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EXPRESSING CONSISTENCY: GODEL®*S SECOND INCOMPLETENESS

PREFACE

In the fall of 1971 I attended a course given by Burton
Dreben. Professor Dreben asked the class to show the prova-
bility of a consistency sentence formed using Rosser's proof
predicate. I did, and was charmed and intrigued. With only
the vague 1idea that deep issues 1lurked in the shadows, I
attenpted to coax into greater illumination the glimmer of
intensionality I thought I espied. George Boolos encouraged
me in the belief that I had 1it upon an interesting topic
and kindly comsented to supervise the dissertation. Later,
in detailed criticisms of drafts, he was to transubstantiate
much incoherence into coherence. The residual incoherence
is mine.

My colleagues and friends Richard Nagel and Harold Levin
vere constantly available sources of valuable criticisnm,
insight and food. Professor Levin in particular provided
steady stimulation concerning matters both logical and
philosophical. Fred Katz, in the course of many discus-
sions, aided my thinking during the early drafts. To
Richard Cartwright and ‘'Jerrold Katz I owe somewhat vaguer,
but no 1less important intellectual debts. Professor
Cartwright also prompted some specific clarifications of

portions of the text; he was kind enough not to demand more.
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THEOREM AND INTENSIONALITY IN METAMATHEMATICS

R.G. Jeroslow dJenerously sent me his extremely insightful
unpublished work on encodings.

I would also 1like to acknowledge the importance of
Adrian Piper, Terry Vance, and Randy and Leilani Carter to
the writing of this dissertation. WNere it not for their

influence, I, and it, would be very different.
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EXPRESSING CONSISTENCY: GODEL'S SECOND INCOMPLETENESS

Chapter 1

PRELIMINARY METHODOLOGICAL REMARKS

Mathematics and its recent offspring, metamathematics,
are often admired for their precision and clarity. The
study of other matters has frequently been modelled on the
techniques of nmathematics - and the failure of some such
attempts is sometimes supposed to reflect ill on the subject
matter. Nonetheless, this vaunted precision and clarity has
not typically been carried over into philosophical discus-
sions conceraning mathematics; nor is there anything
approaching unanimity regarding basic problems in the epis-
temology and ontology of mathematics. In vievw of the fact
that metamathematics has been developed as a tool for the
study of mathematics itself, one might hope that careful
consideration of major metamathematical results would be
philosophically helpful.

In fact, much has been written on the "implicatioans" of
various metamathematical results. Such writings often suf-
fer from methodological defects. It is rare that a meta-
mathematical result will entail an interesting philosophical
thesis. This may happen -- vhen a sufficiently precise
philosophical position entails the denial of a metamathemat-

ical result. And it may also occur when the philosophical
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position involves mention of a specific piece of mathematics
- the Hilbert program is a ready example of this.

What is left out of, or only implicit in, many arguments
to "implications™ of metamathematical results are theses
connecting the result to the subject matter. The unigue
status of the Hilbert program is accounted for by mention of
such a mathematical thesis being an explicit part of the
program. The suppression of such theses sometimes obscures
the fact that nmetamathematical theorems are mathematical
results about mathematical objects. If the necessary con-
necting theses are supplied, viewed as previously suppressed
premises, the resulting argument can appear question-begging
- and hence of no help in convincing the non-keliever!?,

The value to philosophy of technical considerations lies
in part in making various intuitive concepts precise. Much
of the value of metamathematical results consists, not just
in answering certain foundational questions, but in giving
them a precise sense. The connecting theses to which I
refer are often claims to the effect that a precise explica-
tion of some concept is correct. (Webb's "G8del's Theoren
and Church's Thesis: A Prologue to Mechanism™ contains a
suggestive historical account of the simultaneous clarifica-
tion of foundational concepts and technical development of

those concepts.)

D D D D D > D WD - - -——

1If I understand Kreisel, a concern with such theses is a
theme of his writings; Benacerraf also makes this pcint.
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THEOREN AND INTENSIONALITY IN METAMATHEMATICS

I will show that certain necessary ccnnective theses
associated with Godelt's celebrated Second Incompleteness
Theorem have a somewhat surprising character. Before I
uncover these theses and reveal their character, I am going
to sketch a modest and (I hope) uncontroversial schematic of
a philosophical treatment of G&del's First Incompleteness
Theoren. This will serve two purposes. First, the treat-
ment will illuminate the above methodological remarks.
Second, the simplicity of the treatment will contrast with
the difficulties that accompany an attempted similar treat-
ment of G&del?s Second Incompleteness Theorem; consideration
of these occupy the bulk of this paper. The rigorous reso-
lution of these difficulties eventuates in a novel conclu-
sion concerning the nature of an adequate semantics for a
certain portion of mathematics.

In 1930 Gddel proved that a certain formal system, which
he called P, is either incomplete or inconsistent. This is
not what is generally referred to by ¢'Gddel's First Incom-
pleteness Theoren®'. The 1930 result gains importance
because P is important and because the proof of the result
is clearly generalizable. A candidate for greater impor-
tance would be a theorem to the effect that a 1large and
important class of formal systems shares the property of
incompleteness with P. Although G&del does so extend his
result in that same paper, throughout this paper I will sup-

press references to primitive recursive extensions of P.
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Such a theorem requires for its best expression the theory
partly2 discovered by G6del in the 1931 paper: the theory
of recursive relations. Furthernmore, a refinement of
Rosser's is needed to yield the Incompleteness Theorem we
all know and love3,

Let us call this result G1. What is G1? (1)

(1) There 1is no consistent complete axiomatizable

extension of Q.

expresses an up-to-date generalization of the results of the
1930s, and certainly obtains for us the "large"™ class of
formal systems we asked for. Justifying the 'important' of
*large and important class of formal systems' is another
matter.

(1) is a provable mathematical result. (2).

(2) Any sufficiently strong consistent formal systen

of arithmetic is incomplete.

2¢partly' both because G8del discovered a part of the theory
(primitive recursive fuactions not general recursive) and
because he was partly responsible for the discovery, along
with Herbrand, Kleene, Turing, et al.

3Not every Gddel sentence for a theory is undecidable in
that theory, though every Rosser sentence is, in every con-
sistent extension of P.

-9



THEOREM AND INTENSIONALITY IN METAMATHEMATICS

is often used as an expression of the Gddel result. Since
(1) and (2) are not prima facie synonymous, nor does (2)
look wholly mathematical, wvhat wvarrants both the assertion
of (2) and the claim that it is an expressiom of the Inconm-
pleteness Theorem?

A partially satisfactory argqument from (1) to (2) can be

obtained. When (1.1) and (1.2)

{1.1) If a formal system is sufficiently strong it is
an extemnsion of Q.

(1.2) Every formal system is axiomatizable.

are joined with (1) as premises, then (1.9)

{1.9) Every sufficiently strong consistent formal sys-

tem is inconmglete.

follows, and a fortiori, (2) follows*.

¢I have not said what a formal system is. For now it is

enough that a formal system can be given by an axiomatiza-
tion. This fails to yield individuation criteria; for
immediate purposes we may have in mind the set of theorenms
generated by the axiomatization. I am presupposing that
either notational variants don't count, or that the under-
lying syntax is abstract.

Q is a well-studied theory in the language of
arithmetic. It has finitely many axioms (seven, all simple
and clearly true in the standard model), all recursive
functions are representable im Q, and yet it is a rather
weak subtheory of P (commutativity of addition is not a
theorem of Q). R is a subtheory of Q, and, though very

-10~-
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We have had to stipulate that {1.1) is true; this is
unfortunate since the significance of 'sufficiently strong?

is often taken to be all recursive functions are representa-

ble inS. Thus (1.3) and (1.4)

(1.3) If a formal system represents all recursive
functions then so do all of its consistent
exteansions, and Q represents all recursive func-
tions.

(1.4) A formal system is sufficiently strong if and

only if it represents all recursive functions.

are not sufficient to yield (2); whereas it 1is false that

only Q and its extensions represent all recursive fuactions.

D T D D W —D WD D W D > D - - - —— -

weak, has infinitely many axioms; all recursive functions
are representable in R. P is the famous Peano arithmetic.

The talk in the preceding paragraph nominally opts for
a narrover individuation of entities such as P, Q, and R
than that yielded by same theorem set. For, I talk of R as
having infinitely many axioms. I shall ultimately be argu-
ing that for many important contexts of tebkhnical proof
theory even finer individuation is needed. However, in the
current context this need does not arise, and we may talk
of axiomatizations of theories, if need be. 1In the case at
hand the matter is even simpler, since R {as a theorem set)
has no finite axiomatization; nor does P. P, 9, and R are
fully characterized and their important properties revealed
in [ TaMoRo].

SA more plausible alternative to {1.1) would be to regard
*sufficiently strong®' as having indexical properties. So
its occurence in (2) is to be explicated by (1.1) - though
its meaning in general is more like: 1is an extension of an
appropriate formal systen.

-11-
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R, for example, is weaker than Q and suffices. Another
undesirable feature of this argument is that 'of arithmetic?
is only smuggled in via an a fortiori clause when what is
wanted is the observation that Q is "of arithmetic" and all
its extensions (in the language of arithmetic) are

"of arithaetic"s,

An easy, albeit ad hoc, modification replaces {2) by (3).,

{3) Any sufficiently strong consistent interesting for-

mal system of arithmetic is incomplete.

plus the remark that there is no formal system that is
interesting, represents all recursive functions, 1is "of
arithmetic", and not an extension of Q. 'Interesting' here
is a term of art.

{1.9) <carries no presupposition that there are formal
systems of arithmetic. The thesis that Q and its extensions
(in the language of arithmetic) are formal systems of
arithmetic is needed to nmake (2), and not (1.9) the appro-
priate expression of an important fact. These days ve
briefly say that a theory is "of arithmetic" if its sen-
tences are true in the standard model. This latter claim is

a substantial one itself. The burden of justifying the

A TS D - D —-——— -

6A slightly differemnt approach to (1) and (2) can be found
on page 182 of [B&J . I take {3) to correspond to [B&J]'s
remark that ¢ is a rather weak theory.

-12-
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claim that Q is "of arithmetic"™ has been shifted to the
justification of the claim that being true in the standard
model is sufficient for a theory to be "of arithmetic".
Dedekind's isomorphism theorem and his existence proof for
infinite models both represent early attempts to connect the
natural numbers with the standard model {cf. [Webb]}). Con-
nective theses often assert that a particular precise for-
malization is an adequate formalization of some notion.
Church's Thesis is the paradigm of this ilk7. Other exam-
ples iaclude claims that a formal semantics corresgonds in a
certain way to an intended intergretation (first-order
semantics and logical validity (cf. [Kreisell]); Kripke
semantics and Leibnizian possibility).

Nor need the intended interpretation be even partially
articulated prior to the creation of the formalization.
Often the value of formalization is in retroactively articu-
lating, not just clarifying, intuitive conceptions. Here I
am thinking of Z-F and the iterative conception of sets (see
[Boo20s]) . Finally an example central to twentieth century

logical investigations is the <claim that set theory ade-

- - - - T - —-———— - - -

7As Webdb stresses, Dedekind created the early paradigm. The

analogy is: of type w is to the standard model as being
mechanical computable is to Turing computability. The
analogy runs deep, though Dedekind®'s thesis has had a his-
tory of more immediate acceptance. I am glossing over the
fact that both Turing's and Dedekind's Thesis, when subject
to careful and detailed analysis, can be prised into non-
equivalent versioas.

-13-
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quately formalizes (in yet another use of ‘formalizes?)
mathematical practice. (see [MONK])).

These connective theses are the additional premises
needed to produce a valid argument from a mathematical
theorem to a philosophical clain. Church's Thesis is often
used to warrant the claim that (2) is about a large and
important class of formal systenms. What has often been
stressed in regard to Church's Thesis is also true of many
important connective theses - they are not mathematical

truths and do not partake of mathematics? clarion certainty

and precision.

-14-
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Chapter 2

PRELIMINARY CAVILS

What would a treatment of Gbdel's Second Incompletness
Theorem be like that was analagous to my modest sketch of a
philosophical account of the First Incompleteness Theorem?
First, a statement of what Gdédel proved and an up-to-date
generalization of it {cocncerning a large and important class
of formal systems); and an argument from that generalization
to an analogue of {2). Of major interest to us will be the
necessary additional premises. As we shall see, such a pro-
ject will not work out as neatly as did the account of the
First Theorem. Even for the purposes of this modest goal of
producing a parallel account, and eschewing direct concern
with deep philosophical "implications" of it, we shall find
the Second Theorem to be rather more recalcitrant.

An early reference to the Second Theorem is to be found
in Goédel*'s 1931 paper, in which a proof of what he calls
Theorem XI 1is sketched. As a full proof 1is exceedingly
tedious (involving a proof that. the first result can be
recreated in the formal system), Gddel is ccntent to simply
point out that it is clear that such a proof can be given.

Wwhat does Gd8del's proof of Theorem XI show?

-15-
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Briefly put, an unprovable formula is exhibited, differ-
ent from 17Gen r, the one exhibited in the proof of his
First Incompleteness Theoren. In a footnote to his state-
ment of XI G8del remarks that the unprovable formula of that
theorem is not just any formula that is built in the
described way from a predicate that numeralwise expresses jis
a proof of. It should be recalled that in the proof of the
First Theorem, GOdel coastructs a formula that he shows, on
hypothesis of consistency of P, to be unprovable (in P).
That is, he shows that there is a proof that the consistency
of P implies that a certain formula is unprovable. corres-
ponding to this proof, there is a derivation in P of a con-
ditional corresponding to Gddel?s implication: a condi-
tional wvhose antecedent is a sentence which is the
formalization of the assertion that P is consistent, and
vhose comsequent is the formal sentence saying that the
godel sentence is not provatle. By the construction of the
First Theorem this consegquent is the godel sentence itself.
Hence the conditional whose antecedent is the consistency
sentence and whose consequent 1is the godel sentence 1is a
theorem of P. And since modus ponens is a rule of inference
of P, the formalized statement of consistency cannot be
provable if P is consistent.

The above is a rough sketch of the idea of the proof. A
very detailed proof would involve constructing (or, at

least, showing how to construct) the crucial formal deriva-

-16~-
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tion. The recalcitrance of the Second Theoren, which I
mentioned at the beginning of this section, centers on the
notion of formalization, which is used in the above sketch.
I will explain in what follows how it could be that formali-
zation is responsible for what I have called the recalci-
trance of the Second Theoren. However, the semantic flavor
of this theorem <can be immediately appreciated when vwe
notice that what is unprovable is a formula of P and that
this formula is said to say that P is consistent. We shall
see that, unlike some of the informal intuitive descriptions
of the First Theorem that are often given, this apparently
semantic characterization is unavoidable in view of certain
purely technical considerations. In fact, the ccantrast
appears locally in the conditional itself; that the conse-
guent says that some formula is ungrovable can be replaced
by much weaker constraints - namely that the proof predicate
used numeralvise express the proof relation. Stronger
semantic constraints are necessary for the antecedent.
These matters are taken up in detail in the next section.
But before ve advert to these more tecﬁnical considera-
tions, certain features of the Second Theorem can be

examined. Gddel gave (or sketched) a proof cf (4)8,

8For ease of presentation I am continuing to suppress refer-
ence to primitive recursive extensions of P; thus 'WID' and

not *WID(K)".
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(4) The formula that translates WID is not provable in

P.

which 1is clear enough, provided that we understand the
definite description that occurs in it. [Let Hecuba =df the

denotation of this description. Then (4?7)

(4') Hecuba is not provable in P.

is an even sparser expression of what G&édel proved.] Under-
standing the description involves understanding the meaning
of *translates' in this context. What should it mean?

As far as (4) goes it seems toc {and (4') definitely
does) state no advance over the First Theoren. What is the
formula that translates WID (vho is Hecuba?) and what makes
it more special than the unprovable formula constructed for
the First Theorenm?

WID itself was defined as in (5).
(5) WID =‘3x (Form(x) & -Bew(x) )'®

Form and Bew are predicates of numbers, such that, under the

given G6del numbering, Form holds of n just in case n is the
godel number of a formula and Bew holds of n just in case

9WID is simply the arithmetic statement given. It is well
to keep in mind that WID is a remark about numbers, couched

in "logician's English."

-18-
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the formula whose godel number is n is provable. So WID
holds just in case there is an unprovable formula of P - a
standard characterization of consistency. We may say that
WID says that P 1is consistent1o, provided that Fornm
expresses formulahood and Bew expresses provability.

Even so, WID is certainly not a formula of P, and hence
it isn't what's not provable in P, as (4) makes clear.

We say that, for example, 2 + 2 = 4 is provable in P
because a certain formula of P is provable and the standard
interpretation for P makes the appropriate link between the
fornula and the manner in which the standard model 1is
described. As ve shall see, such a truth-defintional seman-
tics will not work for the Second Theoren. [In this con-
text, i.e., <considering whether 2 + 2 = 4 is provable in P,
I refer to the "manner in which the standard model is

described”; in this case, the standard manner. This is pot

D - D AP WD — D v -

10'p ijs consistent? says that P is consistent, while WID
makes a remark about numbers. This is not where problenms
lie. Suppose that, bureaucratically, ve were to "iden-
tify" each person with his/her social security number.
Then relations among people would correspond in a natural
way to relations among numbers - and we might even go
homophonic on relation names and utter the 1likes of
¥122368871 loves 1113894117, This may be perverse but

neither confused nor astounding. The homophonic ploy is
useful for pointing out why such a harmless isomorphic
encoding is useful. If we also went homophonic on num-

bers - called 122368871 by the name of the person identi-
fied with it - it would be hard to imagine a point to the
enterprise. The point of such an enterprise invclves the
utilization of a favored vocabulary and not a favored
ontologye. The favored vocablulary may introduce entail-
ment relations based on meaning. (Cf. p. 106ff)

-19-
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the intensional point concerning mathematics that I anm
eventually getting at; it is simply the point that [Mates],
for example, covers on pp. 75-78.

Mates points out that in establishing instances of
Tarski's schema T, the way in which the interpretation is
described is utilized. The same interpretation, I, given
differently, yields both

'L2a aj' is true under I, if and only if 2 is less than

3.
and

'*L2a, a5' is true umder I if and omly if the only even

prime is less than 3.
as consequences of the definition of truth in an interpreta-
tion. For purposes that exceed mere consideraticn of truth
conditions, the non-identity of the two displayed sentences
is vital. One such purpose, ubiquitous in lcgic texts, 1is
judging whether a formal sentence is an adeguate translation
of an English sentence; and this 1is relative to the way in
which the interpretation is given. Mates is thus 1led to
standardize the presentation of certain interpretations, so
as to render less indeterminate answers to questions of ade-
quate translation. I say 'less indeterminate’ because Mates
merely shows the 1inadegquacy of a possible account of

adequate translate, not the adequacy of its replacement.

The context we are concerned with (coansideration of

whether 2 + 2 = 4 is provable in P) 1is very like the trans-

-20-
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lation, or regimentation, <context that Mates is concerned
with. He points out, however, that the truth-value of wffs
is independent of the manner of specificaticn of the inter-
pretation (though the meaning is not). The Fregean move that I

am aiming for involves locating the intensional context, not in the meta-
the
tanguage,but in ,language being interpreted, thereby yielding a

difference in truth-value. So, while P gua arithmetic may
have a truth-definitional semantics 3 la Mates, P gua proof
theory does not. Section 10 is devoted to an expansion aad
explanation of these bracketed remarks. ]

What about the formula that translates WID; can it be
said to say that P is consistent? Whether it can clearly
depends on the notion of translation invoclved. Let 'A?
range over arithmetical sentences of English, 'a' over sen-
tences of P and let the substituends for 'p' be sentences of

English. Then {6)

{6) If o translates A then if A says that p, o says

that p.

seems a reasonable attempt at an adequacy condition on an
account of a formal motion of translation into P; Of course
ve will want to generalize uniformly to
translation-into-the-language-of-T,WMn1{gny suitable formal
systen. The project becomes manageable if the range of 'A’

is restricted to a small enough class. I will continue to

-21-
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concentrate on the consistency sentence and related
syntactic remarks.

Although none of this concern with translation vwas
involved in our treatment of the First Theorem, the suspi-
cion might arise that the concern with formalization, trans-
lation, and "says that" is an artifact of my presentation.
Furthermore, there is a notion of translation, viz. numeral-
vise expressibility, utilized in the proof of the First
Theorem; it might be suspected that this nction would serve
here.

Numeralwise expressibility is a relaticn among certain
number theoretic relations, open sentences, and formal sys-
tens. The relations is the godel number of a proof im P of
and is a formula of P are amongst those "certain" relations.
Let Pf(y,x) be an open sentence of P that numeralwise
expresses the proof relation and Fm(x) an open sentence of P
that numeralwise expresses sentencehood. Then, given the
availability of truth functions and quantifiers in P, we
construct the sentence of P, Ix(Fm(x) & ~ TyPf (y,x)).,
thereby mimicking , in quantificational structure, our
definition of consistency {(which was that there exists a
formula that is not provable.). This sentence is our candi-
date for a formal consistency sentence. Moreover, our con-

struction will clearly generalize to many formal systenms.

Let us see if it actually produces a viable candidate.

_22_
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Taking the foregoing as containing an implicit account
of translation, we are led, in the 1light of (6), to consider

{7) as a putative statement of the Second Theoren.

{(7) The formula that "says that"™ P is consistent is not

provable in P.

{7) has some problems. More than omne (infinitely many) open
sentences numeralvise express a given relaticni?, our con-
struction did not actually produce a unigque consistency sen-
tence. Should *'The' in (7) be 'Some!' or 'Any'? A desire to
obtain something recognizably a version of the Second
Theorem would lead to choosing ?'Any'. However, another con-
dition on this treatment is that we otktain a true expression
of the result - and 'Any' will not give us that on our

present notion of translation. For consider (8).

11The technically oriented will reccgnize that I am sliding
over some tkuried distinctions here. For a fixed godel
numnbering and beta function, infinitely many open sen-
tences numeralwise express a given relaticn. A change in
the godel numbering or beta function will in general
change the class of sentences representing a given rela-
tion - thought of as a syntactic relation. The godel num-
bering and teta function do not touch the "pure" relation
of numeralwise expressibility. As is well-known, given an
effective coding into arithmetic relations, all the rele-
vant theorems are preserved. Given the invariance results
I will usually suppress reference to the relativity to the
godel encoding. All our concerns will be post-coding.
{({Although cf. p. 108f).

-23-



THEOREM AND INTENSICNALITY IN METAMATHEMATICS

{8) If T is a formal system with property ¢, then any
formula of T that says that T is consistent is not
provable in T. (% standing in for some explicans

of 'being consistent and sufficiently strong!'.)

{8) 1is an analog of {2), but is not forthcoming on our
current account of tramslation, due to our stricture about
falsehood. An appropriate place to 1look for help would be
in a proof of the Second Theorem; not the one G&del gave,
but a proof that is detailed and general. Before seeing
what notion of translation such a proof would use or fpresup-
pose, let us see what makes (8) false on our current
account.

Briefly, it is simply that some sentences, constructed
as above, are provable. Since we have good reason (as we
shall see) for thinking Gd&del's Second Incompleteness
Theorem true, I conclude that they are not in fact consis-
tency sentences. Fortunately for this project the provable
"consistency" sentences can be seen to be defective on
grounds other than a desire to make (8) true. Were we not
to admit the reasoning to their semantic deviance we would
have no non-circular argument for (8). The establishment of
{(8) is after all a monumental intellectual achievement and
not simply self-evident. We cannot rationally hope to argue
for (8) on the basis of a firm mathematical theorem and

simultaneously support the additional premises needed by the
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condition that (8) is true. Our desire and our belief that
(8) be true may motivate, but not certify, our search for
rational grounds for the belief. I shall eventually exhibit
and analyse these grounds - that is, the theories that sup-
ply the 1link from the mathematical result to (8) - and argue
that they are semantic theories of a certain sort.

Those with philosophical scruples that mitigate against
the non-extensionalist cast present in such theories are
left without ({8) (and without a host of interesting founda-
tional programs). Historically, this fact is of interest
insofar as referential semantics for mathematics has been
held up to natural language semanticists as something they
would do well to imitate. I will show that this 1is a bad
model even for that portiom of natural 1language that is
mathematical. My strategy will be to uncover in the techni-
cal 1literature concerning the Second Theoren, rigorous
theories of proof predicates and consistency sentences. I
will show that these theories will support (8), 1if inter-
preted as semantic theories for the 1language of proof
theory. These theories are then my candidates for connec-
tive theses appropriate to Godel's Second Theorem. I shall
argue for their correctness as semantic theories, and,
finally, shov them to be intensional semantic theories.

This latter fact can be ({psychologically) obscured by
the incestuous nature of the theories involved. In semantic

theories the objects that are assigned to syntactic entities
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can be of many kinds; tables, chairs, nunbers, people,
relations among tables, chairs, numbers, people, sets of
tables, chairs, numbers, people, sets of sets of tables,
chairs, numbers, people, etc. Thus we often distinguish
syntactic from semantic accounts, not formally, but accord-
ing to the nature of the entities involved. If non-linguis-
tic entities are involved, then we have a semantics. If
only linguistic (i.e. syntactic) entities, then syntax.
This latter conditional is false. The counter-example is
just the case I shall be concerned with - the objects of the
interpretation, the objects assigned by the semantics to
‘'syntactic entities, are themselves syntactic entitiesi2,
These matters are pursued in detail in secticns 6 and 10.

In the next section I expose the defects of the suspect
sentences and counter the suspicion mentioned above - that

the difficulties are an artifact of my presentation.

- — — T - - — - - ——

12Clearly I think that intensionality is a linguistic matter
and that talk of intensicnal objects, when coherent, is
implicitly parisitic on a 1linguistic noticn. My thesis,
in the intensional object argot, 1is that formalisms are
intensional objects.

-26~-



EXPRESSING CONSISTENCY: GODEL'S SECOND INCOMPLETENESS

Chapter 3

FURTHER CAVILS

Godel?s First Incomrleteness Theorem predicates a simple
syntactic property of a large class of formal systems. This
lowing respect - it is definable in terms that do not invoke
anything akin to a translation relaticn: T is incomfplete if
and only if there is a sentence of T such that neither it
nor its formal denial is provaltle in T.

Gédel?s Second Incompleteness Theorem predicates a cer-
tain more coamplex property of a large class of formal sys-
tems. Call this property 2. T has Z if and only if there
is a sentence of T, z, such that z is not provable in T and
Z says that T is coansistent. The Second Theorem says that
all sufficiently strong consistent T have 2. The last
clause in Z?s characterization is not well defined. VNote
first that the variable 'T!' occurs after ?says that' in the
characterization of 2.  As we shall see, 2 shares certain
features with other problematic properties. A purported
open sentence that purports to stand for Z may not pick out
a property; in the sense that it has been argued that 'I
remember x', 9‘George is thinking about x', 'Edna believes
that x is bald', *x is so-called because of its size',etc.,
do not - and hence aren't even open seatences.

-27-



THEOREM AND INTENSICNALITY IN METAMATHEMATICS

Someone might alertly observe, however, that although
the First Theorem, as I stated it, doesn't involve a formal
system making a remark about itself, every schoolchild knows
that the proof of the First Theorem produces a witness to
the formal system's incompleteness, This witness is a for-
mula such that neither it nor its formal denial is provable;
and, the story goes on, it achieves such witness status by
being a formula that does make a syntactic remark - namely
that it, itself, 1is not provable. So, the argument goes,
either the First and Second Theorems have the same troubles
about formulas expressing propositicns or neither does; and
my remarks of the last section and the preceding paragraph
are red herrings.

Although this strawperson argument is invalid, it is
instructive. It points up that the difference Letween the
First and Second Theorems is the difference between the syn-
tactic form of the open sentences that purport to pick out
the properties that those theorems attribute to formal sys-
tems. In the present case, what this ccmes to is that it is
no necessary part of the proof of the First Theorem that the
formal sentence say of itself that it is ungrovable. That
it may seem to be one is an artifact of certain informal,
motivating, semantic accounts of the First Theorem. Certain
entailments of the proposition that the godel sentence says
of itself that it is unprovable are used and these are suf-

ficiently captured by the relation of numeralwvise
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expressibility13, This is clear from an examination of the
proof, or, more revealingly, by consideration of the Rosser
improvement - where, as ve shall shortly see, the undecid-
able formula does not say that it is not provable. On the
other hand, wve shall see that it is a necessary part of a
proof of the Second Theorem, and not a neré artifact of my
preceding informal account, that the consistency sentence
for T "say" that T is consistent. That is, cavils aside,
the technical considerations insure that this is the case.
To bring these general considerations down to cases
{finally) requires some technical machinery. Numeralwvwise
expressibility, hereafter n.e., 1is a three-place relation

among relatioms or properties, formulas, and formal systenms.

(9) If R is an arithmetic relation or property!¢, r a
formula of T, T a formal system, then r pumeralwise
expresses R in T if, for any n-tuple of numbers,
<Py gecerly >

ie R<M yeooolyd> = |i‘r<i,,,...,i;>

ii- not R(ﬂl 'oqo.mn> - l't"'t(ﬁl '...'ﬁl>

D L D D T D GG D W OB G > > -

13 have the impression that [ Mostouski ] deserves credit for
first clearly sorting out the velter of syntactic and
semantic theorems. The thesis I am presenting is ulti-
mately to the effect that, contra the spirit of Mostowu-
ski's hasty appendix, the Second Theorem is intrinsically
semantical. '

14By tarithmetic' is meant of or among numbers. The func-
tion denoted by '—' has to be effectively given, and T is
presupposed to have demnial explicitly available. T is the
standard numeral of T for n.
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{9) is the definition. It is just the recursive relations
that are n.e. in P.

The culmination of G4del's famous series of definitions
is the arithmetic relation which we will write 'yBx!'. yBx
just in case y is the godel number of a fcrmal proof in P
whose last line has godel number x1!S,

Since by Church's Thesis yBx is recursive, there is a
fornula of P that numeralwise expresses yBx. We have
already called (some such) it *Pf(y,x)°*. So, whenever nBm
(vhich I'11 read *'n is a proof of m'), the result of substi-
tuting the numeral of P for n and m into Pf is provable in
P. And if not nBm then IHpr(n,m).

A crucial arithmetic function, also recursive, is the
famous Gddel diagonal substitution function. S{x) 1is the
godel number of the formula that results from substitutiag
the numeral for x into the formula with godel number x. Let
Pd{(y,x) be any formula that n.e. ¥BS (x) - Let g be the
godel number of Vy-Pd(y,x). Then Yy~Pd(y,g) is a Godel
sentence. The plausibility of regarding this sentence as
saying that it is not provable ariées from considering the
standard interpretation and taking Pf as gexpressing the

proof relation. To what extent is this merely a pun?

- - - - - —— — —— ——

15Godel didn*t define yBx this way; it vas built up from
simpler relations by certain constructions, in order to
achieve the formal result. our imminment invocation of
weak Church's Thesis is but a dispensible short-cut. We
shall see that for the Second Theorem the construction is
more relevant.
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The meta-theorems that warrant the inferences needed in
the First Theorem that intuitively would flowv from a sen-
tence that said that it is not provable are forthcoming just
on the hypothesis of numeralvise expressibility. (These
meta-theorems are of the form: If T are the godel numbers
of syntactic objects standing in relation R, then r(ﬁ) is a
theorem of T, and conversely. One is thus enabled to argue
from syntactic fact to facts of derivability and con-
versely.)

The formal argument given by Gbdel in the proof of the
First Incompleteness Theorem does not parallel the intuitive
one that occurs from contemplating 'I am not provable?. The
intuitive argument utilizes the notion of truth. The proof
of the First Theorem avoids this by "pulling the metalan-
guage down into the object language™i6- but only a construc-
tive fragment. It does not have to (nor could it) pull
truth down.

To put it less aphoristically, Gbdel shcwed that recur-
sive syntactic relations could be represented in formal
arithmetic in the aforementioned weak, numeralwise bi-condi-
tional way. Tarski?s Theorem is to the effect that satis-
faction (and hence truth) are not such relations. Thus some

talk of proof could be reproduced in formal arithmetic -

- - - - .- - -

167 first heard this phrase from Burton Dreben, from whom I
also first heard of provable "consistency" sentences.
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enough so as to yield an undecidable sentence. Talk of
truth, insofar as it would require a truth predicate, is
impossible for formal arithmetic.

Let us consider the thesis that if r numeralwise
expresses R then then r(f) says that R(ﬂ). Call this the
n.e. thesis. Were even this true, in order for either the
consistency sentence or the godel sentence to be said to
express amything, the thesis would have to be extended in
the following manmer. Stipulate that the truth-functional
connectives and the quantifiers have their usual meaning. I
take it that the usual meaning of the quantifiers invclves a
specification of the domain of quantificaticn. The formal
system, uninterpreted, 1is not capable of such specification
- in fact this is a consegquence of the First Theorem, in the
folloving sense. The First Theorem shows that there nmust
exist non-standard models of formal arithmetic - models
non-isomorphic to the standard model. In this sense the
formal system does not rule out non-numbers from the domain
of quantification and so doesn't "fix"™ the domain. The
relevant intuition concerning the godel sentence is that it
is false in some non-standard models - there are non-stan-
dard (godel numbers of) proofs of it. So the godel sen-
tence, given the n.e. thesis, says that it is not provable
only relative to the standard interpretation (given 1in the

standard manner, cf. p I9f).

-32-



EXPRESSING CONSISTENCY: GODEL'S SECOND INCCMPLETENESS

A thesis fully varranting a "says that"-claim for the
godel sentence will represent an ideoclogical increase even
over our expanded n.e. thesis, Although there are seeming
{first-order extensional) semantic notions used there, they
are all replaceable by explicit constructive definitions.
Thus, for example, standard numeral for n needs no semantic

> e e e > D e o e

apparatus for its definition - '0' preceded by n 'f''s ( or

whatever). Indeed, as indicated above, even is a formal

proof of can be so dealt with. As all the needed notions

are recursive, they are in fact definable in P.

In any case our project is more modest. It is to give
an account of a representation or translaticn relaticn suf-
ficient to justify (8). In doing this we certainly do not
seek to expand the class of relations "represented" but to
strengthen the representation relation, to carve up the
class more finely. However, only a small subset of the
recursive relations and statements are at issue. For what
wve have seen so far 1is that the First Theorem does not
require a real translation relation; that if we want the
godel sentence to say what is oftem claimed it says a little
first-order extensional semantics seemed plausible; and that
in contrast, (8) explicitly refers to a sentential formula
stating that T is consistent. If the Second Theorem is in
fact to be straightforwardly about consistency, then expli-
cating 'a sentential formula of T stating that T is consis-

tent*, for variable T, is of scme import. And while a par-
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ticular proof of an instance, i.e. about a particular formal
system, may exhibit a particular formula that is unprovable,
it evea then has to be justified as being a fcrmula that
says that that system is consistent.

The use of the standard model, though it explains why we
say the godel sentence and its ilk say what we say they say,
and is not an ad hoc technical fix, is simply not satisfac-
tory. We wvant an explication of when a sentence of a formal
system, T, expresses a particular proposition - that T is
consistent. The expanded n.e. account is methodologically
adequate but doesn't cover the cases. That 1is, there is
nothing incoherent in this account; it doesn't violate any
methodological canons. It is just empirically inadequate -
it makes the wrong predictioas. In particular, as we shall
see, it doesnt't distinguish sentences that are consistency sen-
tences from some that aren't.

Before coming to the lLare-bonmed technical data, it
should be noted that we can envision, in advance, one kind
of solution. If we rule out the use of an explicit semantic
apparatus, the remaining means of describing the expressive
abilities of formal systems is in terms of syntactic struc-
ture and of what formalisms can prove. Numeralwise expres-
sibility is an instance of such a descripticn. So we might
expect further conditions to be of this sort; i.e. condi-

tions on derivability.
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Chapter 4

DEVIANCE

Let us suppose that we have fixed on a few standard
means of building formal consistency sentences from a formal
proof relation. (This reduction of the problem can be just-
ified.) Given a formal proof relation we will then have a
stock of consistency sentences made up of the standard tran-
scriptions and their logical equivalents. What is required
of the proof relation that goes into the consistency sen-
tences?

In what preceded I gave reasons for believing that there
is no good reason to believe that numeralwise expressibility
will pick the appropriate proof predicate. Even if numeral-
wise expressibility was sufficiently strong to yield a
coherent technical result, this would hardly establish (8).
The technical solutions to the problem of generalizing the
Second Theorem, which suffice to prove the technical result,
need to be examined as to why they are solutions of the
right sort; i.e. why they support {8).

For the First Theorem there was no requirement that the
'express' in 'anumeralwise express'! be anything but a pun.
For the Second Theorem I argued that the seeming logical
form of {8) required that ‘'expressibility? be taken more
literally.
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If (8) is false we are, of course, done. In this
section I content myself with showing that requiring only
nuneralvwise expressiblity of the proof relation entails that
{8) is false. Later, in section 10, I shall reveal that
there are coherent accounts that certify (8).

BRosser exploited the fact that the only fproperty of the
formal provability relation needed in the First Theorem is
that it numeralwise express yBx. By constructing a new open
sentence that n.e.  yBx but had special properties as well,
Rosser was able to’improve the Godel result. Let Pf be a
formal proof relation as Godel would define it; then define

Pf' as in (10).:

(10) PE£'{y,x) = PE(y,x) & (Vz <y) (Vz,<y) (Yu<y)

q(pf(zl.u) & Pf(z ,ng(¥)) ]

Pf' like Pf n.e. yBx. (nBm - | Pf(n,@W)). Suppose the for-
malism consistent. Then nothing is a proof of a sentence
and its denial. -nBm = |} -Pf(nu,m) - |} ~P£?(§Q,H).

Houever, {19)
(19) Vx Vy, Vy,-[ ¢(y;.X) & oly,,09(X)) ]

becomes aa unprovable consistency ~sentence whea ¢ is
replaced by Pf; but when ¢ is replaced by Pf' the result is
provable. 1In fact it is trivially provable - consistency is

built in.
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A similar result is nmore simply achieved using the

Rosser form (20).
(20) Pf{y,x) & Vz<y (-Pf{z, ng(x)))

lh even simpler deviant expression is yielded by (21);
(21) Pf(y,x) & ~Pf(y,k)

where k is the godel number of *0=17, If T is consistent
Pf(y.Xx) & -Pf(y.,k) n.e. what Pf(y,x) does. Consider the

consistency schema (22).
(22) -3y ¢ (y.kK)

Then, although with non-deviant Pf in for ¢ (22) becomes

not provable, (é3)
(23) -~ 13y (Pf(y.k) & ~ Pf(y,k))

is.

What isnit provable in T is that (21) and Pf do numeral-
vise express the same relation; i.e. not
by PE(Y,X)— [PE(Y,X) & ~PE(y,K) ).

In each of these cases it is intuitively clear that the

‘deviant predicates are in fact deviant. Thus aissthe aforemen-
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tioned empirical inadequacy of the expanded n.e. thesis.
Ho;ever, not all nonstandard consistency sentences are of
this type. Consider the following line of argument adapted
from Kleeﬁe.

The Goédel sentence itself is a consistency sentence.
Why? Any sentence that says a formula is unprovable is a
consistency seantence, and the GSdel sentence says that it is
not provable. Or, since its existential generalization is a
consistency sentence, then it at least entails a coasistency
sentence; and vice versa. And, provakly so - kPCON~—~ G17,

I don't think that |} CON ~ G is sufficient to show G a
consistency sentemce. After all, not all theorems are syno-
nymous. The rest of Kleeme's argument is worth unpacking.
No COnsistency sentence of a formal system 1literally tran-
scribes the form of the English sentence *P is consistent? -
no consistency sentence 1is of the form Fa. They do tran-
scribe any one of a number of definitional expansions of
such sentences, with the reference to P, or whatever formal

system, being implicit in the proof predicate used. If a

P —— - T " - —

170n p. 211 of Introduction to Hetamathematics Kleene says:
"Intuitively [the GYdel-Rosser undecidable formula] itself
expresses an eguivalent [to consistency], via the long
.intuitive proof of Gddel's theoren. For by [G1] if the
'system is consistent, the G-R formula is unprovable and...
if G-R is unprovable, the system is consistent." That G-R
is the appropriate arithmetizaticn of G-R 1is unprovable
plays a «crucial role here - hence the reference to the
"long intuitive proof". Not any unprovable formula will
do.
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general theory of proof predicates (i.e. an account of proof
predicate for T, for variable T) 1is availatle then cne can
have an explicit variable over formal systenms. The various
syntactic definitions of consistency have a common charac-
tér. Not only are they all trivially equivaleat (provably
so in any system we will be interested in), but they all
assert the unprovability of something. Scme assert the
unprovability of AL, scme of '0=1', some simply say that
there is a sentence that is unprovable. Any sentence that
says that some unprovable formula is unprovakle is a consis-
tency sentence. The Godel sentence, G, is of this form. If
one replaces the term for G in G by the godel numeral for }
the result is a more usual (and equally unprovable consis-
tency sentence) 13,

This observation that G hés some of the necessary pro-

perties of consistency sentences depends on the form of G,

—— - - - ———— - - —— - - -

18There are some issues of propositional identity that arise
here. It seems plausible tc say that 'Edna is not here!
and 'Someone is not here' both say that scmeone is absent.
And 'George is not here?' is ejually an "absence" sentence.
It would, however, be misleading, with respect to natural
language, to say that all these sentences express the
absence proposition. Of course for natural languages we
vant our semantic theory to respect all semantic facts.
For the case in hand ve will deliberately be working in an
impoverished semantic theory. Moreover, the following
fact about formalisms is relevant: All the consistency
definitions examined so far are provably eguivalent. (For
the ones that assert the unprovability of a particular

' sentence, the inference from a pure consistency sentence,
i.e., one with no terms referring to a particular sen-
tence, to them requires the particular sentence to have
certain properties.)
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and does not proceed from the observation that there is an
unprovable formula, mnamely G. Nc mere example of unprova-
bility, say 0=1, is a consistency sentence. The proof of
the First Theorem does not establish G as a consistency sen-
tence. First, as we have seen, it does not use the fact
{vhen it is a fact) that G says "I am not provable."
Second, the Rosser improvement highlights this by producing
an undecidable sentence that does not express 1its own
unprovability - and whose corresponding consistency sentence
is provable.

So, a non-deviantly constructed G is not a deviant con-
sistency sentence. There is, though, another kind of devi-
ant consistency sentence. It is clear frcm the proof of the
First Theorem that each instance of G is provable. That
is, for every n }PﬂPd(ﬁ, g). It is one lesson of the First
Theorem that gquantifiers cannot always pass through turn-
stiles. One can, howvever, formulate the proposition that
every substitution instance (using standard numerals) of
-Pd(y, 9) is provable. Let p be the Godel number of

~Pd(y, q); then (24)
(24) |, Vy Bev Sub (y, 2, P)

holds. (24) should not be confused with the remark that one
can prove that every instance of G hclds. One can, but P

can't.
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In [Webb], #Webb asserts that a substitutional version of

consistency "is a nice provable expression of consistency

-

after all." Let k = % = 1 and let Pf(x,y) be normal, and

A(x) abbreviate -P(x,k), then (3 la [Webb] p. 30) we get

r="

(25) Fp¥n Bew(s( 2 (x), "))

where S is the substitution function tern. (In fairness,
Webb doesn't say that the substitution version "says™ P is
consistent - he says its assertive force is 1less than that
of CON(P).)

Do (24) or (25) exhibit a provable consistency
sentencel®? I argued above that if a sentence said that
some formula was wunprovable it was a consistency sentence.
Conversely, every consistency sentence must say that. The
sentences in (24) and (25) neither say nor imply that. They
say that lots of things are provable; in point of necessary

fact all those sentences being provable cannot be used to

. - P D Y - — - ———

19The following intuition may help in seeing that {24) is
true._ Sub(i, j, k) is the (godel number of the) formula
wvith i replacing % in k. _ Sub(x,, x,, %) 1is a term for
Sub{i, j, k). So Sub(y, 2, P) denotes the result of sub-
stituting the standard numeral for y imn p for %'y’'. The
fact of the use of standard numerals lops off, intuitively
speaking, the non-standard interpret- ation of the quanti-
fier Vy. That no particular standard proocf is a proof of
g is provable. Similarly for (25), the "numeralization™”
of the quantification over proofs omits non-standard
"proofs". P cannot prove that its proofs are none of then
non-standard.
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prove consistency. They simply don't have the right form.
That neither says that something is not provatle is patent -
starting as they do with a universal gquantifier. That they
don't entail that something is not provable follows from the
facts that they are provable, that modus ponens is a rule of

P, and the Second Theoren.
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Chapter 5

FEFERMAN

These deviant proof predicates and consistency sentences
indicate that wvhat is needed 1is a precise definition that
would pick out the (or only) formulas that correctly express
is a proof of. Viewed as a technical problem, that of pro-
ducing a generalization of the Second Theorem, this need has
not been ignored - and Kreisel has emphasized its founda-
tional aspects. As a technical problem the earliest treat-
ment occurs in [H-B] where three derivability conditions are
enumerated and used to prove a rigorous version of the
Second Theorem. Any proof predicate that satisfies the der-
ivability conditions will suffice for the Second Theorem290;
the labor is in showing that any particular proof predicate
does satisfy then. This approach is continued in the work
of LOb ([Lok]) and in important recent work in modal systems

(vhere o is interpreted as provable in a formal systen).

Between 1939 and 1953 very 1little happened on the tech-

nical front. The Hilbert-Bernays derivability conditions

- = - - - - —— -

20In light of my previous remarks it should be emphasized
that the Second Theorem here is not justifiedly about con-
sistency - not until the derivability conditions are
semantically justified.
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were conditions on the fcrmal proof relation, in addition to
numeralwise expressibility, that were sufficient to guaran-
tee an unequivocal Second Theorem in the following sense:
Any proof relation meeting the three conditions would sat-
isfy the requirements of the procf of the Second Theorenm
and, moreover, the proof relations constructed for familar
theories were seen to satisfy the conditionms.

Feferman®s 1957 dissertation and 1960 paper ([Fef]) aad
Jeroslow's papers ([Jder1], [Jer2], [Jder3]) vere stinmulated
by remarks of Kreisel ([Kreisel]). Feferman points out that
"numerically correct®" proof definiticns are inadequate for
certain results, Results for which they are adequate he
calls 'extensional', the rest ‘'intensional?®. The deviant
proof predicates are intemsiomally incorrect. Some inten-
sionally incorrect predicates 1lead to useful extensional
results {Rosser) while others have no intrinsic interest (a
provable "consistency™ sentence). For Feferman the weakness
of the Hilbert-Bernays approach is that verifying whether a
particular predicate satisfies the conditicns is laborious.
Despite the value of his technical work, this is all Fefer-
man has to say about its philosophical import.

Feferman presents a large class of formal systems and
proves the Second Theorem for them. The key to his agproach
is the notion of a formal system that he employs. The con-
sistency sentence for any system is built from the proof

predicate in some standard way (by a straight-forward tran-
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scription of any one of the equivalent definiticns of
consistency); the proof predicate in turn is straight-for-
wardly transcribed from the presentation of the formal sys-
ten. The trick is obtaining a formal object to represeant
the presentation (no set theory allowed).

More precisely: If t(x) is a formula that n.e. the
axioms of T, a proof predicate can be constructed "in a
standard way" from t. Does the phrase 'a consistency sen-
tence for a formal system® make sense? Only if one individ-
uates formal systems more narrowly than by their axioms {and
certainly more narrowly than by their theocém sets) - viz.
by the formulas t(x). Por the equivalence classes of such
t's obtained by the same extension as relaticn are incorrect
for the technical contexts in which they occur21, By nar-
rowing the individuation it is then possible to generalize
various metamathematical results by conditions on the formu-
las t.

Feferman defines a proof relation given a formula t that
numerically defines the set of axioms. Since many t's
numerically define the same set of axioms, for the same

axioms different formal proof relations will be defined; one

- — - R A D AP W R . -——— A -

21For, utilizing same extension as is equivalent to utiliz-
ing numeralwise expressibility as sufficient to character-
ize a formal proof predicate. We saw in section 4. that
the existence of deviant, but extensionally correct, for-
mal proof predicates would make generalizing about formal-

isms difficult in the absence of finer discriminatiomns.
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for each t. So either there is no such thing as the formal
proof relation for a theory or a theory is not its set of
theorens or even its set of axioms plus fixed deductive
apparatus22, The proof relation has to be ®"taken in inten-
sion.” If we talk accofding to the first alternative we can
say that the identity of the proof relation is sensitive to
the mode of presentation of the theory. Deviant proof rela-
tions are bizarre ways of giving the axioms;t bizarre enough
so as to carry a trivial assurance of consistency. ("Tell me
hov 0l1ld you are and make no mistake." "I'm as old as I am."
The situation is also reminiscent of Frege's prcblem with
the meaning of proper names: If a proper name means what a
particular definite description means, them certain ncn-ana-
lytic propositions end up as analytic. See p. 73.)

The formal proof relation 1is obtained from a t by
mimicking the construction of the real proof relaticn, gen-
eralized over uniformly presented formalisnms. The idea is
to reflect the notion of logical derivability from axioms by
copying its usual definition step by step in formalized syn-
tax. The syntax of a formal system is developed in number

theory, relativized to an unspecified non-logical vocabulary

22} third alternative: There is a unique special t for a
theory, which can be used to define the formal systen.
This turns out to be plausible omnly for certain theories,
for certain purposes. In particular, a finitely axioma-
tized theory has a unique (up to A-equivalence) prefer-
rable t. See p. 49.
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K. Thus *'FmK' denotes the formulas of K, 'TmK' the terns,
YStK* the set of sentences in K. The usual syntactic
notions, such as substitution, are characterized as number
theoretic functions in the usual way - yielding, for exanm-
ple, 'Sb; v¥', which denotes the substitution of term 3 for a
in ¥ . Conventional abbreviations are introduced to restore
standard notation; Y (),,..,3n)* for 'Sb(‘;'_ ‘;:)'. Finally,
as the logical base a primitive recursive set AxK is added.
A system or axiom system is a pair <A,K>, where K is a sub-
set of Const {the set of non-logical constants) and A ¢ StK.
A = <A,K>. Ly = < O,K>. Let A/n = {gp €A: ¢< n} and
A/n = <a/n,K>. The proof relation Prf, is the relation such
that "for any ¢ 4, V¢ , Pcf,[ 9, V] iff ﬂrGSq and
o = ( *&xv)-l and for each i < L(V¢), (¥} E€FmK and either

i) (V) €AxK

ii) { ¥y €A

iii) for some j,k < i (¥ ) = (V) = (V) «

"'Pé = {o: !WPrfé[tp ¢ V13 |-écp =¢ GPrA."

With this equipment the usual metamathematical theorens

are forthcoming. Feferman?s (2.2) is the Deduction Theoren

and (2.3) is the following finite deducibility result:
(F2.3) For any ¢ € FmK, ¢ € PrA iff dngp €PrA/n

Furthermore, A €CL iff Pr, & A and A € CON iff for ¢ € Fnk,
not ‘-,é-_cp or not }-.é ~¢ . An easy result is {2.6): A € CON
iff VYn A/n € CON.
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Formal arithmetic is introduced via K, whose symbcls ve
write to remind us that we vwill use them for arithmetic;
e.g. § +8 = f1,0[° et ] Numerals are introduced by:
0= Cope (n+1) = (@)°*. Q and P are singled out as interest-
ing K -theories. Q is the well-known Q, finitely axioma-
tized, and P is P, so-called because of its nanme. Fefer-
man's (3.1) establishes the adequacy of Q for the intended

interpretation of +, ., =, etc.

(F3.1) (i) FQ n+@ma=n+n and }Q n'm = n-m

8|
-
H
=]
At
=]

(i)} B 7

(w]]
([}
-

(iii) b xs ne— x=0 vx VeseeX =1

in
»

i) pyx< @ VT

Feferman'®s term for numeralwise expressibilty is
*bi-numerate’. A p.r. extension of P, <P',K> essentially
consists of additomal function symbols - to go on the left
side of primitive recursive defining equations (extending K,
to K) - the defining equations ([extending P to P'), and the
extension of the induction schema to cover FmK. The desired
results are forthcoming as (F3.4): For each p.r. function
there is a p.r. extension of P with a term that numerates
it in P' and every such formula numerates a p.r. function.
For each p.r. relation there is a p.r. extension with a term
that binumerates it, etc. By elimination techniques
(bi-) numeration in P* can be replaced by (bi-)numeration in
P.
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Two primitive recursive classes of formulas of P are

defined. The superscript indicates the eliminaticn mapping.

(F3.6) Df. ¢ €FmK

i) ¢ is PR-formula if 3 P', #P* a p.r. extension of P,
and a term ¢ of P', such that ¢ = ( ¢v= sz').

ii) ¢ 1is an RE-formula if for some PR-formula ¢, ¢ =

| EN

LR ) L]

As one might suspect these classes are closed under dis-
junction, conjunction and bounded quantification (and denial
in the PR case). If %is 9, are PR- (RE-) formulas we can
effectively find PR-(RE-)formulas ¢ and ¢ such that
}-2 P— 9, Ve, and }-2 y— 9, A %, . These results cul-
minate in (F3.11)

{F3.11) (i) If ® a PR-formula and Fv(g) =
{vo,...,v,}, then ¢ is a bi-numeration in Q of
an (n+1)-ary primitive recursive relation R;
further to each such R corresgonds a PR-formula
¢ which bi-numerates it in Q. (ii) If ¢ is
an RE-formula and Fv(g) = {%),...,vn}, then ¢
is a numeration in Q of an (n+1)-ary recur-
sively enumerable relaticn R; further, to each
such R corresponds an RE-formula ¢, which nun-
erates it in Q. {iii) ... (i), (ii) afpply to
any recursively axiomatizable consistent exten-

sion of Q.
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Feferman then specifies a particular p.r. extension M of
P. The metatheorems justify the following notational dev-
ice. With certain p.r. functions there is associated a
function symbol of M; denote this functicn symbcl by the
ordinary non-uniform, mathematical notation for the p.r.
function, with a dot added. Mutatis mutandis for relations.
Thus 'u'w' denotes a term of M that represents exponentia-
tion. Arithmetized versions of metatheorems can be written
by taking the metatheorems, splattering them with ink and
placing a turnstile in front.

The only difficulty is with propositions involving prov-
ability. AxK, the set cf 1logical axioms, was explicitly
given; but in the definition of PrfA membership in A is
mentioned. Feferman?s crucial method-kor dealing with this
is contained in defintion (F4.1), which defines a formula
P¥€x . Here '« ' denotes not an axiom system A, but a for-
mula in one variable, x. Feferman asserts that if o(x)
expresses that x belongs to A then Pgf, (x,y) will express
that y is a proof from <A,K> of x. Interpretation aside,

{F4.1) is the dotted version of the definition of Prf,, with o

standing in for A23,

- ————— T —— - -

23n(4,1) o a formula of M, u,v,¥ not free in ¢« and distinct
from x, Y, 2. Ppfo = (Sq(y) A L(y) # 0 A Vufu<i{y) -
FoK((y)., ) A [AxK((y)y) V al(¥)u ) VvV v Elwsv«z A w<u A
Va = Ww » Nu)ll A X = (Y)p(y).l)
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is not just any formula

Pify

Two things insure this. The dot

termns of an effective procedure
the purpose of using the

o If

and Prf, depends on

o (x) A x<z, then Pcf,

second definition numbered * (4.2)?

ticular formula o to

{ky seeery 1)s
4y) .

go with 2,

on pe. (Fu. 3)
That these constructions are

content of (Falu).

is denoted by 'Pg£|z '.

[2] =x =X vx =k,
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that bi-numerates PrﬁA.

notaticn is defined in

yielding a formula (this is

well-behaved PR- and RE- formulas)

Fv{o) {x} and a' =

In the

Feferman defines a par-

when A is finite (A

VeeoX = ku . (cf. note

gives the expressions for provability.

"axtensionally" correct is the

(F4.4) Let 0 € FaK , Fv{a) = [x}. Let A = <A,K> be
ees arbitrary ... system and S = <S,K'> a
theory with Q € S.

(i) If o numerates {(bi-numerates) A in S then
Prf, numerates (bi-numerates) Prf, in S.
(ii) If o numerates A in S and S w-comnsistent,

then Pr, numerates P;A i

As with any arithmetization of
ested in nga and Pr, 's adequacy.

is not going to behave as fpleasantly

theorems, reflecting elementary tru
A, are forthcoming with o merely
Thus,

-51-~
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(F4.6) Let ¢ be a formula of M, Fv{a) < (x,2}
i) FM ng(x) - FpK(x)
ii) ;& AxK(x) = P;a(x)
iii) ;M a(x) A FmK(x) - Pry(x)
iv) ‘.QP'ra(x) A Pr (x = y) - Br (y)
v) If { is any formula of M,
thx[ (AXK (x) = ¢ (x)) A
(-a(x) A FRK(X) - ¢(x)) ] A
Vx VY[FaK(x) AFmR{y) A ¢(x)A ¥(x= y) =~ ¥(y)] "~
Vy(P,ra (x) = Vi(x))

These are elementary consequences of the fact that M can
"follow™ an inductive definition, so that i)-v) are verifi-
cations that the inductive definition was captured. Fefer-
man points out that the first and second conditions of Hil-
bert-Bernays follow from (F4.4) and ({F4.6) and are thus
independent of the choice of «.

Feferman then proves a batch of theorems to the effect
that various theorems have provable arithmetized versions.
These are still dependent only on the inductive nature of
the definition of nga and its extensional correctness.
The theorems are proved by "following" an explicit construc-
tive proof of the original theorem. Feferman's dot notation
makes this procedure moderately easy to comprehend. 1In par-

ticular the following is proved:
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(F4.10) i) For any particular ¢ € FmK FMana‘“*
~Pr (¥R =-9)
11) }.}_{chna — Y zCo.nollz

iii) mVx( B(x) A FmK(x) - a(x)) - (Co.na—oc:qna)

A diagonal lemma is proved, and for each « € FRk_, ¥,
is the sentence constructed a la the lemma such that
"Q Yo «P_ra(ya). The underivability of Yo is shown for
arbitrary « numerating arbitrary extensions cf Q, provided
the extensions are recursively enumerable. Restrictions on
the form of o are needed for the Second Thecren. For this
purpose, two important facts are supplied by Th. 5.4 and Cor
5.5. Theorem 5.4 is the formalized version of (F3.10),
vhich says that any true Bounded Prenex Fcrmula is provable
in Q. (F5.4) says that this itself is provable in M. Cor.
5.5 says that if ¢ is (Q-provably equivalent to scme @ €
BPF, then }-Ecp = PIpq] (®). The strcnger condition,
}..Mcp - P.rd(‘cﬁ), is obtainable from }M[g](x) - Pga(x) ¢ Dby
{;u.7)i). {(cf. p. 286 [H-B] v. II).

This is enough equipment to prove Theorem 5.6, a version of
Gbdel?s Second Incompleteness Theorem; and represents in
Feferman®s context the all-important third derivability con-

dition of [H-B].

{(F5.6) Let A = <A,K> be a consistent axiom system with
PgcA. Suppose g 1is an RE-formula which numer-
ates A in S, where Qc S «A. Then
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Fy, Con ~— Yo and hence not Eéana.

The proof is instructive as the use of (F5.5) is made expli-
cit. Yo is equivalent 1in Q to Qra(VQ. Since every RE-
formula is 1logically equivalent to a formula, effectively
found, in bcunded prenex form, (F5.5) 1is applicable and we
get }2 Yy Pﬁq](’V& ). We also have, since Q is finite

x) = Pr X
E§ [Q](x) -a( )
and hence (by (F4.71i and ii)

-~ - P v

‘_é Yo -ra { Ya)
and

A -- - kvl
by €% Yo 7 B (Yg)

by Comg b =¥y = Yy

Eé ana"ya

(F5.9) reports a negative result. A is reflexive just

in case for each finite F cA, Fa anﬁq ; alternatively, for

each n |, C?"[A|n] .

{(F5.9) Let A = <A,K> be a consistent, reflexive axiom
system, P SA, A recursive. There is an a¥ bi-

numerating A in A such that }pCong.
Not surpisingly Feferman's o* is related to our deviant

proof predicates. a¥{x) = a(x)A Vz(z<x- chnale StK(x)),

where o 1is a bi-numeration of A in Q.
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If we restrict attention to RE-formulas we might be
tempted to find a natural consistency sentence constructed
from then. Since the RE-formulas numerating an axiom set
are not equivalent, the field has to be pared down. For
finitely axiomatized {(or axiomatizable) theories this goal
can be met. Let a<_§a' iff 1—§ Cona. - Cona . If A is fin-

ite [A] is minimal in S . (Of course one first applies the

restrictions of [F5.6) so that -|_§ Coxa ¢ Since if ‘-E Cona,
«@ would be minimal. For non-finitely axiomatizable systems

(F7.4) tells us that a similar solution is not available.

(F7.4) Theorem: Suppose that A = <A, K> is a consis-
tent reflexive axiom system with P<A. Then
with each g which is a ER-formula numerating A
in P we can effectively associate a PR-formula
o' numerating A in P for which «o'<o . Under
the assumption that P is w-consistent, the above

holds true with "RE"™ instead of "pPR".,"
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Chapter 6

JERCSLCW

Although Feferman later {([Fef2] p. 129) recants his use
of the term *intensional?, I think it is apt. And it is apt
for just the considerations Feferman has in mind in abandon-
ing it: "To avoid confusion with the philosophical problenm
of intensions it seems preferable to use other termino-
logye.es.™ As sections 2. and 3. show, there are ample rea-
sons for embracing the "confusion". In later sections I
will show that the term 'intensional? 1is apt and that there
is nothing intrinsically confused about so regarding Fefer-
man's {and others') accounts of the Second Theorem. Brilli-
ant as it is, Feferman's approach to the Second Theorem and
related matters is not the omnly revelatory one.

Jeroslow?!s approach, though intertranslatable with
Feferman's, is more direct than his. It avoids the standard
encodings of the usual p.r. syntactic relations and func-
tions, whereas Feferman presents a generalized theory of
those relations and functions.

Jeroslow specifically identifies formal systems with
Post canonical systems: "Formal lcgics are not usually

understood as Post Canoncial Systens, but there is a natu-

ral, uniform procedure for viewing them as such, provided
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that all the mechanical rules vhich constitute the formal
logic are specified, even the inductive rules for generating
the terms, formulas, etc. The idea here is that the predi-
cates of proof theory are always inductively defined, and
Post Canonical Systems are the language of inductive defini-
tions par excellence."™ ({[Jer2]) Post Canonical Systems thus
formalize the "presentations™ of formal systems given in
logic books.

In both the Feferman and Jeroslow accounts the Second
Theorem is proved; as I mentioned, the accounts are in some
sense intertranslatable. But Jeroslow's account has some
philosophical virtues that Feferman's approach doesn't; Jer-
oslouw's treatment makes clearer the rationale for restric-
tions on the class of admissible proof predicates. Loosely
speaking (in the terminology of Chcmsky, et al), they are
equal ia descriptive, but not explanatory adequacy, in the
following vaye.

One virtue of the Jeroslow treatment hinges on the iden-
tification of formal systems with Post Canonical Systems.
This identification, plus the realization that there is no
theory more appropriate than concatenation theory in which
to describe Post Canonical Systens, form the core of Jero-
slow's approach; the rest is "follow your nose."

The justification of the approach comnsists 1largely in

justifying this thesis (Jeroslow's Thesis): Formal systems

are Post Canoncial Systens. Section 10 will take up what
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justifying the Jeroslow (and Feferman and modal) approach
comes to in this context. It suffices for now to remark
that it will be their adequacy as semantic theories that
meet the cavils of sections 2 and 3, that will be justified.
But what of the thesis 1internal to Jeroslow's treatment -
Jeroslow's Thesis?

Three paragraphs ago I quoted a remark of Jeroslow®s in
support of what we are calling Jeroslow's Thesis. Jeroslow
also remarks ([Jer2] p. 6): "It should be evident at this
point that the representation of a formal lcgic as a PCS is
so straightforward, involving as it does, merely rewriting
in the PCS format the usual definition of the logic, that,
vhatever prior ideas one may have held regarding the logic,
the PCS can be understood as the object to which those ideas
pertain.” Thus the identification c¢f formal systems with
PCSs is supported by the identification, in the "forensic"
sense of 'identification?', of formal systems as PCSs.

Jerslow is asserting that the PCS thesis is sugpportable
on conceptual grounds prior to seeing how well the theory
based on it wvorks. ¥e shall see that there are many post-
theoretic justifications for Jeroslow's Thesis (in the sense
that it makes possible generalizations of the Second
Theorem) but it is well to have these pre-theoretic reasons
as well.

Kreisel adduces some ([ Kreisel] p. 154) in pointing out

that we often wish to distinguish formal systems by their
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rules, and not by their theorems or even their set of
proofs. Typical contexts that require such a fine-grained
distinction of theories are evidential ones. One formula-
tion of a set of theorems may be evident (i.e., evidently
true) and hence foundationally sound and another not. More-
over, the establishment of their (extensional) eguivalence
may not be evident. Kreisel's exanmple, appropriately
enough, 1involves a standard and a deviant proof predicate.
As vwe know, the deviant proof-predicate insures consistency
but the proof of equivalence cannot be carried out in any
system as weak as the ones considered2+.

Now representing formal systems by PCSs provides an
individuation fine-grained enough to serve in evidential
contexts. To see this we will fcllow Jercslow in defining
what a PCS is and see how our usual presentations of formal
systems go over in PCSs. This will bring us to the point
where Jeroslow asserted that "it should be evident" that the
PCS thesis is true. Once we have reached that ppoint, I
think it will be evident that Jeroslow’s claims are correct.
It is important to remember that in the usual rigorous pre-
sentations of formal systems many syntactic noticns are

defined inductively. Note that it is in the spirit of the

D D DD W —— -~

24Kreisel goes on to present varicus reasons why, in doing
proof theory, one should, as it were, be at the level of
rules. Every such consideration supports the PCS thesis
insofar as PCSs represent formal systems at "the level of
rules”.

-60-



EXPRESSING CONSISTENCY:

origins of formal systems as an
be regarded as

categories, independently of

Finally, note that, from this point of view,

have no place, as such;
are to be identified with "the
describe the generation
({Jer1] p. 4). Not only is this

formal systems as

theorems, but also connects
behind a
finitude once removed.
sets of "rules" for producing the

What is a PCS?
= {al,...an}, a set of

and a finite number of production

cbject of study,

systems for generating syntactic

of the infinite number

combinatorially

Hilbert-style program2S,

PCSs just are the

GODEL*S SECOND INCCMPLETENESS

that they
objects in
intended

their meaning.

axiom schemata

non-finitely axicmatized theories

finite number of rules which

P4

of axioms."
in accord with the view of

of

secured producers

to the epistemclogical motives

Recursiveness is only
required finite

theorenms.

A PCS consists of an finite alphabet An

strings of An (designated 'axioms')

rules written in the lan-
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obtained by applying the rules any finite number of tinmes.
These are all the theorems.

As Jeroslow remarks and shows, PCSs are the language of
inductive definitions par excellence. We shall stipulate

that mnemonic abbreviations such as 'vbl', '"Tm?, etc. are to

count as single syabols.

Axioms: N1
Tmf&161
TREE1E11(v1)
Production rules: N - Nxl
Noe - Vblva
Teféa & - TmfEx16P
Tafsax&B(Y) — Tmf&Sx& Bl1(y,v1)
Vbly -~ Tmo
Tnd,Tnd,Tny,8,6 - Tmy,6,¢

Tm$,Tn6,Tmy, 8) = Tmy,0)

This PCS (which is given on p. U4 of [Jer2]) represents
the characterization of terms in a formal systen. With a
little attention to detail, as regards, for instance, the
necessity of the last rule, the ordinary inductive specifi-
cations in standard logic texts can be translated to a PCS.

As Jeroslow points out scme metanotions get a little hairy -

free occurence of a variable in a formula being particularly
hirsute. To every PCS, F, there corresponds a PCS, Bw(F),
vhich generates all valid production sequences of F.
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Having given a wuniform method of presenting formal
systeams, via Post Canonical Systens, Jeroslow builds a
theory to directly "encode"™ the syntax of PCSs. There are a
nunber of ways to do this: perhaps the clearest is 1in
[Jer2]. A formal theory T 1is characterised that meets the

folloving conditions:

P1: |6 and | o iff L O A g
P2: If | 6 (x) then (t) for every term t.
P3: If } 8 and - 8D¢ then | o .

P4z | © (x) iff |} Yx 6 (x).

Furthermore, there are a function symbol * ({for concatena-
tion), distinguished constant A\ (for the empty string), anrd
axioms such that various facts of concatenation theory are
provable. The noticn of an atom is defined:
VuVv{x=u*vA v 2D v =2x) A x#\ = At(x).

A mapping from an arbitrary PCS to T is defined by a
choice of closed terms of T, provably distinct atoms, to
serve as the images {("names") of the letters in the alpha-
bet, An, of PCS F. This induces a map from the words of F
(i.e. strings of letters from An or string variables) to
terms of T; each ai in An is replaced by the appropriate
term (provable atom), and a string variable by a free varia-
ble of T (same for same, different fcr differeht), placing

an * between symbols. This map is denoted by *—°'. For
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example, ate = a * v * e and bocPoeg = b * x * ¢ * 7y * x * ©
* g,

For © a formula of T, ExtF(9) says that {x: 06(x)}
extends the set of theorems of F. ExtF(®) is easily defina-
ble in T - in fact by a universal fcrmula. 8(x) is a K-de-

scription ('K*' for 'Kreisel?') of PCS F if

(@): O (g,) for i = 1,...,s, where the p; are the
axioms of F.

(B): F8m) A ... A O(F)> 6G) for each produc-
tion of F.

(y): If (¢) and (B) hold for ¢, then Fo(x) oDelx).

Trivially any two K-descriptions are provatly egquaivalent.
Instead of (y) one can have ExtF(g) o ( 0 (x) o pix)). An

important immediate fact is that if 6 is a K-description of

F and u a theorem of F, then |6(g): the proof uses P1-P4.
{This is Jeroslow's Proposition 4.) It is also immediate
that if 6 is a K-description of F in T then it is a K-de-
scription of F in any theory T' in the language of T that
extends T.

Jeroslow then introduces a specific extension of T,

which he dubs the quantifier theory of concatenation; I will

call it QT. QT comsists of the following axioms:
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QT1) x * ) =) * x = x & (x *y = xV y* x=x Dy =1)

& (x * y) A DX = A& Y =N ).

QT2) (x * y) * z = x * (y * 2z)

QT3) x * y = x *# zD y =2z & (u* v=¢t % s> Jy(vs=y
* s Vs =y*yvw)).

QI4) x *¥# y = u *v & At(y) € At(v) o X =u & y = v.

QT5) x# 3 Ddudv (x = u * v & At (v))

(QT1-QT5 vwere the axioms of T.) For every formula ¢(x)

QT7) (A & Vx(o(x) D Yv(At(v)D @ (x * v))) D Yx¢(x)

h is a unary function symbol.

QT8) At(x) V x = A D At(h{x))

QT9) At (x) & At(y) @ (h{x) = h(y) —x = y)

For any n one can obtain n provably distinct atoms by

a = h(r), a1 = h(dy;) 1<i<n

(3xcy) o(x) = Judv Ax(y = u*x*v A @ (x))
(Vx cy) o(x) = VYaVv Vx(y = u*x*v O ¢ (x))
e"n(x) = {(Vycx)(At(y) D y=‘aiv...v Yy = ) AN x#A

Jeroslow thea wuses An to denote either the alphabet
{al,...,an} or the PCS whose axioms are those letters and
whose production rules are « - wai, for 1 = 1,...,n. (QT7)

is used to prove that Gn(x) is a K-descripticn of An in QT.
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Jeroslow proceeds to ccnstruct a natural definition of
~an arbitrary PCS in QT. Since QT is the appropriate lan-
guage for formalizing directly descriptions cf PCSs, this is
relatively straightforward, though cumbersone.

First with each PCS F is associated a PCS Bw({F) as
described above. The only detail of importance is that 'D?
is used as a delimiter in the sequences representing deriva-
tions. The following 1is the definition of a natural
description of Bw (F) ([Jer2], p. 19)

We suppose that F is 1in the alphabet A,=
{a, yo+-.43n}; let a,, be called D ... and let a,,,
be called the letter A ....

At this point in the discussion, we desire to
demonstrate a method for obtaining ... a K-de-
scription of F.... our route toward this end
involves first obtaining a natural description in
the free variable system of a PCS PF' associated
with F; F' is in fact a PCS which generates those
strings which can be understood as proofs in F.

«e. the axioms of F' are the strings DDM:DD

for i = 1,...,5 and the rules of F* are the fol-
lowing: X —Yoe(4,DD for i = l,e..,S <. plus the
productions

ApWi yeee, Agwn, S DwW DA, DWiDxX3y «.oD Wby, —> o, Du,
Do{zD WaDe&3 « oo DwyDelp, W DD

for every production (+) of F, finally plus those
productions which insure that A, W is generated
precisely if W is a word in the alphabet A ....

) Given a finite set of g terms t, ,.<.,%tq, let
Wig q) 4 (t.) abbreviate the disjunction Qit, v
-V A (Y). Then a natural description F'(x) of
the theorems_of F? is given by the disjunction of
(3y S x) (x = Aa*y N B,(y)) vith the conjunction of

the two formulae, - - =
x:zuxDay»Dav A Qnly) D(u=DV
Gan () A (Vyuvex) (3t s c)fuzt#5xDA (31 n)5=a)))
Ay =5 V(3,5 (v=Drsrtn (L En)5=a:)))
vhere (VYy,u,z, & x) abbreviates (W¥y < x) {Yu £ x)
€ X) ..., together with

Yy, 2w, t¢ X2y 3ZAY=enD%wnDAQn(W)
o2 x)(3((31‘—-$7(w=/7c)v Der(t,w)

where Der is the formula @&j ép)[aw,,...w,.q) ‘.-b)(Bu.-.-Mr(;,)Ql:)Der’
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and Der? is an(wﬂ/\.../\an(wﬂn\/\ t:u.%ﬁ%w.%f)—*m%ur(p*
D Wep D » Uripe A CSQ((-l-)_; Wiy Wty yw)
(and the j-th rule of F has r(j) premises).

It is proved that this natural description is a K-de-
scription of Bw(F) in QT. The induction schema, {QT7), is
needed only in proving (y) for the natural description.
Actually, this much can be proved in a quantifier-free ver-
sion of QT. Finally, let Hx) = (I {Jucy)(F'(y) €y =u
*D*x *xD *D) & é%;x)), vhich is a K-description of F in
QT. Moreover if (3'(x) 1is any K-description of Bw(F) and
Gix is any K-description of F, then FT Ey(! uc y)
(FY) ANy = u*D*x*D*D) A E4x)) > G(x) . And if G'(x) is
a K-description of Bw(F) in T, and # a word in An, then
(o Q' (A) iff 4 a theorem of F' and |--~§ (A) iff M is not
a theoren.

As Jeroslow remarks, arithmetic ingenuity, i.e. use of
the beta-function, 1is needed only in finding K-descriptions
in theories which do not contain QT explicitly - e.g., P.
In particular, it is needed to define * in E ( that is to
produce a comnservative extension cf P containing QT. Jero-
slow notes that the conservative extension is much stronger
than QT. He uses his quantifier-free version to extend
arithmetization to very weak theories (weaker than RA).)

A logic is K-complete if it contains a K-description of
every PCS (Jeroslow shows on p. 29 that various prima facie

weakenings of K-completeness are equivalent to K-ccmplete-
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ness). Jeroslow proves that no finitely axiomatizable
subtheory of P can be K-complete. "In particular, that sub-
theory of P which contains only the existence of the conca-
tenation * and [ QT1-QT5] ..., plus any other finite number
of axioms, is not K-complete. 1Indeed, this latter subtheory
contains the natural descriptions, but these cannot be shown
to be the minimal solution to the inductive clauses of the
relevant PCS. To be sure, the usual encodings are "point-
wise" correct, and hence can be used to obtain the First
Incompleteness Theoren. But they <can hardly be said to
"express™ 1in the 1logic J the PCS which they do in fact
describe."

The technical content c¢f this remark is explicated two
pages hence by the thecrem (J20). The semantic éontent,
involving expressibility in J, 1is best broken into two
points. Firstly, "™pointwise" correct (i.e., numeralwise
correct) but deviant encodings do not express the PCS which
is their extemsion. This point has nothing to do with the
weakness of the logic J. Secondly, and this is Jercslow's
real point, even the natural descriptions are not adegquate
expressions of some arbitrary PCS. Jeroslow puts the point
somewvhat misleadingly; hyphenating '"express" in the logic
J?* would help. What J doesn't have is the power to show
that its natural description is correct - is the minimal
solution to the inductive clauses. This is important, for

in order for some J to establish the Second Theorem, it for-
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malizes a proof of the First Theorem; and thereby has to
talk of provability. We shall scon see the technical cash-
ing in of this intuitive motivation, but an analogy might
serve a purpose here.

Suppose I wish to establish that P cannot prove a cer-
tain sentence and that that sentence says that it is not
provable. I would have to arque, inter alia, that a certain
predicate expresses provability. Moreover, if I were to
theorieze about predicates expressing provability, I would,
as we have seen, not give an extensional account. That is,
the conditions on a predicate, for it to exrpress provabil-
ity, are stricter than co-extensiveness. So, I would in
essence be giving an intensional semantics for a small piece
of discourse. Now what I have just had to {(hypothetically)
do, to establish that P cannot prove a certain sentence and

that that sentence says that it 1is not provable, is just

what J has to do to prove the First Theorem and therelky cer-

tify the Second. It has to contain an intensional semantics
for proof predicates. What Jeroslow is saying is that suf-
ficiently weak Js are "semantically incomplete™ - they can-
not establish that their descriptions are correct, though
they are correct (see also p. 113).

Jeroslow further shows that for K-complete theories
there 1is an invariance over the particular concatenation

function chosen.

-6G-



THEOREM AND INTENSIONALITY IN METAMATHEMATICS

In Jeroslow's approach the natural noticn of K-descrip-
tion corresponds to formalizing the inductive definition of
a derivation in an arbitrary PCS. Since inderendent PCSs can
be used for many syntactic categories, Jeroslow is thus able
to get natural descriptions of number, term, variable, for-
mula, etc., derivatively. (pp. 34-37)

So far, however, none of this has been applied to the
Second Theoren. This comes about through the arithmetiza-
tion of Proposition 4. As I suggested above and show in
more detail in section 10, this move is the semantically
significant one; for it introduces another "layer c¢f lan-
guage"™ that Jeroslow?s machinery (helpfully) keeps separate.
Proposition 4 mentions words p and their images g; in dis-
cussing it (or formalizing it) we (or the formalizing
theory) must have names for then. f is the special name for
T The notion is described in P by a formula, SgTm(x,Yy).,
involving the beta-function. The definiticn yields, where

A(x) is the K-description of PCS An

F Ax) o ( 3y)SpTm(x,y)

:- SPTII(LI',Y) -~y =i‘—

The proof of proposition 4 needed only P1-P3 and the
definition of a K-description. P1-P3 formalize easily (P2
needs a complex substitution operation but it can be done.).

(P1), for example: Thm(x) & Thm(y) < Thm(x * % * y). A
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theory J proves its conjunctivity if it proves the preceding

formula, and similarly, it proves its substitutivity and
deductivity if it proves the arithmetizations of P2 and P3,
In the subtsequent Theorem, {J20), it is well to keep in
mind that we have now advanced from the level of ({our)
remarking on the powers of J to describe an arbitrary PCS,
to the 1level of a theory, J, remarking om its powers to
describe an arbitrary PCS. I quote (J20) in full from

[Jer2], p. 40:

(J20) Let * be a K-complete concatenation in a quanti-
fier logic J, and suppose that F(x) is a K-de-
scription of a PCS F in J. Suprose also that J
proves its conjunctivity, substitutivity, and

deductivity. Let F(%)) be A*vi*B. Then we have

FF{x) D (dy) (& (x) A SpTm(x,y) A Thm(A*y*B)).

Jeroslovw sums up the relation of his results to standard

encodings as followus:

We consider two realms of idealized objects,
the first consisting of all the strings in an
alphabet A, the second of all the non-negative
integers.

We have languages for discussing both realns,
the language of "letter" and "concatenation" for
the £first realn, and "aumber" and "plus"™ and
"times" for the second realm. If instead of using
some name 'a' for a letter a in A of the alphabet
A, we use a as name, and instead of using the name
nconcatenation”" ve use the name *, then true fini-
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tist statements in the first language (the
language for strings) correspond to true finitist
statements in the second language (the 1language
for arithmetic) under the usual interpretation of
a as a number and * as a function of numbers.
Furthermore, this fact of a corresgondence can be
seen finitistically, at least in the case of the
concatenation * discussed in detail above.

This means that, while a and the number desig-
nated by a are distinct entities, as far as knou-
ledge is concerned we shall know as much about one
as about the other, so that there is no harm in
identifying the two entities in all linquistic
situations.

Let us therefore identify the two objects a in
A and the number z designated by the closed term a
Then, given the (finitist) fact of the Chinese
Remainder Theorem, the standard description F (x)
given by (7) of a formal system F corresponds pre-
cisely, word-for-word (modulo the cited Theoren),
to the description of F as consisting of allz2se
those strings one can deduce from the axioms by
repeated use of the production rules. ({[Jer1] p.
15)

When one 1is considering formal systems whose theorems
form an r.e. set, Jeroslow's methods are at least as power-
ful as Feferman's. Adapted to quantifier-free systems, they
actually extend the Godel Second Theorem to systems that are
rather weak. Moreover, by avoiding passage through a theory
of recursive functions, Jeroslow's account serves its
explanatory function better than Feferman's: After all,
there is no need to exrlain the connection between formal
systems and recursiveness if the identification of formal

systems with PCSs is accepted.

- — - D D —— > . - -

26Jeroslow should say "all and only". I discuss the isomor-
phism of the second paragraph on p. 108f. Jeroslow's pas-
sage from talk of truth in paragraph two to "knowledge™ in
paragraph three is also discussed later.
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Chapter 7

PRELIMINAEFY MORALS

In the light of the preceding accounts what can we now
say about the cavils of earlier sections? In additon, what
about the cases that Feferman covers and Jercslow doesn't -
the non-RE-formulas that extend familar theories? As far as
this 1later question goes the Feferman and Jeroslow
approaches actually have ccmplementary insights to contri-
bute.

Feferman's (5.9) tells us that there are extensionally
correct descriptions of the axioms of not unusual sets of
theorems (e.g., the theorems of P) vwhose correspcnding con-
sistency sentences (corresponding, of course, to the
description) are provable. If one wishes to phrase the
Second Theorem in terms of formal systems then formal sys-
tems are going to have to be individuated more narrowly.
After all the same object can hardly both prove and not
prove its own consistency. If the rigorous technical
accounts of Feferman and Jeroslow show that the property 2z,
mentioned at the beginning of section 3, 1is 1indeed a
respectable mentionable, then this application of Leibniz?

Lav is surely one to which no objection can be taken. More-
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over, Ltoth the F-account and the J-account supply us with
the appropriate intensional objects - the formulas t on the
one hand and PCSs on the other.

This does not yet settle the question of whether (8) 1is
true. Can some formal systems prove their cwn consistency?
This could be answered by answering 'Do non R.E. t's repre-
sent formal systems?' in the negative. One is then saddled
with supporting this answer. On the J-approach, the truth
of (8) 4is built in; and built in yia the identification of
PCSs with formal systenms. We thus have two, intimately
related Church-type Theses. They have 1in common the claim
that some descriptions do not describe formal systens,
irrespective of the recursion-theoretic character of the set
of theorems picked out. As I have argued before {(pp. 16-17)
stipulating such a claim, in the interest cf being able to
state the Seccnd Theorem clearly and cleanly (e.gd., as (8)).,
is not an option.

0f course, the distinction between RE- and non-RE-formu-
las is not ad hoc; what is missing is the connection between
RE-formulas and our conception of a formal systen.

What does a formula like o* say? Let A* be the formal
system thata* describes, and A the formal system that
describes. x is an axiom of A* just in case x is an axionm
of A and the set of all axicms of A {with godel number) less
than or equal to x forms a consistent theory. There is a

sense in which g* describes a subsystem of A, for A* is con-
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sistent regardless of A's consistency. But why is A* not a
formal system? One might suspect the notion of formal rules
of proof conflict with non-REness. As we shall shortly see,
the culprit is the unbounded universal quantifier in the
consistency clause of of the definition of o*. (The pres-
ence of this quantifier also blocks a formal derivation of
an undecidable formula on hypothsis of Cona*.)

Consider the task of checking whether an arbitrary
object, x, is an axiom of Ax, To show that x is an axion,
infinitely many statements are needeqd: 1 is not the godel
nunber of a proof of a contradiction from axioms <x, 2 is
not the godel number of a proof of a contradiction fron
axioms <x, .... Such a procedure violates our conception of
a formal system, 1involving as it does non-effectively given
conditions axiomhood and hence proofhood. This spells out
the informal consideration that the extension of g* is fixed
as the extension of o only on hypothesis of consistency -
which hypothesis is not effectively verifiable.

We can construct an interesting puzzle about deviant formal
systems such as the ones introduced by Feferman. Consider
P. Take a non-deviant consistency sentence for P, ConP and
let p,= P U ConP, and in general, R, = P, U ConPp,. Let B,

= UP Clearly P, is consistent - if not the proof of the

no
contradiction would be in scme P,. But then some P,would be
inconsistent and each P,is consistent. Moreover, P, 'knows

that" The above reasoning is elementary and P, can prove the
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consistency of each B, . Why doesan't this show that P, can
prove its own coasistency?

The answer is that Pw 1is not a formal system (on the
conception of a formal system that we have Leen examining)
and so that it is self-"provably" consistent is, as above,
not surprising. This is to take P, as given by its mode of
presentation above - and of course that mode guarantees its
consistency27?,

There is a slight sleight-of-hand in the presentation of
this brain teaser. Each theory along the way results from
the addition of an axiom, ConE, to the previous theory and
closure under rules of proof. The P, are axiom sets and P,
the associated theory. P, is the union of all the axionms
sets P, and P, is its associated theory. P, is nct given as
the union of the P, - that's a different puzzle. (Techni-
cally, of course, the problem is that of another universal
quantifier, occuring in the description of B,. Let «, num-
erate P in P, <, RE. o fX) = ecn(x) V x = Cong, . X, X)
'Elnot,‘(x). What our above argument shows is Vn\E;an«“ and
hence Vn Iz Cony, . It then takes a dubious step to get
kg, Cong,,; namely to | VnCony, and Iy V¥ nCony, €% Cony,.)

In fact what the provable statement amounts to is that

every stage is consistent. This 1is analagous to the situa-

—— D D - D S - -

27Feferman has shown that there is an RE-formula whose
extension is P, . Of course the consistency sentence
formed from it is not provable in P,.
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tion with reflexive theories, the theories for which
Feferman proves (5.9) (5.9)28,

The above are some of the ways in which the work of
Feferman and Jeroslow illuminate the nature of the deviant
predicates and supply the individuation conditions needed to
quarantine then, The theses associated with each account
have received support as correct explications of the notion
of a formal systen. In a subsequent section I will have
much to say about what this =shows about the nature of these
accounts, when applied to the problems first raised in sec-
tions 2. and 3. As inevitable as I think the journey to my
views in section 10 is, there are some who disagree. Fefer-
man seems, implicitly, to demur (see p. 56); but the only

explicit disagreement is taken up in the next section.

28Feferman's paper on transfinite recursive progressions is
the serious working out of the idea behind this anecdotal
systen. The idea goes back to [Turing]. The intensional
correctness of the proof predicate is foundationally
important here; the idea is to achieve epistemologically
secure extensions of standard formal systems. This is
done by having the reflection principles express the
soundness of each system cn the way up. This is another
instance where "express™ is to be taken seriously in order
for technical results to have philosophical (in this case,
foundational) interest.
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Chapter 8

QTHER VIEWS

Very little has appeared in the philosophical literature
concerning the recalcitrance of the Second Theoren.
Kreisel's hybrid pieces are extremely important, but the
only article specifically on this topic has been Michael D.
Resnik®*s "0On the Philosophical Significance of Consistency
Proofs" [JPL 3 (1974) pp. 133-147].

Resnik first relates the 1importance of consistency
proofs to Hilktert's program - in particular the demand for
finitistic consisteacy proofs. He then seeks to explain the
relevance of the Gddel results to this demand. He claims
that the First Theorem does not bear much on the progranm.
This is because the G6del sentence is an ideal sentence??,
Resnik takes the content of the First Theorem to be that
certain formal systems are incomplete and hence cannot prove
all truths. But, says Resnik, it was no part of the Hilbert
program that they should - just the truths expressed by real

sentences. A version of Godel?s First Theorem can be

- D > — - ——— - - -

29see Hilbert®'s "On the Infinite™ in [P-B], especially pp.
143-149.

30¢Can be' since, in order to obtain a simple A, only par-
ticular constructions of Pr will do. That Pr(A) — A is
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proved?®0% according to which Pr(A) - A is unprovable for a
particular universal A. The purpose of a formal system for
Hilbert was to allowvw manipulation of ideal sentences to
facilitate the proof of real sentences. Since Peano
arithmetic contains at least finitist reasoning, Pr(d) - A&
is not established finitistically.

Resnik would reply, on Hilbert's bahalf, that A is not
real; its schematic version is. (The schematic versicn of A
is just A with its quantifiers dropped.) A schematic sen-
tence counts as provable if each instance of it is provable
in the ordinary way. And that each instance of this sche-
matic formula i3 so provable is itself finitistically prova-
ble. (Since wa are establishing r[rrovability we may assume
consistency.) This reply on Hilbert's behalf only shifts
him from one horn of a dilemma to another. Because of
w-incompleteness the First Theorem also dooms the schematic
interpretation as inadequate, as we shall now see.

Horn one is the observation that for some sentences A,
Pr(A) - A cannot be established finitistically. Replying
that those A's don't matter because their schematic versions
are adequate replacements for them is futile; they aren't.
This is revealed by the phenomenon of w-incompleteness (the

existence of unprovable universals of which every numeral

- G s A e S an NS D e S an > En e -

provable iff A is, a strengthening of this version of G1,
is really a version of G2; requiring that Pr be non-devi-
ant.

-79-



THEOREM AND INTENSIONALITY IN METAMATHEMATICS

instance is provable). This is a First Theorem result. And
this does not just show that a universal and its schematic
version don't mean the same thing, but also that one cannot
replace the other in a provability context, salvae veritate.

So Resnik®s attempt to minimize the relevance of the
First Theoren to Hilbert's Program founders. Resnik is
right to point out that the non-formalizability of
arithmetic truth doesn't doom the Hilbert program; but the
limits on the formalization of (finitist) proof do.

However, once the First Theorem 1is taken into account,
then the Second Theorem does become relevant to the Hilbert
program in a number of ways. For, without the fact of the
First Theorem in view, a Hilbert-type program could concen-
trate on a few formalisms which held hope of codifying
mathematical practice. Since, for each such we can con-
struct a patently correct proof predicate, the above remarks
apply:; that is, we get an A of the right form. The initial
involvement of the Second Theorem is not in its statenent,
but in the techniques developed in order to state it. For,
given essential undecidability, a Hilbert-type program would
adopt and comsider a large range of formalisms. And the
argument above, concerning Pr(A)—> A, although a version of
the First Theorem, then requires intensionally correct prov-
ability predicates for a wide range of formal systems. Then
the Gddel vresults entail that if Pr is correct then it is

not self-provably correct. So each modification of proof
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leads to a proper extension. (This is the idea behind
ordinal logics, via reflection principles. To paraphrase
Kreisel: If a formal system formalizes finitist proof then
it doesn't know it. For then Pr(A)—> A is true, but, for
some A, not provable, In fact it is provable in arithmetic
that Pr(A)—> A is provable iff A is provable. So Pr{A)— A
represents +the truth that the formalism doesn't "know".
This result is taken up in more detail in the secticn on the
modal interpretation.)

The techniques of the Second Theorem thus make it rele-
vant to a Hilkert-type program, though not in the way Resnik
wished to argue. He goes on and wants to conclude that the
Second Theorem tells us that there is no answer to a certain
kind of sceptic (one who demands that the consistency proof
aspect of Hilbert's program be carried out). Feferman'’s
work is introduced as a possible counter to this. First,
hovever, Resnik introduces the provability-of-every-instance
deviant consistency sentence (see p. 38), <shows it to be
provable, and correctly points out that it is not intui-
tively a consistency sentence, He concludes: "[T ]Jhe very
weakness of this sense of consistency casts doubt upon Hil-
bert?'s suggestion that schemata can be used as approxima-
tions to unbounded universal quantification."™ But this is,
of course, an insight to be garnered from the First Theoren;
once again defeating Resnik's denigration of it as irrele-

vant to the Hilbert Progranm.
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Resnik then quotes Feferman's (5.9) as the possible
reply to skepticisnm. He rightly shoots this down, as the
deviant consistency sentence doesn't express consistency -
actually doesn't express consistency independently of the
consistency of the formalism involved31,

What I find puzzling about Resnik's piece, apart from
his remarks on the First theoren, are the morals he draws.
He says: "Perhaps the conditions on the axiom predicates
must be given in terms of their syntactic form or their
intensions. The latter alternative is repelleat nct only
because it is vague but also because it introduces inten-
sionality into mathematics.™ I find this a particularly
confusing (or confused) passage, for the following reasons:

As stated by Resnik, the latter alternative is vague;
but surely such vagueness is not an intriansic feature of the
project of giving conditions on axicm predicates. I will
later argue that the Feferman and Jeroslow accounts are in
fact semantic accounts - and vagueness is certainly not a
fault of either of these accounts. Resnik?s second reason
for finding the latter alternative repellent reflects a mere

unargued prejudice. More vitally, I am confused by the

- - - — - -

317f the system is inconsistent the deviant consistency sen-
tence says that a certain finite subsystem 1is consistent
(and by reflexivity this is quaranteed provable). So to
show that the consistency" sentence is a consistency sen-
tence of the intended theory, one would have to prove con-
sistency. Of course, this is sufficient to disqualify it
as an answer to the skeptic.
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dichotomy he presents. There are legitimate questions as to
what the correct syntactic theory will be so as to allow a
correct and adeguate semantics - but these hardly creates

Resnik's mysterious dichotcmy.

The predicates will hardly be proof predicates (or
any such kind of predicates) without interpretaticn; and
interpretations run off syntactic representations32, It
also is instructive that, for the case of procof predicates,
ve shall have an intensional semantics whose entities are
themselves syntactic objects. So I can find no sense in
Resnik?s objection. I vill return to the methodological
issues to be confronted here after outlining yet another

principled treatment of provability.

32perhaps this point is not familar phrased this way, but it
is exemplified even at the level of propositional calcu-
lus. Let a conjunction be the string formed by placing an
& between sentences, a disjunction the string formed by
placing a V between sentences. Such strings are thenm-
selves sentences. Now a disunction {conjunction) is true
if either (both) part(s) is (are) true. lLet A, B, and C
stand for sentences. Then AEBVC is a sentence. Let C be
true and A and B false. Then by the semantic rule for
disjunction AEBYVC is true if AEB is true or C 1is true.
Since C is true, AEBVC is true. By the rule for conjunc-
tion AEBVC is true if A is true and BVC is true; they
aren't so A§BVC is false. Thus do semantic theories run
off syntax - bad syntax, bad semantics. (I owe this kind
of example to Harold Levin, vwho puts it tc more sorphisti-
cated uses.)
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Chapter 9

THE MOLAL TREATMENT

There is another technical solution to the phenomena
surrounding the Second Theorem, which it will be useful to
add to our repertoire, Historically, it originates from a
paper of GAdel's [ "An Interpretation of Intuitiomistic Sen-

tential Calculus", Ergebnisse eines Mathematischen Kollogui-

ums, IV, p 39 (1931) ], the derivibility conditions of Hil-
bert-Bernays, the work of Lob and recent work in modal
logics. The Godel paper supplies an interpretation of Heyt-
ing's sentential calculus "by means of the cocncepts cf ordi-
nary sentential calculus and of the concept "p is demonstra-
ble"." An ordinary sentential calculus is supplemented by

an operator B and the axioms33:

(33) Bp—>p
(36) Bp — (B(p—>q) — Bq)
{(37) Bp —»BBp

and the rule of inference: BA can be inferred from A. Call

this system S4 (because it is). Gdédel warns us than one

- S T D - - >

33The B stands for Box, o, which I will also use.
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cannot interpret B as "demonstrable in a definite formal
systen.” For if the formal system contains arithmetic,
then, since B{Bp—>p), E({0 # 0) —>» 0 # 0 would be a theorem
and, so would -B(0 # 0), contradicting the Second Theoren.
Is there a notion of demonstrable answering to S4? The
axioms seem true to conception of demonstrability. If p is
demonstrable then there is a demonstration of p and exhibit-
ing that 1is a demonstration of the demonstrability of p.
This validation of (37) trades on our feeling that demon-
strations, or proofs, are ultimately recognizable as such.
We certainly respect this intuition in formalization.

The rule of necessitation seems plausible on similar
grounds - but note that it hauls the strength of S48 into
vhatever system B is being used to describe. And this is a
culpable move. For while Bp—> p is true and a theorem of
S4, wve should not expect the system S4 is describing, the
B-system, to be able to prove each instance of Bp — p just
because S4 can prove Bp-—» p3¢, Is the problem just the
application of necessitation to (35)? If so, the systen
attained by taking the théorens of the system whose modal
axioms are (36) and (37) with the rule A/EA, adding every
instance of {35), and closing under modus ponens, should be

a candidate for truths about formal provability.

34Kreisel, in Ord. LOJe..., constructs a system obeying
axioms (35)-(37).

-85~



THEOREM AND INTENSIONALITY IN METAMATEEMATICS

Consider the Lob axion.

(38) B(BA—> i) —>BA

Note that if (38) is added to the original system, a rather
undesirable system results. However, (38) 1is true for the
interpretation of B as fc¢rmally provable. If we take (36),
{37) and A/BA, then in that system BA-» A/A is a derived
rule. Moreover, when we consider an actual theory, e.g. P,
and a provability predicate, such as Bew, for P, then
lpBew(Gf) —» A only if A is a theoren. These results can
be summarized and made precise as follows. (see [ Boolos]
for details)
Let G be a modal propositional calculus whose axicms are
all the tautologies, all sentences of the form B(A—A')—»
{(BA—> BA'), and all sentences of the form (38). The rules
are modus pomens and necessitation (A/BA). (The primitives
are —» , B, and L, see [Boolos], chap. 1.) BA~>A is not a
theorem of G. Let G* be a modal propositional calculus
whose axioms are the theorems of G, each instance of Bp—>» p,
and which is closed under modus ponens.

A realization is a function that assigns to each sen-

tence letter a sentence of the language of P. The transla-

tion A¢ of a sentence A under a realization @ is defined

i) % = pp)
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i]_) .Loz.l..
iii) a=>8? = - 8%

iv) (88)? = Bew(N?")

where * " 7' gdenotes the G&del numeral function.

It turns out that G not only has nice properties as a
modal logic with a Kripke semantics {complete and decidable)
but also the property that rz A iff b Aw, for every reali-
zation ¢. It is in this sense that G contains all the prov-
able {in P) facts about provability in P. As uWe saw, it
does leave out some facts - viz, all the theorems of G* that
are not theorems of G. (It also leaves out facts that are
intrinsically quantificational in nature. I shall return to
this point.)

Our deviant provability predicates are ones which fail
to satisfy (36), (37) and necessitation. If B(y) is a prov-
ability predicate then D (y) = B(y) &y 7# % =1 is not
(violating (36) though satisfying (37)).

Our previous accounts of the deficiencies of the deviant
predicates relied on our seeing their deviance from a stan-
dard notion of a formal systen. One deviant consistency
sentence, e.gd., asserted the consistency of a trivially con-
sistent subsystem - which given consistency, 1is coextensive
with the intended systen. _Alternatively we pointed to the
non-effective nature of the implicit rules of proof - that
is, ve took seriously the description of the formal system
as intrinsic to its formality. Now we have another method.

-87-



THEOREM AND INTENSICNALITY IN METAMATHEMATICS

Our deviant consistency sentences had the presumptively
undesirable property of viclating the Second Theoren. But
the Second Theorem 1is arguably not an intuitively apparent
property of provability (and expressibility). The condi-
tions on a provability predicate are. We have indicated
good reasons for their truth3s, The system G*, constructed
above, has the property of reporting all truths of provabil-
ity in P (though only modulo the notion of translation
defined above). G* is not closed under necessitation.

Since G (and G*) are decidable, these completeness
theorems allow us to easily obtain many nmetamathematical

results about P. One of particular interest for our subse-

- —— - —— - - A > - -—

33This may be a little cavalier with respect to the truth of
Bp —BBp. Roughly speaking, troubles arise for it if we
consider an informal notion of frroof and the problem of
surveyability. That is, proofs sc long that it is impos-
sible to comprehend then. And there are after all arbi-
trarily long proofs. Now I think such examples, 1if set
out in detail, trade on conflating "seeing"™ a froof, 1in
some holistic way, and verifying it. And since we are
talking of formal provability, we are conceiving of proofs
each of whose steps are verifiable. If we have a formal
proof, howver long, then it is elementary to certify it as
a proof.

What often comes to mind in this context 1is the problenm
of verifying a proof procedure, or a descripticn of a
method for generating a proof. Here, certain results in
computation theory are relevant. It 1is known that there
is no program that will verify the correctness of a pro-
gram, since that would be to solve the halting problen.
More fine-grained results concern the complexity of (non-
universal) program-checkers. A recent case in point is
the solution of the four-color theorem (nee conjecture).
Someone comnmitted to some version of the a prigricity of
mathematical knowledge would locate the proof in the veri-
fication that the program for searching the cases is cor-
rect. :
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quent discussion is the DeJdongh-Sambin Theorem. Let A(p) be
a sentence of G modalized in p. Then there is a sentence H,
not containing p (but possibly containing the other letters
of A) such thatFi€¥ A{(H) and |z B(p«>A(p))—> B{p+> H).

Consider -~Bp, a sentence of G modalized in p. We know,
by the fixed point theorem, that there is a sentence S, such
that kg S&» <Bew( 57). This is equivalent to B(p‘—‘h"Bp)?
being true for @(p) = S. If A is any sentence modalized in
p and there exists an S such that B(pe A)‘P is true when ¢@(p)
= S, then S is said to be a fixed point for A. The
DeJongh~Sambin Theorem tells us that every sentence modal-
ized in p has a fixed pcint and that all fixed points of A
are equivalent. Moreover there is a deictic fixed point.
Deictic sentences of arithmetic are the tramslations of the
letterless ones of G. The truth-values of such deictic sen-
tences are effectively calculable, and whether or not a
deictic sentence is provable is decidable, =so that there is
a decision procedure for the provability of these fixed
points. For instance, a Godel sentence is provable Jjust in
case ~Bew(T) is provable, i.e., Jjust in case arithmetic is
inconsistent.

These are the essential facts that we shall need con-
cerning the modal interpretation. However, certain possible
confusions should be forestalled. There is a purely formal
sense in which these results about G represent a reduction

from grade 2 to grade 1 modal involvement, via the transla-
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tion mapping. [ Montague] is thought to have shown this
impossible. Buat GQ does not have all the "mcdal" properties
that Montague requires; in particular ~ bp (B(p) = pfy, for
some S, @P(p) = S. Montague understresses an important con-
dition if his theorem is to bear an interesting interpreta-
tion. The elementary thecry, T, has to be adequate for ele-
mentary arithmetic (vhich he says) and *T7* is to be
interpreted as an elementary arithmetic function. Alterna-
tively: T is to be adegquate for elementary syntax and 'F7?
is a function symbol (i.e. has the semantics of a function)
with the appropriate metatheorens. That is, if we godel
number, then *F?* is our name for a certain definable func-
tion of arithmetic; if we directly formalize into some rich
enough concatenation theory then 'r7 ' has be a functional
term. Why? Well, loosely put, the characterization cf 'f1?
as a primitive might be given a semantics with no corres-
ponding deductive power. More precisely, 'the denotation of

g1

A is A' 1is a schema of the metalanguage laid down as the
semantics for M7, not as a meta-theorem arising from a
syntactic characterization. If this is done then the theory
will not be able to prove certain concatenation theoretic
facts involving sentences containing ‘f1', But the seman-

tics will supply correct truth-values.

A vwvorking out of this idea has been presented by

3sskyrms' account was given as a paper at UNC-Chapel Hill.
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Skyrms3%, though not, I think, in service of my point. I
synopsize: Let Lo be a language wih a model theory. Two
theories are derived from L,: L, which is 1, closed under
truth functions and modal operators; and L. , which is
defined metalinguistically, in a uniform way, from L,
(including a model theory). Each sentence of L, is assigned
a sentence of Ly. The set of sentences of L, whose L -cor-
relates are true in all nmodels of L, is the odel theory

induced by Lo.. Mimimal assumptions about L, and its models:
Each model assigns denotations to pieces of L, and all sen-
tences are assigned 1 or 0. L. contains PC and séntences
are finite. Ly gets the obvious definition. Lw is defined
as the union of the L,, vhere the sentences of L,,, are the
smallest set such that i) *(C(S) is a sentence of Lg,, , 1if S
is a sentence of L,. ii) truth functional closure. C: Ly
"Lw is such that i) S has no modalities —>C(s) = 5, ii) S is
oR —» C{S) = *Q(C(R)), and iii) conmnmutes with truth func-
tions.

The interest comes in the construction of models for L.
Note that the construction of Lw is overly cumbersonme. It
could have been defined just like L,, with *Q behaving like

o. So it must be the model theory that makes this interest-

ing.

- — P D - e D > - - > > -

My synopsis is as accurate as memory permits.
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Models are given by denotation functions f£,. The model
for Lay + £n,, » is the smallest extension, £, of £,, such
that i) £(Q(s)) = s, ii) £(*x) = 1 iff X = Q{s) and £,(S) =
1 for all £,, and iii) truth functions. The model of L 1is
the union of the £ . It is vital to note that the interpre-
tation of Q is not as a function. Q's interpretation is
given metalinguistically piecemeal, so that the (Q(S) are
really constant terms.

To make this clear consider an alternative ccanstruction
to Skyrms'.  Add to the category of terms of Lo, Qo sq,sece
and a "predicate" ¥, If S is a sentence of I,, S is a sen-
tence of L . For all i, *g; 1is a sentence of Lu. Close
under truth functions. Let S,, Sz,... be an enumeration of
the sentences of Lu. Let Q(n) = the first g not occurring
in (S, yeseeSn}. If S 7 *q , £(S) = £ (S). £(g) = Sq'q *
f(*q,) = 1 iff £f£{q) = 1 for all f.

This is only a notational variant of Skyrms?! construc-
tion, but it makes clear that Skyrms® Q is not a function
term; ny metalinguistic Q is. Skyrms uses this to clarify
Montague?s theoren. For, *Q satisfies all of Montague's
modal laws, yet L 1is clearly consistent. It is not a
counterexample to Montague, because, as I have tried to
emphasize, Q' is not a predicate, and so cannot be diago-
nalized.

There are a number of ways to enrich the Skyrms schenme

to yield probleas. Whatever the original domain, Skyrms
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introduces new¥ entities, namely the sentences, which obey no
lavs, We may either relate these sentences to the regular
domain, or introduce a theory of sentences directly. If the
old domain contains numbers, and we relate the sentences and
the numbers by godelization, and the base theory is adequate
for elementary syntax, then vé've got Montague. What about
the other way?

If ve think of applying Skyrms' ccnstructiom, and if the
quotation device is to be an adequate reflection of gquota-
tion in English, then surely we can ask a little more out of
it. But if we add enough, we will be able to "nora", to
diagonalize, and we'll have Montague's theorem again.

The moral is that G {and G*) have nothing to do with the
logic of necessity. This is why the existence cf a Kripke
semantics for G is less interesting philosophically, for our
immediate concerns (except insofar as it yields a decision
procedure), than the Solovay ccmpleteness theoren. For G
the Kripke modeling is (at fpresent) a purely formal charac-
terization theorem, whereas its completenmess in G 1is a con-
pleteness result37, This 1is parallel to the situatiom in
the logic of necessity. Characterization theorems, using

topological methods, existed for variocus modal systems. The

- D A GRS D D - - -

37T am marking a distinction here that isn't always made,
and am appropriating the word ?completeness?. The reader
may regard the completeness/characterization distinction
as my own coinage, for the duraticn of this section.
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Kripke modelling can count as a response to Quinean doubts
insofar as it formalizes cur informal Leibnizian notion.
Because of 1its relation to the intuitive semantics I have
dubbed the Kripke results 'completeness results’'; and the
topological models *'characterization theorems?. The advent
of Kripke semantics didam't wundercut later Quimean scruples,
but, because possible world models are the natural models
for modal logic, they helped clarify what the issues were.
Quine and Kripke have been clear on this (at least lately,
see, e.g., "Worlds Avay"). But Leibnizian intuitions have
nothing to do with G. G is interesting because of the Solo-
vay completeness result, not the Kripke style.

Lastly, it should be pointed out that although G is
"completely true" to Bew it doesn't follow that G uniguely
characterizes Bew. Are there other predicates of arithmetic

that make G true? Yes. Let Sent be a predicate of P that
4

defines sentencehood. Let (.1.)w =1, (A —*B)‘? = Aqﬁ E, (BA)
= Sent {( ﬁ*’), and éq = @(p), vhere @ is an assignment of
sentences of P to letters of G. Thus the image of A undery

is just like the image of A under @, with Bew replaced by

Sent. It is trivial thaty takes theorems (of G) to
theorems (of P).

What about the converse? 1Is G complete for Sent? Well,

s Sent ( "7 ). But -~ |zBl, since -l Bew{™'), and mere

1-consistency insures that.
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Consider two tramslations, the Bew one, and another.

Suppose g Aﬂt'—,k‘pand Yz s -—5i;519 and suppose that the image
of A is a theorem ( t3 ﬁ and the image of S is not (~v Sq).
Can A = S? Clearly not.

But let ¢ and Y be as above. The biconditonal is Solo-
vay's completenss theoren. If A vere the formalization of
the inference from 1-consistency to the unprovability of
Bew (17) (i.e. 1-CON —> -~BewBew({"7)); and if s¥ =
1-CON-» ~SentSent(M1"); then we would seem to have a prob-
len. For, AQ is a theoren, s¥ isn't but it looks as though
their preimages are identical. Of course the answer is that
there is no preimage; there is no letterless sentence of G
vhose translates are as reguired. The arithmetization of
1-consistency is not a deictic sentence. It, and w-consis-
tency, require quanfificational structure.

Let iy be CON— -Bew-Bevw(".'). This is the formalization

of the Second Incompletenss Result. so a® is provable.

Since A¢

is really -~Bew("L') — —Bew-~Bew ("), Su>should be
~Sent {"L7) = ~Sent~Sent (fL7) ,wikhis clearly provable. And,

S. In general, given a letterless sentence of

]

patently, A
G and a predicate of arithmetic, call it Pred, that is "true
to G" (i.e. G is sound for it), then if the Bew-tramslate is
provable so is the'Pred-translate (conversely if G is com-
plete for Pred).

The above leaves open the question as to whether there

is a predicate of arithmetic for which G is sound and conm-
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plete and not Bew. More precisely, does there exist a
predicate, Pred, such that Pred-tramnslaticn from G to P pre-

serves theoremhood and (45) (or (46) or {(47))

(45) -~ (Bewe» Pred)
(46) -~ + Bewés~Pred

(47) —-{Bew Pred)

is true? Even for (47) the answer is yes. Let Pred(x) =
Bew({x) V -Sent{x). (47) holds, since P can verify that
non-sentences are not provable. Soundness and completeness
hold for <G, Pred> for the same reasons they hold for <G,
Bew>. Any term occurring in a Pred-translate as argument to
Pred is a tera denoting a sentence - hence Bew(t) and Bew(t)
V ~Sent(t) will have the same truth-value and provatly so.
So every Pred-translate has a corresponding, co-provable,
Bew-translate.

This only shows that we asked the wrong question. Let
us restrict Pred's extensicn to sentences. The proof predi-
cate for some consistent3® extension of P, say P with the
godel sentence as an additional axiom, will be Jjust like
Bew. This predicate is not coextensive with Bew, though not

provably not coextensive. To show some extension not coex-

38Tf not consistent, then Pred is Sent and <G, Sent> is not
complete.
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‘tensive with Bev requires showing scmething not a theorem of
P, and P cannot do that. Obviously this generalizes to
Bew( A= 7).

A moment's reflection will reveal that this ncon-categor-
icity is not only not surprising but desirable. The intent
of G, and G*, is a codification of certain general facts
about provability - but not enough to fix the reference.
This generality 1is reflected in the notion of translation
employed above. Since 1931 we know better than to try to
fix such a reference - even on P. As pleasant as P is it
would have cast suspicion on G if it were limited to P. In
this regard it is helpful to see, not just that <G, P> is
sound and complete, but that G be true to a reasonable
notion of provability. This I essayed some pages back. The
project is, of course, more apt for G¥, G being reserved for
vhat is provable about provability.

This Xxind of intuitive, or first-principled, Jjustifica-
tion of G, or G*, can be formalized if we can independently
formalize the notion of a formal systen. This is just the
vaue of the Jeroslov treatment. Jeroslow's constructions
are patently an explication of our (Hilbert®'s) noticn of a
formal system, from which Lob's Theorem is forthcoming.
Since the provability of the translate of the characteristic
axiom of G, in P, 1is the provability of Lob's Theorem, we
have a justification of G. This is analagous to Jjustifying

a somewhat baroque characterization of recursive function by
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showing its egquivalence to a more Bauhaus version. The
strength of this justification depends on just how plausible
and patent the Jeroslovw formalizaticn of fcrmal systems and
their syntax is. I think an examination of it revealed that

it is patently plausible and patent.
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Chapter 10

PROOF THEOEKY AS SEMANTICS

I take it as a piece of received wisdom that mathematics
is the paradigm realm of the extensional. At least I think
many philosophers have believed something that could be put
that way. Furthermore, I take it that asked to defend such
a clainm, one would typically mention two (not unrelated)
facts: The existence, due to Frege/Tarski, of a certain
sort of semantics, and the seeming absence of intensional
contexts in mathematical discourse. It 1is, of course,
necessary to clarify what is meant by the claim that mathe-
matics is the realm of the extensional, and how the two
vaguely indicated facts support the clainm. (It is not hard
to find supporters of the claim. It is implicit in Frege,
and explicit in Russell and Whitehead. See below p. 103)

Before briefly amplifying and clarifying the above, I
would like to make a few observations concerning the process
of "extensionalizing", These observations are not intended
as a precise explication, but rather a sketch of some philo-
sophical folk wisdom. In the course of time many mathemati-
cal theories have been applied to various areas of know-
ledge. Certainly physics, but also population genetics,
information theory, traffic control, economics, metaphysics,
etc., have in some sense been mathematized.
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In some cases of mathematization, extensionalization is
claimed. Set theory is the great extensionalizer - with
discourse, pure or applied, about properties, relations,
functions, etc. being extensionalized. Whatever this is sup-
posed to mean in any precise way, those who claim particular
successes in the extensionalizing fproject are wont to dis-
miss objections that advert to features present in the unre-
duced discourse by claiming those features to Le unimpor-
tant, dispensible, or part amd parcel of the incoherence of
intensionality.

Alternatively, the intensionality may be replaced by a
feature that is equally repugnant to the extensionalist. A
piece of (third-grade) modal discourse is not salvaged for
Quine by the existence of an applied Kripke semantics for
it; such a semantics being committed to dubious entities and
relations. Although the admirable precision and clarity of
mathematization wvas often accompanied by what I have been
calling "extensionalizing"”, the case of Kripke semantics
makes it clear that the clarity of the pure mathematics is
not always inherited by its applicatioms.

What I will show is that the language of metamathematics
is intensional, that the available theories that are applied
to it are adequate and provide an intensional semantics for
it. Construed as semantic theories, these rigorous accounts
are not subject to objections based on commitment to dubious

entities and relations. This is simply because the seman-
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tics, albeit intensional, 1is committed only to syntactic
objects and relations among then. Moreover, there are no
viable extensionalizing alternatives; in the sense in which
the semantical theory of Russell/Smullyan might be thought
to be an alternative to that of Frege/Church. Finally, I
will sketch the comnections that these results have with
philosophy of language. First, the promised clarification.

What are said to be extensional are contexts of a lan-
gJuage. 'Language' here must mean interpreted langquage.
Intensionality is signalled by a failure of extensionality
and extensionality is to be defined in terms of an extension
function from expressions to a domain. Contexts will be
extensional or non-extensional with respect to this exten-
sion function39, These notions cease to be purely formal if
the extension function 1is an adequate extension function -
i.e. actually assigns the denotaticn of names to nanmes,
extensions of predicates to predicates, etc. What this
means, of course, is that we are talking of languages that
we know or are making up.

Failure of extensionality is not a gurarantee of inten-
sionality. *Intensionality® connotes an involvement of

semantic notions such as meaning, analyticity, synonymy and

390 purely syntactically specified language may have a
notion of extensionality associated with it only insofar
as it has, e.g., rules that are interpreted as truth pre-

serving and a symbol interpreted as equality.
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SO On. And, after all, predicates formed from a predicate
and the quotation operator, like ' ' ' has five letters' or
* v ' rhymes with vodka®, are non-extensional but permit of
substitution of co-related expressions; where the relation
in question is neither same extension as nor same meaning
as, nor is it characterized in an intensional vocabulary*©.
Intensional contexts were noted by [Brentano] and
exploited by Frege to serve as data for arguments establish-
ing the tvo-dimensional nature (sense/reference) of a seman-
tics for a natural language. A semantic theory for a par-
ticular language has to be empirically adequate. A semantic
theory that did not allege synonymy when synonymy was
present would be inadequate - if synonymy is thought to be a
pre-theoretic notion of sufficient coherence to be theorized
about. The importance of Frege's use of intemnsicnal con-
texts is that it links the intensional and referential por-
tions of semantic theory. For a semantic theory inadequate
to facts about meaning will also be inadequate to facts

about more respectable notions such as reference and

truthet,

—_— = - — - — . -

40T owe this point to Richard I. Nagel.

¢11 am omitting an important point. The syntax of the lan-
guage plays a large role in intensionality arguments. It
supplies the notions of context, predicate, name, etc.,
wvhich are needed to characterize extensionality. As Rus-
sell/Smullyan shoved, this can be critical.
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This last point deserves some ccomment and comparison to
my earlier remarks on what I labelled Mates' point (p. 18).
In considering a language, we might note that there are cer-
tain meaning based relaticns or properties, say synonymy and
analyticity, that we might incorporate into the semantics.
That is, 1if we thought such properties and relations could
or should be theorized about. Suppose we thought otherwise.
That is, that facts of reference and truth were the coherent
core of our messy pre-theoretic intuitions about meaning.
Then we would seek a semantics based only c¢f such notions.
Meaning would only enter in such translation contexts as
those condoned by Mates; wvhere the relevant facts of the
matter are stipulatory. However, the Fregean point is that
this picture comes a cropper - there is no adequate theory
of reference and truth (let alone of meaning) that ignores
meaning. For, in intensional contexts, the referent of a
phrase is its sense. Metalinguistic contexts are brought
down into the object language by intensional contexts., If
Frege is right we do not have to first independently estab-
lish that synonymy, for example, is a pre-theoretic notion
of sufficient coherence to be theorized about.

Frege, in developing this kind of argument, neglected to
supply a detailed theory of meaning. His purposes centered
on mathematics, for which, he believed, only the referential
portion is needed. Russell and Whitehead ([REW1910], p. 8)

wrote: "[MJathematics is always concerned with extensions
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rather than intensions." This has remained the accepted and
entrenched view.

This view has been surportable on a number of grounds.
The language of mathematics has prima facie fewer kinds of
constructions than the rest of matural 1language. Adverbs
and tense are absent; and, seemingly, intensional contexts.
Moreover, many problems of logical form were solved early
for mathematics - by Frege and Russell, inter alia.

Furthermore, the Hilbert school, along with progress in
recursion theory, produced a well-understood syntactic
theory, seeningly adequate to the intended semantics.
First-order languages emerged as the languages into which to
regiment. Tarski formalized the semantics for first-order
languages, giving what we would now call purely referential
semantics, and the picture was complete.

The picture is that of mathematical discourse regimented
into a first-order language {the syntactic theory) inter-
preted bty a referential semantics (although Tarski himself
might not have put it this way). This is, of course, the
picture as it appears to us. Hilbert, the finitist, had
little interest in the referential semantics. consgicuous
in their absence are semantic notions like sense, synonymy,
analyticity, etc.

The seeds for the breakdown of this picture were planted
by Hilbert himself and germinated by Gddel. Hilbert, by

inviting the formalization of mathematics and by insisting
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that metamathematics is mathematics, established proof
theory as a candidate for the mathematical vocabulary.
G6del showed how it could all be done uithoﬁt expanding the
ontology; he showed how to represent syntax in arithmetic.

Por the First Incompleteness Theorem in the form of an
incompleteness result very little informaticm about prova-
bility is encoded. Even in the form of a remark that there
are true but unprovable sentences of formal arithmetic very
little is needed concerning truth -- only that one of a sen-
tence and its denial is true. The proof of the Second
Incompleteness Theorem requires that significantly more than
correct extension be true of the provability predicate.

I have argued (in sections 2 and 3) that in order to
state the Second Theorem {(and related results) in an inter-
esting way, amn account of them must contain a real (ncn-pun-
ning) notion of expressibility for certain syntactic
notions. Two questions maturally arise connecting this need
and the accounts of Feferman and Jeroslow ahd the modal
account. Can these accounts be construed as (pieces of)
non-referential semantic theories? Are they correct and
adequate? As I have urged previously, the latter question
is a question distinct from whether the accounts produce
acceptable gemeralizatiocns - purely mathematical results
about a large class of objects. The latter is consistent
vith the accounts given being ad hoc devices of proof theo-

rists designed to "make the proofs go through."
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That is, we might, for example, merely see the Feferman
account as followvs: Formulas extending the axicms are
divided into two categories: category I and category II.
This clever, but intrinsically meaningless, division is such
that all sentences formed in a certain way from the formulas
of category I are underivable. This is not true of category
II. Moreover, amongst the sentences so formed from category
I formulas are sentences we have traditiomally called con-
sistency sentences. Finally, stretching, the bounds of this
purely non-semantic viewpoint, we recognize that the mcde of
formation of these sentences from the open formulas syntac-
tically mimics definitions of consistency; where the formu-
las play the rcle of the predicate is an axion. Note that
not even this last remark can pretend to estaklish the whole
class of consistency sentences as consistency sentences,
since it doesn?t distinguish between category I and category
II.

I have been at pains to argue that the viewpoint I have
just sketched, of the Feferman account as a clever technical
device to permit true gemeralizations over formalisms, can-
not yield our usual gloss of the Second Theorem, in which
the Second Theoren is taken to be about ccnsistency. In
order to justify such a gloss, the first question (Can these
accounts, those of Jeroslow and Feferman, be construed as
non-referential semantic theories?) must be answered yes.

And this makes the second question (Are the accounts correct
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and adequate?) of interest. Let us begin with the first
question, which will lead us to the second. I approach the
first question by indicating what the required semantics
would be like, and showing that the F- and J- accounts can
be described as being like that.

The language whose semantics is at issue is a stipulated
language of elementary proof theory - LEPI. LEPT is an
interpreted, informal language, a fragment of natural lan-
guage. The intended interpretatiom is the one that we learn
vhen we 1learn the meaning of such terms as 'consistency’,
*formal detivation', *universal formula®, “'variable®', etc.
Moreover, LEPT's domain consists solely of syntactic
objects. (48)

(48) No consistent formal systen, T, that is suffi-
ciently strong can prove TI's consistency.
is not in LEPT. What I have in mind is that (48) is not in
LEPT because what formal systems prove are formulas, and
that's as fancy as LEPT gets. However, the semantics for an
LEPT sentence 1like (4) ought to supply us with a useful
premise in an argument to (48).

So, LEPT's domain contains strings and sequences of
strings, not propositions. A formalization in LEPT would
presumably contain enough equipment to do the concatenation
theory of those strings and to handle certain inductive
definitions. If ve vwere carefully formalizing LEPT we would

set up a unifora mode for describing formal systems+2, Not
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surprisingly, Jeroslow and Feferman do just this. It should
be noted that many formalizations in LEPT attempt to be
ideologically parsimonous; in particular, the notion of set
membership is avoided. This observation anticipates an
ultimate "reduction"™ to arithmetic. But this parsimony also
tells us that LEPT may be formalized in fairly impoverished
set theory, e.g. ZF-Infinity, vere we to want to do that.
Such issues do not directly concern us here. It should also
be noted that, although LEPT is a lanquage, a formalization
in LEPT is one that is true to LEPT's interpretation. With-
out our earlier argument as to the desirability of ccastru-
ing {(48) (i.e., giving enough of a theory so that one can
establish its truth), concern with LEPT would not on its
face involve us with intemsional issues. LEPT is an exten-
sionalist's dream-- a language purged (by stipulation) of
that-nominalizations, like ?that T is consistent', and whose
quantifiers range over symbcls. The conflation of use and
mention is not our r-ad of good intemsions. What occurs
after ?proves? in LEPT is a name of a sentence, or a varia-

ble vwhose values are sentences.

+2This, and such moves as taking the symbols of formalisms
to be numbers, is just to give formalisms an abstract syn-
tax. It is justified by noting that such an abstraction

preserves all relevant features - orthography not being
relevant. It doesn?t matter which mode we pick provided

ve are able to mirror syntactic relatioms.
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As is vell-known, formal systems are often taken to
remark on themselves. LEPT is a language for remarking on
formal systens. A formalization in LEPT, then, might be
taken to remark on formal systenms. How do formal systems
remark on anything? A sentence of some formal systenm is
provable and that sentence is interrreted as some remark.
The sentences of many formal systems have standard interpre-
tations, given in standard manners (see. p 18). Let us con-
sider those formal systems which are of arithmetic. Here we
have formal systems remarking on numbers. Note the not sur-
prising fact that such remarking is relative to an interpre-
tation. How does LEPT get into the act? A famous isomor-
phism is set up: LEPT is reinterpreted. Each member of its
domain is effectively assigned a unique number, and the
predicates of LEPT are assigned extensions appropriate to
the requirements of isomorphisnm. This iscmorphism is godel
numbering. Dub this reinterpreted LEPT, numerical LEPT, or
NLEPT. The truths of LEPT are truths of KLEPT. NLEPT is
about numbers. Hence a formal system with an arithmetic
intended interpretation remarks in NLEPT and derivatively
{via the godel numbering) in LEPT. If the theorems of the
formal system are true then its remarks in LEPT are true.
LEPT is a language that talks of formal systems. Thus do
formal systems remark about themselves. Put another way,
formalisms can be reinterpreted to be "of syntax" rather

than "of arithmetic™. Our innocuous isomorphism yields lit-
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tle of interest. The only relationships preserved will be
purely logical ones, Jjust because we have an isomorphisnm
between interpretations which respects the semantics of
first-order logic. That is, the requirements of isomorphism
are simply that the mapping comnmute with the logical opera-
tors in the Tarski truth definition clauses. More vividly,
the isomorphism will ignore features of NLEPT and LEPT pec-
uliar to either one. Sometimes, i.e. for some purposes,
these features are important and 1interesting. In terms of
Mates' point, the isomorphism ignores the manner of the
interpretation, so that what remark about formalisms a sen-
tence whose interpretation was given in arithmetic vocabu-
lary makes, is mysterious.

Among the important and interesting relations are the
entailment relations, vwhich are dependent on the respective
(and different) formalizations of P and LEPT*3. They , of
course, are typically not preserved. It can be seen fron
this that while the translation of LEPT to NLEPT is innocu-
ous if the only purpose to be served is preservation of
truth, for purposes of theorizing it is unhelpful. These
remarks should be regarded as glossing my invocation of
Kreisel on p. 56 ff, concerning fine-grained distinctions of

theories.

—_— . —— - . —— - - -

a31Dpjifferent? connotes here that the formalization of the
one will not be the isomorphic translate of the other.

See below.
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What are the correct entailment relaticns to imfpose on
LEPT? Presumably those plausible on LEBT's interpretation
and not NLEPT's. The odds are simply against the translate
into LEPT of, e.g. Euclid's Theorem being a vital and inter-
esting fact about formalisms. Note also that this transla-
tion cannot be given by the isomorphism alone. Conversely,
anyone who has pondered what any of Godel's original forty

odd definitions say vhen expanded into unattreviated number

theoretic language, would hardly take thea as foundational
truths. The sheer size of the constants is discouraging.
The predicates and objects of LEPT are familar to read-
ers of logic books where definitions of formal derivation,
universal formula, etc., abound. Looking at those with an
eye to formalization (i.e., inter alia, giving all formal-
isms a common alphabet) we are 1led to Jercslow (if we for-
malize directly) or Feferman (if we go in NLEPT first and
then formalize with an eye on the LEPT interpretation).

s

Neither is a proof in T of nor T is consistent are primi-
tives. In particular, the definition of proof of is induc-
tive and Jeroslow's treatment makes this explicit and criti-
cal to the characterization of a canonical provability
predicate. As e sav in our discussion of Jeroslow, a
method for excluding the extraneous {and deviating) matter
from a proof predicate can be derived from principled con-

siderations concerning the standard definitions of formal

derivation.
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The peculiar virtue of the Jeroslow treatment derives
from its direct formalization of LEET. By avoiding the
intervention of an alien subject matter (numbers) in axioma-
tizing, Jeroslow produces a very weak theory. In other
approaches conservative, with respect to number theoretic
sentences, extensions of (what turn out to be) stronger
arithmetic theories are used. This produces technical vir-
tues for Jeroslow, concerning extensions of the Godel Second
Theorem to weak theories, but I have in mind a philosophical
virtue. Jeroslow's treatment allows us to regard all of the
theorems of his minimal formalizaticn as consequences of
formalizing the basic definitions of proof theory. This
means that the exclusion of extraneous or deviating matter
is based on principled comsiderationms. This feature of the
Jeroslow approach enables one to argue that no fact not
constitutive of the meaning of kasic proof-theoretic terms
is included in his formalization of LEPT. The formalization
in LEPT is not a theory yielding merely truths in LEPT, but
truths arising from the basic definitionms. This will play a
role in some of my later remarks concerning the construal of
the Jeroslow approach as a semantic theorye. Explicitly in
thé Jeroslow approach, and (I shall show) implicit in the
others, 1is the introduction of a third "layer™ of language.
The proper semantics for LEPT will ke couched in scme lan-
guage that mentions the syntactic structures of LEPT; while

LEPT itself is a language for talking of formal languages.
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Matters get confusing because all these layers are
eventually collapsed into the language of arithmetic. It is
important to separate the layers so as to see the nature and
justification of the embeddings -- which cannot be seen from
post-collapse perusal.

Why have I Dbeen talking of the proper semantics for
LEPT? I insinuated such talk by talking of proper formali-
zations of LEPT - ones which do more than produce only
truths in LEPT. LEPT is a 1lanugage for talking of formal-
isms. But we want to talk of predicates of LEPT, such as is
a proof of, in formalizimg LEPT"s semantics. 0f course,
LEPT itself is a candidate for the language of such a seman-
tics. One gquestion is - what are the truths of this seman-
tics? A partial ansver is - not all the truths in LEPT.
Thus the preceding emphasis on parsimony.

We have, in eésence, already seen a major desideratum
for a semantics for LEPT. If the Second Theorem 1is to be
stated in LEPT then LEPT's semantics must Le intensional;
i.e. distinguish between coextensive predicates of LEPT.
Our clear separation of LEPT and its semantics is obfus-
cated, as I have mentioned, by the identity of the lamguages
of each and by the following mode of semantic descent:
Itenize the analyticities of LEPT by a weak formalization in
LEPT.

Prom these observations we may distill two senses 1in

vhich formalisms may be said to talk about themselves;
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senses which have typically been amalgamated, as one of thenm
plays no manifest role in the Pirst Theoren. One sease is
the mode adumbrated above, which exploits the GSdel number-
ing isomorphisa. The other sense is based on the existence
of a semantics for LEPT. I shall detail each of these two
senses so as to clarify their distinction. Let us dub the
first, the isomorphism sense; and the second, the semantic
sense.

Although the isomorphism sense is described above, a
redescription will be helpful., The previcus description
indicated how formalisms can be said to remark on then-
selves; namely yia a purely extensional tramslation (pre-
serving first-order logical relations) into LEPT. Now we
may view this isomorphism as supplying a semantics for LEPT.
Since the isomorphism respects only extemsicns, vhat this
semantics says LEPT says is sensitive only to standard
arithmetic truth conditions on which it is parasitic; not
even on their "standard manner" of preseatation. So the
implicit isomorphism semantics counts deviant and non-devi-
ant consistency sentences as making the same remark. This
is merely to cast into different terminology some of the
earliest observations of this thesis.

The semantic sense does not give LEPT a semantics para-
sitic on an arithaetic interpretation. Given a formaliza-
tion in LEPT and a semantics for it true to the intended

interpretation, then we have this semantics giving sense to
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the claim that formalisms remark on themselves. What is an
example of such a semantics? Well, I take it to be cbvious
at this juncture that I have three examples in mind -- call
then Jeroslow-semantics, Feferman-semantics and Modal-seman-
tics. Furthermore, these differ from the isomorphism seman-
tics in being non-extensional.

A semantics for LEPT is to be given in a very restricted
theory, though one adequate for the purpose. The semantic
task is easier here than for English not because the seman-
tic complexity is less (though it is), but because we have a
clear grasp of what the primitives and correct definitions
are. It turns out, moreover, that entailment relaticns are
the primary emphasis of this semantic theory. The data
would include such home truths as that A's feing a theorenm
entails A's being a sentence; as wvwell as others that follow
fronm thé basic notions of proof theory. Given this synoptic
view, I am going to indicate how each of the three treat-
ments sketched above fits it. I shall also use it to answer
some questions that have been raised, explicitly or impli-
citly, in some of the literature surrounding the Second
Theorem; and to account, on an other than analogical or
intuitive basis, for certain semantic-like remarks in the
literature.

The distinction just made between the isomorphism seman-
tics and a semantic semantics can be seen frcm another point

of view, The conflation of the two senses in which formal-
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ism remark about themselves is abetted by the transparency
'of the First Theorem. At the level of sentences, extension-
ality promotes egquality of truths; whereas, the Second
Theorem requires the separation of the analytic from the
merely true. If we do not ascend from LEPT the definitiomal
truths will be indistinguishable frcm other truths; defini-
tonal coextensiveness will be indistinguishable from nmere
coextensiveness. If we need to make such distinctions (and
I have been arguing that consideration of the Second Theorem
and related results indicate such a need) we end thecrizing
about LEPT, not speaking LEPT. Attributions of analyticity
to sentences of LEPT should not be confused with (assertions
of) the analyticities themselves. This third "layer of lan-
guage", the 1language of a semantics for LEPT, mentions
constituents of LEPT as well as use them**, This overview
can be anchored by some pertinent particular considerations:
The "third layer"™ is the common thread I shall unravel from

each of the three treatments.

- — D - — - - - - ——— - -

44Tt struck me, after sorting this out, that Kreisel
deserves some credit for seeing the point first. I think.
At any rate the remark of Kreisel's had always puzzled nme:
"Thus Godel's Second Theorem would be stated: If a systenm
S 1is consistent and a formula can be proved in S to
express the consistency of S, then A cannct be proved in
S." The italicized occurence of ‘?'proved' was the puzzle.
It is, we now see, something of a red herring. It really
should read 'is an assertion of LEPT's semantics.' When
all three layers are arithmetized, such distinctions are
lost. Only a few extra turnstiles remain to remind us of

their passing.

-116-



EXPRESSING CONSISTENCY: GODEL'S SECOND INCCMPLETENESS

LEPT is an interpreted language and theories may be
couched in LEPT. Some theories in LEPT are particular or
narrow, and certain truths in them will not be truths of all
theories couched in LEPT. Some propositions of LEPT do fol-
low from the meanings of the 1lexicon of LEPT and have the
status of analytic truths of LEPT. Some examples have been
given, and an interesting case is discussed on p. 121. A
semantics for LEPT will be a theory that assigns entities to
structural descriptions of LEPT sentences and their parts,
in such a way as to distinguish the class of analytic sen-
tences, to mark off certain entailments, etc. I shall now
describe the three treatments as semantic theories. (see
also p. &&, earlier.)

Feferman's treatment regiments LEPT as the "dotted" lan-
guage. In this language are terms that are to be inter-
preted as referring to syntactic entities. The crucial fea-
ture of Feferman's semantics is the presence of the term &,
used to refer to open formulas of arithmetic. The predi-
cates, PR-formula and RE-formula are predicates of such open
formulas. The semantic theory for this regimented LEPT
includes a standard referential semantics (induced by the
wjdentification™ of syntactic objects with numbers, and the
notions of numeration and binumeration) augmented by the PR
and RE predicates. Crucially, two 's of identical exten-
sion need not both be RE, or PR. In this dotted language
coextensive substitution is not truth preserving; this is
Feferman®s Thm. 5.9. |
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Feferman's semantic theory, containing such terms as
*binumerationt, 'RE-formula', etc., 1is a fairly akstract
semantics. He indicates, hovever, the obvious natural
application of it. The o's are to be thought of as rules
for selecting out axioms, and RE rules are ones that char-
actetize formal systeams. More precisely, the dotted proof
predicates, which are associated with their inductive defin-
itions involving an occurence of (defn. (4.1), p. £8), are
identified with formal systenms.

The various modal approaches, vhether LGb's, or the
highly developed one that utilizes G, can be thought of as
producing the relevant analyticities of LEET directly*S.
LEPT is once again regimented -- into a language including
terms for syntactic objects and the predicate Bew. The
modal approach mentions sentences containing Bew, and 'tz
is readable as 'is an amalytic truth of LEPT'. Since this
semantics is merged with the standard one that assigns
extensions to predicates like Bew, we get the familar lack
of extensionality. Of course, yia the Solovay result, ve
get the semantics reduced into arithmetic, and post-reduc-
tion, all the £urnstiles look alike (* '). This reduc-
tion, and corresponding reductions to a ccmmon arithmetic
theory in the other approaches, are hindrances to seeing the

layers separately.

- D G D D > — W - —— -

#SThis remark needs qualification, which is supplied a few
pages hence.
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As remarked previously, Jeroslow's treatment contains
vhat we are now construing as a semantics for LEPT. The
definitons of proof theory are given in a language that con-
tains such predicates as 'SpTm?', ‘'Thm?, etc. Canonical
proof predicates are defined by again recurring to the
inductive characterization of formal proof. And formal sys-
tens are Post Canopical Systenms. This identification plays
the role here that Feferman®'s use of open formulas, inter-
preted as giving the rules for picking out the axioms, did
in the F-senmantics. Many PCSs have identical sets of pro-
ductions.

A first glance at the necessary conditions on provabil-
ity predicates often puzzles people. Why should, for exam-
ple, it have to be provable in“arithnetic that provability
predicate, B, be such that B(A—>C) —> (B(A) —»B(C))? Why
not just true? What is revealed by the above discussion is
that the answer is that such conditions are not required to
be provable in arithmetic. They are just assertions of a
sermantics for LEPT. Translated into the 1language of
arithmetic they become theorens; this accounts for the
nextra"™ turnstiles. That is, in all these cases, there is a
third theory wvhose formalization is represented by those
"extra" turnstiles - and whose appearance as turnstiles of

some arithmetic theory is simply a result of the post hoc

translation.
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This last point has been nmentioned previously, in con-
nection with a remark of Kreisel's. My explanation of the
"extra-turnstiles"™ has a coincidentalist ring. That is, I
have argued that a semantics, and an intensional semantics
at that, is needed to explicate Gddel's Second Theoren.
Since both the objects being interpreted and their interpre-
tations (the objects of the semantics) are syntactic
objects, the semantic theory can be couched in the language
of LEPT and formalized; furthermore, it is a weak theory
easily arithmetized.

That LEPT's semantics can be formalized, and with equip-
ment already to hand in any arithmetization endeavour, nmay
explain why it is alwvays presented as formalized. Kreisel
only seems to be asserting that it must be formalized and
that it nmust be formalized (via arithmetization) in the
theory whose consistency sentence is at 1issue. Feferman
shovs that it is a sufficient condition that this be shown;
i.e., that, as Kreisel sums it up, "a formula can be proved
in S to express the consistency of S". I have been attempt-
ing to show that this is true, but a "coincidence".

If taken seriously as a necessary condition, it would
mean that a theory too weak to formalize EPT's semantics,
that is, the language of its own proof theory, doesn?t have
any consistency sentences. The temptaticn to say this arises
because such a theory is too weak to formalize the First

Theorem, and hence, too weak to have the Second Theoren
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proved for it.  Why this 1is so 1is the proper reason for
asserting that weak theories can't assert their consistency.
In proving the Second Theorem the formalism for which the
Second Theorem is being proved is required to "know" (prove)
that a formula expresses provability (see (J20)). It can do
this if it is K-complete. K-completeness is, roughly, a
requirement that the formalism contain its proof theory's
semantics.

This doesn't take us all the way. There is seemingly
the option of saying that weak theories have consistency
sentences, possibly provable ones. Such theories sould have
to be so weak that they couldn®t discern their consistency
sentences from deviant "consistency" sentences. I think
that there are persuasive reasons for discarding this
option, and this last fact is one such reason. Although I
have avoided talking about the epistemological content of
the Godel Theorems, I will say that this situation, a for-
malism that proves consistency but doesn't know 1it, seens
not to have the epistemological content that a Hilbertian
might have had in =mind.

An other problematic aspect arises because none of the
truths of mathematics, meta- or otherwise, are contingent.
Many of our semantic intuitions concerning intensional con-
texts and analyticity connect to ones concerning necessity
and contingency. These intuitions have recently been

schooled by the development of possible world semantics.
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Unfortunately their bearing on the semantics of mathematical
discourse, particularly the cases I have been describing, is
dubious; particularly if the possible world semantics is
taken "literally”, as Stalnaker, for example, takes it.

In the cases under consideration this aspect presents
itself as the problem of distinguishing between the analytic
truths of LEPT and the non-analytic ones- which we cannot
perforce call *the merely contingent ones?. Many truths in
the language of LEPT follow from any precise identification
of the formalisms involved. Many of these I have implicitly
ruled out as analyticities; that P 1is consistent, for
instance, or that Q cannot prove ccmmutativity of addition
and P can. The 1latter fact follows inexorably from the
standard specifications of Q and P. The former fact, that P
is consistent, also fcllows from the specification of pP.
For the moment let us assume that this fact, that P is con-
sistent, can be justifiably ruled a non-analytic truth of
LEPT. Then we can see how to describe the distincticn bet-
ween canonical and "“contingent"™ (that is, non-analytic)
reference. Recalling that the deviant proof predicate could
be described as extending the theorems of the intended for-
malism on hypothesis of comnsistency, we can see how the
extension of such a predicate depends on a non-analytic
fact.

This only shows how we might draw such a distinction,

for some cases, and how it would fit in with our previous
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observations. It remains to show how it is implemented and
why where the line gets drawn is appropriate. Cur immedi-
ately previous observations are relevant. Fcr, the distinc-
tion is really between truths in LEPT and truths about LEPT.
And, if this is right, it is a clear case of the separation
of metaphysical modal notions from semantic cnes.

What is the proper semantic theory for EPT? Well, it
depends wvhose account one takes as gospel. It is nmost
explicit in the Jeroslow account, but on all accounts it is
never stronger than P. So, amongst other things, Gb&del
proved that that P is consistent is not an analytic truth of
LEPT; i.e., is not a semantic fact.

As I suggested earlier, the modal account would seem to
plunp for G as the theory of analyticity and entailment for
LEPT. It would be tempting to read 'kz' as 'is an analyti-
city of LEPT'. Unfortunately G seems too strong. Many of
its theorems seem to be what I have been calling ncn-ana-
lytic truths of LEPT. nr—>nonp is a difficult case. Count-
erexamples to this would involve very weak systems- and we
might want to say that by “*formal provability' we (LEPT)
mean(s) sufficiently strong formal provability. The tempta-
tion is reinforced by the weakness of G's deductive appara-
tus. G is not a first-order quantifier theory with induc-
tion; such a theory might cause us to worry that more than
the semantic facts were being represented. I was lauding

the Jeroslow approach for its avoidance of this problen.
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With G's weak deductive apparatus (it's a sentential logic),
if ve can justify the axioms semantically, we are a long way
towvard justifying G as a semantics. Since G is weak, the
rule of necessitation 1is harmless if we assume, as above,
that formal provability means sufficiently strong formal
provability.

Jeroslow's theory, J, is very weak; but all the accounts
are adequate to the semantic data examined. That is, they
respect the cavils of the early sections. What justifies
restriction to such weak theories, other than methodclogical
parsimony? There are two sorts of justification - one epis-
temological, the other semantical. Jeroslov essentially
alludes to the former in the passage gquoted on p. 7lf. It
seeks to salvage the epistemological core of the Hilbert
progranm. The semantic theory is a finitist theory about
{the concept of) provability. As we have seen just above,
Godel proved that the consistency of P is not fprovable in
such a finitist semantics. The semantic justification is
simply the observation that the analytic truths are just
those that follow from the meanings of the predicates
involved - the neanings are given by the inductive defini-
tions; and anything in addition to inductive ability on the
relevant predicates is to go beyond the =zinimal core of
meaning-based truths. Note that we have been more than once
driven to put lower bounds on the streangth of the semantic

theory.
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Curiously enough these sketches of tvo sorts of
Jjustification for a semantic theory yield yet another deep
parallel to issues in natural language semantics. Some wri-
ters have claimed, implicitly or explicitly, that the ade-
quacy of a semantic theory is to be judged solely on whether
the correct semantic properties and relations are predicted.
Others place restrictions on how a semantic theory produces
its semantic descriptions -~ the restrictions kLkased on
demanding that the theory be "psychologically real". The
parallel to the Hilbert demand is close. In the next and
final section I will have more to say on this and on other

connections to issues in natural language semantics.
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Chapter 11

POSTLIMINAEY CAVILS

LEPT is a technical fragment of English. LEPT requires,
and has, an intensional semantics. So English requires an
intensional semantics. This argument is perﬁaps reminiscent
of arguments for the extemnsional insufficiency of ccntext-
frée grammars for English from their extemnsional insuffici-
ency for some fragmemt. These are in turn perhaps reminis-
cent of an argument that some set is non-recursive because
because some subset of it is. Since the 1last argument is
invalid, one might suspect that the others will, at best,
need additional premises to make them respectable.

This has been dome for the case of English grammars in
vays that preserve the spirit ‘of the original argument.
Roughly speaking, the strategy involved looks like this: If
one can argue that the fragment is "independent®, in the
sense that a semantics for the vwhole yields a semantics for
the fragment by mere restriction, then the argument is bol-
stered. This is done by defining an equivalence relation
betveen grammars stricter than same productionms, thereby
strengthening accompanying notions of adeguacy. If a granm-
mar for the vwhole assigns certain structures to sentences,
then it assigns the same structures to sentences that reoc-
cur in the fragment. Then it can be argued that those
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structures are incorrect for the fragment, and so, imcorrect

for the whole.

Without going into more detail, =my point is simply that
the argument represented by the first two sentences of this
section, it might be hoped, could be rectified in a similar
vay. It certainly does seem clear that LEPT is a well-de-
fined isolatable fragment; and that a semantics for all of
English should contain a separable semantics for it. Analo-
gies with certain intensionalizing moves in natural language
semantics are striking. The parallel between strong egquiva-
lence of grammars and individuatiom by PCSs being only one
case. While the project of filling in the argument seens
plausible, I have not worked out the precise lacunae to be
supplied.

There is a less dubitable, but weaker, conclusion, sup-
ported by the preceding sections. There is nothing as con-
vincing as a counterexanmple. Demonstrating a logical lapse
in someone's argument is not as strong as giving a counter-
example to the conclusion. The counterexample should not,
of course, merely shift the subject of dispute to the coher-
ence of the counterexample.

My claim is that I have found two, maybe three, counter-
examples to the claim that intemnsicnal semantic theories are
incoherent. Now maybe nobody ever really claimed that; but
if anyonedid, it was Quine. I have in mind a strong version

of this attribution of incoherence. Namely, that inten-
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sional semantics are intrinsically incoherent. This
shouldn®t be confused with the claim that a pure intensional
semantics is somehow am incoherent piece of mathematics.
Kripke cleared that wmuch up on the modal fromt. Here,
though, we have an applied intensional semantics (innocently
constructed, by the vay, to solve purely technical prchlenms)
that cannot be faulted on ground of rigor nor on the inco-
herencg or nmurkiness of the entities and relations appealed
to; they are finitary syntactic objects and relations among
them - a Quinean»ideal. |

I would 1like to briefly take up some remarks I made
touard.the end of the previous section concerning psycholog-
ical reality. It has begun to strike many people working
natural language semantics that many available semantic
theories are not candidates for competence nmodels of human
linguistic behavior. Indeed, some people who only believe
in performance or 6onpetence theories have argued to the
incorrectness of semantic theories committed to infinitary
objects. I shall consider the issue as one concerning the
method of implementation, in a finitary mode of representa-
tion, of an infinitary semantics.

Fortunately, to make this point vivid, one need not
mount a careful destructicn of arguments against psychologi-
cally unreal semantics - counterexamples are at hand. One
such I will only allude to. Workers in computer science

have described semantics, for computer languages, that are
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conmitted to infinitary objects. They have, moreover, no
trouble in talking of successful implementations
("performance models") of such languages, nor any trouble in
dealing with algorithms to realize the semantics
("competence models"). Indeed, the need for a notion of
sucessful implementation prcmpted the creation of computer
language semantics. These implemenations are, of course, on
those paradigms of finitude, computers.

The usual semantics for first-order arithmetic is nomn-
computational. Yet it is not usually argued that it is én
incorreét semantics on the grounds that we dcn't compute the
references and truth-values in the manner of the semantics.
This is so because no one takes the semantics as a perfor-
mance or competence model. (Except, I guess, intuitionists
and some finitists.)

Finitists, in producing primitive recursive arithmetic
and sinilar systems, have tried to give competence models of
human mathematical behavior. 0f course they were motivated
by epistemological concerns: only such knowledge as could
be directly represented in our finitary heads would be know-
ledge. Hilbert, we might say, regarded finitist systems as
representations of knowledge. We could have putatively
infinitary knowvledge to the extent to which such a system
adequately represented such knowledge; and if we could show
the system comnsistent. The problem of adequate, or correct,

representation I shall skip, although it is a key issue.

-129-



THEOREM AND INTENSIONALITY IN METAMATHEMATICS

I should like, in the light of distincticns made in this
thesis, to suggest a certain delineation of a Hilkertian
program as sketched above. Proof theory is the theory in
vhich Hilbertian justifications are carried out. So proof
theory must be finitary. The semantics for the language of
proof theory, the semantics of LEPT, is a weak theory. Yet
it does not follow from the semantics of LEPT that any, suf-
ficiently strong, system is consistent. ~So even 1if our
semantic knowledge constituted a secure epistemological
base, assertions -of consistency exceed it. Thus, while
mathematical knowledge may be mecessary, it isn't analytic.
I take this to be a form of realisnm.

I hope I have established whét I said I would. I feel
sure that I have a least shown that the connective theses I
have uncovered do not have, as I remarked on p. 14, "mathe-

matics' clarion certainty and precision."
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