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EXPRESSING CONSISTENCY: GODEL'S SECOND INCOMPLETENESS

PREFACE

In the fall of 1911 I attended a course given by Burton

Dreben. Professor Dreben asked the class to show the prova

bility of a consistency sentence formed using Rosser's proof

predicate. I did, and vas charmed and intrigued. with only

the vague idea that deep issues lurked in the shadows, I

attempted to coax into qreater illumination the glimmer of

intensionality 1 thought I espied. George Boolos encouraged

me in the belief that I had lit upon an interesting topic

and kindly consented to supervise the dissertation. tater,

in detailed criticisms of drafts, he was to transubstantiate

much incoherence into coherence. The residual incoherence

is mine.

!y colleagues and friends Richard Nagel and Harold Levin

vere constantly available sources of valuable criticism,

insight and food. Professor Levin in partiCUlar provided

steady stimulation concerning matters both logical and

philosophical. Fred Katz, in the course of many discus

sions, aided my thinking during the early drafts. To

Richard Cartwright and 'Jerrold Katz lowe somewhat vaguer,

but no less important intellectual debts. Professor

Cartwright also prompted some specific clarifications of

portions of the text; he vas kind enough not to demand more.
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R.G. Jeroslov generously sent ae his extremely insightful

unpublished work on encodings.

I would also like to acknowledge the importance of

Adrian Piper, Terry Vance, and Randy and Leilani Carter to

the writing of this dissertation. Were it not for their

influence, I, and it, would be very different.
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Chapter 1

PRELIMINARY METHODOLOGICAL REftARKS

ftathematics and its recent offspring, metamathematics,

are often admired for their precision and clarity. The

study of other matters has frequently been modelled on the

techniques of mathematics - and the failure of some such

attempts is sometimes supposed to reflect ilIon the sUbject

matter. Nonetheless, this vaunted precision and clarity has

not typically been carried over into philosophical discus

sions concerning mathematics. nor is there anything

approaching unanimity regarding basic problems in the epis

temology and ontology of mathematics. In view of the fact

that metamathematics has been developed as a tool for the

study of mathematics itself, one might hope that careful

consideration of major metamathematical results would be

philosophically helpful.

In fact, much has been written on the "implications" of

various aetaaathematical results. Such writings often suf

fer from methodological defects. It is rare that a meta

mathematical result will entail an interesting philosophical

thesis. This may happen when a sufficiently precise

philosophical position entails the denial of a metamathemat

ical result. And it may also occur when the philosophical
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position involves mention of a specific piece of mathematics

- the Hilbert program is a ready example of this.

What is left out of, or only implicit in, many arguments

to "implications" of metamathematical results are theses

connecting the result to the sUbject matter. The unique

status of the Hilbert prograa is acco~ted for by mention of

such a mathematical thesis being an explicit part of the

program. The suppression of such theses sometimes obscures

the fact that meta mathematical theorems are mathematical

results about mathematical objects. If the necessary con-

necting theses are supplied, viewed as previously suppressed

premises, the resulting argument can appear question-begging

- and hence of no help in convincing the non-believer l •

The value to philosophy of technical considerations lies

in part in making various intuitive concepts precise. Much

of the value of meta mathematical results consists, not just

in answering certain foundational questions, but in giving

them a precise sense. The connecting theses to which I

refer are often claims to the effect that a precise explica-

tion of some concept is correct. (Webb's "GBdel's Theorem

and Church's Thesis: A Prologue to Mechanism" contains a

suggestive historical account of the simultaneous clarifica-

tion of foundational concepts and technical development of

those concepts.)

IIf I understand Kreisel, a concern with such theses is a
theme of his writings; Benacerraf also makes this peint.

-7-
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I viII show that certain necessary ccnnective theses

associated with GOdel's celebrated Second Incompleteness

Theorem have a somewhat surprising character. Before I

uncover these theses and reveal their character, I am going

to sketch a modest and (I hope) uncontroversial schematic of

a philosophical treatment of G~del's l!~~~ Incompleteness

Theorem. This will serve two purposes. First, the treat

ment will illuminate the above methodological remarks.

Second, the simplicity of the treatment viII contrast with

the difficulties that accoapany an attempted similar treat

ment of GOdel's Second IDcompleteness Theorem; consideration

of these occupy the bulk of this paper. The rigorous reso

lution of these difficulties eventuates in a novel conclu

sion concerning the nature of an adequate semantics for a

certain portion of mathematics.

In 1930 Gadel proved that a certain formal system, which

he called R, is either incomplete or inconsistent. This is

n2! what is generally referred to by tGodel's First Incom

pleteness Theorem'. The 1930 ~~§Ylt gains importance

because f is important and because the proof of the result

is clearly generalizable. A candidate for greater impor

tance would be a theo£em to the effect that a large and

important class of formal systems shares the property of

incompleteness with R- Although Gddel does so extend his

result in that same paper, throughout this paper I viII sup

press references to primitive recursive extensions of f.

-8-
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Such a theorem requires for its best expression the theory

partly2 discovered by Godel in the 1931 paper: the theory

of recursive relations. Furthermore, a refinement of

Rosser's is needed to yield the Incompleteness Theorem we

all know and love 3 •

Let us call this result Gl. What is G1? (1)

(1) There is no

extension of Q.

consistent complete axiomatizable

expresses an up-to-date generalization of the results of the

1930s, and certainly obtains for us the "large" class of

formal systems we asked for. Justifying the 'important' of

'large and important class of formal systems 1 is another

matter.

(1) is a provable mathematical resul t. (2)

(2) Any sQfficiently strong consistent formal system

of arithmetic is incomplete.

2'Partlyt both because GOdel discovered a part of the theory
(primitive recursive functions not general recursive) and
because he vas partly responsible for the discovery, along
with Herbrand, Kleene, Turing, et ale

3Not every G6del sentence for a theory is undecidable in
that theory, though eyery Rosser sentence is, in every con
sistent extension of E-

-9-
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is of~en used as an expression of the GOdel result. Since

(1) and (2) are not R~i.! !~!! sYDonymous, nor does (2)

look vhol~y mathematical, what warrants both the assertion

of (2) and the claim that it is an expression of the Incom-

p~eteness Theorem?

1 partially satisfactory argument from (1) to (2) can be

obtained. When (1.1) and (1.2)

(1.1) If a for.al system is sufficiently strong it is

an extension of Q.

(1.2) Every formal system is axiomatizable.

are joined with (1) as premises, then (1.9)

(1.9) Every sufficiently strong consistent formal sys-

tem is incomplete.

follows, and ~ !~ti2£i, (2) follows-.

41 have not said what a formal system is. For nov it is
enough that a formal system can be given by an axiomatiza
tion. This fails to yield individuation criteria; for
immediate pu~poses ve may have in mind the set of theorems
generated by the axiomatization. I am presupposing that
either notational variants don't count, or that the under
lying syntax is abstract.

~ is a vell-studied theory in the language of
arithmetic. It has finitely many axioms (seven, all simple
and clearly true in the standard model), all recursive
functions are representable in Q, and yet it is a rather
weak subtheory of l (commutativity of addition is not a
theorem of OJ. ! is a subtheory of Q, and, though very

-10-
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We have had to stipulate that (1.1) is true; this is

unfortunate since the significance of 'suIficiently strong'

Bl~ ias. Thus (1.3) and (1.4)

(1.3) If a formal system represents all recursive

functions then so do all of its consistent

extensions, and Q represents all recursive func-

tions.

(1.4) A formal system is SUfficiently strong if and

only if it represents all recursive functions.

are not sufficient to yield (2); whereas it is false that

only Q and its extensions represent all recursive functions.

weak, has infinitely many axioms; all recursive functions
are representable in!. ~ is the famous Peano arithmetic.

The talk in the preceding paragraph nominally opts for
a narrower individuation of entities such as g, 2, and R
than that yielded by ~~ !heo!§m ~!. For, I talk of R as
having infinitely many axioms. I shall ultimately be argu
ing that for many important contexts of teahnical proof
theory ~ven finer individuation is n~ded. However, in the
current context this need does not arise, and we may talk
ofaxiomatizations of theories, if need be. In the case at
hand the matter is even simpler, since ~ (as a theorem set)
has no finite axiomatization; nor does~. ~, 2, and ~ are
fully characterized aDd their important properties revealed
in [TaftoRo].

51 more plausible alternative to (1.1) would be to regard
'sufficiently strong' as having indexical properties. So
its occurence in (2) is to be explicated by (1.1) - though
its meaning in general is more like: is an extension of an
appropriate formal system.

-11-
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R, for example. is weaker than Q and suffices. Another

undesirable feature of this argument is that Jof arithmetic'

is only smuggled in !!s an g '2Itiori clause when what is

wanted is the observation that Q is "of arithmetic" and all

its extensions (in the language of arithmetic) are

"of arithaetic"6.

An easy, albeit ad hoc, modification replaces (2) by (3),

(3) Any sufficiently strong consistent interesting for-

mal system of arithmetic is incomplete.

plus the remark that there is no formal system that is

interesting, represents all recursive functions, is "of

arithmetic", and not an extension of Q.

is a term of art.

'Interesting' here

(1.9) carries no presupposition that there are formal

systems of arithmetic. The thesis that Q and its extensions

(in the language of arithmetic) are formal systems of

arithmetic is needed to make (2). and not (1.9) the appro-

priate expression of an important fact. These days ve

briefly say that a theory is "of arithmetic" if its sen

tences are true in the standard model. This latter claim is

a substantial ODe itself. The burden of justifying the

6A slightly different approach to (1) and (2) can be found
on page 182 of [B&J]. I take (3) to correspond to {B&J]'s
remark that C is a rather weak theory.
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claim that Q is "of arithmetic" has been shifted to the

justification of the claim that being true in the standard

model is sufficient for a theory to be "of arithmetic".

Dedekind's isomorphism theorem and his existence proof for

infinite aodels both represent early attempts to connect the

natural numbers with the standard model (cf. [Webb]). Con-

nective theses often assert that a particular precise for-

malization is an adequate formalization of some notion.

Church's Thesis is the paradigm of this ilk 7 • other exam-

pIes include claims that a formal semantics corres~onds in a

certain way to an intended interpretation (first-order

semantics and logical validity (cf. [Kreisel]);

semantics and Leibnizian possibility).

Kripke

Nor need the intended interpretation be even partially

articulated prior to the creation of the formalization.

Often the value of formalization is in retroactively articu-

lating, not just clarifying, intuitive conceptions. Here I

am thinking of Z-F and the iterative conception of sets (see

(Bo020s]). Finally an example central to twentieth century

logical investigations is the claim that set theory ade-

71s Webb stresses, Dedekind created the early paradigm. The
analogy is: 21 1~~ ~ is to the standard model as being
mechanical computable is to Turing computability. The
analogy runs deep, though Dedekind's thesis has had a his
tory of more immediate acceptance. I am glossing over the
fact that both Turing's and Dedekind's Thesis, when subject
to careful and detailed analysis, can be prised into non
equivalent yersions.

-13-
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quately formalizes (in yet another use of 'formalizes')

mathematical practice. (see [MONK]) •

These connective theses are the additional premises

needed to produce a valid argument from a mathematical

theorem to a philosophical claim. Church's Thesis is often

used to warrant the claim that (2) is about a large and

!~22~B! class of formal systems. What has often been

stressed in regard to Churchts Thesis is also true of many

important connective theses they are not mathematical

truths and do not partake of mathematics' clarion certainty

and precision.

-14-
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Chapter 2

PRELlftINABY CAVILS

What would a treatment of G6del's Second Incompletness

Theorem be like that vas analagous to my modest sketch of a

philosophical account of the First Incompleteness Theorem?

First, a statement of what Gadel proved and an up-to-date

generalization of it (concerning a large and important class

of formal systems); and an argument from that generalization

to an analogue of (2). Of major interest to us will be the

necessary additional premises. As we shall see, such a pro

ject vill not work out as neatly as did the account of the

First Theorem. Even for the purposes of this modest goal of

producing a parallel account, and eschewing direct concern

with deep philosophica1 "implications" of it, we shall find

the Second Theorem to be rather more recalcitrant.

An early reference to the Second Theorem is to be found

in Godel's 1931 paper, in which a proof of what he calls

Theorem XI is sketched. As a full proof is excEEdingly

tedious (involving a proof that- the first result can be

recreated in the formal system), Godel is content to simply

point out that it is clear that such a proof can be given.

What does Gadel's proof of Theorem XI shov?

-15-
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Briefly put, an unprovable formula is exhibited, differ

ent from 11Gen r, the one exhibited in the proof of his

First Incomp~eteDess Theorem. In a footnote to his state

ment of XI Gadel remarks that the unprovable formula of that

theorem is not just any formula that is built in the

described vay from a predicate that numeralwise expresses 12

! EI22! of. It should be recalled that in the proof of the

First Theorem, Godel constructs a formula that he shows, on

hypothesis of consistency of R, to be unprovable (in f).

That is, he shows that there is a proof that the consistency

of ~ implies that a certain formula is unprovable. Corres

ponding to this proof, there is a derivation in R of a con

ditional corresponding to Godel's implication: a condi

tional whose antecedent is a sentence which is the

foraalization of the assertion that f is consistent, and

whose consequent is the formal sentence saying that the

gadel sentence is not provable. By the construction of the

First Theorem this conseguent is the godal sentence itself.

Hence the conditional whose antecedent is the consistency

sentence and whose consequent is the godel sentence is a

theorem of P. And since modus ponens is a rule of inference

of~, the formalized statement of consistency cannot be

provable if f is consis~ent.

The above is a rough sketch of the idea of the proof. A

very detailed proof vou~d involve constructing (or, at

least, showing how to construct) the crucial formal deriva-

-16-
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tion. The recalcitrance of the Second Theorem, which I

mentioned at the beginning of this section, centers on the

Dotion of forAalization, which is used in the above sketch.

I will explain in what follows how it could be that !Q£!a!!-

~atioQ is responsible for what I have called the recalci-

trance ~f the Second Theorem. However, the semantic flavor

of this theorem can be immediately appreciated when we

notice that !ha~ is unprovable is a formula of P and that

this formula is §g!g ~Q ~~I that ~ is consistent. We shall

see that, unlike some of the informal intuitive descriptions

of the lirst Theorem that are often given, this apparently

semantic characterization is unavoidable in viev of certain

purely technical considerations. In fact, the contrast

appears locally in the conditional itself; that the conse-

quent says that some formula is unprovable can be replaced

by much weaker constraints - namely that the proof predicate

used numeralvise express the proof celation. Stronger

semantic constraints are necessary for the antecedent.

These matters are taken up in detail in the next section.

But before we advert to these more technical considera-

tions, certain features of the Second Theorem can be

examined. Gadel gave (or sketched) a proof of (4)8,

8For ease of presentation I am continuing to suppress refer
ence to primitive recursive extensions of P; thus 'WID' and
not ·WID(K)4.

-11-



THEORE8 AND INTEBSIONALITY IN ~ETAMATHEMATICS

(4) The formula that translates WID is not provable in

g.

which is clear enough, provided that ve understand the

definite description that occurs in it. [Let Hecuba =df the

denotation of this description. Then (4 1 )

(4') Hecuba is not provable in P.

is an even sparser expression of what Godel proved.] Under-

standing the description involves understanding the meaning

of 'translates' in this context. What should it mean?

As far as (4) goes it seems to (and (4 1 ) definitely

does) state no advance over the First Theorem. What is the

formula that translates WID (who is Hecuba?) and what makes

it more special than the unprovable formula constructed for

the First Theorem?

iID itself vas defined as in (5).

\~ I(5) WID = ~x(Form(x) & ~Bew(x) )9

Form and Beware predicates of numbers, such that, under the

given G5del numbering, Form holds of n just in case n is the

gode~ number of a formula and Bew holds of n just in case

9WID is simply the arithmetic statement given. It is well
to keep in mind that WID is a remark about numbers, couched
in "logician's English."

-18-
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the formula whose godel number is n is provable. So WID

holds just in case there is an unprovable formula of P - a

standard characterization of consistency. We may say that

WID says that f is consistent10 , provided that Form

expresses formulahood and Bew expresses provability.

Even so, WID is certainly not a formula of f, and hence

i! isn't vhat·s not provable in f, as (4) makes clear.

We say that, for example, 2 + 2 = 4 is provable in g

because a certain formula o£ g is provable and the standard

interpretation for ~ makes the appropriate link between the

formula and the manner in which the standard model is

described. As ve shall see, such a truth-defintional seman-

tics viII not work for the Second Theorem. [In this con-

text, i.e., considering whether 2 + 2 = 4 is provable in ~,

I refer to the "manner in which the standard model is

described"; in this case, the standard manner. This is not

101f is consistent' says that P is consistent, while WID
makes a remark about numbers. This is not where problems
lie. Suppose that, bureaucratically, we vere to "iden
tify" each person with his/her social security number.
Then relations among people would correspond in a natural
vay to relations among numbers - and ve might even go
homophonic on relation names and utter the likes of
'122368871 loves 111389411 1 • This may be perverse but
neither confused nor astounding. The homophonic ploy is
useful for pointing out why such a harmless isomorphic
encoding is useful. If we also went homophonic on num
bers - called 122368871 by the name of the person identi
fied with it - it would be hard to imagine a point to the
enterprise. The point of such aD enterprise involves the
utilization of a favored vocabulary and not a favored
ontology. The favored vocablulary may introduce entail
ment relations based OD meaning. (Cf. p. 106f£)

-19-
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the intensional point concerning mathematics that I am

eventually getting at; it is simply the point that [Mates],

for example, covers on pp. 15-18.

!ates points out that in establishing instances of

Tarski's schema T, the vay in which the interpretation is

described is utilized. The same interpretation, I, given

~ifferently, yields both

'L2~ a2' is true under I, if and only if 2 is less than

3.

and

'L2a1a2' is true uDder I if and only if the only even

prime is lass than 3.

as consequences of the definition of truth in an interpreta

tion. For purposes that exceed mere consideration of truth

conditions, the non-identity of the two displayed sentences

is vital. One such purpose, Ubiquitous in logic texts, is

jUdging whether a formal sentence is an adequate translation

of an English sentence; and this is relative to the way in

which the interpretation is given. !ates is thus led to

standardize the presentation of certain interpretations, so

as to render less indeterminate answers to questions of ade

quate translation. I say 'less indeterminate' because Mates

merely shows the inadeguacy of a possible account of

~g~quate !~ns~a!~, not the adequacy of its replacement.

The context we are concerned with (consideration of

whether 2 + 2 = 4 is provable in f) is very like the trans-

-20-
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lation, or regimentation, context that Mates is concerned

with. He points out, however, that the truth-value of wffs

is independent of the manner of specificaticn of the inter-

pretation (though the meaning is not). '.the ·Fregean move that I

am aiming for involves locating the intensional context, not in the meta
t-ht.

language, but in "language being interpreted, thereby yielding a

difference in truth-value. So, while g qua arithmetic may

have a truth-definitional semantics ~ la Mates, f gJA.s proof

theory does not. Section 10 is devoted to an expansion and

explanation of these bracketed remarks.)

What about the formula that translates WID; can it be

said to say that P is consistent? Whether it can clearly

depends on the notion of translation involved. Let ' A'

range over arithmetical sentences of English, 1~' over sen-

tences of P and let the substituends for 'pI be sentences of

English. Then (6)

(6) If ~ translates A then if A says that p, ~ says

that p.

seems a reasonable attempt at an adequacy condition on an

account of a formal Dotion of translation into f; Of course

we will want to generalize uniformly to
,s

translation-into-the-laDguage-of-T,wh~RT~any suitable formal

system. The project becomes manageable if the range of 'A1

is restricted to a small enough class.

-21-
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concentrate on the consistency sentence and related

syntactic remarks.

Although none of this concern with translation was

invo~ved in our treatment of the First Theorem, the suspi

cion might arise that the concern with formalization, trans

lation, and "says that" is an artifact of my presentation.

Furthermore, there is a notion of translation, viz. numeral

wise expressibility, utilized in the proof of the First

Theorem; it might be suspected that this nction would serve

here.

IYm~A!~!~ g~~~22ibilitI is a relation among certain

Dumber theoretic relations, open sentences, and formal sys-

tems. The relations l2 !h~ gQg~l ~ymb~~ 21 ~ £~2Q! ill g 21

and !2 g for!~la 2& R are amongst those "certain" relations.

Let Pf(y.x) be an open sentence of f that numeralwise

expresses the proof relation and Fm(x) an open sentence of g

that numeralwise expresses sentencehood. Then, given the

availability of truth functions aDd quantifiers in g, we

construct the sentence of R, ~x(Fm(x) & - ~JPf(y,x»,

thereby mimicking, in guantificational structure, our

definition of consistency (which vas that there exists a

formula that is not provable.). This sentence is our candi

date for a formal consistency sentence. Moreover, our con

s~ruction viII clearly generalize to many formal systems.

Let us see if it actually produces a viable candidate.

-22-
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Taking the foregoing as containing an implicit account

of translation, we are led, in the light of (6), to consider

(1) as a putative statement of the Second Theorem.

(1) The formula that "says that" P is consistent is not

provable in P.

(1) has some problems. More than one (infinitely many) open

sentences numeralvise express a given relation11 • Our con-

struction did not actually produce a unique consistency sen-

tence. Should 'The' in (1) be 'Some' or 'Any'? A desire to

obtain something recognizably a version of the Second

Theorem would lead to choosing 'Any'. However, another con-

dition on this treatment is that ve ottain a true expression

of tae result - and 'Any' viII not give us that on our

present notion of translation. For consider (8).

liThe technically oriented will recognize that I am sliding
over some buried distinctions here. For a fixed godel
Dumbering and beta function, infinitely many open sen
tences numeralwise express a given relaticn. A change in
the godel numbering or beta function viII in general
change the class of sentences representing a given rela
tion - thought of as a syntactic relation. The godel num
bering and beta function do not touch the "pure" relation
of numeralwise expressibility. As is well-known, given an
effective coding into arithmetic relations, all the rele
vant theorems are preserved. Given the invariance results
I wil1 usually suppress reference to the relativity to the
godel encoding. All our concerns will be post-coding.
(Although c£. p. 108f).
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(8) If T is a formal system with property~, then any

formula of T that says that T is consistent is not

provable in T. (ep standing in for some explicans

of 'being consistent and sUfficiently strong'.)

(8) is an analog of (2), but is not forthcoming on our

current account of translation, due to our stricture about

falsehood. An appropriate place to look for help would be

in a proof of the Second Theorem; not the one G6del gave,

but a proof that is detailed and general. Before seeing

what notion of translation such a proof vould use or presup

pose, let us see what makes (8) false on our current

account.

Briefly, it is simply that some sentences, constructed

as above, are provable. Since ve have good reason (as ve

shall see) for thinking Godel's Second Incompleteness

Theorem true, I conclude that they are not in fact consis

tency sentences. Fortunately for this project the proYable

"consis-tency" sentences can be seen to be defective on

grounds other than a desire to make (8) true. Were we not

to adait the reasoning to their semantic deviance we would

have no non-circular a~gument for (8). The establishment of

(8) is after all a monumental intellectual achievement and

not simply self-evident. We cannot rationally hope to argue

for (8) on the basis of a firm mathematical theorem and

simultaneously support the additional premises needed by the
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condition that (8) is true. Our desire and our belief that

(8) be true may aotivate, but not certify, our search for

rational grounds for the belief. I shall eventually exhibit

and analyse these grounds - that is, the theories that sup

ply the link from the mathematical result to (8) - and argue

that they are semantic theories of a certain sort.

Those with philosophical scruples that mitigate against

the Don-extensionalist cast present in such theories are

left without (8) (and without a host of interesting founda

tional programs). Historically, this fact is of interest

insofar as referential semantics for mathematics has been

held up to natural language semanticists as something they

would do well to imitate. I will show that this is a bad

model even for that portion of natural language that is

mathematical. My strategy will be to uncover in the techni

cal literature concerning the Second Theorem, rigorous

theories of proof predicates and consistency sentences. I

will show that these theories will support (8), if inter

preted as semantic theories for the language of proof

theory. These theories are then my candidates for connec

tive theses appropriate to Godel 1 s Second Theorem. I shall

argue for their correctness as semantic theories, and,

finally, show them to be intensional semantic theories.

This latter fact can be (psychologically) obscured by

the incestuous nature of the theories involved. In semantic

theories the objects that are assigned to syntactic entities
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can be of many kinds; tables. chairs, numbers, people,

relations among tables. chairs, numbers. people, sets of

tables. chairs. numbers. people, sets of sets of tables,

chairs. numbers, people. etc. Thus we often distinguish

syntactic from semantic accounts, not formally. but accord-

ing to the nature of the entities involved. If non-linguis-

tic entities are ~volved, then we have a semantics. If

only linguistic (i.e. syntactic) entities, then syntax.

This latter conditional is false. The counter-example is

just the case I shall be concerned with - the objects of the

interpretatioD. the objects assigned by tbe semantics to

'syntactic entities. are themselves syntactic entities 1z •

These matters are pursued in detail in sections 6 and 10.

In the next section I expose the defects of the suspect

sentences and counter the suspicion mentioned above - that

the difficulties are an artifact of my presentation.

12clearly I think that intensionality is a linguistic matter
and that talk of intensional ob~£1§, when coherent, is
implicitly parisitic on a linguistic notien. ~y thesis,
in the intensional object argot, is that formalisms are
intensional objects.
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Chapter 3

FURTHER CAVILS

Godel's First Incomtleteness Theorem predicates a simple

syntactic property of a large class of formal systems. This

property, i~2~1~~ene~, is simple in at least the the fol

lowing respect - it is definable in terms that do not invoke

anything akin to a translation relation: T is incomFlete if

and only if there is a sentence of T such that neither it

nor its formal denial is provable in T.

Godel's Second Incompleteness Theorem predicates a cer

tain more co.plex property of a large class of formal sys

tems. Call this property Z. T has Z if and only if there

is a sentence of T, z, such that z is not provable in T and

z says that T is consistent. The Second Theorem says that

all sufficiently strong consistent T have Z. The last

clause in zls characterization is not well defined. Note

first that the variable IT' occurs after 'says that' in the

characterization of Z. As we shall see, Z shares certain

features with other problematic properties. A purported

open sentence that purports to stand for Z may not pick out

a property; in the sense that it has been argued that II

remember Xl, -George is thinking about Xl, 'Edna believes

that x is bald', 'X is so-called because of its size',etc.,

do not - and hence aren't even open sentences.
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Sdmeone might alertly observe, however, that although

the First Theorem, as I stated it, doesn't involve a formal

system making a remark about itself, every schoolchild knows

that the proof of the First Theorem produces a witness to

the formal system's incompleteness. This witness is a for

mula such that neither it nor its formal denial is provable;

and, the story goes on, it achieves such witness status by

being a formula that does make a syntactic remark - namely

that it, itself, is not provable. So, the argument goes,

either the First and Second ~heorems have the same troubles

about formulas expressing propositions or neither does; and

my remarks of the last section and the preceding paragraph

are red herrings.

Although this stravperson argument is invalid, it is

instructive. It points up that the diffeLence between the

First and Second Theorems is the difference between the syn

tactic form of the open sentences that purport to pick out

the properties that those theorems attribute to formal sys

tems. In the present case, what this comes to is that it is

no necessary part of the proof of the First Theorem that the

formal sentence say of itself that it is unprovable. That

it aay seem to be one is an artifact of certain informal,

motivating, semantic accounts of the First Theorem. certain

entai!~n1§ of the proposition that the godel sentence says

of itself that it is unprovable are used and these are suf

ficiently captured by the relation of numeralwise
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expressibilitylJ. This is clea~ fxom an examination of the

proof, or, more revealingly, by consideration of ~he Rosser

improvement - where, as ve shall shottly see, the undecid-

able formula does B2t say ~hat it is not pxovable. On the

other hand, ve shall see that it is a necessary pa~t of a

proof of the Second Tbeorem, and not a mere artifact of my

preceding informal account, that the consistency sEntence

for T "say" ~hat T is consistent. Tha~ is, cavils aside,

the technical considerations in~~ that this is the case.

To briDg these general considerations down to cases

(finally) requires some technical machinery. Numeralvise

expressibility, hereafter n.e., is a three-place relation

among relations or proper~ies, formulas, and formal systems.

(9) If B is an arithmetic relation or propertyl., r a

fo~mula of T, T a formal system, then r DY.!.A!xi~

~Igs§§§ R ia T if, for any n-tuple of numbers,

<111 , ••• , .. >

i. R<ml' ••• ,II.> ... 1: r<i1 , ••• " >
T

ii. not B<JI:L, ••• , DlD ) ...

131 have thei.pression that [!ostovski] deserves credit for
first clearly sorting out the welter of syntactic and
se.antic theorems. The thesis I am presenting is ulti
mately to the effec~ that, contra the spirit of Mostov
ski's hasty appendix, the Second Theorem is intrinsically
seaantical.

14BJ 'ari~hmetic' is meant of or among nuabers.
tion denoted by I-I has to be effectively given,
presupposed to have denial explicitly available.
standard Du.eral of T for D.
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(9) is the definition.

that are n.e. in g.

It is just the recursive relations

The culmination of Godel's famous series of definitions

is the arithmetic relation which we will write 'yBx'. yBx

just in case y is the godel number of a formal proof in g

whose last line has godel number XiS.

Since by Church's Thesis y]~ is recursive,

formula of i that numeralwise expresses l§~.

there is a

We have

already called (some such) it 'Pf(y,x)'. So, whenever nBm

(which I'll read 'n is a proof of mil, the result of substi-

tuting the numeral of f for nand minto Pf is provable in

~. And if not nBm then J-T.... Pf (n, m) •

A crucial arithmetic function, also recursive, is the

famous Gadel diagonal substitution function. S (x) is the

godel number of the formula that results from substituting

the numeral for I into the formula with godel number x. Let

Pd(y,x) be any formula that n.e. Let q be the

godel number of Yy..Pd (y ,x) • Then

sentence. The plausibility of regarding this sentence as

saying that it is not provable arises from considering the

standard interpretation and taking Pf as ~~~~~2§i~ the

proof relation. To what extent is this merely a pun?

15Gadel didn-t define ~~~this

simpler relations by certain
achieve the formal result.
weak Church's Thesis is but a
shall see that for the Second
more relevant.

way; it was built up from
constructions, in order to

Our imminent invocation of
dispensible short-cut. We
Theorem the construction is
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The meta-theorems that warrant the inferences needed in

the First Theorem that intuitively would flow from a sen-

tence that said that it is not provable are forthcoming just

on the hypothesis of numeralvise expressibility. (These

meta-theorems are o£ the form: If
~

n are the godel numbers
~

of syntactic objects standing in relation B, then reo) is a

theorem of T, and conversely. One is thus enabled to argue

from syntactic fact to facts of derivability and con-

versely.)

The formal argument given by G6del in the proof of the

First Incompleteness Theorem does not parallel the intuitive

one that occurs from contemplating 'I am not provable'. The

intuitive argument utilizes the notion of truth. The proof

of the First Theorem avoids this by "pulling the metalan-

guage down into the object language"16- but only a construc-

tive fragment.

truth down.

It does not have to (no£ could it) pull

To put it less aphoristically, Gadel shewed that recur-

sive syntactic relations could be represented in formal

arithmetic in the aforementioned weak, numeral vise bi-condi-

tional vay_ Tarski's Theorem is to the effect that satis-

faction (and hence truth) are not such relations. Thus some

talk of proof could b~ reproduced in formal arithmetic-

161 first heard this phrase from Burton Dreben, from whom I
also first heard of provable "consistency" sentences.
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enough so as to yield an undecidable sentence. Talk of

truth, insofar as it would require a truth predicate, is

impossible for formal arithmetic.

Let us consider the thesis that if r numeralwise

expresses R then then ret)
~

says that B(n). Call this the

n.e. thesis. Vere even this true, in order for either the

consistency sentence or the godel sentence to be said to

express aaything, the thesis would have to be extended in

the following manner. stipulate that the truth-functional

connectives and the quantifiers have their usual meaning. I

take it that the usual meaning of the quantifiers involves a

specification of the domain of quantification. The formal

system, uninterpreted, is not capable of such specification

- in fact this is a consequence of the First Theorem, in the

following sense. The First Theorem shows that there must

exist non-standard models of formal arithmetic - models

non-isomorphic to the standard model. In this sense the

formal system does not rule out non-numbers from the domain

of quantification and so doesn't "fix" the domain. The

relevant intuition concerning the godel sentence is that it

is false in some non-standard models - there are non-stan-

dard (godel numbers of) proofs of it. So the godel sen-

tence, given the n.e. thesis, says that it is not provable

only relative to the standard interpretation (given in the

standard manner, cf. p I~f).
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A thesis fUlly warranting a "says that"-claim for the

godel sentence will represent an ideological increase even

over our expanded n.e. thesis. Although there are seeming

(first-order extensional) semantic notions used there, they

are all rep~aceable by explicit constructive definitions.

Thus, for example, ~~~D~~!~ nY!~£~! !Q! n needs no semantic

apparatus for its definition - '0' preceded by n 'f"s ( or

whatever). Indeed, as indicated ahove, even is g !2!~gl

2ro2! 2! can be so dealt with. As all the needed notions

are recursive, they are in fact definable in g.

In any case our project is more modest. It is to give

an account of a representation or translation relation suf

ficient to justify (8). In doing this we certainly do not

seek to expand the class of relations "represented" but to

strengthen the representation relation, to carve up the

class more finely. However, only a small subset of the

recursive relations and statements are at issue. For what

we have seen 50 far is that the First Theorem does not

require a real translation relation; that if we want the

godel sentence to say what is often claimed it says a little

first-order extensional semantics seemed plausible; and that

in contrast, (8) explicitly refers to a sentential formula

stating that 7 is consistent. If the Second Theorem is in

fact to be straightforwardly about consistency, then expli

cating fa sentential formula of T stating that T is consis-

tent f , for variable T, is of seme import. And while a par-
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ticular proof of an instance, i.e. about a particular formal

system, may exhibit a particular formula that is unprovable,

it even then has to be justified as being a formula that

says that that system is consistent.

The use of the standard model, though it explains why we

say the godel sentence and its ilk say what we say they say,

and is not an ad A2f technical fix, is simply not satisfac

tory. We want an explication of when a sentence of a formal

system, T, expresses a particular proposition - that T is

~onsistent. The expanded n.e. account is methodologically

adequate but doesn't cover the cases. That is, there is

nothing incoherent in this account; it doesn't violate any

methodological canons. It is just empirically inadequate 

it makes the wrong predictions. In particular, as we shall

see, it doesn't d~t~~ sentences that are consistency sen

tences from some that aren't.

Before coming to the bare-boned technical data, it

should he noted that ve can envision, in advance, one kind

of solution. If we rule out the use of an explicit semantic

apparatus, the remaining means of describing the expressive

abilities of formal systems is in terms of syntactic struc

ture and of what formalisms can prove. Numeralwise expres

sibility is an instance of such a description. So we might

expect further conditions to be of this sort; i.e. condi

tions on derivability.
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Chapter 4

DEVIANCE

Let us suppose that we have fixed on a few standard

means of building formal consistency sentences from a formal

proof relation. (This reduction of the problem can be just

ified.) Given a for.al proof relation ve will then have a

stock of consistency sentences made up of the standard tran

scriptions and their logical equivalents. ihat is -required

of the proof relation that goes into the consistency sen

tences?

In what preceded I gave reasons for believing that there

is no good reason to believe that numeral wise expressibility

will pick the appropriate proof predicate. Even if Dumeral

wise expressibility vas sufficiently strong to yield a

coherent technical result, this would hardly establish (8).

The technical solutions to the problem of generalizing the

Second Theorem, which suffice to prove the technical result,

need to be examined as to vhy they are solutions of the

right sort; i.e. vhy they support (8).

For the First Theorem there was no requirement that the

'express· in wnuaeralvise express' be anything but a pun.

For the Second Theorem I argued that the seeming logical

form of (8) required that 'expressibility' be taken more

literally.
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If (8) is false we are, of course, done. In this

section I content myself with shoving that requiring only

numeralvise expressihlity of the proof relation entails that

(8) is false. Later, in section 10, I shall reveal that

there are coherent accounts that certify (8).

Bosser exploited the fact that the only property of the

formal provability relation needed in the First Theorem is

that it numeralvise express ~~. By constructing a new open

sentence that n.e. ~§~ but had special properties as well,

Rosser was able to improve the Godel result. Let Pf be a

formal proof relation as Godel would define it; then define

Pf' as in (10).:

(10) Pf' (y,x) = Pf (y,x) & (Yz1 ~y) (Vz2 ~y) (Yv~y)

-{ p f (~l ' w) & P f (~ , n g (w) ) J

Pft like Pf n.e. yBx. (nBm'" J- Pf (ii, i) ). Suppose the for

malism consistent. Then nothing is a proof of a sentence

and its denial. -,nB m ... l- -'Pf en, iii)'" l- .,Pf t (n, ii) •

However ,(19)

becomes an unprovable consistency 'sentence when ~ is

replaced by Pf; 'but when ~ is replaced by pf1 the result is

provable. In fact it is trivially provable - consistency is

built in.
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A similar result is more simply achieved using the

Rosser form (20).

(20) Pi(y.x) & Vz~y (..,Pf(z, ng(x»)

An even simpler deviarit expression is yielded by (21);

(21) Pf (y.x) & ..,Pf (y,it)

where k is the godel Dumber of '0=1'. If T is consistent

Pf(y.x) & ,pf(y,i) n.e. what Pf{y.x) does.

consistency schema (22).

( 22) , ay cp (1 , it)

consider the

Then, although with non-deviant Pf in for cp (22) becomes

not pxovable. (23)

(23) .... ay (Pf(y.k) S .., pf(y,i»

is.

What isn't provable in T is that (21) and Pf do numera!-

vise express the same relation; i. e. not

-~T Pfly.x) ....... (Pf(y,x) & ....Pf(y,k)].

In each of these cases it is intuitively clear that the

deviant predicates are in fact deviant. Th~~~the aforemen-
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tioned empirical inadequacy of the expanded n.e. thesis.

However, not all nonstandard consistency sentences are of

this type.

from Kleene.

Consider the following line of argument adapted

The Gadel sentence itself is a consistency sentence.

Why? Any sentence that says a formula is unprovable is a

consistency sentence, and the Gadel sentence says that it is

not provable. Or, since its existential generalization is a

consistency sentence, then it at least entails a consistency

sentence; and vice versa. And, provably so - l- CON....... G1 7.
P

I don 1 t think that l- CON ........ G is sufficient to show G a

consistency sentence. After all, not all theorems are syno-

nylDous. The rest of Kleenefs argument is worth unpacking.

No consistency sentence of a formal system literally tran-

scribes the form of the English sentence If is consistent' -

no consistency sentence is of the form Fa. They do tran-

scribe anyone of a number of definitional expansions of

such sentences, with the reference to P, or whatever formal

system, being implicit in the proof predicate used. If a

170n p. 211 of Introduction to ftetamathematic§ Kleene says:
"Intuitively (the G6del-Rosser undecidable formula] itself
expresses an equivalent [to consistency], via the long
,intuitive proof of Godel ' s theorem. Por by [G1] if the
'system is consistent, the G-R formula is unprovable and •••
if G-B is unprovable, the system is consistent." That G-P
is the appropriate arithaetizaticn of G-B is unprovable
plays a crucial role here - hence the reference to the
"long irituitive proof". Not any unprovable formula will
do.
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general theory of proof predicates (i.~. an account of proof

predicate for T, for variable T) is availatle then cne can

have an explicit variable over formal systems. The various

syntactic definitions of consistency have a common charac-

ter. Not only are they all trivially equivaleat (provably

so in any system ve"vill be interested in), but they all

assert the unprovability of something. Some assert the

unprovability of ~ , some of '0=1', some simply say that

there is a sentence that is unprovable. Any sentence that

says that some unprovable formula is unprovable is a ~Q!!.2is

t~n£~ .2~nt~~~~. The Godel sentence, G, is of this form. If

one replaces the term for G in G by the godel numeral for~

the result is a more usual (and equally unprovable consis-

tency sentence) 18.

This observation that G has some of the necessary pro-

perties of consistency sentences depends on the form of G,

18There are some issues of propositional identity that arise
here. It seems plausible to say that 'Edna is not here'
and 'Someone is not here' both say that scmeone is absent.
And 'George is not here' is e1ual1y an "absence" sentence.
It would, however, be misleading, with respect to natural
language, to say that all these sentences express the
absence proposition. Of course for natural languages we
want our semantic theory to respect all semantic facts.
For the case in hand ve will deliberately be working in an
impoverished semantic theory. ~oreover, the following
fact about formalisms is relevant: All the consistency
definitions examined so far are provably eguivalent. (For
the ones that assert the unprovability of a particular
sentence, the inference from a pure consistency sentence,
i.e., one with no terms referring to a particular sen
tence, to thea requires the particular sentence to have
pertain properties.)
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and does not proceed from the observation that there is an

unprovable formula, 'namely G. Ne mere example of unprova-

bility, say.0=1, is a consistency sentence. The proof of

the First Theorem does not establish G as a consistency sen-

tence. First, as we have seen, it does not use the fact

and whose corresponding consistency sentence

(when it is a fac~ that G says "I am not provable."

Second, the Rosser improvement highlights this by producing

an undecidable sentence that does not express its own

unprovability

is provable.

So, a non-deviantly constructed G is not a deviant con

sistency sentence. There is, though, another kind of devi-

ant consistency sentence. It is cl€ar from the proof of the

First Theorem that each instance of G is provable. That

is, for every n ~p~Pd{fi, ~). It is one lesson of the First

Theorem that quantifiers cannot always pass through turn

stiles. One can, however, formulate the proposition that

every substitution instance (using standard numerals) of

~Pd(y,~) is provable. Let p be the Godel number of

.,Pd{y, q); then (24)

(24) ~pVy Bev Sub (y, 2, p)

holds. (24) should not be confused with the remark that one

can prove that every instance of G helds.

can't.
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In [Webb], Webb asserts that a substitutional version of

consistency "is a nice provable expression of consistency

after all." Let k = '0 = l' and let Pf (x, y) be normal, and

A (x) abbreviate ....P(x,k), then (a la [Webb] p. 30) ve get

where S is the substitution function term. (In fairness,

Webb doesn't say that the substitution version "says" g is

consistent - he says its assertive force is less than that

of COI(P).)

Do (24) or (25) exhibit a provable consistency

sentence 19 ? I argued above that if a sentence said that

some formula was unprovable it vas a consistency sentence.

conversely, every consistency sentence must say !ha!.. The

sentences in (24) and (25) neither say nor imply that. They

say that lots of things are provable; in point of necessary

fact all those sentences being provable cannot be used to

19The following intuition may help in seeing that (24) is
true._ Sub(i, j, k) is the (godel number of the) formula
with i replacing ~ in k. Sub(xt , xJ ' xk ) is a term for
Sub(i, j, k). So Subey, 2, p) denotes the result of sub
stituting the standard numeral for y in p for ayl. The
fact of the use of standard numerals lops off, intuitively
speaking, the Don-standard interpret- ation of the guanti
fierY 1. That no particular standard proof is a proof of
q is provable. Similarly for (25), the "numeralization fl

of the quantification over proofs omits non-standard
"proofs". P cannot prove that its Froofs are none of them
Don-standard.
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prove consistency. They simply don't have the right form.

That neither says that something is not provatle is patent 

starting as they do with a universal quantifier. That they

don 1 t entail that something is not provable follows from tbe

facts that they are provable, that modus ponens is a rule of

R, and the Second Theorem.
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Chapter 5

FEFEB!AN

These deviant proof predicates and consistency sentences

indicate that what is needed is a precise definition that

would pick out the (or only) formulas that correctly express

Viewed as a technical problem. that of pro-

ducing a generalization of the Second Theorem, this need has

not been ignored - and Kreisel has emphasized its founda-

tiOD.al aspects. As a technical problem the earliest treat-

ment occurs in [8-B] where three derivability conditions are

enumerated and used to prove a rigorous version of the

Second Theorem. Any proof predicate that satisfies the der-

ivability conditions viII suffice for the Second Theorem 2o ;

the labor is in showing that any particular Froof prEdicate

does satisfy them. This approach is continued in the work

of LOb ((Lob]) and in important recent work in modal systems

Between 1939 and 1953 very little happened on the tech-

nical front. The Hilbert-Bernays derivability conditions

20In light of my previous remarks it should be emphasized
that the Second Theorem bere is not justifiedly about con
sistency not until the derivability conditions are
semantically justified.
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vere conditions on the ferlal proof relation, in addition to

numeralvise expressibility, that were sufficient to guaran

tee an unequivocal Second Theorem in the following sense:

Iny proof relation meeting the three conditions would sat

isfy the requirements of the proef of the Second Theorem

and 6 moreover, the proof relations constructed for familar

theories were seen to satisfy the conditions.

Peferman·s 1957 dissertation and 1960 paper ((Fef]) and

Jeroslow1s papers ((Jerl], [Jer2], [Jer3]) were stimulated

by remarks of Kreisel ([Kreisel]). Peferman points out that

"numerically correct" proof definitiens are inadequate for

certain results. Results for which they are adequate he

calls 1extensional'6 the rest ·intensional~. The deviant

proof predicates are intensionally incorrect. Some inten

sionally incorrect predicates lead to useful extensional

results (Rosser) while others have no intrinsic interest (a

provable "consistency" sentence). For Feferman the weakness

of the Hilbert-Hernays approach is that verifying whether a

particular predicate satisfies the conditions is laborious.

Despite the value of his technical work, this is all Fefer

man has to say about its philosophical import.

Feferman presents a large class of formal systems and

proves the Second Theorem for them. The key to his aFproach

is the notion of a formal system that he employs. The con

sistency sentence for any system is built from the proof

predicate in some standard way (by a straight-forward tran-
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scription of anyone of the equivalent definiticns of

consistency); the proof predicate in turn is straight-for-

wardly transcribed from the presentation of the formal sys-

tem. The trick is obtaining a formal object to represent

the presentation (no set theory allowed).

~ore precisely: If t(x) is a formula that n.e. the

axioms of T, a proof predicate can be constructed "in a

s~andard way" from t. Does the phrase 'a consistency sen-

tence for a formal system' make sense? Only if one individ-

uates formal systems more narrowly than by their axioms (and

certainly more narrowly than by their theorem sets) - viz.

by the formulas t(x). For the equivalence classes of such

for the technical contexts in which they occur21 • Ey nar-

roving the individuation it is then possible to generalize

various metamathematical results by conditions on the formu-

las t.

Feferman defines a pIoof relation given a formula t that

numerically defines the set of axioms. Since many tIs

numerically define the same set of axioms, foe the same

axioms different formal proof relations viII be defined; one

21FoI, utilizing ~~~~ ~!~~~§!Qn 22 is equivalent to utiliz
ing numeralwise expressibility as sufficient to character
ize a formal proof predicate. We saw in section 4. that
the existence of deviant, but extensionally correct, for
mal proof predicates vould make generalizing about formal
isms difficult in the absence of finer discriminations.
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for each t. 50 either there is no such thing as the formal

proof relation for a theory or a theory is not its set of

theorems or even its set of axioms plus fixed dedactive

appaI:atus22 • rhe proof relation has to be "taken in inten-

sion." If we talk according to the first alternative ve can

say that the identity of the proof relation is sensitive to

the mode of presentation of the theory. Deviant proof rela-

tions are bizarre ways of giving the axioms;. bizarre enouqh

so as to carry a trivial assurance of consistency. ("Tell me

how old you are and make no mistake." "I'. as old as I am."

The situation is also reminiscent of Frege's problem with

the meaning of proper names: If a proper name means what a

particular definite description means, then certain ncn-ana-

lytic propositions end up as analytic. See p. 73.)

!he formal proof relation is obtained from a t by

mimicking the construction of the real proof relaticn, gen-

eralized over uniformly presented formalisms. The idea is

to reflect the notion of logical derivability from axioms by

copying its usua~ definition step by step in formalized syn

tax. The syntax of a formal system is developed in number

theory, relativized to an unspecified Don-logical vocabUlary

221 third alternative: There is a unique special t for a
theory, which can he used to define the formal system.
~his turns out to be plausible ooly for certain theories,
for certain purposes. In particular, a finitely axioma
tized theory has a unique (up to A-equivalence) prefer
rable t. See p. 49.

-46-



EXPRESSING CONSISTENCY: GODELtS SECOND INCOMPLETENESS

K. Thus 'FmK· denotes the formulas of K, 'TmK' the terms,

'StKt the set of sentences in K. The usual syntactic

notions, such as substitution, are characterized as number

theoretic functions in the usual way - yielding, for exam

ple, 19b; Vi, which denotes the substitution of term j for a

in V. Conventional abbreviations are introduced to restore

(
II. .. . \I,,)

standard notation; 'v (J.....,3-) t for 'Sb , •.... 'n I. Finally I

as the logical base a primitive recursive set AxK is added.

A system or axiom system is a pair <A,K>, where K is a sub-

set of Const (the set of non-logical constants) and A ~ StK.

A= <1,K>. ~ = < O,K>. Let A/D = {, E A: cp ~ n} and

A/n = <A/n,K>. The proof relation prf A is the relation such

that "for any cp , V, Prf A[ " V]

cp = (V >t(v)-l and for each i < L ( V), (w 1

i) (V >t E AxK

ii)( V)1 E A

iff V E Sq and

EFmK and either

ii i) for SOlie j, k < i (V)k = (V)3'" (W )~

••• pr! -= {cp: aVPrf![ cp , V ]}. 1-! cp ==, Epr!. It

with this equipment the usual metamathematical theorems

are forthcoming. Feferman 1 s (2.2) is the Deduction Theorem

and (2.3) is the following finite deducibility result:

(F2.3) For any cp E FmK, cp EPrA iff ancp EPr!/n

Furthermore, A ECL iff PrA ~ A and A E CON iff for cp E FmK,

not 1-! cp or not 1-! .... cp •

iff Yn lin E CON.

An easy result is (2.6):
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Formal arithaetic is introduced via K
Q

whose symbols we

write to remind us that we vill use them for arithmetic;

e. g. e.1 = f1,O( e , I ]. Numerals are introduced by:

o = cO' (0+1) = (n)'. Q and g are singled out as interest-

ing K
Q
-theories. Q is the well-known Q, finitely axioma-

tized, and f is f, so-called because of its name. Fefer-

man's (3.1) establishes the adeguacy of Q for the intended

interpretation of +, ., =, etc.

(F3.1) (i) 1-Q ii + ii = n + m and 1-Q ii· iii = n:m

(li) 1-Q n 1 ii if n r m

(iii) rQ x~ - 0 1n ~ x = V x = V ••• x = n

(iv) 1-Q xS n Vn .s x

Feferman's terJl for numeralwise expressibilty is

'bi-nuJlerate'. 1 p.r. extension of f, <P',K> essentially

consists of additonal function symbols - to go on the left

side of primitive recursive defining equations (extending Ko

to K) - the defining equations (extending P to PI), and the

extension of the induction schema to cover fmK. The desired

results are forthcoming as (F3.q): For each p.r. function

there is a p.r. extension of R with a term that numerates

it in j' and every such formula numerates a p.r. function.

For each p.r. relation there is a p.r. extension with a term

that binumerates it, etc. By elimination techniques

(bi-) numeration in f' can be replaced by (bi-)numeration in
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Tvo primitive recursive classes of formulas of g are

defined. The superscript indicates the eliminaticn mapping.

(F3.6) Df. cp E FmK

i) cp is PH-formula if 3 f', Ft a p.r. extension of R,

an d a term ~ of of 1 , such that cp = ( t. = 0 )<E.
1

) •

ii) cp is an RE-formula if for some PR-formula ~, cp =

a ••• 3 ~ •

As one might suspect these classes are closed under dis

junction, conjunction and bounded quantification (and denial

in the PR case). If CPl' CP2 are PR- (RE-) formulas ve can

effective.ly find PB- (H£-) formulas cp and ~ such that

I-g, cp....... CPl V CP2 and I-g, ~ ...... CPl A CfJ2

minate in (F3.11)

• These results cul-

(F3.1 1) (i) If a PH-formula and FvC cp) =

{v
O

' •••• vn }. then cp is a bi-numeration in Q of

an (n+1)-ary primitive recursive relation R;

further to each such R corresfonds aPR-formula

cp which hi-numerates it in Q. (ii) If ep is

an HE-formula and lV(ep) = {vO •••• ,vnl, then cP

is a numeration in Q of an (n+1)-ary recur-

sivelf enumerable relaticn R; further, to each

such R corresponds an BE-formula cP, which num

erates it in Q. (iii) ••• (i) , til) aFPly to

any recursively axiomatizable consistent exten-

sion of Q.
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Peferman then specifies a particular p.r. extension M of

R. The metatheorems justify the following notational dev-

ice. with certain p.r. functions there is associated a

function symbol of"i denote this functien symbel by the

ordinary non-uniform, mathematical notation for the p.r.

function, with a dot added. Mutatis mutandis for relations.

h
.w

T us'~ • denotes a term of M that represents exponentia-

tion. Arithmetized versions of metatheorems can be written

by takiag the metatheorems, splattering them with ink and

placing a turnstile in front.

The only difficulty is with propositions involving prov-

ability. AxK, the set of logical axioms, was explicitly

giveni but in the definition of prf A membership in A is

mentioned. Peferman's crucial method for dealing with this

is contained in defintion (F4.1), which defines a formula

prf
• Oi

• Here t Oi' denotes not an axiom system A, but a for-

mula in one variable, x. Feferman asserts that if Oiex)

expresses that x belongs to A then p~~ (x,y) will express

that y is a proof from <1,K> of x. Interpretation aside,

(F4.1) is the dotted version of the definition of PrfAI with Oi

standing in for A23.

23"(4.1) Oi a formula of M, u,v,v not free in ~ and distinct
from x, J, 2. P&:,fa = esC] (y) A J. (y) '1 0 A V u {u<t (y) ...
PIIlK «(y).u) A [A~K (y)-u) v ot «y).u ) v :I v 3 W{v<u A w<u A

(y).u = (y).w -:t (yLu )]) A x= (Y).~(y)...i) Q!)
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P~fct is not just any formula tha t hi -0 umerates prfA •

Two things insure this. The dot notation is defined in

terms of an effective procedure yielding a formula (this is

the purpose of using the well-behaved FR- and RE- formulas)

and Pt;fct depends on Of • If Fv (a) = {x} and Of' =

Of (x) A xSz, then P~fal is denoted by 'P~~lz '. In the

second definition numbered' (4.2)' Feferman defines a par-

ticular formula Of to go with A, when A is finite (A =

{~ , ••• , '\ }): ( A] 5: X = k" V x = k 2 V ••• X :: k
ll

• (c f. note

on p. 44). (F4.3) gives the expressions for provability_

That these constructions are "extensionally" correct is the,
content of (F4.4).

(F4.4) Let Of E FlIR, Fv ( Of ) = {x}.

... arbitrary .-.
Let! = <A,K> be

system and ~ :: <S,K'> a

theory with Q ~ S.

(i) If Of numerates (bi-numerates) A in ~ then

P~fa nUllerates (hi-numerates) PrfA in ~.

(ii) If Of numerates A in ~ and ~ w-consistent,

then PTa numEra tes PrA in ~.

Is with any arithmetization of a relation, one is inter-

ested iD P~fOf and PFa ·s adequacy. We already know that PFCi

is not going to behave as pleasantly as x t y, but certain

theorems, reflecting elementary truths about provability in

A, are forthcoming with Of merely occuring schematically.

Thus,
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(P4.6) Let Ct be a for mula of 11, Fv ( Ct) l; {x, z}

i)
~

P.ra (x) .... FI!lK (x)

ii) l-M A~K (x) .... P.ra (x)

iii)
~

a (x) A FmK (x)
•

i v) ~ PFO/ (x) A P~a (x ~ y)

v) If t is any formula of H,

~Vx[ (AJ5K (x) .... t (x» A

( O/(x) A p ~K (x).... *(x» ] A

V x Vy[ FIIK (x) AFmK (y) A t (x) A. .
v y (PEO/ (x) .... *(x) )

.... Pr (y)
• ex

v (x -:+ y) .. *(y) ] ....

These are ele~entary consequences of the fact that ~ can

"follow" an inductive definition, so that i)-v) are verifi-

cations that the inductive definition was captured. Fefer-

man points out that the first and second conditions of Hil-

bert-BeLnays follow from (F4.4) and (F4.6) and are thus

independent of the choice of 0/.

leferman then proves a batch of theorems to the effect

that various theorems have provable arithmetized versions.

These are still dependent only on the inductive nature of

the definition of Prf and its extensional correctness.
• 0/

The theorems are proved by "following" an explicit CODstruc-

tive proof of the original theorem. Feferman's dot notation

makes this procedure moderately easy to comprehend. In par-

ticular the following is proved:
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(F4.10) i) For any particular t,o E FmK

VzCon ,
- 01 z

~ (x) A Fm.K (x)... 01 (x» ... (cqn
Ol

-+ C~~ )

-.Pr (cp A. .,. ~ )
• 01

il) L_Con ......
I ~ • 01

iii) ~ yx (

A diagonal lemma is proved, and for each 01 E FmK , Vo 01

is the sentence constructed a la the lemma such that

The underivabllity of Y
OI

is shown for

arbitrary 01 numerating arbitrary extensions of Q, provided

the extensions are recursively enumerable. Restrictions on

1:he form of 01 are needed for the Second Theorem. For this

purpose. two important facts are supplied by Th. 5.4 and Cor

5.5. Theorem 5.4 is the formalized version of (F3.10),

which says that any true Bounded Prenex Formula is provable

in Q. (F5.4) says thai: this itself is provable in M. Cor.

5.5 says that if cp is Q-provably equivalent to some t E

BPF, then The strcnger condition,

~CP ... P~OI(cp), is obtainable from

(F4.7)i). (Cf. p. 286 [H-B] v. II).

Pr (x),
-0/

by

This is enough equipment to prove Theorem 5.6, a version of

Godel's Second Incompleteness Theorem; and represents in

Feferman's context the all-important third derivability con-

dition of [a-B].

(15.6) Let A - <A,K> be a consistent axiom system with

.§uppose 01 is an RE-formula which numer-

ates A in S, where Q~ S s;;j. Then
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and hence not

The proof is instructive as the use of (FS.S) is made expli-

cit. Va is equivalent in Q to p.ra ( YJ • since every RE-

formula is logically equivalent to a formula, effectively

found, in bcunded prenex form, (FS.S) is applicable and ve

get r~ ... Va" PlfQ] ("';IVa ). We also have, since Q is fini te

rs [q](x) .. P;Ca(X)

and hence (by (F4.7i and ii)

L ., v .. Pr (~ v )
r~ TO' • a TO'

and

Con A
· a

Con ... Y
~ a a
(PS.9) reports a negative result. ! is reflexive just

in case for each finite F s: A, r~ CqD[F]; al ternati vely, for

each n r~ c~nrA In] •

(PS.9) Let A = <A,K> be a consistent, reflexivE axiom

system, P s: A, A rec ursi ve. There is an 0'* bi-

numerating A in ! such that rp C(rna* .

Not surpisingly Feferman's 0'* is related to our deviant

proof predicates. a*(x) = a(x)i\ Vz (z5x .... cqnalzA S1;K (x»,

where a is a hi-numeration of A in Q.
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If we restrict attention to RE-formulas ve might be

tempted to find a natural consistency sentence constructed

from them. Since the RE-formulas numerating an axiom set

are not equivalent, the field has to be pared down. For

finitely axiomatized (or axiomatizable) theories this goal

can be met. Let a ~al iff ~~ conO'I ... cona If A is fin

ite [A] is minimal in ~A. (Of course one first applies the

restrictions of {PS.6) so that ~ r1! co~. since if r~ cona ,

a would be minimal. Fot non-finitely axiomatizable systems

(F7.q) tells us that a similar solution is not available.

(F7.4) Theorem: Suppose that! = <A, K> is a consis-

tent reflexive axiom system with g ~ !. Then

with each a which is a FR-formula numerating A

in f ve can effectively associate aPR-formula

a 1 numerating A in.f fot: which O'I<a. Under

the assumption that f is v-consistent, the above

holds true with "HE" instead of "PR"."
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Chapter 6

JEROSLCW

Although Fefer_an later ([Fef2] p. 129) recants his use

of the term -intensional', I think it is apt. And it is apt

for just the considerations Feferman has in mind in abandon

ing it: "To avoid confusion with the philosophical problem

of in!§~io~ it seems preferable to use other termino

logy•••• " As sections 2. and 3. show, there are ample rea

sons for embracing the "confusion". In later sections I

viII show tha~ the term 1intensional' is apt and that there

is nothing intrinsically confused about so regarding Fefer

man's (and others') accounts of the Second Theorem. Brilli

ant as it is, Peferman's approach to the Second Theorem and

related matters is not the only revelatory ODe.

Jeroslow's approach, though intertranslatable with

Fefermanws, is more direct than his. It avoids the standard

encodings of the usual p.r. syntactic relations and func

tions, whereas Peferman presents a generalized theory of

those relations and functions.

Jeroslow specifically identifies formal systems with

Post canonical systems: "Formal lcgics are not usually

understood as Post Canoncial Systems, but there is a natu

ral, uniform procedure for viewing them as such, provided
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that 2lt the mechanical rules which constitute the formal

logic are specified, even the inductive rules for generating

the terms, formulas, etc. The idea here is that the predi

cates of proof theory are always inductively defined, and

Post Canonical Systems are the language of inductive defini

tions E~~ ~£~ll~." ((Jer2]) Post Canonical Systems thus

formalize the "presentations" of formal systems given in

logic books.

In both the Feferman and Jeroslow accounts the Second

Theorem is proved; as I mentioned, the accounts are in some

sense intertranslatable. But Jeroslow's account has some

philosophical virtues that Feferman's approach doesn't; Jer

oslow's treatment makes clearer the rationale for restric

tions on the class of admissible proof predicates. Loosely

speaking (in the terminology of Chomsky, et all, they are

equal in descriptive, but not explanatory adequacy, in the

following way.

One virtue of the Jeroslow treatment hinges on the iden

tification of formal systems with Post Canonical Systems.

This identification, plus the realization that there is no

theory more appropriate than concatenation theory in which

to describe Post Canonical Systems, form the core of Jero

slow's approach; the rest is "follow your nose."

The justification of the approach consists largely in

justifying this thesis (~~~2s1o!~ lhesi§): Formal systems

are Post Canoncial Systems. SEction 10 will take up what
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justifying the Jeroslov (and Feferman and modal) approach

comes to in this context. It suffices for now to remark

that it viII be their adequacy as semantic theories that

meet the cavils of sEctions 2 and 3, that viII be justified.

But vhat 9f the thesis internal to Jeroslov's treatment

Jeroslow's Thesis?

Three paragraphs ago I quoted a remark of Jeroslow's in

support of what we are calling Jeroslow's Thesis. Jeroslow

also remarks [Jer2] p. 6): "It should be evident at this

point that the representation of a formal logic as a PCS is

so straightfo~ward, involving as it does, merely rewriting

in the PCS format the usual definition of the logic, that,

whatever prior ideas one may have held regarding the logic,

the PCS can hE understood as the object to which those ideas

pertain." Thus the identification of formal systems with

pess is supported by the identification, in the "forensic"

sense of 'identification', of formal systems as pess.

Jerslow is asserting that the pes thesis is sUFPortable

on conceptual grounds prior to seeing how well the theory

based on it works. Ie shall see that there are many post

theoretic justifications for Jeroslow's Thesis (in the sense

that it makes possible generalizations of the Second

Theorem) but it is veIl to have these pre-theoretic reasons

as veIl.

Kreisel adduces some KKreisel] p. 154) in pointing out

that ve often vish to distinguish formal systems by their

-59-



rules,

THEOREB AND INTENSICNALITY IN ~ETAMATEEMATICS

and not by their theorems or even their set of

proofs. Typical contexts that require such a fine-grained

distinction of theories are evidential ones. One formula-

tion of a set of theorems may be evident (i.e., evidently

true) and hence foundationally sound and another not. More-

over, the establishment of their (extensional) equivalence

may not be evident. Kreisel's example, appropriately

enough, involves a standard and a deviant proof predicate.

As we know, the deviant proof-predicate insures consistency

but the proof of equivalence cannot be carried out in any

system as weak as the ones considered 24 •

Now representing formal systems by pess provides an

individuation fine-grained enough to serve in evidential

contexts. To see this we will fellow Jercslow in defining

what a PCS is and see how our usual presentations of formal

systems go over in PCSs. This will bring us to the point

where Jeroslow asserted that "it should be evident" that the

pes thesis is true. Once we have reached that point, I

think it viII be evident that Jeroslow's claims are correct.

It is important to remember that in the usual rigorous pre-

sentations of formal systems many syntactic notions are

defined inductively. Note that it is in the spirit of the

24Kreisel goes on to present various reasons why, in doing
proof theory, one should, as it were, be at the level of
rules. Every such consideration supports the pes thesis
insofar as pess represent formal systems at "the level of
rules".
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origins of formal systems as an object of study, that they

be regarded as systems for generating syntactic objects in

categories, independently of their intended meaning.

Finally, note that, from this point of view, axiom schemata

have no place, as such; non-finitely axiomatized theories

are to be identified with nthe fini!~ number of rules which

describe the generation of the infinite number of axioms."

([ J e r 1] p. 4). Not only is this in accord with the view of

formal systems as combinatorially secured producers of

theorems, but also connEcts to the epistemological motives

behind a Hilbert-style program2S • Recursiveness is only

finitude once removed. PCSs just are the required finite

sets of "rules" for producing the theorems.

What is a pes? 1 pes consists of an finite alphabet An

= {a', ••• an}, a set of strings of An (designated 'axioms')

and a finite Dumber of production rules written in the lan-

guage 1 U S, where S is a set of symbols called string vari-

abIes (1 n S = 0). A production rule is notated:

(+ ) I-L,. • • • ., I-Lr ... I-L • where are words in

A U S, and rule' (+) is interpreted: If upon some fixEd sub-

stitution of words in A for string variables,

turn into words already produced, then, under the same sub-

stltution, I-L is produced. The axicms are considered pro-

duced. The theorems of a PCS are all axioms and all strings

25Such epistemological scruples have surfaced in recent
times in the work of Quine and , more explicitly, Davidson.
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obtai~ed by applying the rules any finite number of times.

These are all the theorems.

As Jeroslov remarks and shows, PCSs are the language of

inductive definitions par ~~£gllen£~. We shall stipulate

that mnemonic abbreviations such as 'Vbl', 'Tm t , etc. are to

count as single symbols.

Axioms: N1

Tmf&1&1

Taf&1&11 (v1)

Production rules: Itt ... tOl

NCi'" VblvCi

Til f &a & ~... Tmf &0' 1 &~

Til f &a &~ (y) ... Tmf &Ci & ~1 (y, v 1)

Vb1O' ... Tm Ci

Tme, Tile, Tmy, e ,I ... Tmy, e ,e

rae,Tm9,Tmy,5)'" Tmy,S)

This PCS (which is given on p. 4 of [Jer2]) represents

the characterization of terms in a formal system. With a

little attention to detail, as regards, for instance, the

necessity of the last rule, the ordinary inductive specifi-

cations in standard logic texts can be translated to a Pcs.

As Jeroslov points out some metanotions get a little hairy -

free occurence of a variable in a formula being particularly
t

hirsute. To every pes, P, there corresponds a pes, Bw(F),

which generates all valid production seguences of F.
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Baving given a uniform method of presenting formal

systems, via Post Canonical Systems, JeIoslow builds a

theory to ,giJ:e~ "encode" the syntax of PCSs. There are a

number of ways to do this: perhaps the clearest is in

[Jer2]. A formal theory T is characterised that meets the

following conditions:

P1: r- e an d r- cp iff r- e l\. cp

P2: If r- e (x) then e(t) fOt every term t.

P3 : If r- e an d r- e ::> cp then r- cp

P4: r- e (x) iff r- Yx e (x).

Furthermore, there are a function symbol * (for concatena

tion), distinguished constant ~ (for the empty string), and

axioms such that various facts of concatenation theory are

provable. The notion of an glQ~ is defined:

Y u Y v (x ::: U • v l\. v1 ~:J Y = x) l\. x~ ~ == At (x) •

A mapping from an arbitrary PCS to T is defined by a

choice of closed terms of T, provably distinct atoms, to

serve as the images ("names") of thE letters in the alpha

bet, An, of PCS F. This induces a map from the words of F

(i.e. strings of letters from An or string variables) to

terms of T; each ai in An is replaced by the appropriate

term (provable atom), and a string variable by a free varia

ble of T (same for same, different for different), Flacing

an * between symbols. This map is denoted by I-I For

-63-



THEOREM AND INTENSIONALITY IN METAMATHEMATICS

example, ~~ : a * c * e and bac'a~~ = n • ~ * c * 1 * x * ~

* '9.

For e a formula of T, ExtF (9) says that (x: e(x)}

extends the set of theorems of P. ExtF(S) is easily defina-

ble in T - in fact by a universal formula.

scription (IK' for 'Kreisel') of pes F if

Sex) is a K-de-

(a) : l-e (-p,t) for i = 1, ••• , s, where the ~& are the

axioms of F.

(~) : l- e(WJ, ) A ... I\. S(~I\ ) :J e (w) for each produc-

tion of F.

(V) : If ta) and (~) ho ldfor cp, then l- e (x) :Jcp(X).

Trivially any tvo K-descriptions are provably equaivalent.

Instead of (y) one can ha ve ExtF (cp):J ( a (x) :J cp(x». An

important immediate fact is that 11 a !2 g ~-gg§£I~tiQB Q£

1h~n re(~); the pIoof uses P1-P4.

(This is ~eroslovts Proposition 4.) It is also immediate

that if e is a K- description of F in T then it is a K-de

scription of F in any theory T' in the language of T that

extends T.

Jeroslov then introduces a specific extension of T,

which he dubs the quantifier theory of concatenation; I will

call it QT. QT consists of the following axioms:
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Q~1) X * A :: A • x :: X &(x * y :: X V 'j * x :: X ~ Y = A)

& (x * y) :: A ~ X = A & Y :: A ).

QT2) (x * y) * Z :: X * (y * z)

QT3) x * Y = x • z ~ y :: Z & (u * v = t * s ~ 3y (v = y

* s V S :: y * v».

QT4) X. Y = u *v & At(y) & At(~ ~ x = u & Y = v.

Q~5) x .. A ~3u3v (x = u * v & At (v) )

(QT1-QTS were the axioms of T.) Por every formula ~(x)

QT7) cpt A) & Vx (cp (x) ~ Yv (At (v) ~ cp (x * v») ~ Yxcp (x)

h is a unary function symbol.

QT8) At(x) V x = A ~ At(h(x»

QT9) At (x) & It (1) ~ (h (x) = h (y) ~ x :: y)

For any n one can obtain n provably distinct atoms by

~
:: heAl, \+1 = h (a~ ) 1~i~n

( ax s;y) cp (x) - :b:l v -ax (y = u*x*v 1\ , (x»

(Vx ~y) cp (x) - Yu Vv Vx(y :: u*x*v ~ cp (x) )

SIl (x) - (V y ~ x) (At (1) ~ y :: a~ V ••• v y = ~ ) 1\ xl :A

Jeroslov then uses An to denote either the alphabet

{a1, ••• ,an} or the pes whose axioms are those letters and

whose production rules are ex'" ex ai, for i = 1, ••• ,n. CQT7)

is used to prove that E3Jx) is a K-descripticn of An in QT.
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Jeroslow proceeds to construct a natural definition of

an arbitrary pes in Qt. Since QT is the appropriate lan-

guage for formalizing diil~!.!I descriptions of PCSs, this is

relatively straightforward, though cumbersome.

First with each PCS F is associated a PCS BW'fF) as

described above. The only detail of importance is that'D'

is used as a delimiter in the sequences representing deriva-

tions. The following is the definition of a natural

description of BV(F) ([Jer2], p. 19)

We suppose that F is in the alphabet A~=

(a, , ••• ,a,,); let ani" be called D... and let a,,+2.
be called the letter A ••••

At this point in the discussion, we desire to
demonstrate a method for obtaining ••• a K-de
scription of F.... Our route toward this end
involves first obtaining a natural description in
the free variable system of a PCS F' associated
with F; FI is in fact a PCS which generates those
strings which can be understood as proofs in F.

••• the axioms of F1 are the strings DD~tDD

for i -= 1, ••• ,s and the rules of F' are the fol
lowing: o(~c(,M{DD for i -= 1, ••• ,s ••• plus the
productions

A" W, , ••• , An'Vr\, 0( I Dw, Do( ZoD fU~ Da( 1 ••• D Lt.>rDo(r+,~ 0(, Deva
Do(z.D w.&Do(~ ••• D klyoDoCr+i W DD
for every production (+) of F, finally plus those
productions which insure that An W is generatEd
precisely if i is a word in the alphabet A ••••

Given a finite set of g terms t, , ••• ,t~, let
~1~ q) a (tL) abbreviate the disjunction Q{t,)v

••• v a (~). Then a natural description F'(x) of
the theorems of FI is given by the disjunction of
(3ySx) (x = An*y 1'\ 9,,(Y» with the conjunction of
the two formulae, - - - J

Q {( ~x: ~* O..~*O~v /\ anl~):) (IA ~ D v
nt, X) 1\ ~Y)I.t,y£:x) (3 l;J $ £ru/( CA. =c. s .. 15 1\ (3 c. ~ n)(S=Cii))

1\(., =D V CSe, s S:v)(v=l' ~ .s*t/\ ("3L £:n)-s::Qc»))

where ('dy,u,z, ~ x) abbreviates Ny ~ x) (\:Iu =x)
6tz = x) ••• , together with

t~y,Z I&J) to' ~ )() ( X =~.vr..z A ~ -:. t; ... !fit w..151\at' l(,·;) \
':)((S\.~S)(W:,lii)V O~{t"JW)) )

where Der is the formula C=j ~P){3WI/ .•. W"(J) ~ e)(31A, ...t(flj)~t) D~I
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and Der t is On(w,')", .. /\ Cln(c,Jr'J))" t=u, .lfD*VJ,~:D~... ~Uf{j).
IJ, wtli) ~ 0 Jj tArin+1 1\ C.sCi, ( (+),~ ,"-'u' .-) ""rip J tJJ)

(and the j-th rule of F has r(j) premises).

It is proved that this natural description is a K-de-

scription of BV(F) in Qi. The induction schema, (QT7), is

needed only in proving (V) for the natural description.

Actually. this much can be proved in a quantifier-free ver-

sian of QT. Finally, let !Jx) = (3y) (3u s: y) ( E. • (y) & Y = u

* D * x * D * D) & ~(X», which is a K-description of F inn

QT. Moreover if G' (x) is any K-description of Bw (F) and

~xt is any K-description of P, then

(t? (y) 1\ y = U*D*X*O*O) 1\ e,tx» ~ G(X) •

1-
T

ay ( 3 ur; y)
,

And if G(x) is

a K-description of aw(F) in T, and p a word in An, then

t- ~t (~) iff J4 a theorem of F' and 1--, 6' (fA) iff f1 is not

a theorem.

As Jeroslov remarks, arithmetic ingenuity, i.e. use of

the beta-function, is needed only in finding K-descriptions

in theories which do not contain QT explicitly - e.g., f.

In particular, it is needed to define * in! (that is to

produce a conservative extension cf of containing QT. Jero-

slow notes that the conservative extension is much stronger

than QT. He uses his quantifier-free version to extend

arithmetization to ~~~~ weak theories (weaker than RA).)

A logic is K-complete if it contains a K-description of

every PCS (Jeroslow shows on p. 29 that various Eri!~ !~£1~

weakenings of K-completeness are equivalent to K-ccmplete-
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ness). Jeroslow proves that no finitely axiomatizable

subtheory of ~ can be K-complete. "In particular, that sub

theory of ~ which contains only the existence of the conca

tenation * and [QT1-QT5] ••• , plus any other finite number

of axioms, is not K-complete. Indeed, this latter sUbtheory

contains the natural descriptions, but these cannot be shown

to he the minimal solution to the inductive clauses of the

relevant pcs. To be sure, the usual encodings are "point

wise" correct, and hence can be used to obtain the First

Incompleteness Theorem. But they can hardly be said to

"express" in the logic J the pes which they do in fact

describe. ft

The technical content of this remark is explicated two

pages hence by the theorem (J20). The semantic content,

involving expressibility in J, is best broken into two

points. Firstly, "pointwise" correct (i.e., numeral wise

correct) but deviant encodings do not express the pes which

is their extension. This point has nothing to do with the

weakness of the logic J. Secondly, and this is Jeroslow's

real point, even the natural descriptions are not adequate

expressions of some arbitrary pes. Jeroslow puts the point

somewhat misleadingly; hyphenating '"express" in the logic

J1 would help. What J doesn't haVE is the power to show

that its natural description is correct - is the minimal

solution to the inductive clauses. This is important, for

in order for some J to establish the Second Theorem, it for-
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malizes a proof of the First Theorem; and thereby has to

talk of provability. We shall soon see the technical cash

ing in of this intuitive motivation, but an analogy might

serve a purpose here.

Suppose I wish to establish that f cannot prove a cer

tain sentence and that that sentence says that it is not

provable. I would have to argue, iD!~I al!~, that a certain

predicate expresses provability. Moreover, if I were to

theorieze about predicates expressing provability, I would,

as we have seen, not give an extensional account. That is,

the conditions on a predicate, for it to express provabil

ity, are stricter than co-extensiveness. So, I would in

essence he giving an intensional semantics for a small piece

of discourse. Now what I have just had to (hypothetically)

do, to establish that g cannot prove a certain sentence and

that that sentence says that it is not provable, 12 jY§1

,!hat !! l!~ 12 do 12 ~2n .!1!~ £:1:Ist IheQ~!! and thereby cer

tify the Second. It has to contain an intensional semantics

for proof predicates. ihat Jeroslow is saying is that suf

ficiently weak Js are "semantically incomplete" - they can

not establish that their descriptions are correct, though

they are correct (see also p. 113).

Jeroslov further shows that for K-complete theories

there is an invariance over the particular concatenation

function chosen.
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In Jeroslow's approach the natural notion of K-descrip

tiOD corresponds to formalizing the inductivE definition of

a derivation in an arbitrary PCs. Since indeFendent PCSs can

be used for many syntactic categories, Jeroslov is thus able

to get natural descriptions of number, term, variable, for

mula, etc., deri va ti vely. (pp. 34-37)

So far, however, none of this has been applied to the

Second Theore.. This comes about through the arithmetiza

tion of Proposition 4. As I suggested above and show in

more detail in section 10, this move is the semantically

significant one; for it introduces another "layer of lan

guage" that Jeroslow's machinery (helpfully) keeps separate.

Proposition 4 mentions words ~ and their images~; in dis

cussing it (or formalizing it) we (or the formalizing

theory) must have names for them. ; is the special name for

~. The notion is described in E by a formula, SpTm(x,y),

involving the beta-function. The definition yields, where

~(x) is the K-description of PCS An

J- 4(1:)::> (51!y) SpT m(x, y)

~ SpTII fW,y) ~ y = ~

The proof of proposition 4 needed only P1-P] and the

definition of a K-description. P1-P3 formalize easily (P2

nEeds a complex substitution operation but it can be done.).

(P1), for example: Thm (x) & Thm (1) ~ Thm (x * 7\ • y). A
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theory J Ero~~~ i1~ ~~j~!£!l~i!~ if it proves the preceding

formula, and similarly, it R!Q~~~ il§ §y~§!i1Y1!~!~I and

degY~i!!ilI if it proves the arithmetizations of P2 and P3.

In the subsequent Theorem, (J20), it is veIl to keep in

mind that we have now advanced from the level of (our)

remarking on the povers of J to describe an arbitrary pes,

to the level of a theory,

describe an arbitrary pcs.

(Jer2], p. 40:

J, remarking on its powers to

I quote (J20) in full from

(J20) Let * be a K-complete concatenation in a guanti-

fier logic J, and suppose that !(x) is a K-de-

scription of a PCS F in J.

proves its conjunctivity,

SUPFose also that J

substitutivity, and

-deductivity. Let F(VO) be A*v1*B. Then we have

J-.!(x) =' (al) (Aa (x) 1\ SpTm(x,y) 1\ Thm(A*y*B».

Jeroslov sums up the relation of his results to standard

encodings as follows:

We consider tvo realms of idealized objects,
the first consisting of all the strings in an
alphabet A, the second of all the non-negative
integers.

We have languages for discussing both realms,
the language of "letter" and "concatenation" for
the first real., and "number" and "plus" and
"times" for the second real.. If instead of using
some name 'a' for a letter a in A of the alphabet
A, ve use a as name, and instead of using the name
"concatenation" we use the name *, then true fini-
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tist statements in the first language (the
language for strings) correspond to true finitist
statements in the second language (the language
for arithmetic) under the ~al interpretation of
a as a Dumber and * as a function of numbers.
Furthermore, this fact of a corresFondence can be
seen finitistically, at least in the case of the
concatenation * discussed in detail above.

This means that, while a and the number desig
nated by a are distinct entities, as far as kn2~

l~g~ is concerned we shall know as much about one
as about the other, so that there is no harm in
identifying the two entities in all ling~!~!ic

situations.
Let us therefore ig~!ify the two objects a in

A and the numher z designated by the closed term a
Then, given the (finitist) fact of the Chinese
Remainder Theorem, the standard descriFtion F(x)
given by (7) of a formal system F corresponds 2~~

~i§~!l, word-for-vord (modulo the cited Theorem),
to the description of F as consisting of all 26
those strings one can deduce from the axioms by
repeated use of the production rules. ([Jar1] p.
15)

ihen one is considering formal systems whose theorems

form an r.e. set, Jeroslov's methods are at least as pover-

ful as Peferman's. Adapted to quantifier-free systems, they

actually extend the Godel Second Theorem to systems that are

rather weak. Moreover, by avoiding passage through a theory

of recursive functions, Jeroslov's account serves its

explanatory function better than Feferman's: After all,

there is no need to ~xElai~ the connection between formal

systems and recursiveness if the identification of formal

systems with pess is accepted.

26Jeroslov should say "all and only". I discuss the isomor
phism of the second paragraph on p. 108f. Jeroslowts pas
sage from talk of truth in paragraph two to "knowledge" in
paragraph three is also discussed later.
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Chapter 7

PBELIMINAEY MORALS

In the light of the preceding accounts what can we now

say about the cavils of earlier sections? In additoD, what

about the cases that Feferman covers and Jercslow doesn't 

the non-RE-formulas that extend familar theories? As far as

this later qaestion goes the Feferman and Jeroslow

approaches actually have complementary insights to contri

bute.

Feferman's (5.9) tells us that there are extensionally

correct descriptions of the axioms of not unusual sets of

theorems (e.g., the theorems of R) whose corresponding con

sistency sentences (corresponding, of course, to the

description) are provable. If one wishes to phrase the

Second Theore. in terms of formal systems then formal sys

tems are going to have to be individuated more narrowly.

After all the same object can hardly both prove and not

prove its own consistency. If the rigorous technical

accounts of leierman and Jeroslow show that the property z,

mentioned at the beginning of sEction 3, is indeed a

respectable mentionable, then this application of Leibniz 1

Law is surely one to which no objection can be taken. More-
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over, toth the F-account and the J-account supply us with

the appropriate intensional objects - the formulas t on the

one hand and PCSs on the other.

This does B2~ yet settle the question of whether (8) is

true. Can some formal systems prove their own consistency?

This could be answered by answering 'Do non B.E. tis repre

sent formal systems?' in the negative. One is then saddled

with supporting this answer. On the J-approach, the truth

of (8) is built in; and built in ~ia the identification of

PCSs with formal systems. We thus have two, intimately

related Church-type Theses. They have in common the claim

that some descriptions do not describe formal systems,

irrespective of the recursion-theoretic character of the set

of theorems picked out. As I have argued before (pp. 16-17)

stipulating such a claim, in the interest of being able to

state the Second Theorem clearly and cleanly (e.g., as (8»,

is not an option.

Of course, the distinction between RE- and non-RE-formu

las is not ad hoc; what is missing is the connection between

BE-formulas and our conception of a formal system.

What does a formula like a* say? Let A* be the formal

system thata* describes, and A the formal system that a

describes. x is an axiom of A* just in case x is an axiom

of A and the set of all axioms of A (with godel number) less

than or equal to x forms a consistent theory. There is a

sense in which a* describes a subsystem of A, for A* is con-
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sistent regardless of A's consistency. But why is A* not a

formal system? One might suspect the notion of formal rules

of proof conflict with non-REnEss. As we shall shortly see,

the cUlprit is the unbounded universal guantifier in the

consistency clause of of the definition of ~. (The pres-

ence of this quantifier also blocks a formal derivation of

an undecidable formula on hypothsis of Con
a
*.)

Consider the task of checking whether an arbitrary

object, x, is an axiom of A*. To show that x is an axiom,

infinitely many statements are needed: 1 is not the godel

number of a proof of a contradiction from axioms ~x, 2 is

not the godel number of a proof of a contradiction from

axioms ~x, •••• Such a procedure violates our conception of

a formal system, involving as it does non-effectively given

conditions axio.hood and hence proofhood. This spells out

the informal consideration that the extension of a* is fixed

as the extension of a only on hypothesis of consistency

which hypothesis is not effectively verifiable.

We can construct an interesting puzzle about deviant formal

systems such as the ones introduced by Feferman. Consider

f. Take a non-deviant consistency sentence for g, ConP and

let P, = P U ConP, and in general, P",+, :: P", U ConP". Let P~

:: UP"". Clearly,f", is consistent - if not the proof of the

contradiction would be in some f~. But then some £~vould be

inconsistent and each f~is consistent. Moreover, P~~knows

that~ The above reasoning is elementary and ~w can prove the
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consis-tency of each P". Why doesn't this show that Pw can

prove its own consistency?

The answer is that fw is not a formal system (on the

conception of a formal system that ~e have been examining)

and so that it is self--provably" consistent is, as above,

not surprising. This is to take F~ as given by its mode of

presentation above - and of course that mode guarantees its

consistency27.

There is a slight sleight-of-hand in the presentation of

this brain teaser. Each theory along the ~ay results from

the addition of an axiom, Con~ to the previous theory and

closure under rules of proof. The P,.. are axiom sets and g~

the associated theory. p~ is the union of all the axioms

sets P~ and Rw is its associatEd theory. g~ is not given as

the union of the f~ - that's a different puz2le. (Techni-

cally, of course. the problem is that of another universal

quantifier, occuring in the description of P,,->. Let 0(. num-

0(",,( x) =

What our above argument shows is 'v' n b;- COIlo(" and
r"tot •

It then takes a dubious step to gethence 'f:J n hr CODo( •
"\Ill • 't

erate P in.f, 0(0 BE. o<....tx) ~ oc",,{x) V x = C9n"'l1.

:l n c(,,(x) •

1;;", c.ono(w; namely to ~\lnc~Do<" and tpw \:J nC9Doc.,~ cgIlc(w·)

In fact what the provable statement amounts to is that

every stage is consistent. This is analagous to the situa-

27Feferman has shown that there is an BE-formula whose
extension is PC4t '. • Of course the consistency sentence
formed from it is not provable in ~.
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tiOD with reflexive theories#

Peferman proves (5.9) (5.9)28.

the theories for which

The above are some o£ the ways in which the work of

Feferman and Jeroslow illuminate the nature of the deviant

predicates and supply the individuation conditions needed to

quarantine them. The theses associated with each account

have received support as correct explications of the notion

of a formal system. In a sUbseguent section I will have

much to say about what this shows about the nature of these

accounts, when applied to the problems first raised in sec-

tions 2. and 3. As inevitable as I think the journey to my

views in section 10 is, there are some who disagree. Fefer-

man seems# implicitly, to demur (see p. 56); but the only

explicit disagreement is taken up in the next section.

28Peferman's paper on transfinite recursive progressions is
the serious working oot of the idea behind this anecdotal
system. The idea goes back to [Turing]. The intensional
correctness of the proof predicate is foundationally
important here; the idea is to achieve epistemologically
secure extensions of standard formal systems. This is
done by having the reflEction principles ~!E£g§~ the
soundness of each system on the way up. this is another
instance where nexpress" is tQ be taken seriously in order
for technical results to have philosophical (in this case.
foundational) interest.
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Chapter 8

OTHER VIEWS

Very little has appeared in the philosophical literature

concerning the recalcitrance of the Second Theorem.

Kreisel's hybrid pieces are extremely impottant, but the

only article specifically on this topic has been Michael D.

Resnik's "On the Philosophical Significance of Consistency

Proofs" [JPL 3 (1974) pp. 133-147].

Resnik first relates the importance of consistency

proofs to Hilbert's program - in particular the demand for

finitistic consisteacy proofs. He then seeks to explain the

relevance of the Godel results to this demand. He claims

that the First Theorem does not bear much on the program.

This is because the Godel sentence is an i~~al sentence29 •

Resnik takes the content of the First Theorem to be that

certain forma1 systems are incomplete and hence cannot prove

all truths. But, says Resnik, it vas no part of the Hilbert

program that they should - just the truths expressed by ~~~l

sentences. A version of Godel's First Theorem can be

29See Hilbert's "On the Infinite" in (P-B], especially pp.
143-149.

30'Can be' since, in order to obtain a simple A, only par
ticular constructions of Pr wi~l do. That Pr(A) ~ A is
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proyed JO accoEdiog to which Pr(l) ~ A is unprovable for a

particular universal A. The purpose of a formal syste~ for

Hilbert vas to allow .anipulation of ideal sentences to

facilitate tbe proof of real sentences. since Peano

arithmetic contains at least finitist reasoning, Pr(A) ~ A

is not esta~lish.d finitistically.

Resnik would reply, on Hilbert's behalf, that A is not

real; its schematic version is. (The scheaatic versien of A

is just A with its ~uantifiers dropped.) A schematic sen-

tencecounts as provable if each instance of it is provable

in the ordinary way. And that each instance of this sche-

matie formula is so proYable is itself finitistically prova-

ble. (Since we are establishing provability we may assume

consistency.) This reply on Hilbert's behalf only shifts

him from one horn of a dilemma to another. Because of

~inco.pleteness the First Theorem !l§Q dooms the schematic

interpretation as inadequate, as ve shall now see.

Hotn one is the observation that for some sentences A,

Pr(A) ~ A cannot be established finitistically. Replying

that those A's don't matter because their schematic versions

are adequate replacements for them is futile; they aren't.

This is revealed by the phenomenon of ~incompleteness (the

existence of unprovable universals of which every numeral

provable iff A is, a strengthening of this version of Gl,
is really a version of G2; requiring that Pc be non-devi
ant.
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instance is provable). This is a First Theorem result. And

this does not just show that a universal and its schematic

version don't mean the same thing, but also that one cannot

replace the other in a provability context, §~!yg~ ~ri~2!~.

So Resnik's attempt to minimize the relevance of the

First Theorem to Hilbert's program founders. Resnik !§

right to point out that the non-formalizability of

arithmetic truth doesn't doom the Hilbert pIogram; but the

limits on the formalization of (finitist) proof do.

However, once the First Theorem is taken into account,

then the Second Theorem does become relevant to the Hilbert

program in a number of ways. For, without the fact of the

First Theorem in view, a Hilbert-type program could concen

trate on a few formalisms which held hope of codifying

mathematical practice. Since, for each such we can con

struct a patently correct proof predicate, the above remarks

apply; that is, ve get an A of the right form. The initial

involvement of the Second theorem is not in its statement,

but in the techniques developed in order to state it. For,

given essential undecidability, a Hilbert-type program would

adopt and consider a large range of formalisms. And the

argullent above, concerning Pr(A)~ A, although a version of

the First Theora., then requires intensionally correct prov

ability predicates for a wide range of formal systems. Then

the G~del results entail that if Pr is corx:ect then it is

not self-provably correct. So each modification of proof
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leads to a proper extension. (This is the idea behind

ordinal logics, via reflection principles. To paraphrase

Kreisel: If a formal system formalizes finitist proof then

it doesn't know it. For then Pr(A)~ A is true, but, for

some A, not provable. In fact it is provable in arithmetic

that Pr(A)~A is provable iff A is provable. So Pr(A)-+ A

represents the truth that the formalism doesn't "know".

This result is taken up in more detail in the secticn on the

modal interpretation.)

The techniques of the Second Theorem thus make it rele

vant to a Hilbert-type program, though not in the way Resnik

wished to argue. He goes on and wants to conclude that the

Second Theorem tells us that there is no answer to a certain

kind of sceptic (one who demands that the consistency proof

aspect of Hilbert's program be carried out). Peferman's

work is introduced as a possible counter to this. First,

however, Resnik introduces the provability-of-every-instance

deviant consistency sentence (see p. 38), shows it to be

provable, and correctly points out that it is not intui

tively a consistency sentence. He concludes: "[T]he very

weakness of this sense of consistency casts doubt upon Hil

bert's suggestion that schemata can be used as approxima

tions to unbounded universal guantification." But this is,

of course, an insight to be garnered from the First Theorem;

once again defeating Resnik's denigration of it as irrele

vant to the Hilbert Program.
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Resnik then quotes Feferman's (5.9) as the possible

reply to skepticism. He rightly shoots this down, as the

deviant consistency sentence doesn't express consistency-

actually doesn't express consistency independently of the

consistency of the formalism involved 31 •

What I find puzzling about Resnik's piece, apart from

his remarks on the First theorem, are the morals he draws.

He says: "Perhaps the conditions on the axiom predicates

must be given in terms of their syntactic form or their

intensions. The latter alternative is repelleDt not only

because it is vague but also because it introduces inten-

sionality into aathematics." I find this a particularly

confusing (or confused) passage, for the following reasons:

As stated by Besnik, the latter alternative is vague;

but surely such vagueness is not an intrinsic feature of the

project of giving conditions on axicm predicates. I viII

later argue that the Feterman and Jeroslow accounts are in

fact semantic accounts - and vagueness is certainly not a

fault of either of these accounts. Resnik's second reason

for finding the latter alternative repellent reflects a mere

unargued prejudice. More vitally, I am confused by the

31If the system is inconsistent the deviant consistency sen
tence says that a certain finite subsystem is consistent
(and by reflexivity this is guaranteed provable). So to
show that the consistencyn sentence is a consistency sen
tence of the intended theory, one would have to prove con
sistency. Of course, ~h!~ is sufficient to disqualify it
as an answer to the skeptic.
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dichotomy he presents. There are legitimate questions as to

what the correct syntactic theory vill be so as to allow a

correct and adequate semantics - but these hardly creates

Resnik's mysterious dichotcmy.

The predicates will hardly be proof predicates (or

any such kind of predicates) without interpretation; and

interpretations run off syntactic representations 32 • It

also is instructive that, for the case of ploof predicates,

ve shall have an intensional semantics whose entities are

themselves syntactic objects. So I can find no sense in

Resnik's objection. I will return to the methodological

issues to be confronted here after outlining yet another

principled treatment of provability.

3zPerhaps this point is not familar phrased this way, but it
is exemplified even at the level of propositional calcu
lus.Let a conjunction be the string formed by placing an
& between sentences, a disjunction the string formed by
placing a V between sentences. Such strings are them
selves sentences. Now a disunction (conjunction) is true
if either (both) partes) is (are) true. Let A, B, and C
stand for sentences. Then A&BVC is a sentence. Let C be
true and A and B false. Then by the semantic rule for
disjunction A&BVC is true if A&B is true or C is true.
Since C is true, A&BVC is true. By the rule for conjunc
tion A&BVC is true if A is true and SVC is true; they
aren't so ISSVC is false. Thus do semantic theories run
off syntax - bad syntax, bad semantics. (lowe this kind
of example to Harold Levin, who puts it to more sophisti
cated uses.)
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Chapter 9

THE KODAL TREAT8ENT

there is another technical solution to the phenomena

surrounding the Second Theorem, which it viII be useful to

add to our repertoire. Historically, it originates from a

paper of Godel's ("An Interpretation of Intuitionistic Sen

tential Calculus·. i~g~R~i§~~ ~i~§ Ka!hgm~!i~£hen~QlIQgYi

~, IV, P 39 (1931)]. the derivibility conditions of Hil

bert-Bernays, the work of Lob and recent work in modal

logics. The Godel paper supplies an interpretation of Heyt

ing's sentential calculus "by means of the concepts of ordi

nary sentential calculus and of the concept "p is demonstra

ble"." An ordinary sentential calculus is supplemented by

an operator B and the axioms 33 :

(35) Bp~ P

(36) Bp -.. (B (p~ q) ~ Bq)

(31) Bp ~BBp

and the rule of inference: Bl can be inferred from A. Call

this system S4 (because it is). Godel waIns us than one

33The B stands for Box. a, which I viII also use.
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cannot interpret B as "demonstrable in a definite formal

system." For if the formal system contains arithmetic,

then, since B(Bp~ p)., E (0 1 0) ~ 0 1 0 would be a theorem

and., so would ,B(O 1 0)., contradicting the Second Theorem.

Is there a notion of demonstrable answering to S41 The

axioms seem true to conception of demonstrability. If P is

demonstrable then there is a demonstration of p and exhibit

ing that is a demonstration of the demonstrability of p.

This validation of (37) trades on our feeling that demon-

strations., or proofs., are ultimately recognizable as such.

Ve certainly respect this intuition in formalization.

The rule of necessitation seems plausible on similar

grounds - but note that it hauls the strength of 54 into

whatever system B is being used to describe. And this is a

culpable move. For while Bp"" P is true and a theorem of

54, ve should not expect the system 54 is describing, the

B-system., to be able to prove each instance of Bp -+ P just

because S4 can prove Bp~ p34. Is the problem just the

application of necessitation to (35)1 If so, the system

attained by taking the theorems of the system whose modal

axio.s are (36) and (37) with the rule A/EA, adding every

instance of (35)., and closing under modus ponens, should be

a candidate for truths about formal provability.

34Kreisel., in Ord. Log••• .,
axioms (35)-(37).

constructs a system obeying
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Consider the Lob axiom.

(38) B(BA~ 1)--'BA

Note that if (38) is added to the original system, a rather

undesirable system results. However, (38) is true for the

If ve take (36),

(37) and A/BA, then in that system BA ...... AlA is a derived

rule. Moreover, when ve consider an actual theory, e.g. g,

and a provability predicate, such as Bew, for f, then

., Bew ( r-i') ~ A only if A is a theorem. These results can

be summarized and made precise as follows.

for details)

(see [Boolos]

let G be a modal propositional calculus whose axicms are

all the tautologies, all sentences of the form B (A --'t A1)~

(BA~ BA '), and all sentences of the form (38). The rules

are .odus ponens and necessitation (A/BA) • (The priliti ves

are -+ , B, and J., see (Boolos], chap. 1.) BA ~ A is not a

theorem of G. Let G* be a modal propositional calculus

whose axioms are the theorems of G, each instance of Bp~ p,

and which is closed under modus ponens.

A I~!lizat~o, is a function that assigns to each sen

tence letter a sentence of the language of~. The !!~~1~

!!2!! Af of a sentence A under a realization cp is defined

by:

i) ptt = <PCp)
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ii) .J! =.J-

iii) (A ~ B)" = (Af ~ Btl)

iv) (BA)lI = Bew ( r A",)

where • rl' denotes the G~del numeral function.

It turns out that G not only has nice properties as a

modal logic with a Kripke semantics (complete and decidable)

but also the property that t'G. A iff tp A~, for every reali

zation~. It is in this sense that G contains all the prov-

able (in R) facts about provability in f. As ve saw, it

does leave out some facts - viz, all the theorems of G* that

are not theorems of G. (It also leaves out facts that are

intrinsically quantificational in nature. I shall return to

this point.)

Our deviant provability predicates are ones which fail

to satisfy (36), (37) and necessitation. If B(y) is a prov

ability predicate then D(1) = B(y) & Y T 0 =,' is not

(violating (36) though satisfying (31».

Our previous accounts of the deficiencies of the deviant

predicates relied on our seeing their deviance from a stan-

dard notion of a formal system. One deviant consistency

sentence, e.g., asserted the consistency of a trivially con

sistent SUbsystem - which given consistency, is coextensive

with the intended systea. Alternatively we pointed to the

non-effective nature of the implicit rules of proof - that

is, we took seriously the de~~~i£~ion of the formal system

as intrinsic to its formality. Nov we have another method.
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Our deviant consistency sentences had thE presumptively

undesirable property of violating the Second Theorem. But

the Second Theorem is arguably not an intuitively apparent

property of provability (and expressibility) • The condi-

tions on a provability predicate are. We have indicated

good reasons for their truth35 • The system G*, constructed

above, has thE property of reporting all truths of provabil

ity in ~ (though only modulo the notion of translation

defined above). G* is not closed under necessitation.

Since G (aDd G*) are decidable# these completeness

theorems allow us to easily obtain many metamathematical

results about g. One of particular interest for our subse-

35This may be a little cavalier with respect to the truth of
Bp ~BBp. Roughly speaking, troubles arise for it if ve
consider an informal notion of ~roof and the problem of
surveyability. That is, proofs so long that it is impos
sible to comprehend them. And there are after all arbi
trarily long proofs. Now I think such examples, if set
out in detail, trade on conflating "seeing" a ~roof, in
some holistic way, and verifying it. And since ve are
talking of formal provability, we are conceiving of proofs
each of whose steps are verifiable. If ie have a formal
proof, hovver long, then it is elementary to certify it as
a proof.

What often comes to mind in this context is the problem
of verifying a proof procedure# or a descripticn of a
method for generating a proof. Here, certain results in
computation theory are relevant. It is known that there
is no program that viII verify the correctness of a pro
gram, since that vould be to solve the halting problem.
More fine-grained results concern the complexity of (non
universal) program-checkers. A recent case in point is
the solution of the four-color theorem (nee conjecture).
Someone committed to some version of the g E!!QriciiY of
mathematical knowledge would locate the proof in the veri
fication that the 2I~~ for searching the cases is cor
rect.
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quent discussion is the DeJongh-Sambin Theorem. Let A(p) be

a sentence of G aodalized in p. Then there is a sentence H,

not containing p (but possibly containing the other letters

of A) such thati-a.-. A (H) and ~ B (p~ A (p» --+ B(p .... H) •

Consider ~Bp, a sentence of G modalized in p. We know,

by the fixed point theorem, that there is a sentence 5, such

that t;r S~ ~Bew( "'5') • This is equivalent to B (p'" ..,BP)'

being true for C1(p) = s. If A is anI sentence modalized in

p and there exists an 5 such that B(p ..... l)tf is true when q>(p)

= 5, then 5 is said to be a fixed point for A. The

DeJongh-Sambin Theorem tells us that every sentence aodal

ized in p has a fixed point and that all fixed points of A

are equivalent. !oreover there is a deictic fixed point.

~~ictic sentences of arithmetic are the translations of the

letterless ones of G. The truth-values of such deictic sen-

tences are effectively calculable, and whether or not a

deictic sentence is provable is decidable, so that there is

a decision procedure for the provability of these fixed

points. For instance, a Gadel sentence is provable just in

case 'Bew(T) is provable, i.e., just in case arithmetic is

inconsistent.

These are the essential facts that we shall DEed con-

cerning the .odal interpretation. However, certain possible

confusions should be forestalled. There is a purely formal

sense in which these results about G represent a reduction

from grade 2 to grade 1 modal involvement, via the transla-
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tion mapping. [Montague] is thought to have shown this

impossible. But Gf does not have all the "modal" properties

that flontague requires; in particular .... ." (B (p) ~ p)cf, for

some S, f(p) = S. floDtague understresses an important con-

dition if his theorem is to bear an interesting interpreta

tion. The elementary theory, T, has to be adequate for ele-

mentary arithmetic (which he says) • r , 'I is to be

interpreted as an elementary A~ithmetic function. Alterna-

tively: T is to be adequate for elementary syntax and tr,.
is a !YD£!ion symbol (i.e. has the semantics of a function)

with the appropriate aetatheorems. That is, if we godel

number, then tr1' is our name for a certain definable func-

tion of arithmetic; if we directly formalize into some rich

enough concatenation theory then 'r,' has be a functional

term. Why? Well, loosely put, the characterization of 'r,'

as a primitive might be given a semantics with no corres-

ponding deductive power. More precisely, 'the denotation of

i' is At is a schema of the metalanguage laid down as the

semantics for Ir,., Dot as a meta-theorem arising from a

syntactic characterization. If this is done then the theory

will not be able to prove certain concatenation theoretic

facts involviDg sentences containing 'r,' • But the seman-

tics will supp~y correct truth-values.

A working out of this idea has been presented by

36skyrms' account vas given as a paper at UNe-Chapel Hill.
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Skyrms 36 , though not, I think, in service of my point. I

synopsize: Let Lo be a language wih a model theory. Two

theories are derived from L o : LM which is LD closed under

truth functions and modal operators; and L~, which is

defined metalinguistically, in a uniform way, from L~

(including a model theory). Each sentence of L M is assigned

a sentence of Lw. The set of sentences of L M whose L -cor

relates are true in all models of L w is the !2de! lh~QII

indu~g RZ ~o. !imimal assumptions about L o and its models:

Each model assigns denotations to pieces of Lo and all sen

tences are assigned 1 or O. Lo contains PC and sentences

are finite. LM gets the obvious definition. Lw is defined

as the union of the L n , where the sentences of L~~I are the

~~ll~2! set such that i) *C(S) is a sentence of Ln... if S

is a sentence of L~. ii) truth functional closure. c: LM~

Lw is such that i) S has no modalities-+C(S) = S, ii) S is

oB ~ C(S) : *Q(C(R», and iii) commutes with truth func

tions.

The interest comes in the construction of models for L w•

Note that the construction of Lw is overly cumbersome. It

could have been defined jy~! like LM , with *0 behaving like

o. So it must be the model theory that makes this interest-

ing.

~y synopsis is as accurate as memory permits.
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ftodels are given by denotation functions fn • The model

for L"+ol , £"".... , is the slIallest extension, f, of f", such

that i) f(Q(S» = s, ii) f(*X) = 1 iff I = Q(S) and f n (5) =
1 for all f n , and iii) truth functions. The model of L is

the union of tae f. It is vital to Dote that the interpre

tation of Q is A2! as a function. C's interpretation is

given aetalinguistically piecemeal, so that the Q(S) are

really constant terms.

To make this clear consider an alternative ccnstruction

to Skyrms' •. Add to the category of terms of Lo , qo,q, , •••

and a "predicate" *. If 5 is a sentence of 10, 5 is a sen

tence of L. lor all i, *ql is a sentence of Lw • Close

under truth functions. Let S" 5&,... be an enumeration of

the sentences of Lw • Let Q(n) = the first g~ not occurring

in (5" ••• ,S",). If 5 ~ .q , f (5) = f. (5). f (q .. ) -= Sq-I(\,) •

f(.qL) = 1 iff ff(g,) = 1 for all f.

~his is only a notational variant of Skyrms t construc

tion, hut it makes clear that Skyrms' Q is not a function

term; lIy metalinguistic Q is. skyrms uses this to clarify

Montague's theorem. For,.Q satisfies all of ~ontague's

modal laws, yet LM is clearly consistent. It is not a

counterexample to Kontague, because, as I have tried to

ellphasize, IQI is Dot a predicate, and so caanot be diago

nalized.

There are a number of ways to enrich the Skyrms scheme

to yield p~oble.s. Whatever the original domain, 5kyrms
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introduces new entities, namely the sentences, which obey !Q

laws. We may either relate these sentences to the regular

domain, or introduce a theory of sentences directly. If the

old domain contains numbers, and we relate the sentences and

the numbers by godelization, and the base theory is adequate

for elementary syntax, then ve've got ftontague.

the other way?

What about

If ve think of applying Skyrms' construction, and if the

quotation device is to be an adeguate reflection of quota-

tiOD in English, then surely ve can ask a !it!le more out of

it. But if we add enough, we viII be able to "nor1l", to

diagonalize, and ve'll have Montague's theorem again.

The moral is that G {and G*) have nothing to do with the

logic of necessity. This is why the existence of a Kripke

semantics for G is less interesting philosophically, for our

immediate concerns (except insofar as it yields a dEcision

procedure), than the Solovay ccmpleteness theorem. For G

the Kripke modeling is (at present) a purely formal charac-

terization theorem, whereas its completeness in G is a ~Qm-

This is parallel to the situation in

the logic of necessity. Characterization theorems, using

topological methods, existed for various modal systems. The

371 am marking a distinction here that isn't always made,
and aa appropriating the word 'completeness'. The reader
may regard the completeness/characterization distinction
as my own coinage, for the duration of this section.
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Kripke modelling can count as a response to Quinean doubts

insofar as it formalizes cur informal Leibnizian notion.

Because of its relation to the intuitive semantics I have

dubbed the Kripke results 'completeness results'; and the

topological models 'characterization theorems'. The advent

of Kripke semantics didn't undercut later Quinean scruples,

but, because possible vo£ld models are the natural models

for modal logic, they helped clarify what the issues vere.

QQine and Kripke have been clear on this (at least lately,

see, e.g., "Worlds Away"). But leibnizian intuitions have

nothing to do with G. G is interesting because of the 5010

vay completeness result, Dot the Kripke style.

Lastly, it should be pointed out that although G is

"completely true" to Bew it doesn't follow that G uniquely

characterizes Bew. Are there other predicates of arithmetic

that make G true? Yes. Let Sent be a predicate of P that

defines sentencehood. Let (.J.)" =..L. (A -- B)"'= A"l....,.. E'! (BA)

= Sent ( ~~'), and p~ = ~(p), where ~ is an assignment of

sentences of P to letters of G. Thus the image of A under \f

is just like the image of A under~, with Bew replaced by

Sent. It is trivial that'\f takes theorems (of G) to

theorems (of Pl.

What about the converse? Is G complete for Sent? Well,

'9 Sent ( ".J.' ). But .. t-&-BJ.., since .., tp Bew ( ':.L') • and mere

1-consistency insures that.
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Consider tvo translations, the Bew one, and another.

Suppose tci A~ tpAtP and 'G 5 ----, t;is"" and suppose that the image

of A is a theorell( tp A~ and the image of S is not (~rp 51.1) •

Can A = S1 Clearly not.

But let ~ and ~ be as above. The biconditonal is 5010-

vay's completenss theorem. If A were the formalization of

the inference from 1-consistency to the unprovability of

Bew (r..L'" ) (i.e. 1-CON ~ -BewBewCt"'.L'); and if S"I =

1-CON ~ -SentSent ("'.1'); then we would seell to have a prob

lem. For. If is a theorem, s~ isn 1 t but it looks as though

their preillages are identical. Of course the answer is that

there is no preimage; there is no letterless sentence of G

whose translates are as required. The arithmetization of

1-consistency is not a deictic sentence. It, and v-consis-

tency, require quantificational structure.

Let A~ be CON~ ..,Bew....Bew (rJ.'). This is the formalization

of the Second Incompletenss Result. So A~ is provable.

Since lep is really .... Bev ("'..L.') ~ .... Bev..,Bev ( r-J." ) , S1.P should be

....Sent (r..L'l) ~ .... Sent....Sent (1".J..'1 ) ,~"l,is clearly provable. And,

patently, 1 = S. In general, given a letterless sentence of

G and a predicate of arithmetic, call it Pred, that is "true

to G" (i.e. G is sound for it), then if the Bew-translate is

provable so is the'Pred-translate (conversely if G is com-

plete for Pred).

The above leaves open the question as to whether there

is a predicate of arithmetic for which G is sound and com-
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plete and not Bev. More prEcisely, does there exist a

predicate, Pred, such that Pred-translation from G to f pre-

serVES theoremhood and (45) (or (46) or (47»)

(45) ~ (Bev~ Pred)

(46) ~ ~ Bew~Pred

(47) f-~(Bew Pred)

is true? Even for (41) the answer is yes. Let Pred(x) =
Bew (x) V ~Sent. (x) • (41) holds, since ~ can verify that

non-sentences are not p£ovable. Soundness and completeness

hold for <G, Pred> for t.he same reasons they hold for <G,

Bew>. Any term occurring in a Pred-translate as a£gument to

Pred is a tera denoting a sEntence - hence Bew(t) and Bev(t)

V ~Sent(t) will have the same truth-value and provatly so.

So every Pred-translate has a corresponding, co-provable,

Bew-translate.

This only shows that ve asked the wrong question. Let

us rest.rict Pred's extension to sentences. The proof predi-

cate for some consistent38 extension of g, say g with the

godel sentence as an additional axiom, viII be just like

Bew. This predicate is Dot coextensive with Bew, though not

provably not coextensive. To show some extension not coex-

381f not consistent, theD Pred is Sent and <G, Sent> is not
complete.
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tensive with Bew requires showing something not a theorem of

~, and £ cannot do that. Obviously this generalizes to

Bew ('i...,., ').

1 moment's reflection will reveal that this non-categor

icity is not only not surprising but desirable. The intent

of G, and G*, is a codification of certain general facts

about provability - but not enough to fix the reference.

This generality is reflected in the notion of translation

employed above. Since 1931 we know better than to try to

fix such a reference - even on~. As pleasant as ~ is it

would have cast suspicion on G if it vere limited to i. In

this regard it is helpful to see, not just that <G, P> is

sound and complete, but that G be true to a reasonable

notion of provability. This I essayed some pages back. The

project is, of course, more apt for G*, G being reserved for

what is provable about provability.

This kind of intuitive, or first-principled, justifica

tion of G, or G*, can he formalized if we can independently

formalize the notion of a formal system. This is just the

vaue of the Jeroslov treatment. Jeroslov's constructions

are patently an explication of our (Hilbert's) notien of a

formal system, from which Lob's Theorem is forthcoming.

Since the provabilitl of the translate of the characteristic

axiom of G, in f, is the provability of Lob's Theorem, we

have a justification of G. This is analagous to justifying

a somewhat baroque characterization of recursive function by
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shoving its equivalence to a more Bauhaus version. The

strength of this justification depends on just how plausible

and patent the Jeroslov formalization of fermal systems and

their syntax is. I think an examination of it revealed that

it is patently plausible and patent.
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Chapter 10

PBOOr THEOEY AS SE~ANTICS

I take it as a piece of received wisdom that mathematics

is the paradigm real. of the extensional. At least I think

many philosophers have believed something that could be put

that vay. Furthermore, I take it that asked to defend such

a claim, one would typically mention two (not unrelated)

facts: The existence, due to Frege/Tarski, of a certain

sort of semantics, and the seeming absence of intensional

contexts in mathematical discourse. It is, of course,

necessary to clarify what is meant by the claim that mathe

matics is the realm of the extensional, and how the two

vaguely indicated facts support the claim. (It is not hard

to find supporters of the claim. It is implicit in Frege,

and explicit in Bussell and Whitehead. See below p. 103)

Eefore briefly amplifying and clarifying the above, I

would like to make a few observations concerning the process

of "extensionalizing". These observations are not intended

as a precise explication, but rather a sketch of some philo

sophical folk wisdom. In the course of time many mathemati

cal theories have been applied to various areas of know

ledge. Certainly physics, but also population genetics,

information theory, traffic control, economics, metaphysics,

etc., have in some sense been mathematized.
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In some cases of mathematization, extensionalization is

claimed. Set theory is the great extensionalizer - with

discoarse, pure or applied, about properties, relations,

functions, etc. being extensionalized. ihatever this is sup

posed to mean in any precise way, those who claim particular

successes in the extensionalizing froject are wont to dis

miss objections that advert to features present in the unre

duced discourse by claiming those features to be unimpor

tant, dispensible, or part and parcel of the incoherence of

intensionality.

Alternatively, the intensionality may be replacEd by a

feature that is equally repugnant to the extensionalist. A

piece of (third-grad~ modal discourse is not salvaged for

Quine by the existence of an ~~£!ie~ Kripke semantics for

it; such a semantics being committed to dubious entities and

relations. Although the admirable precision and clarity of

mathematization vas often accompanied by what I have been

calling nextensionalizing", the case of Kripke semantics

makes it clear that the clarity of the pure mathematics is

not always inherited by its applications.

What I will show is that the language of metamathematics

is intensional, that the available theories that are applied

to it are adequate and provide an intensional semantics for

it. Construed as semantic theories, these rigorous accounts

are not subject to objections based on commitment to dubious

entities and relations. This is simply because the seman-
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tics, albeit intensional, is committed only to syntactic

objects and relations among them. Moreover, there are no

viable extensionalizing alternatives; in the sense in which

the semantical theory of Russell/Smullyan might be thought

to be an alternative to that of Frege/Church. Finally, I

viII sketch the connections that these results havE with

philosophy of ~anguage. First, the promised clarification.

What are said to be extensional are contexts of a lan-

guage. 'Language' here must mean i~!~!E!~!~g la~ygg~.

Intensionality is signalled by a failure of extensionality

and extensiona1ity is to be defined in terms of an extension

function from expressions to a domain. Contexts will be

extensional or non-extensional with respect to this exten-

sion function 39 • These notions cease to be purely formal if

the extension function is an adequate extension function-

i.e. actually assigns the denotation of names to names,

extensions of predicates to predicates, etc. What this

means, of course, is that we are talking of languages that

we know or are making up.

Failure of e~tensionality is not a gurarantee of inten-

sionality. 'Intensionality' connotes an involvement of

semantic notions such as meaning, analyticity, synonymy and

391 purely syntactically specified language may have a
notion of extensionality associated with it only insofar
as it has, e.g., rules that are interR~~teg as truth pre
serving and a symbol !nt~£R~~!ed as equality.
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And, after all, predicates formed from a predicate

and the quotation operator, like ,. • has five letters' or

t ,
1 rhy.es with vodka', are non-extensional but permit of

substitution of co-related expressions; where the relation

~~, Dor is it characterized in an intensional vocabulary.O.

Intensional contexts were noted by [Brentano] and

exploited by Frege to serve as data for arguments establish

ing the tvo-di.enslonal nature (sense/reference) of a seman-

tics for a natural language. A semantic theory for a par-

ticular language has to he empirically adequate. A semantic

theory that did not allege synonymy when synonymy was

present would be inadequate - if synonymy is thought to be a

pre-theoretic notion of sufficient coherence to be theorized

about. The importance of Frege's use of intensional con-

texts is that it links the intensional and referential por-

tions of semantic theory. For a semantic theory inadeguate

to facts about meaning viII also be inadequate to facts

about aore respectable notions

truth· l •

such as reference and

• 01 ove this point to Richard I. Nagel•

• 11 am omitting an important point. The syntax of the lan
guage plays a large role in intensionality arguments. It
supplies the notions of context, predicate, name, etc.,
which are needed to characterize extensionality. As Rus
sell/Smullyan shoved, this can be critical.
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This last point deserves some comment and comparison to

my earlier remarks on what I labelled Mates' point (p. 18).

In considering a language, we might note that there are cer

tain mEaning based relaticns or properties, say synonymy and

analyticity, that we might incorporate into the semantics.

That is, if ve thought such properties and relations could

or should be theorized about. Suppose ve thought otherwise.

That is, that facts of reference and truth were th~ coherent

core of our messy pre-theoretic intuitions about meaning.

Then ve vould seek a semantics based only of such notions.

~eaning would only enter in such translation contexts as

those condoned by Mates: where the relevant facts of the

matter are stipulatory. However, the Fregean point is that

this picture comes a cropper - there is no adequate theory

of reference and truth (let alone of meaning) that ignores

meaning. For, in intensional contexts, the referent of a

phrase is its sense. Metalinguistic contexts are brought

down into the object language by intensional contexts. If

Frege is right ve do not have to first independently estab

lish that syoonyay, for example, is a pre-theoretic notion

of sufficient coherence to be theorized about.

Frege, in developing this kind of argument, neglected to

supply a detailed theory of meaning. His purposes centered

on mathematics, for which, he believed, only the referential

portion is needed. Bussell and Whitehead ([B&V1910], p. 8)

wrote: ft[M]athematics is always concerned with extensions
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rather than intensions." This has remained the accepted and

entrenched view.

This view has been sUFportable on a number of gIounds.

The language of mathematics has ~!!2 fa£!~ fewer kinds of

constructions than the rest of natural language. Adverbs

and tense are absent; and, seemingly, intensional contexts.

ftoreover, many problems of logical form were solved early

for mathematics - by Frege and Russell, !BteI ~!!g.

Furthermore, the Hilbert school, along with progress in

recursion theory, produced a well-understood syntactic

theory, seemingly adequate to the intended semantics.

First-order languages emerged as the languages into which to

regiment. Tarski formalized the semantics for first-order

languages, giving what ve would now call purely referential

semantics. and the picture was complete.

The picture is that of mathematical discourse regimented

into a first-order language (the syntactic theory) inter

preted by a referential semantics (although Tarski himself

might not have put it this way). This is, of course, the

picture as it appears to us. Hilbert, the finitist, had

little interest in the referential semantics. Conspicuous

in their absence are semantic notions like sense, synonymy.

analyticity, etc.

The seeds for the breakdowD of this picture were planted

by Hilbert hiaself and germinated by G~del. Hilbert, by

inviting the formalization of mathematics and by insisting
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that metaaathematics is mathematics. established proof

theory as a caDdidate for the mathematical vocabulary.

Gadel shoved how it could all be done without expanding the

ontology; he shoved how to rep~esent syntax in arithmetic.

Por the First Inc~mFleteness Theorem in the form of an

incompleteness result ve~y little informaticn about prova

bility is encoded. Even in the form of a remark that there

are true but unprovable sentences of formal arithmetic very

little is needed conce~DiDg truth -- only that one of a sen

teace and its denial is true. The proof of the Second

Incompleteness Theore. requires that significantly'more than

correct extension be true of the provability predicate.

I have argued (in sections 2 and 3) that in order to

state the Second Theorem (and related results) in an inter

esting way. aD account of them must contain a real (ncn-pun

ning) notion of expressibility for certain syntactic

Dotions. Two questions naturally arise connecting this need

and the accounts of Feferman and Jeroslow and the modal

account. CaD these accounts be construed as (pieces of)

nOD-referential semantic theories? Ire they correct and

adequate? As I have urged previously. the latter question

is a question distiDct f~om Mhether the accounts produce

acceptahle generalizations - purely mathematical results

about a large class ,of ohjects. The latter is consistent

with the accounts given being A~ h~ devices of proof theo

rists designed to amake the proofs go through."
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That is, we might, for Example, merely see the Feferman

account as follows: Pormulas extending the axicms are

divided into tvo categories: category I and category II.

This clever, but intrinsically meaningless, division is such

~hat all sentences formed in a certain way from the formulas

of ca~egory I are underivable. This is not true of category

II. Moreover, amongst the sentences so formed from category

I formulas are sentences we have traditiona1ly called con

sistency sentences. Pinally, stretching, the bounds of this

purely non-semantic viewpoint, we recognize that the mode of

formation of these sen~ences from the open formulas syntac

tically mimics definitions of consistency; where the formu

las play the role of the predicate!§ gn gxi2~. Note that

not even this last remark can pretend to establish the whole

class of consistency sentences as consistency sentences,

since it doesn't distinguish between category I and category

II.

I have been at pains to argue that the viewpoint I have

just sketched, of the Fefer.an account as a clever technical

device to permit true generalizations over formalisms, can

not yield our usual gloss of the Second Theorem, in which

the Second Theore1l is taken to be about consistency. In

order to justify such a gloss, the first question (Can these

accounts, those of Jeroslow and Feferman, be construed as

non-referential semantic theories?) must be answered yes.

And this makes the second guestion (Are the accounts correct
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and adequate?) of interest. Let us begin with the first

guestion, which viII lead us to the second. I approach the

first question hy indica~ing what the required semantics

vould he like, and shoving that the F- and J- accounts can

be described as being like that.

!he language whose semantics is at issue is a stipulated

laaguage of e~ementary proof theory - LEP7. LEPT is an

interpreted, informal language, a fragment of natural lan

guage. The iDteaded interpretatioD is the one that we learn

when we learn the aeaDing of such terms as 'consistency',

'formal de~ivatioD', 'universal foraula', 'variable', etc.

ftoreover, LEPT's domain consists solely of syntactic

objects. (48)

(48) Bo consistent formal system, T, that is suffi-

ciently strong can prove T's consistency.

is not in LEPT. What I have in mind is that (48) is not in

LEPT because _hat formal systems prove are formulas, and

that's as fancy as LEPT gets. However, the semantics for an

LEPT sentence like (4) ought to supply us with a useful

premise in an argument to (48).

So, LEP!'s domain con~ains strings and sequences of

strings, not propositions. A formalization in LEPT would

presumably contain enough eguipment to do the concatenation

theory of those strings and to handle certain inductive

definitions. If ve vere carefully fOEma~izing LEPT we would

set up a uniform aode for describing formal systems· z • Not
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surprisingly, Jeroslov and Feferman do just this. It should

be noted that many formalizations in LEPT attempt to be

ideologically parsimonous; in particular, the notion of set

membership is avoided. This observation anticipates an

ultimate "reduction" to arithmetic. But this parsimony also

tells us that LEPT may be formalized in fairly impoverished

set theory, e.g. ZF-Infinity, vere we to want to do that.

Such issues do not directly concern us here. It should also

be noted that, although LEPT is a language, a formalization

in LEPT is one that is true to LEPT's interpretation. With-

out our earlier argument as to the desirability of censtru-

ing (48) (i.e., giving enough of a theory so that one can

establish its truth), concern with LEPT would not on its

face involve us with intensional issues. LEPT is an exten-

sionalist's dream - a language purged (by stipulation) of

that-nominalizatioDs, like -that T is consistent'. and whose

guantifiers range over symbels. The conflation of use and

mention is not our T0ad of good intensions. ihat occurs

after 'proves· in LEPT is a name of a sentence, or a varia-

ble whose values are sentences•

• ZThis, and such moves as taking the symbols of formalisms
to ~ numbers, is just to give formalisms an abstract syn
tax. It is justified by noting that such an abstraction
preserves all relevant features - orthography not being
relevant. It doesn-t matter which mode we pick provided
ve are able to mirror sIn tactic relations.
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As is well-known, formal systems are often taken to

remark on themselves. LEPT is a language for remarking on

formal systems. A foraalization in LEPT. then, might be

taken to remark on formal systems. How do formal systems

remark on anything? A sentence of some formal system is

provable and that sentence is interFreted as some remark.

The sentences of many fo~.al systems have standard interpre

tations, given in standard manners (see. p 18). Let us con

sider those formal systems which are of arithmetic. Here we

have formal systeas remarking on numbers. Note the not sur

prising fact that such remarking is relative to an interpre

tation. How does LEPT get into the act? A famous isomor

phism is set up: LEPT is reinterpreted. Each member of its

domain is effectively assigned a unique Dumber, and the

predicates of LEPT are assigned extensions appropriate to

the requirements of isomorphism. This iscmo~phism is godel

numbering. Dub this reinterpreted LEPT, numerical LEPT, or

NLEPT. The truths of LEPT are truths of !LEPT. NLEPT is

ahout numbers. Hence a formal system with an a~ithmetic

intended interpretation remarks in NLEPT and derivatively

(vig the gode! numbering) in LEPT. If the theo~ems of the

formal system are true then its remarks in LEPT are true.

LEPT is a language that talks of formal systems. Thus do

formal systems remark about themselves. Put another way,

formalisms can be reinte~preted to be "of syntax" rather

than "of arithmetic". Our innocuouS isomorphism yields lit-
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tIe of interest. The only relationships preserved will be

purely logical ones, just because we have an isomorphism

between interpretations which resFects the semantics of

first-order logic. That is, the requirements of isomorphism

are simply that the mapping commute with the !Qg!~! opera-

tors in the Tarski truth definition clauses. More vividly,

the isomorphism viII ignore features of NLEPT and LEPT pec-

uliar to either one. Sometimes, i.e. for some purposes,

these features are important and interesting. In terms of

Hates' point, the isomorphism ignores the manner of the

interpretation. so that wh~! remark about formalisms a sen-

tence vhose interpretation vas given in arithmetic vocabu-

lary makes, is mysterious.

Among the important and interesting relations are the

entailment relations, which are dependent on the respective

(and giff~I~) formalizations of g and LEPT·3. They, of

course. are ~ypically not preserved. It can be seen from

this that while the translation of LEPT to NLEPT is innocu-

ous if the only purpose to be served is preservation of

truth, for purposes of theorizing it is unhelpful. These

remarks shouldbe regarded as glossing my invocation of

Kreisel on p. 56 ff, concerning fine-grained distinctions of

theories.

431Different' connotes here that
one will not be the isomorphic
See belove
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What are the correct entailment relaticns to imFose on

LEPT? Presumably those plausible on LEPT's interpretation

and not NLEPT's. The odds are simFly against the translate

into LEPT of, e.g. Euclid's Theorem being a vital and inter

esting fact about foraalisms. Note also that this transla

tion ~!a2! be given by the isomorphism alone. Conversely,

anyone who has pondered what any of Godel's original forty

odd definitions say when expanded into unahbreviated nymbe~

~h§2!§!A~ language, would hardly take thea as foundational

truths. The sheer size of the constants is discouraging.

The predicates and objects of LEPT are familar to read

ers of logic hooks where definitions of formal derivation,

universal formula, etc., abound. Looking at those with an

eye to formalization (i.e., in!~I al!~, giving all formal

isms a common alphabet) we are led to Jeroslow (if we for

malize directly) or Feferman (if we go in NLEPT first and

then formalize with an eye on the LEPT interpretation).

Neither !~ ~ ~2Q! in 1 2! nor I i~ £2B§i§!~nt are primi

tives. In particular, the definition of £IQQ! Q! is induc

tive and Jeroslow's treatment makes this explicit and criti

cal to the characterization of a canonical provability

predicate. As ve saw in our discussion of Jeroslow, a

method for excluding the extraneous (and deviating) matter

from a proof predicate can be derived from ~rinciplEd con

siderations concerning the standard definitions of formal

derivation.
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The peculiar virtue of the Jeros~ow treatment derives

fro. its direct formalization of LEFT. By avoiding the

intervention of an alien SUbject matter (numbers) in axioma

tizing, Jeroslov produces a very ~eak theory. In other

approaches conservative, with respect to number theoretic

sentences, extensions of (what turn out to be) stronger

arithmetic theories are used. This produces technical vir

tues for Jeroslov, concerning extensions of the Godel Second

Theorem to weak theories, but I have in mind a philosophical

virtue. Je~oslov's treatment allows us to regard all of the

theorems of his minimal formalization as consequences of

formalizing the basic definitions of proof theory. This

means that the exclusion of extraneous or deviating matter

is based on principled considerations. This feature of the

Jeroslov approach enables one to argue that no fact not

constitutiv~ of the meaning of basic proof-theoretic terms

is included in his formalization of LEPT. The formalization

in LEPT is not a theory yielding merely truths in LEPT, but

truths arising from the basic definitions. This viII play a

role in some of my later remarks concerning the construal of

the Jeroslow approach as a semantic theory. Explicitly in

the Jeroslov approach, and (I shall show) implicit in the

others, is the introduction of a third "layer" of language.

The proper semantics for lEPT will te couched in some lan

guage that mentions the syntactic structures of LEPT; while

LEPT itself is a language for talking of formal languages.
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!a~ters get confusing because all these layers are

eventually collapsed into the language of arithmetic. It is

important to separate the layers so as to see the nature and

justification of the embeddings -- which cannot be seen from

post-collapse perusal.

Why have I been talking of the proper semantics for

LEPT? I insinuated such talk by talking of ~Ioper formali

zations of LEPT - ones which do more than produce only

truths in LEPT. LEPT is a lanugage for talking of formal

is.s. But we want to talk of predicates of LEPT, such as i§

I ~22f gI, in formaliziDg LEPT·s semantics. Of course,

LEPT itself is a candidate for the language of such a seman

tics. One question is - what are the truths of this seman

tics? 1 partial answer is - not all the t~uths in LEPT.

Thus the preceding emphasis on parsimoDy.

Ie have, in essence. already seen a major desideratum

for a semantics for LEPT. If the Second Theorem is to be

stated in LEPT then LEPT's semantics must be intensional;

i.e. distinguish between coextensive predicates of LEPT.

Our clear separation of LEPT and its semantics is obfus

cated, as I have mentioned, by the identity of the languages

of each and by the following mode of semantic descent:

Itemize ~he anallticities of LEPT by a weak formalization in

LEPT.

From these obserYatioDs ve

which formalisms .ay be said
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senses which have typically been aaalgamated, as oae of them

plays DO manifest role in the First Theorem. One sense is

the .ode adu.hrated above. which exploits the Gadel number

ing isoaorphisa. The other sense is based on the existence

of a semantics for LEPT. I shall detail each of these tvo

senses so as to clarify their distinction. Let us dub the

first, the isoaorphism seDse; and the second, the semantic

sense.

Although the isomorphism sense is described above, a

redescription viII be helpful. The previcus description

indicated how foraalisms can be said to remark on them

selyes; namely Li! a purely extensional translation (pre

serving first-order logical relations) into LEPT. Row we

aay view this isoaorphism as supplying a semantics for LEPT.

Since the isomorphism respects only extensicns. what this

semantics says LEPT says is sensitive only to standard

arithmetic truth conditions on which it is parasitic; not

even on their "standard .anner" of presentation. So the

implicit isomorphism se.antics counts deviant and non-devi

ant consistency sentences as making the same remark. This

is merely to cast into different terminology some of the

earliest observations of this thesis.

~he semantic seDse does not give LEPT a semantics para

sitic OD an arithaetic interpretation. Given a formaliza

tion in LEP~ and a semantics for it true to the intended

interpretatioD, then we have this semantics giving sense to
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the claim that formalisms remark 00 themselves. What is an

example of such a semantics? Well, I take it to be obvious

at this juncture that I have three examples in mind -- call

thea Jeroslov-semaotics, Feferman-semantics and Modal-seman

~ics. Furthermore, these differ from the isomorphism seman

tics in being non-extensional.

A semantics for LEPT is to be given in a very restricted

theory, though ODe adequate for the purpose. The semantic

task is easier here than for English not because the seman

tic complexity is less (though it is), but because we have a

clear grasp of wbat the primitives and correct definitions

are. It turns out, moreover, that entailment relaticns are

the primary emphasis of this semantic theory. The data

would include such hOlle truths as that A's being a theorem

entails A's being a sentence; as veIl as others that follow

from the basic notions of proof theory. Given this synoptic

view, I am 90in9 to indicate how each of the three treat

ments sketched above fits it. I shall also use it to answer

some questions that have been raised, explicitly or impli

citly, in some of the literature surrounding the Second

Theorem; and to account, on an other than analogical or

intuitive basis, for certain semantic-like remarks in the

literature.

The distinction just made between the isomorphism seman

tics and a se.antic semantics can be seen from another point

of view. The conflation of the tvo senses in which formal-
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ism remark about themselves is abetted by the transparency

'0£ the First Theorem. At the level of sentences, extension-

ality promotes equality of truths; whereas, the Second

Theorem requires the separation of the analytic from the

merely true. If we do not ascend from LEFT the definitional

truths viII be indistinguishable frem other truths; defini-

tonal coextensiveness viII be indistinguishable from mere

coextensiveness. If ve need to make such distinctions (and

I have been arguing that consideration of the Second Theorem

and related results indicate such a nEed) we end theorizing

about LEPT, not speaking LEFT. Attributions of analyticity

to sentences of LEPT should not be confused with (assertions

of) the analyticities themselves. This third "layer of lan-

guage", the language of a semantics for LEPT, mentions

cODstituents of LEPT as vell as use them.-. This overview

can be anchored by some pertinent particular considerations:

The "third layer" is the common thread I shall unravel from

each of the three treatments.

-.It struck me, after sorting this out, that Kreisel
deserves some credit for seeing the point first. I think.
At any rate the remark of Kreisel's had always puzzled me:
ftThus Godelts Second Theorem would be stated: If a system
S is consistent and a formula can be RI~~g in ~ to
express the consistency of S, then A cannot be proved in
s." the italicized occurence of 'proved' was the puzzle.
It is, we nov see, something of a red herring. It really
should read 'is an assertion of LEPT l s semantics.' When
all three layers are arithmetized l such distinctions are
lost. Only a few extra turnstiles remain to remind us of
their passing.
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LBPT is an interpreted language and theories may be

couched in LEPT. So.e theories in LEPT are particular or

narrow, and certain truths in them viII not he truths of all

~heories couched io LIPT. Some propositions of LEPT do fol

lov fro. the meanings of ~he lexicon of LEPt and have the

s~at.s of analytic tru~hs of LEPT. Some examples have been

given, and an interesting case is discussed on p. 121. A

semantics for LEP! viiI be a theory that assigns entities to

s~ructural descriptions of LEPT sentences and their parts,

in such a way as to distinguish the class of analytic sen

tences, to mark off certain entailments, etc. I shall nov

describe the three treatments as semantic theories. (see

also p. &&, earlier.)

Peferman's treatment regiments LEPT as the "dotted- lan

guage. In this language are terms that are to be inter

preted as referring to syntactic entities. the crucial fea

ture of Peferman's se.antics is the presence of the term ~,

used to refer to open formulas of arithmetic. The predi

ca~es, 11=f2~pla and JJ=I2~! are predicates of such open

formulas. ~he se.antic theory for this regimented LEPT

includes a standard referential semantics (induced by the

-identification" of syntactic objects Mith numbers, and the

notions of AY~!!!2! and ~!DY!!!atio!) augmented by the ~I

and II predicates.. crucia,lly, tvo oc' s of identical exten

SiOD need not both be BE, or PB. In this dotted language

coex~ensive substitution is not truth preserving; this is

Pefer.an's thm. 5.9.
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Feferman's semantic ~heory, containing such terms as

tbinumeration', tRE-formula', etc., is a fairly abstract

semantics. Be indicates, however, the obvious natural

applica~ion of it. The ~'s are to be thought of as rules

for selecting out axioms, and RE rules are ones that char-

actetize formal systems. ~ore precisely, the dotted proof

predicates, which are associated with their inductive defin-

itions lnvolving an occurence of (defn. (4. 1), p. 8&), are

identified with formal systems.

!he various modal approaches, whether Lob's, or the

highly developed one that utilizes G, can be thought of as

producing the relevant analyticities of LEET directly·s.

LEPT is once again regimented -- into a language including

terms for syntactic objects and the predicate Bev. The

modal approach mentions sentences containing Bew, and •~ ,

is readable as 'is an analytic truth of LEPT'. Since this

semantics is merged with the standard one that assigns

extensions to predicates like Bew, ve get the familar lack

of extensionality. Of course, vi~ the Solovay result, we

get the semantics reduced into arithmetic, and post-reduc-

tion, all the turnstiles look alike (' ~ f). This reduc-

tion, and corresponding reductions to a common arithmetic

theory in the other approaches, are hindrances to seeing the

layers separately•

• SThis remark needs qualification, which is supplied a few
pages hence.
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1s remarked previously, Jeroslov's treatment contains

what we are now construing as a seman~ics for LEPT. The

definitons of Froof theory are given in a language that con

tains such predicates as 'SpTm', 'That, etc. Canonical

proof predicates are defined by again recurring to the

inductive characterization of formal proof. ,And formal §~

~ !~§ i2§1 £!Bonicll 3I§!§!~. This identification plays

the role here that Pefermants use of open formulas, inter

preted as giving the rules for picking out the axioms, did

in the P-seaantics. Rany PCSs have identical sets of pro

ductions.,

1 first glance at the necessary conditions on provabil

ity predicates often puzzles people. Why should, for exam

ple, it have to be provable in arithaetic that provability

predicate, B, be such that B (A~ C) ~ (B (1) ~ B eC» ? Why

not just trues What is revealed by the above discussion is

that the answer is tha~ such conditions are not required to

be provable in arithmetic. ~hey are just assertions of a

semantics fOE LEPT. Translated into the language of

arithaetic they become theorems; this accounts for the

"extra" turnstiles. That is, in all these cases, there is a

third ~heory whose formalization is represented by those

"extra" turnstiles - and whose appearance as turnstiles of

some ari~h.etic theory is siaEly a result of the Rost hQ£

translation.
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This last point has been mentioned previously, in con

nection with a remark of Kreisel's. My explanation of the

"extra-turnsti1es" has a coincidentalist ring. That is, I

have argued that a semantics, and an intensional semantics

at that, is needed to explicate Gode1 1 s Second Theorem.

Since both the objects being interpreted and their interpre

tations (the objects of the semantics) are syntactic

objects, the semantic theory can be couched in the language

of LEPT and formalized; furthermore, it is a weak theory

easily arithaetized.

That LEPT's semantics £gB be formalized, and with equip

ment already to hand in any arithmetizatioD endeavour, may

explain why it is always presented ~~ formalized. Kreisel

only seems to be asserting that it must be formalized and

that it must be formalized (~ia arithmetization) in the

theory whose consistency sentence is at issue. Peferman

shows that it is a sufficient condition that this be shown;

i.e., that, as Kreisel suas it up, "a formula can be proved

in S to express the consistency of S". I have been attempt

ing to show that this is true, but a "coincidence".

If taken seriously as a necessary condition, it would

mean that a theory too weak to formalize EFT's semantics,

that is, the language of its own proof theory, doesn't have

any consistency sentences. The temptation to say this arises

because such a theory is too weak to formalize the Pirst

Theorem, and hence, too weak to have the Second Theorem
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proved for it. Why this is so is the pIoper reason for

asserting that weak theories can't assert their consistency.

In proving the Second Theorem the formalism for which the

Second Theorem is being proved is reguired to "know" (prove)

that a formula expresses provability (see (J20». It can do

this if it is K-complete. K-completeness is, roughly, a

requirement that the formalism contain its proof theory's

semantics.

This doesn't take us all the vay. There is seemingly

the option of saying that weak theories have consistency

sentences, possibly provable ones. Such theories ~ould have

to be so weak that they couldn't discern their consistency

sentences from deviant "consistency" sentences. I think

that there are persuasive reasons for discarding this

option, and this last fact is one such reason. Although I

have avoided talking about the epistemological content of

the Gadel Theorems, I viII say that this situation, a for

malism that proves consistency but doesn't know it, seems

not to have the epistemological content that a Hilbertian

aight have had in aind.

An other problematic aspect arises because none of the

truths of mathematics, meta- or otherwise, are contingent.

!any of our semantic intuitions concerning intensional con

texts and analyticity connect to ones concerning necessity

and contingency. These intuitions have recently been

schooled by the development of possible world semantics.
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for some cases,

shows how we might draw such a distinction,

and how it would fit in with our previous

THEOBEM AND INTERSIORALITY IN METAMATHEMATICS

Unfortunately their bearing on the semantics of mathematical

discourse, particularly the cases I have been describing, is

dubious; particularly if the possible world semantics is

taken "literally", as stalnaker, for example, takes it.

In the cases under consideration this aspect presents

itself as the problem of distinguishing between the analytic

truths of LEPT and the non-analytic ones- which ve cannot

perforce call 'the aerely contingent ones'. Many truths in

the language of LEPT follow from any precise identification

of the formalisms inwolved. Many of these I have implicitly

ruled out as analyticities; that R is consistent, for

instance, or that 2 cannot prove cemmutativity of addition

and ~ can. The latter fact follows inexorably from the

standard specifications of ~ and f. The former fact, that E

is consistent, also fellows from the specification of g.

Por the moment let us assume that this fact, that E is con

sistent, can be justifiably ruled a non-analytic truth of

LEPT. Then WE can see how to describe the distincticn bet

ween canonical and "contingent" (that is, non-analytic)

reference. Becalling that the deviant proof predicate could

be described as extending the theorems of the intended for

malism on hypothesis of consistency, we can see how the

extension of such a predicate depends on a non-analytic

fact.

This only

-122-



EXPRESSING CONSISTENCY: GODEL'S SECOND INCO~PLETENESS

observations. It remains to show how it is implemented and

why where the line gets drawn is appropriate. Our immedi

ately previous observations are relevant. Fcr, the distinc

tion is really between truths in LEFT and truths about LEPT.

And, if this is right, it is a clear case of the separation

of metaphysical modal notions from semantic ones.

What is the proper semantic theory for EFT? Well, it

depends whose account one takes as gospel. It is most

e~plicit in the Jeroslov account. but on all accounts it is

never stronger than g. So, amongst other things, Godel

proved that that g is consistent is not an analytic truth of

LEPT: i.e., is not a semantic fact.

As I suggested earlier, the modal account would seem to

plump for G as the theory of analyticity and entailment for

LEPT. It would be tempting to read t~1 as 'is an analyti

city of LEPT'. Unfortunately G seems too strong. Many of

its theorems see. to be what I have been calling ncn-ana

lytic truths of LEPT. tip ~ cop is a difficult case. Count

erexamples to this vould involve very weak systems- and we

might want to say that by 'formal provability· we (LEPT)

mean (5) .§Y!!.l~i~!1:.l ,§trQ!!g fOll21 .EI~.!abi!itl. The tempta

tion is reinforced by the weakness of GiS deductive appara

tus. G is not a first-order quantifier theory with induc

tion; such a theory might cause us to worry that more than

the semantic facts were being represented. I was lauding

the Jeroslov approach for its avoidance of this problem.
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With G's weak deductive apparatus (it's a sentential logic),

if ve ~an justify the axioms semantically, ve are a long way

~ovard justifying G as a semantics. Since G is weak, the

rule of necessitation is harmless if ve assume, as above,

that formal provability means sufficiently strong formal

provability.

Jeroslov's theory, J, is very weak; but all the accounts

are adequate to the semantic data examined. That is, they

respect the cavils of the early sections. ihat justifies

restriction to such weak theories, other than methodological

parsimony? There are tvo sorts of justification - one epis

temological, the other seaantical. Jeroslov essentially

alludes to the former in the passage quoted on p. ilf. It

seeks to salvage the epistemological core of the Hilbert

program. The semantic theory is a finitist theory about

(the concept of) provability. As we have seen just above,

Godel proved that the consistency of R is not provable in

such a finitist semantics. The semantic justification is

simply the observation that the analytic truths are jyst

those that follow from the meanings of the preaicates

involved - the meanings are given by the inductive defini

tions; and anything in addition to inductive ability on the

relevant predicates is to go beyond the minimal core of

meaning-based truths. Note that we have been more than once

driven to put lo.~ bounds on the strength of the semantic

theory.
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Curiously enough these ske~ches of two sorts of

justification for a semantic theory yield yet another deep

parallel to issues in natural language semantics. Some wri

ters have claimed, implicitly or explicitly, that the ade

quacy of a se.antic theory is to be judged solely on whether

the correct semantic properties and relations are predicted.

Others place Eestrictions on how a semantic theory produces

its se.an~ic descriptions the restrictions based on

de.anding that the theory be "psychologically real". The

parallel to the Hilbert demand is close. In the next and

final section I vill have more to say OD this and on other

connEctions to issues in natural language semantics.
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Chapter 11

POS!LI!INAFY CAVILS

LEPT is a technical fragment of English.; LEPT requires,

and has, an intensional semantics. So English requires an

intensional semantics. This argument is perhaps reminiscent

of arguments for the extensional insufficiency of context

free g~a.mars for English from their extensional insuffici

ency for r sOlie fragment. Thtt~e are in turn perhaps reminis

cent of an argument that some set is non-recursive because

because soae subset of it is. Since the last argument is

invalid, one might suspect that the others will, at best,

need additional premises to make them respectable.

This has been dODe for the case of English grammars in

ways that preserve the spirit of the original argument.

Roughly speaking, the strategy involved looks like this: If

one caD argue that the fragment is "independent", in the

sense that a semantics for the whole yields a semantics for

the fragment hy mere restriction, then the argument is bol-

stered. This is dODe by defining an equivalence relation

strengthening accompanying notions of adequacy.

thereby

If a gram-

mar for the whole assigns certain structuxes to sentences,

then it assigns the sa.e structures to sentences that reoc-

cur in the fragment. Then it can be argued that those
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structures are incorrect for the fragment, and so, iacorrect

for the whole.

without going into aore detail, my point is simply that

the argument represented by the first tvo sentences of this

section, it might be hoped, could be rectified in a similar

way. It certainly does seem clear that LEPT is a veIl-de

fined isolatable fragment; and that a semantics for all of

English should contain a separable semantics for it. Analo

gies with certain intensiona1izing moves in natural language

semantics are striking. The parallel between strong equiva

lence of grammars and individuation by pess being only one

case. While the project of filling in the argument seems

plausible, I have not worked out the precise lacunae to be

supplied.

There is a less dubitable, but weaker, conclusion, sup

ported by the preceding sections. There is nothing as con

vincing as a cOQnterexample. Demonstrating a logical lapse

in someone's argument is not as strong as giving a counter

example to the conclusion. The counterexample should not,

of course, merely shift the subject of dispute to the coher

ence of the counterexample.

~y claim is that I have found tvo, maybe three, counter

examples to the claim that intensional semantic theories are

incoheren~. Now maybe nobody ever really claimed that; but

if anyone did, it vas Quine. I have in mind a strong version

of this attribution of incoherence. Namely, that inten-
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sional semantics are intrinsically incoherent. This

shouldn't be confused with the claim that a pure intensional

semantics is somehow an incoherent piece of mathematics.

Kripke clea~Ed that much up on the modal front. Here,

though, we have an ~li~ intensional semantics (innocently

constructed, by the vay, to solve purely technical p~cble.s)

that cannot be faulted on ground of Eigor no~ on the inco

hereDce or murkiness of the entities and relations appealed

to; they are finitary syntactic objects and relations among

thea - a Quinean ideal.

I would like to briefly take up some remarks I made

toward the end of the previous section concerning psycholog

ical reality. It has begun to strike many people working

natural language semantics that many available semantic

theories are not candidates for competence models of human

linguistic behavior. Indeed, some people who only believe

in peEfor.ance or competence theories haYe argued to the

incorrectness of semantic theories committed to infinitary

objects. I shall consider the issue as one concerning the

method of implementation, in a finitary mode of representa

tion, of an infinitary semantics.

rortunately, to .ake this point vivid, ODe need not

mount a careful destruction of aEguaents against psychologi

cally unreal semantics - counterexamples are at hand. One

such I viII only allude to. Workers in computer science

have described se.antics, for computer languages, that are
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comaitted ~o infinitary objects. they have, moreover, no

trouble in talking of successful implementations

(Wperformance models") of such languages, no£ any trouble in

dealing vi~h algorithms to realize the semantics

(Wcompetence aodels"). Indeed, the need for a notion of

sucessful implementation prompted the creation of computer

language semantics. These implemenations are, of course, on

those paradigas of fiaitude, computers.

The usual semantics for first-order arithmetic is non

computational. Yet it is not usually argued that it is an

incorrect semantics on the grounds that we deD't compute the

references aDd truth-yalues in the manner of the semantics.

This is so because no ODe takes the semantics as a perfor

mance or competence model. (Except, I guess, intuitionists

and some finitists.)

linitists, in producing primitive recursive arithmetic

and similar systems, have tried to give competence models of

human mathematical behavior. Of course they were motivated

by epistemological CODceXDS: only such knowledge as could

he directly represented in our finitary heads would be know

ledge. Hilbert, ve might say, regarded finitist systems as

representations of knOWledge. We could have putatively

infinitary knOWledge to the extent to which such a system

adequately represented such knov1edge: sag if we could show

the system consistent•. The problem of adequate, or correct,

represeD~atioD I shall skip, although it is a key issue.
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I should like, in ~he li9h~ of distincticns made in this

~hesis, to suggest a certain delineation of a Hiltertian

prograa as sketched above. Proof theory is the theory in

which Hilbertian justifications are carried out. So proof

theory mus~ be finitary. The semantics for the language of

proof ~heory, the semantics of LEPT, is a weak theory. Yet

it does Dot fol~ow fro. the semantics of LEPt tha~ any, suf

ficiently strong, system is consisten~. 50 even if our

se_antic knowledge consti~uted a secure epistemological

base, assertions of consistency exceed it. Thus, while

.athe.a~ical knowledge may be necessary, it isn't analytic.

Z ~ake this to be a £orm of realism.

I hope I have established what I said I would. I feel

sure that I have a least shown that the connective theses I

have uncovered do not haYe, as I remarked on p. 1ij, "mathe

matics' clarion certaintJ and precision."

-130-



EXPRESSING CONSISTENCY: GODEL'S SECOND INCOMPLETENESS

Appendix A

BIBLIOGRAPHY

[Boo10s J
Boolos, G. The !!nE~O!~bi!iU Q! gQ!!§!.§!~1!£I: An
~~.u !!! l!Q..dsl Lo,g!£, Cambridge (1978)

[800205 ]

[ Brent.ano ]

Boolos, G. "ThE Iterative conception of Sets",
~2Y!nal ~~ fhi!Q~2EAI

Brentano, • "The Distinction Between Mental and
Physical Phenomena", in B. Chisholm, ed. Realism
gag !k~ ~~£ig~Yng of ~h~~~~1!Q1QgI, Glencoe
(1960)

[B&J]
Boolos, G. and Jeffrey, R.
bQgic, Cambridge (1974)

[Fef)
FeferJlan, S.
in a General
XLII (1960)

"Arithmetization of Metamathematics
Setting", I~g~~!~ Ma!h~m~~i£~,

[ Fef2]
Feferman, S. "Transfinite Recursive progressions
of Axiomatic Theories", ~QY!~~! 21 ~Y!£Qli£

~Qgic, XlVII (1962)

[H-a]
Hilbert, D. and Bernays P.
~t.he!!tik Berlin (1939)

[Jer1 ]
Jeroslov, B. "On Godelts Consistency Theorem",
unpublished manuscript

[Jer2 ]
Jeroslov, B. "On the Encodings
Arithaetizat.ion of fteta.athematics",
manuscript

-131-

Used in the
unpublished



THEOREft AND INTENSIONALITY IN ~ETAMATHEMATICS

[Jer3 ]
Jeroslov, R. "Consistency statements in Formal
Theories", l!lnda~!!!g lIA!he!.!!.i-s:a!, LXXII

[Kreisel]
Kreisel, G. _ "~athematica1 Logic" in T.L. saaty,
ed. ~gctu~~§ 2!! Modern !gthe!g!ic§, vol III, Nev
York, London and Sydney (1965)

[ Krsl]
Kreisel, G.
~li I!.!i!!~

Review of [Fef], q913 in ~g!~~ti-

[Lob]

[ 80ntague ]

[Ta!oRo ]

L6b, 8.H. "Solution of a Problem of Leon
Henkin", !l2Y~Ml of ~Il!bolic Logic, XX (1955)

ftontague, R. "Syntactical Treatments of Modality
••• n in B. Montague For~~l RhilQ§Q~, Nev Haven
(1974)

Tarski, A., lIostows.ki, A. and Robinson, R. !!nde
£~l~ Th§2~ies, Amste~dam (1960)

[ftostovskiJ
Mostovski, A. ~D~!D£!§ [Bde£ig!bl~ i~ !QI!al
il§g !ritblgt!£, A.sterda. (1964)

[!ates]
Mates, B. Ilg~~D!~IZ 12g!~, second edition, New
York (1912)

[Turing]
Turing, A. "Systems of Logics Based on Ordinals"
in M. DaYis, ed. lhe YDg~~!da~ls, Raven Press
( 1965)

[Wehb]
Webb, J. "G6del's Theoreas and Church's Thesis:
A Prologue to Mechanism- unpublished manuscript

-132-


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132

