

where Va signifies the value of v obtained from the

amplitude densities, and v, the value of v obtained from

¢

fitting Equation (A8) (which assumes no modulation) to the

histogram of é of a modulated source. This is tantamount
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to assuming that the pdf for M is such that Equation (1.165)

yields the Longuet-Higgins density with a larger

Vv = v& > vA. If there is no modulation of the source
and B << 2v, then vAf=vé (as will be shown in Section 3.2).

For the data of the Eleuthera experiment, however,
VAJ{Vé because of the error in the Doppler position/tracking

system. The ratio v can be considered a correction

2"V
factor to account for modulation effects in crossing rate
statistics. .However, because the error in extracting
the mean phase rate is more Gaussian than Longuet-Higgins,
as demonstrated quite convincingly by the performance of
Equation (1.178) on the histograms of é, I have also
computed the correction factor, using the analysis of
Section 1.3.3, given by Equation (1.209). In Table XV,

I have compiled the correction factors given by vA/v$,

and Equation (1.209). I obtain vA/vé by taking the ratio
of v from A to v from $ given in Table X. For

Equation (1.209) Ogr and v (from A, converted to mHz) are
likewise obtained from Table X. In Figures 64-67
reproduced in part from Reference [15] I have plotted

the new curves applying the vA/vé, and Equation (1.209)
correction factors. Note that because the correction

factors are a function of v and parameters of the

modulation there is one curve for each frequency. The



TABLE XV

The correction factors to the unmodulated
value of G(p_)/G(¢_) for the Eleuthera
experiment, Based 8n the ratio of Va
(from A, Table X), to v (from o,
Table X), and a Gaussiag frequency
modulation assumption.
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Record Frequency vA/v$» Egq. (1.209)
220 .65 .41
447
406 .72 .44
220 .84 .56
448
406 .65 .40
220 .78 .47
449
406 .69 .42
220 .86 .58
424
406 .79 .54
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RECORD 447

o 220 Hz
X 406 Hz

406 Hz ( VA/V¢',)

220 Hz (1 /y;)

"

406 Hz Gaussian
220 Hz Gaussian

Po

[<p3> 2] "

Fig.64 Ratio of phase period tq amplitude period, versus amplitude,

for record 447. Equ. (3.6) is the theoretical ratio for a

~ non-modulated narrowband source. The correction factors
I/A/Vd', (Table XX ), and Equ. (1.209) (Gaussian modulation)have
been applied to obtain the corrected curves for 220 Hz and
406 Hz accounting for the modulation.

4.0
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RECORD 448
o 220 Hz
X 406 Hz
220 Hz (1/v4)
220 Hz Gaussian
406 Hz (vA/vd,)

406 Hz Gaussian

Fig.65

Ratio of phase period to amplitude period, versus amplitude,
for record 448. Equ. (3.6) is the theoretical ratio for a
non-modulated narrowband source. The correction factors
I/A/V4; (Table XX ), and Equ. (1209) (Gaussian modulation) have
been applied to obtain the corrected curves for 220Hz and
406 Hz accounting for the modulation.
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Equ.(3.6) RECORD 449
X o 220 Hz
KR Xy X x 406 Hz
> X 220 Hz (14/v;)
9 x ("
X Q X

x S ‘ - 220 Hz Gaussian
(o] o]

406 Hz (1p/vg)

406 Hz Gaussian

2.5 30 3.5 4.0

]1/2

[<p§> /2

Fig. 66 Ratio of phase period to amplitude period, versus amplitude,

for record 449. Equ. (3.6) is the theoretical ratio for a
non-modulated narrowband source. The correction factors
U/ Vg (Table XX ), and Equ. (1.209) (Gaussian modulation) have
been applied to obtain the corrected curves for 220Hz and

406 Hz accounting for the modulation.
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RECORD 424

o 220 Hz ‘
x 406 Hz

220 Hz (VA/Vgé)
406 Hz (1n/75)

220Hz Gaussian
406 Hz Gaussian

Fig.67 Ratio of phase period to amplitude period, versus amplitude,
forrecord 424. Equ. (3.6) is the theoretical ratio for a
non-modulated narrowband source. The correction factors
UV (Table X), and Equ. (1.209) (Gaussian modulation) have
been applied to obtain the corrected curves for 220Hz and 406Hz
accounting for the modulation.
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bracketed <G(¢O)> indicates that an average value of
G(¢O) has been used. The range of values results from
restrictions placed on the maximum value of ¢ as a
consequence of phase unwrapping routines. As indicated
in the figures, s has been normalized such that the
E[p;] = 2. Details of the above and other aspects of the
data reduction can be found in Reference [15].

The corrected curves are a dramatic improvement
over the Dyer, Shepard theory. Except for run 424 where
the Gaussian performs much better, the Longuef-Higgins
and Gaussian curves perform about the same with the
former tending to be slightly high and the latter
slightly low. The variance in these results only
indicates our uncertainty in the exact nature of thé
modulation in these data. The important results are as
follows: (1) The modulation theory discovered the
heretofore unnoticed modulation in these data,

(2) accounted for its effects on the histograms of é,
and (3) correctly predicted the crossing rate statistics
completely explaining the consistent over prediction of

the Dyer, Shepard theory.

3.2 The CASE Experiment

Data from the CASE experiment [13] were analyzed in
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order to compare the theory to data in which the
modulation is known and controlled. Three configurations
were used: (1) fixed soufce on a seamount, (2) source
towed by a surface ship, and (3)‘source mounted on a
submersible. The signals were monitored at four widely
separated fixed deep water recéivers at ranges varying
from 200 to 400 km. Runs from one of the receivers had to
be subsequently rejected due to an extremely low signal to
noise ratio. Two carrier frequencies were employed, one
at 15 and the other at 33 Hz. The signals were frequency
modulated by a pseudo-random function generatér with an
average period of 107 sec and an overall pattern that
repeats itself every 640 sec (see Figure 68). The
bandwidth of the modulation is pre-selected, and for the
runs analyzed is either 0 (no modulation), 1/8, 1/4,
or 1/2 Hz. |

A total of 88 runs of 15 min duration each was
analyzed. From the filtered digitized complex data, time
series and histograms were generated for A and é. As
before, Equations (1.7) and (A8) are fit, respectively,
such that the value of v? obtained minimizes the Chi-
square statistic.

Of the 88 runs, 12 were not modulated and the values

of v obtained from A and é for those runs agree (run by run)
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to within approximately 10%. In Table XVI, I have listed
these values as well as the range frequency and receiver
number for each run. For all of these runs, the source
was fixed on the seamount. For 9 of these 12.runs, the
quadrature components exhibit significant nonzero means.
During the data reduction these means for all the runs
analyzed regrettably were removed. However, runs 76-77
had no significant means and the values of v are
consisﬁent with those from runs 66-68 which are at the
same frequency. It appears that extracting the means
even when significant (and this was true only for runs
66-68, 71-73, and 113-115) is a negligible factor.
However, runs 113-115 do in fact contéin the largest
three values of v obtained for all the 15 Hz runs and are
perhaps suspect, though other runs with insignificant
means also exhibit values of v approaching and exceeding 1.
For the remaining 76 runs, 24 were modulated with a
1/8 Hz bandwidth, 35 with a 1/4 Hz bandwidth, and 17 with
a 1/2 Hz bandwidth. As expected with modulation, the
value of v? obtained from fitting Equation (A8) to the
histograms of $ were larger than thosé obtained from
A by large factors depending upon the bandwidth of the
modulation. Because the modulation pattern (Figure 68)

is approximately a saw-tooth and the spectrum of the



TABLE XVI

The values of y obtained from the 12 non-
modulated runs analysed in the CASE experiment.
In addition to being non-modulated the source
was fixed on a seamount.
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Rgigid ?Ei?' ? (rad/éei) Range (km) RCVR
# é A
66* 33 . .094 .104 250 1
67* 33 .353 354 320 2
63% 33 .191 .194 450 3
71% 15 . 407 .421 250 1
72% 15 1.186 .982 320 2
73% 15 .741 727 450 3
76 33 .042 . 044 250 1
77 33 .154 L1477 320 2
78 33 .106 .096 450 3
113* 15 1.349 1.208 250 1
114+* 15 1.495 1.272 320 2
115% 15 1.279 1.084 450 3

*These runs showed significant’ means in the quadrature

components.
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modulation (Figure 69) is approximately uniform, the
analysis of Section I.B is applied.

Equation (1.176) is fit to the histograms of ¢
using the value of v? obtained from fitting A and varying A
such that the Chi-square statistic is minimized. The value
of A is then compared to the actuai signal bandwidth set
by the experimenter. 1In Figure 70 the error in percent
is plotted against the number of runs that exhibit a given
error. For the 76 runs with modulation, the average
error in determining the bandwidth of the modulation by
this method is 8%. Predictive ability appears to be degraded
somewhat when the oceanic fluctuations are of the same
order as the bandwidth of the modulation, i.e., when
v & A the average error was 17%. It should be remembered,
however, that the modulation is not exactly uniform and,
therefore, using Equation (1.176) is an approximation
to begin with, and this approximation is worst when v ~ A.
Finally; I note that the error is consistently negative,
i.e., the foregoing method underpredicts. The reason
for this is unknown.

Performance on the Chi-square test was also quite
good. All 88 runs passed at the a=.10 level of
significance when Equation (1.7) is fitted to the

histograms of A. In fitting Equation (1.176) to the
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histograms of $ for 76 runs with modulation, only 2 runs
fail. For the 12 runs without modulation, only 1 run
fails when Equation (A8) is fit to the histograms of ¢.
The fit of Equation (A8) to the 76 modulated runs is as
anticipated extremely poor; 29 of the 76 runs failed

and those that passed did so by a very small margin.

In Table XVII, I have compiled the values of v
(from A), A, actual A, range, range rate, source
configuration, frequency, and receiver number for each of
the 76 modulated ruﬁs. Under source configuration C
indicates fixed on the seamount, T indicated towed by a
surface ship, and S indicates mounted on a submersible.

Figures 71 and 72 are representative of the
modulated runs when A >> v, .Figure 71 shows the time
series and histogram of A and the best fit of
Equation (1.7). Figure 72 includes the time series and
histogram of é and the best fit of Equation (A8) and
Equation (1.176). Reference [33] contains the plots for
all the runs as well as the FORTRAN listing of the data
analysis program for the CASE experiment.

Comparison of v? from the CASE experiment with the
Dyson, Munk, and Zetler model [11l] is unfavorable. The
values of v? obtained at 15 Hz are, in fact, greater than

those obtained at 33 Hz, contrary to the frequency scaling
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Fig.72 The time series and histogram of ¢ for the same
run shown in Fig. 7| is plotted along with the best
fit of equation (A8) which assumes no modulation
(a) and the best fit of equation (1.176) which
includes the effect of source induced modulation (b).
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proposed in their model, and these values are in turn
several orders of magnitude greater than the values
predicted by the model (see Table XVIII and Figure 73).
However, the rms single path phase fluctuation for the
frequencies and ranges of the CASE experiment as predicted
by an internal wave model only, appear to be << 27, and if
so, the model would not be applicable to the CASE data.

In order to obtain a very rough estimate of applicability,
Equation (118) (for small B), Reference [34], has been
plotted in Figure 74 for <¢2> = (2m)?, for range in km

vs. frequency in Hz. That portion of the figure above
and to the right of the line indicates that phase
fluctuations due to internal waves are > 27. The dotted
lines represent the CASE experiment, the circles
represent the Eleuthera data. Despite the assumptions
involved, the good results of DMZ with the Eleuthera

data (Table XI), and the poorer results with CASE, could
be explained by Figure 74. It is apparent that some other
mechanism must account for the fully saturated phase
random process evident in the CASE experiment. Other
possible mechanisms could include range rate, other ocean
dynamic phenoména such as Rossby waves or meso-scale
eddies, tidal currents magnified by bottom interaction

at the receiver location, or rough scattering effects.



TABLE XVIII
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Comparison of the average values of v obtained from
the CASE experiment to the predictions of the DMZ

internal wave model.
the values of v obtained from CASE.

Also shown are the variances for

Vv (mHzZ) Variance of
Case v
DMZ CASE (mHzZ)
: *
Freq. 15 .08 38% 53 35 55
(Hz) 33 .18 | 19+ 20 14" 15

*These values were computed leaving out runs 71-73 and 113-115
that exhibited significant non-zero means in the quadrature

components. .

T rhese values were computed leaving out runs 66-68 that
exhibited significant non-zero means in the quadrature

components.
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- REGION —
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10 100 1000
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) 2 _1/2 .
Fig.74 Range vs. Frequency for <¢~>" ~=2. The portion

of the graph above and to the right of the line is the
fully saturated region based on internal wave models.
The CASE experiment is indicated by the dotted

lines and the Eleuthera data by the circles.
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Although no strong correlation was found between v
and range rate, it is apparent from Figure 75 that the
larger values of v were obtained at 0 range rate. I also
investigated other correlations. I found none between
'v and range, or time of day (see Figures 76 and 77
respectively). Because the CASE experiment was run over
approximately one and one-half months with experimental
runs occurring on many different days, tidal effects
cannot be inferred from the times. At the present time,
the dates of each of the runs are unavailable, making
tidal checks impossible.

In Figures 78 and 79 I have plotted the values of
v vs. receiver for 15 Hz and 33 Hz respectively. Because
each receiver was monitoring a given experimental run
simultaneously I have connected the values of v at each
receiver by lines for each run. The time of day is noted
to the left of the receiver 1 values. An "N" next to
the time indicates that there was no range rate, either
the source was fixed on the seamount or motionless for
that run. For 15 Hz (Figure 78), receiver 2 consistently
sees a higher value for v than receiver 1, and receiver 3
consistently sees a larger value than receiver 1. Between
receivers 2 and 3 the results are mixed. For 33 Hz

(Figure 79), receiver 2 consistently sees a v greater than
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I5 Hz, the x’s 33 Hz.
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circles represent |5 Hz, the x’s 33

Hz.
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receiver 3. For 8 of the 12 runs, smaller values of v

are seen at receiver 3 than are seen at receiver 1.
Between 1 and 2 the results are mixed. ‘These results
suggest the possibility of rough scattering or a tidal
current phenomena which would be receiver dependent.
Note, however, that the no range rate runs ("N") for

both frequencies all exhibit the same pattern, with

low values at receiver 1, the highest values at receiver 2,
and low values again at receiver 3. For all receivers
range rate groups v at lower values than the no range

rate runs, the latter having a consistently higher mean.
Thus, as observed earlier (Figure 75), there does appear
to be some small correlation with range rate ‘to the extent
that either there is range rate in which case v is
independent of the amount, or there isn't, in whigh case

v exhibits a higher mean and variance. This is more
graphically illustrated in Figures 80-85 in which I have
plotted v vs. range rate now separating the values by

receiver as well as frequency.
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DISCUSSION AND CONCLUSIONS

The major contribuiions of this thesis are twofold.
First, on the theoretical front the understanding of
the statistics of acoustic signals propagated to long
ranges in the ocean has been significantly advanced by
the derivation of many new pdf's, particularly for the
rate variables and joint pdf's of amplitude and amplitude
rate, as well as the theoretical development of the effects
of modulation. Second, the application of this new
theory to ocean acoustic data has revealed new
understanding of the effects of finite bandwidths and/or
modulation on the statistics, as well as a clearer picture
of the limitations of current models relating v? to ocean
or experimental phenomena.

To be more specific, the completion of the family of
pdf's for the single source and particularly the derivation
of PA(A) has permitted direct measure of v? from amplitude
quantities which are independent of bandwidth and/or
modulation effects. However, more research is needed to

understand the effects of nonstationarities in o2 on the

1
amplitude and amplitude rate pdf's. Although ci does not
appear explicitly in PA(A),non—stationarities in oi will

possibly have some small effect. The effect, however, will

be related to the rate of change of ci and not to the
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absolute change which would affect those variables in
which oi appears explicitly, so that measurement of v? via
A is the preferred method.

The Eleuthera data analysis reveals that for
measuring v? use of the time series and histograms of $
and Equation (A8) apply only when B << 2v, A<<v, and the
Doppler shift due to relative source/receiver motion is
<< 2v. It is true that relative source/receiver motion
induces Doppler modulation, which is path dependent as
each path has a different arrival angle at the receiver.
However, in forming A, or, in fact, any of the amplitude
or amplitude rate variables, the mean Doppler is removed
and it is only the path to path differential Dopﬁler that
.remains. For.$, however, the mean Doppler as well as the
differential Doppler contribute, and naive use of
Equation (A8) on é will result in error. Even when the
mean phase-rate is removed, as was done with thelEleuthera
data, we discover that a new criterion must be met, namely
that the error in removing the mean phase rate must be
<< 2v.

Recognition of the A method of measuring v? is alone
one of the major contributions of this research. However,

a more thorough analysis is in order to determine the

effect of the differential Doppler on the pdf's of
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amplitude, amplitude rate, and phase rate when there is
relative source/receiver motion. Because arrival angles
are small for long-range propagation, it is anticipated
that this effect will be small if not negligible in most
cases. For the Eleuthera data, the mean drift rate along
the transmission path was on the avefage 100 m/hr [12].
Assuming a maximum arrival angle of 14° the maximum

differential Doppler shift is 1 x 10 °Hz at 220Hz and

2 x 10-4

Hz at 406Hz, an order of magnitude less than v
for these data. For the CASE data, the differential
Doppler was also negligible for all the runs analyzed.

In addition to range rate, other mechanisms which
affect the value of v? must be researched. Analysis of
the CASE data revealed that some mechanism other than
internal waves must account for the fully saturated
phase random nature of the data. My preliminary
correlations indicate that a receiver related phenomenon
such as slope-influenced tidal currents, or rough
scattering, would be a good place to start. However, other
mechanisms including Rossby waves, meso-scale eddies, etc.
cannot be counted out. I.must confess to some feeling of
uneasiness surrounding the gréat run to run variance of

the measured values of v? in the CASE experiment. Clearly

a mechanism of some temporally varying nature must be
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accountable. This again points toward a tidal phenomena.
The Eleuthera data reveal a temporally stable v2, even
more so than Hamblen [9] discovered, because his
analysis includes what is now recognized as a Doppler
error.

The analysis of effects of finite bandwidth and/or
modulated signals coupled with the new confidence in
obtaining v? minus these effects has revealed a
potentially powerful technique for separating source and
ocean effects in the received signal. This technique
uncovered the effect of the Doppler error in the Eleuthera
data with great improvement in crossing rate predictions,
and predicted the bandwidth of the modulation of the CASE
data with an average error of 8%. This technique could
be refined by use of more sensitive statistical tests
such as the Kolmogorov-Smirnov test. Also the pdf's for
many different kinds of modulation could be tried, not
only to determine such parameters of the modulation as
its bandwidth, but also the nature of the modulation
itself when it is unknown, by comparing the performance
of the selected densities on the histograms.

Aside from the applications of the amplitude
statistics to distant shipping noise problems [4,5]. the

analysis of the statistics of multiple source cases is a
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relatively untapped reservoir especially for the rate
statistics. In’ order to improve predictions in the tails
of the densities whose exact solutions remain unknown,
the Chernov bound or "tilted" density [25] approach
mentioned earlier should be investigated. I believe,
however, that the analysis presented is complete enough,
and the problems remainiﬁg few enough to warrant
investigation into the applications of this analysis. The
coherent source analysis may be a reasonable model for
determining the statistics for the signal plus ocean
noise. The multiple source cases analyzed may well be
applicable to other noise problems. Table III provides
a comprehensive summary of the state of this analysis
at the present time.

The analysis contained in Appendix C, relying on
some results of earlier investigators in fields other
than acoustics, completes the solution of the statistics
for the amplitude for N < 3 paths. For N > 4 I have
shown Qith the computer simulation that limiting pdf's
suffice. More research is needed into the exact nature of

Pé (én), the pdf for the single path phase. As
n

previously noted by Hamblen [9] and as supported by the
‘analysis in Appendix C, the rate densities of amplitude and

multipath phase for N small cannot be found unless Pé (én)

n
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is known. No investigators to date have related, to my
knowledge, any knowledge, experimental or theoretical,
about Pé (é ) aside from the usual Gaussian or uniform
assum?tigns as I have done. In Appendix C I have
solved for Pk(k) when N = 2 paths making these
assumptions.

In summary, the theoretical analysis of long range
acoustic propagation presented in this thesis has been

wi dahe Srone oceamt acoushe experiments

supported by both computer simulation and comparisonAwith
extremely satisfactory results. I hope that the analysis

presented and the conclusions reached will be of use to

other researchers in the future.
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APPENDIX A

FIRST ORDER DENSITIES FOR THE
SINGLE NARROWBAND SOURCE

Assembled below are the pdf's associated with a single

narrowband source and their characteristic functions {14.

Notation:
PX(X) is the pdf of random variable y
Mx(w) is the characteristic function of y
U, is the expected value or mean of y
is the variance of

= 10 logloe = 4.34...

A. Amplitude Densities

2

(1) P (p) = 5 expl- 2—] , 0>0 ; Rayleigh (A1)
p ) 2
1 201

_' 2 _ .2 _
u_o= cl/w7§ ’ Gp = 01(2 m/2)

2.2
weo
1

M (w) exp (- —z=) D_,(-iwo,)

where Dp(z) is the parabolic cylinder function [R4].



1

(2) P _(x) = — expl- X » X>0 ; Exponential
X Zci Zci
-— 2 2 L
uX = 201, UX = 401
M (w) = l
X 1 - i2c}w
(3) PA(A) = L exp[% - L exp(%)] y =o<A<w;
Zeci Zoi

Log-Rayleigh

2
= 2 . 2 - g2 T
My = e[1ln 201 Yl ., 9 e” =<

iew

MA(w) (20 T(l + icesw)

2
1)

where y = Euler's constant = .5772...

I'(z) is the gamma function R4].
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(A2)

(A3)
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1/2nw O<op<2m
(4) P¢(¢) = ; Uniform (a4)
0 otherwise
2 m2
Ho =T 7 9% =73
M (w) = -l-exp(—iww)sinww
¢ wT

B. Amplitude Rate Densities

2
(5) P, (p) = ———lE:f: exp(- 6 , =©<p<w ; Gaussian
P /2Zmoiv? 203v?
(A5)
= 2 _ 2,2
ub =0, Oy = 01V

exp (- % wzcivz)

Mé(w)
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(6) P.(x) = L expl[- Jld—] , —o<¥<x ; Laplace (a6) -
X 4vci Zciv
= 2 4.2
UX = 0, GX 801v
M. (@) = L
X 1+ 4w201v2
(7) PA(A) = 1/2Y2 377 ¢ -w<A<w ; Longuet-Higgins
2¢[1 + L
4e?v?
(A7)
.= 2:&
My = 0 r 0f

M; (w) = 2€v|lel(2ev|wl)

where Kl(z) is the modified Bessel function of order one.
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(8) For no modulation only:

c(h) = 1/v e thcom s
P¢(¢) : ¥ 377 <p<» ; Longuet-Higgins (A8)
2[1 + 5T
M ? =
Mo = 0 v 95
Mé(m) = vlw[Kl(vlwl)
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APPENDIX B

THE ERLANG AND RELATED PDF's

The Erlang pdf (Equation 1.19, Section 1.2.1.1) was
derived by A. K. Erlang in the early 1900's in connection

with waiting times in telephone operations. It is the

th arrival in a

th

probability of the time until the n
Poisson process, or the density of the n order inter-
arrival time [35]. Note that the first order
interarrival time (L=1) is an exponential pdf. L can be
extended to include nonihteger values by merely replacing
the factorial of the Erlang with the T' function and hence
the name gamma pdf. Although mathematically valid, the
simple physical interpretation of the Erlang breaks down
when noninteger values of L are introduced. 1In the case
of distant-shipping noise, L is an integer.

In the language of gueing theor?, it is interesting
to note that determination of the pdf of x for Case (c)
of Section 1.2.1 in all its generality is the same as the

solution for the pdf of the nth

order interarrival time

in a renewal process in which the first order interarrival

times are independent random variables distributed

according to Equation (1.19) with different uy and L.
Though originally derived independently, the

slightly less general chi-square pdf with n degrees of
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freedom can be derived from Equation (1.19) by merely

letting a = 1/2 and L = n/2 [14.

If we let a m/ux and L = m, and make the

transformation R = xl/2 in Equation (1.19), we have the

density of the short time rms pressure:

m_2m-1 ~-(m/p_)R?
Po(R) = MR . x (B1)

I'(m) ur;

In terms of the statistics for y, m = (ux/ox)z, which is
the inverse of the normalized variance of y.

Eguation (Al) Qas first proposed by M. Nakagami in

1943 [ 7] to describe the envelope of long range h.f.
radio wave propagation undergoing rapid fading and is
known as the "m" distribution. When m=1, Equation (Bl)

is the Rayleigh distribution as expected. One can note
that the phase-random model of long range acoustic
propagation is analogous to the rapid fading of long range
h.f. propagation. 'Thus, the connection between the "m"
and Erlang, or gamma pdf, is more than just a functional
similarity; they describe in alternative language the same

process.
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APPENDIX C

THE STATISTICS FOR N < 3 PATHS

The solution for the pdf of the amplitude of a vector
which is the sum of many vectors added with random phases
has been a problem of long standing interest. Lord
Rayleigh was probably the first to investigate this
problem in two papers, the first published in 1880 [1],
and the second in 1899 [36]. He was, however, concerned
with thé limit when the number of summed vectors is large,
and he derived the density of the amplitude for this |
limiting case which bears his name. The first investigators
to tackle the problem of small N (note that the
characterization of summed paths as random vectors is
mathematically identical) was Kluyver (1905) [37], and
Pearson (1906) ([38], the latter in connection with mosquito
migration!

For arbitrary N and unequal amplitudes, Ai, Kluyver
[37] obtained the general solution in integral form as

follows:

o

[ =

NPp(p‘) =p J u  J (up)
o]

JO(uAi)du (Cl)

i=1

For the problem of sums of independent multipaths, we have

that Ai==r for all i1 and thus:
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©

WBo o) = 0 | u o) 3 a1 aa (c2)
0

Pearson [38] obtains solutions of this equation for N=2,3
and for N> 4 he obtains solutions in terms of series of

Bessel functions.

C.1 Solution for N = 2

Though I derived this solution independently, it was
Pearson [38] who obtained it first. For two

paths I have for the quadrature components:

X = r(cosel + cosez)
(C3)
Y = r(51nel + 51n62)
where 6. and 6, are independent random variables distributed

1 2
uniformly between 0 and 27. Forming the sta mean square

pressure X from Equations (C3),

X = r2(cos2el ; 2cosf cosf, + c05262 + sin28l
+ Zsinelsine2 + sinzez) (C4)
Using some trigonometric identities I have
X = 2r2 + 2r?'cos(el - 92) (C5)

“Taking advantage of the symmetry of the cosine the random

variable defined by 6 -62 behaves as if it were uniformly

1
distributed between 0 and 7. Thus, forming the cumulative

distribution function:



2
-1 X-2r
cos ( )
1 2r2
2P < X(x) == f ds, 0 <86 <
o
and
P(x) = = .B__(x)
27X oY 27 <Y
I obtain the final solution:
1 1 2
P (X) = = — 0 < y < 4r
2 X T Var2y-y?
where,
2 2 4
= 2r°, c. = 2
UX X r

Making the transformation to p and A:

2 1
P (p) = = = , 0 < p < 2r
2 o T Jar2-52 -
up = 4r/m, opz = r2(2 - 16/w2)
and, A2
P .(N) == ——L1 | -« <A < 2ern2r
27 A

7
em Jar2-gh/E

u, = 2elnr, ci = ¢%(7%/6 - 2(inr) 2]

From Equation (C5) I have
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(C6)

(C7)

(c8)

(C9)

(Cl10)

(Cl1l)
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It is clear from Equation (Cll) that for small N exact knowledge

of Pén(én) is required before rate densities, or joint
densities of amplitude and amplitude rate can be found.

I will now perform the calculations recquired to
find zPi(i) assuming Pén(én) is Gaussian and then assuming

Pen(en) is uniform. For the former:

5 2
o9
2
Pr () =—2— e 2, b ] < (C12)
en n 5 n
/'2wv '
The pdf for t = sin (61 - 62) is éiven by
P, (t) --Tlr— : / lt] <1 (C13) |
»/l--t2
The pdf for z = éz - él is by inspection
2
- B
' 4v
P_(2z) = —— e . lz] < o (c14)

4TV

Because z and t are independent random variables the joint
density of z and t is the product of Egns. (C13) and (C14).

I seek the pdf for the product u = zt, and explorting

symmetry,

Pu(u) =

1 (u/t
3 ( (
— P (z,t) dzdt (Cl15)
Ju o }O Z,t
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Differentiating under the integral sign I obtain
exp (- u? )
o (w - L [ 4e2v2 o (C16)
u 2)1/2

™Y/T ‘o t(l-t

I now make the change of variable u; = u2 and then integrate

and make the final change of variables i = 2r2ul to obtain:

+2
c(v) = 1 -
285 (X) = —5=—— exp { P

4r“mvvm

x| <= (C17)

where Ko(z) is the Modified Bessel function of order 0.

.

For en uniformly distributed

l .
. e | < V3 v
Py (6) = 2v/3v n (Cc18)

n 0 elsewhere

Note the factors in Egn. (C1l8) insure E[énz] = vz as required.

Now the density for z = é2 - él is

Ly Lel] <2
2/3v 2,/3\)‘j

Pz(z)= — (C19)

0 elsewhere

The pdf for t = sin(el - 82) is given by Eqgn. (Cl3).
Defining u = zt I integrate over the joint density as

before. The integration is non trivial and requires



careful concern for the limits:

1
5 |
ou I
)

u
2v3v

[u/t

J

=

Pu(u? let(z,t)dzdt

(@]

2/3v

_Pz,t(z't) dzdt

u/2v3v

3
* 3u
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(c20)

In each case I perform the integration over z first and then

differentiate under the remaining integral, and

=

After making the final change of variables i

integrate.

2r2u I have:

1 1+ /1 - (=)

. - 4r©V/3v
X 4xr°Y3vm { 1- 1 - (X 2
B 4r® /3y _

XI . 2
P Ep— , vl < ar? /Ay (c21)
4r°/3v
C.2 Solution for N = 3

For this case following Pearson [38],



L

Pp(p) =

where
2
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r < p < 3r (C22)

0 , elsewhere

3

lér™p

Q, =

(p+r)3(3r-p)

and K(%, @) is the complete elliptic integral of the first

kind.

obtain the moments.

Transforming to x and A:

( 1
35737175 %K (3
217 r X
1 ™
P = K (=
3P, (X) *2W2r3/2X1/4 (3
0
\
where
2 161'3)(1/2
3¢ =
(xl/2-+r)3(3r-xl/2)

2
'B“)l r

Note that numerical integration is now required to

B)/ 0<X<r2

<X<9r2

, elsewhere

. (C23)
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and lastly,

[ exp(%%
: T
— 377 YK (7, Y), == < A < 2elnr
2em !
A
exp(%g)
- | 11
3PA(A) = ‘ﬁ-z—-e—ﬂ.z—r—3—7-2— K (2, Y) ’ _2€2nr <A< 2eln3r (Cc24)
\0 , elsewhere
where
3 A
5 lé6r exp(jg)

y© = '
[exp (-2'/-\'5-) + r]3[3r - exp(-z%)]

The rate density for i, é, or A assuming a Pé (én),
. n
are sufficiently more complicated than N = 2 that I have

not solved for them.

C.3~ Computer Simulation

Figures Cl-C9 are histograms of the computer
generated samples of the amplitude variables for N = 2,3,
and 4 paths. The exact pdf for N = 2, and 3 is shown with
the limiting pdf. ©Note that for N = 4 the performance of

the limiting pdf is good enough (see Table V for Chi-siquare
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test results) to warrant use of the limiting forms for
N>4. 1In Figure Cl10, I have plotted Equation (C21) with
the histogram of ¥ for N=2 (recall that the computer
simulation assumes Pé (én) is uniform), as well as the

n
limiting pdf, Equation (1.4).
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APPENDIX D

AMPLITUDE PARAMETER VARIATION

In this appendix I will briefly introduce the analysis
involved in amplitude parameter variation. This analysis
is the first step towardslunderstanding the statistics
of received signals that are either nonstationary in r
or ¢2, or when r or Gi is purposely modulated at the
source.

For the first case, I consider that r is a random
variable distributed uniformly between a lower limit of

b > 0, and an upper limit of a > b. It is evident from

Equation (2.1lc) with L=1 that

Pay = XP , (D1)
where now p can be considered a random variable, distributed
Rayleigh according to Equation (Al) but in which

ci = N/2. Note, however, that there is an implied
assumption that N > 4. From Equation (D1) and the fact

that r is a measure of the gain of the signal which can be
controlled at the source, or of the change in pathwise
signal strength, it is true that r and p are independent

random variables. This assumes of course that during the

experiment the number of paths remains constant. Thus,
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forming the joint density of r and p I obtain the

cumulative distribution function,

Pav  Pav
(0, ) 1 ° ° (- 25)drd
P o = f J p exp(~ 5—7)drdp
<Ppy AV (a-b)o? 20y
PAv b
a
Pav o
b o—_— p exp (- 5-7)drdp (D2)
(a—b)clz_ 1
0 b
Performing the integration and taking 55;; P<pAv(pAV)
I obtain the final re_sult:
P P
P (ppy) = —32— T lere(— 2V - g (R
AV (a - b)oi bol/i ac,v2

(D3)

o

1l a+b 8 1 8ab
u = (a+Db) -———/—-, o =-—-—c/—-.--.__...._._§.
Pav 2 2 Pav 2 1/3 2 3(a+b)

Note that when a=b=1x,q and ¢ assume their no
Pav Pav
variation values (see Equation Al, Appendix A), and
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likewise,

With the appropriate transformations, I get:

-1
(Xay) © ¢ "Xav "Xav |
P (XAV) = 35 (a-b) 2 Exrf( ) = Erf( ) (D4)
Xav 1 bcl/f acl/i
A A
exp(._A_Y exp(._A_Y
_ 1 2¢€ m 2€
ProWay) = T ooy 7 (EXE|———
AV 1 bolﬁ
AAV
eXP(?ET
- Erf . (D5)
acl/f
Note: o? = N/2 in Equations (D2-D5).

1

In order to compare the effect of certain levels of
uncertainty in r on thé pdf for p, the following
procedure must be employed. Given that r is uniformly
distributed between b and a, its average value is a+b/2.
Plot Equation (Al) with oi = g (‘3:5-]—0-)2 and then plot

Equation (D3). If this is not done, then one may
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erroneously conclude that the effect of uncertainty in
~r is quite dramatic when in fact it is not!
I have taken various values of a and b such that
5%9 = 1 and plotted Equation (Al) with Equation (D3) in
Figure Dl.  Note that with 50% (3dB) uncertainty in r,
the variation from Equation (Al) is not terribly
significant; however, for uncertainty > 50%, the effect
becomes very noticeable in the pdf. 1In Figure D2 I have
plotted Equation (A3) with Equation (D5). As before
with 3dB of uncertainty, the effect is small. However,
for v 7dB or greater uncertainty, the effect is large and
in fact is very close to the‘limiting form (100% or
»dB uncertainty). Nakagami [7] obtains a similar result
in relation to uncertainty of the mean intensity in
dB of multipath RF propagation. In obtaining the
limiting pdf (i.e., 100% uncertainty), it is necessary to
let b=0 and a =2r in Equations (D2-D5) (note, Erf(w) =1)
and rewrite. the equations analytically first, otherwise
considerable computer time and/or overflows will result.
Next, I assume r varies sinusoidally abbut a mean
given by a and an amplitude of b. Thus,

1 1
P (r) == , lr-al < b

vb2 = (r-a)?




40

35
30—
25—

20 —

Pp (p)

No variation r=1 Equ. (Al) ]
20% Uncertainty r=1%£.2
50% Uhcertcinfy r=l£.5 _

I00% Uncertainty r=1%]

Fig. DI

Comparison plot of the effect of amplitude
variation on the pdf for p. Equ (Al) is plotted

with equ (D3) with various levels of uncertainty.
N = 5 paths.
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The cumulative distribution function is given by

Pav  Pav X
1 a-b o) p 2
P (Ppyy) = == f : — exp (- s=)drdp
<Ppy BAVT  moj /B2 T (r=3a)2 207
pAV a-b
a+b
o}
AV a+b
L Ja+b J 0 (- Loyara
+ = — exXp (- s—)drdp
Toy Vb2 = (r-a)? 201
0 a-b

. .(D6)

Integrating, and differentiating with respect to Pay and

simplifying as much as possible, I obtain

P pZ
Pp (OAV) _ AV exp AV
AV (a-—b)zci 2 (a=b) %g?
P

AV

(=g
1 vy 1 '

+ == J exp (- - dy

mo 202 [T 2TT2 - o —

(75

. (D7)
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Unfortunately, the analytical solution to
Equation (D7) has not been found. For the special case

when a=Db, however, the analysis can be concluded:

o -1/2 pzv
Pp' (QAV) = L (zig]) exp (= ——iL—~)
AV 4ay/7 ci 1 16azci
p p
AV AV
acl D-.3 (§-a-6—l-) + pAVD 1 (Tagz) (D8)
2 2

where Dv(z) is the parabolic cylinder function. As a
check, the integral of Equation (D8) over Pav from 0 to «
is, in fact, 1.

As a final example, I consider the case in which we
allow oi to be é random variable and Equation (Al) to be
the conditional pdf of p given ci. Allowing oi to be
uniformly distributed between b and a, and applying Bayes

Theorem, I get:

a 2
p P
1 AV AV 2
P (Ppy) = == J -— exXp (- s=x)do (D9)
oav AV a-b b cl 201 1 g
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then:
2 2
0 0 0
_ Pay AV, _ AV
PpAV(pAV) = 3 E’l( 72 " Epf 2b')] (D10)

where El(z) is the exponential integral. Applying the

identity [181]:

(_l)nzn

== (largz| < m)

where y is Euler's constant = .5772... I obtain
P ® o2 n
AV n, AV 1
P (Ppg) = ==¢ {1n £ + ] (=1)" (=53)
Pav AV a-b b n=1 2b ' nn!
2
© o] n
n, AV 1
- nzl (-1) (?E; anT (D11)

Although I did not plot Equation (D11l), the numbers I

obtained for relative levels of uncertainty in Oi agree
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closely with the results of uncertainty in r, and the

effect of oi

the amplitude densities appears also to be small while

randomization (i.e., < 3dB uncertainty) on

limiting forms are obtained for uncertainty > 7dB.

A more thorough'investigatiqn of this phenomena
could uncover the statistical dependencies on
identifiable non-stationarities, such as propagation
loss due to changing ranges or other oceanic or
experimental factors which result in the temporal
dependence of r or ci. The effects on the statistics

can then be analyzed using the procedures employed above.

~
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